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Hidden and Displayed Liquidity in Securities Markets

with Informed Liquidity Providers

Abstract

We examine the impact on the quality of a securities market of hiding versus displaying or-

ders that provide liquidity. Display expropriates informational rents from informed agents

who trade as liquidity providers. The informed then exit liquidity provision in favor of de-

manding liquidity where they trade less aggressively. Trading costs to uninformed liquidity

demanders are higher, bid-ask spreads are wider and midquotes are less informationally

efficient when orders that provide liquidity are displayed. Our analysis suggests that mar-

ket innovations, which might seem to favor the informed over the uninformed, can enhance

market quality by intensifying competition among the informed.

2



Introduction

A sizeable fraction of all liquidity provided in securities markets is hidden. The SEC

estimates that nearly 30% of transaction volume in listed stocks is traded in venues that

neither display liquidity nor make it available for execution against public orders.1 Hidden

orders are also important on public exchanges. The Nasdaq website reports that more

than 15% of Nasdaq’s order flow is non-displayed.2 Frey and Sandas (2008) report that

16% of shares executed in their sample of Frankfurt stocks have a hidden component to

the order, and Bessembinder, Panayides and Venkataraman (2009) report that 44% of the

volume in their sample of Euronext-Paris stocks is hidden. Almost all exchanges allow

traders to hide limit orders that provide liquidity either partially, as reserve or iceberg

orders, or in full (e.g., dark reserve orders on the NYSE). However, hidden limit orders are

often given lower priority than displayed orders, suggesting that exchanges view hidden

orders that provide liquidity (hereafter “hidden liquidity”) as less desirable than orders

that are displayed (“displayed liquidity”).

How to regard hidden liquidity is a challenge for regulators as well. In addressing the

fragmentation of trading between exchanges and off-exchange systems where liquidity is

almost uniformly hidden, the SEC Chairman warns, “...we must be careful that the short-

term advantages to individual traders from non-transparent trading does not undermine

all investors in the long run by compromising the essential price discovery function of the

public markets.”3

This perspective has also been expressed forcefully in relation to hidden liquidity

on exchanges. In November of 2011, the SEC proposed rule changes to accommodate a

pilot program that allows hidden orders within the one-penny tick size to step ahead of

displayed quotes on the NYSE. This applies to order flow the exchange deems as having

a retail source. The proposal has the potential to make hidden orders the counterparty to

the vast majority of qualifying retail transactions. In a comment letter that mirrors several

1Mary L. Shapiro, Speech by the SEC Chairman: Strengthening our Equity Market Structure, Economic

Club of New York, September 7, 2010.
2March 2012 headline on www.nasdaqtrader.com/Trader.aspx?id=DarkLiquidity.
3Shapiro op. cit.
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of those submitted, the CFA Institute raises concerns that the relative disincentive this

provides to displayed liquidity will degrade market quality, having even “...wider adverse

consequences for market integrity beyond the initial loss of transparency.”4 The concern

is that the strategic use of hidden orders confers advantages over displayed orders, which

might deter competition and reduce market quality. A more benign view is taken by

Angel, Harris and Spatt (2011) who argue that hidden orders are merely the modern,

computerized equivalent of the unexpressed orders in the trading crowd that competed

with orders in the book when trading was conducted in person on trading floors.

The inescapable fact is that market participants have revealed a preference to trade

dark both on and off exchanges. Competition among trading systems has made supplying

richer means by which to hide liquidity a key element of how exchanges attract orders.

The concerns of regulators and market professionals that this might result in a race to

the bottom are not totally unfounded. A large body of microstructure research indicates

that market quality is impaired by informed traders who camouflage or hide their market-

order trading among that of the uninformed. Hidden limit orders would seem to reinforce

such opportunities by allowing the informed both to provide liquidity and to profit from

their information, suggesting that hidden limit orders degrade market quality. Therefore,

a question that is very relevant to markets and regulators is whether hidden orders are an

innovation that enhances market quality or merely a way for informed traders to leverage

their advantage to the detriment of other market participants.

