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Moral hazard, hold-up, and the optimal
allocation of control rights

Vijay Yerramilli*

I examine the optimal allocation of control rights in a model with manager moral hazard, where
the manager and investor may hold up each other ex post. The control allocation determines both
the likelihood of hold-up and the agents’ renegotiation payoffs. In equilibrium, only two control
allocations are optimal: either exclusive investor control or a contingent control allocation that
allows the manager to remain in control if, and only if, interim performance is good. Thus, my
model explains why it may be optimal to link control to the firms performance such that managers
retain control only following good performance.

1. Introduction

B Financial contracts are inherently incomplete, and cannot specify every future investment
decision that a firm must make. Given this, how should contracts allocate the right to make
future decisions (“control right”) between managers and investors? Aghion and Bolton (1992)
address this question by arguing that the manager and the investor may have potentially conflicting
objectives regarding the future decision, because the manager cares about both monetary returns
and nonmonetary private benefits whereas the investor is only concerned about monetary returns.
Therefore, control must be allocated such that the efficient decision plan is implemented ex post.
One of their main results is that if neither monetary returns nor private benefits are comonotonic
with total returns, then it may be optimal to specify a contingent control allocation in which
control is assigned to the investor in states where maximizing monetary returns is efficient, and to
the manager in states where private benefits are more important. Although this result is consistent
with real-world contracts, it is based on very specific assumptions regarding the agents’ utilities
and cannot explain why investors take control only in bad states and control to managers in good
states and never the other way a round.'
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! As Hart (2000) notes, if we assume that a professional manager can run a successful start-up firm better than its
founding entrepreneur, then as per Aghion and Bolton’s analysis, it should be optimal to assign control to the investor in
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In this article, I address the question of the optimal allocation of control rights in a
simple setting with manager moral hazard and incomplete contracts, where the contract may
be renegotiated after the manager has exerted costly effort and the investor has committed funds
to the project. Renegotiation gives rise to a two-sided hold-up problem, in the sense that the party
in control, investor or manager, can hold up the other party. The control allocation affects the
manager’s ex ante incentives because it affects both the likelihood of hold-up ex post and the rene-
gotiation payoffs of the two agents. The optimal control allocation is the one that provides the
strongest incentives to the manager but still satisfies the investor’s participation constraint. The
key contribution of my article is that it offers a theory of control rights based on first principles,
without making any ad hoc assumptions about the manager’s private benefits or future conflicts
of interest. Moreover, it also explains why it may be optimal to link the control allocation to the
firm’s future performance, such that the investor takes control only following poor performance
and leaves control to the manager if performance is good.

The basic set-up in my model is very similar to that in Rajan (1992). A manager with a
project idea, but with no funds of her own, starts a firm by raising the necessary funds from an
investor. The contract between the agents cannot specify the manager’s effort and a key future
investment decision, continuation versus liquidation, because the state of the firm (“good” or
“bad”) cannot be observed or verified by outside parties (Grossman and Hart, 1986; Hart and
Moore, 1998). Given the firm’s opacity and high ex ante probability of failure, new financing
from outside investors is difficult to obtain if the original investor decides to withdraw from the
firm. Thus, there is potential for hold-up once the investor has sunk in its funds and the manager
has exerted costly effort. The investor may threaten liquidation even in the good state in order to
extract a higher share of the continuation surplus, and the manager may refuse to liquidate the
firm in the bad state unless she gets a share of the liquidation proceeds. A key difference from
Rajan’s model is that, in my model, the agents also observe a verifiable performance measure
(“high” or “low”) that is imperfectly correlated with the firm’s state. Hence, the agents may
choose to write contracts contingent on the noisy performance measure, as in Aghion and Bolton
(1992).

The contract assigns the control right over the investment decision to either the manager or
the investor, possibly contingent on the verifiable performance measure. The contract may specify
exclusive manager control or exclusive investor control regardless of the firm’s performance, or
may specify a contingent control allocation under which control switches from one agent to
another contingent on the realization of the performance measure. The contract may also specify
any payoff rule, subject to the restriction that the manager is protected by limited liability if the
venture fails (i.e., the lowest possible payoff to the manager in the event of liquidation is zero). I
do not impose any limited liability or wealth constraints on the investor.

For the manager’s incentives to be high, she must be rewarded when the venture succeeds
and penalized when the venture fails. Therefore, any control allocation that allows the manager
to remain in control following the low performance signal is strictly dominated by the contingent
control allocation, under which control switches from the manager to the investor if the low
performance signal is realized. Thus, in contrast with Rajan (1992) and Aghion and Bolton
(1992), the manager control allocation (e.g., nonvoting equity, long-term debt) is never optimal
in my model.

In equilibrium, only two control allocations can be optimal: either investor control or
contingent control. The main advantage of contingent control over investor control is that it
mitigates hold-up by the investor in the good state by allowing the manager to remain in control
if the interim performance is high; its main drawback is that the manager may also obtain control
in the bad state if the interim performance is high (which happens with positive probability) and
can hold up the investor by refusing to liquidate the firm. I show that contingent control is more

the good state so that the investor can take the value-maximizing decision of firing the entrepreneur. However, we do not
observe such contracts in practice.
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likely to be optimal for the relatively safer firms, that is, firms with higher ex ante probability of
success, higher success returns, and higher liquidation values.

Two key parameters of interest in my model are the correlation between the verifiable
performance measure and the firm’s state, denoted f, and the investor’s renegotiation bargaining
power, denoted w. Although these parameters do not affect the firm’s cash flow directly, they
nevertheless affect firm value through their impact on the manager’s incentives. An increase in
either B or u makes it more likely that the contingent control allocation is optimal by lowering
the rents that the manager captures in the bad state. Thus, my model predicts that contingent
control allocations are more likely to be used when verifiable performance measures are highly
informative about the firm’s true profitability, and when the manager’s outside options are weak,
causing the investor’s renegotiation bargaining power to be high.

The predictions of my model are consistent with empirical evidence on venture capital
contracts. As Kaplan and Stromberg (2003) document, a key feature of these contracts is the
relationship between future firm performance and the allocation of control rights: contracts are
structured so that the venture capitalist obtains full control if the firm performs poorly, whereas
the entrepreneur retains/obtains control rights as firm performance improves. Contingent control
is usually implemented in one of two ways: either through “adverse-state” provisions that transfer
board control, voting control and/or liquidation rights to the venture capitalist if the firm’s
performance verifiably deteriorates; or through “milestone” provisions, which transfer control
rights to the entrepreneur if the firm achieves some prespecified performance targets.” By focusing
on the incentive properties of control allocations, I am able to explain the observed hierarchy in
contingent control allocations.

My article builds on the analysis of Rajan (1992), who contrasts the incentive properties of
short-term bank debt and arm’s-length financing, which in my model are equivalent to investor
control and manager control, respectively.’ T extend Rajan’s analysis by introducing the possibility
of contingent contracts into his model along the lines proposed in Aghion and Bolton (1992).
It is also important to emphasize that, unlike with some of the existing research on contingent
contracts (e.g., Hellmann, 2006; Repullo and Suarez, 2004), my analysis does not rely on the
assumption that the underlying state variable is verifiable. Instead, I focus on a more realistic
setting where the interim performance measure is only imperfectly correlated with the firm’s
true state. Thus, in my model, contingent contracting does not eliminate renegotiation or hold-up
problems. Although the contingent control allocation mitigates hold-up by the investor in the
good state in comparison to the investor control allocation, it also gives rise to hold-up by the
manager in the bad state.

My article is related to Dewatripont and Tirole (1994), who use a model with managerial
moral hazard in an incomplete-contracts setting to explain why firms are financed by multiple
outside investors holding a diversity of claims. In their model, the safer action (intervention)
is optimal in the bad states of nature. However, the manager will never voluntarily choose
intervention, because she obtains either private benefits or higher expected monetary rewards by
pursuing the risky action (continuation). Hence, it is desirable to endow outsiders with control
rights, and incentivize them to choose the efficient action plan. As intervention reduces the
riskiness of the final value of the firm, an outsider with a concave (convex) claim on firm
value will be biased toward intervention (continuation). As the incentive scheme assigned to the
controlling outsider may not induce ex post maximization of firm value, it is necessary to have an
additional outsider as a residual claimant to balance the accounts. Restricting attention to standard
assets such as debt and equity, the model predicts debtholder control following poor performance,

2 Consistent with the predictions of my model that contingent contracting is used to mitigate hold-up by the investor,
Bienz and Hirsch (2006) find in a sample of German venture capital contracts that milestone staging is more likely to be
used when the entrepreneur’s outside options are limited.

3 Other articles that point to the incentive role of short-term financing arrangements are Dewatripont and Maskin
(1995) and von Thadden (1995).
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shareholder control following good performance, and congruence of interests between managers
and passive shareholders.

The key difference between my article and Dewatripont and Tirole (1994) is that I focus on
ex post hold-up problems between the manager and the investor, which can occur in both the good
and bad states, and their effect on the manager’s ex ante incentives. In contrast, renegotiation
plays a limited role in Dewatripont and Tirole’s analysis, and is assumed to not affect the
manager’s utility. Thus, their theory is effectively based on the assumption that there is a conflict
of interest between the manager and outside investors only in the bad states, where the safe action
(intervention) is the efficient action choice.* Moreover, as Dewatripont and Tirole acknowledge,
their theory does not necessarily imply contingent control rights because it is possible to induce
the optimal action choice by picking a single controlling outsider and designing a complex
incentive scheme (see footnote 14 in their article). In contrast, the hold-up problems that I
model and the inefficiencies they engender cannot be dealt with by incentive schemes alone. The
control allocation plays a central role because it affects both the likelihood of hold-up and the
renegotiation payoffs of the two agents. Contingent control is optimal in my model only because
it mitigates hold-up by the investor in the good state.

