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Abstract

I examine the optimal allocation of control rights in a model with manager moral

hazard, where the manager and investor may hold-up each other ex post. The control

allocation determines both the likelihood of hold-up and the agents’ renegotiation pay-

offs. In equilibrium, only two control allocations are optimal: either exclusive investor

control or a contingent control allocation that allows the manager to remain in control

if, and only if, interim performance is good. Thus, my model explains why it may be

optimal to link control to the firm’s performance such that managers retain control only

following good performance.
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1. Introduction

Financial contracts are inherently incomplete, and cannot specify every future investment

decision that a firm must make. Given this, how should contracts allocate the right to make

future decisions (“control right”) between managers and investors? Aghion and Bolton

(1992) address this question by arguing that the manager and the investor may have poten-

tially conflicting objectives regarding the future decision, because the manager cares about

both monetary returns and non-monetary private benefits whereas the investor is only con-

cerned about monetary returns. Therefore, control must be allocated such that the efficient

decision plan is implemented ex post. One of their main results is that if neither monetary

returns nor private benefits are co-monotonic with total returns, then it may be optimal to

specify a contingent control allocation in which control is assigned to the investor in states

where maximizing monetary returns is efficient, and to the manager in states where private

benefits are more important. Although this result is consistent with real-world contracts,

it is based on very specific assumptions regarding the agents’ utilities, and cannot explain

why investors take control only in bad states while leaving control to managers in good

states, and never the other way round.1

In this article, I address the question of the optimal allocation of control rights in a simple

setting with manager moral hazard and incomplete contracts, where the contract may be

renegotiated after the manager has exerted costly effort and the investor has committed

funds to the project. Renegotiation gives rise to a two-sided hold-up problem, in the sense

that the party in control, investor or manager, can hold up the other party. The control

allocation affects the manager’s ex-ante incentives because it affects both the likelihood

of hold-up ex post and the renegotiation payoffs of the two agents. The optimal control

allocation is the one that provides the strongest incentives to the manager, but still satisfies

the investor’s participation constraint. The key contribution of my article is that it offers a

theory of control rights based on first principles, without making any ad-hoc assumptions

1As Hart (2000) notes, if we assume that a professional manager can run a successful start-up firm better
than its founding entrepreneur, then as per Aghion and Bolton’s analysis, it should be optimal to assign
control to the investor in the good state so that the investor can take the value-maximizing decision of firing
the entrepreneur. However, we do not observe such contracts in practice.
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about the manager’s private benefits or future conflicts of interest. Moreover, it also explains

why it may be optimal to link the control allocation to the firm’s future performance, such

that the investor takes control only following poor performance, and leaves control to the

manager if performance is good.

The basic set up in my model is very similar to that in Rajan (1992). A manager with

a project idea, but with no funds of her own, starts a firm by raising the necessary funds

from an investor. The contract between the agents cannot specify the manager’s effort and

a key future investment decision, continuation vs. liquidation, because the state of the firm

(“good” or “bad”) cannot be observed or verified by outside parties (Grossman and Hart,

1986 and Hart and Moore, 1989). Given the firm’s opacity and high ex-ante probability

of failure, new financing from outside investors is difficult to obtain if the original investor

decides to withdraw form the firm. Thus, there is potential for hold-up once the investor

has sunk in his funds and the manager has exerted costly effort. The investor may threaten

liquidation even in the good state in order to extract a higher share of the continuation

surplus, and the manager may refuse to liquidate the firm in the bad state unless she gets

a share of the liquidation proceeds. A key difference from Rajan’s model is that, in my

model, the agents also observe a verifiable performance measure (“high” or “low”) that is

imperfectly correlated with the firm’s state. Hence, the agents may choose to write contracts

contingent on the noisy performance measure, as in Aghion and Bolton (1992).

The contract assigns the control right over the investment decision to either the manager

or the investor, possibly contingent on the verifiable performance measure. The contract

may specify exclusive manager control or exclusive investor control regardless of the firm’s

performance, or may specify a contingent control allocation under which control switches

from one agent to another contingent on the realization of the performance measure. The

contract may also specify any payoff rule, subject to the restriction that the manager is

protected by limited liability if the venture fails; i.e., the lowest possible payoff to the

manager in the event of liquidation is zero. I do not impose any limited liability or wealth

constraints on the investor.

For the manager’s incentives to be high, she must be rewarded when the venture succeeds
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and penalized when the venture fails. Therefore, any control allocation that allows the

manager to remain in control following the low performance signal is strictly dominated

by the contingent control allocation, under which control switches from the manager to

the investor if the low performance signal is realized. Thus, in contrast with Rajan (1992)

and Aghion and Bolton (1992), the manager control allocation (e.g., non-voting equity,

long-term debt) is never optimal in my model.

In equilibrium, only two control allocations can be optimal: either investor control or

contingent control. The main advantage of contingent control over investor control is that

it mitigates hold-up by the investor in the good state by allowing the manager to remain

in control if the interim performance is high; its main drawback is that the manager may

also obtain control in the bad state if the interim performance is high (which happens with

positive probability) and can hold up the investor by refusing to liquidate the firm. I show

that contingent control is more likely to be optimal for the relatively safer firms, i.e., firms

with higher ex-ante probability of success, higher success returns, and higher liquidation

values.

Two key parameters of interest in my model are the correlation between the verifiable

performance measure and the firm’s state, denoted β, and the investor’s renegotiation bar-

gaining power, denoted µ. Although these parameters do not affect the firm’s cash flow

directly, they nevertheless affect firm value through their impact on the manager’s incen-

tives. An increase in either β or µ makes it more likely that the contingent control allocation

is optimal by lowering the rents that the manager captures in the bad state. Thus, my model

predicts that contingent control allocations are more likely to be used when verifiable per-

formance measures are highly informative about the firm’s true profitability, and when the

manager’s outside options are weak causing the investor’s renegotiation bargaining power

to be high.

The predictions of my model are consistent with empirical evidence on venture capital

contracts. As Kaplan and Stromberg (2003) document, a key feature of these contracts

is the relationship between future firm performance and the allocation of control rights:

contracts are structured so that the venture capitalist obtains full control if the firm per-
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forms poorly, whereas the entrepreneur retains/ obtains control rights as firm performance

improves. Contingent control is usually implemented in one of two ways: either through

“adverse state” provisions that transfer board control, voting control, and/or liquidation

rights to the venture capitalist if the firm’s performance verifiably deteriorates, or through

“milestone” provisions which transfer control rights to the entrepreneur if the firm achieves

some pre-specified performance targets.2 By focusing on the incentive properties of control

allocations, I am able to explain the observed hierarchy in contingent control allocations.

My article builds on the analysis of Rajan (1992), who contrasts the incentive properties

of short-term bank debt and arm’s length financing, which in my model are equivalent to

investor control and manager control, respectively.3 I extend Rajan’s analysis by introducing

the possibility of contingent contracts into his model along the lines proposed in Aghion

and Bolton (1992). It is also important to emphasize that, unlike with some of the existing

research on contingent contracts (e.g., Hellmann, 2006, and Repullo and Suarez, 2004), my

analysis does not rely on the assumption that the underlying state variable is verifiable.

Instead, I focus on a more realistic setting where the interim performance measure is only

imperfectly correlated with the firm’s true state. Thus, in my model, contingent contracting

does not eliminate renegotiation or hold-up problems. Although the contingent control

allocation mitigates hold-up by the investor in the good state in comparison to the investor

control allocation, it also gives rise to hold-up by the manager in the bad state.

My article is related to Dewatripont and Tirole (1994), who use a model with manage-

rial moral hazard in an incomplete contracts setting to explain why firms are financed by

multiple outside investors holding a diversity of claims. In their model, the safer action

(intervention) is optimal in the bad states of nature. However, the manager will never vol-

untarily choose intervention, because she obtains either private benefits or higher expected

monetary rewards by pursuing the risky action (continuation). Hence, it is desirable to en-

dow outsiders with control rights, and incentivize them to choose the efficient action plan.

2Consistent with the predictions of my model that contingent contracting is used to mitigate hold-up by
the investor, Bienz and Hirsch (2006) find in a sample of German venture capital contracts that milestone
staging is more likely to be used when the entrepreneur’s outside options are limited.

3Other articles that point to the incentive role of short-term financing arrangements are Dewatripont and
Maskin (1995) and Von Thadden (1995).
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Given that intervention reduces the riskiness of the final value of the firm, an outsider with

a concave (convex) claim on firm value will be biased towards intervention (continuation).

As the incentive scheme assigned to the controlling outsider may not induce ex-post maxi-

mization of firm value, it is necessary to have an additional outsider as a residual claimant

to balance the accounts. Restricting attention to standard assets like debt and equity, the

model predicts debtholder control following poor performance, shareholder control following

good performance, and congruence of interests between managers and passive shareholders.

The key difference between my article and Dewatripont and Tirole (1994) is that I

focus on ex-post hold-up problems between the manager and the investor, which can occur

in both the good and bad states, and their effect on the manager’s ex-ante incentives. In

contrast, renegotiation plays a limited role in Dewatripont and Tirole’s analysis, and is

assumed to not affect the manager’s utility. Thus, their theory is effectively based on the

assumption that there is a conflict of interest between the manager and outside investors

only in the bad states where the safe action (intervention) is the efficient action choice.4

Moreover, as Dewatripont and Tirole acknowledge, their theory does not necessarily imply

contingent control rights because it is possible to induce the optimal action choice by picking

a single controlling outsider and designing a complex incentive scheme (see footnote 14 in

their article). In contrast, the hold-up problems that I model and the inefficiencies they

engender cannot be dealt with by incentive schemes alone. The control allocation plays a

central role because it affects both the likelihood of hold-up and the renegotiation payoffs

of the two agents. Contingent control is optimal in my model only because it mitigates

hold-up by the investor in the good state.

My article is also related to the literature that provides a theory of capital structure

based on manager moral hazard, using the idea that the manager’s incentives are strength-

ened by rewarding her in the good state and penalizing her in the bad state. Innes (1990)

shows the optimality of debt financing for a risk-neutral entrepreneur, whereas Hermalin

and Katz (1991) and Dewatripont, Legros and Matthews (2003) show the optimality of risk-

less debt and risky debt, respectively, when the entrepreneur is risk averse but the investor

4Reversing this assumption, and assuming that intervention increases the firm’s risk, generates the op-
posite result about shareholder interventionism and creditor passivity (see Berkovitch and Israel, 1992).
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is risk neutral. I use a similar idea to determine the optimal allocation of control rights

between the manager and the investor. My results do not require the manager to have all

the renegotiation bargaining power; in fact, the contingent control allocation is more likely

to be optimal as the investor’s bargaining power increases.