We address this question in a model where informed traders’ strategies adapt to

whether liquidity is hidden or displayed. An important feature of our analysis is ac-

counting jointly for informed traders’ selections between providing or demanding liquidity

and the intensity with which each pursues the type of strategy he chooses. Both aspects

determine the degree of competition among traders, and the impact of hiding or displaying

liquidity on market quality depends on the interaction between these effects.

The specific questions we address are how hidden liquidity affects the execution costs

4The proposal (SR-NYSE-2011-55 dated November 2, 2011) and comment letter (dated November 30,
2011) are available under the NYSE rulemaking archive of the SEC at www.sec.gov. The proposal was

approved in July, 2012.
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of uninformed traders and the informational efficiency of prices. The argument in favor of

hiding orders is that doing so attracts traders who would not provide liquidity in displayed

markets, thus increasing competition among liquidity providers. The argument against is

that hidden liquidity enhances the advantage of informed traders over the uninformed by

enabling the informed explicitly to conceal their orders.

Our principal finding is that hidden liquidity has a favorable impact on market qual-

ity. The increase in competition resulting from the migration of informed agents toward

liquidity provision dominates the profit enhancement associated with the concealment of

their orders. This happens because all the informed agents trade more aggressively on

their information when more of them trade as liquidity providers. Since hiding liquidity

draws more informed agents into liquidity provision, competition intensifies overall and

market quality improves.

When liquidity is displayed, less informed agents are drawn into liquidity provision

and more of them trade as liquidity demanders. The informed trade less aggressively and

market quality is lower than when liquidity is hidden. The quality of the market with

hidden liquidity is better because more informed agents are drawn into liquidity provision

and they trade more aggressively as liquidity providers than they would as liquidity de-

manders in the displayed market—i.e., the choices of strategy type and the aggressiveness

of trading jointly determine market quality.

Why are the informed drawn in when liquidity is hidden? The choice to trade as

a liquidity provider in a hidden market is analogous to the choice of a cartel member to

exceed his production quota. With strategic liquidity providers, there are rents to providing

liquidity in equilibrium. When liquidity is hidden, each informed trader is attracted to

liquidity provision to capture this rent even though, collectively, their profits would be

higher if some resisted and traded as liquidity demanders.

In contrast, when liquidity is displayed, this decision involves a tradeoff. Providing

liquidity captures the rent but also conveys some of the trader’s private information to

liquidity demanders who observe the liquidity being offered before submitting their orders.

The existence of this tradeoff results in less informed traders being drawn into liquidity

provision when liquidity is displayed. Using the cartel analogy, displaying liquidity better
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aligns individuals’ incentives with the interest of the cartel—it acts as a coordination device

that deters entry. The expected profit of informed traders, both those who supply and

those who demand liquidity, is greater if liquidity is displayed than if it is hidden. These

higher profits are realized at the expense of the uninformed traders.

The broader implication of our results is that trading innovations that convey an ad-

vantage to the informed need not be harmful to the uninformed. If an innovation also

intensifies competition among the informed, the uninformed could benefit with lower trad-

ing costs and more efficient prices as they do in our model when liquidity is hidden. This

is a useful perspective for brokers, markets and regulators who are concerned with how

innovations in trading technology affect their clients and the market environment. Our

model suggests that low trading costs and efficient pricing are ultimately a consequence

of intense competition—by trading more aggressively on their information, traders com-

pete away its rents. Innovations that appear to favor one group of traders over another

can be beneficial if the innovation also intensifies competition among traders within the

advantaged group. We discuss in the conclusion how this relates to the controversy over

whether high-frequency trading impairs market quality.

Our paper contributes to the literatures on informed liquidity provision and hidden

liquidity. In classic models of securities trading, competitive uninformed agents provide

liquidity to strategic informed agents [see Glosten and Milgrom (1985), Kyle (1985), Easley

and O’Hara (1987) and Glosten (1994)]. However, the evidence from markets and experi-

ments supports the hypothesis that informed traders do participate in securities markets

as liquidity providers [e.g., Kavajez and Odders-White (2001), Bloomfield, O’Hara and

Saar (2005), Kaniel and Liu (2006) and Rourke (2009)].