My article is also related to the literature that provides a theory of capital structure based on
manager moral hazard, using the idea that the manager’s incentives are strengthened by rewarding
her in the good state and penalizing her in the bad state. Innes (1990) shows the optimality of debt
financing for a risk-neutral entrepreneur, whereas Hermalin and Katz (1991) and Dewatripont,
Legros, and Matthews (2003) show the optimality of riskless debt and risky debt, respectively,
when the entrepreneur is risk averse but the investor is risk neutral. I use a similar idea to determine
the optimal allocation of control rights between the manager and the investor. My results do not
require the manager to have all the renegotiation bargaining power; in fact, the contingent control
allocation is more likely to be optimal as the investor’s bargaining power increases.

Another article that examines long-term versus short-term financing in an incomplete-
contracts setting is Berglof and von Thadden (1994). They argue that having two (or more)
classes of investors, with one holding only a secured short-term claim and another holding a
long-term state-dependent claim, can deter strategic default by the borrower by strengthening
the bargaining position of the short-term lender, who does not have to worry about the negative
impact of liquidation on his long-term claims. Strategic default is not an issue in my model
because I assume that the firm’s cash flows are verifiable. My main focus is on agency conflicts
surrounding the continuation versus liquidation decision, and incentivizing the manager for her
effort provision.

The rest of the article is organized as follows. I describe the base assumptions of my model
in Section 2 and provide a formal definition of the equilibrium in Section 3. I characterize the
manager’s effort choice in Section 4 and the optimal contract in Section 5. Section 6 concludes
the article.

2. The model

B There are three dates in the model; 0, 1, and 2. At date 0, an entrepreneur (“manager”) with
a project idea sets up a new firm by making an investment /. As the manager has no funds of her
own, she raises the required funds from an investor. Both the manager and the investor are risk
neutral.

At date 1, the firm is revealed to be in one of two states, “good” or “bad.” After observing
the state, the firm can choose to either continue operating as before (“continuation”) or redeploy
its assets in some alternative use (“liquidation”). If the firm is in the good state, then continuation
yields a date-2 cash flow of R = R with probability p,, and R = 0 with probability 1 — p,. If the

4 Reversing this assumption, and assuming that intervention increases the firm’s risk, generates the opposite result
about shareholder interventionism and creditor passivity (see Berkovitch and Israel, 1996).
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firm is in the bad state, continuation yields R = 0 with certainty. On the other hand, liquidation
yields a value of L € (0, /) at date 1, regardless of the firm’s state. No cash flow is realized at
date 2 if the firm is liquidated at date 1.

Assumption I. A = p,R — L > 0.

Assumption 1 states that continuation generates a higher value than liquidation in the good
state. The variable A denotes the continuation surplus in the good state. In the bad state, it is
clearly better to liquidate the firm because liquidation yields L > 0 at date 1 whereas continuation
yields 0 at date 2.

The probability of the good state being realized depends on costly unobservable effort
expended by the manager at date 0. Specifically, the state of the firm is good with probability fe
and bad with probability (1 — 6Be), where e € [0, 1] is the manager’s date-0 effort. The manager
incurs a private cost of “" for exerting effort e, where ¥ > 0 is the manager’s unit marginal
cost of effort. The constant 0 < 1 captures the impact of external factors, such as the demand
for the firm’s products and level of competition in the industry, that have a bearing on the firm’s
profitability. I refer to 6 as firm quality, and assume that it is known to both the manager and the
investor.

Assumption 2. > 20 A.

Assumption 2 ensures that the manager’s effort in equilibrium is always an interior solution.
Moreover, it also ensures that the probability of the good state being realized does not exceed
%. The latter assumption, although not necessary, simplifies analysis by allowing me to focus on
situations that are most relevant to start-up firms.

O Information structure. There is no information asymmetry between the manager and the
investor at any point of time regarding the state of the firm. Both agents observe the state of the
firm only at date 1 (i.e., after the investor has invested / and the manager has exerted effort e, but
before the continuation decision is made). However, the state of the firm cannot be verified by
outsiders.

Outsiders do observe a public signal on the firm’s interim performance at date 1, denoted
7, that is imperfectly correlated with the true state of the firm. Some real-life examples of 7* are:
interim sales or earnings, achievement of milestones such as U.S. Food and Drug Administration
(FDA) approval of a new drug, and so forth. I model the correlation between 7 and the firm’s state
by assuming that 7 can be either high (denoted » = %) or low (denoted » = [) and that

Pr(r = h | good state) = Pr(» = [ | bad state) = 8,

where 8 € (0.5, 1) is a given constant. The above probability distribution implies that low
performance is more likely in the bad state and high performance is more likely in the good
state, although the correlation is not perfect. The parameter 8 measures the informativeness of
the public signal 7.°

All the cash flows are verifiable.

3 By Bayesian updating, a low performance indicates that the firm is more likely in the bad state, whereas a high
performance indicates that the firm is more likely in the good state. Formally,

Boe
Bbe + (1 — p)(1 —be)’

(1 —e)

(1 — B)oe+ B(1 —be)’

It is easily verified that both the above expressions are increasing in 8. As 8 — 1, Pr(Good state | = h) — 1 and
Pr(Bad state | = /) — 1 (i.e., the high (low) performance signal almost certainly indicates that the firm is in the good
(bad) state). On the other hand, the signal 7 becomes uninformative as 8 — 0.5, because then Pr(Good state | = h) — e
and Pr(Bad state | r =) — 1 — fe (i.e., the posterior probabilities are almost the same as the prior probabilities).

Pr(Good state | r = h) =

and Pr(Badstate|r =1) =

©RAND 2011.



710 / THE RAND JOURNAL OF ECONOMICS

O  The contract. The contract between the manager and the investor cannot be contingent on
either the manager’s effort or the state of the firm, because the manager’s effort is unobservable
and the firm’s state is unverifiable. The contract can, however, assign control over the liquidation
decision to either the manager or the investor, possibly contingent on the realization of the
verifiable performance measure 7.

Let ® = {¢,, ¢} denote the control allocation specified in the initial contract, where ¢, €
{inv, mgr} denotes the identity of the agent who is assigned control following the interim
performance » € {/, h}. There are four possible control allocations that the contract may specify:
“investor control”(denoted ® = IC), under which the investor has control over the liquidation
decision regardless of 7 (i.e., ¢, = ¢, = inv); “manager control” (denoted ® = MC), under which
the manager has control regardless of r (i.e., ¢, = ¢, = mgr); “contingent control” (denoted
® = CC), under which the manager has control if interim performance is high and the investor
has control if interim performance is low (i.e., ¢, = mgr, ¢, = inv); and “inverse contingent
control” (denoted ® = I/CC), under which the manager has control if interim performance is low
and the investor has control if interim performance is high (i.e., ¢, = inv, ¢, = mgr).

The contract also specifies a payoff rule, which describes how the realized cash flows are to
be shared between the two agents and outlines other cash transfers among the agents. The contract
may specify payments (D;, D,), where D, denotes the payment to the investor if the project is
allowed to continue operating following the interim performance » € {/, 4}, and the cash flow R
is realized at date 2; the manager being the residual claimant gets a payoff of R — D,. Similarly,
the contract may specify payments (Y}, Y,,), where Y, denotes the payment to the investor if the
firm is liquidated at date 1 following the interim performance € {/, h}; the manager’s payoff
then is L — Y,. Apart from specifying how the realized cash flows are to be shared, the contract
may also specify an additional cash transfer of 7, from the investor to the manager if the firm is
allowed to continue operating following the interim performance » € {/, 4}; one interpretation of
T. is that it denotes a bond posted by the investor up front to make a prespecified payment to the
manager in the event of continuation.’ As I allow for the cash transfers (7}, 7},), there is no loss
of generality in assuming that both agents get a payoff of zero if R = 0 is realized at date 2. I
referto Q = (Y, V), Dy, Dy, T;, T),) as the payoff rule. Given the assumptions about verifiability,
the payoff rule 2 is completely general, because it allows all payoff variations contingent on the
three cash flows, 0, R, and L, and on the interim signal 7.

I impose two important restrictions on 2. First, the payoff to the manager in the event
of liquidation must be nonnegative, that is, L — ¥, > 0. In other words, there is a limit to the
punishment that can be imposed on the manager in the bad state. This is a reasonable restriction
because managers are protected by limited liability in case the venture fails. Moreover, in my
model, the manager has no money of her own. Second, 2 must satisfy the following “feasibility
constraint”: the investor’s total expected payoff at date 0 must weakly exceed the amount it invests
in the firm (i.e., the investor’s participation constraint must be met), and the amount invested by
the investor at date 0 must be sufficient to finance the initial investment /. Observe that I do not
impose any limited liability restrictions on the investor in any state at date 1. So D, and 7, can
take any possible value as long as the contract satisfies the feasibility constraint.

O Renegotiation at date 1 and hold-up problems. After observing the state of the firm
at date 1, the manager and the investor may choose to renegotiate the initial contract. In the
event of renegotiation, the manager and the investor split the surplus from renegotiation between
them. One way to obtain this outcome is to employ the generalized Nash bargaining solution
in which the investor gets its disagreement payment plus a fraction p of the surplus from
renegotiation, whereas the manager gets her disagreement payoff plus a fraction (1 — u) of
the surplus from renegotiation. Alternatively, I could assume that the investor gets to make a

¢ As liquidation yields L with certainty, there is no need to specify a separate cash transfer in the event of liquidation;
the payments Y, and L — Y, are sufficient to describe the net payoffs to the investor and the manager, respectively.
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take-it-or-leave-it offer with probability p, and the manager gets to make a take-it-or-leave-it
offer with probability (1 — w).” The parameter i € (0, 1) is a measure of the investor’s bargaining
power at date 1.

