
Several recent articles on risk management indicate that a quantile measure of
losses such as value-at-risk may not contain enough, or the right, information
for risk managers. This paper presents a comprehensive empirical analysis of
a set of left-tail measures (LTMs): the mean and standard deviation of a loss
larger than the VAR (MLL and SDLL) and the VAR. We investigate the empir-
ical dynamics of the LTMs. We present a robust and unified framework, the
Arch quantile regression approach, in estimating the LTMs. Our Monte Carlo
simulation shows that the VAR is appropriate for risk management when
returns follow Gaussian processes, but the MLL strategy and strategies
accounting for the SDLL are useful in reducing the risk of large losses under
non-normal distributions and when there are jumps in asset prices.

1 Introduction

In recent years value-at-risk (VAR) has become a popular tool in the measure-
ment and management of financial risk. VAR is defined as the loss in market
value over a given time horizon that is exceeded with probability τ, which is
often set at 0.01 or 0.05. VAR is an easily interpretable measure of risk that sum-
marizes information regarding the distribution of potential losses. The popularity
of the VAR method results from both the need of various institutions to manage
risk and the specifications of government regulations (see Jorion, 2000, and
Saunders, 1999).

Although VAR is a relatively simple concept, its measurement is in fact a
challenging task. This difficulty explains why most of the research on VAR has
been concerned with estimation and forecasting.1 Recently, several papers have
shed light on the use of VAR as a risk management tool. Ahn et al. (1999) ana-
lyze the problem of optimally managing risk by minimizing VAR using options. 
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Klüppelberg and Korn (1998) and Alexander and Baptista (1999) conduct a
mean–variance analysis using VAR to manage the risk of portfolios. It is well
known that some flaws in the VAR approach exist, notably the (often implicit)
assumption that market returns are distributed normally over a short horizon. Yet
this assumption may be inappropriate in periods of market stress such as the
Long Term Capital Management debacle in 1998.

At a more fundamental level, Basak and Shapiro (2000) demonstrate that risk
management practices under the VAR approach may yield an unintended result.
They find that the VAR risk manager who focuses myopically on VAR often
optimally chooses a larger exposure to risky assets than non-risk managers and
consequently incurs larger losses when losses occur. In compliance with the
VAR constraint, the VAR risk manager is willing to incur losses, and it is opti-
mal for him to incur losses in those states against which it is most expensive to
insure. Although the probability of a loss is fixed, when a large loss occurs it is
larger than when the agent is not engaging in VAR risk management. The
authors suggest an alternative risk management model based on the expectation
of a loss, which they call “limited expected loss” (LEL).

In this paper we conduct an empirical analysis of the various left-tail meas-
ures (LTMs): the mean and standard deviation of a loss larger than the VAR
(MLL and SDLL, respectively), as well as the VAR itself. A key objective of this
study is to examine if the estimated MLL and SDLL provide any new informa-
tion. Our analysis shows that these measures do not give new information in
normal market conditions, but when large losses are more likely the information
in the MLL and SDLL cannot be captured by the VAR. This is illustrated in the
upper panel of Figure 1, which shows a situation where the 5% VAR is the same
for both distributions while the expected losses on the tails are different. The
deficiency in information about the mean of the tail can be corrected by the use
of measures such as MLL. The lower panel of Figure 1 illustrates a situation
where the mean of the tail is the same but the standard deviation is different, so
here the SDLL provides useful information. However, in practice there are so
few observations in the tail that one would be hard pressed to determine if peaks
occurred in the tails. Furthermore, it is likely that any peaks in the tails would
indicate the presence of regime switches.

We estimate the LTMs under general conditions using the quantile regression
method. The basic idea of quantile regression is to treat the simple ordinary
quantile calculation as an optimization problem and extend this optimization
problem into general regression models. The quantile regression method was
introduced by Koenker and Bassett (1978) and has now become a popular,
robust approach for statistical analysis.2 These authors showed how a simple
minimization problem yielding the ordinary sample quantiles in the location
model can be naturally generalized to the linear model, generating a new class of
statistics called regression quantiles. Given the estimated quantiles, generating
the LTMs is a relatively straightforward task.
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Since the pioneering work of Koenker and Bassett (1978, 1982), the asymp-
totic theory of the ordinary sample quantiles has been extended to the joint
asymptotic behavior of a finite number of regression quantiles. Koenker and
Zhao (1996) study conditional quantile estimation and inference under Arch
models and derive limiting distributions of the regression quantiles. The Arch-
quantile regression is an excellent way to estimate the conditional quantiles
and LTMs under conditional heteroskedasticity. It would be desirable if the
above quantile regression Arch model could be extended to the case of quantile
regression Garch (Engle and Manganelli, 1999). In this case, just like the maxi-
mum-likelihood estimation of conventional Garch models, a non-linear quantile
regression estimation is needed. Although candidate algorithms are available, the
convergence of these estimation procedures and the limiting distributions have
not yet been fully developed. For this reason, we use in this paper the quantile
regression model with Arch effect. Notice that an ARMA process can be asymp-
totically represented by an AR process; with an appropriately chosen number of
lags, the Arch quantile regression model can also practically provide a good
approximation for Garch models.
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FIGURE 1 The inability of the VAR measure to capture tail shapes
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This figure shows situations where the VAR measure is unable to capture the various shapes of the left
tail.The upper panel shows the situation where the conditional means of the left tails (large losses) are
different while the 5% VARs are the same. The lower panel shows the situation where the conditional
variances of the left tails (large losses) are different while the 5% VARs are the same.
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We conduct Monte Carlo simulation of risk-managed portfolios using differ-
ent LTMs as risk measures. The analysis indicates that the VAR measure reduces
risks as well as other LTMs do when the return process is conditionally Gaussian
– even when it exhibits conditional heteroskedasticity. However, the VAR meas-
ure no longer works well when the return process makes discrete jumps over
time. The MLL measure works better in reducing large losses, and the SDLL
appears to be useful in further reducing risk. Our empirical findings support the
theoretical arguments of Artzner et al. (1999), Basak and Shapiro (2000) and
Wang (2000) in that the VAR measure ignores information when the return
process is not normal.

