
Bootstrap Refinements in Tests of Microstructure Frictions

Thomas J. George
e-mail:tom-george@uh.edu

C.T. Bauer College of Business

University of Houston

Houston, TX 77204

713-743-4762

Chuan-Yang Hwang
e-mail:cyhwang@uxmail.ntu.edu.sg

Nanyang Business School

Nanyang Technological University

Singapore

and

Tavy Ronen
e-mail:tronen2@nyc.rr.com

Graduate School of Management

Rutgers University

Newark, NJ 07102

May 2009

We are grateful to two anonymous referees, seminar participants at the University of Iowa, and
especially Joel Horowitz and Janis Zvingelis, for helpful discussions and suggestions. George ac-
knowledges financial support from the C.T. Bauer Professorship.



Bootstrap Refinements in Tests of Microstructure Frictions

Abstract

Bootstrapping is often used as a substitute for asymptotic distributions when the latter are not
available. Recent developments in the theory of the bootstrap show that combining the bootstrap
with a known asymptotic distribution yields inferences that improve on those drawn from asymp-
totic distribution theory or bootstrapping alone. We review the key to obtaining the improvement
and compare asymptotic and bootstrap inferences of three variance ratio tests used in microstruc-
ture research. The more precise bootstrap inferences lead to conclusions that differ from those
found in extant research on transitory volatility. Asymptotic tests are biased toward rejection,
and bootstrap and asymptotic critical values are not generally close to each other. These findings
suggest that the more precise bootstrap inferences should be used in future applications of these
tests, as well as in various other empirical applications where intradaily or other high frequency
data are modeled using vector autoregressions.



1. Introduction

Since Efron (1979), the bootstrap has been applied with great success in finance research as a

way to draw inferences when either the finite-sample or asymptotic distributions of test statis-

tics are not known [Goetzmann and Jorion (1992), Goetzmann (1993), Jones, Kaul and Lipson

(1994), Sullivan, Timmermanm and White (1999), and Kosowski, Timmermann, Wermers and

White (2006) are prominent examples]. In these applications, bootstrapping is used as an alterna-

tive to drawing inferences from asymptotic distribution theory. More recently, Hall and Horowitz

(1996) and Horowitz (2001) have shown that the bootstrap can be used to improve inferences in

settings where the asymptotic distributions of test statistics are known. By incorporating features

of the asymptotic distribution into the bootstrap procedure, the bootstrap distribution extracts

more information from the sample than is captured by an asymptotic distribution alone, or by a

bootstrap distribution that is constructed without incorporating information about the asymptotic

distribution.

The nature of the improvement is in the closeness with which the bootstrap distribution approx-

imates the true distribution of a test statistic under the null. In order to achieve this improvement

the bootstrap must be structured in a manner different from procedures used when the asymptotic

distribution is not known. In this paper, we review the key to attaining the improvement, or re-

finement, and explain how some popular approaches to bootstrapping contrast with it. We then

turn our attention to a specific application in the microstructure of securities markets.

Microstructure research is a fruitful setting in which to exploit bootstrap refinements for three

reasons. First, asymptotic distributions of many of the test statistics used in microstructure research

are assumed known. In cases where the assumed asymptotic distribution is correct, the refinement

we discuss is available. In cases where the assumption is incorrect, the procedure described here still

produces valid inferences even though asymptotic distribution theory does not. Second, empirical

microstructure models often employ vector autoregressions that reduce the data generating process

to a sequence of disturbances that are assumed to be iid [see Hasbrouck (1991a, 1991b, 1993, 1995)

and Huang (2002) among others]. Though refinements are available when dependence is present,

the bootstrap algorithms are especially simple to implement in the iid case. Third, the vastness of

many microstructure datasets suggests the information in samples is especially rich when compared

to what can be summarized in an asymptotic distribution. This richness plays to the strength of the

bootstrap, enabling it to achieve improvements over inferences based on asymptotic distribution

theory that are potentially substantial.
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The application we consider is a trio of variance ratio tests of whether market closures add noise

to security prices at market reopenings. Existing studies that use these tests all draw inferences

using asymptotic distribution theory and reach conflicting conclusions. We begin by documenting

that the test statistics used in these studies do not conform to their asymptotic distributions, even

when a very strong version of the null is true. We then reconsider these tests with the bootstrap

refinement, using data that is similar to the data used in the earlier studies. The conclusions of

the bootstrap tests are similar. Inferences from all three tests indicate that for a large majority of

stocks, market closures do not add significant noise to security prices at reopenings.

We also use the resampling approach that generates bootstrap distributions to characterize

properties of these variance ratio tests. This helps explain the conflicting inferences among the

asymptotic tests, and provides some guidance for which test(s) will suffer the least distortion

when used in future applications. Trading technologies, reporting requirements and the resulting

transparency of equity and bond markets have changed a great deal over the last decade, and the

richness in quality and frequency of available data has also increased. These developments provide

new data and give rise to new questions regarding the quality of markets. Since there are many

ways to estimate and draw inferences about market quality, it is important to know which metrics

and econometric tests perform well, and how best to exploit the information in the data to draw

conclusions. We believe the bootstrap methods discussed here can play a useful role in addressing

these issues to facilitate the study of these rapidly evolving markets.

The next section explains how the bootstrap must be done to get an improvement over asymp-

totic tests. Section 3 describes the background on three variance ratio tests to which we apply these

ideas, and spells out how we conduct the bootstrap and sensitivity tests. Section 4 presents the

results. Section 5 concludes. Technical descriptions of the tests and their statistics are relegated

to the Appendix.

2. Overview of the Bootstrap Refinement

There are several excellent articles that survey and critique the various approaches to bootstrapping

used in econometrics and finance [Maddala and Li (1996), Berkowitz and Killian (2000), Ruiz

and Pascual (2002) and MacKinnon (2006)]. These studies are mostly concerned with alternative

approaches to bootsrapping and their relative performance in specific circumstances when used

as a substitute for asymptotic distribution theory. In those applications, the goal is to obtain an

alternative to an asymptotic distribution that might not be known.

Our focus is different. We are concerned with illustrating how knowledge of the asymptotic
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distribution can be used in conjunction with bootstrapping to yield an improvement over standard

asymptotic inferences. In this sense the bootstrap provides a refinement of asymptotic inferences,

rather than a substitute.1 The approach is different from how bootstrapping is done in most finance

research. In fact, we explain how common bootstrap procedures that do not incorporate information

from the asymptotic distribution fit into this framework. We then apply the procedure to three

hypothesis tests in market microstructure that yield conflicting conclusions when conducted using

asymptotic distribution theory.

2.1 Approximating the Distribution of a Test Statistic

When the finite sample distribution of a test statistic is not known, inferences must be based on

an approximation to the distribution of the statistic. Consider the standard normal approximation

to the distribution of a t ratio as an example. Suppose we wish to test the null hypothesis that

a population parameter θ is equal to a particular value θo, against the alternative that θ < θo.

We would first compute a consistent estimate θ̂ and form the t ratio, n1/2
(

θ̂−θo

σ̂

)
, where σ̂2 is a

consistent estimate of the asymptotic variance of n1/2θ̂. Second, we compare the t ratio to zα, the

α percentile of the standard normal distribution where α is our tolerance for type I error.

The justification for this procedure is that if θ = θo then the true finite sample distribution

function of n1/2(θ̂ − θo)/σ̂ can be written as

P
{

n1/2(θ̂ − θo)/σ̂ ≤ x
}

= Φ(x) + R̂n(x) (1)

where Φ(x) is the standard normal distribution function, and R̂n(x) is an approximation error

that tends to zero as the sample size, n, gets large. This familiar approximation has an error

of order n−1/2 meaning that R̂n(x) tends to zero at the same rate as n−1/2. Bootstrapping is

a way to construct an approximating distribution that can be used instead of the asymptotic

distribution (i.e., instead of the standard normal in this case). When done in a particular way,

the error associated with the bootstrap approximation converges to zero faster than does the error

associated with the asymptotic distribution.

The principle behind the bootstrap is that the relationship between a population and a sample

is also shared between the sample and a sample drawn from it. Accordingly, the relationship between

1Our discussion summarizes results derived in Hall (1992). An excellent exposition of these results and extensions

is given in Horowitz (2001). In our applications, dependence is modeled using vector autoregressions (VARs), which

means that the data generating process can be reduced to iid draws of VAR disturbances. Hall and Horowitz (1996),

Zvingales (2001), and Hardle, Horowitz and Kreiss (2002) address situations with more general dependence. Our

applications also satisfy the assumptions of their “smooth function model,” so the rest of our discussion takes these

as given. The main assumptions are that the test statistic can be written as a smooth function (i.e., with sufficiently
many continuous derivatives) of sample moments of the data, that sufficiently many moments of the data are finite,

and that the distribution function of the data is absolutely continuous.
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a population parameter and the (unknown) distribution of an estimator can be approximated by

the relationship between the sample estimate and the distribution of such estimates produced

by resampling from the sample. This means the “bootstrap version” of a test statistic replaces

population values with sample values, and sample values with estimates from resampling in order

to construct the distribution.