Renegotiation creates the possibility of hold-up problems at date 1. If the manager is in
control of the firm in the bad state, she may refuse to liquidate the project unless the investor
agrees to share some of the liquidation proceeds with her. Similarly, if the investor is in control in
the good state, it may use the threat of liquidation to capture a share of the continuation surplus
A. The crucial assumption underlying hold-up by the investor is that the firm is constrained in
obtaining refinancing from outside investors at date 1 if the initial investor refuses to continue to
finance the firm. For tractability, as in Rajan (1992), I model this by assuming that the firm cannot
obtain any refinancing from outside investors at date 1 if the original investor refuses to continue
financing the firm; hence, liquidation becomes the disagreement outcome in the renegotiation
game between the investor and the manager in the good state. This is a reasonable assumption
in the case of entrepreneurial firms given their opacity and the high ex ante probability of
failure.®

It is convenient, but not necessary, to assume that the manager captures all the initial surplus
by offering a take-it-or-leave-it contract to the investor at date 0.

3. Definition of equilibrium

B Before formally defining the equilibrium in this section, I introduce some notation. For a
given initial contract (2, ®), let V4 (€2, e) and S4(€2, e) denote the expected total firm cash flow
and the expected payoff to the investor, respectively, at date 0 as a function of the manager’s effort,
e. The expectations assume that both the manager and the investor behave optimally at date 1
when renegotiation takes place and a continuation decision is made.

As the manager is the residual claimant, her expected payoff from the project’s cash flow is
Ve(R2, e) — Se(S2, e). Therefore, in equilibrium, the manager’s initial effort e4(€2) must satisfy
the following incentive compatibility condition:

es(Q2) = arg max Vo(R2,e) — So(2, ) — 1’”762. (1)

In a rational expectations equilibrium, the investor will correctly conjecture the manager’s
effort e4(£2) and compute the expected value of its claim at date 0 as Sy(2, €5(£2)). As the
manager makes a take-it-or-leave-it offer to the investor, she raises an amount S (2, €4(£2)) from
the investor at date 0. For the contract to be feasible, it must satisfy the following “feasibility”
constraint:

Sa(S2, e0(S2)) = 1. 2)

Condition (2) states that the manager must raise enough funds at date 0 to cover the initial
investment 7. If S4(€2, e4(2)) > I, I assume that the manager simply consumes the excess funds
at date 0. Therefore, the manager’s total cash flow at date 0 is V4($2, e4(€2)) — I, which is obtained
by adding the manager’s residual cash flow, V4 (2, 5(£2)) — So(£2, e4(£2)), to her excess date-0
funds, Se(2, €(2)) — 1.

71 thank an anonymous referee for this suggestion.

8 It may be that outside investors do not know the firm quality # and, hence, cannot compute the correct posterior
probability of the firm being in the good state conditional on the performance measure 7. As 7 is a noisy signal of the
firm’s state, refusal by the inside investor to refinance the project at date 1 may signal to outside uninformed investors
that the project is in the bad state, causing them to stay away.

%1t is easy to show that the manager’s equilibrium effort choice is invariant to her bargaining power at date —0.
Also, the optimal contract will not change qualitatively if the investor is allowed to capture a positive fraction of the initial
surplus.
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Subtracting the cost of effort from the manager’s total cash flow at date 0 yields her net
surplus at date 0, which I refer to as firm value. For a given contract (€2, @), the firm value is
Y(es(R2))
NVa(@) = Va(@, eal@) — 1 — LD @)
Equilibrium in this game consists of choosing an initial contract (£2*, ®*) that maximizes
NVe(2) subject to the manager’s incentive compatibility condition (1) and the feasibility
constraint (2).

4. Characterizing the manager’s effort

O  The hold-up problem at date 1. I begin by analyzing the behavior of the manager and the
investor at date 1 after they have observed the firm’s state. I restrict attention to contracts with
Y, > 0, because otherwise the investor will not have any incentive to liquidate the firm in the bad
state. I show in Lemma A3 that a contract with ¥, < 0 can never be optimal.

Define

Sg(l", Q) = maX{Yr + MA’ pgDr - Tr} (4)
Sp(r, ) = min{Y,, uL}. (5)
Lemma 1 (Exercise of control at date 1).

(1) If the manager is in control in the good state, she allows the firm to continue operating untill
date 2; the payoffs to the investor and the manager are p,D, — T, and p,(R — D,)+ T,
respectively, forr € {I, h}.

If the investor is in control in the good state, it allows the firm to continue operating untill
date 2, possibly after renegotiating the initial contract. Renegotiation occurs if, and only if,

Y, + uA > p,D, — T, forr € {l, h}. (6)

The payoffs to the investor and the manager are S,(r, ) and p, R — S,(r, 2), respectively.
(i1) If the investor is in control in the bad state, it will liquidate the firm; the payoffs to the investor
and the manager are Y, and L — ¥,, respectively.
If the manager is in control in the bad state, she will liquidate the firm, possibly after
renegotiating the initial contract. Renegotiation occurs if, and only if, ¥, > L. The payoffs
to the investor and the manager are S,(r, ) and L — S,(r, 2), respectively.

As the manager and the investor observe the true state of the firm at date 1, it is not surprising
that the efficient liquidation decision is made at date 1, possibly after renegotiation. That, however,
does not mean that the initial contract (€2, @) is irrelevant, because (€2, ®) determines when
renegotiation occurs and what the renegotiation payoffs of the two agents are. Hold-up by the
investor in the good state is more likely when its payoff under continuation is low (i.e., low D,
or high 7), its payoff under liquidation Y, is high, and the surplus from continuation A is high.
Hold-up by the manager in the bad state is more likely when the investor’s payoff under liquidation
Y, is high.

For a given payoff rule €2, hold-up by the investor in the good state is more likely under
the investor control allocation (& = /C) than under the contingent control allocation (& = CC),
because the contingent control allocation allows the manager to retain control in the good state
with probability 8 > 1/2. On the other hand, for a given 2, hold-up by the manager in the
bad state is more likely under the contingent control allocation than under the investor control
allocation, because the contingent control allocation allows the manager to retain control even in
the bad state with a positive probability 1 — 3.
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O Manager’s effort, e,(2). As the efficient continuation decision is always made ex post,
regardless of Q2 and ® (see Lemma 1), it follows that

Vo(2,e) = V(e) = OeA + L. (7)

Define
Pre(2) = A = BSg(h, Q) — (1 = B)S, (1, )+ BY, + (1 = B)Y, 3
Pyuc() = A = Bp,Dy — (1 = B)p, D + BSu(l, 2) + (1 — B)Sy(h, 2) )
Pec(2) = A = Bp Dy — (1 — B)S(1, 2) + BY; + (1 — B)Sy(h, 2) (10)
Prec(2) = A — BS,(h, 2) — (1 = B)p. Dy + BS,(1, 2) + (1 — )Y, (11

The expressions Py(€2) characterized in equations (8)—(11) denote the incremental payoff
to the manager in the good state over the bad state, under the contract (2, ®).!” Therefore, the
investor’s incremental payoff in the good state is A — Py (€2).

Lemma 2. Under any feasible contract, Py(€2) < A. Given an initial contract with the control
allocation @ and payoff rule €2, the manager chooses an effort
0 Po(£2)
v
where Py (R2) for @ € {IC, MC, CC, ICC} is defined in equations (8)—(11).

es(Q) = (12)

As the investor’s incremental payoff in the good state is A — Py (£2), and its payoff in the
bad state cannot exceed L, it follows that Se(£2, €4(2)) < 0es(R2) - (A — Pe(2)) + L. Clearly,
if the feasibility constraint, Sg (€2, e5(£2)) > 1, is to be satisfied, it is necessary that Pg(2) < A.
Hence, no feasible contract can allow the manager to capture the entire continuation surplus in
the good state.

Note that the manager’s marginal cost of effort is e, and the marginal value is 0 Py (£2). As
¥ > 0A (by Assumption 2) and A > Pg(S2), it follows that there exists an e € (0, 1) at which
Ye = 0 Py(R2). Solving for e yields the expression for e4(£2) in equation (12).

5. Characterizing the optimal contract
B Combining equations (3), (7), and (12), the firm value can be rewritten as

NVo(Q) = w(m — Po(Q)+ L — 1. (13)

2y
Lemma 3. For any payoffrule © with 7, > 0, there exists an alternative payoffrule  with 7, = 0
that leads to the same effort and firm value as 2.

Suppose the payoff rule €2 has 7, > 0. Consider an alternative payoff rule Q2 such that
Y, =Y,, and p.D, = p,D, — T, forr € {l, h} (ie., Q2 and Q provide the same expected payoff
to the agents in both states). It is easy to verify that the manager’s effort and firm value will be
the same under both these payoff rules. Lemma 3 implies that I can restrict attention to contracts
with 7, = 0 without any loss of generality.

1 To see why, note that P,c(£2) may be rewritten as follows after substituting A = p,R — L:
Pic(Q) = [pgR — BS,(h, Q) — (1 = B)S, (I, 2)] = [L — BY, — (1 — B)Y;].

In the above expression, p, R — BS,(h, Q) — (1 — B)S,(/, 2) is the manager’s payoff in the good state, and L — Y, —
(1 — B)Y, is the manager’s payoff in the bad state.
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Lemma 4. An optimal contract is one that maximizes Pq(€2), subject to the feasibility constraint
So(2, e0(£2)) = 1.