Another article that examines long-term versus short-term financing in an incomplete

contracts setting is Berglof and Von Thadden (1994). They argue that having two (or

more) classes of investors, with one holding only a secured short-term claim and another

holding a long-term state-dependent claim, can deter strategic default by the borrower by

strengthening the bargaining position of the short-term lender, who doesn’t have to worry

about the negative impact of liquidation on his long-term claims. Strategic default is not

an issue in my model because I assume that the firm’s cash flows are verifiable. My main

focus is on agency conflicts surrounding the continuation vs. liquidation decision, and

incentivizing the manager for her effort provision.

The rest of the article is organized as follows: I describe the base assumptions of my

model in Section 2, and provide a formal definition of the equilibrium in Section 3. I

characterize the manager’s effort choice in Section 4, and the optimal contract in Section

5. Section 6 concludes the article.

2. The Model

There are three dates in the model; 0, 1 and 2. At date 0, an entrepreneur (“manager”)

with a project idea sets up a new firm by making an investment I. As the manager has no

funds of her own, she raises the required funds from an investor. Both the manager and the

investor are risk neutral.

At date 1, the firm is revealed to be in one of two states, “good” or “bad”. After observ-

ing the state, the firm can choose to either continue operating as before (“continuation”) or

redeploy its assets in some alternative use (“liquidation”). If the firm is in the good state,

then continuation yields a date-2 cash flow of R̃ = R with probability pg, and R̃ = 0 with
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probability 1− pg. If the firm is in the bad state, continuation yields R̃ = 0 with certainty.

On the other hand, liquidation yields a value of L ∈ (0, I) at date 1, regardless of the firm’s

state. No cash flow is realized at date 2 if the firm is liquidated at date 1.

Assumption 1: ∆ ≡ pgR− L > 0.

Assumption 1 states that continuation generates a higher value than liquidation in the

good state. The variable ∆ denotes the continuation surplus in the good state. In the bad

state, it is clearly better to liquidate the firm because liquidation yields L > 0 at date 1

whereas continuation yields 0 at date 2.

The probability of the good state being realized depends on costly unobservable effort

expended by the manager at date 0. Specifically, the state of the firm is good with proba-

bility θe and bad with probability (1− θe), where e ∈ [0, 1] is the manager’s date-0 effort.

The manager incurs a private cost of ψe2

2 for exerting effort e, where ψ > 0 is the manager’s

unit marginal cost of effort. The constant θ ≤ 1 captures the impact of external factors,

such as the demand for the firm’s products and level of competition in the industry, that

have a bearing on the firm’s profitability. I refer to θ as firm quality, and assume that it is

known to both the manager and the investor.

Assumption 2: ψ > 2θ∆.

Assumption 2 ensures that the manager’s effort in equilibrium is always an interior

solution. Moreover, it also ensures that the probability of the good state being realized

does not exceed 1
2 . The latter assumption, although not necessary, simplifies analysis by

allowing me to focus on situations that are most relevant to start-up firms.

Information Structure: There is no information asymmetry between the manager

and the investor at any point of time regarding the state of the firm. Both the agents

observe the state of the firm only at date 1; i.e., after the investor has invested I and the

manager has exerted effort e, but before the continuation decision is made. However, the

state of the firm cannot be verified by outsiders.

Outsiders do observe a public signal on the firm’s interim performance at date 1, denoted
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r̃, that is imperfectly correlated with the true state of the firm. Some real-life examples of

r̃ are: interim sales or earnings, achievement of milestones such as FDA approval of a new

drug, etc. I model the correlation between r̃ and the firm’s state by assuming that r̃ can

be either high (denoted r = h) or low (denoted r = l), and that

Pr (r = h|good state) = Pr (r = l|bad state) = β

where β ∈ (0.5, 1) is a given constant. The above probability distribution implies that

low performance is more likely in the bad state, and high performance is more likely in

the good state, although the correlation is not perfect. The parameter β measures the

informativeness of the public signal r̃.5

All the cash flows are verifiable.

The contract: The contract between the manager and the investor cannot be contin-

gent on either the manager’s effort or the state of the firm, because the manager’s effort is

unobservable and the firm’s state is unverifiable. The contract can, however, assign control

over the liquidation decision to either the manager or the investor, possibly contingent on

the realization of the verifiable performance measure r̃.

Let Φ = {φl, φh} denote the control allocation specified in the initial contract, where

φr ∈ {inv,mgr} denotes the identity of the agent that is assigned control following the

interim performance r ∈ {l, h}. There are four possible control allocations that the contract

may specify: “investor control”(denoted Φ = IC), under which the investor has control over

the liquidation decision regardless of r (i.e., φl = φh = inv); “manager control” (denoted

5By Bayesian updating, a low performance indicates that the firm is more likely in the bad state, whereas
a high performance indicates that the firm is more likely in the good state. Formally,

Pr (Good state|r = h) =
βθe

βθe+ (1− β) (1− θe) ,

and Pr (Bad state|r = l) =
β (1− θe)

(1− β) θe+ β (1− θe)

It is easily verified that both the above expressions are increasing in β. As β → 1, Pr (Good state|r = h)→
1 and Pr (Bad state|r = l) → 1; i.e., the high (low) performance signal almost certainly indicates that the
firm is in the good (bad) state. On the other hand, the signal r̃ becomes uninformative as β → 0.5, because
then Pr (Good state|r = h) → θe and Pr (Bad state|r = l) → 1 − θe; i.e., the posterior probabilities are
almost the same as the prior probabilities.
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Φ = MC) under which the manager has control regardless of r (i.e., φl = φh = mgr);

“contingent control” (denoted Φ = CC) under which the manager has control if interim

performance is high, and the investor has control if interim performance is low (i.e., φh =

mgr, φl = inv); and “inverse contingent control” (denoted Φ = ICC) under which the

manager has control if interim performance is low, and the investor has control if interim

performance is high (i.e., φh = inv, φl = mgr).

The contract also specifies a payoff rule, which describes how the realized cash flows are

to be shared between the two agents, and outlines other cash transfers among the agents.

The contract may specify payments (Dl, Dh), where Dr denotes the payment to the investor

if the project is allowed to continue operating following the interim performance r ∈ {l, h},

and the cash flow R is realized at date 2; the manager being the residual claimant gets a

payoff of R−Dr. Similarly, the contract may specify payments (Yl, Yh), where Yr denotes the

payment to the investor if the firm is liquidated at date 1 following the interim performance

r ∈ {l, h}; the manager’s payoff then is L − Yr. Apart from specifying how the realized

cash flows are to be shared, the contract may also specify an additional cash transfer of Tr

from the investor to the manager if the firm is allowed to continue operating following the

interim performance r ∈ {l, h}; one interpretation of Tr is that it denotes a bond posted

by the investor up front to make a pre-specified payment to the manager in the event of

continuation.6 Because I allow for the cash transfers (Tl, Th), there is no loss of generality

in assuming that both agents get a payoff of zero if R̃ = 0 is realized at date 2. I refer to

Ω = (Yl, Yh, Dl, Dh, Tl, Th) as the payoff rule. Given the assumptions about verifiability, the

payoff rule Ω is completely general, because it allows all payoff variations contingent on the

three cash flows – 0, R and L – and on the interim signal r.

I impose two important restrictions on Ω. First, the payoff to the manager in the event

of liquidation must be non-negative, i.e., L − Yr ≥ 0. In other words, there is a limit to

the punishment that can be imposed on the manager in the bad state. This is a reasonable

restriction because managers are protected by limited liability in case the venture fails.

6Because liquidation yields L with certainty, there is no need to specify a separate cash transfer in the
event of liquidation; the payments Yr and L − Yr are sufficient to describe the net payoffs to the investor
and the manager, respectively.
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Moreover, in my model, the manager has no money of her own. Second, Ω must satisfy the

following “feasibility constraint”: the investor’s total expected payoff at date 0 must weakly

exceed the amount it invests in the firm (i.e., the investor’s participation constraint must

be met), and the amount invested by the investor at date 0 must be sufficient to finance

the initial investment I. Observe that I do not impose any limited liability restrictions on

the investor in any state at date 1. So Dr and Tr can take any possible value as long as the

contract satisfies the feasibility constraint.

Renegotiation at date 1 and hold-up problems: After observing the state of the

firm at date 1, the manager and the investor may choose to renegotiate the initial contract.

In the event of renegotiation, the manager and the investor split the surplus from renego-

tiation between them. One way to obtain this outcome is to employ the generalized Nash

bargaining solution in which the investor gets its disagreement payment plus a fraction µ

of the surplus from renegotiation, whereas the manager gets her disagreement payoff plus

a fraction (1− µ) of the surplus from renegotiation. Alternatively, I could assume that the

investor gets to make a take-it-or-leave-it offer with probability µ, and the manager gets

to make a take-it-or-leave-it offer with probability (1− µ).7 The parameter µ ∈ (0, 1) is a

measure of the investor’s bargaining power at date 1.

Renegotiation creates the possibility of hold-up problems at date 1. If the manager is

in control of the firm in the bad state, she may refuse to liquidate the project unless the

investor agrees to share some of the liquidation proceeds with her. Similarly, if the investor

is in control in the good state, it may use the threat of liquidation to capture a share of the

continuation surplus ∆. The crucial assumption underlying hold-up by the investor is that

the firm is constrained in obtaining refinancing from outside investors at date 1 if the initial

investor refuses to continue to finance the firm. For tractability, as in Rajan (1992), I model

this by assuming that the firm cannot obtain any refinancing from outside investors at date

1 if the original investor refuses to continue financing the firm; i.e., liquidation becomes the

disagreement outcome in the renegotiation game between the investor and the manager in

the good state. This is a reasonable assumption in case of entrepreneurial firms given their

7I thank an anonymous referee for this suggestion.
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opacity and the high ex-ante probability of failure.8

It is convenient, but not necessary, to assume that the manager captures all the initial

surplus by offering a take-it-or-leave-it contract to the investor at date 0. (It is easy to show

that the manager’s equilibrium effort choice is invariant to her bargaining power at date 0.

Also, the optimal initial contract will not change qualitatively if the investor is allowed to

capture a positive fraction of the initial surplus.)

3. Definition of equilibrium

Before formally defining the equilibrium in this section, I introduce some notation. For

a given initial contract (Ω,Φ), let VΦ (Ω, e) and SΦ (Ω, e) denote the expected total firm

cash flow and the expected payoff to the investor, respectively, at date 0 as a function of

the manager’s effort, e. The expectations assume that both the manager and the investor

behave optimally at date 1 when renegotiation takes place and a continuation decision is

made.

Because the manager is the residual claimant, her expected payoff from the project’s

cash flow is VΦ (Ω, e) − SΦ (Ω, e). Therefore, in equilibrium, the manager’s initial effort

eΦ (Ω) must satisfy the following incentive compatibility condition:

eΦ (Ω) = arg max
e
VΦ (Ω, e)− SΦ (Ω, e)− ψe2

2
(1)

In a Rational Expectations Equilibrium, the investor will correctly conjecture the man-

ager’s effort eΦ (Ω), and compute the expected value of its claim at date 0 as SΦ (Ω, eΦ (Ω)).