In the example above, the bootstrap version of the test statistic is n1/2(θ∗ − θ̂)/σ∗ where θ∗

and σ∗ are estimates from a resampling of the original sample. The sample estimate θ̂ replaces θo

because θo is the population parameter value if the null is true, and θ̂ is the parameter value for

the “population” from which resampling is conducted. By repeatedly resampling and reestimating

θ∗ and σ∗, the distribution of the bootstrap version of the test statistic can be tabulated. Its

distribution function is conditional on the sample, X , which we denote by

P
{
n1/2(θ∗ − θ̂)/σ∗ ≤ x | X

}
. (2)

Moments of this distribution are not constrained to match those of the standard normal distribution,

which is why bootstrapping can yield a better approximation. Resampling captures bias and

skewness in the true (unknown) distribution of the test statistic that the normal approximation

necessarily ignores.

If the distribution of a statistic can be represented as in equation (1), then it turns out that a

representation of the same form exists for the bootstrap version of the statistic:

P
{

n1/2(θ∗ − θ̂)/σ∗ ≤ x | X
}

= Φ(x) + R∗
n(x). (3)

As with equation (1), the error R∗
n(x) converges to zero at the rate of n−1/2. In other words, the

(unknown) finite sample distribution of the test statistic, and the bootstrap distribution of the test

statistic, both converge to the standard normal distribution at the rate of n−1/2.

The substance of the boostrap refinement is that the distributions converge to each other faster

than they converge to the standard normal when the null is true. Subtracting (3) from (1) yields

P
{

n1/2(θ̂ − θo)/σ̂ ≤ x
}

= P
{
n1/2(θ∗ − θ̂)/σ∗ ≤ x | X

}
+ R̂n(x) − R∗

n(x), (4)

noting that the Φ(x) terms disappear. The bootstrap refinement is based on the fact that the

difference between the errors converges to zero faster than the individual errors converge to zero.

In this example, one can show that R̂n(x) − R∗
n(x) converges to zero at the rate of n−1 when the

null is true. The bootstrap approximation to the left-hand-side of (4) is an order of magnitude

better than the asymptotic standard normal approximation.
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The crucial element to attaining the refinement is that the leading Φ terms cancel. In other

words, the asymptotic distributions of the sample and bootstrap versions of the statistics must be

identical. This will only happen if the asymptotic distribution does not depend on any unknown

parameters. Statistics with this property are said to be asymptotically pivotal.

One must know the asymptotic distribution of the parameter of interest in order to construct

an asymptotically pivotal statistic. In the particulars of this example, one must know that under

the null, the asymptotic distribution of n1/2θ̂ is normal with a mean of θo and a variance that is

consistently estimated by σ̂2. Without this knowlege, it is impossible to know how to construct a

statistic that is asymptotically pivotal. It is by bootstrapping an asymptotically pivotal statistic

that one incorporates information about the asymptotic distribution into the bootstrap procedure,

which in turn delivers the refinement.

What if the asymptotic distribution of θ̂ is not known? In that case, it is common to ap-

proximate the distribution of the non-studentized statistic n1/2(θ̂− θo) using the distribution of its

bootstrap counterpart. This results in a bootstrap distribution of the estimator θ̂ rather than the

(studentized) test statistic. In this case, the Φ terms do not disappear from equation (4). Instead,

the difference Φ(x/σ) − Φ(x/σ̂) appears, which converges to zero at the same rate as n−1/2. In

this case, the bootstrap approximation is no better than that of asymptotic distribution theory.

However, note that this formulation of the bootstrap delivers an approximation with an error whose

order is no larger than the error associated with asymptotic distribution theory. Thus, bootstrap-

ping the distribution of an estimator that satisfies the assumptions of the smooth function model

provides an alternative to deriving an asymptotic distribution that is analytically intractable.

Another approach that is sometimes used is that of bootstrap standard errors. This involves

forming the test statistic n1/2(θ̂ − θo)/σ∗ and comparing the result to the standard normal distri-

bution. Assuming the asymptotic distribution is indeed normal, this is simply an asymptotic test

where σ∗ is used in place of σ̂ as a consistent estimator of σ—it clearly does not incorporate bias

and skewness of the distribution of the test statistic. As an asymptotic test, its approximation

error is of the order n−1/2.

A somewhat different situation arises when a statistic is improperly studentized; in particular,

when n1/2(θ̂ − θo) is divided by an estimator, say κ̂, that converges in probability to κ, which is

something other than σ. This is a case where the incorrect asymptotic distribution is assumed, and

arises in one of the tests we examine below. Since κ �= σ, the asymptotic distribution of n1/2(θ̂ −
θo)/κ̂ is obviously not standard normal, so an asymptotic test based on the standard normal is not

even valid. However, a test based on the bootstrap distribution of this statistic is asymptotically
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valid. The Φ terms do not disappear in equation (5). The difference Φ(xκ/σ) − Φ(xκ̂/σ̂) appears,

which is of the order n−1/2. In this case, the bootstrap delivers the same degree of accuracy that

could have been attained by properly studentizing and using an asymptotic test, or by using a

bootstrap test on a non-studentized statistic such as the estimator θ̂. Since the proper information

about the asymptotic distribution has not been incorporated into the bootstrap procedure, the

bootstrap refinement is not achieved.

2.2 Extensions

The analysis above relates to a one sided distribution function. For two sided distribution

functions where the critical values are symmetric about zero, the bootstrap provides an even greater

improvement over asymptotics. The standard normal approximation error is of the order n−1, while

that of the bootstrap is of the order n−3/2.

The results described so far indicate that when approximating the distribution function of an

asymptotically pivotal test statistic, the error is of a smaller order when its bootstrap distribution

is used than when its asymptotic distribution is used. Analogous results hold for approximating the

probability α of rejecting a correct null hypothesis using bootstrap and asymptotic critical values.

The error in the true rejection probability as an approximation of α is of a smaller order when

bootstrap critical values of an asymptotically pivotal test statistic are used than when asymptotic

critical values are used. Specifically, for a two sided test, using asymptotic critical values leaves an

error in the rejection probability of the order n−1, and using symmetrical bootstrap critical values

leaves an error of the order n−2 [see Horowitz (2001) section 3.3 for details]. This means that in

large samples, the probability of rejecting a correct null using the bootstrap refinement is closer to

the nominal size of the test than is the rejection probability of an asymptotic test.2

These results, of course, do not say that an arbitrary bootstrap approach to inference will

perform better than using an asymptotic distribution. If the bootstrap is merely a substitute

for an asymptotic inference, there is no a-priori reason to believe one will outperform the other.

However, bootstrapping an asymptotically pivotal statistic will perform better in situations where

both approaches are feasible and justifiable (i.e., the sample is large, an asymptotically pivotal

test statistic is available, and the assumptions of the smooth function model hold). This means

that if the nature of the experiment is such that the researcher has a choice between basing infer-

ences on the bootstrap refinement or asymptotic distribution theory, combining information in the

2Asymptotic critical values are the numbers −za and +za nearest to zero between which is 1−α of the density of
the standard normal distribution. Symmetric bootstrap critical values are the numbers −zb and +zb nearest to zero

between which is 1−α of the mass of the bootstrap distribution of the test statistic.
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asymptotic distribution with the bootstrap will perform better. This situation characterizes many

problems addressed in microstructure research. In these cases, the only reason not to bootstrap an

asymptotically pivotal statistic would be that the potential benefit is small or the programming is

difficult.3

3. Empirical Application of the Bootstrap Algorithm

3.1 Background on Pricing Error Tests

The pricing error tests we compare assess the impact of trading suspensions on the degree to

which security prices deviate from true values at market openings. Such deviations indicate an

impairment to market quality and imply greater trading costs to demanders of liquidity. Existing

studies compare the volatility of transitory components of returns at the open and the close. Most

evidence from the NYSE and other equity markets indicates that 24-hour returns computed from

opening prices are, on average, about 20% more volatile than those based on closing prices. Despite

the large magnitude of this difference, its interpretation has not been settled.