Notice that the initial contract affects firm value only through Pg,(€2), that is, only through its
impact on the manager’s incentives. It is evident from equation (13) that % = %(A — Py(R2)) >
0 for any feasible contract because Py(€2) < A (by Lemma 2). Hence, an optimal contract must

maximize Pg(€2), subject to the feasibility constraint.

Proposition 1. The inverse contingent control allocation (& = ICC) or the manager control
allocation (® = MC) can never be optimal, because both these are strictly dominated by the
contingent control allocation (& = CC).

The manager’s incentives are strengthened when she is rewarded in the good state and
penalized in the bad state (i.e., when Pg(£2) is high). Clearly, then, the inverse contingent control
allocation (® = /CC) can never be optimal because it weakens the manager’s incentives by
punishing her for high performance and rewarding her for low performance.

The argument for why the manager control allocation (® = MC) is always dominated by
the contingent control allocation (® = CC) is a bit more subtle. The main advantage of the
manager control allocation is that it eliminates hold-up by the investor in the good state, whereas
its main disadvantage is that it rewards the manager in the bad state by allowing her to extract
liquidation rents of (1 — w)L from the investor. The contingent control allocation lowers the rents
that the manager can extract in the bad state by transferring control to the investor with probability
B > 0.5, but it also exposes the manager to hold-up by the investor with positive probability of
(1 — B) in the good state. However, the key is to realize that even though contingent control
does not eliminate hold-up by the investor in the good state, the contract can set the payment
D, such that the investor gets a low payoff when the manager is in control in the good state,
thus partially offsetting the effect of hold-up by the investor. So overall, the contingent control
allocation dominates the manager control allocation because it lowers the rents that the manager
extracts in the bad state."'

Proposition 1 highlights a key difference between my analysis and that in Aghion and Bolton
(1992) and Rajan (1992). In Aghion and Bolton’s model, manager control emerges as a possible
optimal control allocation because they do not consider the manager’s ex ante incentives to expend
costly effort. On the other hand, although Rajan models the manager’s effort problem, he does
not consider the possibility of contingent contracts. I show that if it is possible to write contracts
contingent on a noisy performance measure, then the contingent control allocation will strictly
dominate the manager control allocation.

Proposition 1 implies that the optimal contract, if it exists, will specify either an investor
control allocation (¥ = /C) or a contingent control allocation (® = CC). I now characterize the
conditions under which either of these control allocations is feasible and optimal.

I solve for the optimal contract, denoted (2*, ®*), in two steps. First, I characterize the
conditions under which each ® € {CC, IC} is feasible, and solve for the optimal payoff rule
% and the corresponding incentives Py = Pg(£2}) for each ®. Then, I compare the P, for
® € {CC, IC} to see which of them implements the highest effort and, hence, the highest firm
value.

O  Optimal control allocation with simpler payoff rules. Purely for ease of exposition, |
begin my analysis by restricting attention to simpler contracts with ¥; = Y, = L, so that the
payoff rule simplifies to Q2 = (D;, D,); these may be interpreted as debt contracts, where the
repayment value D depends on the realization of the interim performance measure 7. I then show
in the next subsection that the qualitative results in this subsection hold even in the general case
when Y; and Y, are not constrained to equal L.

! Formally, T show in the proof of Proposition 1 that for every feasible contract with ® = MC, it is possible to
design another contract with ® = CC that is feasible and implements a higher effort.
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The contingent control allocation (& = CC). For a contract with ® = CC to be feasible, it must
be that Scc(€2, ecc(2)) > I, where ecc = 01;“’. The investor’s incremental payoff in the good
state is A — P, and its payoff in the bad state is L — (1 — B)(1 — w)L. Hence, the feasibility

constraint can be rewritten as

0% P,
(A= P)—(I =L+ =P -wL)20. (14)
The largest value of P.c at which the above inequality is satisfied is
1 4 — L+ (1 —=p8)(1—plL
ngE§<A+\/Az— v +<92 A1 — ) ))’ 1)

which is well-defined only if
OA)Y =4y (I — L+ (1= B)1 = p)L). (16)

Proposition 2. A contract with a contingent control allocation (® = CC) is feasible if, and only
if, condition (16) is satisfied. If condition (16) is satisfied, then P}, = P and the optimal payoff
rule Q7. is as follows.

MHIf (1 — u)(A — (1 = B)L) > PZ, then Q. is given by D, = D,, such that

Pe(R=Dy) = Poc + (1 = B)(1 — p)L. (17

Under this contract, p, D, > L 4 pnA. Hence, when the investor is in control in the good state,
it does not hold up the manager.
() If (1 — w)(A — (1 = B)L) < P, then Q. is given by D, < L;—"A and a D, that satisfies
8

Bpe(R — Dy) = Pee — (1 — p)(1 = B)(A — L). (18)

Under this contract, p, D, < L 4+ nA. Hence, when the investor is in control in the good state,
it will force renegotiation to increase its payoffto L + A,

The necessity of condition (16) follows from the discussion preceding the proposition. If
this condition is met, then an optimal payoff rule must satisfy Pcc(Q2%5.) = PZ. because P is
the largest value of Pcc at which the feasibility constraint is satisfied. Setting Pec(25.) = Ple is
equivalent to choosing payments D, and D, such that the manager’s expected payoff in the good
state equals P + (1 — B)(1 — w)L; the term (1 — B)(1 — )L represents the liquidation rents
that the manager extracts in the bad state. For low values of w, this is achieved by the contract
characterized in part (i) of the proposition, whereas for higher values of p, this is achieved by the
contract characterized in part (ii) of the proposition.

It is easily verified from equation (15) that P/, is increasing in w. In other words, under
the contingent control allocation, an increase in the investor’s bargaining power strengthens the
manager’s incentives. This is because an increase in p lowers the liquidation rents extracted by
the manager in the bad state, (1 — 8)(1 — n)L. Therefore, as u increases, the feasibility condition
(16) is more likely to be met and P7. increases.

The investor control allocation (® = IC). In this case, the investor’s incremental payoff in the
good state is A — Py, and its payoff in the bad state is L. So by a similar intuition as in the
® = CC case above, the feasibility constraint can be rewritten as
0% Pyc
v

The quadratic expression in the above inequality is nonnegative only for Py € [Py, Pl
where P, and P are as under

(A=Pe)=(U—=1)=0. (19)
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Pt=— ! <Aj:,/A2—w>. (20)
2 0

For P,c and P;{ to be well-defined, it is necessary that
OA) =4y (I — L). €2y

Clearly, condition (21) is necessary for the feasibility of any contract with ® = /C, because
otherwise condition (19) cannot be met for any P;-. However, condition (21) is not sufficient to
guarantee the feasibility of & = IC. Feasibility also depends on the investor’s bargaining power
W, because of the restriction that P, < (1 — w)A. As p increases, the manager’s incentives are
severely weakened because the investor captures most of the surplus from continuation.

If (1 — w)A < Py, then the feasibility constraint (19) cannot be satisfied by any P <
(1 — w)A. Therefore, for a contract with ® = /C to be feasible, it is also necessary that

(1—wA > Pp < 1< g, (22)
where the threshold 1 is defined such that
(1 - o)A = Py, (23)

Similarly, define the threshold ;- such that (1 — uj)A = P It is easy to verify that if
(OAP >4y (I — L), then 0 < puf <t < pupe < 1.

2

Proposition 3. A contract with investor control allocation (® = IC) is feasible if, and only if,
conditions (21) and (22) are satisfied. If these conditions are satisfied, then the optimal payoff
rule Q7. is as follows.

(i) If u < uj, then Q. is given by D, = D, = 2 2RPie The contract is renegotiation proof
because the investor does not hold up the manager in the good state. In this case, P;. = Pj.

(i) If uje < 1 < pye, then Q5. will have D, < L;—”A and D, < L:—”A In this case, the 1nvest0r
will force renegotiation in the good state to increase its payoff to L + pA, and P =
(1= wA.

The necessity of conditions (21) and (22) follows from the discussion preceding the
proposition. If these conditions are met, then an optimal payoff rule €. must satisfy Pyc(£2}.) =
min{ P, (1 — w)A}, because that is the largest value of P(£2) < (1 — u)A that also satisfies
the feasibility constraint. If u < pj. (which is equivalent to P < (1 — p)A), then Q. is
characterized in part (i) of Proposition 3. For such low values of i , the investor does not hold
up the manager in the good state; so Pic(2}.) = Py On the other hand, if 4} < p < p;- (which
is equivalent to P < (1 — u)A < P;f), then Q. is characterized in part (ii) of Proposition 3. In
this case, the investor does hold up the manager in the good state, so that Pc(£2}.) = (1 — pn)A.

Contingent control allocation versus investor control allocation. In Propositions 2 and 3, I
characterized the optimal payoff rule, 2}, and the corresponding Py(23) for ® € {/C, CC}.
I showed that P;. = min{P;, (1 — n)A} when ® = IC is feasible, and that P}, = P when
® = CC'is feasible. The only remaining step in characterizing the optimal contract is to determine
whether the contingent control allocation dominates the investor control allocation, or vice versa.

Of course, neither form of financing is feasible if (9A)* < 4y(/ — L), and only ® = IC
is feasible if (0 A)> = 4(I — L). The more interesting case occurs when (A)? > 4y (I — L).
Intuitively, the contingent control allocation will dominate the investor control allocation if either
the latter is infeasible or P}, > Pj.. I formalize this intuition in Proposition 4.

Proposition 4 (The optimal contract, (%, ®*)). Suppose (OA)* > 4y(I — L).

