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Abstract

Consumers often consider multiple alternatives from the same product category prior to making a purchase. Uncovering the predominant
patterns of such co-considerations can help businesses learn more about the competitive structure of the market in the mind of the consumer. Extant
research has shown that various types of online and offline consumer activity data (e.g., shopping baskets, search and browsing histories, social
media mentions) can be used to infer product co-considerations. In this paper, we study a case of uncovering co-consideration patterns using a
massive dataset of online price quote requests from U.S. auto shoppers. The main challenge we face is that, for privacy protection, no unique
individual identifier (anonymous or otherwise) is contained in the data. Such a data deficiency prevents us from using existing methods such as
affinity analysis for inferring co-considerations. However, by leveraging spatiotemporal patterns in the data, we manage to probabilistically
uncover the predominant patterns of co-considerations in the U.S. auto market. As a validation and illustration of its usefulness, we embed the
inferred market structure in a sales response model and show a substantial improvement in predictive performance.
© 2017
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Motivation

Consumers often consider multiple alternatives from the same
product category prior to making a purchase. Uncovering the
predominant patterns of such co-considerations can help busi-
nesses learn more about the competitive structure of the market as
perceived by the consumer, which in turn can helpmanagers make
decisions such as product design (Bloch 1995), pricing (Choi
1991), and store layout (Brijs et al. 2004). However, it can be cost
prohibitive to gather consumer self-reports on co-considerations at
a large scale and on a regular basis. Extant research has shown that
product co-considerations can be inferred from various types of
online and offline consumer activity data, where an individual
consumer's activities regarding multiple competing alternatives
can be tied together via a unique individual identifier, e.g.,
frequent shopper card numbers, phone numbers, credit card
numbers, mail addresses, email addresses, and Internet Protocol
addresses. Examples of such applications include the use of
shopping basket/retail panel data (Lattin and McAlister 1985),
Internet browsing history data (Park and Fader 2004), credit card
transaction records, and mobile device log (Chen, Chiang, and
Storey 2012).

Affinity analysis, a class of techniques using the co-occurrences
of events to uncover meaningful associations between them, is
one of the methods commonly used to take advantage of such
consumer activity data. By design, affinity analysis requires
unique individual identifiers in order to establish co-occurrences.
For example, a retailer can use the fact that a significant number
of customers buy shampoo and conditioner in the same shopping
basket to infer that these two products are close complements.
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Similarly, by tracking browsing and searching records of
individual visitors, an e-commerce website can figure out which
products are frequently considered together by the same
individual and infer the intensity of competition between
products (Ringel and Skiera 2016).

In this research, we conduct a case study to infer product
co-consideration from a massive dataset of online price quote
requests (OPQRs) made by U.S. auto shoppers. By providing an
unobstructed view of the U.S. auto shoppers at the late stages of
the purchase funnel, the OPQR data provides an excellent
opportunity to study the consideration sets of U.S. auto shoppers.
Despite its richness, due to privacy concerns, the OPQR data has
a “deficiency”: it does not contain any unique individual
identifiers, which precludes the application of affinity analysis.
In this paper, we demonstrate that by leveraging spatiotemporal
patterns in OPQR data, which is aggregated to five-minute level
by vehicle and Zip code, we can overcome this data “deficiency”
and uncover the predominant patterns of co-considerations in the
U.S. automarket. As a validation and illustration of its usefulness,
we embed the inferred market structure in a sales response model
and show a substantial improvement in predictive performance.

More specifically, the price quote request data used in our
study are gathered through a popular service offered by most of
the major automotive shopping websites in the U.S. Fig. 1
shows the user interface of this service at the Kelley Blue Book
website. Visitors to the site who are interested in requesting an
online price quote from a local dealer can do so by selecting the
brand (or “make” in auto industry lingo, e.g., Chevrolet) and
Fig. 1. Screenshot of a typical interface for submitting an online price quote request. (
the web version of this article.)
model (e.g., Malibu), entering the Zip code, and clicking on
the “get your quote” button (see highlighted rectangular area in
Fig. 1). After clicking on the “get your quote” button, the visitor
would be asked to provide his/her email address in order to
receive a price quote from a local dealer. Autometrics (www.
autometrics.com), a startup “Big Data” company, has entered
agreements with most of the major automotive shopping
websites in the U.S. to receive a record every time a visitor to
a site selects a brand and model, enters a Zip code and clicks on
the “get your quote” button. Each record contains four pieces of
information: the time stamp, the brand, the model, and the Zip
code associated with each OPQR. Every year Autometrics
receives about 200 million such records.

Collecting and sharing individual level data on online
activities poses serious security and privacy concerns, especially
when it is done at a massive scale (de Montjoye et al. 2015). Due
to such concerns, Autometrics has no access to any information
identifying individual website visitors (e.g., the email address
provided by a site visitor is not shared with Autometrics). In other
words, from the records received by Autometrics, one can tell
when and where a car shopper is interested in getting a price
quote for which vehicle. However, because there is no unique
individual identifier in Autometrics' data, one cannot tie multiple
OPQRs to any individual car shopper, even though the same
shopper may send inmultiple OPQRs as she compares alternative
vehicles in her consideration set.

The kind of online consumer activity data gathered by
Autometrics is obviously less informative than the raw records
For interpretation of the references to color in this figure, the reader is referred to

http://www.autometrics.com
http://www.autometrics.com
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that have a unique individual identifier. On the other hand,
stripping away all uniquely identifiable information provides an
extra layer of protection for privacy, a feature that can become
increasingly desirable in the era of “Big Data” from the
perspective of consumers and regulators (e.g., the Gramm–
Leach–Bliley Act in the United States, the European Union
legislation on cookies). However, it also poses a major challenge
for generating actionable business intelligence, as techniques such
as affinity analysis would be rendered infeasible when no two
activities can be tied back to the same consumer. It is this
seemingly unavoidable tradeoff between protecting consumer
privacy and generating actionable insights from consumer activity
data that has motivated us to investigate whether it is possible, in
our particular empirical context, to infer co-occurrences of
activities even though there is no unique identifier that ties any
pair of activities to the same individual.

The remainder of the paper proceeds as follows. In the next
section, we discuss the related literature and our intended
contribution, and present more information about our data,
highlighting the challenges that we must address. Then we
present our method of using spatiotemporal information in the
data for inferring product co-considerations probabilistically.
To validate our method, we infer the market structure from the
predominant patterns of co-considerations and embed the
resulting market structure in a sales response model. We use the
model to predict market shares in the U.S. automotive market and
show considerably improved performances over the benchmark
models. We conclude by discussing what our findings mean in
terms of striking a balance between privacy protection and insight
generation when working with large-scale online consumer
activity data. Finally, we discuss the limitations of our proposed
method and suggest promising directions for future research.

Research Background and Empirical Context

Market Structure Analysis Based on Consumer Online
Activity Data

Knowing which products are closer substitutes to one another
constitutes a central part of market structure analysis, which helps
shape many strategic decisions, e.g., identification of primary and
secondary competitors, product design, positioning, pricing, and
supply chain management (Day, Shocker, and Srivastava 1979;
Urban, Johnson, and Hauser 1984; see Shugan 2014 for a review
of the literature on market structure analysis). In order to uncover
the competitive relationships among products, managers have
often relied on examining the predominant patterns of product
co-considerations (e.g., Shocker et al. 1991; Urban, Johnson,
and Hauser 1984). Historically, many approaches have been
developed to capture product co-considerations, e.g., tracking
brand switching patterns (e.g., Cooper and Inoue 1996),
estimating cross-elasticities (e.g., Russell and Bolton 1988), or
most commonly, examining consumer self-reports of consider-
ation sets (Urban, Johnson, and Hauser 1984).

In the era of “Big Data,” market structure analysis has
increasingly relied on uncovering patterns of co-considerations
hidden in consumers' digital footprints (Kim, Albuquerque,
and Bronnenberg 2011; Lee and Bradlow 2011; Netzer et al.
2012; Park and Fader 2004; Ringel and Skiera 2016). One key
advantage of online consumer activity data is that they reflect
observed behavior, which can be more reliable than self-report.
In addition, online consumer activity data are often gathered as
a byproduct/exhaust of the transaction process, which means
they can be cost effective for large-scale tracking studies.