Several theoretical papers consider markets with a single informed liquidity provider

and show that liquidity provision is desirable as a strategy for exploiting an informational

advantage [see Kumar and Seppi (1993), Chakravarty and Holden (1995), Kaniel and Liu

(2006) and Foucault, Moinas and Theissen (2007)]. These studies do not capture the

strategic competition among informed liquidity providers, and between liquidity providers

and liquidity demanders, that is key to our results. Bernhardt and Taub (2006) compare

markets in which multiple informed agents all trade as either liquidity providers as in Kyle
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(1989) or liquidity demanders as in Kyle (1985). They show that informational rents are

smaller when the informed trade as liquidity providers. However, they do not consider

settings in which informed liquidity providers and informed liquidity demanders coexist.

Goetler, Parlour and Rajan (2009) simulate a model in which informed liquidity providers

and demanders arrive sequentially and interact through the evolving contents of the limit

order book. They examine the dynamics of prices and spreads, but they do not compare

markets with hidden and displayed liquidity.

Transparency of the order book is examined by Madhavan, Porter and Weaver (1999)

and Baruch (2005). They compare a market structure in which liquidity is displayed to one

in which liquidity is hidden. In their models, a specialist observes the contents of the order

book and exercises greater monopoly power when liquidity is hidden from other traders.

Whether liquidity is hidden or displayed affects transaction costs through its effect on the

monopoly power of the specialist. The order book does not contain information about

the security’s value, however, because informed traders do not provide liquidity. Butti

and Rindi (2011) model the choices of uninformed traders either to hide or display orders.

There is no private information about the security’s value, however; so the informational

efficiency of prices and adverse selection costs are not addressed.

Moinas (2011) models a setting with adverse selection, in which an informed trader is

assumed to trade as a liquidity provider. Moinas shows that hiding liquidity enhances the

opportunity for the informed trader to camouflage himself among other liquidity providers

who are uninformed. This results in a deeper book over a larger range of the severity

of adverse selection than when the display of liquidity is mandated. Moinas’s result is

similar in spirit to ours. However, the enhancement to market quality exists for all levels

of adverse selection in our model because we capture the migration of informed traders

toward liquidity provision that occurs when liquidity is hidden versus displayed and its

impact on the intensity of competition.

The evidence is mixed as to whether displaying or disseminating information about

liquidity enhances market quality. Among the studies that examine natural experiments

in which a market’s rules change, Madhavan, Porter and Weaver (2005) and Hendershott,

Jones and Menkveld (2011) find that measures of market quality decrease with additional
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transparency. Alternatively, Boehmer, Saar and Yu (2005) and Hendershott and Jones

(2005) find that market quality improves.5 Frey and Sandas (2008) and Bessembinder,

Panayides and Venkataraman (2009) examine cross-sections of stocks in European mar-

kets, and they compare executions involving hidden and displayed liquidity where both

exist. Both studies find that hidden orders are an important source of liquidity in creat-

ing transaction volume, and that the presence of hidden liquidity contributes to market

quality.

Some very recent work examines theoretically how market quality is affected by cross-

ing networks that clear trades at prices determined on exchanges—so-called “dark pools”

[see Butti, Rindi and Werner (2011), Ye (2011) and Zhu (2011)]. These papers address

how adding a satellite venue with hidden liquidity that does not contribute to price discov-

ery affects traders’ opportunities and market quality. Our model examines hidden versus

displayed liquidity in the primary market where price discovery occurs.

The next section presents the general setting of our model. Sections 2 and 3 compare

markets with hidden and displayed liquidity. Section 4 examines an interesting special

case in which hidden and displayed markets are equivalent. Section 5 concludes. Proofs of

propositions appear in the Appendix.

1. Model

We model a market in which a single security is traded. The security is in zero net

supply, and its terminal payoff is ṽ = ṽ1+ṽ2+· · ·+ṽM , where the ṽis are iidN(0, σ2
vi). There

are M risk-neutral informed agents who each observes a private signal si, where si = vi

in most of the settings we analyze. Of these, J ≤ M agents trade as liquidity providers

by submitting supply schedules to a centralized market. For simplicity of exposition we

refer to these agents as “dealers.” The price contingent schedule of orders of dealer j

is denoted by yj(sj , p) where y > 0 indicates a quantity to sell.6 The collection of such

schedules submitted by the J dealers constitutes the liquidity on offer in the order book.

