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Abstract
Purpose - The purpose of this article is to estimate value at risk (VaR) using quantile regression and

provide a risk analysis for defaultable bond portfolios,

Design/methodology/approach ~ The method proposed is based on quantile regression pioneered
by Koenker and Bassett, The quantile regression approach allows for a general treatment on the error
distribution and is robust to distributions with heavy tails.

Findings — This article provides a risk analysis for defaultable bond portfolios using quantile
regression method. In the proposed model we use information variables such as short-term interest
rates and term spreads as covariates to improve the estimation accuracy. The study also finds that
confidence intervals constructed around the estimated VaRs can be very wide under volatile market
conditions, making the estimated VaRs less reliable when their accurate measurement is most needed,
Originality/value - Provides a risk analysis for defaultable bond using quantile regression
approach.

Keywords Risk analysis, Bonds, Autogressive processes

Paper type Research paper

1. Introduction

A corporate institution faces many types of risks, These risks affect its financial well
being on a regular basis. In the extreme case, as a result of its exposure to such risks,
the institution may not be able to survive as a going concern. In addition to the
business risks that are specific to its market environment, a firm faces market risk and
credit risk. Market risk arises from adverse movements in prices of financial assets
such as equity, and market rates such as interest rates and exchange rates. Credit risk
is the risk of loss arising from the failure of a counter-party to make a promised
payments. Market risk and credit risk are not only intrinsically related to each other,
but also nonseparable (Jarrow and Turnbull, 2000). In this paper we provide a
regression quantile method to estimate the value-at-risk (VaR), and apply the model to
returns data on portfolios of treasury securities and rated, defaultable corporate bonds,
thus capturing the dynamics of market risk and credit risk[1].

An earlier version of this research was presented at the International Symposium on Financial
Engineering and Risk Management, July 5-6, 2006, at Xiamen University, Fujian, China. The
authors would like to thank Brian Boyer for excellent research assistance, Roger Koenker, Peter
Phillips, and seminar participants for helpful discussions. The authors are responsible for any
remaining errors. :




" VaR has become a popular tool in the measurement and management of market Defaultable bond

risks (see Beder, 1995; Duffie and Pan, 1997, Dowd, 1998; Saunders, 1999) for reviews of
literature on VaRs). It is viewed as the best measurement for market risk (Group of
Thirty, 1993). Specifically, VaR is the loss in market value that is exceeded with a
certain probability over a given time horizon, such a probability is often set at 1 or 5
percent. In requiring all US publicly traded corporations to report their quantitative
market risk exposures, the Securities and Exchange Commission (SEC) (1997) lists VaR
as-a disclosure method “expressing the potential loss in future earnings, fair values, or
cash flows from market movements over a selected period of time and with a selected
likelihood of occurrence.” VaR disclosure communicates a single dollar amount for a
public company’s aggregate risk exposures, allowing for leverage, diversification of a
variety of risk factors that affect the company’s trading portfolios. Reporting VaR also
forces companies to develop a systematic approach for risk measurement,

Given the importance of VaR in reporting market risk and its prominence in risk
measurement and risk management, it is not surprising that its estimation has
attracted much attention from researchers, One popular approach to estimate VaR
assumes a conditionally normal stock return distribution. The estimation of VaR is
equivalent to estimating conditional volatility of returns[2]. Another popular method is
to compute the empirical quantile nonparametrically, for example, rolling historical
quantiles or Monte Carlo simulations based on an estimated model[3].

However, these models are based on some restricted assumptions, stich as normal,
about the distributions of stock returns. There has been accumulated evidence that
portfolio returns (or log returns) are usually not normally distributed. In particular, it is
frequently found that market returns display structural shifts, negative skewness and
excess kurtosis in the distribution of the time series. These market return characteristics
suggest that more robust method in estimating VaR is needed. In this paper, we estimate
VaR using a robust method based on quantile regressions, The quantile regression
method is an extension of the empirical quantile methods, While classical linear
regression methods based on minimizing sums of squared residuals enable one to
estimate models for conditional mean functions, quantile regression methods offer a
mechanism for estimating models for the conditional quantile functions, thus quantile
regression is capable of providing a complete statistical analysis of the stochastic
relationships among random variables (see Koenker and Bassett, 1978; Koenker, 1999).

In this paper, we estimate VaR via a quantile regression model that allows for
ARCH effect. VaRs estimated by this quantile regression approach display certain nice
properties: they track VaRs estimated from GARCH volatility models well during
normal market conditions, However, during a market turmoil when market drops are
followed by further drops or rebounds, GARCH volatility models tend to predict
implausibly'high VaRs. This is due to that GARCH models treat both large positive
and large negative return shocks as indicators of higher volatility, while only large
negative return shocks indicate higher value at risk. Therefore, volatility and VaRs are
not synonymous. VaRs estimated by the ARCH quantile regression model, while
predicting higher volatility in the ARCH component, assigns a much larger weight to a
big negative return shock than to a big positive return shock, The resulting estimated
VaRs are therefore closer to reality: a large drop in market return is indicative of a high
probability in both a further market drop and a market rebound.
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Other methods that allow for more general distributional assumptions include
Engle and Manganelli (1999). Engle and Manganelli (1999) consider a different quantile
regression based method, In particular, they consider an autoregression on the
estimated VaRs. Comparing with these methods, the ARCH quantile regression model
that we use in the current paper has the advantage of well-developed distributional
theory that facilitates statistical inference and construction of confidence interval, as
well as efficient computational advantages[4].