() If u < uj, then the investor control allocation strictly dominates the contingent control
allocation, regardless of §. In this case, the optimal contract has ®* = /C and the payoff rule
Q* characterized in part (i) of Proposition 3.
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(i) If & > wj-, then there exists a threshold B < 1 such that:

(a)if B > B, then the optimal contract has the contingent control allocation (&* = CC) and
the payoff rule * characterized in part (ii) of Proposition 2.

b)if g < B and 1 < pu, then the optimal contract has the investor control allocation (®* =
IC) and the payoff rule Q* characterized in part (ii) of Proposition 3.

(c)if B < B and 0 > [, then neither form of financing is feasible.

The threshold ,3 decreases as 0, p, R, L, and p increase.

When p < uj., there is no hold-up by the investor in the good state under a contract with
an investor control allocation (see part (i) of Proposition 3). Therefore, in this case, the investor
control allocation (& = IC) strictly dominates the contingent control allocation (& = CC) even
if the latter is feasible, because ® = /C does not reward the manager in the bad state. Formally,
it is easily verified that P;. = P;f > PZ..

If & > uj, then a contract with @ = IC leads to hold-up by the investor in the good state,
which becomes more severe as p increases. In this case, the main advantage of the contingent
control allocation over the investor control allocation is that it mitigates hold-up by the investor
in the good state by allowing the manager to be in charge of the continuation decision with
probability 8 > %; the main drawback is that it also rewards the manager with liquidation rents
of (I — B)(1 — )L in the bad state. As the verifiable signal becomes more informative (i.e., as 8
increases), hold-up by the investor in the good state as well as hold-up by the manager in the bad
state become less likely. Similarly, as the investor’s bargaining power p increases, hold-up by the
manager in the bad state becomes less severe because the investor captures most of the surplus
from liquidation. Therefore, ® = CC is more likely to be optimal for high values of g and u (in
fact, if © > -, then ® = CC may be the only feasible allocation). Specifically, I show that there
exists a threshold B, such that ® = CC strictly dominates ® = IC if 8 > ,3 The existence of this
threshold follows by noting that PZ. is increasing in 8, and that P/, — P-as 8 — 1.

As noted earlier, the main drawback of the investor control allocation is that it exposes the
manager to the threat of hold-up by the investor in the good state. Intuitively, this should be a
more serious concern for high-quality (i.e., high 6) firms that are more likely to be in the good
state ex post, and for firms with high success returns p, R that can be expropriated by the investor.
Moreover, the renegotiation rents of the investor increase with its bargaining power p and with
the firm’s liquidation value L. Therefore, the contingent control allocation is more likely to be
optimal (i.e., the threshold f is lower) for high values of 6, PR, L,and .

To further illustrate these results, I turn to graphical analysis using a numerical example.
Consider the following parameter values: / =1, L =0.8, p,=0.7, R=5, 6 =0.8, and
Y = 5; therefore, A = p,R — L = 2.7. It is easily verified that these parameter values satisfy
Assumptions 1 and 2, and condition (21), which is required for any form of financing to be
feasible. Given the above parameter values, u;- =~ 0.311 and ;- >~ 0.689.

Figure 1 provides an equilibrium map that characterizes the optimal control allocation for
different values of 8 and . The leftmost region in the figure corresponds to u < .. For such
low values of 1, the investor control allocation strictly dominates the contingent control allocation
because there is no hold-up by the investor in the good state. If 1. < u < u;c, then the contingent
control allocation is optimal if § > B, and the investor control allocation is optimal otherwise. The
downward-sloping curve indicates that the threshold 3 decreases as y increases. Finally, consider
the region where 1 > ;.. In this region, the investor control allocation is infeasible. Therefore,
the contingent control allocation is feasible and optimal if 8 > B; otherwise, no financing is
feasible, as represented by the region in white. Observe that B — 05asu — 1.

The predictions in Proposition 4 are consistent with the key prediction in Aghion and Bolton
(1992) that investor control is optimal only when the firm is highly financially constrained (i.e.,
the firm is not very profitable on average and the liquidation value is low) and contingent control
cannot protect the investor’s claims. Aghion and Bolton derive their results by focusing on ex post
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FIGURE 1
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conflicts of interest between the manager and the investor. In their model, contingent control is
strictly optimal only when manager control is infeasible, and investor control cannot implement
the first-best action plan (see Proposition 5 in their article). In the context of the continuation
versus liquidation decision, this requires assuming that the manager is biased against liquidation in
the bad state and also that the investor is biased against continuation in the good state; if the latter
assumption is violated, then investor control does as well as contingent control. Thus, Aghion
and Bolton require very specific exogenous assumptions on the agents’ utilities for contingent
control to be strictly optimal. They also leave open the possibility that if their assumptions about
conflicts of interest are reversed, then the inverse contingent control allocation may be optimal.
In contrast, I derive the optimality of the contingent control vis-a-vis investor control by focusing
on the manager’s ex ante incentives to expend costly effort. My analysis also explains why it is
optimal to allow the manager to retain control over the firm following good performance and to
have control switch to the investor only following poor performance.

Characterizing the firm value. Let P* = P4 (2*) denote the value of P under the optimal contract
(®*, Q*). Then, the optimal firm value is given by

62 P
NV* =
2¢

I now characterize how N V* varies with the informativeness of the verifiable signal, 8, and
the investor’s bargaining power, 1. Note that 8 and i do not have any direct impact on firm value;
they may only affect firm value through their impact on the manager’s incentives (i.e., through
P*).

Proposition 5 (Impact of B and  on firm value).

QA—P)+L—1. (24)

() If 4 < puj, then firm value does not change with 8. If u > i, then firm value does not
change with 8 for 8 < ,3 but increases with g for g > /3

(ii) For any 8 € (2, 1), there exists a threshold /i € (i}, 1) such that firm value does not change
with p for u < uj, decreases with u for ;- < < f, and increases with p for i > fi.

The key to Proposition 5 is to understand how 8 and u impact firm value under the investor
control allocation and the contingent control allocation. Under the investor control allocation,
it is clear that B8 has no impact on firm value. The firm value is also invariant to w if © < uj,
because for such low values of j, the investor does not hold up the manager in the good state. On
the other hand, if © > p, then an increase in  weakens the manager’s incentives and lowers
firm value.
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Under the contingent control allocation, as 8 increases, the manager is more likely to retain
control in the good state and less likely to retain control in the bad state, which strengthens her
incentives and improves firm value. Interestingly, and in sharp contrast to the investor control
allocation, an increase in p improves the manager’s incentives under the contingent control
allocation by lowering the manager’s payoff in the bad state and increases firm value. Formally, it
is easy to verify that P/ is increasing in .

Overall, there is a “U-shaped” relationship between the investor’s bargaining power and
firm value. The investor control allocation is optimal for low values of w, in which case, firm
value either does not vary with p (if & < ) or decreases with u (if & > ). As u exceeds a
threshold £ which I characterize in the proof of Proposition 5, the contingent control allocation
becomes optimal. In this region, firm value increases as p increases.

An interesting implication of Proposition 5 is that firm value is maximized at the two
extremes of w: either u € [0, -] or u = 1. To see why, note that [ P/.],-; = P,&, which implies
that [N V*],—o = [NV *],=:. Therefore, when there is potential for hold-up, it would be best if
one of the agents had all the bargaining power.

O  Optimal control allocation with a general @ = (Y,, Y,, D,, D,). In the previous subsec-
tion, I characterized the optimal control allocation after restricting attention to simpler contracts
with ¥; = Y, = L. I now revert to more general contracts where the investor can commit ex ante
to share some of the liquidation proceeds with the manager (i.e., ¥; and Y, are not constrained
to equal L). Although the analysis of the investor control allocation is more complicated in this
case, [ show that the qualitative results from the previous subsection continue to hold.

The contingent control allocation (® = CC)

Lemma 5. For a contract with the contingent control allocation (® = CC), it is optimal to set
Y, =Y, = L. Therefore, the feasibility conditions and the optimal payoff rule Q. are the same
as those characterized in Proposition 2.

An increase in Y, has the following countervailing effects on the manager’s incentives (i.e.,
Pcc(2)): on the one hand, it increases Pcc by increasing the investor’s payoff when it is in
control in the bad state, which occurs with probability §; on the other hand, it decreases P by
increasing the investor’s renegotiation rents when it is in control in the good state, which occurs
with probability 1 — B. The former effect dominates because § > 1 — § and, hence, Pcc(S2) is
increasing in ;. It is much easier to show that P-(£2) is (weakly) increasing in Y),. As the financing
constraint is also more likely to be met for higher values of ¥; and S, (4, ) = min{Y,,, uL}, it is
optimal to set ¥, = L and Y, = L, such that Sy(h, Q) = nL. (Actually, Y, is irrelevant as long
as it is greater than L, because Sy(4, ) = min{Y), uL}.) As ¥, = Y, = L arises endogenously,
the feasibility conditions for ® = CC and Q7. are the same as in Proposition 2.

The investor control allocation (® = IC). Next, consider a contract with & = /C. By the same
intuition as in the case of ® = CC, it is optimal to set ¥, = L. However, the same logic does not
apply to Y, because

dP 1—B8>0, if Y,+pA<p,D
ic ! ﬂ h pg h (25)

dy, 1-28<0, if Y, +pA > p.D.

Note that Py is increasing in Y, if there is no hold-up by the investor in the good state,
and is decreasing in Y), otherwise. Therefore, the feasibility conditions for ® = /C as well as the
optimal contract are somewhat different from those characterized in Proposition 3.

Define the threshold u/.. such that

(1 — ) A =max{Pg—L,0}. (26)
It is easy to show that if A? > U5 then 0 < e < pje < ple < 1.
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Also, define

Pf == A__+\/<A+'?9—Zﬁ> —‘;—f[(l—L)—f-/LpA] , (27)

where p = 777,

Proposition 6.