The remainder of the article is organized as follows. Section 2 introduces and
defines the left-tail measures. Section 3 presents the quantile regression method-
ology for estimating the quantile function and the LTMs. Section 4 provides data
descriptions and conducts the quantile regression estimation. We also report and
discuss empirical results from the estimated LTMs. In Section 5 we present
Monte Carlo simulation analyses on the performance of the various LTMs in
a simple risk management framework for an index fund. Section 6 presents
concluding remarks.

2 Left-tail measures

For ease of exposition, we define value-at-risk as the percentage loss in market
value over a given time horizon that is exceeded with probability τ. That is, for a
time series of returns on an asset, {rt}

n
t =1, find VARt such that

(1)Pr (rt < – VARtIt –1) = τ

where It –1 denotes the information set at time t – 1. From this definition it is
clear that finding a VAR is essentially the same as finding a 100τ% quantile of
the conditional distribution of returns.

We consider, as complements of VAR, the conditional moments of losses that
exceed the VAR at a given level. Define the conditional mean of losses larger
than the 100τ% level VAR (denoted by MLL) as

(2)– E [rtrt ≤ – VARt(τ); It –1]

and the standard deviation of losses larger than the VAR (denoted by SDLL) as

Similarly, we may consider higher-order conditional moments, such as skewness
and kurtosis of losses larger than the 100τ% VAR. In general, we call these
measures left-tail measures (LTMs) because they measure the quantile, the
mean, standard deviation and higher moments of the 100τ% tail.

E E VAR VARr r r rt t t t t t t t− ≤ −( )[ ] ≤ −{ }− −( ); ( );τ τI I1

2

1
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3 Estimating left-tail measures by quantile regression

Most existing estimation methods for risk management must assume a particular
distribution for innovations – typically, a normal distribution conditional on past
information. However, empirical studies of economic time series indicate that
many financial variables display non-normal characteristics. Some series tend
to be skewed and leptokurtic and, in particular, many financial returns have fat
tails. Risk measures based on the assumption of normality generally underesti-
mate the risk because the conditional distribution of asset returns has tails that
are fatter than those of a conditional normal distribution.

To avoid underestimating risk, Hull and White (1998) use a mixture of normal
distributions to model the return of financial assets. The accuracy of their estimates
still, however, depends on the correctness of the distributional specifications.
Generally the estimates are not robust to deviations from the assumed distribu-
tions, and their estimation may be poor if extreme realizations are not accurately
modeled. Estimation may be particularly poor for models with conditional
heteroskedasticity since the estimation of time-varying variance is very sensitive
to large innovations. Thus one can see why the estimation of risk measures under
general distributional assumptions is an important issue.

In this paper we suggest using a quantile regression method to calculate risk
measures. This method does not depend on distributional assumptions for inno-
vations and can be used to estimate the VAR, MLL and SDLL.

3.1 Quantile regression

Consider a random variable Y which is characterized by its distribution function
F(y). The τ th quantile of Y is defined by

QY (τ) = inf{yF(y) ≥ τ }

Similarly, if we have a random sample {y1,… , yn} from the distribution F, the
τ th sample quantile can be defined as

Q̂Y (τ) = inf{yF̂ (y) ≥ τ }

where F̂ is the sample distribution function. Koenker and Bassett (1978) deter-
mined the sample quantile by solving the following minimization problem:

(3)

and generalized the concept of quantiles to regression models.

min       ( )
{ : } { : }

b
t

t t y b
t

t t y b

y b y b
t t
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If we consider a regression model

(4)yt = b ′xt + ut

where xt is a k × 1 vector of regressors, with the first element normalized to 1.
The regressors could just be lagged returns. Conditional on the regressor xt , the
τ th quantile of Y,

QY (τxt) = inf{yF(yxt) ≥ τ }

is a linear function of xt:

QY (τxt) = b (τ)′xt

where

b (τ) = (b1 + Fu
–1(τ), b2, …, bk) ′

and Fu( . ) is the cumulative distribution function of the residual. Koenker and
Bassett (1978) consider an analogue of (3):

(5)

and show that the τ th conditional quantile of y can be estimated by

(6)Q̂Y (τxt ) = b̂ (τ)′xt

where b̂ (τ) is the solution to (5) and is called the regression quantile. As a spe-
cial case, the least absolute error estimator is the regression median, ie, the
regression quantile for τ = 0.5.

Now consider the following quantile regression model with conditional het-
eroskedasticity

ut = (γ0 + γ1ut –1+ … + γqut – q) εt

where εt is independent identically distributed (iid) (0,1), and γ0 > 0,
(γ1,… , γq)′ ∈�+

q
. The series {ut} is then an Arch model. The τ th quantile of ut,

conditional on ut – j, j ≥ 1, is given by (γ0 + γ1yt –1 + … + γqyt – q)Fε
–1(τ),

where Fε
–1(τ) is the quantile function of ε. The conditional quantile of ut can be

estimated from a quantile regression of ut on its lagged values.

min       ( )
{ : } { : }b

t t
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3.2 Estimating VAR by quantile regression

A plausible way of modeling a return process is to use an autoregressive specifi-
cation. If we model for the returns process {rt} as

(7)

the 100τ% value-at-risk of rt is then determined by

(8)

where Qu(τIt –1) is the τ th conditional quantile of the residual process ut.
More generally, we may consider the following regression:

(9)rt = α′xt + ut

where xt ∈It –1 is the vector of regressors, which usually includes lagged values
of the dependent variable. For example, a general model might be xt =
(1, rt –1,…, rt –k , z1t ,…, zvt)′, where {zit} are useful covariates that explain rt.