Most recent developments in market structure analysis have
tapped into two types of digital footprints: user-generated
contents (UGCs) and Internet browsing data. For example, Lee
and Bradlow (2011) apply text-mining techniques to transform
online reviews into an association network of products and
attributes. Then, they use those associations to infer the
underlying competitive market structure. Similarly, Netzer
et al. (2012) apply text mining to posts scraped from online
discussion/review forums to infer the network of associations
among a large set of competing products. They do so by
examining the predominant patterns of co-mentions in individ-
ual consumers' posts. Since online discussion/review forum
data is publicly available, inferring competitive structure using
UGCs is scalable to cover a large number of websites and the
resulting market structure reflects the voice of a diverse set of
consumers.

Richness in contents aside, UGCs have some limitations.
First, only a small percentage of self-selected consumers engage
in online conversations, limiting the representativeness of UGCs
(Gao et al. 2015; Li and Hitt 2008). As a result, analysis of such
data becomes less reliable for small markets or niche products.
Second, there is often a time discrepancy between making a
purchase and conducting an online discussion or posting a
review. Finally, there can be substantial biases and noises in
consumer recall and verbalization when they are engaged in
online discussions or reviews (Gardial et al. 1994; Hunt,
Sparkman, and Wilcox 1982).

Besides UGCs, Internet browsing data, gathered unobtrusively
through cookies and server logs, have become an important
source of consumer intelligence (Chen, Chiang, and Storey 2012).
By capturing online activities of consumers who are actively
seeking product information, Internet browsing data can be quite
useful for inferring co-considerations among a large number of
products (Ringel and Skiera 2016). Kim, Albuquerque, and
Bronnenberg (2011) propose a method to use browsing history to
understand consumer search behavior and thus infer competitive
structure in the market and the composition of consumer
consideration sets. Ringel and Skiera (2016) use Internet
browsing data from users researching about products to infer
associations between the products and develop a method for
visualizing the competitive landscape for a market comprised of
thousands of products. Compared to UGCs, the large volume of
Internet browsing data makes it possible to generate reliable
insights about small markets and niche products. For inferring
co-considerations from online activity data, the current methods
(e.g., Kim, Albuquerque, and Bronnenberg 2011; Ringel and
Skiera 2016) rely on calculating the probability of viewing one
product conditional on viewing another product, which requires
knowing the entire click stream of an individual website visitor. In
this research, our empirical context is analogous to situations
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where one observes only the number of times a product webpage
is browsed in a given time window by visitors from a given
geographic area. Our core research question is: given such limited
data, whether it is still possible to establish associations between
the products and infer the market structure when co-occurrence-
based affinity analysis is infeasible.

In summary, through our case study we intend to make the
following contributions to the growing literature on inferring
market structure from consumer online activity data.

1. Introduce a new type of data that can be used for inferring
market structure.

2. Propose a method for calculating associations between pairs
of products, tailored for the case where the data do not have
a unique individual identifier. Our method for inferring
co-consideration is applicable only when the lack of
individual identification information can be compensated
by granular spatiotemporal information.1

3. We extend the previous literature by embedding our inferred
information about competitive market structure in a sales
response model. We reveal a meaningful link between the
inferred market structure and market share covariations. In
the absence of ground truth of the competitive structure, we
argue that this link is an indirect piece of evidence to
establish the validity of the co-consideration measure
inferred from online activity data. Furthermore, we show
that practitioners can gain more insight about the market by
augmenting sales response models with information about
market competitive structure yielded from large-scale
consumer online activity data.

Empirical Context: Online Price Quote Request Data Without a
Unique Individual Identifier

Consumers use the Internet to gather product information as
they conduct comparison-shopping (Ratchford, Lee, and Talukdar
2003). The resulting browsing history data on competing products
resides in two main sources: 1) the sites of individual product
maker (e.g., Ford.com for Ford Motor Company, GM.com for
General Motors) and 2) the sites of third-party firms (e.g., kbb.
com for Kelley Blue Books, Edmunds.com). Scattered across
different sites, consumers' Internet browsing data, despite its
richness, can be fragmented from any individual site's standpoint.
Analyses based on data from any single site cannot reveal the
whole picture of consumer online activities. As a result, there are
quite a few third-party data aggregators filling this gap bymerging
the data across multiple websites. For example, Facebook and
Google track users across third-partywebsites through their digital
advertising network. Doubleclick.com, now part of Google,
through the extensive use of cookies at multiple websites, can
turn site centric data into user centric data.

Autometrics, the company behind the data used in this case
study, is one of the third-party aggregators providing a solution
1 Our method is not applicable when there is a unique individual identifier.
to this data fragmentation issue in the U.S. automotive market
by assembling OPQRs from all the major automotive shopping
websites. The data provide a comprehensive coverage of the
population of the U.S. consumers who use OPQR services
through many automotive shopping websites. When a site
visitor enters an auto brand and model and his/her Zip code, the
site records this information along with time of the request and
sends it to Autometrics.2 Despite the fact that Autometrics does
not have access to any uniquely identifiable information, such
cross-site OPQR data aggregated by Autometrics offer several
advantages.

First, the data are voluminous: on average 200 million
OPQRs per year. The comprehensive coverage of U.S. auto
shoppers makes patterns extracted from the data representative
of the target population. As we shall demonstrate later, the scale
and comprehensiveness of the data enable us to examine
competitive relationships among niche products (e.g., Mazda 6
and Mitsubishi Lancer) in small markets (e.g., Boise, Idaho),
where data generated by alternative sources can be sparse and
unreliable. This is particularly important when many domains
of the economy have shifted towards “long tail” competition
(Anderson 2006).

Second, lower purchase funnel activities such as OPQRs are
particularly appealing for examining the predominant patterns
of co-considerations in the auto market. OPQRs tend to take
place when vehicle shoppers' preferences have become less
fuzzy than earlier stages of the purchase funnel, where shoppers
are more likely to focus on vehicle features as opposed to
dealership pricing. Consequently, OPQRs can reveal the
substitutability among products close to the final purchase
stage.

Finally, because the user interface and data fields are similar
across all the websites, it is relatively easy to maintain
consistency over time and across different sources. Through
its contracts with all the major auto shopping websites,
Autometrics is in a position to aggregate all the OPQRs in the
U.S. and share the merged data with automakers and
dealerships. Such a capability to integrate and share data across
sources is crucial for developing industry-wide business
intelligence systems (Zheng, Fader, and Padmanabhan 2012).

Companies sharing consumer activity data with third-party
aggregators often need to mitigate privacy concerns with a
solution that goes beyond simple anonymization. Otherwise,
they risk exposing the identity of consumers through re-
identification of anonymized data (de Montjoye et al. 2015; Li
and Sarkar 2011, 2014; Menon, Sarkar, and Mukherjee 2005).
To avoid such privacy and identity concerns, Autometrics data
contain no uniquely identifiable information, retaining only
the time stamp and Zip code of each OPQR. Admittedly, the
lack of any unique individual identifier is a double-edged
sword, putting a severe constraint on how much insight can be
extracted from the data.
2 After recording this data, the website usually proceeds to ask for further
contact information that allows nearby auto dealers to contact the site visitor and
provide a price quote. The contact information and subsequent price quote are
not shared with Autometrics for privacy and data security reasons.

http://Ford.com
http://GM.com
http://kbb.com
http://kbb.com
http://Edmunds.com
http://Doubleclick.com
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Challenges and Solution

In our attempt to uncover predominant patterns of
co-considerations from Autometrics data, the first and foremost
challenge lies in that, because our data has no unique individual
identifier, we cannot tie any pair of OPQRs to the same
individual. Without knowing which two OPQRs come from the
same shopper, as we shall demonstrate later, we have to
probabilistically infer co-considerations by leveraging the
spatiotemporal patterns of the data. We also have to ensure
the validity of the inferred co-consideration pattern when co-
considerations are never directly observed in the data. This is
the main data challenge that differentiates our study from the
extant literature.