Initially, the difference in variances was attributed to the trading mechanism employed at the

open [Amihud and Mendelson (1987), and Stoll and Whaley (1990)]. Since trading on the NYSE

opens with a call auction, the interpretation of the evidence was that call auctions produce noisier

prices than continuous trading. Subsequent evidence that volatility is not greater for call auctions

that occur during the day in Japan led to the conclusion that the greater volatility of opening prices

is attributable to uncertainty about the security’s value at the open resulting from an overnight

non-trading period [Amihud and Mendelson (1991)]. Consistent with this interpretation, Gerety

and Mulherin (1994) find that the volatility of 24-hour returns computed from prices sampled later

and later within the day exhibit a declining pattern. However, the evidence in Forster and George

(1996) is inconsistent with this interpretation. They document that returns to New York stocks that

are traded (overnight) in London and Tokyo have volatility patterns that are similar to New York

stocks that do not trade in overseas markets. Their interpretation is that larger order imbalances

cause greater price concessions to liquidity providers at the open than at the close.

In addition to the debate about the economic explanation of greater volatility at the open, two

studies question the validity of the measurement techniques used in the earlier studies, and propose

distinct alternatives [Ronen (1997) and George and Hwang (2001)]. When these alternatives are

3One important example is a modestly sized sample of dependent data where the dependence cannot be modeled down

to iid disturbances. Even when implemented optimally (i.e., with asymptotically pivotal statistics), the bootstrap
refinement for dependent data is small. The bootstrap error is of the order n−5/4 versus n−1 for the asymptotic test

[see Zvingales (2001)].

7



used to analyze data for NYSE stocks, the hypothesis that pricing errors are the same at the open

and the close is not rejected. Hypothesis testing in both the initial studies and these critiques uses

asymptotic distribution theory. The technique used in the earlier studies and those proposed by

Ronen (1997) and George and Hwang (2001) are reexamined in this paper to illustrate the benefits

of the bootstrap refinement.

3.2 Properties of Pricing Error Tests

The first technique draws inferences by aggregating a cross section of return variance ratios

that are estimated separately from each other. We refer to it as the Standard approach since

it, or something similar, has been used in so many prior studies [Amihud and Mendelson (1987)

and (1991), Stoll and Whaley (1990), Gerety and Mulherin (1994), Forster and George (1996)

and others]. With the second technique, inferences are drawn from a Wald test, where return

variance ratios are estimated jointly for the securities in a sample. This approach was devised by

Ronen (1997), and was used in George and Hwang (1995). We refer to it as the Joint Estimation

approach. Both the Standard and Joint Estimation approaches are based on ratios of the variances

of open-to-open and close-to-close returns.

The test statistic of the Standard approach is a t-statistic constructed for the null that the

cross sectional average variance ratio in a sample of stocks is equal to one. The construction of

this t-statistic implicitly assumes that the variance ratios are independent draws from the same

distribution, and attempts to test the null that the mean of this distribution is one. However,

since the draws are neither independent nor identically distributed, this statistic is improperly

studentized (see the Appendix for details). The Joint Estimation approach is a Wald test for

whether the vector of variance ratios of a sample of stocks is equal to the vector of ones. Since this

statistic allows for cross sectional dependence and differences in second moments of the distributions

from which variance ratios are drawn, it is properly studentized. In fact, this statistic is the properly

studentized version of the statistic used in the Standard approach.

The third technique draws inferences based on ratios of pricing error variances that are esti-

mated using time series variance decomposition techniques as in Hasbrouck (1993). The details of

this approach are contained in George and Hwang (2001); we refer to it as the Variance Decomposi-

tion approach. This test is based on the ratio of variances of the transitory components of returns

at the open and the close, estimated from a vector auto-regression (VAR). With this approach,

hypothesis testing is done for each individual stock. For each stock, the test statistic is a t-statistic

that tests whether the variance ratio for that stock equals one.
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The relation between the bootstrap ideas described above and these tests can be summarized

as follows (see the Appendix for details). The Variance Decomposition approach is based on asymp-

totically standard normal properly studentized statistics like the one described in section 2 above.

The bootstrap version of this test achieves the refinement. The Joint Estimation method is based

on a statistic that is asymptotically chi-square. It turns out that the asymptotic and bootstrap

approximation errors of such tests behave like those of a two sided symmetric asymptotically stan-

dard normal test—i.e., the rejection probability of the chi-square approximation has an error on

the order of n−1 while the rejection probability of the bootstrap test has an error on the order of

n−2 [see Horowitz (2001)]. The bootstrap version of this test also achieves the refinement. The

Standard approach is based on a statistic that is improperly studentized, so the asymptotic test is

invalid and the bootstrap version of this test does not achieve the refinement—i.e., its error is of

order n−1. Taken together, this means that the bootstrap inferences of the Variance Decomposi-

tion and Joint Estimation approaches are more reliable than those of the Standard approach; and

that the asymptotic inferences of the Standard approach are meaningless. Nevertheless, we report

the results of both versions of all three tests to assess the validity of conclusions reached in prior

research.

To quantify how distorted asymptotic tests might be, we generate simulated samples under

the restriction that the dynamics of daytime and overnight returns are the same.4 This restriction

is even stronger than the null hypothesis that pricing errors are the same at the open and the close.

For each simulated sample, we construct test statistics for the two tests that employ t-ratios as

test statistics. The empirical distribution of each test statistic under this strong version of the null

is tabulated from the collection of simulated samples. Moments of these distributions are given in

Table 1. Two observations are noteworthy. First, there is bias, skewness and excess kurtosis in

these distributions; meaning they depart from the standard normal asymptotic distributions they

are usually assumed to follow. Second, as can be seen from the Variance Decomposition approach,

the severity of these departures is quite different across individual securities. In one instance, the

Kolmogorov test is unable to reject the null that the shape of the distribution is standard normal,

though the null is rejected in the other five cases. It is, therefore, impossible to know ex-ante

whether distortions in asymptotic tests are sufficiently tame for a particular sample to justify their

4The simulated samples are generated as follows. First, actual daytime and overnight returns data for each individual

stock are fit to a bivariate VAR (equation (10) in the Appendix). The VAR parameter estimates describe the true

return dynamics for each stock. In order to generate simulated data in which the daytime and overnight returns

have the same dynamics, we (i) replace overnight parameter estimates with daytime parameter estimates and (ii)
re-scale the VAR residuals to have equal variances. The simulated samples are then generated from the modified

VARs by selecting a random starting point and randomly resampling the rescaled residuals.
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use. These results suggest that potentially large distortions are associated with inferences based

on asymptotic distribution theory. These distortions are what bootstrap refinements address.

3.3 Bootstrap Algorithm

Table 1 deals with fictitious data created to satisfy the null. This was simply a simulation,

not bootstrapping. In order to generate bootstrap distributions of the statistics used in the three

tests described above, we resample randomly and with replacement from the original sample. The

object that is resampled can be the sample analog of either a random vector that is iid, or a

block of serially correlated random vectors. In the Variance Decomposition test, the disturbances

to the VAR are assumed to be iid, so the sample analog of the disturbance vectors (i.e., the

residual vectors) are resampled in order to bootstrap the distributions of the statistics used by

that approach [see MacKinnon (2006)]. For simplicity, and to ease comparison across methods,

this same procedure is used to bootstrap the statistics used by the Standard and Joint Estimation

approaches. Specifically, the data are assumed to follow a VAR (equation (10) in the Appendix),

and bootstrap distributions are generated by resampling the residuals from this VAR. Following

George and Hwang (2001), we use a VAR of order two. This specification models serial dependence

in returns to a lag of 48 hours, which is more than sufficient to capture the 24 hours of dependence

reflected in the covariance terms of the variance ratios used by the Standard and Joint Estimation

approaches (see equation (10) in the Appendix). Parameters of the VAR are estimated from the

original sample.5

To generate a bootstrap resample, a starting date is randomly selected from the original sample.

Daytime and overnight returns from that date and the prior date are used in the VAR as initial

observations to start the recursion. These returns are the first two observations in the bootstrap

sample. A vector of VAR residuals is selected randomly from the set of residuals obtained when the

VAR was fit to the original sample. Substituting this residual vector and the starting date returns

into the fitted VAR generates the third observation in the bootstrap sample. This observation

is then substituted into the fitted VAR along with another randomly chosen residual vector to

generate the fourth observation, etc. This process is continued until the bootstrap sample contains

the same number of observations as the original sample.

The resampling process is carried out jointly for all securities in a quartile group (quartile

groupings are described in section 4.1 below). In particular, if the original date t residual for stock

i is the random draw determining the kth observation in the bootstrap sample for stock i, the date

5See Hasbrouck (1991a) and George and Hwang (2001) for structural models that justify the VAR specification.
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t residual for stock j is used to generate the kth observation in the bootstrap sample for stock

j as well. This is done to preserve whatever cross sectional correlation exists among the returns.