We denote the vector (1,ut –1,… , ut – q)′ as Zt and calculate the condi-
tional quantile as

Qu(τIt –1) = γ (τ)′ Zt = (γ0 Qε(τ), γ1 Qε(τ), …, γq Qε(τ))′ Zt

and Qε(τ) = Fε
–1(τ) is the quantile function of ε.3

Therefore, the VARt is the quantile of rt in model (9) conditional on informa-
tion to time t – 1, which is a linear function of the conditional quantile of ut:

(10)VAR t (τ) = – α′xt – γ (τ)′ Zt

Thus, we can use a quantile regression method to estimate γ (τ) and VARt(τ).
In particular, γ (τ) can be estimated from the following problem:

(11)

Following an argument similar to that proposed by Koenker and Zhao (1996), it
can be shown that γ̂ (τ) is a root-n consistent estimator4 of γ (τ). In practice, we
can replace ut and Zt by consistent estimators: ût = rt – α̂0 – ∑k

i=1α̂ i rt – i –
∑v

i=1 α̂k + i zit , and Ẑ t = (1,ût –1,… , ût – q})′. Under mild regularity condi-
tions, it can be shown that the γ̂ (τ) based on ût is still a root-n consistent
estimator of γ (τ).
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3.3 Estimating LTMs by quantile regression

Now we consider the estimation of MLL and SDLL based on quantile regres-
sions. Suppose we want to calculate the expected return conditional on past
information that is lower than a given level, say r̄ :

E [rtrt ≤ r̄ ; It –1]
We rewrite this as

(12)E[rt 1 (rt ≤ r̄ )It –1]
where 1(rt ≤ r̄ ) = 1 if rt ≤ r̄ and 0 otherwise. If we denote the conditional distri-
bution function of rt as Ft ( . ), ie, Ft ( . ) = Pr (rt < .It –1), then

which can be approximated by a discrete Riemann function:

We consider a partition of {τ i} on [0,1] and estimate the τ i-th conditional
quantile of rt by quantile regression and denote the estimated τ i-th conditional
quantile of rt as Q̂r(τ iIt –1). As max(τ i – τi –1) → 0, the conditional mean of rt
smaller than r̄ can be consistently estimated by the following discrete Riemann
approximation:

(13)

where

τ– = sup{τj : Q̂r(τ jIt –1) ≤ r–}
Consequently, an estimation of the limited expected loss (LEL) is obtained.

Notice that

and the MLL at the 5% level is estimated immediately.
The SDLL and higher moments can also be estimated by similar discrete

Riemann approximations based on quantile regression. Note that the above esti-
mation procedures do not depend on distributional assumptions about the return
process, a condition which provides a robust method for risk measurement.

Quantile regression method has the important property that it is robust to
distributional assumptions, a property that is inherited from the robustness of the
ordinary sample quantiles. In quantile regression, it is not the magnitude of the
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dependent variable that matters but its position relative to the estimated hyper-
plane. Quantile estimation is influenced only by the values of the dependent
variable near the specified quantile of the conditional distribution. As a result,
the estimated coefficient vector γ̂ (τ) is not sensitive to outlier observations.
Such a property is especially attractive in financial applications since many
financial data like (log) portfolio returns are usually fat-tailed.

The quantile regression model has a linear programming representation that
makes the estimation easy. Notice that the optimization problem (11) may be
reformulated as a linear program by introducing “slack” variables to represent
the positive and negative parts of the vector of residuals (see Koenker and
Bassett (1978) for a more detailed discussion). Estimation of regression quan-
tiles can then be obtained in a finite number of simplex iterations.5

4 Empirical estimation and results

4.1 Data and estimation procedure

The data we use for estimating the regression quantiles and the LTMs are the
daily returns of the S&P500 Index from August 1963 to January 1998. In addi-
tion, we use two series of interest rate data: the daily yields on the one-year
Treasury bills and 10-year Treasury notes from January 1962 to December 2001.
All data were obtained from the Center for Research in Security Prices. In
Table 1, we see that the S&P500 data display negative skewness and excess
kurtosis, and that the interest rates exhibit positive skewness, weak excess kurto-
sis and strong autocorrelations.
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TABLE 1 Summary statistics of the data

One-year Treasury bill 10-year Treasury note
Daily S&P500 Yield Change Yield Change

Mean 0.0003 6.4034 – 0.0001 7.1086 0.0001
Standard deviation 0.0088 3.0088 0.0949 2.8551 0.0689
Maximum 0.0910 17.3100 1.1000 15.8400 0.6500
Minimum – 0.2047 1.9200 – 1.0800 3.8500 – 0.7500
Skewness – 1.4707 0.7108 – 0.1940 0.1741 – 0.3145
Excess kurtosis 39.8046 1.3768 20.4705 0.9785 10.6144
AC(1) 0.1131 0.7477 0.1180 0.6738 0.0932
AC(2) – 0.0284 0.7463 0.0474 0.6719 0.0351
AC(3) – 0.0169 0.7452 – 0.0010 0.6715 – 0.0049
AC(4) – 0.0246 0.7498 0.0321 0.6763 – 0.0202
AC(5) 0.0144 0.7673 0.0208 0.6990 0.0344
AC(10) – 0.0041 0.7434 0.0419 0.6730 0.0194

This table gives summary statistics for the daily returns of the S&P500 Index, along with the daily yield and the
change in yield (annualized in per cent) of one-year Treasury bills and 10-year Treasury notes. AC(k) denotes
autocorrelation of order k. The sample period for the daily S&P500 Index data is August 1963 to January 1998.
The yield data are for January 1962 to December 2001. The source of the data is the Center for Research in
Security Prices and the Federal Reserve.
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4.2 Estimated LTMs

To estimate the 5% VAR we use Equation (10) at the 5% quantile of the returns.
To estimate the MLL and SDLL left-tail measures, we estimate the quantile
function of returns using 8,668 observations for the daily data, a number that
should be sufficient to yield unbiased estimates.