As the manager makes a take-it-or-leave-it offer to the investor, she raises an amount

SΦ (Ω, eΦ (Ω)) from the investor at date 0. For the contract to be feasible, it must sat-

8It may be that outside investors do not know the firm quality θ, and hence, cannot compute the correct
posterior probability of the firm being in the good state conditional on the performance measure r̃. As r̃ is
a noisy signal of the firm’s state, refusal by the inside investor to refinance the project at date 1 may signal
to outside uninformed investors that the project is in the bad state, causing them to stay away.
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isfy the following “feasibility” constraint:

SΦ (Ω, eΦ (Ω)) ≥ I, (2)

Condition (2) states that the manager must raise enough funds at date 0 to cover the ini-

tial investment I. If SΦ (Ω, eΦ (Ω)) > I, I assume that the manager simply consumes the ex-

cess funds at date 0. Therefore, the manager’s total cash flow at date 0 is VΦ (Ω, eΦ (Ω))−I,

which is obtained by adding the manager’s residual cash flow, VΦ (Ω, eΦ (Ω))−SΦ (Ω, eΦ (Ω)),

to her excess date-0 funds, SΦ (Ω, eΦ (Ω))− I.

Subtracting the cost of effort from the manager’s total cash flow at date 0 yields her net

surplus at date 0, which I refer to as firm value. For a given contract (Ω,Φ), the firm value

is

NVΦ (Ω) = VΦ (Ω, eΦ (Ω))− I − ψ (eΦ (Ω))2

2
(3)

Equilibrium in this game consists of choosing an initial contract (Ω∗,Φ∗) that maximizes

NVΦ (Ω) subject to the manager’s incentive compatibility condition (1) and the feasibility

constraint (2).

4. Characterizing the manager’s effort

The hold-up problem at date 1

I begin by analyzing the behavior of the manager and the investor at date 1 after they have

observed the firm’s state. I restrict attention to contracts with Yr ≥ 0, because otherwise

the investor will not have any incentive to liquidate the firm in the bad state. I show in

Lemma 8 in the Appendix that a contract with Yr < 0 can never be optimal.
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Define

Sg (r,Ω) ≡ max {Yr + µ∆, pgDr − Tr} (4)

Sb (r,Ω) ≡ min {Yr, µL} (5)

Lemma 1 (Exercise of control at date 1)

1. If the manager is in control in the good state, she allows the firm to continue operating

till date 2; the payoffs to the investor and the manager are pgDr−Tr and pg (R−Dr)+

Tr, respectively, for r ∈ {l, h}.

If the investor is in control in the good state, it allows the firm to continue operating

till date 2, possibly after renegotiating the initial contract. Renegotiation occurs if,

and only if,

Yr + µ∆ > pgDr − Tr for r ∈ {l, h} (6)

The payoffs to the investor and the manager are Sg (r,Ω) and pgR−Sg (r,Ω), respec-

tively.

2. If the investor is in control in the bad state, it will liquidate the firm; the payoffs to

the investor and the manager are Yr and L− Yr, respectively.

If the manager is in control in the bad state, she will liquidate the firm, possibly after

renegotiating the initial contract. Renegotiation occurs if, and only if, Yr > µL. The

payoffs to the investor and the manager are Sb (r,Ω) and L− Sb (r,Ω), respectively.

Given that the manager and the investor observe the true state of the firm at date 1,

it is not surprising that the efficient liquidation decision is made at date 1, possibly after

renegotiation. That, however, does not mean that the initial contract (Ω,Φ) is irrelevant,

because (Ω,Φ) determines when renegotiation will occur and what the renegotiation payoffs

of the two agents will be. Hold-up by the investor in the good state is more likely when its

payoff under continuation is low (i.e., low Dr or high Tr), payoff under liquidation (Yr) is

high, and when the surplus from continuation (∆) is high. Hold-up by the manager in the

bad state is more likely when the investor’s payoff under liquidation (Yr) is high.

13



For a given payoff rule Ω, hold-up by the investor in the good state is more likely

under the investor control allocation (Φ = IC) than under the contingent control allocation

(Φ = CC), because the contingent control allocation allows the manager to retain control

in the good state with probability β > 1/2. On the other hand, for a given Ω, hold-up by

the manager in the bad state is more likely under the contingent control allocation than

under the investor control allocation, because the contingent control allocation allows the

manager to retain control even in the bad state with a positive probability 1− β.

Manager’s effort, eΦ (Ω)

Because the efficient continuation decision is always made ex post, regardless of Ω and Φ

(see Lemma 1), it follows that

VΦ (Ω, e) = V (e) = θe∆ + L (7)

Define

PIC (Ω) = ∆− βSg (h,Ω)− (1− β)Sg (l,Ω) + βYl + (1− β)Yh (8)

PMC (Ω) = ∆− βpgDh − (1− β) pgDl + βSb (l,Ω) + (1− β)Sb (h,Ω) (9)

PCC (Ω) = ∆− βpgDh − (1− β)Sg (l,Ω) + βYl + (1− β)Sb (h,Ω) (10)

PICC (Ω) = ∆− βSg (h,Ω)− (1− β) pgDl + βSb (l,Ω) + (1− β)Yh (11)

The expressions PΦ (Ω) characterized in equations (8) through (11) denote the incremen-

tal payoff to the manager in the good state over the bad state, under the contract (Ω,Φ).9

Therefore, the investor’s incremental payoff in the good state is ∆− PΦ (Ω).

9To see why note that PIC (Ω) may be rewritten as follows after substituting ∆ = pgR− L:

PIC (Ω) = [pgR− βSg (h,Ω)− (1− β)Sg (l,Ω)]− [L− βYl − (1− β)Yh]

In the above expression, pgR − βSg (h,Ω)− (1− β)Sg (l,Ω) is the manager’s payoff in the good state, and
L− βYl − (1− β)Yh is the manager’s payoff in the bad state.
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Lemma 2 Under any feasible contract, PΦ (Ω) < ∆. Given an initial contract with the

control allocation Φ, and cash flow allocation Ω, the manager chooses an effort

eΦ (Ω) =
θPΦ (Ω)

ψ
, (12)

where PΦ (Ω) for Φ ∈ {IC,MC,CC, ICC} is defined in equations (8) through (11).

Because the investor’s incremental payoff in the good state is ∆−PΦ (Ω), and its payoff in

the bad state cannot exceed L, it follows that SΦ (Ω, eΦ (Ω)) ≤ θeΦ (Ω) · (∆− PΦ (Ω)) + L.

Clearly, if the feasibility constraint, SΦ (Ω, eΦ (Ω)) ≥ I, is to be satisfied, it is necessary

that PΦ (Ω) < ∆; i.e., no feasible contract can allow the manager to capture the entire

continuation surplus in the good state.

Note that the manager’s marginal cost of effort is ψe, and the marginal value is θPΦ (Ω).

As ψ > θ∆ (by Assumption 2) and ∆ > PΦ (Ω), it follows that there exists an e ∈ (0, 1) at

which ψe = θPΦ (Ω). Solving for e yields the expression for eΦ (Ω) in equation (12).

5. Characterizing the optimal contract

Combining equations (3), (7) and (12), the firm value can be rewritten as

NVΦ (Ω) =
θ2PΦ (Ω)

2ψ
(2∆− PΦ (Ω)) + L− I (13)

Lemma 3 For any payoff rule Ω with Tr > 0, there exists an alternative payoff rule Ω̂ with

Tr = 0 that leads to the same effort and firm value as Ω.

Suppose the payoff rule Ω has Tr > 0. Consider an alternative payoff rule Ω̂ such that

Ŷr = Yr, and pgD̂r = pgDr − Tr for r ∈ {l, h}; i.e., Ω̂ and Ω provide the same expected

payoff to the agents in both states. It is easy to verify that the manager’s effort and firm

value will be the same under both these payoff rules. Lemma 3 implies that I can restrict

attention to contracts with Tr = 0 without any loss of generality.
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Lemma 4 An optimal contract is one that maximizes PΦ (Ω), subject to the feasibility

constraint, SΦ (Ω, eΦ (Ω)) ≥ I.

Notice that the initial contract affects firm value only through PΦ (Ω), i.e., through

its impact on the manager’s incentives. It is evident from equation (13) that ∂NVΦ
∂PΦ

=

θ2

ψ (∆− PΦ (Ω)) > 0 for any feasible contract because PΦ (Ω) < ∆ (by Lemma 2). Hence,

an optimal contract must maximize PΦ (Ω), subject to the feasibility constraint.

Proposition 1 The inverse contingent control allocation (Φ = ICC) or the manager con-

trol allocation (Φ = MC) can never be optimal, because both these are strictly dominated

by the contingent control allocation (Φ = CC).

The manager’s incentives are strengthened when she is rewarded in the good state and

penalized in the bad state (i.e., when PΦ (Ω) is high). Clearly then, the inverse contingent

control allocation (Φ = ICC) can never be optimal because it weakens the manager’s

incentives by punishing her for high performance and rewarding her for low performance.

The argument for why the manager control allocation (Φ = MC) is always dominated

by the contingent control allocation (Φ = CC) is a bit more subtle. The main advantage of

the manager control allocation is that it eliminates hold-up by the investor in the good state,

whereas its main disadvantage is that it rewards the manager in the bad state by allowing her

to extract liquidation rents of (1− µ)L from the investor. The contingent control allocation

lowers the rents that the manager can extract in the bad state by transferring control to

the investor with probability β > 0.5, but it also exposes the manager to hold-up by the

investor with positive probability of (1− β) in the good state. However, the key is to realize

that even though contingent control does not eliminate hold-up by the investor in the good

state, the contract can set the payment Dh such that the investor gets a low payoff when

the manager is in control in the good state, thus partially offsetting the effect of hold-up by

the investor. So overall, the contingent control allocation dominates the manager control

allocation because it lowers the rents that the manager extracts in the bad state.10

10Formally, I show in the proof of Proposition 1 that for every feasible contract with Φ = MC, it is
possible to design another contract with Φ = CC that is feasible and implements a higher effort.
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Proposition 1 highlights a key difference between my analysis and that in Aghion and

Bolton (1992) and Rajan (1992). In Aghion and Bolton’s model, manager control emerges

as a possible optimal control allocation because they do not consider the manager’s ex-

ante incentives to expend costly effort. On the other hand, although Rajan models the

manager’s effort problem, he does not consider the possibility of contingent contracts. I

show that if it is possible to write contracts contingent on a noisy performance measure,

then the contingent control allocation will strictly dominate the manager control allocation.

Proposition 1 implies that the optimal contract (if it exists) will either have an investor

control allocation (Φ = IC) or a contingent control allocation (Φ = CC). I now characterize

the conditions under which either of these control allocations is feasible and optimal.