(i) A contract with investor control allocation (& = /C) is feasible only if condition (21) holds
and . < pl.. If these conditions are satisfied, then:

(a)a contract with & = IC is feasible if 1 < .

(b)if e < u < pl, then there exists a threshold B/ < 1, such that a contract with & = IC'is
feasible if, and only if ,23 > BP.. The threshold B} is high when w is high and "iﬁz —(I-1L)
is low; B} —>1as"A —(I—-L)—0.

(i1) When a contract with ® = IC is feasible, the optimal payoff rule ;. depends on whether
W < [Lj OT not.

(@) If u < pj, then Q. is the same as in part (i) of Proposition 3, gnd Pr. = Py
b)If i > pj, then Q%. is given b Y, =L, Y, =max{0, L — 2% b < L g
Ic Ic g y Pg

261
Y+
D, < hp” . In this case,
t:4

Pe=0=-wA+ 2= DL =Y))

. (28)
=min{P;, (1 — w)A+ (28 - 1L}.

Observe that if u < uj, then there is no difference in either the feasibility conditions or
the optimal contract when compared with Proposition 3. For such low values of u, the investor
does not hold up the manager in the good state. Therefore, it is optimal to set ¥, = L because
that imposes the maximum penalty on the manager in the bad state without hurting her in the
good state. As ¥, = Y, = L arises endogenously in this case, the feasibility conditions and 2.
are exactly the same as in Proposition 6.

If > p, then an increase in Y, weakens the manager’s incentives (i.e., lowers Pj) by
worsening the hold-up problem in the good state. In this region, it is not optimal to set V), = L;
hence, Pie(R2) = (1 — u)A + (28 — 1)(L — Y,,). Substituting L — Y, = W and solving
for the highest Py at which the feasibility constraint binds yields the expression for P, in
equation (27). I show in the proof of Proposition 6 that P is well-defined if © € [, ,u,(] and
does not exist if i > .. In the region i € (uye, i), Pﬁ+ is well-defined only if 8 is sufficiently
high.

Comparing Propositions 3 and 6, the key differences are as follows. First, relaxing the
constraint Y, = L may expand the range of values of 1 over which the investor control allocation
is feasible; ® = IC may now be feasible even if u € (uyc, ul.) if B is sufficiently high. Second,
Py is slightly higher (and hence, so is firm value) when the constraint Y, = L is relaxed;
Pr=(0—-pn)A+@2B—1)L —Y/)asopposedto Py = (1 — u)A in part (ii) of Proposition 3.

Contingent control allocation versus investor control allocation. Define ). to satisfy

(1 - /’Léc) PR = Pp. (29)
As p,R = A + L, it follows that u}. > puj.
Proposition 7. Suppose (6A)? > 4y(I — L).

(i) If p < !, then the investor control allocation strictly dominates the contingent control
allocation, regardless of S.
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(i) If u > ', then there exists a threshold B < 1 such that the contingent control allocation
dominates the investor control allocation only if 8 > B.

Proposition 7 is qualitatively similar to Proposition 4, and the underlying intuition is the
same: the contingent control allocation is more likely to be optimal when 8 and w are high.

6. Concluding remarks

m [ provide a theory for the optimal allocation of control rights using a simple model with
manager moral hazard and incomplete contracts, where the contract may be renegotiated after
the manager has exerted costly effort. The contract is incomplete because it cannot specify a
future continuation versus liquidation decision that the firm must make. The incompleteness of
the contract also creates the potential for hold-up problems once the investor has sunk in its funds
and the manager has exerted costly effort. The contract must allocate the control right over the
continuation decision to either the manager or the investor, possibly contingent on the realization
of a noisy performance measure. The control allocation affects the manager’s ex ante incentives
because it affects both the likelihood of ex post renegotiation and the renegotiation payoffs of the
two agents. The optimal control allocation must strengthen the manager’s incentives by mitigating
hold-up by the investor in profitable states but still punish the manager for bad outcomes.

In this setting, I show that any control allocation that allows the manager to remain in
control following a poor performance is suboptimal. In equilibrium, only two control allocations
are optimal: either exclusive investor control or a contingent control allocation that allows the
manager to remain in control if the firm’s performance is good but transfers control to the investor
if performance is poor. An increase in the informativeness of the performance measure or an
increase in the investor’s renegotiation bargaining power makes it more likely that the contingent
control allocation is optimal. Thus, this article provides a novel theoretical rationale for contingent
control allocations, and explains why it is optimal for investors to take control only following
poor performance while leaving control to managers if the firm’s performance is good. Unlike
existing theory models, I obtain this result without making any ad hoc assumptions regarding the
manager’s private benefits or future conflicts of interest between the manager and the investor.

Appendix
This Appendix contains the proofs of all the results presented in the article.

Proof of Lemma 1. Suppose the firm is in the good state. If the manager is in control, she will allow the firm to continue
operating as per the original contract. The investor, when in control, has two choices: (i) allow continuation under the terms
of the original contract, and get a payoff of p, D, ; or (ii) force renegotiation by threatening to liquidate the project. In the
latter case, the payoffs to the investor and the manager are ¥, + uA and L — Y, + (1 — u)A, respectively (i.e., each agent
gets his liquidation payoff plus a fraction of the surplus from continuation). Clearly, the investor forces renegotiation if, and
only if, ¥, + uA > p,D,. Overall, the investor’s expected payoff in the good state is S,(r, 2) = max{Y, + uA, p,D,}.
The manager, being a residual claimant, gets a payoff of p, R — S,(r, Q).

Suppose the firm is in the bad state. It is obvious that the investor, when in control, will liquidate the project because
Y, > 0. The manager, when in control, can either liquidate the project and get a payoff of L — Y, or force renegotiation and
get a payoff of (1 — p)L. Clearly, the manager will force renegotiation if, and only if, (1 — )L > L — Y, = Y, > uL.
So the investor’s payoff now is S,(r, Q) = min{Y,, L}, whereas the manager’s payoffis L — S,(r, 2).

Proof of Lemma 2. Lemma 1 allows me to write the following expressions for S4(£2,e) corresponding to @ €
{1c, MC, CC, ICC}:

Sic(S2, ) = 0e(BS(h, 2) + (1 = B)S,(l, ) + (1 = Oe)(BY: + (1 — B)Y)) (A1)
Suc($2, €) = 0e(Bp, Dy + (1 = B)p, D) + (1 — 0e)(BS, (L, 2) + (1 — B)Sy(h. 2)) (A2)
Scc(S2, ) = 0e(Bp, Dy + (1 = B)S,(l, 2)) + (1 = Oe)(BY) + (1 — B)Sy(h, Q) (A3)
Sicc(§2, €) = 0e(BS, (7, Q) + (1 = P)p, Dr) + (1 = 0e)(BS, (L, 2) + (1 = B)T)). (A4)
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It follows from equation (7) and equations (Al)—(A4) that W = 0Py(R2), where Py(2) for & €
{IC, MC, CC, ICC} is defined in equations (8)—(11).

(i) I prove that under any feasible contract, Py(2) < A.

I prove this by contradiction for ® = /C; similar logic applies to ® € {MC, CC, ICC}. Note that the expression for
Sic(2, e;c(£2)) can be written as

S1c(R2, eic(2)) = Oerc(Q) - (A — Pie(Q)) + BY + (1 — B)Y;. (A5)

Suppose there exists a feasible contract for which P,-(2) > A. Then, it must be that S;-(2, e;c(2)) < BY; + (1 —
B)Y, < L < I,whichviolates the feasibility constraint (2). Hence, it follows that, under any feasible contract, P;-(2) < A.

(ii) Characterizing eq(2).

The manager’s marginal cost of effort is ¥re, and her marginal value of effort is w 0 Py(2). As ¥ > OA
(Assumption 2) and 6 A > 0 Py(S2), it follows that there exists an e4(£2) € (0, 1) such that e (S2) = 6 Py (S2). Hence,
the manager’s equilibrium effort is eq (Q) = “£2
Proof of Proposition 1. 1 prove the proposition by showing that for every feasible contract with ® = /CC (or ® = MC),
there exists another feasible contract with & = CC that implements a higher effort.

Suppose the contract with the payoff rule 2 and ® = ICC is feasible, that is, Sicc(S2, ecc(2)) > 1. Let S, =
Bmax{Y, + uA, p,Dy} + (1 — B)py D; denote the investor’s expected payoff in the good state. Consider an alternative
contract with ® = CC and the payoff rule Q where Y, Yh =L, and D, and Dh that are chosen such that 8 pgDh +
(1 — B)ymax{L + uA, png} = S, (i.e., the investor gets the same expected payoff in the good state).

As the manager gets the same expected payoff in the good state under both contracts, it follows that

Pec($2) = Picc(Q) = BL + (1 = B)uL — Bmin{uL, Y} — (1 = B)Y;. (A6)

Substituting min{ L, ¥;} < L and Y, < L in the above equation, and simplifying, yields P(C(fZ) — Prec(2) >
28— 1) — )L > 0, because B > 0.5. Hence, it must be that ecc(2) > e;cc(€2), which in turn, implies that
Scc(2, ecc(2)) > Scc(82, eicc(K2)) because Scc(., e) is increasing in e. But,

SCC(Qv erec(R)) = OerceSy + (1 — Oerec)(BL + (1 — B)l)
> OejecSy + (1 = Oeicc)(Bmin{ul, ¥} + (1 = B)Y;) (A7)
= Sicc(2, ecc(2)).

where the inequality in the second line follows because BL + (1 — B)uLl > Bmin{uL, ¥;} + (1 — B)Y, (as I showed
earlier in the proof). Therefore, SCC(S:Z, eCC(fZ)) > Sicc(2, ercc(2)) > I. Hence, the alternative contract with @ = CC' is
also feasible. As it also implements a higher effort, it strictly dominates the original contract with & = /CC.