Furthermore, our data are quite noisy. Although there is little
doubt that OPQRs are in general tied with purchase-oriented
considerations, other consumer activities can generate OPQRs as
well. For example, window shoppers who request a price quote
out of curiosity may have no real intention of buying a vehicle. In
other words, window shoppers' OPQRs are mixed with those of
shoppers who are genuinely in the market for a car. Such noises
are inevitable when online activities are used as proxies of intents
and no other contextual information is available about the
individual behind those activities (Lazer et al. 2014). The
challenge lies in how we can ensure the inferred market structure
actually captures the pattern of co-considerations among genuine
auto shoppers.

Given the deficiencies in our data, to validate the inferred
co-consideration patterns, we build on a long tradition in
market structure analysis; we shall turn the inferred patterns of
co-considerations into a product-positioning map that reflects
the competitive landscape geometrically (Shugan 2014). To
establish the face validity of the co-consideration measure, we
examine whether the resulting product-positioning map con-
forms to the common beliefs about competition in the U.S. auto
market. We also directly compare our product-positioning map
with a comparable map Netzer et al. (2012) generated using
UGCs about automobiles. Furthermore, we embed the product-
positioning map in a sales response model to predict market
shares. If the inferred patterns of co-considerations are valid,
the resulting product-positioning map should improve the
predictive performance of the sales response model over
benchmark models that do not take into account information
captured in the map.

Inferring Co-considerations Probabilistically

Operationalization

In this section, we develop a method for probabilistically
inferring co-considerations from OPQR data. Consider a shopper
choosing between two cars: all else being equal, conditional on
the shopper having requested price quote for one car, the
probability of him requesting price quote for the other car should
be higher than the unconditional probability. Furthermore, the
second price quote request has an above random chance of
happening within a short time period after the first price quote
request — based on a conceivable process of comparison
shopping or co-consideration. As this happens to millions of
individual shoppers who consider multiple vehicles, we expect
that, when the number of consumers co-considering two vehicles
increases, there should also be an increase in the number of
incidences where OPQRs for these two vehicles “co-occur” in
short time intervals from the same geographic area.

Empirically, we operationalize this concept by partitioning each
day into 288 non-overlapping five-minute intervals (=24 hours
times 12 five-minute intervals per hour). We treat OPQRs for
two distinct vehicles from the same Zip code within the same
five-minute interval as a “co-occurrence” of the OPQRs for the two
vehicles. Fig. 2 clarifies the way we operationalize co-occurrences.
The horizontal axis in Fig. 2 represents the time during a day.
Suppose that in a Zip code we have three OPQRs for three vehicles
A, B, and C during minutes 2, 4, and 6 respectively. In our
operationalization, there is a co-occurrence of A and B, but C does
not co-occur with either A or B.

We use the number of co-occurrences as a proxy for co-
considerations as we expect co-occurrences and co-considerations
to be positively correlated. Admittedly, using co-occurrences as
proxies for co-considerations is far from perfect. For example,
some shoppers may consider two vehicles but do not request price
quotes for both of them. Some shoppers may request price quotes
for both vehicles but do so with a large time interval in-between.
In other words, the number of co-occurrences captured in our
data is likely very different from the number of actual co-
considerations. Nevertheless, it is important to note that as long as
the number of co-occurrences is positively correlated with the
number of co-considerations and such correlation is consistent
across vehicles, using the pattern of co-occurrences as a proxy for
the pattern of co-considerations would yield the same insights
about the competitive landscape because all that matters is to
capture the relative degree of competition among vehicles.

In our application, we do not use the raw count of
co-occurrences, because co-occurrences can happen by random
chance, which favors vehicles with a large number of OPQRs.
For example, consider two shoppers from the same Zip code,
one of whom is interested in Toyota Camry and the other
interested in Honda Accord, both very popular midsize sedans.
These two shoppers can each enter an OPQR for the car they
are considering, and by chance, their independent OPQRs can
happen within the same five-minute interval. This would result
in a co-occurrence of Camry and Accord that happens not due
to co-considerations, but due to a random coincidence. To
mitigate this issue, following a long tradition in affinity analysis
and association rule learning, we adopt the concept of lift
(Kotsiantis and Kanellopoulos 2006). More specifically, we
operationalize lift as the ratio of observed co-occurrences to
expected co-occurrences. The latter represents the number of
co-occurrences we would have expected to observe if none of
the OPQRs were due to co-considerations. In other words, by
using lift as opposed to raw co-occurrences, we identify the
associations beyond random chance.

More formally, denote two focal products as A and B. For a
given Zip code Z, in a given dayD, denote the number of OPQRs
for product A as nAZD, the number of OPQRs for product B as



Fig. 2. Example of occurrence and co-occurrences of OPQRs during a day within a Zip code. Note: In our operationalization, A and B are co-occurring, but C is not
co-occurring with A or B.
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nBZD, and the number of observed co-occurrences as nABZD.
Conditional on nAZD and nBZD, there is a non-zero probability of
observing co-occurrences even if none of the OPQRs were due to
co-considerations. Denote the expected number of such coinci-
dental co-occurrences as E[nABZD |nAZD, nBZD], which we shall
use as the baseline to determine whether the observed co-
occurrences nABZD are above and beyond random chance and thus
signal a meaningful positive association between A and B.

Conditional on nAZD and nBZD, if OPQRs were randomly
distributed throughout the day (i.e., no systematic within-day
fluctuation), one can use a contingency table to calculate E
[nABZD |nAZD, nBZD]. However, as Fig. 3 shows, the traffic of
OPQRs fluctuates within a day, peaking during early evening and
bottoming after midnight. A higher density of OPQRs in a time
interval means a higher probability to observe co-occurrences by
chance. Given this, no closed form analytical solution exists for E
[nABZD |nAZD, nBZD]. Instead, for each combination of nAZD and
nBZD, we use the following Monte Carlo simulation to calculate
the numerical value of E[nABZD |nAZD, nBZD].

1. Calculate the empirical probability of OPQR occurrences for
each five-minute interval. The probabilities are based on the
percentage of OPQRs occurring in each five-minute interval
aggregated over all days and across all Zip codes. They are,
in other words, not Zip code or day specific.
Fig. 3. Average hourly fluctuation of OPQRs during a day.
2. Randomly and independently, generate nAZD and nBZD
OPQRs for A and B during the simulated day. The empirical
probability calculated in step 1 determines the probability of
simulated OPQRs occurring in each time interval.

3. Count the number of co-occurrences of A and B in the
simulated day.

4. Repeat steps 2 and 3 until the mean of simulated co-
occurrence converges, which we shall use as an estimate of
E[nABZD |nAZD, nBZD].

We define the ratio of nABZD to E[nABZD |nAZD, nBZD] as the
lift. Since we shall later combine lift with sales data, we obtain
an aggregated lift by summing nABZD and E[nABZD |nAZD, nBZD]
over the period between January 1, 2009 and December 31,
2011, and across all Zip codes in the U.S.

LiftAB ¼ ∑D∑ZnABZD
∑D∑ZE nABZD nAZDj ; nBZD½ � ð1Þ

Intuitively, the higher the lift, the more likely OPQR
co-occurrences are caused by co-considerations as opposed to
random coincidence. In order to establish validity of our
approach, we examine the lift metric using several methods:

1. We compare our results on U.S. auto market competitive
structure with those reported by Netzer et al. (2012).

2. We investigate the face validity by examining whether the
patterns in the lift measures reveal pair-wise competitive
relationships that are qualitatively/directionally consistent
with conventional wisdom of the U.S. auto market.

3. We examine whether the lift measures lead to a product-
positioning map consistent with the competitive structure in
the U.S. auto market.

4. We check the robustness of the lift measures to changes in
granularity of the data. Specifically, we investigate how lift
measures vary as we systematically change the length of
time intervals and the size of geographic units.

5. Finally, in the next section, we empirically validate the lift
measures by examining the correspondence between the
actual market shares of cars in the U.S. auto market and the
competitive relationship revealed by our proposed measure
of co-considerations.

Comparison with the Results in the Literature

To validate our proposed method for measuring co-
considerations, we first compare our results with those from



Fig. 4. Brand level product positioning maps.