I solve for the optimal contract, denoted (Ω∗,Φ∗), in two steps. First, I characterize

the conditions under which each Φ ∈ {CC, IC} is feasible, and solve for the optimal payoff

rule, Ω∗Φ, for each Φ. Then, I compare the Ω∗Φ for Φ ∈ {CC, IC} to see which of them

implements the highest effort, and hence, the highest firm value.

Optimal control allocation with simpler payoff rules

Purely for the ease of exposition, I begin my analysis by restricting attention to simpler

contracts with Yl = Yh = L, so that the payoff rule simplifies to Ω = (Dl, Dh); these may

be interpreted as debt contracts where the repayment value D depends on the realization of

the interim performance measure r̃. I then show in the next subsection that the qualitative

results in this subsection hold even in the general case when Yl and Yh are not constrained

to equal L.

The contingent control allocation (Φ = CC): For a contract with Φ = CC to be fea-

sible, it must be that SCC (Ω, eCC (Ω)) ≥ I, where eCC = θPCC
ψ . The investor’s incremental

payoff in the good state is ∆−PCC , and his payoff in the bad state is L− (1− β) (1− µ)L.
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Hence, the feasibility constraint can be rewritten as

θ2PCC
ψ

(∆− PCC)− (I − L+ (1− β) (1− µ)L) ≥ 0 (14)

The largest value of PCC at which the above inequality is satisfied is

P+
CC ≡

1

2

(
∆ +

√
∆2 − 4ψ (I − L+ (1− β) (1− µ)L)

θ2

)
, (15)

which is well defined only if

(θ∆)2 ≥ 4ψ (I − L+ (1− β) (1− µ)L) . (16)

Proposition 2 A contract with a contingent control allocation (Φ = CC) is feasible if, and

only if, condition (16) is satisfied. If condition (16) is satisfied, then the optimal cash flow

allocation rule, Ω∗CC , is as follows:

1. If (1− µ) (∆− (1− β)L) ≥ P+
CC , then Ω∗CC is given by Dl = Dh such that

pg (R−Dh) = P+
CC + (1− β) (1− µ)L (17)

Under this contract, pgDl ≥ L+ µ∆; i.e., when the investor is in control in the good

state, it does not hold up the manager.

2. If (1− µ) (∆− (1− β)L) < P+
CC , then Ω∗CC is given by Dl <

L+µ∆
pg

and a Dh that

satisfies

βpg (R−Dh) = P+
CC − (1− µ) (1− β) (∆− L) (18)

Under this contract, pgDl < L+ µ∆; i.e., when the investor is in control in the good

state, it will force renegotiation to increase its payoff to L+ µ∆.

The necessity of condition (16) follows from the discussion preceding the proposition. If

this condition is met, then an optimal payoff rule must satisfy PCC (Ω∗CC) = P+
CC because
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P+
CC is the largest value of PCC at which the feasibility constraint is satisfied. Setting

PCC (Ω∗CC) = P+
CC is equivalent to choosing payments Dh and Dl such that the manager’s

expected payoff in the good state equals P+
CC +(1− β) (1− µ)L; the term (1− β) (1− µ)L

represents the liquidation rents that the manager extracts in the bad state. For low values

of µ, this is achieved by the contract characterized in part (1) of the proposition, whereas

for higher values of µ, this is achieved by the contract characterized in part (2) of the

proposition.

It is easily verified from equation (15) that P+
CC is increasing in µ. In other words, under

the contingent control allocation, an increase in the investor’s bargaining power strengthens

the manager’s incentives. This is because an increase in µ lowers the liquidation rents

extracted by the manager in the bad state, (1− β) (1− µ)L. Therefore, as µ increases, the

feasibility condition (16) is more likely to be met and P+
CC increases.

The investor control allocation (Φ = IC): In this case, the investor’s incremental

payoff in the good state is ∆ − PIC , and its payoff in the bad state is L. So by a similar

intuition as in the Φ = CC case above, the feasibility constraint can be rewritten as

θ2PIC
ψ

(∆− PIC)− (I − L) ≥ 0. (19)

The quadratic expression in the above inequality is non-negative only for PIC ∈[
P−IC , P

+
IC

]
, where P−IC and P+

IC are as under:

P±IC ≡
1

2

(
∆±

√
∆2 − 4ψ (I − L)

θ2

)
. (20)

For P−IC and P+
IC to be well defined, it is necessary that

(θ∆)2 ≥ 4ψ (I − L) . (21)

Clearly, condition (21) is necessary for the feasibility of any contract with Φ = IC,
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because otherwise, condition (19) cannot be met for any PIC . However, condition (21)

is not sufficient to guarantee the feasibility of Φ = IC. Feasibility also depends on the

investor’s bargaining power µ, because of the restriction that PIC ≤ (1− µ) ∆. As µ

increases, the manager’s incentives are severely weakened because the investor captures

most of the surplus from continuation.

If (1− µ) ∆ < P−IC , then the feasibility constraint (19) cannot be satisfied by any PIC ≤

(1− µ) ∆. Therefore, for a contract with Φ = IC to be feasible, it is also necessary that

(1− µ) ∆ ≥ P−IC ⇐⇒ µ ≤ µ−IC , (22)

where the threshold µ−IC is defined such that

(
1− µ−IC

)
∆ = P−IC . (23)

Similarly, define the threshold µ+
IC such that

(
1− µ+

IC

)
∆ = P+

IC . It is easy to verify

that if (θ∆)2 > 4ψ (I − L), then 0 < µ+
IC <

1
2 < µ−IC < 1.

Proposition 3 A contract with investor control allocation (Φ = IC) is feasible if, and only

if, conditions (21) and (22) are satisfied. If these conditions are satisfied, then the optimal

cash flow allocation, Ω∗IC , is as follows:

1. If µ ≤ µ+
IC , then Ω∗IC is given by Dl = Dh =

pgR−P+
IC

pg
. The contract is renegotiation

proof because the investor does not hold up the manager in the good state. In this

case, P ∗IC = P+
IC .

2. If µ+
IC < µ ≤ µ−IC , then Ω∗IC will have Dl <

L+µ∆
pg

and Dh <
L+µ∆
pg

. In this case, the

investor will force renegotiation in the good state to increase its payoff to L+µ∆, and

P ∗IC = (1− µ) ∆.

The necessity of conditions (21) and (22) follows from the discussion preceding the

proposition. If these conditions are met, then an optimal payoff rule Ω∗IC must satisfy
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PIC (Ω∗IC) = min
{
P+
IC , (1− µ) ∆

}
, because that is the largest value of PIC (Ω) ≤ (1− µ) ∆

which also satisfies the feasibility constraint. If µ ≤ µ+
IC (which is equivalent to P+

IC ≤

(1− µ) ∆), then Ω∗IC is characterized in part (1) of Proposition 3. For such low values of

µ, the investor does not hold up the manager in the good state; so PIC (Ω∗IC) = P+
IC . On

the other hand, if µ+
IC < µ ≤ µ−IC (which is equivalent to P−IC ≤ (1− µ) ∆ < P+

IC), then

Ω∗IC is characterized in part (2) of Proposition 3. In this case, the investor does hold up

the manager in the good state, so that PIC (Ω∗IC) = (1− µ) ∆.

Contingent control allocation vs. Investor control allocation: In Propositions

2 and 3, I characterized the optimal payoff rule, Ω∗Φ, and the corresponding PΦ (Ω∗Φ) for

Φ ∈ {IC,CC}. I showed that P ∗IC = min
{
P+
IC , (1− µ) ∆

}
when Φ = IC is feasible, and

that P ∗CC = P+
CC when Φ = CC is feasible. The only remaining step in characterizing the

optimal contract is to determine whether the contingent control allocation dominates the

investor control allocation, or vice versa.

Of course, neither form of financing is feasible if (θ∆)2 < 4ψ (I − L), and only Φ = IC

is feasible if (θ∆)2 = 4ψ (I − L). The more interesting case is when (θ∆)2 > 4ψ (I − L).

Intuitively, the contingent control allocation will dominate the investor control allocation if

either the latter is infeasible or P ∗CC > P ∗IC . I formalize this intuition in Proposition 4.

Proposition 4 (The optimal contract, (Ω∗,Φ∗)): Suppose (θ∆)2 > 4ψ (I − L).

1. If µ ≤ µ+
IC , then the investor control allocation strictly dominates the contingent

control allocation, regardless of β. In this case, the optimal contract has Φ∗ = IC and

the cash flow allocation Ω∗ characterized in part (1) of Proposition 3.

2. If µ > µ+
IC , then there exists a threshold β̂ < 1 such that:

(a) If β ≥ β̂, then the optimal contract has the contingent control allocation (Φ∗ =

CC) and the cash flow allocation Ω∗ characterized in part 2 of Proposition 2.

(b) If β < β̂ and µ ≤ µ−IC , then the optimal contract has the investor control al-

location (Φ∗ = IC) and the cash flow allocation Ω∗ characterized in part 2 of
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Proposition 3.

(c) If β < β̂ and µ > µ−IC , then neither form of financing is feasible.

The threshold β̂ decreases as θ, pgR, L, and µ increase.

When µ ≤ µ+
IC , there is no hold-up by the investor in the good state under a contract

with an investor control allocation (see part 1 of Proposition 3). Therefore, in this case, the

investor control allocation (Φ = IC) strictly dominates the contingent control allocation

(Φ = CC) even if the latter is feasible, because Φ = IC does not reward the manager in

the bad state. Formally, it is easily verified that P ∗IC = P+
IC > P+

CC .

If µ > µ+
IC , then a contract with Φ = IC leads to hold-up by the investor in the good

state, which becomes more severe as µ increases. In this case, the main advantage of the

contingent control allocation over the investor control allocation is that it mitigates hold-up

by the investor in the good state by allowing the manager to be in charge of the continuation

decision with probability β > 1
2 ; the main drawback is that it also rewards the manager

with liquidation rents of (1− β) (1− µ)L in the bad state. As the verifiable signal becomes

more informative (i.e., as β increases), hold-up by the investor in the good state as well as

hold-up by the manager in the bad state becomes less likely. Similarly, as the investor’s

bargaining power µ increases, hold-up by the manager in the bad state becomes less severe

because the investor captures most of the surplus from liquidation. Therefore, Φ = CC is

more likely to be optimal for high values of β and µ (in fact, if µ > µ−IC , then Φ = CC may

be the only feasible allocation). Specifically, I show that there exists a threshold β̂, such

that Φ = CC strictly dominates Φ = IC if β ≥ β̂. The existence of this threshold follows

by noting that P+
CC is increasing in β, and that P+

CC → P+
IC as β → 1.

As noted earlier, the main drawback of the investor control allocation is that it exposes

the manager to the threat of hold-up by the investor in the good state. Intuitively, this

should be a more serious concern for high quality (i.e., high θ) firms that are more likely

to be in the good state ex post, and for firms with high success returns pgR that can be

expropriated by the investor. Moreover, the renegotiation rents of the investor increase with

its bargaining power µ, and with the firm’s liquidation value L. Therefore, the contingent
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control allocation is more likely to be optimal (i.e., the threshold β̂ is lower) for high values

of θ, pgR, L and µ.