By a similar logic, it can be shown that & = MC is strictly dominated by & = CC. Q.E.D.

Proof of Proposition 2. The necessity of condition (16) follows from the discussion preceding the proposition. Now, I
prove the existence of an optimal payoff rule, Q.., when condition (16) is satisfied (this will also prove the sufficiency of
condition (16)). As P is the largest value of Pcc at the which the feasibility constraint binds, an optimal contract must
satisfy Pec(Q%.) = P Substituting ¥, = ¥, = L and A = p,R — L into the expression for Pcc, this is equivalent to

Bpe(R — Dy) + (1 = Bymin{p,(R — Dy), (I — w)A} = Pe + (1 — B)(1 — wL. (A8)

Consider the following two cases separately:

(i) Suppose Pl. + (1 —B)(1 — )L < (1 — w)A. In this case, equation (A8) can be satisfied by setting D, = Dy,
such that p,(R — D;) = Ple + (1 — B)(1 — w)L. As p(R — D;) < (1 — p)L, the investor is better off allowing
continuation under the original contract.

(ii) Suppose Plo + (1 — B)(1 — w)L > (1 — w)A. In this case, equation (A8) can be satisfied by choosing any D, <

L;—“A (so the investor will hold up the manager when it is in control in the good state), and a D, that satisfies
t:4

Bpe(R — D)+ (1 = B)(1 — W)A = P + (1 = B)(1 — p)L. (A9)
As Plo+ (1= B)(1 — w)L > (1 — w)A, it follows that p,(R — D;) > (1 — p)A. Q.E.D.

Proof of Proposition 3. The necessity of condition (21) follows from the discussion preceding the proposition.

(i) Proving the necessity of the condition ;v < ;.. I prove this by contradiction. Suppose there exists a feasible contract
when i > p;e. As (1 — pye)A = Py, it follows that (1 — n)A < Pp.
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Now, if ¥; = ¥, = L, the expression for Py can be rewritten as

Pie = pmin{p,(R — Dy). (1 = )A} + (1 — B)min{py(R — D). (1 — p)A}

(A10)
< (1-pA.

Soif (I — u)A < Py, it must be that P, < P;.. But then, by the definition of P, it must be that %(A — Pic) —
(I — L) < 0, which contradicts the feasibility of the contract. Therefore, a contract with & = IC is feasible only if
M= e
(ii) Proving the sufficiency of the conditions in the proposition.

I prove the existence of an optimal contract when p < ;- and A? > (which also proves the sufficiency of
these conditions). Any feasible 2 must have P,c(2) € [Py, P]. Moreover, it must be that P,c(2) < (1 — ) A. Consider
the following two cases separately.

ayu-1)
(.)Z

(i) Suppose v < ;- , which is equivalent fo (1 — p)A > Py In this case, the requirement that Pic(2) < (1 — w)A
is satisfied by every P € [Py, P;]. So an optimal contract will have P;. = P;f. This can be achieved by setting
D =D; = %. Under this contract p,(R — Dj) = p(R — D}) = P&t < (1 — )L, so the investor will not
force renegotiation in the good state.

(ii) Suppose ). < v < g, which is equivalent to Py < (1 — u)A < P In this case, an optimal contract will have
Pp. = (1 — p)A, which can be achieved by setting D; < L;’K‘A and D; < M Under this contract, the investor
will always force renegotiation in the good state to increase its payoff to L + s A. The feasibility constraint is

satisfied because Py = (1 — p)A € [Py, Pil. Q.E.D.

Proof of Proposition 4. As BL + (1 — B)nL < L, it follows that: (a) Pg. > PZ.; and (b) condition (21) is satisfied
whenever condition (16) is satisfied. Consider the following cases separately.

(i) Suppose w < pj. .Then, ® =IC is feasible and P;. = P;% (Proposition 3). As Py = P > Pi. , =1IC
implements a higher effort than ® = CC when the latter is feasible. Therefore, in this case, ® = /C strictly dominates
® = CC, regardless of 8. The optimal contract will have ® = /C and the payoff rule Q* characterized in part (i) of
Proposition 3.

(ii) Suppose ;> ;. Then, consider the following subcases.

(a) Suppose . < < % In this region, ® = /C is feasible and P;. = (1 — n)A (Proposition 3). So ® = CC can
be optimal if, and only if, P. > (1 — w)A (this condition is also sufficient because it implies that P} exists (i.e.,
® = CC is feasible). Now, P is increasing in 8, and limg_,; Pl — P > (1 — p)A, where the last inequality
follows because p > . So there must exist a thresholdB € [0.5, 1) such that Pi. > (1 — p)A (ie., ® = CC
is optimal) if, and only if, 8 > B.

Now, a little algebra shows that if ;). < pu < %, then the requirement P/, > (1 — u)A is equivalent to

_ 22
%—(1—L+(1—ﬂ)(1—,uﬂ)>0. (A11)
So either there exists a B > (.5 such that
_ 2A2 A
% (U —L+(1=B)1—pl)=0, (A12)

or condition (A11) holds for all 8 € (0.5, 1), in which case, f} =0.5.

(b) Suppose ju > +. Then, Py = (1 — n) A < £ when ® = IC is feasible. As P’ > 4, in this case, ® = CC is
optimal whenever it is feasible. Consider the feasibility condition (16) for & = CC. Condition (16) is more
likely to be met as B increases, and is met as 8 — 1 because (9 A)? > 4y/(I — L). By the same logic as in ii(a),
it follows that there exists a B € [0.5, 1) such that condition (16) is satisfied (i.e., & = CC is optimal) if, and
only if, 8 > /,23 Either there exists a ,3 > 0.5 such that

OAY —4y(I =L+ (1 —B)(1 - L) =0, (A13)
or condition (16) is met for all B € (0.5, 1), in which case, B = 0.5.
(iii) Proving the comparative statics on .

I prove this for the case where uj. < u < % (the same logic holds when & > %) AsIshowedinii(a), B is the smallest
value of B € [0.5, 1) at which condition (A11) is satisfied. Let L HS denote the expression on the left-hand side of
condition (A11). It is evident that L /S is increasing in 6 and p, R. Moreover,

dLHS (1= 2p)p*A?
dp ¥

+(1-p)L >0, (Al4)
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because u < 0.5, and
dLHS 2u(l — p)o*A

o = A=At - - - 0, (A15)

because p(1 — ) < 1, 22 < 0.5, and (1 — B)(1 — u) < (1 — B) < 0.5.

1 2y R
As LHS is increasing in 6, p, R, i, and L, it follows that 8 decreases as 6, p, R, i, and L increase. Q.E.D.

Proof of Proposition 5.

(i) Differentiating equation (24) with respect to g yields
dNV* _ INV* dP* 9 (A — P) dP*

= —_ (A16)
dp Pt dp B W dp’

As P* < A (by Lemma 2), "N " will have the same sign as “C-. As I showed in Proposition 4, P* = P(. if, and
only if, u > uj; and B > B.In thls reglon, ‘1;’; > 0 because dg" > 0 Otherwise, d‘:,’; = 0 because P* equals either
Pyt oor (1 — w)A, both of which are invariant to 8.

(ii) By the same logic as in (i), ’”V will have the same sign as <2~ If u < ., then P* = P\, which is invariant to s;

:
in this region, £~ = 0.

Suppose it > puj. I showed in the proof of Proposition 4 that the threshold B (beyond which & = CC becomes
optimal) decreases with p, and that B — % as ; — 1. By the same logic, given a B, it follows that there exists an it < 1
such that ® = CC is optimal for i > f1, and either ® = /C is optimal or no financing is feasible if © < . If © < i1,
then P* = (1 — w)A, which is decreasing in ; in this region, ”—Z < 0.If u > f1, then P* = P;f, which is increasing in

w; therefore, in this region, 22~ > 0.

s

Proofof Lemma 5. Itis evident from equation (10) that ¢ = (1 — g)4mnbittl > and L = g — (1 — f) 0D >

because % < 1land B > 0.5. As the financing constraint is also more likely to be met for higher values of Y, and
Sp(h, 2) = min{Y,,, uL}, it is optimal to set ¥; and ¥}, as high as possible. Hence, Y, = Y, = L (although Y, is irrelevant
if ¥, > ulL). As Y, =Y, = L arises endogenously, the feasibility conditions for ® = CC and Q. are the same as in
Proposition 2. Q.E.D.

Proof of Proposition 6.
(1) Proving the necessity of condition (21).

Here again, %’I" > 26 — 1> 0.Soitis optimal to set ¥, = L, because the feasibility constraint is also more likely
to be met for higher values of ¥;. On the other hand, as demonstrated in equation (25), Pjc is increasing in Y, if there is
no hold-up by the investor in the good state, and is decreasing in Y, otherwise.

As the investor’s expected payoffin the bad state is L — (1 — B)(L — Y}), the feasibility constraint, S;c(£2, e;c(£2)) >
1, can be rewritten as

02 Prc
4

(A=Pe)=(I = L) = (1 =)L = Yp). (A17)

As discussed before, the left-hand side of condition (A17) is nonnegative only if P and P, are well-defined, that
is, only if % > (I — L), which explains the necessity of condition (21).

(1) I show that if i < p,., then condition (21) is also sufficient.

If u < uje, the sufficiency of condition (21) follows from the same logic as in the proof of Proposition 3.