The remaining N = M − J agents trade as liquidity demanders (“non-dealers”). They

5Experimental evidence is similarly mixed [see Gozluklu (2010) and Bloomfield, O’Hara and Saar (2011)].
6Such schedules can be implemented as collections of limit orders.
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submit market orders that are executed against the book at a uniform price. The market

order of non-dealer i is denoted by xi(si) where x > 0 indicates a quantity purchased.

Finally, there are uninformed traders who submit net market orders of ũ ∼ N(0, σ2
u),

which is uncorrelated with the security’s value.

Dealers and non-dealers are assumed to maximize expected profit. The distinction

between them is simply that the dealers submit supply schedules that build the book, and

the non-dealers place market orders that execute against the book. If the order book is

displayed, the schedule of dealers’ orders is visible to the non-dealers before they submit

their market orders. If there is useful information in the order book, the non-dealers’ orders

will condition upon it. Alternatively, if the order book is hidden, non-dealers cannot

condition their orders on information in the order book. An equilibrium assignment of

agents between supplying and demanding liquidity is defined as the value J∗ so that when

J∗ agents trade as dealers, no individual dealer or non-dealer expects greater profit by

switching order types.7

We focus on symmetric Bayesian Nash equilibria. Therefore, we seek a pair of strate-

gies {y(·), x(·)} that maximizes the expected profit of dealer j and non-dealer i, respec-

tively, given that: other dealers and informed non-dealers are conjectured to follow these

strategies, beliefs are consistent with Bayes rule and markets clear. The market clearing

condition evaluated at the equilibrium strategies implicitly defines the uniform price at

which orders clear.8 We write the market clearing price as P̃ = P̃ (ω̃), where the tilde

on the functional P (·) emphasizes that the price is random for reasons apart from the

randomness in total market orders ω ≡
∑M
i=J+1 xi+u. Since the dealers’ orders are condi-

7In unreported results, we consider a setting in which dealers also can condition on the order book when

it is displayed. Liquidity provision is deterred by display to an even greater degree in this setting because

dealers’ information is disseminated to the non-dealers and to other dealers when the book is displayed.
The results reported below may therefore provide a conservative assessment of the deterrent effect of

display on liquidity provision. Details are available from the authors.
8Back and Baruch (2007) show that when liquidity provision is perfectly competitive, there is an equiv-
alence between dynamic markets that utilize uniform and discriminatory pricing—i.e., whether all orders

clear at a single price, or whether orders walk up or down the book executing at distinct prices. Our

liquidity providers are not perfectly competitive, so we do not know whether an equilibrium in a model
with discriminatory pricing is equivalent to ours. However, the intuition behind our results depends on

the existence of rents to providing liquidity, and not on the pricing convention by which those rents are

captured.
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tioned on their private information, the price schedule P̃ (·) can depend on the realizations

of the dealers’ information signals. All agents take this into account when choosing their

strategies.

Our model builds on Kyle (1985) and Dennert (1993). As in Dennert, we relax the

assumption that liquidity providers are perfectly competitive.9 In contrast to Kyle’s and

Dennert’s models, dealers are allowed to be informed in our model and multiple informed

non-dealers exist as counterparties to dealers’ orders. The model can be solved in closed

form. In each setting that we consider, a pure strategy equilibrium exists in linear strate-

gies for any allocation of informed agents between liquidity provision and liquidity demand,

except those where liquidity providers are near monopolists.10 Because the dealers’ strate-

gies are linear, the market clearing condition can be inverted to obtain a simple expression

for the price schedule.

2. A Market with Hidden Liquidity

We consider first a market in which the non-dealers cannot observe the order book

before submitting their orders. In the next section we consider a market in which liquidity

is displayed, and there we compare the two markets.

Dealer j selects his supply schedule yj(sj , p) to maximize expected profit

max
yj(·)

E
[
(P̃ − ṽ) yj(vj , P̃ ) | vj

]
, (1)

taking as given his signal sj = vj , the strategies of all other agents and market clearing.