While most existing VaR estimation methods were developed for stock portfolios
and foreign exchange positions, financial institutions such as pension funds, mutual
funds, insurance companies and hedge funds generally hold large positions of treasury
securities and defaultable bonds, especially in recent years[5]. It is conceivable that
fixed income securities display different risk characteristics from that of stocks and
foreign exchanges. For example, defaultable bond returns are closely linked to the term
structure of - interest rates and the dynamics of the default premiums, Therefore,
understanding the unique features of bond VaRs not only recognizes the growing
popularity of bond market in the current financial world, but also has important
practical implication for managing risks of fixed income securities[6].

When applying our method to estimate bond portfolios, we add information in
short-term interest rates and term spreads. Most existing methods of calculating VaR
use univariate time series, ignoring information in related time series. However,
information contained in other time series can be quite helpful and ignoring this
information reduces the estimation efficiency, thus we propose a general model of
calculating VaR that takes into accounts of useful covariates.

In addition to measuring bond VaRs using quantile regressions, we also provide a
sense of accuracy to our individual VaR estimates. While current VaR estimation
methods generally do not provide a systematic approach to examine how accurate the
estimated VaRs are, a number of analysts and investors have expressed concerns to the
SEC about the accuracy of the quantitative, probabilistic information contained in firms’
VaR disclosures (Hodder et al, 2001). Therefore, evaluating the accuracy of VaR
estimates is important in VaR market risk reporting. In this study, we calculate
confidence bands of the estimated VaRs under fairly general distribution assumptions.
The results indicate that for the portfolios of treasury bonds, the estimated VaRs are
generally small and the confidence intervals are narrow. However, large estimated VaRs
and sometimes wide confidence intervals are associated with defaultable bond portfolios.

This paper makes the following contributions to research in VaR and risk
management in general. First, we propose a quantile regression model using useful
covariates in estimating VaR for defaultable bond portfolios. The model allows for
conditional heteroskedasticity. This procedure is easy to implement and the estimation
programs are available in standard statistical packages such as S-Plus, and can also be
easily written in other programming languages. Given that one criticism of using VaR
as a reporting alternative of companies’ quantitative market risk exposure is its
difficulty in estimation (see Hodder et al, 2001), the approach we propose in this paper
provides a convenient solution to estimating VaR. Second, we apply the proposed
model to defaultable bond portfolios after considering information in related time
series. In doing so, this paper illustrates the importance of using short-term interest
rates and term spreads as covariates in defaultable bond VaR estimations, These
covariates should be used in the ARCH component of the model. Lastly, we show that
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since a complete mean equation is hard to estimate with high statistical significance, Defaultable bond

keeping it as simple as an AR(l) model in returns is often sufficient. Therefore,
covariates should not be used in the mean equation.

The remainder of the paper is organized as follows. Section 2 presents a quantile
regression mode! to estimate VaR. It derives confidence bands and model specification
tests. Section 3 provides data descriptions and conducts the estimation. Empirical
results regarding estimated VaR, confidence bands and model performance are
reported ‘and discussed in section 4. Section 5 contains concluding remarks.

2. The model

2.1 Analyzihg visk by VaR

For ease of exposition, we define value-at-risk as the percentage loss in market value
over a given time horizon that is exceeded with probability 7. That is, for a time series
of returns on an asset, {R;}}..;, find VaR; such that:

Pr(R < ~VaR|Fr1) =1 Q)

where .#,_1 denotes the information set at time ¢ — 1. From this definition, it is clear
that finding a VaR essentially is the same as finding a 100t percent conditional
quantile.

A natural way of modeling a return process is to use some type of autoregressive
specification. If we consider the following regression model for the defaultable bond
returns process {&;}:

k
Ri= ap + Z Ry + 2

=1

the 100+ percent value-at-risk of R; is then determined by:

k
ap + z iR + Qu(7|F1-1) 3)
=1
where @, (71#:-1) is the p-th conditional quantile of the residual process %, More
generally, we may consider the following regression:

Ry = d'x +uy

where x; € #,.1 is the vector of regressors. Usually x; include lag values of the
dependent variable. In the case that x; = (1, Re-1, ..., Ri-t), we get model (2). To
calculate VaR, we need to model #; and calculate @, (rl] t-1)-

An important property of financial time series is the presence of conditional
heteroskedasticity, A natural way to capture this important characteristic in the
returns process (equation (3)) is to let the variance of #; depend on its lagged values. If

" we specify #, in the following way:

ur = (Yo + vil-s |+ .+ Vol )

we obtain an ARCH type mode! for defaultable bond returns process.
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2.2 Improving efficiency by adding covariates

In the context of evaluating asset prices in univariate time series, the convention is to
ignore information in related time series. Sometimes, information contained in other
time series can be quite helpful and ignoring this information may be costly. For this
reason, we consider the following general model for «, by including useful covariates in
the conditional mean and conditional heteroskedasticity specification:

Ry =a'xs+u
where
2= (L, Ry, Re-1, 21, 20t)
and
ur = (vo+ nlu-1] + o + Yolthr=g| + vatlzul + - + vaolawl Jer(21, 1 2) (@

were covariates and o > 0, (v1,*, %, ¥a1"*" ¥z0)* € R, Here we assume that the
innovations {e;} have a general distribution F{), including the normal distribution and
other commonly used distributions in financial applications with heavy tails, This is a
quite general setting that includes the popular ARCH model. Since an ARMA process
can be asymptotically represented by AR processes, with an appropriate chosen
number of lags. This model can also practically provide a good approximation for
GARCH models, and avoids the technical and computational difficulties for GARCH
models that have not yet been solved in the context of quantile regression. Our purpose
is to estimate the above models and analyze these estimates,