Table 1
Correlation between lift and the alternative metrics.

lift Jaccard cosine
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the existing literature. In our context of the U.S. auto industry,
Netzer et al. (2012) provides a reasonable benchmark for
comparison. For automobile brands available in the United
States, Netzer and colleagues reported a positioning map
reproduced in Fig. 4 panel A. To replicate their results, we
focus on 29 top automobile brands.3 These 29 brands form 406

unique pairs (combination of selecting 2 out of 29,
29
2

� �
¼

406). For all these pairs, we use Eq. (1) to calculate the lifts.
Taking lifts as measures of pair-wise similarity/proximity, we
create a co-consideration map using Kruskal's (1964) non-metric
Multidimensional Scaling (MDS). Fig. 4 panel B depicts
the resulting configuration (stress: 0.180) where each square
represents an automobile brand. Brands closer to each other have
a higher lift. Fig. 4 panels A and B show great resemblance. For
example, we observe that both maps identify three separate
clusters of vehicles: domestic non-luxury, international non-
luxury, and luxury. This resemblance is obtained despite the fact
that the two maps are generated using different methods and
sources of data: Netzer et al. (2012) produced the map by
applying text-mining methods to data on online UGCs, whereas
we get the map by applying our proposed method to OPQR data.
This comparison suggests that even without individual identi-
fiers, we can uncover brand-level competitive relationships from
Autometrics data, as validated by the consistency with previous
research.

Comparison with Alternative Co-occurrence Metrics

A desirable feature of the lift measure described in Eq. (1) is
that in the case of our data where individual identifiers are not
available, it can account for co-occurrences beyond randomness.
Here, we examine how our proposed method compares with
alternative methods to create co-occurrence metrics, controlling
for the possibility of random co-occurrences. Following Netzer
et al. (2012), we use two of such co-occurrence metrics, Jaccard
index and cosine similarity, as benchmarks for comparison.

Jaccard indexAB ¼ ∑D∑ZnABZD
∑D∑Z nAZD þ nBZD þ nABZDð Þ ð2Þ

cosineAB ¼ ∑D∑ZnABZDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑D∑ZnAZD∑D∑ZnBZD

p ð3Þ

Table 1 shows the correlation of the benchmarkmetrics with the
lift measures we used to generate Fig. 4 panel B. The results from
Jaccard index and cosine are similar (correlation = .99). However,
they are weakly correlated with the proposed lift (.61 and .66). The
weak correlations, together with the striking resemblance between
our map and that of Netzer et al. (2012), suggest that neither
Jaccard index nor cosine similarity could yield a map of
comparable quality. Moreover, the normalizing coefficients in
Jaccard index and cosine (∑D∑Z(nAZD + nBZD + nABZD) and
3 Netzer et al. (2012) reported results from 30 brands. As Oldsmobile has
since been shut down, we run the analysis using the 29 remaining brands.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑D∑ZnAZD∑D∑ZnBZD

p
respectively) do not correctly account

for expected random co-occurrences when we do not have
individual identifiers.

Face Validity

To further examine the validity of our method, we focus on
lifts at the vehicle-model level. As an illustration, we examine
the top-selling sedans between 2009 and 2011, with sizes
lift .615 .662
Jaccard .615 .986
cosine .662 .986



Table 2
Selected sedans and comparison of their OPQRs and sales from 2009 to 2011.

Car Body size Sales OPQR OPQR to
sales ratio

Chevrolet Impala Midsize 172,385 4,255,584 24.7
Chevrolet Malibu Midsize 370,081 4,419,556 11.9
Chrysler 300 Full-size 66,518 2,819,476 42.4
Ford Focus Compact 355,435 6,059,254 17.0
Honda Accord Midsize 783,355 11,951,240 15.3
Honda Civic Compact 712,665 8,853,180 12.4
Hyundai Sonata Midsize 441,210 5,826,399 13.2
Kia Optima Midsize 114,282 2,328,163 20.4
Mazda 3 Compact 264,558 2,515,869 9.5
Mazda 6 Midsize 78,393 1,249,185 15.9
Mitsubishi Lancer Compact 59,816 989,066 16.5
Nissan Altima Midsize 541,999 6,391,978 11.8
Nissan Maxima Midsize 153,952 2,824,595 18.3
Nissan Sentra Compact 230,856 1,610,594 7.0
Subaru Forester Full-size 220,074 1,972,208 9.0
Subaru Impreza Compact 119,608 1,375,984 11.5
Subaru Legacy Midsize 98,148 772,006 7.9
Toyota Avalon Full-size 77,120 1,469,159 19.1
Toyota Camry Midsize 814,781 9,427,479 11.6
Toyota Corolla Compact 612,346 4,792,886 7.8
Toyota Prius Midsize 380,136 3,604,511 9.5
Volkswagen Jetta Compact 365,390 3,269,403 8.9
Volkswagen Passat Midsize 42,025 656,777 15.6
All 7,075,133 89,434,552 12.6
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varying from compact to full-size. During the time window of
our study, the national level OPQRs vary greatly across these
23 top sedans (Table 2). As Fig. 5 shows, the total OPQRs
and sales for each car are highly correlated (correlation = .92).
Fig. 5. Scatter plot of total sales vs. total OPQRs from 2009 to 2011 in the
United States.
These 23 sedans form 253 unique pairs (combination of

selecting 2 out of 23,
23
2

� �
¼ 253). For all these pairs, we use

Eq. (1) to calculate the lifts and report them in Table 3.
The competitive relationship that emerges from the results in

Table 3 allows us to investigate the face validity of the lift
measure. Since we expect consumers to co-consider pairs with
high substitutability, if our proposed lift is positively correlated
with the degree of co-considerations, the pairs with the highest
lifts should be close substitutes.

Table 4 shows the 20 pairs of sedans with the highest lifts.
Two common patterns emerge. First, not surprisingly, 13 out of
the 20 highest-lift pairs share the same body size, suggesting
consumers are more likely to consider vehicles of the same body
size as substitutes as they fulfill the same need for passenger and
cargo capacity. Second, seven out of the 20 highest-lift
pairs share the same brand. For example, Passat and Jetta of
Volkswagen (VW), Mazda 6 and Mazda 3 of Mazda, and
Impreza, Legacy, and Forester of Subaru are all pairs with
high lifts, indicating consumers are more likely to consider
substitutes within the same brand for these vehicles. Both of
these patterns – high lifts for sedans of either the same size or
brand – are consistent with the conventional wisdom, indicating
face validity of our lift measure.

Next, we examine whether the overall lift patterns lead to
a plausible portrait of the market structure. Treating the
lifts reported in Table 3 as measures of pair-wise similarity/
proximity, we apply non-metric MDS to produce a two-
dimensional product-positioning map using the Kruskal (1964)
method. Fig. 6 depicts the resulting configuration (stress:
0.201) where each “x” represents a car. We will discuss seg-
ment sizes and ideal positions (circles) in the Empirical Validation
section.

In the map, full-size sedans cluster near the bottom left
quadrant, midsize sedans occupy the center, and compact
sedans are located in the top right quadrant. Furthermore, the
bottom right quadrant represents a niche market of sedans with
all-wheel drive and outdoor capabilities. To see the “big
picture” revealed in Fig. 6, one can interpret the lower left-
upper right diagonal direction as a combination of “vehicle
size” and “fuel economy,” with the upper right direction
representing smaller cars with better fuel economy. The upper
left–lower right diagonal direction can be labeled as “perfor-
mance in complicated terrains,” with the lower right direction
representing cars with higher performance off-road and in
snow.
Robustness

The analysis above provides some evidence that our method
can infer co-considerations even though there is no unique
individual identifier in our data. The method works because in
our empirical context the lack of individual identifiers is
compensated by the spatiotemporal information – we used the
most granular data available to us as the basis of our analysis –
OPQRs at five-minute intervals at Zip code level.



Table 3
Lift at vehicle-model level for all pairs of top 23 sedans in the United States from 2009 to 2011.