Preserving this correlation is necessary because its impact on inferences could differ across the three

approaches.6

Once a bootstrap sample is generated jointly for all 20 stocks in a quartile group, one of the

estimation and inference procedures described in section 3.2 above is applied, and the bootstrap

version of the corresponding test statistic(s) is computed.7 This produces the first draw from the

bootstrap distribution of the test statistic(s) for that procedure. The entire process is then re-

peated. A new starting date is selected randomly from the original sample, residuals are randomly

drawn and substituted into the fitted VARs to generate a new bootstrap resample jointly for all

20 stocks. The estimation procedure is applied to this resample and the bootstrap version of the

test statistic(s) is computed, producing the second draw from the bootstrap distribution of the test

statistic(s). This continues until the bootstrap distribution stabilizes.8 The Standard and Joint Es-

timation procedures generate a single test statistic for the entire cross section of stocks in a quartile

group; so this process will produce one bootstrap distribution per quartile group. The Variance

Decomposition procedure generates a test statistic for each stock. Since we include 20 stocks in

each quartile group, this procedure produces 20 bootstrap distributions per quartile group.

3.4 Comparison of Rejection Probabilities Between Asymptotic and Bootstrap Tests

The procedure described in the previous subsection produces a set of asymptotic and bootstrap

inferences for the variance ratio tests studied here. We can also examine properties of these tests

because our sample is representative of the true data generating process.

We examine the nature of biases in the asymptotic tests by comparing rejection frequencies of

the asymptotic and bootstrap versions of each test. We know from the discussion above that the

6Some observations are missing from the original sample. If missing data are chosen as the random starting point,

or if a missing residual is randomly chosen, missing observations would propagate through the remainder of the

bootstrap resample. To prevent this, we sample starting points and residuals randomly and with replacement from

those that are non-missing in the original sample. After generating each bootstrap resample, we overwrite missing

values in the same places they appeared in the original sample. Our treatment of missing data attempts to make

the impact of the data collection technology on the bootstrap distribution as similar as possible to its impact on the

distribution of the test statistic from the original sample.
7We work with one procedure at a time. We do not generate a single bootstrap resample and apply all three

procedures to it.
8The criterion we use for determining whether the distribution has stabilized is to start with 100 draws, then increase

the number of draws (for all three methods) in steps of 25 until the inferences (for all three methods) are unchanged

through two such increases. The results in the tables that follow reflect 175 draws. Inferences for at least one method
changed when stepping from 100 to 125, but inferences for none of the methods changed when stepping from 125 to

150 and again from 150 to 175.
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bootstrap version of each test has a smaller size distortion than the asymptotic version. Comparing

the frequency with which the two versions of a test reject the null gives an indication of the

direction of the distortion in asymptotic inferences. For example, if the asymptotic test rejects

more frequently than the bootstrap test, we conclude that the size distortion in the asymptotic

test leads to over rejection of the null. Knowing the nature of the distortion helps us interpret the

direction of biases in inferences drawn in existing studies that use asymptotic tests.

To estimate the rejection probability of an asymptotic test, we generate a simulated sample

from the true return generating process (i.e., resample from the original sample in the manner

described in section 3.3 above, and not as done to produce Table 1), compute the test statistic,

check whether its value is extreme relative to critical values of the asymptotic distribution under

the null, and record whether this comparison indicates a rejection of the null. This process is

repeated, and the proportion of times the null is rejected is an estimate of the rejection probability

of the asymptotic test in samples that are consistent with the true return generating process.9 In

our applications this involves estimating the VAR parameters, then generating simulated samples

by sampling from the VAR residuals with replacement.

For inferences conducted using the bootstrap, the procedure is the same except that an entire

bootstrap distribution of the test statistic is generated for each simulated sample. If the value

of the test statistic is extreme compared to critical values from this bootstrap distribution, the

null is rejected in this simulated sample. Our hypothesis tests on the original sample employ

bootstrap distributions constructed from 175 resamplings. If rejection frequencies are computed by

simulating 100 samples that are consistent with the true return generating process, this procedure

would involve 175 × 100 iterations of a resampling of some sort—one bootstrap distribution for each

simulated sample. This makes computing the rejection frequencies of bootstrap tests generally very

resource intensive, and nearly impossible for tests such as the Variance Decomposition approach

where estimation and inference are conducted security by security for a moderately sized cross

section of securities.

To reduce the problem to a manageable size, we simulate only 50 samples, with 175 boot-

strap replications per sample. We then compute rejection frequencies for the two extreme quartile

groups—those that contain the most active and least active stocks. The entire quartile group is

used for the Standard and Joint Estimation tests so that cross sectional correlation affects their

9Horowitz and Savin (2000) point out that the common procedure of simulating samples that are not consistent
with the true data generating process (e.g., by constraining the resampling so that the null is necessarily true) is a

waste of time because it serves only to compute rejection probabilities in cases that are empirically irrelevant.
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rejection frequencies in the same manner as it affects the asymptotic and bootstrap inferences.

Since the Variance Decomposition tests are done stock by stock, we reduce the number of stocks

per quartile group to ten for just these tests.

4. Data and Results

4.1 Data

All NYSE listed stocks on CRSP are assigned to quartiles by average daily dollar volume for

the period 1990 - 1992.10 The top 50 stocks in each quartile are then ranked alphabetically by ticker

symbol. Our sample consists of the first 20 stocks from this alphabetical ordering that have data

available on the ISSM files during that period. This results in four quartile groups containing 20

stocks each.

Continuously compounded returns are computed from the transaction prices, cash distribu-

tions, stock dividends, and stock splits reported in the ISSM files. For consistency with the earlier

studies, the Standard and Joint Estimation approaches are implemented using raw returns. The

Variance Decomposition approach uses residuals from a regression of raw returns on day-of-week

and turn-of-year dummies. Variance ratio estimates, test statistics, bootstrap distributions of test

statistics, and rejection frequencies are computed in the manner described in section 3 above.

Table 2 reports information on sample sizes employed by the various approaches. For the

Standard and Variance Decomposition approaches, estimation is done security by security, so the

table reports attributes of the cross sectional distribution of the sample sizes for the individual

securities. Most of the stocks have samples exceeding 730 observations. For the Joint Estimation

approach, estimation is done jointly for all securities. The sample sizes for this test are considerably

smaller, consisting of the number of time series observations that are non-missing for all securities.

Quartile 1 has a sample size of over 730 observations, but the other quartiles have between 167 and

479 observations.

4.2 Bootstrap Refinement Results

In this section, we report the results of drawing inferences using asymptotic distribution theory

and the bootstrap refinement for the three methods described above. The two issues we want

10We selected this time period because it is close to those used in the earlier studies, which mostly use data from the

1980s. We want to isolate the impact of the choice of inferential technique, and did not want differences between our

findings and those reported in earlier studies to be driven by possible regime changes in the data generating process

that might have occurred later as a result of liberalized opportunities for after hours trading and decimalization.
Indeed, the asymptotic inferences in our sample match those of the studies that use earlier data. In section 4.4 we

report results for a more recent sample.
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to address are: (i) whether tests using the bootstrap refinement indicate that pricing errors are

statistically different at the open and the close, and (ii) whether inferences drawn from bootstrap

tests are different from those of asymptotic tests.

Table 3 reports asymptotic and bootstrap critical values for all three approaches. The Stan-

dard and Joint Estimation approaches result in one test statistic per quartile group; the Variance

Decomposition approach results in one test statistic per stock. The panels report the test statistics,

and their asymptotic and bootstrap critical values. The results indicate that: (i) the bootstrap

inferences of all three tests lead to the conclusion that for a large majority of stocks, pricing errors

are not different at the open and close, and (ii) the bootstrap and asymptotic inferences differ for

the Standard approach but not for the Joint Estimation or Variance Decomposition approaches.

The results for the Standard approach indicate that the “asymptotic” and bootstrap inferences

are different for stocks in the most and least actively traded quartile groups.11 For the most active

stocks, the “asymptotic” test rejects the null, but the bootstrap test does not. The “asymptotic”

rejection is consistent with the findings in other studies that focus primarily on active stocks [e.g.,

Amihud and Mendelson (1987) for the Dow 30 stocks, Amihud and Mendelson (1991) for the

most active stocks on the Tokyo Stock Exchange, and Forster and George (1996) for NYSE stocks

with international cross listings]. However, the “asymptotic” test is improperly studentized and

is therefore not valid. The fact that the valid bootstrap test does not reject indicates that the

inferences drawn in earlier studies that use this technique are probably in error. For the least

active stocks, the “asymptotic” test does not reject the null, but the bootstrap test does reject.

Even the bootstrap results should be regarded as tentative. The fact that the test statistic is

improperly studentized means that the bootstrap Standard test does not achieve the refinement

and, therefore, is not as reliable as the bootstrap versions of the Joint Estimation and Variance

Decomposition tests.