To further illustrate these results, I turn to graphical analysis using a numerical example.

Consider the following parameter values: I = 1, L = 0.8, pg = 0.7, R = 5, θ = 0.8, and

ψ = 5; therefore, ∆ = pgR−L = 2.7. It is easily verified that these parameter values satisfy

Assumptions 1 and 2, and Condition (21) which is required for any form of financing to be

feasible. Given the above parameter values, µ+
IC ' 0.311 and µ−IC ' 0.689.

————————————–

Insert Figure 1 here.

————————————–

Figure 1 provides an equilibrium map that characterizes the optimal control allocation

for different values of β and µ. The left-most region in the figure corresponds to µ ≤ µ+
IC . For

such low values of µ, the investor control allocation strictly dominates the contingent control

allocation because there is no hold-up by the investor in the good state. If µ+
IC < µ ≤ µ−IC ,

then the contingent control allocation is optimal if β > β̂, and the investor control allocation

is optimal otherwise. The downward sloping curve indicates that the threshold β̂ decreases

as µ increases. Finally, consider the region where µ > µ−IC . In this region, the investor

control allocation is infeasible. Therefore, the contingent control allocation is feasible and

optimal if β > β̂; otherwise, no financing is feasible, as represented by the region in white.

Observe that β̂ → 0.5 as µ→ 1.

The predictions in Proposition 4 are consistent with the key prediction in Aghion and

Bolton (1992) that investor control is optimal only when the firm is highly financially

constrained (i.e., the firm is not very profitable on average and the liquidation value is low),

and contingent control cannot protect the investor’s claims. Aghion and Bolton derive their

results by focusing on ex-post conflicts of interest between the manager and the investor. In

their model, contingent control is strictly optimal only when manager control is infeasible,

and investor control cannot implement the first-best action plan (see Proposition 5 in their
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article). In the context of the continuation vs. liquidation decision, this requires assuming

that the manager is biased against liquidation in the bad state, and also that the investor

is biased against continuation in the good state; if the latter assumption is violated, then

investor control does as well as contingent control. Thus, Aghion and Bolton require very

specific exogenous assumptions on the agents’ utilities for contingent control to be strictly

optimal. They also leave open the possibility that if their assumptions about conflicts

of interest are reversed, then the inverse contingent control allocation may be optimal.

In contrast, I derive the optimality of the contingent control vis-a-vis investor control by

focusing on the manager’s ex-ante incentives to expend costly effort. My analysis also

explains why it is optimal to allow the manager to retain control over the firm following good

performance, and to have control switch to the investor only following a poor performance.

Characterizing the Firm value: Let P ∗ ≡ PΦ∗ (Ω∗) denotes the value of P under the

optimal contract (Φ∗,Ω∗). Then, the optimal firm value is given by

NV ∗ =
θ2P ∗

2ψ
(2∆− P ∗) + L− I. (24)

I now characterize how NV ∗ varies with the informativeness of the verifiable signal, β,

and the investor’s bargaining power, µ. Note that β and µ do not have any direct impact on

firm value; they may only affect firm value through their impact on the manager’s incentives

(i.e., through P ∗).

Proposition 5 (Impact of β and µ on firm value):

1. If µ ≤ µ+
IC , then firm value does not change with β. If µ > µ+

IC , then firm value does

not change with β for β < β̂, but increases with for β ≥ β̂.

2. For any β ∈
(

1
2 , 1
)
, there exists a threshold µ̂ ∈

(
µ+
IC , 1

)
such that firm value does not

change with µ for µ ≤ µ+
IC , decreases with µ for µ+

IC < µ < µ̂, and increases with µ

for µ ≥ µ̂.
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The key to Proposition 5 is to understand how β and µ impact firm value under the

investor control allocation and the contingent control allocation. Under the investor control

allocation, it is clear that β has no impact on firm value. The firm value is also invariant to

µ if µ ≤ µ+
IC , because for such low values of µ, the investor does not hold up the manager in

the good state. On the other hand, if µ > µ+
IC , then an increase in µ weakens the manager’s

incentives and lowers firm value.

Under the contingent control allocation, as β increases, the manager is more likely to

retain control in the good state and less likely to retain control in the bad state, which

strengthens her incentives and improves firm value. Interestingly, and in sharp contract to

the investor control allocation, an increase in µ improves the manager’s incentives under

the contingent control allocation by lowering the manager’s payoff in the bad state, and

increases firm value. Formally, it is easy to verify that P+
CC is increasing in µ.

Overall, there is a “U-shaped” relationship between the investor bargaining power and

firm value. The investor control allocation is optimal for low values of µ, in which case,

firm value either does not vary with µ (if µ ≤ µ+
IC) or decreases with µ (if µ > µ+

IC). As

µ exceeds a threshold µ̂ which I characterize in the proof of Proposition 5, the contingent

control allocation becomes optimal. In this region, firm value increases as µ increases.

An interesting implication of Proposition 5 is that firm value is maximized at the two

extremes of µ: either µ ∈
[
0, µ+

IC

]
or µ = 1. To see why, note that

[
P+
CC

]
µ=1

= P+
IC which

implies that [NV ∗]µ=0 = [NV ∗]µ=1. Therefore, when there is potential for hold-up, it would

be best if one of the agents had all the bargaining power.

Optimal control allocation with a general Ω = (Yl, Yh, Dl, Dh)

In the previous subsection, I characterized the optimal control allocation after restricting

attention to simpler contracts with Yl = Yh = L. I now revert to more general contracts

where the investor can commit ex-ante to share some of the liquidation proceeds with the

manager; i.e., Yl and Yh are not constrained to equal L. Although the analysis of the investor

control allocation is more complicated in this case, I show that the qualitative results from
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the previous subsection continue to hold.

The contingent control allocation (Φ = CC) :

Lemma 5 For a contract with the contingent control allocation (Φ = CC), it is optimal to

set Yl = Yh = L. Therefore, the feasibility conditions and the optimal cash flow allocation

Ω∗ (CC) are the same as those characterized in Proposition 2.

An increase in Yl impacts the manager’s incentives (i.e., PCC (Ω)) in the following man-

ner: on the one hand, it increases PCC by increasing the payoff to the investor when the

investor is in control in the bad state (happens with probability β); on the other hand, it

decreases PCC by increasing the renegotiation rents to the investor when the investor is

in control in the good state (happens with probability 1 − β). The former effect prevails

because β > 1−β, ; i.e., PCC (Ω) is increasing in Yl. It is much easier to show that PCC (Ω)

is (weakly) increasing in Yh. As the financing constraint is also more likely to be met for

higher values of Yl and Sb (h,Ω) = min {Yh, µL}, it is optimal to set Yl = L and Yh = L,

such that Sb (h,Ω) = µL. (Actually, Yh is irrelevant as long as it is greater than µL, be-

cause Sb (h,Ω) = min {Yh, µL}.) Because Yl = Yh = L arises endogenously, the feasibility

conditions for Φ = CC and Ω∗CC are the same as in Proposition 2.

The investor control allocation (Φ = IC): Next, consider a contract with Φ = IC.

By the same intuition as in case of Φ = CC, it is optimal to set Yl = L. However, the same

logic does not apply to Yh, because

dPIC
dYh

=

 1− β > 0 if Yh + µ∆ ≤ pgDh

1− 2β < 0 if Yh + µ∆ > pgDh

(25)

Note that PIC is increasing in Yh if there is no hold-up by the investor in the good state,

and is decreasing in Yh otherwise. Therefore, the feasibility conditions for Φ = IC as well

as the optimal contract are somewhat different from those characterized in Proposition 3.
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Define the threshold µhIC such that

(
1− µhIC

)
∆ = max

{
P−IC − L, 0

}
. (26)

It is easy to show that if ∆2 > 4ψ(I−L)
θ2 , then 0 < µ+

IC < µ−IC < µhIC ≤ 1.

Also, define

P+
β =

1

2

∆− ρψ

θ2
+

√(
∆ +

ρψ

θ2

)2

− 4ψ

θ2
[(I − L) + µρ∆]

 , (27)

where ρ = 1−β
2β−1 .

Proposition 6 1. A contract with investor control allocation (Φ = IC) is feasible only

if condition (21) and µ < µhIC . If these conditions are satisfied, then:

(a) A contract with Φ = IC is feasible if µ ≤ µ−IC .

(b) If µ−IC < µ < µhIC , then there exists a threshold βhIC < 1, such that a contract

with Φ = IC is feasible if, and only if, β ≥ βhIC . The threshold βhIC is high when

µ is high and θ2∆2

4ψ − (I − L) is low; βhIC → 1 as θ2∆2

4ψ − (I − L)→ 0.

2. When a contract with Φ = IC is feasible, the optimal payoff rule Ω∗IC depends on

whether µ ≤ µ+
IC or not.

(a) If µ ≤ µ+
IC , then Ω∗IC is the same as in part (1) of Proposition 3, and P ∗IC = P+

IC .

(b) If µ > µ+
IC , then Ω∗IC is given by Yl = L, Yh = max

{
0, L− P+

β −(1−µ)∆

2β−1

}
,

Dl ≤ L+µ∆
pg

, and Dh ≤
Y ∗h +µ∆
pg

. In this case,

P ∗IC = (1− µ) ∆ + (2β − 1) (L− Y ∗h )

= min
{
P+
β , (1− µ) ∆ + (2β − 1)L

}
(28)

Observe that if µ ≤ µ+
IC , then there is no difference in either the feasibility conditions

or the optimal contract when compared with Proposition 3. For such low values of µ,
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the investor does not hold up the manager in the good state. Therefore, it is optimal to

set Yh = L because that imposes the maximum penalty on the manager in the bad state

without hurting her in the good state. As Yl = Yh = L arises endogenously in this case, the

feasibility conditions and Ω∗IC are exactly the same as in Proposition 6.

If µ > µ+
IC , then an increase in Yh weakens the manager’s incentives (i.e., lowers PIC) by

worsening the hold-up problem in the good state. In this region, it is not optimal to set Yh =

L; hence, PIC (Ω) = (1− µ) ∆ + (2β − 1) (L− Yh). Substituting L − Yh = PIC(Ω)−(1−µ)∆
2β−1

and solving for the highest PIC at which the feasibility constraint binds yields the expression

for P+
β in equation (27). I show in the proof of Proposition 6 that P+

β is well defined if

µ ∈
[
µ+
IC , µ

−
IC

]
, and does not exist if µ ≥ µhIC . In the region µ ∈

(
µ−IC , µhIC

)
, P+

β is well

defined only if β is sufficiently high.