To estimate the quantile functions we estimate the mean equation (7) for the
S&P500 returns. Since the data in Table 1 show weak autocorrelation, we use an
AR(1) model and estimate the intercept to be 0.00032, with a t ratio of 3.5597,
and the AR(1) coefficient to be 0.11739 with a t ratio of 2.6026.

Given the residuals from this estimation, we estimate the regression quantiles.
Based on the size of the data set and the need to have a sufficient number of
points to compute the MLL and SDLL, we decided to compute 50 regression
quantiles between the 0% and 5% quantiles. Table 2 reports the Arch estimates
for an AR(8) residual process. To conserve space, we only report results for five
of the 50 quantile regressions. We see that most of the estimates of γi(τ) are neg-
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TABLE 2 Estimated Arch equation parameters for the daily S&P500 data

Quantile (�)
Parameter 1% 2% 3% 4% 5%

γ0(τ) – 0.0094 – 0.0085 – 0.0078 – 0.0069 – 0.0064
(0.0011) (0.0008) (0.0007) (0.0005) (0.0004)

γ1(τ) – 0.3699 – 0.1376 – 0.0949 – 0.0863 – 0.1071
(0.1162) (0.0583) (0.0643) (0.0504) (0.0433)

γ2(τ) – 0.1660 – 0.0924 – 0.1315 – 0.1077 – 0.1000
(0.0759) (0.0442) (0.0388) (0.0401) (0.0384)

γ3(τ) – 0.4123 – 0.2725 – 0.2078 – 0.2077 – 0.1690
(0.1108) (0.0600) (0.0591) (0.0475) (0.0506)

γ4(τ) – 0.1755 – 0.1692 – 0.1853 – 0.1584 – 0.1196
(0.0928) (0.0577) (0.0595) (0.0501) (0.0476)

γ5(τ) – 0.1414 – 0.1853 – 0.2061 – 0.2461 – 0.2388
(0.0774) (0.0430) (0.0399) (0.0337) (0.0308)

γ6(τ) – 0.2603 – 0.1540 – 0.1102 – 0.1159 – 0.1055
(0.0986) (0.0528) (0.0473) (0.0296) (0.0358)

γ7(τ) – 0.0367 – 0.1116 – 0.0802 – 0.0906 – 0.0930
(0.1140) (0.0594) (0.0482) (0.0272) (0.0391)

γ8(τ) – 0.2566 – 0.2112 – 0.0754 – 0.1287 – 0.0408
(0.1128) (0.0687) (0.0469) (0.0349) (0.0367)

This table reports the estimated parameters of the daily Arch equations for quantiles, τ , 1% to 5%.
The standard errors are in parentheses.We specify ut = (γ0 + γ1ut –1 + … + γqut – q)ε t , where ε t are
iid (0,1). We denote the vector (1,ut –1,… , ut – q)′ as Zt and calculate the conditional quantile
as Qu(τI t –1) = γ (τ )′ Zt , where γ (τ )′ = (γ0Q ε(τ ), γ1Q ε(τ ),… , γqQε(τ )), and Q ε(τ ) = Fε

–1(τ ) is the
quantile function of ε .
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ative and that they are statistically significant for all listed τ and for lags smaller
than eight, which indicates a strong Arch effect. We limit the lags to eight to
balance estimation efficiency with the estimation of the Arch effect.

Given the estimated quantile functions in the 5% tail, we compute the MLLs
and SDLLs and plot the results in Figure 2. The LTMs exhibit high volatility
over the entire sample period – in particular during the 1987 market crash. In
general, the 5% VAR and 5% MLL track each other very well. The SDLL seems
to follow very similar dynamics, though it has smaller values. This close com-
parison indicates that the VAR drives the dynamics of the first and second tail
moments.

Figure 3 plots the MLL and SDLL against the VAR. It is apparent that the
MLLs are linearly related to the VAR, and a simple linear regression should be
able to capture their relationship very well. The SDLL can also be modeled by a
linear regression to the VAR, although such a regression would have a much
smaller slope coefficient and a smaller R2. We find that the MLL plot in Figure 3
is similar to that from the normal distribution. The SDLL plot in Figure 3 more
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FIGURE 2 Estimated left-tail measures for the daily S&P500 Index

Jun 68 Feb 82 Oct 95
0

0.05

0.1

0.15

5%
 V

A
R

Jun 68 Feb 82 Oct 95
0

0.05

0.1

0.15

5%
 M

LL

Jun 68 Feb 82 Oct 95
0

0.05

0.1

0.15

5%
 S

D
LL

This figure shows estimated left-tail measures for the daily S&P500 Index. The top panel plots the 5%
VAR, the middle panel plots the 5% MLL, and the bottom panel plots the 5% SDLL.
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closely resembles that from the t distribution. Thus, the normal distribution may
not be able to completely describe the left-tail measures at daily frequencies.

The dynamics of the MLL and the SDLL follow that of the VAR closely, but
not exactly. We plot the ratios of the MLL to the VAR and the SDLL to the VAR
in Figure 4. The estimated MLL ⁄ VAR ratio varies between 1.08 to 1.68, with an
average of 1.38, and the SDLL ⁄ VAR ratio varies between 0.09 and 1.17, with
an average of 0.45. The ratios change over time somewhat randomly, and their
variation does not seem to be related to the volatility of returns.