3. Estimation procedure
3.1 The data
The data used in this paper are composed of monthly bond index returns obtained
from Lehman Brothers. The indexes include a US Treasury index (all public
obligations of the US Treasury), as well as corporate indexes for bonds rated Aaa, Aa,
A, and Baa by Moody's investors service. These indices are further separated based on
time to maturity. The intermediate-term indices include bonds with maturities of up to
ten years and the long-term indices include those with maturities of ten years or longer.
The return is the monthiy total return as defined by Lehman Brothers, which takes into
consideration any relevant accrued interests and coupon payments. The sample period
begins in January 1973 and ends October 1998 for a total of 310 cbservations for each
series, For the defaultable bonds, we use the first log differences of the six-month T-bill
yields and the ten-year treasury note yields as covariates in the quantile regression,
Table I reports the summary statistics of the intermediate-term bond return data
and the T-bill data. We see that the means of returns increase as we move from
treasury notes to Aaa, Aa, A and Baa rated bonds, signifying increasing default
premiums, The standard deviations also increase in general, It is interesting to note
that all reported bond returns display positive skewness and moderate excess kurtosis.
There are some evidence of positive serial AR(1) correlation and negative AR(2) and
AR(3) correlation, indicating some persistence and mean reversion in monthly bond
returns. Six-month T-bill yields display negative skewness and moderate excess

. kurtosis, The autocorrelation dynamics is similar to bond returns.
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T-note Aaa Aa A Baa T-bill 1st Diff.
Mean 0.0072 00074 0.0075 0.0076 0.0082 -0.0009
Std. Dev. 0.0132 0.0158 0.0160 0.0159 0.0165 00616
Max 0.0857 0.1020 01018 0.0957 0.0937 0.1559
Min -00446 -00571 -00576 -00562 —0.0582 ~-0.3981
Skewness 0.7056 0.9342 0.7886 0.7165 04111 —0.9660
Excess Kurtosis 4,8985 74123 6.5167 5.6442 47521 55810
ACQ) 0.1706 01654 0.1736 0.1891 0.2050 0.3507
ACQ) -0,0730 -~ 00734 ~-0.0510 ~-0,0381 0.0004 ~0.0308
AC(3) 4 -0.0673 - 0.0566 -0.0443 -0.0284 —~0.0284 -0,0688
AC(9) —0.0357 -0.0519 ~0.0674 ~0.0524 -0.0108 0.0085
AC(5) 0.0808 0.1303 0.1106 0.0990 0.0935 0.0495
AC(10) 0,0801 0.0578 0.0669 0.0573 0.0434 0.0543

Notes: This table shows the summary statistics for the monthly returns of five intermediate term
bond indexes, and the log difference of the six-month T-bill yield; AC(k) denotes autocorrelation of

Defaultable bond
portfolios

171

Table 1,
Summary statistics of the
intermediate term bond

order k, The sample period is from January 1973 to October 1998 return data
Table II reports summary statistics of the long-term bond return data and the ten-year
treasury note yield data. Overall the data displays similar characteristics to the
intermediate-term data. The long-term return series are more volatile and display
excess, but mild kurtosis. The autocorrelation structures of the long-term bonds and
the ten-year T-note are similar to those of the intermediate-term bonds.
3.2 The estimation method
The idea of quantile regression provides a natural way of estimating value at risk,
Quantile regression was introduced by Koenker and Bassett (1978) and has received a
lot of aftention in econometrics and business statistical research in the past two
" decades. To introduce quantile regression we consider a random variable Y that is
characterized by its distribution function F(3), the ~th quantile of Y is defined by:
T-bond Aaa Aa A Baa 10Y 1st Diff.
Mean 0.0082 0.0079 0.0079 0.0081 0.0087 -00011
Std, Dev. 0.0302 0,0287 00278 00274 0.0286 0.0373
Max 0.1433 0.1476 0.1456 01332 0.1427 0.1390
Min -0.0798 -0.0862 —0.0886 -0.0895 -0.1029 -0.1235
Skewness 0.4624 05152 0.4339 03334 02168 -0.1548
Excess Kurtosis 1.6549 27971 2.8997 23456 3.0878 11379
AC(L 01174 01424 0.1556 0.1769 0.1980 0.3673
AC(2) -0.0352 —0.0536 -~ 0.0509 -0.0690 ~0.0370 -0.0733
AC(3) -0.1034 —-0,0681 —0.0524 -0.0531 -00392 -0.0211
AC4) ~0.0042 —0,0542 -0.0489 ~0.0232 0.0436 0.0218
*AC(5) 0.0536 0.0826 0.079% 0.0915 0.1066 0,0526
AC(10) 0.0512 0.0244 0.0356 0.0500 0.0360 0.0466 Table II

Notes: This table shows the summary statistics for the monthly returns of five long term bond Summary statistics of the
long-term bond return
data

indexes, and the log difference of the ten year treasury note yield; AC(k) denotes autocorrelation of
order k. The sample period is from January 1973 to October 1998
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Qy(7) = inf {yIF(y) = 7}

Similarly, if we have a random sample {y1,**",»} from the distribution F, the ~th
sample quantile can be defined as:

Qy(7) = int {yif*“(y) = r}

where F is the empirical distribution function of the random sample. Note that the
above sample quantile may be found by solving the following minimization problem;

min | Y 7 |y -bl+ Y, L=y - NG

beN te{ty b} te{ty;<b}

Koenker and Bassett (1978) studied the analogue of the empirical quantile function for
the linear models and generalized the concept of quantiles to the regression context.
If we consider a regression model:

n=b%+u (6)

“where x; is a & by 1 vector of regressors including an intercept term and lagged

residuals, then, conditional on the regressor x;, the -th quantile of y:
Qr(7lw) = inf {y|F (sz) = 7}

is a linear function of x; |
by + F 1 (7) + bowas ++++ + bate

where F, () is the cumulative distributional function of the residual. Koenker and
Bassett (1978) show that the p-th conditional quantile of y can be estimated by an
analogue of equation (5);