Inferences using the Joint Estimation approach are the same for asymptotic and bootstrap

based tests. All four quartiles fail to reject the hypothesis that the vector of return variance ratios

is different from the vector of ones; even the least active quartile group.12 These inferences are

11We write “asymptotic” in quotations because this test is not valid; the test statistic is improperly studentized.
12The bootstrap critical values are very wide for the least active group, indicating that the bootstrap approximation

to the true distribution of the test statistic has much greater dispersion than that of the chi-square approximation

of asymptotic distribution theory. This suggests that the asymptotic test will tend to reject the null too frequently,

which is confirmed in the next subsection. However, this tendency depends on the sample. The bootstrap test has

narrower critical values than the asymptotic test when applied to data from the 1996 - 1999 period examined below.
This illustrates the strength of the bootstrap over asymptotic distribution theory. The bootstrap critical values

adapt to differences in the sampling distributions of parameters across different populations.

14



the same as Ronen’s (1997) asymptotic test on the Dow 30 stocks for the period 1982 to 1986.

Asymptotic and bootstrap inferences using the Variance Decomposition approach are very similar

also. Using the asymptotic test, five stocks reject the null that the pricing error variance ratio

is equal to one, and the rejections favor the alternative that the ratio is less than one. This is

qualitatively the same inference drawn by George and Hwang (2001) using a sample of 100 stocks

during 1986 - 1989. Using the bootstrap test, three stocks reject, and these three happen to be a

subset of the five that reject using the asymptotic test.

It is useful to compare asymptotic and bootstrap critical values. The greater is the difference

between them, the stronger is the case for adopting a bootstrap approach to inference when using

these test statistics. This issue is not germane to the Standard approach. Since its “asymptotic”

test is not valid, the researcher does not have a choice but to bootstrap when using this test.

For the Joint Estimation approach, asymptotic and bootstrap critical values differ by orders of

magnitude for two of the four quartiles, suggesting that whether one uses asymptotic or bootstrap

based tests could dramatically affect the inferences drawn. For our samples, it turns out that

bootstrap critical values lie outside those of the asymptotic chi-square approximation. This suggests

that asymptotic inferences are likely to reject too often. We will have more to say about this when

we estimate rejection probabilities below.

For the Variance Decomposition approach, asymptotic and bootstrap critical values are very

different for many of the stocks. As a measure of this, 44 of the 80 bootstrap critical values are

greater than three in absolute value, and seven are less than 1.5, compared to the critical values of

-/+ 1.96 for the asymptotic test. Though these differences did not affect the conclusion drawn with

respect to our sample, they do suggest that whether one uses asymptotic or bootstrap methods

could affect inferences in other samples enough that bootstrapping is worth the extra trouble.

To summarize, the bootstrap inferences convey a consistent message—pricing errors are not

significantly different at the open than at the close for most stocks. For the Standard approach,

“asymptotic” and bootstrap inferences differ. For the Joint Estimation and Variance Decomposition

approaches, the asymptotic and bootstrap inferences are almost identical but the critical values

are not. In many cases, the asymptotic and bootstrap critical values are different by orders of

magnitude, indicating that in applications of these tests to other samples, the asymptotic inferences

could be very different from their more precise bootstrap refinement counterparts.

4.3 Rejection Frequencies

Table 4 reports the results of comparing rejection frequencies of asymptotic and bootstrap
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refinement tests. For a given test, rejection frequencies indicate the nature of the bias in the

asymptotic test relative to the more precise bootstrap test. If the rejection frequencies are not

similar, it means that the asymptotic test is likely to produce a distorted inference.

With the Standard approach, the “asymptotic” test over rejects for active stocks relative to the

more precise bootstrap test. This is the basis for our earlier assertion that “asymptotic” inferences

in the existing literature, which reject for samples that are primarily active stocks, are likely to

be in error. For inactive stocks, the “asymptotic” test under rejects. This is consistent with our

earlier finding that for inactive stocks, the bootstrap test rejects, but the “asymptotic” test does

not.

With the Joint Estimation approach, the asymptotic test strongly over rejects, especially for

active stocks. Although the asymptotic test is valid, the bootstrap test rejects far less frequently.

This suggests that the refinement achieved by bootstrapping is very likely to affect the conclusion

one draws from samples such as ours, even though the inferences from our particular sample turned

out to be the same for asymptotic and bootstrap tests. It is advisable to use a bootstrap test for

drawing inferences with this approach in order to avoid this distortion.

For the Variance Decomposition approach, the average (across ten stocks) rejection frequencies

for the asymptotic and bootstrap tests are similar, with a slight tendency for the asymptotic test

to over reject. A similar picture emerges from the maximum differences between asymptotic and

bootstrap rejection frequencies. The maximum is more relevant than an average if the test is used

on a single stock or to describe cross sectional differences among stocks because it illustrates how

far off an inference can be for a given stock. The maximum difference is only 4% for active stocks,

but is 40% for inactive stocks. This suggests that if this test were used on active stocks (either

individually or a sample), the conclusions drawn would probably not depend on whether asymptotic

or bootstrap distributions were used for inference. However, if used on individual inactive stocks,

bootstrapping to achieve the refinement would be advisable to avoid a potentially large distortion.

Taken together, these results indicate that the “asymptotic” version of the Standard test should

never be used. The bootstrap version of this test is not as precise as the bootstrap version of the

Joint Estimation test, so if one goes to the trouble of bootstrapping, the Joint Estimation test is

preferred over the Standard test. The asymptotic Variance Decomposition test seems to be better

behaved than the asymptotic version of the Joint Estimation test, especially for active stocks. So

in future applications, the Variance Decomposition test is preferable to the Joint Estimation test,

especially if the researcher does not go to the trouble of bootstrapping.
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4.4 Bootstrap Results for a More Recent Sample

The tests above use data from 1990-1992 to ensure comparability of our asymptotic inferences

with many existing studies and to show that using the bootstrap makes a difference in those

inferences. We now examine a more recent sample to address whether the conclusions about

market closures and pricing errors drawn from the earlier sample also apply to a more recent time

period.

We construct a sample using data from 1996 - 1999 that has the same structure as the sample

described above. NYSE stocks on CRSP were ranked by quartile of CRSP dollar volume, then the

top 20 stocks alphabetically by ticker symbol were included in each quartile group. Dividends and

split information are obtained from CRSP and used to adjust prices in the TAQ database. The

adjusted TAQ prices are then used to compute the returns used in the analysis.

Table 5 presents results for the Joint Estimation and Variance Decomposition approaches.13

The results for the Variance Decomposition approach are very similar to those in Table 3 using

the older sample: just a few securities reject the hypothesis that pricing errors are the same at the

open and the close in favor of the alternative that pricing errors are smaller at the opening. There

are four such securities in total—two in quartile 3 and two in quartile 4.

The results for the Joint Estimation approach are different from Table 3 because variance

ratios are estimated more precisely in this sample than in the sample analyzed in Table 3. The

bootstrap critical values in this table uniformly lie inside the asymptotic critical values, whereas the

opposite is true in Table 3. This illustrates a strength of the bootstrap refinement over asymptotic

distribution theory. Bootstrap critical values adjust to differences in the sampling distributions of

test statistics across populations and asymptotic critical values do not.

Here, the bootstrap tests rejects the null that all variance ratios in the quartile group are

equal to one for quartile groups 1, 3 and 4. There are no rejections in Table 3. The rejections for

quartiles 3 and 4 reflect the rejections the Variance Decomposition bootstrap test detects for those

quartiles, where pricing errors are smaller at the opening. The rejection for quartile 1 indicates

that although no single variance ratio departs reliably from one in the Variance Decomposition

test, the group jointly does reject the null (similar to a regression F test rejecting when none of the

t tests reject).14 To understand this, note that the narrowest bootstrap critical values correspond

to negative t statistics for quartile 1 of the Variance Decomposition results. The cross-sectional

13We exclude the Standard approach at this point because it can be ruled out on a-priori grounds. The test statistic

is improperly studentized and its bootstrap version is not as precise as the others.
14The Joint Estimation test statistic is based on a precision-weighted average of the individual estimates.
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correlation between the t statistics and absolute critical values is 0.45—i.e., narrower critical values

are associated with more negative t statistics suggesting that the most precisely estimated ratios in

quartile 1 are those that are less than one. Thus, the rejection by the Joint Estimation approach

for quartile 1 appears to reflect the impact of pricing errors that are less at the open than the

close similar to quartiles 3 and 4. The policy implications of these results are the same as the

conclusions drawn using the older data—regular market closures do not induce large errors into

reopening prices. In fact, reopening auctions might enhance market quality in the more recent

sample.