5 Risk management performance of the LTMs

In this section we present Monte Carlo simulation analyses of risk management
using the left-tail measures. We hope to determine if the LTMs are able to pro-
vide better protection against losses. Moreover, we would like to know if there is
a trade-off between better risk management and lower returns or poorer portfolio
performance as measured by the Sharpe ratio.
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FIGURE 3 Estimated MLL and SDLL vs.VAR for the daily S&P500 Index
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This figure shows estimated left-tail moments versus the VAR for the daily S&P500 Index.The top panel
plots the 5% MLL versus the VAR.The bottom panel plots the 5% SDLL versus the VAR.
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5.1 A risk management analysis

We conduct this analysis in the setting of a naive risk manager of a risk-managed
index fund that tracks the S&P500 Index. We assume that there are limits on the
risk exposure so that the manager invests all his funds in the “Index” as long as
the estimated VAR or other LTMs are below the limits. If the limits are exceeded,
the risk manager will invest less in the risky asset and shift the funds into a zero-
return, risk-free asset until the VAR or other LTMs are just below their limits.6 For
example, if the risk manager sets the risk tolerance level at a loss of 3% of the
value of the portfolio as measured by the 5% VAR, and if the estimated 5% VAR
for the “Index” is 4%, the risk manager will invest only 75% of the value of the
managed fund in the “Index” and put the remaining balance in a risk-free asset.
This will reduce the estimated 5% VAR for the managed fund to an acceptable 3%
loss from a 4% potential loss if the manager invests all funds in the “Index”.
To make the different risk management strategies comparable, we set the limits of
these 5% LTMs at their sample averages of the S&P500 Index returns.
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FIGURE 4 Ratios of MLL and SDLL to VAR for the daily S&P500 Index
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This figure shows estimated ratios of the 5% MLL and SDLL to the 5% VAR for the daily S&P500 Index.
The top panel plots the MLL ⁄ VAR ratios, and the bottom panel plots the SDLL ⁄ VAR ratios.
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We first simulate several time series of returns, each with 5,000 observations,
and describe the dynamics below. We then estimate 50 quantile regressions from
0% to 5% quantile to yield 50 sets of parameters for quantile forecasts condi-
tional on available information. We then simulate 10 additional periods of
returns and compute the LTMs using available information at the end of each of
the 10 additional periods. We conduct a total of 400 simulations. The “Index”
portfolio invests fully in this simulated series. We examine portfolio perform-
ance for various left-tail measures when returns follow various dynamics, such
as a normal distribution, a Garch process, a jump process, and a regime-switch-
ing process.

We define the following three risk management strategies with different left-
tail measures: (1) 5% VAR set at the sample average of the daily S&P500 Index
(3.722%); (2) 5% MLL set at the sample average (4.869%); and (3) 5% MLL +
5% SDLL set at the sample average (5.992%). The first portfolio risk management
strategy uses the popular value-at-risk measure, which serves as our benchmark
for risk-managed portfolios. The second risk management strategy takes into
account the conditional mean of losses in the 5% tail. The third strategy goes
further by taking into account changes in the second moment of the left tail.
There are more general ways of combining the first two moments of the tail –
for example, 5%MLL + π0 5%SDLLπ1, where π0 is a weighting constant and π1
is a magnifying constant to take risk-aversion into account. But we will leave
further analysis for future research.

Given the above simple risk management and trading strategy, we measure
the performance of the portfolios. The exercise is repeated 1,000 times to give a
collection of asset returns for each left-tail measure. To evaluate the various
LTMs as risk management strategies, we are interested in the frequency of large
losses, as well as the means and standard deviations of returns. We also compute
the Sharpe ratio of these portfolios.

5.2 Return dynamics

If the return process is conditionally normal, the VAR should provide a good
measure of risk. But when larger losses are more likely than some smaller losses
within the 5% tail, the VAR no longer provides a good measure of risk. Large
losses may be more likely, for example, when the “Index” process contains a
negative jump component. We simulate the following four return processes, each
calibrated to the original time series data of the daily S&P500 Index.

Normally distributed returns
The first data-generating process we consider is a simple AR(1) process with
Gaussian innovations. Let{rt} be the simulated returns; then

(14)rt = a0 + a1rt –1 + �t
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where �t � N(0, σ2), and the parameters, a0, a1, and σ are calibrated to our daily
sample data of the S&P500 Index. These values are estimated to be 0.0002
(0.0001), 0.1491 (0.0112) and 0.0111 (0.0003), where standard errors of the
estimates are listed in parentheses.

Table 3 reports the performance of risk-managed portfolios with the Gaussian
returns. We see that the risk management strategies reduce the means of port-
folio returns somewhat, although the standard deviations are also a bit smaller
relative to the “Index” portfolio. This reduction in standard deviations translates
into marginally larger Sharpe ratios for the risk management portfolios using
VAR and MLL. However, there are costs to the reduction in risk: for some of
the risk management portfolios, the maximum returns are smaller than that of
the “Index” portfolio. For the Gaussian process, there are no returns lower than
the –3% mark. For losses larger than 2%, the simulation indicates that the
VAR measure and the MLL can reduce their occurrence from 3.32% of all
returns to 0.57–0.58%. The second-moment measures do not seem to reduce risk
any further. For losses larger than 1%, the risk-managed portfolios do marginally
better than the “Index” portfolio, reducing losses from 9.8% to 8.23–8.56%.