Qv (rlx) = 24b(7) @

where
b=argminl > dp-xibl+ D, (L= Dly -2 @®)
bER | tetimma by ety <z b} 4

is called as the regression quantiles. As a special case, the least absolute error estimator
is the regression median, ie. the regression quantile for 7= 0.5. The quantile
regression theory can be extended to time series models with conditional
heteroskedasticity, If we consider the following model with conditional
heteroscedasticity:

ye= v+ nly-1l+ -+ ‘)’q|yt-q| Jer
with 90 > 0, (v1,"*, %) € RY, then this is a time series with ARCH effect.
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3.3 Estimating VaR for defaultable bond portfolios

We use quantlle regression method to estimate the value at risk of bond portfolios.
Given equation (4), if we denote the vector (1, |us-1|,- " |ut q‘ 211+, 20| ) as Zyand
the corresponding coefficient vector as ¥, then:

Qu(rFr-1) = UD'Z;
where

/ 7(7)4 = (70Qe(7)a 71Q8(7)7 " Vq+er(T))

and Q.(7) = F ~}(7) is the quantile function of e. By definition, VaR, the conditional
VaR at r-percent level, is just the conditional quantile of R, in the model of equation (3)
given information to time ¢ — 1, i.e. #;—1. Thus:

k
~VaR(m) = ap + > _ oiRi-i + ¥NZ; ©)
=1

In order to estimate the conditional VaR, we need to estimate (7). In this paper, we use
quantile regression method to estimate y(7) and thus VaRy(7). In particular, the
parameters that determine the conditional heteroskedasticity, 1e (1), can be
estimated by the following problem:

Hn=agmin| Y Awm-ZoA+ Y A-Dw-Z| 0
YER* | ez eltm <2y}

In practice, we ,can replace #; and Z; by their (say, OLS) estimators
fy =Ry — Qo+ Y_j Bl + Y i1 Arvizz. Under mild regularity conditions, it can
be shown that the 9(7) estimated based but is still a (root-n) consistent estimator of

AD.

3.4 Computation and properties of the method
Quantile regression method has the important property that it is robust to
distributional assumptions. This property is inherited from the robustness property of
the ordinary sample quantiles, Quantile estimation is only influenced by the local
behavior of the conditional distribution of the response near the specified quantile. As a
result, the estimated coefficient vector #(7) is not sensitive to outlier observations. Such

~a property is especially attractive in financial applications since many financial data
such as portfolio returns (or log returns) are usually heavy tailed and thus are not
notmally distributed.

~ The quantile regression model has a linear programming representation that makes

" the estimation easy. Notice that the optimization problem (10) may be reformulated as a
linear program by introducing “slack” variables to represent the positive and negative
parts of the vector of residuals (see Koenker and Bassett, 1978, for a more detailed
discussion). Computation of the regression quantiles by standard linear programming
techniques is very efficient. It is also straightforward to impose the non-negativity
constraints on all elements of .
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3.5 Model tests: choosing the lags

An issue that arises with the implementation of the quantile regression and related
inference is the choice of lags. The distribution of the quantile regression coefficient
estimates facilitates significance tests based on #-ratios or Wald statistics. Notice that
the estimated coefficients of the lagged differences are asymptotically normally
distributed, a general-to-specific modeling strategy that chooses between a model with
q lags and a model with » = ¢ + % lags can be obtained based on a sequential test. Let
Y4+1,,(7) denote the vector of coefficients (yq+z(7), .- y,+1(73‘). We also define I'; to be
the lower-right % X % block of the covariance matrix. The Wald statistic for the null
hypothesis that the coefficients on the last k lags are jointly equal to 0 is then given by:

Jim = st (DT D) - an

N
1 -1
where I, is a consistent estimator of I. Under the null hypothesis that the coefficients
on the last & lags are zeros, ]q,k(f) converge to a chi-square distribution with % degrees
of freedom. We now consider the following procedure for choosing ¢ from a set of
possible values {0,1,2, ', ¢ max }, Where gy is an upper bound selected a prior:
starting with the most general model with ¢m. + % lags and test whether the
coefficients of the last lags are significant at given level 6. If they are, then choose
g = qmax; otherwise, we consider regresswns of order g may +# — 1 and perform the
test again. We choose g to be g  +1if at given 51gn1ﬁcance level, ] « »(7 is the first in
the sequence Ji WD =Gmax — 1,7 1) which is 51gnlﬁcant]y dlffqerent from zeros, If
Jix(7) is not signiﬁcantly different from zero for alli = gaxy — 1, °+, 1, we choose ¢ to
be 0. The above test reduces to a t test on the last lag if the test is perforrned with

k=17].

4. Empirical results

4.1 Estimated VaRs

Using the model (3) and (9) proposed in the previous section, we analyze the
intermediate-term and long-term bond indexes. For each series, we estimate the model
with various lags in the mean equation and the ARCH equation, We also use short-term
interest rates as covariates to improve the model performance. In particular, we choose
yield changes (with one period lag) in six-month T-bills and ten-year T-note as the
covariates. We choose the lag length based on the sequential #-test and report the
estimated results of the optimal model (that uses the optimal lag length). The estimated/
model parameters are reported in Tables III and IV, respectively.