5. Conclusions

The bootstrap has been used for almost three decades as a way to construct a substitute for the finite

sample or asymptotic distribution of a test statistic. More recently, Hall and Horowitz (1996) and

Horowitz (2001) illustrate how bootstrapping techniques can be used to improve or refine inference

when asymptotic distributions are known. This way of using the bootstrap has not been emphasized

in Finance research. In this paper we argue that microstructure applications are especially well

suited to this application of the bootstrap for three reasons. First, asymptotic distributions of

many of the test statistics used in microstructure research are known. Second, structural models

estimated in microstructure typically reduce the sample to a sequence of iid disturbances, which

makes bootstrap algorithms easy to implement. Finally, microstructure data is very rich in terms

of the breadth of samples and the frequency with which variables are observed. Since the bootstrap

improves on asymptotics by capturing features of the data that asymptotic distributions ignore,

the richness of microstructure data suggests that the improvement associated with bootstrapping

is potentially large and well worth the trouble.

Even in fictitious data sets in which the null is necessarily true, test statistics may not conform

to their asymptotic distributions. Indeed, in the empirical application we consider here, we show

that variance ratio test statistics typically used in microstructure studies do not conform to their

asymptotic distributions. Moreover, the severity of the departures depends on the data. We then

illustrate how a bootstrap approach can be used to draw more precise inferences, and compare

asymptotic and bootstrap inferences of three variance ratio tests of the magnitudes of microstructure

induced errors in security prices.

The bootstrap based inferences indicate that pricing errors do not affect opening and closing

prices differently. This is contrary to the asymptotic inference drawn in many existing studies. The

implication for market design is that, for most stocks, trading suspensions do not result in reopening
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prices that are especially noisy or especially clear as signals of security value. This suggests, for

example, that decisions about whether to adopt ’round-the-clock trading can be made without

regard to whether regular trading suspensions lead to reopening prices that reflect information

more or less accurately than prices that follow periods of ongoing trading.

For all three tests, bootstrap and asymptotic critical values are not generally close to each

other. We also document that in many cases, the size distortions associated with not bootstrap-

ping are large. These findings suggest that the more precise bootstrap inferences yield meaningful

improvements over those based on asymptotic distribution theory in applications of all three meth-

ods. Thus, in applying these tests to other samples, bootstrapping merits serious consideration.

It is useful to contrast the work in this paper with that of Andersen, Bollerslev and Das

(2001), who also encounter test statistics that deviate from their asymptotic distributions. Their

application is quite different from ours, as they consider variance ratio tests of rates of information

flow using high frequency (5-minute) returns data. Nevertheless, like us, they find that the test

statistics commonly used do not conform to their asymptotic distributions even when the null is

true. Andersen, et.al. address the problem by building more structure into the estimation. Our

approach calls for drawing inferences relative to distributions that better approximate the true

distribution of the test statistics under the null. Both approaches improve the quality of inferences,

and complement each other in applications. Good research exploits the richness of theory by

tailoring the specifications of empirical models to incorporate fully theory’s predictions. In a similar

way, bootstrap refinements exploit the richness of information in the sample by basing inferences

on distributions that incorporate important features of the data more fully than is possible using

asymptotic distributions.
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APPENDIX

Details of the Estimation Techniques

With the exception of George and Hwang (2001), existing studies compare pricing errors at

the open and close using a ratio of overlapping return variances:

Υ =
V o

V c
=

Var [Ro
t ]

Var [Rc
t ]

, (5)

where Ro
t is the 24-hour continuously compounded return based on opening prices, and Rc

t is the

24-hour continuously compounded return based on closing prices. The justification for using this

ratio is a simple model in which the log cum-dividend prices generating these returns are the sum

of two components:
po

t = mo
t + so

t

pc
t = mc

t + sc
t ,

(6)

where po
t and pc

t are the log of the observed opening and closing prices on day t, and mo
t and mc

t

are the log of the security’s true value (defined as the security’s price in a frictionless market). The

pricing errors, so
t and sc

t , exist because markets are not frictionless. Inventory control, the non-

information based component of the bid-ask spread, price discreteness, and transient liquidity effects

all contribute to pricing errors. Pricing errors are assumed to have unconditional means of zero,

so variances measure their average (squared) magnitudes at the open and close Var [so
t ] = E[(so

t )
2],

and Var [sc
t ] = E[(sc

t)2]. These variances are inverse measures of market quality.

The true value of the security is assumed to evolve as a random walk:

mo
t = mc

t−1 + εco
t

mc
t = mo

t + εoc
t ,

(7)

where εco
t , and εoc

t are the innovations in the true value overnight and during the trading day,

respectively. As information innovations, they have expectation zero, are serially independent, and

independent of each other. The variances of these innovations will differ if the rates at which

information flows into prices are different during the day and overnight.

Open-to-open and close-to-close returns are given by

Ro
t = po

t − po
t−1 = εoc

t−1 + εco
t + so

t − so
t−1,

Rc
t = pc

t − pc
t−1 = εco

t + εoc
t + sc

t − sc
t−1.

(8)

Thus, 24-hour returns are composed of a 24-hour true value innovation, and a pricing error com-

ponent. The variance ratio in equation (5) can be written as:

Υ =
V o

V c
=

Var
[
εoc
t−1 + εco

t

]
+ Var

[
so

t − so
t−1

]
+ 2Cov

[
εoc
t−1 + εco

t , so
t − so

t−1

]
Var [εco

t + εoc
t ] + Var

[
sc

t − sc
t−1

]
+ 2Cov

[
εco
t + εoc

t , sc
t − sc

t−1

] . (9)
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The first term in the numerator and denominator are equal. Assuming that the covariance terms

are equal, empirical evidence that the variance ratio does not equal one implies that the average

magnitude of pricing errors at the open and close differ from each other. Variance ratios that exceed

one are typically interpreted to imply that price discovery is less precise (more noisy) at the open

than at the close.

Most of the studies in this area employ a method of inference that is based on Amihud and

Mendelson (1987), which we refer to as the Standard approach [see also Amihud and Mendelson

(1989), Amihud and Mendelson (1991), Stoll and Whaley (1990) and Forster and George (1996)].

The variance of open-to-open returns, and the variance of close-to-close returns, are estimated for

each security individually as the average squared deviation of the return from its sample mean. The

variance ratio estimate for stock i is the ratio of these two individual return variance estimates:

Υ̂i = V̂ar[Ro
it]

V̂ar[Rc
it

]
. Inference is based on a t-statistic whose numerator is the cross sectional average of

the variance ratio estimates, and whose denominator is the standard deviation of the cross section

of variance ratio estimates. This t-ratio is compared to critical values from a standard normal

distribution. Formally, the null hypothesis that 1
n

∑n
i=1 Υi = 1 is tested with a cross sectional

t-statistic specified as:

n1/2
(
Ῡ − 1

)
/σ̂(Υ̂) ∼asy N(0, 1),

where Ῡ = 1
n

∑n
i=1 Υ̂i, and σ̂(Υ̂) is the sample (cross sectional) standard deviation of the Υ̂is.

These studies document that Ῡ is approximately 1.2, and reject the null.

Ronen (1997) questions this approach. She points out that drawing inferences from a cross

sectional distribution of variance ratios implicitly assumes that the estimates are independent draws

from an identical distribution. This is unlikely because variance ratios are estimated using returns

from the same time period for all stocks in the sample—the draws are not independent. Moreover,

there is no reason to believe that the sampling distribution of Υ̂i is the same for all stocks in the

sample.15 Consequently, σ̂(Υ̂)2 is not a consistent estimator of the asymptotic variance of n1/2Ῡ.

From the perspective of the bootstrap discussed in section 2, this means that the test statistic of

the Standard approach is improperly studentized.

To overcome the deficiencies of the asymptotic Standard test, Ronen advocates an approach

in which all variance ratios are jointly estimated using Hansen’s (1982) generalized method of

15Without these strong assumptions

Var[n1/2Ῡ]= 1
n

∑
n

i=1
Var[Υ̂i]+ 1

n

∑
i

∑
j �=i

Cov[Υ̂i ,Υ̂j].
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moments (GMM), and inference conducted by way of a joint test that the vector of variance ratios

equals the vector of ones. This procedure accounts for cross sectional correlations, and differences

in the sampling distributions of the individual variance ratio estimates. We refer to this as the

Joint Estimation approach.