Comparing propositions 3 and 6, the key differences are as follows: First, allowing for

an ex-ante commitment by the investor to share some of the liquidation proceeds with the

manager may expand the range of values of µ over which the investor control allocation

is feasible; Φ = IC may now be feasible even if µ ∈
(
µ−IC , µ

h
IC

)
if β is sufficiently high.

Second, P ∗IC is slightly higher (and hence, so is firm value) when it is possible to specify

cash transfers contingent on the date-1 decision; P ∗IC = (1− µ) ∆ + (2β − 1) (L− Y ∗h ) as

opposed to P ∗IC = (1− µ) ∆ in part 2 of Proposition 3.

Contingent control allocation vs. Investor control allocation: Define µlIC to satisfy

(
1− µlIC

)
pgR = P+

IC (29)

Because pgR = ∆ + L, it follows that µlIC > µ+
IC .

Proposition 7 Suppose (θ∆)2 > 4ψ (I − L).

1. If µ ≤ µlIC , then the investor control allocation strictly dominates the contingent

control allocation, regardless of β.
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2. If µ > µlIC , then there exists a threshold β̂ < 1 such that the contingent control

allocation dominates the investor control allocation only if β ≥ β̂.

Proposition 7 is qualitatively similar to Proposition 4, and the underlying intuition is

the same: the contingent control allocation is more likely to be optimal when β and µ are

high.

6. Concluding remarks

I provide a theory for the optimal allocation of control rights using a simple model with

manager moral hazard and incomplete contracts, where the contract may be renegotiated

after the manager has exerted costly effort. The contract is incomplete because it cannot

specify a future continuation versus liquidation decision that the firm must make. The

incompleteness of the contract also creates the potential for hold-up problems once the

investor has sunk in his funds and the manager has exerted costly effort. The contract

must allocate the control right over the continuation decision to either the manager or the

investor, possibly contingent on the realization of a noisy performance measure. The control

allocation affects the manager’s ex-ante incentives because it affects both the likelihood of

ex-post renegotiation and the renegotiation payoffs of the two agents. The optimal control

allocation must strengthen the manager’s incentives by mitigating hold-up by the investor

in profitable states, but still punish the manager for bad outcomes.

In this setting, I show that any control allocation that allows the manager to remain

in control following a poor performance is suboptimal. In equilibrium, only two control

allocations are optimal: either exclusive investor control or a contingent control allocation

that allows the manager to remain in control if the firm’s performance is good but transfers

control to the investor if performance is poor. An increase in the informativeness of the

performance measure or an increase in the investor’s renegotiation bargaining power make

it more likely that the contingent control allocation is optimal. Thus, this article provides

a novel theoretical rationale for contingent control allocations, and explains why it is opti-
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mal for investors to take control only following poor performance while leaving control to

managers if the firm’s performance is good. Unlike existing theory models, I obtain this

result without making any ad-hoc assumptions regarding the manager’s private benefits or

future conflicts of interest between the manager and the investor.
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Appendix

This Appendix contains the proofs of all the results presented in the article.

Proof of Lemma 1: Suppose the firm is in the good state. If the manager is in control,

she will allow the firm to continue operating as per the original contract. The investor,

when in control, has two choices: (a) allow continuation under the terms of the original

contract, and get a payoff of pgDr; or (b) force renegotiation by threatening to liquidate

the project. In the latter case, the payoffs to the investor and the manager are Yr + µ∆

and L − Yr + (1− µ) ∆, respectively; i.e., each agent gets his liquidation payoff plus a

fraction of the surplus from continuation. Clearly, the investor forces renegotiation if,

and only if, Yr + µ∆ > pgDr. Overall, the investor’s expected payoff in the good state is

Sg (r,Ω) = max {Yr + µ∆, pgDr} . The manager, being a residual claimant, gets a payoff of

pgR− Sg (r,Ω).

Suppose the firm is in the bad state. It is obvious that the investor, when in control, will

liquidate the project because Yr ≥ 0. The manager, when in control, can either liquidate

the project and get a payoff of L− Yr, or force renegotiation and get a payoff of (1− µ)L.

Clearly, the manager will force renegotiation if, and only if, (1− µ)L > L−Yr ⇒ Yr > µL.

So the investor’s payoff now is Sb (r,Ω) = min {Yr, µL}, whereas the manager’s payoff is

L− Sb (r,Ω).

Proof of Lemma 2: Lemma 1 allows me to write the following expressions for SΦ (Ω, e)

corresponding to Φ ∈ {IC,MC,CC, ICC}:

SIC (Ω, e) = θe (βSg (h,Ω) + (1− β)Sg (l,Ω)) + (1− θe) (βYl + (1− β)Yh) (30)

SMC (Ω, e) = θe (βpgDh + (1− β) pgDl) + (1− θe) (βSb (l,Ω) + (1− β)Sb (h,Ω))(31)

SCC (Ω, e) = θe (βpgDh + (1− β)Sg (l,Ω)) + (1− θe) (βYl + (1− β)Sb (h,Ω)) (32)

SICC (Ω, e) = θe (βSg (h,Ω) + (1− β) pgDl) + (1− θe) (βSb (l,Ω) + (1− β)Yh) (33)
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It follows from equation (7) and equations (30) through (33) that ∂(V (e)−SΦ(Ω,e))
∂e =

θPΦ (Ω),where PΦ (Ω) for Φ ∈ {IC,MC,CC, ICC} is defined in equations (8) through

(11).

(1) I prove that under any feasible contract, PΦ (Ω) < ∆.

I prove this by contradiction for Φ = IC; similar logic applies to Φ ∈ {MC,CC, ICC}.

Note that PΦ (Ω) denotes the manager’s incremental payoff in the good state over the bad

state; so the investor’s incremental payoff in the good state over the bad state is ∆−PΦ (Ω).

Hence, for Φ = IC, the investor’s expected payoff at date 0 can be written as

SIC (Ω, eIC (Ω)) = θeIC (Ω) · (∆− PIC (Ω)) + βYl + (1− β)Yh. (34)

Suppose there exists a feasible contract for which PIC (Ω) ≥ ∆. Then, it must be that

SIC (Ω, eIC (Ω)) ≤ βYl + (1− β)Yh ≤ L < I, which violates the feasibility constraint (2).

Hence, it follows that, under any feasible contract, PIC (Ω) < ∆.

(2) Characterizing eΦ (Ω).

The manager’s marginal cost of effort is ψe, and its marginal value of effort is

∂(V (e)−SΦ(Ω,e))
∂e = θPΦ (Ω). Because ψ > θ∆ (Assumption 2) and θ∆ > θPΦ (Ω), it follows

that there exists an eΦ (Ω) ∈ (0, 1) such that ψeΦ (Ω) = θPΦ (Ω). Hence, the manager’s

equilibrium effort is eΦ (Ω) = θPΦ(Ω)
ψ .

Proof of Proposition 1: I prove the proposition by showing that for every feasible

contract with Φ = ICC (or Φ = MC), there exists another feasible contract with Φ = CC

that implements a higher effort.

Suppose the contract with the payoff rule Ω, and Φ = ICC is feasible, i.e.,

SICC (Ω, eICC (Ω)) ≥ I. Let Sg = βmax {Yh + µ∆, pgDh} + (1− β) pgDl denote the in-

vestor’s expected payoff in the good state. Consider an alternative contract with Φ = CC

and the payoff rule Ω̂, where Ŷl = Ŷh = L, and D̂l and D̂h that are chosen such that

βpgD̂h+ (1− β) max
{
L+ µ∆, pgD̂l

}
= Sg; i.e., the investor gets the same expected payoff
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in the good state.

Because the manager gets the same expected payoff in the good state under both con-

tracts, it follows that

PCC

(
Ω̂
)
− PICC (Ω) = βL+ (1− β)µL− βmin {µL, Yl} − (1− β)Yh (35)

Substituting min {µL, Yl} ≤ µL and Yh ≤ L in the above equation, and simplify-

ing, yields PCC

(
Ω̂
)
− PICC (Ω) ≥ (2β − 1) (1− µ)L > 0, because β > 0.5. Hence,

it must be that eCC

(
Ω̂
)
> eICC (Ω), which in turn, implies that SCC

(
Ω̂, eCC

(
Ω̂
))

>

SCC

(
Ω̂, eICC (Ω)

)
because SCC (., e) is increasing in e. But,

SCC

(
Ω̂, eICC (Ω)

)
= θeICCSg + (1− θeICC) (βL+ (1− β)µL) (36)

> θeICCSg + (1− θeICC) (βmin {µL, Yl}+ (1− β)Yh)

= SICC (Ω, eICC (Ω))

where the inequality in the second line follows because βL+ (1− β)µL > βmin {µL, Yl}+

(1− β)Yh (as I showed earlier in the proof). Therefore, SCC

(
Ω̂, eCC

(
Ω̂
))

>

SICC (Ω, eICC (Ω)) ≥ I; i.e., the alternative contract with Φ = CC is feasible. As it also

implements a higher effort, it strictly dominates the original contract with Φ = ICC.

By a similar logic, it can be shown that Φ = MC is strictly dominated by Φ = CC.

Proof of Proposition 2: The necessity of condition (16) follows from the discussion

preceding the proposition. Now, I prove the existence of an optimal payoff rule, Ω∗CC , when

condition (16) is satisfied (this will also prove the sufficiency of condition (16) because, by

definition, Ω∗CC has to be feasible). As P+
CC is the largest value of PCC at the which the fea-

sibility constraint binds, an optimal contract must satisfy PCC (Ω∗CC) = P+
CC . Substituting

Yl = Yh = L and ∆ = pgR− L into the expression for PCC , this is equivalent to

βpg (R−Dh) + (1− β) min {pg (R−Dl) , (1− µ) ∆} = P+
CC + (1− β) (1− µ)L (37)
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Consider the following two cases separately:

(a) Suppose (1− µ) (∆− (1− β)L) ≥ P+
CC . In this case, P+

CC + (1− β) (1− µ)L ≤

(1− µ) ∆. Equation (37) can be satisfied by setting Dh = Dl, such that pg (R−Dh) =

P+
CC + (1− β) (1− µ)L. As P+

CC + (1− β) (1− µ)L ≤ (1− µ)L, it follows that

pg (R−Dh) ≤ (1− µ)L; i.e., under this contract, the investor is better off allowing contin-

uation under the original contract.

(b) Suppose (1− µ) (∆− (1− β)L) < P+
CC . Now, P+

CC + (1− β) (1− µ)L > (1− µ) ∆.

In this case, equation (37) can be satisfied by choosing any Dl < L+µ∆
pg

(so that

min {pg (R−Dl) , (1− µ) ∆} = (1− µ) ∆), and a Dh which satisfies

βpg (R−Dh) + (1− β) (1− µ) ∆ = P+
CC + (1− β) (1− µ)L (38)

As P+
CC + (1− β) (1− µ)L > (1− µ) ∆, it follows that pg (R−Dh) > (1− µ) ∆.

Proof of Proposition 3: The necessity of condition (21) follows from the discussion

preceding the proposition.