We see from Table III that for the intermediate bond indexes the lntercept term ag
for all series are very stable and significant. The AR(1) coefficient e is also positive
and significant. The coefficient increases with the decline of bond ratings, indicating
that more risky bonds tend to exhibit stronger first order autocorrelation. We
experimented with different lags and found that more lags are not needed and should
be avoided. Since the conditional standard deviations of the returns on bond portfolios
are generally much smaller than those of stock returns, over-fitting the dynamics in the
mean equation may result in excessive fluctuations in the estimated VaRs. This also
explains why we only use the covariates in the ARCH equation instead of the mean
equation.
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T-note Aaa Aa A

a 0 0.0060 0.0061 0.0061 0.0062 0.0065
(2.367) (2.698) (2212) (2.885) (2.521)

a 101701 0.1655 0.1737 0.1892 0,2053
{1929) (2.015) 2.015) (3.015) {2.186)

Va1 0.0443 0.0668 0.0804 0.0397 0.0338
(1519) 2.218) {1.999) 2117) (1.562)

Yoz -0.1305 ~0,1738 ~0.1329 -0.0752 ~0.0855
(~1687) (—2521) (~1.030) (—1.725) (—1.058)

Yo -0.0192 -0.0229 -0.0236 -0.0253 -0.0266

! (~1648) (-12.31) (~12.36) (—13.89 (~16.29)

1 -0.0191 -01762 ~0.0090 00314 -0,0815

(—0.1409) (-1.027) (—0.0434) (0.1600) (—0.4509)

Yz ~0.2253 ~0.0233 0.0677 0.1411 0.1791
(-1.081) (~02221) (0.3284) (0.8768) (6.498)

vz ~0.1214 0.1214 0.1314 0.0734 0.1127
(-1.175) (1.934) (L.131) 0.7364) (1.403)

V4 ~0.1708 —-0.0142 -0.0847 -0.0762 0.1109
(-—2.190) (—0.1669) (—0.8961) (~0.7582) (1.047)

Vs 0.1619 0.2076 01722 0.1402
(2013 (1.722) (1.930) (1.161)

Vg 0.2178 0.1988 0.1202 0.1850
(2.839) (1.831) (1.857) 3532

Notes: This table reports the parameter estimates of the five intermediate term bond indexes;
t-statistics are reported below the parameters in parentheses
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Table II.

Parameter estimates for
the intermediate term
bond indexes

In the ARCH equation, we find the coefficients on the covariates to be mostly
significant. The coefficients for the six-month treasury bill yields (y;,1) are all positive,
indicating that higher volatility is associated with higher short-term interest rates.
However, the coefficients for the ten- -year treasury note yields (7,2) are negative. This
indicates that increases.in intermediate-term treasury yield reduce the conditional
volatility of bond returns, Finally, Most preferred ARCH models have six lags. Typical
of ARCH modeling, some of the coefficients are not significant. Table IV reports the
parameter estimates for the long-term bond indexes. The results are similar to those of
the intermediate term bond indexes.

In Figure 1, we plot the estimated 5-percent VaRs for the intermediate-term and
long-term treasury indexes (T_I and T_L, respectively). The two series are strikingly
different. We see that the VaRs for the intermediate-term bond index are fairly stable
over time, hovering at a level slightly over 1 percent. They range mostly between 0.5 to
2 percent. For the long-term bond index VaRs average about 4 percent and ranges
mostly between 2.5 to 6 percent. For both series, VaRs display the highest level of
volatility during the summer of 1980, Clearly, longer maturity bond instruments are
inherently more risky. This result also holds for all the rated defaultable bonds.

Figures 2 and 3 graph the estimated 5 percent VaRs for the rated intermediate-term
and long-term bond indexes, respectively. To clearly show the results, we only plot the
series for Aaa and Baa bonds. In order to make Figures 2 and 3 comparable, we draw
these two to the same scale, It is striking that the long-term bonds have much larger
VaRs and they display much higher variations. In contrast, for the same maturities, the
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Table IV,

Parameter estimates for

the long term bond
indexes

T-bond - Aaa Aa A Baa

ap 00.0072 0.0067 0.0066 0.0067 0.0069
(3.168) (3.220) (3.010) (2.980) (3.160)

o 101174 0.1425 0.1598 0.1772 0.1985
(3.009) (2.846) - (1.950) (1.727) (1.865)

Va1 0,1085 0.2097 0.2005 0.1925 0.1309
(1.543) 4.329) 4.219) (3.099) (2.107)

Ye,2 —0.0647 —-0.1113 ~0.0787 -0.1832 ~0.2059
(—0.6317) (—0.7058) (—0.4597) (~1.933) (—-1.632)

Yo —~0.0463 —-0.0437 —0.0455 ~0.0462 —~0.0485

(—1458) -18.15) —16,20) (-17.83) (—-16.17)

Vi 0.1196 0.1145 0.1515 0.0936 —-0.1050

(0.7175) (0.7698) (0.8626) (0.7871) (—0.7433)

Yz 0.0653 0.2394 0.2224 0.0491 0.0906
(0.2452) (2.712) (1.284) (0.5214) (1.182)

Y3 -0.0358 0.0914 0.1278 0.1247 0.1599
{—0.5760) {0.9245) (1.642) (1.519) (2.729)

Va 0.0744 0.0284 0.0415 0.0419 03411
(1.004) (0.6356) (0.7415) (0.5643) (4.357)

Vs -0.0177 0.0449 ~0.0136 0.1009 ~-0.0127

(—0.1853) 0.7284) -~ (—0.3027) (1.605) (—0.1682)

Y5 0.1708 0.2771 0.3443 0.2665 0.3844
(2.492) (5.539) (4.585) (3.616) 3.273

Notes: This table reports the parameter estimates of the five long term bond indexes; £-statistics are

reported below the parameters in parentheses

Figure 1.