Ronen’s variance ratios are estimated by setting to zero the following (exactly identified) system

of moment restrictions jointly for all n stocks in the sample:

g(Υ1, . . . ,Υn, V c
1 , . . . , V c

n ) =
1
T

T∑
t=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Ro
1,t)2 − Υ1V

c
1

...
(Ro

n,t)2 − ΥnV c
n

(Rc
1,t)2 − V c

1

...
(Rc

n,t)2 − V c
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ro
i,t and Rc

i,t are open-to-open and close-to-close returns for stock i, V c
i is the variance of the

24-hour return based on closing prices for stock i, and Υi = V o
i

V c
i

is the ratio of the opening variance

to the closing variance for stock i. Ronen tests the null hypothesis, H0 : [Υ1, · · · ,Υn]′ = [1, · · · , 1]′
with a Wald statistic specified as:

T × (Υ̂ − ι)
′

︸ ︷︷ ︸
1×n

Σ̂−1
Υ︸︷︷︸

n×n

(Υ̂ − ι)︸ ︷︷ ︸
n×1

∼asy χ2(n),

where ι is an n × 1 vector of ones, and Σ̂Υ is a consistent estimator of the asymptotic covariance

matrix of T 1/2Υ̂. Using this procedure, Ronen does not reject the null for a sample of NYSE stocks

that is almost identical to that of Amihud and Mendelson’s (1987) sample. She attributes the

discrepancy to the fact that inferences in the earlier studies are invalid.16

Finally, George and Hwang (2001) offer a procedure that isolates the variances of pricing

errors from their covariances with information innovations to estimate the ratio Γ ≡ Var[so
t ]

Var[sc
t ]

for

each individual security.17 They estimate parameters for each security using GMM, which provides

an asymptotic sampling error structure of the parameters for each stock. Inferences are then

conducted at the individual security level.

16Ronen’s (1997) results are not likely to be a consequence of a low power test. George and Hwang (1995) estimate

variance ratios for Tokyo stocks using the Joint Estimation approach, and reject the hypothesis that the ratios are

equal to the vector of ones for three of the four quartiles of trading activity examined. Their most active quartile

rejects in favor of the alternative that the variance ratios are greater than one, while the two quartiles of least active

trading reject in favor of the alternative that the variance ratios are less than one. They attribute this difference to

the impact of price limit rules on the Tokyo Exchange.
17Their approach actually provides joint estimates of the variances of the temporary and permanent components of

returns (i.e., so
t ,sc

t ,εoc
t , and εco

t in equations (6) and (7)) for each security.
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George and Hwang (2001) model the daytime and overnight returns to an individual stock,

xt ≡ (rdt, rnt)′, as a vector auto-regression of order two:

Axt = B1xt−1 + B2xt−2 + ut ut ∼ iid(0 , Ω). (10)

(Though we have not included an i subscript, the parameters of the VAR are indeed different for

each stock.) Theorem 1 in their paper gives closed form expressions for the variances of εco
t , εoc

t , so
t

and sc
t in terms of the auto-regressive parameters A,B1, B2 and Ω. These expressions provide

the functional form γ(·), of the relationship between the ratio of pricing error variances and the

auto-regressive parameters Γ ≡ Var[so
t ]

Var[sc
t ]

= γ(A,B1, B2,Ω). Their variance ratio estimate for an

individual stock is Γ̂ = γ(Â, B̂1, B̂2, Ω̂), where the parameters Â, . . . , Ω̂ are estimated separately

for each stock using GMM.18 Hypothesis tests are based on asymptotic normality of functions of

the GMM estimators. George and Hwang’s test statistic for Ho : Γ = 1 is

T 1/2(Γ̂ − 1)/σ̂(Γ̂) ∼asy N(0, 1)

where σ̂(Γ̂)2 is a consistent estimator of the asymptotic variance of T 1/2Γ̂. We refer to this as the

Variance Decomposition approach.

George and Hwang (2001) study four quartile groups, each containing 25 stocks, for the period

1986 - 1989. They find that pricing errors at the open and close are not significantly different for

most stocks. However, when differences do exist, pricing errors at the close tend to be greater than

at the open.

18Mean effects associated with day of the week and turn of the year are accounted for by estimating regressions of

each return variable on an intercept, indicators for each of Tuesday through Friday, and an indicator for the first
fourteen days of January. The residuals from these regressions (estimated separately for each security) are then used

to estimate the vector auto-regressions.
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Table 1  
Simulated Distributions of Test Statistics Under the Null 

 
This table reports moments of distributions of test statistics for Traditional and Variance Decomposition approach, and significance levels of a Kolmogorov-
Smirnov test of whether the distribution is standard normal.  Test statistics are computed for samples simulated under the constraint that the dynamics of 
overnight returns matches that of daytime returns.  Each distribution below is tabulated from 175 simulated samples.  From a given simulated sample, the 
Traditional Approach computes a single test statistic from a cross-section of 20 stocks, whereas the Variance Decompositon Approach computes a test statistic 
for each stock.  For the Variance Decomposition Approach only five stocks were included chosen by alphabetical order of their ticker symbol from quartile 1 
(most actives) of our sample. 

 
Traditional Approach 

 Simulated 
 t-ratios 

Median 0.287 
Mean 0.196 

Standard Deviation  0.813 
Skewness -0.293 

Excess Kurtosis 0.184 
Kolmogorov-Smirnov significance level < 1% 

 
Variance Decomposition Approach 

 Simulated t-ratios 
 Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 

Median -0.184 -0.099 -0.625 -0.277 -0.217 
Mean -0.440 -0.243 -0.699 -0.414 -0.560 

Standard Deviation  1.270 1.048 1.175 0.949 1.475 
Skewness -1.599 -0.517 -0.189 -0.611 -1.911 

Excess Kurtosis 6.711 -0.012 -0.322 0.252 5.959 
Kolmogorov-Smirnov significance level < 1% > 10% < 1% < 1% < 1% 

 



Table 2  
Sample Sizes 

 
Entries in the top panel report the cross-sectional distribution of the number of non-missing daily time-series observations from the 
ISSM data during the sample period 1990 - 1992.  Each quartile group contains the top 20 NYSE stocks alphabetically by ticker symbol 
from quartile groups of average dollar trading volume reported on CRSP.  Each quartile group contains the top 50 stocks by trading 
volume in that quartile.  Entries in the lower panel are the number of days for which all 20 stocks have non-missing ISSM data. 

 
 

Standard & Variance Decomposition Approaches 
Attributes of the cross-sectional distribution 
of sample sizes for each security 

Quartile 1 
(most active) 

Quartile 2 Quartile 3 Quartile 4 
(least active) 

Minimum 739 168 499 498 
25th Percentile 749 739 739 739 
Median 752 749 744 752 
75th Percentile 752 749 752 752 
Maximum 752 752 752 752 

 
 
 

Joint Estimation Approach 
 Quartile 1 

(most active) 
Quartile 2 Quartile 3 Quartile 4 

(least active) 
Sample size 732 167 479 238 

 
 



Table 3 
Bootstrap Results 
Variance Ratios 

 
Variance ratios and the associated test statistics are computed as described in section 3 of the text using data from 1990-1992.  Each 
quartile group contains 20 NYSE stocks selected from quartiles of average dollar volume.  With each test statistic is reported its 
bootstrap and asymptotic critical values.  For the Standard Approach, the null hypothesis is that the cross-sectional average ratio of 
open-to-open and close-to-close return variances is equal to one.  For the Joint Estimation approach, the null hypothesis is that the vector 
of such variance ratios is (jointly) equal to one.  For the Variance Decomposition approach, the null hypothesis is that the ratio of 
variances of pricing errors at the open and close is equal to one.  Bootstrap critical values are based on 175 replications. 

 
Standard Approach 

 Quartile 1 
(most active) 

Quartile 2 Quartile 3 Quartile 4 
(least active) 

Average Variance Ratio – 1 0.245 0.238 0.044 0.387 
Median Variance Ratio – 1 0.106 0.034 0.022 0.043 
Cross-sectional t-ratio 2.344 1.640 1.301 1.226 
5% symmetric bootstrap critical values −/+ 2.610 −/+ 8.222 −/+ 1.520 −/+ 0.833 
5% symmetric standard normal critical values −/+ 1.96 −/+ 1.96 −/+ 1.96 −/+ 1.96 

 
 

 
 
 

Joint Estimation Approach 
 Quartile 1 

(most active) 
Quartile 2 Quartile 3 Quartile 4 

(least active) 
GMM Wald Statistic  30.932 12.016 14.370 11.589 
5% bootstrap critical value 675.73 30.389 88.644 5920.9 
5% Chi-Square (20 d.f.) critical value 31.410 31.410 31.410 31.410 

 



Table 3 (cont.)  
Bootstrap Results 
Variance Ratios 

 
 