(1) Proving the necessity of the condition µ ≤ µ−IC . I prove this by contradiction.

Suppose there exists a feasible contract when µ > µ−IC . As
(
1− µ−IC

)
∆ = P−IC , it follows

that (1− µ) ∆ < P−IC .

Now, if Yl = Yh = L, the expression for PIC can be rewritten as

PIC = βmin {pg (R−Dh) , (1− µ) ∆}+ (1− β) min {pg (R−Dl) , (1− µ) ∆}

≤ (1− µ) ∆. (39)

So if (1− µ) ∆ < P−IC , it must be that PIC < P−IC . But then, by the definition of

P−IC , it must be that θ2PIC
ψ (∆− PIC)− (I − L) < 0, which contradicts the feasibility of the

contract. Therefore, a contract with Φ = IC is feasible only if µ ≤ µ−IC .

(2) Proving the sufficiency of the conditions in the proposition.
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I prove the existence of an optimal contract when µ ≤ µ−IC and ∆2 ≥ 4ψ(I−L)
θ2 (which also

proves the sufficiency of these conditions). Any feasible Ω must have PIC (Ω) ∈
[
P−IC , P

+
IC

]
.

Moreover, it must be that PIC (Ω) ≤ (1− µ) ∆. Consider the following two cases separately:

(a) Suppose µ ≤ µ+
IC , which is equivalent to (1− µ) ∆ ≥ P+

IC . In this case, the re-

quirement that PIC (Ω) ≤ (1− µ) ∆ is satisfied by every PIC ∈
[
P−IC , P

+
IC

]
. So an optimal

contract will have P ∗IC = P+
IC . This can be achieved by setting D∗l = D∗h =

pgR−P+
IC

pg
. Under

this contract pg (R−D∗l ) = pg (R−D∗h) = P+
IC ≤ (1− µ)L, so the investor will not force

renegotiation in the good state.

(b) Suppose µ+
IC < µ ≤ µ−IC , which is equivalent to P−IC ≤ (1− µ) ∆ < P+

IC . In this case,

an optimal contract will have P ∗IC = (1− µ) ∆, which can be achieved by setting D∗l <
L+µ∆
pg

and D∗h < L+µ∆
pg

. Under this contract, the investor will always force renegotiation in the

good state to increase its payoff to L + µ∆. The feasibility constraint is satisfied because

P ∗IC = (1− µ) ∆ ∈
[
P−IC , P

+
IC

]
.

Proof of Proposition 4: Because βL+ (1− β)µL < L, it follows that: (a) P+
IC > P+

CC ;

and (b) condition (21) is satisfied whenever condition (16) is satisfied. Consider the following

cases separately:

(1) Suppose µ ≤ µ+
IC . Then, Φ = IC is feasible and P ∗IC = P+

IC (Proposition 3). As

P ∗IC = P+
IC > P ∗CC , Φ = IC implements a higher effort than Φ = CC when the latter is

feasible. Therefore, in this case, Φ = IC strictly dominates Φ = CC, regardless of β. The

optimal contract will have Φ = IC and the cash flow allocation, Ω∗, characterized in part

(1) of Proposition 3.

(2) Suppose µ > µ+
IC . Then, consider the following subcases:

(a) Suppose µ+
IC < µ ≤ 1

2 . In this region, Φ = IC is feasible and P ∗IC = (1− µ) ∆

(Proposition 3). So Φ = CC can be optimal if, and only if, P+
CC > (1− µ) ∆ (this condition

is also sufficient because it implies that P+
CC exists, i.e., that Φ = CC is feasible). Now, P+

CC

is increasing in β, and limβ→1 P
+
CC → P+

IC > (1− µ) ∆, where the last inequality follows

because µ > µ+
IC . So there must exist a threshold β̂ ∈ [0.5, 1) such that P+

CC ≥ (1− µ) ∆
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(i.e., Φ = CC is optimal) if, and only if, β ≥ β̂.

Now, a little algebra shows that if µ+
IC < µ ≤ 1

2 , then the requirement P+
CC > (1− µ) ∆

is equivalent to

µ (1− µ) θ2∆2

ψ
− (I − L+ (1− β) (1− µ)L) > 0, (40)

So either there exists a β̂ > 0.5 such that

µ (1− µ) θ2∆2

ψ
−
(
I − L+

(
1− β̂

)
(1− µ)L

)
= 0, (41)

or condition (40) holds for all β ∈ (0.5, 1), in which case, β̂ = 0.5.

(b) Suppose µ > 1
2 . Then, P ∗IC = (1− µ) ∆ < ∆

2 when Φ = IC is feasible. As P+
CC ≥

∆
2 ,

in this case, Φ = CC is optimal whenever it is feasible. Consider the feasibility condition

(16) for Φ = CC. Condition (16) is more likely to be met as β increases, and is met as

β → 1 because (θ∆)2 > 4ψ (I − L). By the same logic as in 2(a), it follows that there exists

a β̂ ∈ [0.5, 1) such that condition (16) is satisfied (i.e., Φ = CC is optimal) if, and only if,

β ≥ β̂. Either there exists a β̂ > 0.5 such that

(θ∆)2 − 4ψ
(
I − L+

(
1− β̂

)
(1− µ)L

)
= 0, (42)

or the condition (16) is met for all β ∈ (0.5, 1), in which case, β̂ = 0.5.

(3) Proving the comparative statics on β̂

I prove this for the case where µ+
IC < µ ≤ 1

2 (the same logic holds when µ > 1
2). As I

showed in 2(a), β̂ is the smallest value of β ∈ [0.5, 1) at which condition (40) is satisfied.

Let LHS denote the expression on the left-hand side of condition (40). It is evident that

LHS is increasing in θ and pgR. Moreover,

dLHS

dµ
=

(1− 2µ) θ2∆2

ψ
+ (1− β)L > 0, (43)
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because µ < 0.5, and

dLHS

dL
= 1− (1− β) (1− µ)− 2µ (1− µ) θ2∆

ψ
> 0, (44)

because µ (1− µ) < 1
4 , θ2∆

2ψ < 0.5, and (1− β) (1− µ) ≤ (1− β) < 0.5.

Because LHS is increasing in θ, pgR, µ and L, it follows that β̂ decrease as θ, pgR, µ

and L increase.

Proof of Proposition 5: (1) Differentiating equation (24) with respect to β yields

dNV ∗

dβ
=
∂NV ∗

∂P ∗
· dP

∗

dβ
=
θ2 (∆− P ∗)

ψ
· dP

∗

dβ
. (45)

As P ∗ < ∆ (by Lemma 2), dNV ∗

dβ will have the same sign as dP ∗

dβ . As I showed in

Proposition 4, P ∗ = P+
CC if, and only if, µ > µ+

IC and β > β̂. In this region, dNV ∗

dβ > 0

because
dP+
CC
dβ > 0. Otherwise, dNV ∗

dβ = 0 because P ∗ equals either P+
IC or (1− µ) ∆, both

of which are invariant to β.

(2) By the same logic as in (1), dNV ∗

dµ will have the same sign as dP ∗

dµ . If µ ≤ µ+
IC , then

P ∗ = P+
IC which is invariant to µ; in this region, dNV ∗

dµ = 0.

Suppose µ > µ+
IC . I showed in the proof of Proposition 4 that the threshold β̂ (beyond

which Φ = CC becomes optimal) decreases with µ, and that β̂ → 1
2 as µ → 1. By the

same logic, given a β, it follows that there exists an µ̂ < 1 such that Φ = CC is optimal

for µ ≥ µ̂, and either Φ = IC is optimal or no financing is feasible if µ < µ̂. If µ < µ̂, then

P ∗ = (1− µ) ∆ which is decreasing in β; in this region, dNV
∗

dµ < 0. If µ > µ̂, then P ∗ = P+
IC

which is increasing in µ; therefore, in this region, dNV ∗

dµ > 0.

Proof of Lemma 5: It is evident from equation (10) that dPCC
dYh

= (1− β) dmin{Yh,µL}
dYh

≥ 0

and dPCC
dYl

= β − (1− β)
dSg(l,Ω)
dYl

> 0 because
dSg(l,Ω)
dYl

≤ 1 and β > 0.5. As the financing

constraint is also more likely to be met for higher values of Yl and Sb (h,Ω) = min {Yh, µL},

it is optimal to set Yl and Yh as high as possible; i.e., Yl = Yh = L (although Yh is irrelevant
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if Yh ≥ µL). As Yl = Yh = L arises endogenously, the feasibility conditions for Φ = CC

and Ω∗CC are the same as in Proposition 2.

Proof of Proposition 6: (1) Proving the necessity of condition (21)

Here again,dPICdYl
≥ 2β − 1 > 0. So it is optimal to set Yl = L, because the feasibility

constraint is also more likely to be met for higher values of Yl. On the other hand,

dPIC
dYh

=

 1− β > 0 if Yh + µ∆ ≤ pgDh

1− 2β < 0 if Yh + µ∆ > pgDh

, (46)

i.e., PIC is increasing in Yh if there is no hold-up by the investor in the good state, and is

decreasing in Yh otherwise.

Given that the investor’s expected payoff in the bad state is L − (1− β) (L− Yh), the

feasibility constraint, SIC (Ω, eIC (Ω)) ≥ I, can be rewritten as

θ2PIC
ψ

(∆− PIC)− (I − L) ≥ (1− β) (L− Yh) (47)

As discussed before, the left-hand side of condition (47) is non-negative only if P+
IC and

P−IC are well defined, i.e., only if θ2∆2

4ψ ≥ (I − L), which explains the necessity of Condition

(21).

(2) I show that if µ ≤ µ−IC , then condition (21) is also sufficient.

If µ ≤ µ+
IC , the sufficiency of condition (21) follows from same logic as in the proof of

Proposition 3.

Suppose µ+
IC < µ ≤ µ−IC (which is equivalent to P−IC ≤ (1− µ) ∆ < P+

IC). In this case, I

construct a contract such that there is always hold-up by the investor in the good state; i.e.,

Sg (h,Ω) = Yh + µ∆ and Sg (l,Ω) = L+ µ∆. Making these substitutions in the expression

for PIC (Ω) yields

PIC = (1− µ) ∆ + (2β − 1) (L− Yh) (48)
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Substituting L − Yh = PIC−(1−µ)L
2β−1 from equation (48) into the feasibility constraint

yields

θ2PIC
ψ

(∆− PIC)− (I − L) ≥ ρ (PIC − (1− µ) ∆) , (49)

where ρ = 1−β
2β−1 . An optimal contract will choose the highest PIC , subject to feasibility

constraint (49), and the requirement that Yh ≥ 0 (or equivalently, the requirement that

PIC ≤ (1− µ) ∆ + (2β − 1)L.)