Impala 4.74 3.82 1.29 2.85 1.74 2.27 2.24 1.39 2.80 1.70 2.87 3.20 1.77 .70 .81 1.55 2.56 2.65 1.65 1.04 1.08 1.61
Malibu 3.00 1.76 3.19 2.31 3.29 3.28 2.07 4.18 2.31 3.70 2.82 2.82 .97 1.18 2.17 1.93 3.37 2.43 1.55 1.60 1.93

Chrysler 300 .93 2.68 1.46 1.99 2.07 1.35 2.83 2.62 2.43 4.07 1.15 .83 1.28 2.49 3.77 2.24 1.22 .90 1.25 2.13
Focus 1.67 2.48 1.59 3.87 3.59 3.94 3.85 1.95 1.10 3.65 .71 2.00 3.73 .68 1.37 2.75 1.21 1.80 1.46

Accord 3.48 3.36 3.39 2.33 5.71 2.54 4.61 3.99 2.58 1.07 1.27 4.24 3.22 4.81 2.98 1.50 1.83 3.05
Civic 1.99 1.87 4.37 3.38 4.25 2.86 2.12 4.63 1.08 2.33 1.74 1.42 2.67 5.44 2.93 2.42 1.47

Sonata 4.78 1.90 5.45 1.90 3.48 2.05 2.10 .97 1.12 4.49 1.99 3.39 2.14 1.67 1.51 2.22
Optima 2.16 8.73 2.64 3.95 2.47 2.30 .99 1.44 9.32 1.65 2.99 2.06 1.42 1.66 2.78

Mazda 3 14.98 7.26 2.67 2.03 5.46 1.35 4.63 2.50 1.24 1.91 5.23 2.10 3.19 1.65
Mazda 6 6.10 6.68 4.75 3.60 1.27 2.30 13.35 2.83 5.32 3.28 1.54 3.28 6.12

Lancer 2.95 2.57 6.84 1.39 9.26 3.28 1.68 2.14 5.07 1.38 3.69 1.86
Altima 5.12 5.00 1.08 1.56 5.24 2.55 4.54 2.81 2.13 2.04 2.87

Maxima 3.53 1.08 1.49 3.79 5.77 3.61 2.00 1.05 1.62 4.12
Sentra 1.14 2.72 2.02 2.11 2.63 6.62 1.66 2.67 1.47

Forester 5.99 5.80 .81 1.05 1.09 1.04 1.46 1.75
Impreza 8.05 .94 1.20 1.95 1.43 2.45 1.85

Legacy 1.53 4.53 1.65 1.11 2.76 4.12
Avalon 4.80 2.30 1.94 1.30 2.53

Camry 4.09 2.63 1.89 2.52
Corolla 2.49 2.62 1.70

Prius 1.94 1.62
Jetta 20.46

Passat
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Table 4
Top 20 sedan pairs with the highest lifts.

Car 1 Size Car 2 Size Match Lift

Brand Size

VW Passat Midsize VW Jetta Compact √ 20.46
Mazda6 Midsize Mazda3 Compact √ 14.98
Subaru Legacy Midsize Mazda6 Midsize √ 13.35
Subaru Legacy Midsize Kia Optima Midsize √ 9.32
Mitsubishi Lancer Compact Subaru Impreza Compact √ 9.26
Mazda6 Midsize Kia Optima Midsize √ 8.73
Subaru Legacy Midsize Subaru Impreza Compact √ 8.05
Mitsubishi Lancer Compact Mazda3 Compact √ 7.26
Mitsubishi Lancer Compact Nissan Sentra Compact √ 6.84
Mazda6 Midsize Nissan Altima Midsize √ 6.68
Nissan Sentra Compact Toyota Corolla Compact √ 6.62
VW Passat Midsize Mazda6 Midsize √ 6.12
Mitsubishi Lancer Compact Mazda6 Midsize 6.10
Subaru Impreza Compact Subaru Forester Full-size √ 5.99
Subaru Legacy Midsize Subaru Forester Full-size √ 5.80
Toyota Avalon Full-size Nissan Maxima Full-size √ 5.77
Mazda6 Midsize Honda Accord Midsize √ 5.71
Mazda6 Midsize Hyundai Sonata Midsize √ 5.45
Nissan Sentra Compact Mazda3 Compact √ 5.46
Toyota Corolla Compact Honda Civic Compact √ 5.44
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To examine the robustness of our method and provide
evidence that granularity of the spatiotemporal information
is essential in inferring co-considerations, we set out to
investigate the boundary conditions by expanding the spatio-
temporal horizon to suppress granularity. Specifically, we
conducted the following robustness checks.

1. We set the geographic granularity to Zip code, Designated
Market Area (DMA, as defined by Nielsen Corporation) or
state level.

2. We set the time interval for co-occurrence to be 5, 10, 20,
30, or 60 minutes.
Fig. 6. Vehicle model level product positioning based on co-consideration
measures and the relative position of segment ideal points.
This results in 15 sets of lifts, the Pearson correlation matrix
of which is reported in Table 5. The results suggest that lift is
very sensitive to changes in the level of geographic aggrega-
tion, from Zip code to DMA or state. It is, however, not
sensitive to the selection of time intervals up to 60 minutes.
This is likely because within each Zip code, OPQR data are
relatively sparse over time. Therefore, changing the length of
time interval has a relatively small effect on co-occurrence
counts.

Piecing all the evidence together – the resemblance of our
brand-level positioning map to that of Netzer et al. (2012),
the consistency between industry conventional wisdom and
the patterns of the vehicle pairs with the highest lifts, the
interpretability of brand-level and vehicle-model-level position-
ing maps, and the robustness of the results – provides multi-facet
validations for the use of lifts as proxies of co-consideration
intensity. In the next section, we provide further evidence that lift
measures in fact capture the underlying competitive structure of
the U.S. auto market.

Empirical Validation

Sales Response Model

We embed the product-positioning configuration of Fig. 6 in
a sales response model. Following the literature on random
utility theory and ideal-point models (MacKay, Easley, and
Zinnes 1995), we formulate the utility a consumer derives
from purchasing a vehicle as a function of marketing activities
(e.g., advertising, incentives), vehicle characteristics (e.g., price
and features), and the proximity between the consumer's ideal
point and the perceived location of the vehicle in a two-
dimensional preference space (Elrod 1991; Grover and Dillon
1985).We assume the consumer incurs a disutility from preference
mismatch, which is the square of the Euclidean distance between
the coordinates of consumer k's ideal point, sk (k = 1… K), and the
coordinates of vehicle j's location, rj ( j = 1… J) (Cooper and
Inoue 1996). The utility consumer k derives from purchasing
vehicle j during time period t is given by

ukjt ¼ ρk xkjtβ
� �

−δk r j−sk
�� ��� �2 þ εkjt ð4Þ

where xkjt is a vector of themarketing activities andβ is a vector of
their effects. ρk and δk are positive scaling parameters, the ratio of
which accounts for the relative sensitivity of consumer k to
marketing activities versus preference mismatch. εkjt is an
independent and identically distributed extreme value I random
disturbance. We derive vehicle positions rj based on OPQR
co-occurrences and estimate the ideal points sk.

Instead of estimating Eq. (4) at the individual level, we
aggregate it to the regional-level, resulting in a heterogeneous
aggregate logit model similar to Besanko, Dube, and Gupta
(2003). More specifically, we assume there are I segments to
which a consumer may belong. All consumers belonging to the
same segment i (i = 1… I) share parameters ρi, δi and ideal
point si. In addition, within the same region d, all consumers



Table 5
Correlations between lift metrics calculated at various geographic spans and time intervals.