In summary, for the Gaussian returns, the VAR measure works as well as the
MLL measure and, due to a lack of variability in the tail, the second-moment
measures do not seem to do better. The results are consistent with the work of
Artzner et al. (1999), Basak and Shapiro (2000) and Wang (2000), and indicate
that for long-horizon risk management (a month or longer), where normality
in returns has been extensively documented, VAR is an adequate tool for risk
measurement.
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TABLE 3 Performance of risk-managed portfolios with Gaussian returns

Strategy
Index VAR MLL MLL + SDLL

Mean (×10–3) 0.3565 0.3507 0.2762 0.2869
Standard deviation 0.0113 0.0076 0.0086 0.0099
Sharpe ratio 0.0316 0.0463 0.0320 0.0291
Maximum return 0.0330 0.0246 0.0270 0.0283
Minimum return – 0.0378 – 0.0203 – 0.0227 – 0.0219

Loss
> 3% 0.51 0 0 0
> 2% 3.23 0.58 0.57 0.65
> 1% 9.80 8.30 8.56 8.23

This table reports the performance of risk-managed portfolios using various left-tail measures under the
Gaussian return process in Equation (14). The estimated parameters of the process (a0, a1, and σ ) are
0.0002, 0.1491 and 0.0111. “Index” indicates that the portfolio is fully invested in the simulated index.
The other three portfolios’ limits, are respectively: 5% VAR at 1.2415%; 5% MLL at 1.7186%; and
5%MLL + 5%SDLL at 2.2857%.
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AR(1)–Agarch(1,1) model
Conditional heteroskedasticity has been widely documented for weekly, daily
and intra-day returns (see, for example, Bollerslev, Chou and Kroner, 1992).
We generate return series based on the AR(1)–asymmetric Garch(1,1) model of
Glosten, Jagannathan and Runkle (1993), which captures well the conditional
heteroskedasticity and asymmetric volatility (see Engle and Ng, 1993; Bekaert
and Wu, 2000; Wu, 2001; and Wu and Xiao, 2002):

rt = a0 + a1rt –1 + �t , �tIt � N (0, σt
2)

(15)σt
2 = ω0 + ω1σ2

t –1 + ω2�2
t –1 + ω31{� t –1 < 0}�2

t –1

where 1{� t –1 < 0} is an indicator function that equals 1 if �t–1 < 0 and 0 otherwise.
This term captures the additional power that negative return shocks have in pre-
dicting future volatility. The model parameters for the mean equation, a0 and a1,
are estimated to be 0.0002 (0.0001) and 0.1491 (0.0112), and the Garch equation
parameters ωi, i = 0, 1, 2, 3, are estimated to be 1.0231E–6 (5.3451E–11),
0.9239 (0.0028), 0.0800 (0.0049) and 0.0335 (0.0039).

Table 4 reports the performance of risk-managed portfolios with the asym-
metric Garch returns. The risk management strategies marginally increase the
means of portfolio returns and result in smaller standard deviations of returns
relative to the “Index” portfolio. All the risk management strategies therefore
yield higher Sharpe ratios. For losses larger than 2%, all risk management strate-
gies reduce their occurrence from 2.04% of all returns to 0.55–0.57%. For losses
larger than 1%, all risk management strategies can reduce the occurrence from
10.26% to 3.26–3.28%.
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TABLE 4 Performance of risk-managed portfolios with Garch returns

Strategy
Index VAR MLL MLL + SDLL

Mean (×10–3) 0.3443 0.4338 0.3836 0.4195
Standard deviation 0.0105 0.0055 0.0060 0.0065
Sharpe ratio 0.0327 0.0786 0.0638 0.0641
Maximum return 0.0418 0.0263 0.0285 0.0298
Minimum return – 0.0730 – 0.0170 – 0.0206 – 0.0244

Loss
> 3% 0.09 0 0 0
> 2% 2.04 0.57 0.56 0.55
> 1% 10.26 3.28 3.26 3.22

This table reports the performance of risk-managed portfolios using various left-tail measures under the
asymmetric Garch return process in Equation (15).The estimated parameters for the mean equation (a0
and a1) are 0.0002 and 0.1491.The Garch equation parameters ω i , i = 0,1, 2, 3, are 1.0231E–6, 0.9239,
0.0800 and 0.0335. “Index” indicates that the portfolio is fully invested in the simulated index.The other
three portfolios’ limits are, respectively: 5% VAR at 1.2415%; 5% MLL at 1.7186%; and 5%MLL + 5%SDLL
at 2.2857%.
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In summary, the results for the Garch returns are similar to the Gaussian
returns: the VAR measure works as well as the other measures due to a lack of
large losses. Again, the results are consistent with the theoretical work on risk
measures. Conditional heteroskedasticity does not seem to significantly reduce
the effectiveness of the VAR as a risk management tool as long as the VAR
estimator can capture the Arch effect.

AR(1)–Agarch(1,1)–jump model
The main weakness of the value-at-risk is that, when there are large losses, it
does not distinguish between two losses of different sizes. To demonstrate this,
we add a negative jump component to the above AR(1)–asymmetric Garch(1,1)
model (see, for example, Bates (1991, 1996) for illustrations of jump models).
The frequency of a jump in returns follows a Poisson process with parameter λ,
and the size of the jump is the absolute value of a draw from a normal distribu-
tion with mean µJ and standard deviation δJ . To check their impact on the
performance of risk measures, we set λ to 0.01 – which corresponds to one jump
in 100 days – the mean jump size, µJ , to 0 and the standard deviation of the
jump, δJ , to be four times the standard deviation of the normal distribution in
the AR(1) model (4.98%). Since the negative jump is likely to reduce the mean
of the return process, we add the mean of the jump component (�π–– λδJ ⁄ 2) to the
data-generating process.