Suppose uj: < u < e (which is equivalent to P < (1 — w)A < Pyf). In this case, I construct a contract such
that there is always hold-up by the investor in the good state (i.e., S,(h, Q) = Y, + nA and S,(/, Q) = L + uA). Making
these substitutions in the expression for P-(€2) yields

Pe=(0-wA+@28 - DL -T)). (A18)

Substituting L — Y, = P“zﬂi'“)' from equation (A18) into the feasibility constraint yields

0% Py
14

(A= Pc)—U = L)z p(Pc — (1 = w)A), (A19)
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where p = % An optimal contract will choose the highest Py, subject to feasibility constraint (A19), and the

requirement that ), > 0 (or, equivalently, the requirement that P < (1 — u)A + 28 —1)L.)

In the remainder of this proof, I refer to the expression on the right-hand side of condition (A19) as the “RHS
line,” and the expression on the left-hand side as the “LHS curve.” The RHS line is positive and increasing in P for
all Pc > (1 — p)A, whereas the LHS curve is a quadratic expression in Py that is non negative and has an “inverted U
shape” for Pc € [Pe, Pi]. So if Pz < (1 — w)A < P, it follows that there exists a unique P € (1 — A, Pf) at
which the RHS line intersects the LHS curve (i.e., condition (A19) binds with equality).

Equating the two sides of condition (A19), and solving the resulting quadratic equation, yields the expression for
PE in equation (27). As Y, cannot be negative, it follows that an optimal contract will have Pre = min{Pﬁ*, (1 —pwA+

(2B — L}

(il) /characterize the feasibility conditions when ;. < ju < ) (whichis equivalentto max{ Pz — L, 0} < (1 — p)A <
Po).

(a) In this case, additional conditions are required to guarantee that the RHS line intersects the LHS curve. First,
it is necessary that % > (I — L), because otherwise the LHS curve is never positive, in which case the RHS
line cannot intersect the LHS curve for any g < 1.

(b) Suppose % > (I — L). Then, there exists a p/°” > 0 such that the line, p/°”(Pc — (1 — )A), is tangential to
the LHS curve. Clearly, the RHS line will intersect the LHS curve if, and only if, p < p/*”. Suppose p < p®.
Then, let Py and Pﬁ+ denote the values of Pjc at which the RHS line intersects the LHS curve, where Py < P; .
For a contract with @ = /C to be feasible, it is also necessary that P, < (1 — u)A + (28 — 1)L, because, as |
explained in ii(b) above, Pj- cannot exceed min{Pﬁ*, (1=wA+@2B—-1)L}.

It is easy to show that P; decreases as p decreases. 12 In particular, as p — 0, Py — Pe<(1-wA+L,
where the last inequality follows because p > .. Therefore, there exists a pft. € (0, p'*"] such that Py <
(1 — w)A+ (2B — 1)L if, and only if, p < pi-. As p is decreasing in B, and p — 0 as B — 1, this is
equivalent to saying that there exists a threshold Bj.. < 1 such that a contract with ® = IC is feasible only if

B = B

(iv) Ishow that if > ul., then a contract with ® = IC is infeasible.
(Note that, as per the definition of u}., this situation can arise only if P — L > 0, because if Px — L <0,
then puf- = 1.) If u > pl., then it must be that Px > (1 — u)A + L. As Py > P forany B < 1, it follows that
in this case, Py > (1 — w)A + (28 — 1)L for all B < 1. Therefore, a contract with ® = /C is infeasible in this
case. Q.E.D.

Proof of Proposition 7 (In this proof, I make use of Lemmas A1 and A2, which are stated and proved below.)

Consider the following cases separately.

(i) Suppose < i . By the same argument as in part (i) of the proof of Proposition 4, it follows that ® = IC strictly

dominates ® = CC in this case, even if the latter is feasible.

(il) Suppose i < i < . In this case, again ® = IC is feasible. Moreover, as I show in Lemma Al below, P;. =
P; > P} for all B. Therefore, in this case too, ® = IC strictly dominates ® = CC. The optimal contract will have
® = JC and the payoff rule 2* characterized in ii(b) of Proposition 6.

(1) Suppose [Lipy < 1 < pcﬁc. In this case, even if ® = IC is feasible, there exists athreshold/g < 1 suchthat Pl > Py
ifg>p (by Lemma Al).

(iv) Suppose ju > .. Inthis case, ® = IC is infeasible (by Proposition 6). Therefore, ® = CC is optimal if it is feasible.
Then, by the same argument as in part (iii) of the proof of Proposition 4, it follows that there exists a threshold
B < 1 such that ® = CC is feasible and, hence, optimal only if g > B. Q.E.D.

Lemma Al. 1f jt < [, then Py > PZ. regardless of B. If it > j1;,,, then there exists a # < 1 such that Pl > Py if,
and only if, 8 > B.
Proof of Lemma Al.

(i) I characterize the conditions under which Pl > Py .

Recall that P is the highest value of Pcc at which %(A —Pec)=1—L+(1—p)(1—p)L.Soif Pl > Py,

12 As P, is the lower root of the quadratic equation (A25), by implicit differentiation, it follows that

apy _ (B - -whA)

0,
dp

-
SA-2P0 =0

[N
v P

because in this case P; > Pc > (1 — p)Aand 2Py <
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then it must be that

0> Py
" (A=PH)>1—L+(1~-pB)(1-pL. (A20)
But, by the definition of P},
2P+
ﬁ(A—P;)—(I—L)—(l—ﬂ)X;:O, (A21)
v
where
P —(1—p)A
X; = M (A22)
28 —1
Notice that if X < L, then Pj. = P;; otherwise, Py, = (1 — u)A + (28 — 1)L.
Combining condition (A20) and equation (A21), it follows that
Ple> P < X;>(1—-p)L. (A23)

As X} is increasing in 8 (by Lemma A2), the above condition is more likely to be met as $ increases. Notice that
[X;lp=1 = Pé — (1 = A, (A24)

because [P; ]5—1 = Py Consider the following cases separately.

(a) Suppose |t < fi10,,. By the definition of [y, & < tiow — (1 — )pg R > Pjt. Substituting p, R = A + L, this
is equivalent to P — (1 — w)A < (1 — w)L. Hence, in this region, [X;]ﬁzl < (1 — p)L, which implies that
X; < (1 —p)L for all B < 1. This has the following implications: (i) X; < (I —u)L — Pi. < P; (by (
A23)); and (ii) X; < (1 — w)L < L also implies that P;;. = P;". Therefore, in this region, P > PZ forall 8.

(b) Suppose | > 410, In this region, [Xg]ﬂzl > (1 — pw)L. Hence, there must be some threshold value of B above
which Xj > (1 — w)L — Pl > P; . As Pj. < P, it follows that there exists a 8 < 1 such that Pi. > Py if,

and only if, 8 > B. Q.E.D.
Lemma A2. P; and X} are increasing in §.

Proof of Lemma A2.

(i) Proving that P§ is increasing in B. Recall that P is the larger root of the following quadratic equation:

0*P
T(A —P)=(=L)=p(P=(1-pwA)=0, (A25)

where p = ;ﬂ’—fl. Implicitly differentiating with respect to p yields

ddf;f _ _e(zpﬂ _(1 - I'L)A) <0, (A26)
J(A —2P))—p

because ‘%(A —2P§) — p < 0 (see equation (27)) and Py > (1 — u)A. As p is decreasing in B, it follows that P,
is increasing in S.
(i) Proving that X} is increasing in B. Recall that X is a root of the equation (A21) after substituting P; =
— WA + — . Let enote the expression on the left-hand side of this equation. Differentiatin,
1 A+(2 DX} Let LHS d he expressi he left-hand side of this equation. Difft iating
L H S with respect to X, and substituting (1 — B) = p(28 — 1), yields

OLHS 2B l)(QZ(A 2P%) )
= - e -p
Xy v ! (A27)
< 0,
because 2P; > A — £ (by equation (27)). Also,
ILHS 2X107
—— =X; - —L—@Pf - A)
o v
2X560°A A28
> X; — P because Py <A (A28)
14
> 0,
.
because % < 1 (by assumption 2). Therefore, by implicit differentiation, ddi; =— B”LL:S%?@] > 0. Q.E.D.
8
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Lemma A3. A contract with ¥, < 0 can never be optimal.

Proof of Lemma A3. As 1 showed in Section 5, it is always optimal to set ¥; = L regardless of the control allocation ®.
Moreover, if & = CC, then it is also optimal to set ¥, = L. Therefore, I only need to show that a contract with investor
control (& = IC) and Y}, < 0 can never be optimal. I prove this by contradiction.

Suppose a contract with & = /C and Y, < 0 is optimal. Under such a contract, when 7 = / is realized in the
bad state (which happens with probability 1 — g), the investor will not liquidate the firm even though liquidation is
efficient; both the agents get a payoff of 0. Let eq(2) = w be the effort induced by this contract. Therefore, firm value
is

V(®, Q) = ea(Q)peR + (1 — bea()BL (A29)
and

Pe(Q) = p,R — BS,(h. @) — (1 - P)S,(. ). (A30)

Consider an alternative contract (<i> Q) with & = CC and a payoff scheme € which is identical to € except that
f’h =L and f);, = #5%-UAMWL ynder this alternative contract, when 7 = £ is realized in the bad state, the manager
will allow the firm to be liquidated after renegotiating the contract; the payoffs to the investor and the manager are L
and (1 — w)L, respectively. Therefore,

Pec() = poR — Bpe Dy — (1= B)Se(1. Q) — (1 — B)(1 — )L

A (A31)
= Pic(2), Dby construction of €2 .

Therefore, the alternative contract will implement the same effort as the original contract. However, firm value
under the alternative contract is

V(®, Q) = 0ea(Q)pe R + (1 — bea(Q))L
> V(P,Q), because p <1,

(A32)

which contradicts the optimality of the original contract. Q.E.D.
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