Geo. Time interval
(minutes)

Zip code DMA State

5 10 20 30 60 5 10 20 30 60 5 10 20 30 60

Zip code 5 1.00 .98 .97 .91 .06 .03 .01 .00 −.01 .02 .01 .01 .01 .01
10 1.00 .99 .98 .94 .06 .03 .01 .00 −.01 .01 .01 .00 .00 .00
20 .98 .99 1.00 .97 .07 .04 .02 .01 .00 .01 .01 .00 .00 .00
30 .97 .98 1.00 .98 .09 .06 .04 .03 .02 .02 .02 .01 .01 .01
60 .91 .94 .97 .98 .15 .12 .10 .09 .07 .07 .06 .06 .06 .06

DMA 5 .06 .06 .07 .09 .15 1.00 1.00 1.00 .99 .93 .93 .93 .93 .93
10 .03 .03 .04 .06 .12 1.00 1.00 1.00 1.00 .93 .93 .93 .93 .93
20 .01 .01 .02 .04 .10 1.00 1.00 1.00 1.00 .93 .93 .93 .93 .93
30 .00 .00 .01 .03 .09 1.00 1.00 1.00 1.00 .93 .93 .93 .93 .93
60 −.01 −.01 .00 .02 .07 .99 1.00 1.00 1.00 .93 .93 .93 .93 .93

State 5 .02 .01 .01 .02 .07 .93 .93 .93 .93 .93 1.00 1.00 1.00 1.00
10 .01 .01 .01 .02 .06 .93 .93 .93 .93 .93 1.00 1.00 1.00 1.00
20 .01 .00 .00 .01 .06 .93 .93 .93 .93 .93 1.00 1.00 1.00 1.00
30 .01 .00 .00 .01 .06 .93 .93 .93 .93 .93 1.00 1.00 1.00 1.00
60 .01 .00 .00 .01 .06 .93 .93 .93 .93 .93 1.00 1.00 1.00 1.00
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receive the same treatment of marketing activities xdjt. As a
result, Eq. (4) becomes4

uidjt ¼ ρi xdjtβ
� �

−δi r j−si
�� ��� �2 þ εkjt ð5Þ

Thus, the probability that consumers of segment i buy
product j is

pidjt ¼
exp ρi xdjtβ

� �
−δi r j−si

�� ��� �2� 	

∑ J
j¼1 exp ρi xdjtβ

� �
−δi r j−si

�� ��� �2� 	 ð6Þ

Following the extensive literatures on latent variable models
(e.g., Dillon and Mulani 1989; Kamakura and Russell 1989),
we use λid to represent the probability of finding a consumer
belonging to segment i in region d, and λid must fulfill the
condition ∑i = 1

I λid = 1 ∀ d. The unconditional probability of
product j being chosen by a consumer from region d during
time period t is therefore

pdjt ¼
XI

i¼1

λidpidjt ð7Þ

We observe the market share of vehicle j in region d during
time period t, ydjt. Given the choice probability defined in Eq.
(6), the log-likelihood function is defined as

LL y x; r;β; s; λ; ρ; δjð Þ ¼
X
t

X
j

X
d

ydjt log pdjt
� 	

ð8Þ
4 An alternative to Eq. (5) is to relax the assumption that the effects of
marketing activities are pooled and allow β to vary by segment resulting in the
following utility function

uidjt ¼ xdjtβi−δ r j−si
�� ��� �2 þ εidjt

We have estimated both models and the substantive findings remain robust. In
the rest of the paper, we present the results of the model with pooled β (Eq. (5)),
which performs better in goodness-of-fit.
We use the EM algorithm to maximize the log-likelihood
defined in Eq. (8), yielding estimates for the model parameters:
the pooled effect of marketing activities β, segment specific
ideal-point locations si, the relative weights of market activities
ρi vs. proximity to ideal point δi, and segment sizes in each
region λid.

We can identify the model because the data have temporal
and geographic variations. The parameters β and ρi are ide-
ntified through the spatiotemporal co-variations in market share
(ydjt) and marketing activities (xdjt). The residual variations in
market share not captured by marketing activities are captured
through −δi(| rj − si |)

2 + εkjt, which identifies the segment-
specific ideal points.

Data

In the empirical analysis, we focus on the 23 sedans in
Table 2, which account for 80% of the total sedan sales in the
U.S. For each of the 23 cars in each DMA, we compiled
historical monthly sales data. The data spans 41 periods from
January 2009 to May 2012 and covers the top 50 DMAs, which
account for 62% of sales and 75% of advertising spending in
the U.S. auto industry. To control for marketing-related effects,
we use five variables:

• Advertisement spending, available at monthly DMA level
for each vehicle.

• Total incentive expenditure per vehicle, including all promo-
tional expenditures such as cash back to the consumers, costs
of offers for financing the cars at promotional APRs, and trade
promotions paid to the dealers, available monthly at the region
level, where the U.S. is divided into five regions: East,
Southeast, Great Lakes, Central, and West.

• Three features of the vehicles, manufacturer suggested retail
price (MSRP), fuel economy (miles per gallon or MPG),
and power (horse power), which have been shown to be
prominent in driving auto sales in the U.S. (Du, Hu, and
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Damangir 2015). The features vary by year and are constant
across all geographic areas.

All the data at lower frequency and granularity are mapped
to monthly DMA level. As shown in Table 6, across DMAs,
time, and different vehicle models, there are large variations in
sales and marketing activities. Product features are comparably
stable, as they vary by vehicle, but change slowly over time.

Benchmarks

A key innovation of our sales response model lies in that we
augment the sales and marketing data with a product
positioning map (Fig. 6) generated from the patterns of
co-considerations inferred from the co-occurrences of hundreds
of millions of OPQRs without the benefit of any unique
individual identifiers. To evaluate how well the proposed
product-positioning map captures the underlying market
structure, we compare the performance of our model to two
benchmark models using alternative product positioning maps.
Comparing the goodness-of-fit performance of these models
should provide further evidence regarding the validity of using
OPQR co-occurrences as proxies for product co-considerations.

The first benchmark model uses vehicle features to create a
product-positioning map (“feature-based map” hereafter). Fol-
lowing previous research (e.g., Du, Hu, and Damangir 2015),
we focus on four prominent features: brand, fuel economy,
price, and power, using data collected from Edmunds.com. In
order to create a similarity measure from the combination of
categorical and continuous vehicle features, we first categorize
the continuous features into quartiles. For example, if the price
of a car falls into the first, second, third, and fourth quartiles of
the distribution, the price value is transformed to a categorical
variable with four possible nominal values. The transformed
features along with brand give us four categorical dimensions.
Then, we measure similarities between the cars using simple
matching coefficient: the total number of dimensions with
matching categorical attributes divided by the number of
attributes (we have four attributes here). Finally, we apply
non-metric MDS to these measures to generate the feature-based
map.

The second benchmark model uses a product-positioning map
that is based on the similarity in market share variations
(“share-based map” hereafter). We measure similarity using the
correlation between the market shares of pairs of cars over time
and across DMAs. The rationale for this approach is that higher
Table 6
Descriptive statistics of the data.

Variable (unit) Data frequency Geographic granularity

Sales (units) Monthly DMA
Ad spend ($) Monthly DMA
Incentives ($ per car) Monthly Region
MSRP ($) Yearly National
Fuel economy (MPG) Yearly National
Power (horse power) Yearly National
correlation in demand is driven by similarity of preferences
across DMAs and over time. For example, consumers in San
Francisco Bay Area tend to purchase a higher share of
environment-friendly cars. Consumers in suburban environments
may prefer more powerful and larger cars. As a result, a high
correlation in market shares across regions conveys similarity
between a pair of vehicles. Moreover, the seasonal purchase
patterns of consumers with similar preferences are more likely to
coincide. For example, college graduates usually purchase new
cars in the summer before the start of a new job. Such behavior
gives rise to similar seasonality for similar products. Again, we
use non-metricMDS to transformmarket share correlations into a
two-dimensional product-positioning map. We expect this
benchmark model to be difficult to outperform because it enjoys
an “unfair” advantage by using patterns of correlations in market
share as an input to a model for predicting market.

Results

We create three sets of data by augmenting the sales and
marketing data with the alternative product-positioning maps
generated from co-consideration patterns, feature similarity,
and market-share variation similarity. To examine the robust-
ness of the results we perform the analysis using 25 and 50 top
DMAs. At the same time, we systematically vary the number of
latent segments from two to five. Table 7 reports the
performance of the resulting 24 models (3 product positioning
maps × 2 DMA counts × 4 latent segment counts).