Table 5 reports the performance of risk-managed portfolios with the Garch–
jump returns. The strategy using the VAR measure yields a mean smaller than
those from the MLL and the MLL + SDLL strategies. The standard deviations
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TABLE 5 Performance of risk-managed portfolios with Garch–jump returns

Strategy
Index VAR MLL MLL + SDLL

Mean (×10–3) 0.3650 0.1934 0.2257 0.2368
Standard deviation 0.0226 0.0099 0.0072 0.0071
Sharpe ratio 0.0161 0.0196 0.0315 0.0334
Maximum return 0.0478 0.0213 0.0317 0.0317
Minimum return – 0.1510 – 0.846 – 0.0647 – 0.0544

Loss
> 3% 6.57 1.23 1.02 0.56
> 2% 8.23 2.56 1.26 1.20
> 1% 15.77 6.65 4.23 3.22

This table reports the performance of risk-managed portfolios using various left-tail measures under the
Garch–jump return process.The jump intensity, λ, is 0.01 and standard deviation of the jump size, σJ , is
4.98%.The Garch model is specified by Equation (15).The estimated parameters for the mean equation
(a0 and a1) are 0.0002 and 0.1491. The Garch equation parameters ω i , i = 0,1, 2, 3, are 1.0231E–6,
0.9239, 0.0800 and 0.0335. “Index” indicates that the portfolio is fully invested in the simulated index.
The other three portfolios’ limits are, respectively: 5% VAR at 1.2415%; 5% MLL at 1.7186%; and
5%MLL + 5%SDLL at 2.2857%.
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from the MLL and MLL + SDLL strategies are also smaller. The risk-managed
portfolios all have higher Sharpe ratios than that of the “Index”, the MLL strat-
egy having the highest at 0.0315. The MLL strategy reduces the maximum loss
from 15.10% to 6.47%, while MLL + SDLL reduces it further to 5.44%. All
strategies are able to reduce the occurrence of losses larger than 3%, and the
MLL + SDLL strategy reduces it the most, from 6.57% of all returns to 0.56%.
For losses larger than 2%, all risk management strategies again reduce the occur-
rence of losses, the MLL + SDLL strategy reducing it from 8.23% to 1.20%.
For losses larger than 1%, we see the same pattern: all risk management strate-
gies reduce the occurrence of losses and MLL + SDLL reduces it the most, from
15.77% to 3.22%.

Thus, when there are jumps in the return process, the VAR strategy no longer
appears to work as well as the MLL and MLL + SDLL strategies. Furthermore,
the strategy that takes into account the second moment is the most useful in
reducing the risk of large losses. Our empirical analysis supports the theoretical
arguments of Artzner et al. (1999), Basak and Shapiro (2000) and Wang (2000)
in finding that the VAR measure misses risk management information when the
return process is not normal. One may argue that risk management is most
needed when markets are subject to volatility and the risk of jumps. Our results
indicate that VAR may not be able to deliver when it is most needed.

Regime-switching model
In this subsection we study the risk management of the left-tail measures under
changes of regime. We calibrate the following model to our sample of daily
S&P500 Index returns:

rt = a0,1 + a11 rt –1 + σ1�t , �tIt � N (0, 1)

(16)rt = a0,2 + a12 rt –1 + σ2 �t

where σ1 and σ2 are the volatilities under state 1 and state 2, respectively. The
transition matrix is constant and given by

The estimated coefficients for a0,1, a0,2, a11, and a12 (with standard errors in
parentheses) are 0.0004 (8.081E–5), 2.368E–5 (0.0003), 0.1409 (0.0134), and
0.0941 (0.0224). So the return process is weakly autoregressive under both
states. σ1 and σ2 are estimated to be 0.6087% (0.1088%) and 1.4004%
(0.3216%). Returns in the second state have more than twice the volatility than
returns in the first state, while the probability of staying in state 1 (P) is 0.9862
(0.0022) and the probability of staying in state 2 (Q) is lower at 0.9572 (0.0073).
Hence, volatility is persistent in both states but slightly less so in the high-
volatility state.
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Table 6 reports the performance of risk-managed portfolios with regime-
switching returns. The risk management strategies marginally reduce the means
of portfolio returns, but they also result in smaller standard deviations of returns
than that of the “Index” portfolio. The net effect on the Sharpe ratio is slightly
positive. There are no returns lower than the –3% mark. For losses larger than
2%, it seems that all risk management strategies can reduce their occurrence
from 1.46% of all returns to 1.40–1.43%. For losses larger than 1%, all risk
management strategies reduce the occurrence from 6.49% to 4.61–5.69%. The
overall results appear similar to those from the Gaussian return process. The
VAR measure is adequate and the MLL and MLL + SDLL measures perform
marginally better in reducing the occurrence of large losses.

Robustness check with interest rate processes
As a robustness check, we apply our risk management analysis to two interest
rate series. We first calibrate the yields on one-year Treasury bills and 10-year
Treasury notes to the AR(1)–asymmetric Garch(1,1) model of Glosten,
Jagannathan and Runkle (1993). Risk management limits exposure to interest
rate risks according to the left-tail measures of the change in yield. Let Bt be
the value of bond and yt be its yield to maturity. Then it is straightforward to
show that

where D* is the modified duration of the bond. Hence, the return to the bond is
linearly related to the change in yield. By moving funds between a cash account

d
d

B

B
D yt

t
t= − *
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TABLE 6 Performance of risk-managed portfolios with regime-switching returns

Strategy
Index VAR MLL MLL + SDLL

Mean (×10–3) 0.4038 0.3979 0.4071 0.4112
Standard deviation 0.0076 0.0072 0.0073 0.0071
Sharpe ratio 0.0531 0.0555 0.0558 0.0561
Maximum return 0.0271 0.0224 0.0226 0.0226
Minimum return – 0.1510 – 0.846 – 0.0647 – 0.0544

Loss
> 3% 0 0 0 0
> 2% 1.46 1.43 1.40 1.40
> 1% 6.49 5.69 4.61 5.60

This table reports the performance of risk-managed portfolios using various left-tail measures under the
regime-switch return process.“Index” indicates that the portfolio is fully invested in the simulated index.
The other three portfolios’ limits are, respectively: 5% VAR at 1.2415%; 5% MLL at 1.7186%; and
5%MLL + 5%SDLL at 2.2857%.
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and a bond fund, a risk manager can change the exposure of the bond portfolio
to interest rate change.