5 percent VaR by
regression quantile for
treasury bonds
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Baa bonds only have marginally larger VaRs and the variability in estimated VaRs are
about the same. This result shows that Treasury term structure dynamics dominate
the dynamics of rated bond returns. Certainly, bonds with lower rating tend to have
higher expected returns. This is clear from the parameter estimates in Tables III and
IV, For example, the long-term expected return for intermediate Aaa rated bond index
is 0.73 percent per month, or 8.77 percent per year, The intermediate Baa bond index,
on the other hand, yields an expected return of 0.82 percent per month, or 9.82 percent
per year. But the difference in expected return is too small to be visible from the plotted
VaRs,

Our experience with estimating VaRs for rated bond portfolios suggest that
information about the treasury term structure of interest rates is important. Whenever
available they should be used as covariates in the regression relations.

4.2 The distribution of bond portfolio returns

Although VaR or volatility estimates are the most common measures of risk, a more
complete description of the conditional probability distribution is very useful and is
also frequently required, Currently the common approach used in the previous
literature is based on the conditional Gaussian assumption. Given the accumulated
empirical evidence that the distribution of many return time series are heavy-tailed, a
more robust method in estimating the conditional distribution of financial returns is of
particular interest. In this paper, besides estimating VaRs at 5 percent level, we also
estimated the distribution of the return series using the robust quantile regression
method.

Quantile regression method is attractive because not only it is robust against
non-Gaussian errors in the way that least squares estimates are not, but also the
models can be used to characterize the entire conditional distribution of a dependent
variable. By considering the behavior of the regression at different quantiles, the
quantile process conveys a more complete picture of the conditional distribution of the
dependent variable than the single mean derived from a traditional approach. In our
model, this provides an ideal way of estimating the conditional distribution of financial
returns. In this section, we estimate the conditional quantile function (thus the
conditional distribution function) for the last period and the average quantile
distributions for each time series.

Figures 4 and 5 plot the estimated distribution functions of bond returns against
those of normal distributions. The normal distribution function is plotted with the
smooth line, The left two subplots are for the Treasury note and the right two are for
the Baa-rated bond index. The top two are for the distributions averaged over the
entire sample, i.e. sample means of returns, covariates and absolute residuals are used
in fitting the estimated quantile models. The bottom two are for the distributions
conditional on all information available on the last day of the sample.

Figure 4 presents the results for the intermediate term bonds. For the average
distribution, we see that the treasury has a smaller standard deviation than the Baa
bonds. Compared with the normal distribution, the treasury distribution is very close
to being normal while the Baa index displays very strong fat-tailedness, The
conditional distributions are quite different from the average distributions. The
standard deviation of the treasury is very small. This reflects the fact that the Treasury
yields change over a fairly wide range in the entire sample period but conditional on




4.3 VaR confidence bands
The above analysis provides point estimates of VaR at each period and spec1ﬁed 7. The

distributional theory of the proposed model further facilitates the construction of
confidence band for VaR estimates[8]. By a similar argument as-Koenker and Zhao
(1996), it can be shown that, under regularity conditions, the solution §#(7) of our
optimization problem (10) is \/— N-consistent and asymptotic normal:

¥ = N(0,n) 12)
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information available at the end of the sample, large movement is very unlikely, The
conditional distribution of the Baa index does not seem to have a similar pattern, j
indicating much higher conditional uncertainty of returns for the index. Fat-tailedness ¥
is very pronounced. ¥
Figure 5 presents the results for the long-term bonds. Overall long-term bond f!_
indexes have very large variances, indicating higher risk for longer maturity fixed %
income instruments, Interestingly, long-term treasury does not have a smaller ,
standard deviation than the Baa index. Comparing with the normal distribution, we see |
that the treasury distributions are very close to being normal while the Baa index il :
displays very strong fat-tailedness in both the average distribution and conditional ;l i
“distribution, ;' s
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Figure 5,
The results for the
long-term bonds
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where
T(]."T) -1 -1 . 1 i ¢ ¢ . l L ¢
XD = ore———HDH H=lim-=-)> Z,Z%/(Z%y),D=lim=> Z,Z
(7) FAF) i n; 124/ (Z'ry) lmn; 't

As aresult, the limiting distribution of $(7)‘Z; can be obtained based on equation (12),
facilitating the construction of confidence intervals for the VaR estimates. Like the
conventional approaches of confidence interval estimation, this approach requires that
the covariance matrix «(1 — nH ~1DH "1 /f*(F ~}(r) ) must be estimated. Notice that
n~'y 7 Z,Z' is a natural candidate for the estimator of D, what we need is an
estimator for Y"(7) = f(F ~}(1) ) H. Fortunately there are quite a few methods in the
existing literature on estimating Y (7). In particular, Hendricks and Koenker (1992)
studied estimation of )_(7) based on sparsity estimation (see Siddiqui, 1960; Bofinger,
1975; Sheather and Maritz, 1983; Welsh, 1987, among others for related literature on
estimating this quantity). In our empirical analysis, we adopt this approach[9] in
constructing the confidence interval.

We estimate confidence bands of the estimated VaRs using the asymptotic
distribution (12), To estimate the covariance matrix £2(7), we need first estimate:




D (1) =lim ~ Zf FND)Z,24)(Z4)

Following Hendrick and Koenker (1992), we estimate Y "(7) by:

2
ZZ‘ [#(T+ 1a) = T = h) ]

where b, —-z2/3[1 5¢%(@ 1Qr))/(( &1 (M)*+ ]1/3 “13 where z, satisfies

D(z,) =1 — a/2 for the consttuction of 1 — a confidence intervals and ¢ and @
represents the standard normal density and distribution functions.

Figures 6 and 7 plot the estimated VaRs and their 95 percent confidence intervals
for the intermediate-term Treasury index and the long-term Baa index, We see that for
the treasury, the VaRs are fairly small and the confidence intervals are narrow, mostly
smaller than 3 percent in total, except during a few occasions such as in the early
1980s. The long-term Baa index, by contrast, displays large VaRs and sometimes huge
confidence intervals. For example, in the summer of 1980, the estimated VaR is about
7.5 percent, yet the confidence interval ranges from 0 to 15 percent. This result has
important implications for risk management since the true value of VaR could be much
larger than the estimated one, It is therefore prudent to assume a higher VaR in making
hedging decisions with fixed income securities.