The main takeaway from Table 7 is that the proposed model,
using the OPQR-based product-positioning map, outperforms the
benchmark models using either feature-based or share-based
product-positioning map. As we increase the number of latent
segments, the performance improves. Regardless of the number
of DMAs included, the best performingmodel is the one with five
latent segments. For all the cases with more than two segments,
we find that the proposed model performs better than the
alternatives, suggesting our proposed map best captures the
underlying competitive relationships among the 23 sedans
included in our analysis. This finding provides further evidence
for the validity of our probabilistic approach to inferring
co-considerations from OPQR co-occurrences. We attribute the
superior performance of the proposed product-positioning map to
its consumer centric nature, which allows it to better capture
nuances in the underlying market structure elusive to the
product-centric alternatives. For example, Chevrolet Malibu and
Subaru Legacy have high similarity in features (Malibu is slightly
Min Max Mean Standard deviation

0 5,525 127.8 236.9
0 2,374,329 57,970 125,923
0 10,990 2,983 1,898

15,043 31,220 20,500 4726
20.5 49.5 27.1 5.4
132.0 292.0 182.5 45.0

http://Edmunds.com


Table 8
Parameters estimates.

Parameters Segments

1 2 3 4 5

s1 (ideal-point dimension 1) −.88 .57 1.51 1.25 −1.41
±.03 ±.18 ±.19 ±.08 ±.18
(.05) (.36) (.37) (.16) (.34)

s2 (ideal-point dimension 2) .03 1.26 .48 −1.47 .24
±.03 ±.02 ±.14 ±.09 ±.20
(.05) (.03) (.28) (.17) (.38)

ρ (marketing) .72 .62 1.00 .80 1.90
±.31 ±.23 .00 ±.24 ±.21
(.60) (.44) (.00) (.48) (.41)

δ (proximity to ideal point) 2.43 3.61 2.65 2.04 1.71
±.18 ±.21 ±.23 ±.25 ±.46
(.35) (.41) (.45) (.48) (.90)

Parameters common across all segments

βad .07
±.04
(.08)

βincentive .10
±.19
(.37)

βMSRP −.02
±.15
(.28)

βMPG .73
±.14
(.28)

βpower .23
±.06
(.13)

Notes: For each parameter, the reported estimates are the mean, margin of error,
and standard error, respectively.

Table 7
Performance of alternative models with different number of markets and
segments.

DMAs Segments Product positioning map from

Co-considerations Feature Share

25 2 138,979 (BIC) 138,853 138,639
.0149 (MAE) .0151 .0136
61% (MAPE) 61% 65%

3 133,543 138,547 134,539
.0052 .0145 .0096
16% 59% 34%

4 133,408 137,968 134,435
.0046 .0138 .0088
14% 55% 31%

5 132,795 137,929 133,477
.0025 .0129 .0071
12% 54% 27%

50 2 279,199 (BIC) 278,606 279,006
.0155 (MAE) .0154 .0140
62% (MAPE) 61% 67%

3 267,905 279,324 270,463
.0055 .0162 .0104
17% 61% 36%

4 267,562 276,425 268,891
.0045 .0132 .0072
14% 52% 24%

5 266,462 276,590 267,812
.0026 .0129 .0070
12% 52% 26%

Note: In each cell, the reported figures are BIC, mean absolute error, and mean
absolute percentage error respectively. Bold fonts indicate the best performance
in each block.
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more fuel-efficient), and are at the 31st percentile on market share
correlation. As a result, Malibu and Legacy are close to each
other on both the feature- and share-based maps. However, they
clearly occupy distinct perceptive positions and target distinct
segments of consumers, a fact that has not eluded our proposed
map.

We report the results of the best performing model with 50 top
DMAs in Table 8, which summarizes the estimated parameters in
Eq. (5): the ideal point for each segment si, the relative importance
of marketing activities to proximity to ideal point for each segment
ρi and δi, and β, the average overall responsiveness to ad-
vertisements, incentive expenditures, and features. Except for the
element corresponding to MSRP and incentives, the estimated
elements of β are positive and significant. The first three sets of
parameters (si, ρi, and δi) are better interpreted along with the
segment results visually in Fig. 6, which provides a complete
picture of the overall market structure. We overlay the estimated
segment ideal points (circles) on top of the product-positioning
map inferred from the patterns of OPQR co-occurrences. The
radius of each circle is proportional to the size of each segment
aggregated to the national level. In addition to ad spending,
incentives, MSRP, fuel economy, and power, the proximity be-
tween the segment ideal point and a product's position determines
the probability of choice.

In addition, the estimated segment sizes λid in Table 9
demonstrate sizable heterogeneity across DMAs. To better
represent the segment size estimates, we visualize the segment
sizes for a few large DMAs on a map (Fig. 7).

To calculate the probability of each segment buying a
particular car, we aggregate the probabilities from Eq. (6)
across DMAs and over time. The resulting choice probabilities
(Table 10) help us quantitatively interpret the graphical
representation of the market structure illustrated in Fig. 6.

Segment 1, the largest segment and perhaps not surprisingly,
is close to the market leaders in this class, Honda Accord and
Toyota Camry. The probability for a consumer in the segment
to buy these automobiles (p hereafter) is 26%. To a lesser
extent, this segment prefers other mainstream midsize and
full-size sedans such as Nissan Altima (p = 14%), Hyundai



Table 9
Estimated share of segment in each DMA.

DMA Segment DMA Segment

1 2 3 4 5 1 2 3 4 5

New York .55 .22 .09 .13 .00 Sacramento .44 .28 .15 .12 .00
Los Angeles .44 .27 .20 .08 .00 San Antonio .47 .27 .18 .05 .03
Chicago .30 .26 .11 .11 .21 Charlotte .51 .26 .08 .07 .09
Philadelphia .43 .24 .12 .14 .08 Raleigh/Durham .49 .26 .13 .07 .04
Detroit .00 .34 .04 .07 .55 Indianapolis .19 .23 .11 .08 .39

Dallas .50 .26 .11 .08 .04 Portland .30 .20 .23 .24 .03
Boston .44 .27 .11 .18 .00 Cincinnati .29 .28 .12 .09 .23
Houston .51 .28 .09 .08 .04 Buffalo .11 .25 .06 .13 .45
Washington DC .42 .27 .14 .12 .04 Kansas City .30 .27 .12 .08 .23
Miami .51 .31 .08 .10 .00 Milwaukee .26 .28 .09 .15 .21

SF Bay Area .35 .27 .27 .12 .00 Columbus .35 .29 .08 .10 .18
Atlanta .53 .27 .09 .06 .04 Austin .43 .21 .21 .09 .06
Tampa .40 .26 .11 .06 .15 Nashville .52 .26 .11 .05 .07
Cleveland .29 .28 .08 .11 .23 Salt Lake City .31 .19 .16 .21 .12
Phoenix .36 .25 .18 .08 .13 Albany .35 .25 .10 .20 .10

Minneapolis .27 .25 .12 .13 .23 Harrisburg .29 .31 .12 .15 .14
Orlando .44 .27 .13 .06 .09 Las Vegas .50 .28 .11 .09 .02
Seattle .24 .20 .23 .27 .06 Oklahoma City .42 .25 .10 .06 .17
Pittsburgh .19 .22 .07 .22 .29 New Orleans .65 .25 .07 .03 .00
Denver .24 .18 .15 .33 .09 Norfolk .43 .28 .12 .09 .08

Baltimore .41 .25 .13 .11 .10 Greenville/Asheville .51 .26 .10 .10 .03
St. Louis .26 .24 .12 .08 .30 Jacksonville .53 .29 .09 .06 .03
San Diego .37 .30 .22 .10 .00 Wilkes Barre .25 .28 .08 .23 .16
West Palm Beach .52 .22 .12 .08 .06 Birmingham .63 .24 .06 .04 .02
Hartford/New Haven .41 .21 .11 .23 .03 Providence .48 .26 .09 .14 .04

Notes: The total segment size for each DMA is normalized to 1.
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Sonata (p = 11%), Chevrolet Malibu (p = 6%), and Nissan
Maxima (p = 6%). Segment 1 is present in all major markets in
the United States, but it is even more prominent in Southeast
and Northeast.

Consumers in Segment 2 have a strong preference for
compact sedans: Honda Civic (p = 35%), Toyota Corolla
(p = 33%), and Ford Focus (p = 18%), and Nissan Sentra
(p = 9%). As it is evident in Table 8, this segment is popular in
Fig. 7. Distributions of segment sizes in selected DMAs. Notes: From left to
right, the five bars in each DMA represent segments 1, 2, 3, 4, and 5
respectively.
most of the United States with a share of 20% to 30% in most of
the markets.