Table 7 reports the performance of the left-tail measures in limiting interest
rate risks. All are able to reduce the exposure to large declines in yield.7 For the
one-year Treasury bills, all strategies reduce exposure to yield declines larger
than 25 basis points (bp) from 0.22% of all yields to zero. For declines in yields
larger than 15bp, the VAR measure can reduce the occurrence losses from 1.42%
to 0.45%, while the MLL and MLL + SDLL measures can reduce the occur-
rence further to 0.39% and 0.21%, respectively. Similar results hold for the
10-year Treasury notes. In summary, the MLL and SDLL measures are margin-
ally useful in reducing exposure to large interest rate changes.
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TABLE 7 Performance of risk-managed interest rate portfolios

Strategy
Yield change VAR MLL MLL + SDLL

One-year Treasury bills
Mean (×10–2) 0.1131 0.1108 0.1107 0.1120
Standard deviation 0.0501 0.0386 0.0374 0.0373
Maximum yield change 0.2804 0.1312 0.1302 0.1427
Minimum yield change – 0.2622 – 0.1921 – 0.1888 – 0.1888

Yield decline
> 0.25% 0.22 0 0 0
> 0.15% 1.42 0.45 0.39 0.21
> 0.05% 10.43 8.22 7.81 7.62

10-year Treasury notes
Mean (×10–2) 0.1078 0.1461 0.1043 0.1034
Standard deviation 0.0562 0.0422 0.0416 0.0415
Maximum yield change 0.3166 0.1408 0.1478 0.1644
Minimum yield change – 0.2955 – 0.2125 – 0.2125 – 0.2125

Yield decline
> 0.25% 0.43 0 0 0
> 0.15% 1.83 0.65 0.43 0.39
> 0.05% 12.29 10.85 10.26 9.98

This table reports the performance of risk-managed interest rate portfolios using various left-tail
measures from the AR(1)–asymmetric Garch(1,1) process. “Yield change” indicates that the portfolio is
fully exposed to the simulated yield change.The other three portfolios limit exposure to yield changes
at, respectively, for one-year Treasury bills (top panel): 5% VAR at 0.06561%; 5% MLL at 0.07484%; and
5%MLL + 5%SDLL at 0.08561%; and for 10-year Treasury notes (bottom panel): 5% VAR at 0.06939%;
5% MLL at 0.08242%; and 5%MLL + 5%SDLL at 0.09195%.
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6 Conclusions

Several recent articles on risk management indicate that a quantile measure of
losses such as value-at-risk may not contain enough, or the right, information for
risk managers. Basak and Shapiro (2000) showed that risk managers using VAR
methods often optimally choose a larger exposure to risky assets than non-risk
managers. Consequently they incur larger losses when losses occur. In this paper
we examined a set of left-tail measures (LTMs): the mean and standard deviation
of a loss larger than the VAR (MLL and SDLL), as well as the VAR. We investi-
gated the empirical dynamics of the LTMs and found that the quantile regression
method provides an easy-to-use framework for estimating all the LTMs. Our
Monte Carlo simulation showed that the VAR is appropriate for risk manage-
ment when returns follow Gaussian processes, but that the MLL strategy and
strategies taking into account the SDLL are useful in reducing the risk of large
losses under non-normal distributions and when there are jumps in asset prices.

1 Duffie and Pan (1997) provide an excellent survey on this topic. The most common
approaches in estimating VAR are sample quantile methods, eg, historical simulation, and
those based on the assumption of a conditionally normal stock return distribution. For the
latter approach, the estimation of VAR is equivalent to estimating the conditional volatility
of returns, often by utilizing the Arch-class of models. Other approaches to estimating
VAR include the hybrid method of Boudoukh, Richardson and Whitelaw (1997, 1998),
the approach based on the stable Paretian distributions of Khindanova, Rachev and
Schwartz (2000), the method based on extreme value theory (Boos, 1984; McNeil, 1998;
and Neftci, 2000), and the quantile regression approach of Engle and Manganelli (1999).

2 See Koenker and Bassett (1982), Powell (1986), Gutenbrunner and Jureckova (1992), and
Buchinsky (1994) among others for subsequent development in quantile regression theory.

3 In the method (quantile regression) that we describe below, we estimate γ (τ ) instead of γ
(ie, γ j Qε(τ ), j = 0, 1, …, q are estimated instead of γ j) with no specific assumption on the
distributional form for ε.

4 Just as in the median regression – since the quantile regression estimation is based on a lin-
ear regression technique – corner solutions are possible. In the special case with a constant
regressor, if τn is an integer, there will be an interval of τ th sample quantiles between two
adjacent-order statistics. If τn is not an integer, the τ th sample quantile is unique.

5 Computation of the regression quantiles by linear programming is efficient, and it is
straightforward to impose non-negativity constraints on all elements of γ. Barrodale and
Roberts (1974) proposed the first efficient algorithm for L1 estimation problems based on
modified simplex method, and Koenker and d’Orey (1987) modified their algorithm to
solve quantile regression problems. Portnoy and Koenker (1997) describe a modified
simplex approach which combines statistical preprocessing with interior point methods to
make computation faster.

6 We are being conservative here. A positive risk-free return can only improve the
performance of the risk-managed portfolios. In performance measures such as the Sharpe
ratio, a small positive risk-free return will not change the relative rankings of various risk-
managed portfolios.

7 Similar results can be derived if we are mainly concerned with a yield increase.
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