Variance Decomposition Approach 
 Quartile 1 Quartile 2 Quartile 3 Quartile 4 

GMM 
t-statistic 

5% symmetric 
bootstrap 

critical values 

GMM 
t-statistic 

5% symmetric 
bootstrap 

critical values 

GMM 
t-statistic 

5% symmetric 
bootstrap 

critical values 

GMM 
t-statistic 

5% symmetric 
bootstrap 

critical values 
Stock 1 1.329 −/+ 5.559 0.319 −/+ 12.57 0.534 −/+ 5.708 0.620 −/+ 1.272 
Stock 2 0.915 −/+ 75.23 -1.056 −/+ 1.661 -1.625 −/+ 1.960 -0.124 −/+ 1.562 
Stock 3 0.503 −/+ 9.966 0.978 −/+ 6.255 0.295 −/+ 103.5 0.692 −/+ 7.826 
Stock 4 -2.034 −/+ 3.167 -1.518 −/+ 3.400 0.448 −/+ 4.640 0.692 −/+ 6.579 
Stock 5 0.346 −/+ 30.77 0.002 −/+ 1.242 0.448 −/+ 1.620 -0.528 −/+ 1.373 
Stock 6 1.179 −/+ 62.28 -2.578 −/+ 4.273 0.621 −/+ 2.741 0.435 −/+ 85.80 
Stock 7 1.011 −/+ 2.871 -0.610 −/+ 1.690 0.479 −/+ 2.090 0.035 −/+ 2.886 
Stock 8 0.574 −/+ 102.8 0.859 −/+ 1.316 0.250 −/+ 7.194 1.132 −/+ 10.14 
Stock 9 -0.238 −/+ 4.149 0.169 −/+ 1.256 -0.150 −/+ 1.377 -0.976 −/+ 1.674 

Stock 10 0.914 −/+ 14.23 -0.542 −/+ 3.165 0.247 −/+ 6.822 0.219 −/+ 1.606 
Stock 11 -1.592 −/+ 2.546 -3.155 −/+ 1.767 1.055 −/+ 4.677 0.500 −/+ 2.349 
Stock 12 0.538 −/+ 3.266 -0.052 −/+ 1.339 0.148 −/+ 59.78 0.234 −/+ 3.010 
Stock 13 0.626 −/+ 2.517 0.369 −/+ 10.41 -3.416 −/+ 2.051 0.154 −/+ 5.919 
Stock 14 0.687 −/+ 3.105 -0.270 −/+ 1.708 -0.804 −/+ 1.744 0.503 −/+ 4.468 
Stock 15 -0.743 −/+ 2.890 0.212 −/+ 3.305 0.535 −/+ 10.80 0.586 −/+ 1.523 
Stock 16 0.473 −/+ 4.015 0.679 −/+ 57.47 0.476 −/+ 3.620 0.148 −/+ 9.800 
Stock 17 -0.264 −/+ 2.852 0.438 −/+ 2778 -0.378 −/+ 1.361 -0.254 −/+ 1.594 
Stock 18 -0.292 −/+ 1.779 -1.067 −/+ 1.507 0.618 −/+ 3.037 0.302 −/+ 25.11 
Stock 19 0.250 −/+ 1.975 -1.957 −/+ 1.535 0.690 −/+ 14.60 -0.593 −/+ 2.105 
Stock 20 1.040 −/+ 2.191 0.810 −/+ 3.354 0.761 −/+ 19.02 0.429 −/+ 20.73 

 
Note: The 5% two-sided critical values for the asymptotic standard normal approximation are –/+ 1.96. 
 



Table 4 
Rejection Probabilities 

 
Numbers in the table report the proportion of times the null hypothesis is rejected in 50 samples 
drawn from the original sample as described in section 3 of the text.  For each of the 50 samples, 
bootstrap tests are based on critical values from 175 replications.  For the Standard and Joint 
Estimation Approaches, each quartile group contains 20 stocks.  For the Variance Decomposition 
Approaches, each quartile group contains 10 stocks. 

 
Standard Approach 

 
Frequency of Rejections 

Quartile 1 
(most active) 

Quartile 4 
(least active) 

Bootstrap Test 0.42 0.26 
 “Asymptotic” Test 0.64 0.04 

 
Joint Estimation Approach 

 
Frequency of Rejections 

Quartile 1 
(most active) 

Quartile 4 
(least active) 

Bootstrap Test 0.10 0.06 
Asymptotic Test 1.00 0.12 

 
Variance Decomposition Approach  

 
Frequency of Rejections 

Quartile 1 
(most active) 

Quartile 4 
(least active) 

Average using Bootstrap Test 0.06 0.14 
Average using Asymptotic Test 0.08 0.16 

Maximum Difference in Rejection Frequency (asy – b/s) 0.04 0.40 

 
 



Table 5 
Bootstrap Results  

Sample Period 1996-1999 
 

Variance ratios and the associated test statistics are computed as described in section 3 of the text using data from 1996-1999.  Each 
quartile group contains 20 NYSE stocks selected from quartiles of average dollar volume.  With each test statistic is reported its 
bootstrap and asymptotic critical values.  For the Joint Estimation approach, the null hypothesis is that the vector of such variance 
ratios is (jointly) equal to one.  For the Variance Decomposition approach, the null hypothesis is that the ratio of variances of pricing 
errors at the open and close is equal to one.  Bootstrap critical values are based on 175 replications. 

 
 

Joint Estimation Approach 
 Quartile 1 

(most active) 
Quartile 2 Quartile 3 Quartile 4 

(least active) 
GMM Wald Statistic  22.072 9.363 15.183 19.860 
5% bootstrap critical value 13.420 12.970 14.833 17.200 
5% Chi-Square (20 d.f.) critical value 31.410 31.410 31.410 31.410 

 



Table 5 (cont.) 
Bootstrap Results  

Sample Period 1996-1999 
 
 
 

Variance Decomposition Approach 
 Quartile 1 Quartile 2 Quartile 3 Quartile 4 

GMM 
t-statistic 

5% symmetric 
bootstrap 

critical values 

GMM 
t-statistic 

5% symmetric 
bootstrap 

critical values 

GMM 
t-statistic 

5% symmetric 
bootstrap 

critical values 

GMM 
t-statistic 

5% symmetric 
bootstrap 

critical values 
Stock 1 0.796 −/+ 10.04 0.190 −/+ 36.71 0.860 −/+ 49.45 -1.310 −/+ 1.211 
Stock 2 -0.016 −/+ 1.710 0.331 −/+ 22.84 0.289 −/+ 3.827 0.266 −/+ 3.415 
Stock 3 -0.431 −/+ 1.600 -0.549 −/+ 1.139 -1.514 −/+ 1.120 0.776 −/+ 3.008 
Stock 4 0.562 −/+ 26.52 -0.102 −/+ 1.167 -0.031 −/+ 5.123 0.619 −/+ 2.300 
Stock 5 0.569 −/+ 1.520 1.145 −/+ 60.73 -1.660 −/+ 3.146 0.248 −/+ 3.845 
Stock 6 0.443 −/+ 11.09 0.168 −/+ 2.374 -0.884 −/+ 4.803 -1.144 −/+ 1.370 
Stock 7 -0.296 −/+ 1.382 0.234 −/+ 1.726 0.446 −/+ 31.10 0.850 −/+ 2.041 
Stock 8 -0.362 −/+ 1.700 -0.385 −/+ 1.268 -8.183 −/+ 1.780 0.335 −/+ 3.858 
Stock 9 0.256 −/+ 6.918 0.320 −/+ 11.64 0.678 −/+ 28.17 0.114 −/+ 2.789 

Stock 10 0.947 −/+ 3.690 0.513 −/+ 35.52 -0.825 −/+ 2.264 -6.803 −/+ 1.569 
Stock 11 0.357 −/+ 1.639 0.828 −/+ 10.63 0.507 −/+ 11.00 1.039 −/+ 1.904 
Stock 12 -1.246 −/+ 1.892 -0.079 −/+ 1.295 0.552 −/+ 4.550 1.105 −/+ 2.546 
Stock 13 0.269 −/+ 5.437 0.684 −/+ 3.170 0.187 −/+ 43.30 -0.529 −/+ 1.750 
Stock 14 -1.330 −/+ 2.392 1.003 −/+ 17.38 0.418 −/+ 1.195 1.042 −/+ 1.987 
Stock 15 0.685 −/+ 22.29 -0.941 −/+ 2.753 -0.274 −/+ 1.780 0.398 −/+ 17.80 
Stock 16 0.770 −/+ 2.997 0.662 −/+ 8.850 0.475 −/+ 9.772 0.931 −/+ 2.605 
Stock 17 -1.437 −/+ 2.091 0.334 −/+ 11.70 0.140 −/+ 1.564 0.139 −/+ 1.558 
Stock 18 0.058 −/+ 4.613 0.583 −/+ 8.914 0.321 −/+ 35.45 -0.470 −/+ 3.160 
Stock 19 -0.992 −/+ 2.482 0.358 −/+ 10.53 -0.318 −/+ 1.280 -0.244 −/+ 1.570 
Stock 20 0.457 −/+ 7.879 -1.562 −/+ 2.029 0.318 −/+ 8.620 1.158 −/+ 2.400 

 
Note: The 5% two-sided critical values for the asymptotic standard normal approximation are –/+ 1.96. 
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