Z:Z4/(Z'3)

0.15

0.13

0.11

0.09

0.07

]
>

0.05

0.03 {

——

0.01 FHTF 3

—~
=2

-0.01 T m

-0.03

o0 .

SN w\ N AR X RN TIRS

&"’ q«@” AR qef RPN fi’e@@:pﬁ LA
Date

Notes: This figure shows the 5% VaR the intermediate term treasury index. A 95%
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Figure 6.

percent VaR with 95
percent confidence bands
for intermediate term
treasury index




Figure 7.

5 percent VaR with 95
percent confidence bands
for long term baa index
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Notes: This figure shows the 5% VaR for the long term BAA index. A 95% confidence
band is also indicated by vertical lines

5. Conclusions

The SEC has now listed VaR as one reporting alternative for quantifying companies’
market risk exposures. Although the Securities and Exchange Commission {1998) stated
that quantitative market risk disclosures provide “new and useful information” to the
market, the quality of these disclosures, particularly the quality of VaR disclosures needs
to be improved (Jorion, 2002), To improve the quality of VaR disclosure, a more robust
estimation method is needed. In this paper we estimate value at risk using the quantile
regression approach pioneered by Koenker and Bassett (1978). This method does not
assume a particular conditional distribution for the returns, The model is applied to
defaultable bond portfolios, We find that for defaultable bonds the use of information
variables such as short term interest rates and term spreads as covariates improves the
model performance significantly, We also find that confidence intervals constructed
around the estimated VaRs can be very wide during volatile markets, making them les§
reliable when their accurate measurement is most needed.

Notes

1. Liquidity risks may also be priced in the holding period returns. This paper focuses on
bonds rated Baa and higher to reduce the problem of liquidity premium due to infrequent
trading,

2. Since this approach is linked to volatility modeling, there is a large and growing literature on
this, The most popular and empirically robust method is the ARCH methodology proposed
by Engle (1982). See Bollerslev ef al, (1992) for an extensive review on this subject.




N N R R R M W e
AN S foty

3. This approach includes the weighted moving average method by J.P. Morgan's Riskmetrics Defaultable bond

and the hybrid method by Boudoukh et al (1998).

4, The estimation procedure can be easily implemented on a regular personal computer, The
estimation programs are available in standard statistical packages, such as S-Plus, In
addition, since GARCH models can be asymptotically represented by ARCH processes, an
ARCH model with an appropriate chosen number of lags can practically provide a good
approximation for GARCH effect, and retain substantial computational advantage.

5. For example, Calpers, the largest US pension fund, recently doubled the amount of
investments in high-yield bonds, The popularity of corporate bonds is also revealed on the
supply side. For instance, international bond issues (sovereign and corporate) reached a
rgcord high of $1,680 billion in 2001, which is 15 percent higher than 2000, due to aggressive
Fed rate cuts and bear stock market., Financial Times, December 27, 2001.

6. An example of using VaR to manage bond portfolio risk is the long-term capital
management saga. The firm enjoyed phenomenal return from 1994 to 1997, yet suffered
huge losses in its fixed income derivative positions in 1998. The firm used VaR as a measure
of risk and monitored its value continuously. The coltapse of the firm serves as a wake-up
call for improved risk measurement and management for fixed-income securities,

7. An alternative way for choosing lags is to test the assumption of iid. in the estimated
residuals based on the spectral density estimates of the residual process. If the models (3)
and (4) are correctly specified, we should have Pr{y; < —VaR(7)} = at the true
parameter. As a result, {e;1e, =1 {y, < VaR;('r)] — r} should be i.i.d. In contrast, when
the lags are incorrectly chosen, {e¢;} will be serially dependent Therefore, to test the
adeguacy of lag choice, it suffices to check whether {¢;} is i..d. There have been quite a few
statistical procedures for testing the i.i.d. assumption, including Cowles and Jones (1937),
Ljung and Box (1978), and Anderson (1993).

8. There are several approaches in estimating confidence intervals for regression quantiles:
direct estimation of the asymptotic covariance matrix can be obtained based on an estimate
of the reciprocal of the error density at the quantile of interest; inversion of rank tests by
Gutenbrunner et ol (1993) provides an alternative approach of estimating confidence
intervals for quantile regression without estimating the error density; several
resampling/bootstrap methods have also been proposed for estimating confidence
intervals for quantile-type estimators.

9. Another method was proposed by Powell (1986) based on kernel estimation.

References

Anderson, T.W, (1993), “Goodness-of-fit tests for spectral distributions”, Annals of Statistics,
Vol. 21, pp. 830-47.

Beder, T.S. (1995), “VAR: seductive but dangerous”, Financial Analysts Journal, Vol. 51, pp. 12-24.

Bofinger, E: (1975), “Estimation 6f a density function using order statistics”, Australian fournal
of Statistics, Vol. 17, pp. 1-7.

Bollerslev, T., Chou, R.Y. and Kroner, KF. (1992), “ARCH modeling in finance”, Journal of
Econometncs Vol. 52, pp. 5-59.

Boudoukh, J., Richardson, M. and Whitelaw, R.F. (1998), “The best of both worlds”, Risk, Vol. 11,
pp. 64-7.