Segment 3 represents the customers who prefer fuel-efficient
sedans: Toyota Prius (p = 41%), Mazda 3 (p = 29%), and
Honda Civic (p = 12%). This segment tends to be larger in the
West Coast than in the South and East Coast.

Consumers in Segment 4 are more likely to buy VW Jetta
(p = 40%), Subaru Forester (p = 24%), Subaru Impreza (p =
16%), VW Passat (p = 10%), and Subaru Legacy (p = 8%).
These consumers prefer sporty and powerful cars with outdoor
capabilities. This segment constitutes a relatively small
percentage of the market in most of the country. The exceptions
are Denver, Seattle, and Portland, the mountainous DMAs
where outdoor capabilities become more desirable.

The smallest segment, Segment 5, is similar to Segment 1, but
is less interested in Japanese cars. This segment is primarily
interested in Hyundai Sonata (p = 58%), Chevrolet Malibu
(p = 36%), Chevrolet Impala (p = 11%), Honda Accord
(p = 11%), and Toyota Camry (p = 11%). This segment is small
in most of the country, except in the areas close to the headquarters
of domestic U.S. automakers. At its peak in the DMA that includes
Detroit, this segment is the largest and covers 55% of the market.

Taken together, all the above empirical evidence suggests that
our approach to inferring market structure from OPQRs has
strong face and predictive validity. Such an approach can offer



Table 10
The probabilities of vehicle choices for each segment.

Cars Segments

1 2 3 4 5

Chevrolet Impala .02 .00 .00 .00 .13
Chevrolet Malibu .06 .00 .00 .00 .20
Chrysler 300 .01 .00 .00 .00 .02
Ford Focus .00 .18 .00 .00 .00
Honda Accord .26 .00 .00 .00 .13

Honda Civic .00 .35 .12 .00 .00
Hyundai Sonata .11 .00 .00 .00 .22
Kia Optima .04 .00 .00 .00 .06
Mazda 3 .00 .01 .29 .00 .00
Mazda 6 .03 .00 .00 .00 .01

Mitsubishi Lancer .00 .00 .05 .02 .00
Nissan Altima .14 .00 .00 .00 .05
Nissan Maxima .06 .00 .00 .00 .02
Nissan Sentra .00 .09 .05 .00 .00
Subaru Forester .00 .00 .00 .24 .00

Subaru Impreza .00 .00 .01 .16 .00
Subaru Legacy .00 .00 .00 .08 .00
Toyota Avalon .01 .00 .00 .00 .01
Toyota Camry .26 .00 .00 .00 .13
Toyota Corolla .00 .33 .01 .00 .00

Toyota Prius .00 .03 .41 .00 .00
VW Jetta .00 .00 .05 .40 .00
VW Passat .00 .00 .00 .10 .00

Notes: the sum of each column (segment) is 1.
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managers several advantages. First, by embedding the product-
positioning map in a sales response model, we discovered five
segments in the U.S. auto market. The sizes of these segments
vary across DMAs, enabling automakers to customize strategies
according to regional market conditions. Second, because our
approach does not require human interference to pre-define
competitive sets, it allows firms to discover previously unknown
patterns of competition and cannibalization. Third, our approach
can be carried out on an ongoing basis; as new data arrives, the
product-positioning map can be updated in real time.

Concluding Remarks

In this research, we use a case study to demonstrate how one
can leverage the spatiotemporal granularity and massive scale
of online consumer activity data for affinity analysis, even
without a unique individual identifier. We use multiple
approaches to investigate the validity of our results and find
consistent evidence that the granularity of the data (at
five-minute interval and by Zip code) makes it possible to
infer patterns of vehicle co-considerations from the patterns of
OPQR co-occurrences. The similarities between the resulting
brand level product-positioning map and the map reported by
Netzer et al. (2012), along with the fact that our vehicle model
level map outperforms the feature- or shared-based map in a
sale response model, suggest spatiotemporal patterns embedded
in the data contain genuine information about the underlying
competitive relationships among the vehicles. Furthermore, our
proposed map appears to be particularly useful for understand-
ing products that are similar in both features and market shares
(thus indiscernible on either a feature- or share-based map).

Sharing consumer activity data from multiple sources (e.g.,
different websites or organizations) can make the combined data
much more useful (de Montjoye et al. 2015; Lazer et al. 2014).
Doing so, however, typically requires unique individual identi-
fiers that can tie records from different sources together, raising
privacy concerns due to the possibility of re-identification (de
Montjoye et al. 2015; Li and Sarkar 2011, 2014; Menon, Sarkar,
and Mukherjee 2005). Our case study illustrates that consumer
activity data that does not contain any unique individual identifier
may still be leveraged for affinity analysis, with minimum
privacy concerns about sharing information across sources.

More broadly, our research demonstrates that creative use of
not-so-perfect but massive online consumer activity data can be
rewarding. Some academic and industry experts have argued for
a shift in perspective when working with big data (e.g., Einav and
Levin 2014; Mayer-Schönberger and Cukier 2013), given the
intrinsic differences between big data and traditional data. In the
past, researchers were used to working with data with relatively
few high-quality observations gathered using carefully designed
measurement instruments. Nowadays, with wide adoptions of
sophisticated information systems, big data common in busi-
nesses are results of automatic data collections not optimized for
high quality measurements. As technological advances have
removed many of the barriers for analyzing as much data as we
wish (Varian 2013), the challenge lies in that these data are often
collected without specific research purposes and with reduced
measurement quality, making them not so ideal for conventional
analyses. They can be messy and missing what is deemed as a
crucial piece of information (Mayer-Schönberger and Cukier
2013). On the other hand, they are massive in size and tend to be
very granular. The hope is that the richness and size of the data
allow certain real signals to emerge from the noisy and messy
data (Fan, Han, and Liu 2014). In our case, as an example of
embracing this shift in perspective, we take advantage of the
granular spatiotemporal information to compensate for the lack of
unique individual identifiers. Our empirical results show that we
can have a valid measurement despite the deficiencies of the data,
as long as we use proper procedures to establish validity of the
measurement.

Rather than making a broad claim on the generalizability of
our approach, we acknowledge that limitations exist. For
example, in a different empirical context there is no guarantee
that one can infer co-considerations by leveraging spatiotem-
poral information like we did in our empirical context. As our
robustness analysis indicates, our approach relies on data
granularity and relative sparsity. In cases where unrelated
events co-occur with a higher density and/or raw records are
aggregated to a longer time span or over a larger area, random
co-occurrences can become dominant enough to prevent the
reliable detection of genuine co-consideration signals. Thus, the
applicability of our approach in other empirical contexts should
be examined on a case-by-case basis.
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For future research, we see several directions to extend our
study. First, we use a static product-positioning map created
from inferred co-considerations. One can imagine that as the
market evolves, competition can shift as well. Although we do
not expect competition to change every day, it is certainly
possible to extend the current approach to create a dynamic
product-positioning map using methods such as dynamic MDS.
As a result, managers can receive frequent updates on the
competitive landscape. Second, we focused on one auto body
type — sedans. A straightforward extension is to examine all
body types. Such a study shall help discover cross-class
competitions (e.g., between a sedan and an SUV) that may exist
in the auto industry. Third, the location information in our data
makes it possible to extend the research scope to study
contagions in co-considerations. When people in one location
start to co-consider a pair of products with higher frequency,
it is conceivable that through various social contacts and
observations, people in neighboring locations may increasingly
co-consider the same pair as well. Different from contagion of
individual products, contagion of co-considerations, if exists,
would suggest competitions can spread through multiple
markets following a similar diffusion process. Finally, OPQRs
happen at the lower purchase funnel. Although they are closer
to the final purchases and may be more accurate in predicting
actual purchases, they tend to cover a consideration set that has
narrowed down considerably from the upper purchase funnel.
At this stage, firms have fewer levers to influence consumer
choices. If one can combine this data with upper funnel
co-consideration activities, one should be able to identify
competitive relationships at different stages of the purchase
funnel.
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