In the remainder of this proof, I refer to the expression on the right-hand side of condition

(49) as the “RHS Line,” and the expression on the left-hand side as the “LHS Curve.” The

RHS Line is positive and increasing in PIC for all PIC > (1− µ) ∆, whereas the LHS Curve

is a quadratic expression in PIC , that is non-negative and has an “inverted U-shape” for

PIC ∈
[
P−IC , P

+
IC

]
. So if P−IC ≤ (1− µ) ∆ < P+

IC , it follows that there exists a unique

P+
β ∈

(
(1− µ) ∆, P+

IC

)
at which the RHS Line intersects the LHS Curve; i.e., condition

(49) binds with equality.

Equating the two sides of condition (49), and solving the resulting quadratic equation,

yields the expression for P+
β in equation (27). As Yh cannot be negative, it follows that an

optimal contract will have P̂IC = min
{
P+
β , (1− µ) ∆ + (2β − 1)L

}
.

(3) I characterize the feasibility conditions when µ−IC < µ < µhIC (which is equivalent to

max
{
P−IC − L, 0

}
< (1− µ) ∆ < P−IC)

(i) In this case, additional conditions are required to guarantee that the RHS line inter-

sects the LHS curve. First, it is necessary that θ2∆2

4ψ > (I − L), because otherwise the LHS

curve is never positive, in which case the RHS line cannot intersect the LHS curve for any

β < 1.

(ii) Suppose θ2∆2

4ψ > (I − L). Then, there exists a ρlow > 0 such that the line,

ρlow (PIC − (1− µ) ∆), is tangential to the LHS curve. Clearly, the RHS line will intersect

the LHS curve if, and only if, ρ ≤ ρlow. Suppose ρ ≤ ρlow. Then, let P−β and P+
β denote

the values of PIC at which the RHS line intersects the LHS curve, where P−β ≤ P+
β . For a

contract with Φ = IC to be feasible, it is also necessary that P−β ≤ (1− µ) ∆ + (2β − 1)L,
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because, as I explained in 2(b) above, PIC cannot exceed min
{
P+
β , (1− µ) ∆ + (2β − 1)L

}
.

It is easy to show that P−β decreases as ρ decreases.11 In particular, as ρ → 0, P−β →

P−IC < (1− µ) ∆ + L, where the last inequality follows because µ > µhIC . Therefore, there

exists a ρhIC ∈
(
0, ρlow

]
such that P−β ≤ (1− µ) ∆ + (2β − 1)L if, and only if, ρ ≤ ρhIC . As

ρ is decreasing in β, and ρ → 0 as β → 1, this is equivalent to saying that there exists a

threshold βhIC < 1 such that a contract with Φ = IC is feasible only if β ≥ βhIC .

(4) I show that if µ ≥ µhIC , then a contract with Φ = IC is infeasible.

(Note that, as per the definition of µhIC , this situation can arise only if P−IC − L > 0,

because if P−IC−L ≤ 0, then µhIC = 1.) If µ ≥ µhIC , then it must be that P−IC ≥ (1− µ) ∆+L.

As P−β > P−IC for any β < 1, it follows that, in this case P−β > (1− µ) ∆ + (2β − 1)L for

all β < 1. Therefore, a contract with Φ = IC is infeasible in this case.

Proof of Proposition 7: (In this proof, I make use of Lemmas 6 and 7 which are stated

and proved below.)

Consider the following cases separately:

(1) Suppose µ ≤ µ+
IC . By the same argument as in part 1 of the proof of Proposition 4,

it follows that Φ = IC strictly dominates Φ = CC in this case, even if the latter is feasible.

(2) Suppose µ+
IC < µ ≤ µlow. In this case, again Φ = IC is feasible. Moreover, as I show

in Lemma 6 below, P ∗IC = P+
β > P+

CC for all β. Therefore, in this case too, Φ = IC strictly

dominates Φ = CC. The optimal contract will have Φ = IC and the cash flow allocation,

Ω∗, characterized in 2(b) of Proposition 6.

(3) Suppose µlow ≤ µ < µhIC . In this case, even if Φ = IC is feasible, there exists a

threshold β̂ < 1 such that P+
CC > P ∗IC if β ≥ β̂ (by Lemma 6).

11Because P−β is the lower root of the quadratic equation (55), by implicit differentiation, it follows that

dP−β
dρ

=

(
P−β − (1− µ) ∆

)
θ2

ψ

(
∆− 2P−β

)
− ρ

> 0,

because in this case P−β > P−IC > (1− µ) ∆ and 2P−β ≤
θ2∆
ψ
− ρ.
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(4) Suppose µ ≥ µhIC . In this case, Φ = IC is infeasible (by Proposition 6). Therefore,

Φ = CC is optimal if it is feasible. Then, by the same argument as in part (3) of the proof

of Proposition 4, it follows that there exists a threshold β̂ < 1 such that Φ = CC is feasible,

and hence, optimal only if β ≥ β̂.

Lemma 6 If µ ≤ µlow, then P ∗IC > P+
CC regardless of β. If µ > µlow, then there exists a

β̄ < 1 such that P+
CC > P ∗IC if, and only if, β > β̄.

Proof of Lemma 6: (1) I characterize the conditions under which P+
CC > P+

β .

Recall that P+
CC is the highest value of PCC at which θ2PCC

ψ (∆− PCC) = I − L +

(1− β) (1− µ)L. So if P+
CC > P+

β , then it must be that

θ2P+
β

ψ

(
∆− P+

β

)
> I − L+ (1− β) (1− µ)L. (50)

But, by the definition of P+
β

θ2P+
β

ψ

(
∆− P+

β

)
− (I − L)− (1− β)X+

β = 0 (51)

where

X+
β ≡

P+
β − (1− µ) ∆

2β − 1
. (52)

Notice that if X+
β < L, then P ∗IC = P+

β ; otherwise, P ∗IC = (1− µ) ∆ + (2β − 1)L.

Combining condition (50) and equation (51), it follows that

P+
CC > P+

β ⇐⇒ X+
β > (1− µ)L. (53)

As X+
β is increasing in β (by Lemma 7), the above condition is more likely to be met

as β increases. Notice that

[
X+
β

]
β=1

= P+
IC − (1− µ) ∆, (54)
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because
[
P+
β

]
β=1

= P+
IC . Consider the following cases separately:

(a) Suppose µ ≤ µlow. By the definition of µlow, µ ≤ µlow ⇒ (1− µ) pgR ≥ P+
IC .

Substituting pgR = ∆ + L, this is equivalent to P+
IC − (1− µ) ∆ ≤ (1− µ)L. Hence,

in this region,
[
X+
β

]
β=1
≤ (1− µ)L, which implies that X+

β < (1− µ)L for all β < 1.

This has the following implications: (i) X+
β < (1− µ)L ⇒ P+

CC < P+
β (by (53)), and (ii)

X+
β < (1− µ)L < L also implies that P ∗IC = P+

β . Therefore, in this region, P ∗IC > P+
CC for

all β.

(b) Suppose µ > µlow. In this region,
[
X+
β

]
β=1

> (1− µ)L. Hence, there must be some

threshold value of β above which X+
β > (1− µ)L ⇒ P+

CC > P+
β . As P ∗IC ≤ P+

β , it follows

that there exists a β̄ < 1 such that P+
CC > P ∗IC if, and only if, β > β̄.

Lemma 7 P+
β and X+

β are increasing in β.

Proof of Lemma 7: (1) Proving that P+
β is increasing in β: Recall that P+

β is the larger

root of the following quadratic equation:

θ2P

ψ
(∆− P )− (I − L)− ρ (P − (1− µ) ∆) = 0 (55)

where ρ = 1−β
2β−1 . Implicitly differentiating with respect to ρ yields

dP+
β

dρ
= −

−
(
P+
β − (1− µ) ∆

)
θ2

ψ

(
∆− 2P+

β

)
− ρ

 < 0, (56)

because θ2

ψ

(
∆− 2P+

β

)
− ρ < 0 (see equation 27) and P+

β ≥ (1− µ) ∆. As ρ is decreasing

in β, it follows that P+
β is increasing in β.

(2) Proving that X+
β is increasing in β: Recall that X+

β is a root of the equation (51)

after substituting P+
β = (1− µ) ∆ + (2β − 1)X+

β . Let LHS denote the expression on the

left-hand side of this equation. Differentiating LHS with respect to X+
β , and substituting
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(1− β) = ρ (2β − 1), yields

∂LHS

∂X+
β

= (2β − 1)

(
θ2

ψ

(
∆− 2P+

β

)
− ρ
)

(57)

< 0,

because 2P+
β > ∆− ρψ

θ2 (by equation (27)). Also,

∂LHS

∂β
= X+

β −
2X+

β θ
2

ψ

(
2P+

β −∆
)

(58)

> X+
β −

2X+
β θ

2∆

ψ
,because P+

β < ∆

> 0,

because 2θ2∆
ψ < 1 (by assumption 2). Therefore, by implicit differentiation,

dX+
β

dβ =

−
[

∂LHS/∂β

∂LHS/∂X+
β

]
> 0.

Lemma 8 A contract with Yr < 0 can never be optimal.

Proof of Lemma 8: As I showed in Section 5., it is always optimal to set Yl = L

regardless of the control allocation Φ. Moreover, if Φ = CC, then it is also optimal to set

Yh = L. Therefore, I only need to show that a contract with investor control (Φ = IC) and

Yh < 0 can never be optimal. I prove this by contradiction.

Suppose a contract with Φ = IC and Yh < 0 is optimal. Under such a contract, when

r̃ = h is realized in the bad state (which happens with probability 1− β), the investor will

not liquidate the firm even though liquidation is efficient; both the agents get a payoff of 0.

Let eΦ (Ω) = θPIC(Ω)
ψ be the effort induced by this contract. Therefore, firm value is

V (Φ,Ω) = θeΦ (Ω) pgR+ (1− θeΦ (Ω))βL, (59)

and

PIC (Ω) = pgR− βSg (h,Ω)− (1− β)Sg (l,Ω) (60)
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Consider an alternative contract
(

Φ̂, Ω̂
)

with Φ̂ = CC and a payoff scheme Ω̂ which

is identical to Ω except that Ŷh = L and D̂h =
βSg−(1−β)(1−µ)L

β . Under this alternative

contract, when r̃ = h is realized in the bad state, the manager will allow the firm to be

liquidated after renegotiating the contract; the payoffs to the investor and the manager are

µL and (1− µ)L, respectively. Therefore,

PCC

(
Ω̂
)

= pgR− βpgD̂h − (1− β)Sg (l,Ω)− (1− β) (1− µ)L (61)

= PIC (Ω) , by construction of Ω̂.

Therefore, the alternative contract will implement the same effort as the original con-

tract. However, firm value under the alternative contract is

V
(

Φ̂, Ω̂
)

= θeΦ (Ω) pgR+ (1− θeΦ (Ω))L (62)

> V (Φ,Ω) , because β < 1,

which contradicts the optimality of the original contract.
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Figure 1: Impact of β and µ on the equilibrium outcome
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