Cowles, A. and Jones, H. (1937), “Some a posteriori probabilities in stock market action”,
Econometrica, Vol, 5, pp. 28094,

Dowd, K. (1998), Beyond Value at Risk: The New Science of Risk Management, John Wiley &
Sons, Chichester,

portfolios

183




Duffie, D. and Pan, J. (1997), “An overview of value at risk”, Journal of Derivatives, Vol. 4, pp, 7-49,

Engle, RF. (1982), “Autoregressive conditional heteroskedasticity with estimates of the variance
of UK inflation”, Econometrica, Vol. 50, pp. 987-1008,

Engle, RF, and Manganelli, S. (1999), “CAViaR: conditional autoregressive value at risk by
regression quantiles”, working paper, University of California, San Diego, CA.

Group of Thirty (1993), Derivatives: Practices and Principles, Group of Thirty, New York, NY.

Gutenbrunner, C,, Jureckova, J., Koenker, R. and Portnoy, S. (1993), “Tests of linear hypothesis
based on regression rank scores”, Journal of Nonparametric Statistics, Vol. 2, pp. 307-31.

Hendricks, D. and Koenker, R, (1992), “Hierarchical spline models for conditional quantiles and
the demand for electricity”, Journal of Americon Statistical Association, Vol. 87, pp. 58-69.

Hodder, L., Koonce, L. and McAnally, M,L. (2001), “SEC Market risk disclosures: implications for
judgment and decision making”, Accounting Horizons, Vol. 15, March, pp. 34-56.

Jarrow, R, and Turnbull, S. (2000), “The intersection of market and credit risk”, Journal of
Banking and Finance, Vol. 24, pp. 271-99.

Jorion, P. (2002), “How informative are value-at-risk disclosures?”, The Accounting Review,
Vol. 77, pp. 911-31.

Koenker, R, (1999), “Quantile regression”, working paper, University of Illinois, Chicago, IL.

Koenker, R. and Bassett, G. (1978), “Regression quantiles”, Econometrica, Vol. 84, pp. 33-50.

Koenker, R. and Zhao, Q. (1996), “Conditional quantile estimation and inference for ARCH
models”, Econometric Theory, Vol. 12, pp. 793-813.

Ljung, G, and Box, G. (1978), “On a measure of lack of fit in time series models”, Biometrica,
Vol. 66, pp. 265-70,

Powell, J.L. (1986), “Censored regression quantiles”, Journal of Econometrics, Vol. 32, pp. 143-55,

Saunders, A. (1999), Financial Institutions Management: A Modern Perspective, Irwin, Chicago,
IL.

Securities and Exchange Commission (1997), “Disclosure of accounting policies for derivative
financial instruments and derivative commodity instruments and disclosure of
quantitative and qualitative information about market risk inherent in derivative
financial instruments”, Release No. 33-7386, FRR No. 48, Government Printing Office,
Washington, DC.

Securities and Exchange Commission (1998), “Review of the first phase of filings of disclosures of
quantitative and qualitative information about market risk inherent in derivative financial
instruments and other financial instruments”, Government Printing Office, Washington,
DC.

Sheather, S]. and Maritz, ].S. (1983), “An estimate of the asymptotic standard error of the sampfle
median”, Australian Journal of Statistics, Vol, 25, pp. 109-22.

Siddiqui, M, (1960), “Distribution of quantiles in samples from a bivariate population”, /. Res,

Nat. Bur. Standards, Vol. 64B, pp. 145-50.

Welsh, A, (1987), “Asymptotically efficient estimation of the sparsity function at a point”,

Statistics and Probability Letters, Vol. 6, pp. 427-32,

Further reading

Bekaert, G. and Wy, G. (2000), “Asymmetric volatility and risk in equity markets”, Review of
Financial Studies, Vol, 13, pp. 1-42.




Blankley, A., Lamb, R, and Schroeder, R. (2000), “Compliance with SEC disclosure requirements Defaultable bond

about market risk”, Journal of Derivatives, Vol. 7, pp, 39-50.

Boudoukh, J., Richardson, M. anq W_hitelaw, RF. (1997), “Investigation of a class of volatility
estimators”, Journal of Derivatives, Vol. 4, Spring, pp. 63-71.

Dowd, K. (2000), “Assessing VaR accuracy”, Derivatives Quarterly, March, pp. 61-3.

Engle, RF, and Ng, V.K. (1993), “Measuring and testing the impact of news on volatility”, Journal
of Finance, Vol. 48, pp. 1749-78,

Glosten, L.R., Jagannathaq, R. and Runl_(le, D.E. (1993), “On the relation between the expected
value and the volatility of the nominal excess return on stocks”, Journal of Finance, Vol. 48,
pp. 1779-801,

Hall, P. and Sheather, S.J. (1988), “On the distribution of a studentized quantile”, Journal of Royal
Statistical Society B, Vol. 50, pp. 381-91,

Hendricks, D. (1996), “Evaluation of value at risk models using historical data”, Federal Reserve
Bank of New York Economic Policy Review, Vol. 2 No, 1, pp. 39-69.

Koul, H. and Mukherjee, R. (1994), “Regr_ession quantiles and related processes under long range
dependence”, Journal of Multivariate Statistics, Vol. 51, pp. 318-37.

Koul, H and Saleh, E. (1992), 'l‘Aqtoregression quantiles and related rank-score process”,
technical report RM 527, Michigan State University, East Lansing, M,

Linsmeier, T. and Pearson, N. (1997), f‘Commentary: quantitative disclosures of market risk in the
SEC release”, Accounting Horzons, Vol. 11, March, pp, 107-35.

Lopez, J. (1998), “Methods for evaluating value-at-risk estimates”, Federal Reserve Bank of
New York Econamic Policy Review, October,

Neftci, S. (2000), “Value at risk calculations, extreme events, and tail estimation”, Journal of
Derivatives, Vol. 7, Spring, pp. 23-37.

Corresponding author
Zhijie Xiao can be contacted at: xiaoz@bc.edu

To purchase reprints of this article p}ease e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints

portfolios

185