Because liquidity is hidden, non-dealers do not observe the order book, and they condition

their beliefs only on their private signals. Non-dealer i selects his market order xi(si) by

solving

max
xi

E
[
(ṽ − P̃ )xi | vi

]
, (2)

9Other models that relax the assumption of perfect competition are Glosten (1989), Biais, Martimort and

Rochet (2000) and Bondarenko (2001). However, they retain the assumption that dealers are uninformed

and, as in Dennert, a single informed trader demands liquidity.
10We do not constrain strategies to be linear. We show that linear strategies are optimal when agents

conjecture that others follow linear strategies.
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taking as given his signal si = vi, the strategies of all other agents and market clearing.

The market clearing condition is

J∑
j=1

yj(ṽj , P̃ ) =
M∑

i=J+1

xi(ṽi) + ũ (3)

whatever are the realizations of ṽ1, . . . , ṽM and ũ. Our first result characterizes the equi-

librium for any number of dealers, J . Later, we use traders’ expected profit functions

conditional on J to solve for J∗.

Proposition 1. Assume that J > 2 traders provide liquidity and M − J demand liquid-

ity.11 There exists a symmetric equilibrium in which order strategies are linear, and this is

the unique symmetric equilibrium in which strategies are linear. Explicit expressions for

the strategies are
y(vj , P ) = γvj + δP

x(vi) = βvi

for j = 1, . . . , J

for i = J + 1, . . . ,M

where

γ = −β, β =
Jδ

2
, and Jδ =

2σu
σvi

√
(J − 2)

J(M − 1)
.

The dealers’ and non-dealers’ equilibrium expected profits, denoted by πj and πi respec-

tively, satisfy

Jπj + (M − J)πi =
σ2
u

Jδ
and πi =

βσ2
vi

2
.

The dealers submit orders to sell more at high prices than at low prices (δ > 0), and

the non-dealers submit orders that are increasing in their private signals (β > 0) as in Kyle

(1985). However, because the dealers are informed, they shift their supply schedules in

accordance with their private signals—the greater is the signal, the less the dealer supplies

at each possible price (γ < 0).

The orders of dealers and non-dealers are equally aggressive in exploiting their infor-

mation signals (|γ| = |β|). This is unique to the case in which liquidity is hidden. When

11The condition J>2 is necessary because, if J≤2, there is insufficient competition among the dealers to

produce a price schedule whose slope is finite. Two or less dealers can earn infinite expected profit from

the uninformed whose trading is price inelastic. This is discussed in Kyle (1989). Bernhardt and Hughson
(1997) study the case of two uninformed dealers in detail and show that an equilibrium can exist with two

dealers if uninformed market-order trading is price elastic.
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liquidity is displayed, dealers hold back to prevent their information from being revealed

via the order book to the non-dealers who observe it.

The aggregate expected profit of the dealers and non-dealers equals the expected loss

of the uninformed traders, which is equal to σ2
u/Jδ in equilibrium. This is increasing in

the expected magnitude of uninformed trading, σu, and decreasing in the aggressiveness

with which the dealers and non-dealers trade on their signals, Jδ, because the magnitudes

of both β and γ are proportional to Jδ. The more aggressively the informed trade, the

less the price will deviate from the security’s terminal payoff, and the smaller will be the

uninformed traders’ expected loss.

What determines how aggressively the informed trade on their signals? Fixing M ,

it is easy to show that Jδ is increasing in J . This means that both the dealers and the

non-dealers trade more aggressively on their private signals the greater is the concentration

of informed traders on the liquidity provision side of the market. This also reduces the

expected loss of the uninformed traders because σ2
u/Jδ is decreasing in J . In contrast,

if the concentration of informed traders shifts toward the liquidity demand side of the

market, both the dealers and the non-dealers trade less aggressively on their signals, and

the expected loss to the uninformed is larger.

The degree to which competition among the informed is concentrated on the liquidity

provision side of the market also determines important properties of prices, specifically how

fully dealers’ information is impounded into prices and how sensitive the market clearing

price is to order flow. The price schedule is obtained by substituting the equilibrium orders

of dealers into the market clearing condition,

γ
J∑
j=1

vj + JδP = ω, (4)

where ω ≡
∑M
i=J+1 xi + u is the flow of market orders. The price schedule (written as a

function of market-order flow) is therefore

P (ω) =
1

2

J∑
j=1

vj +
1

Jδ
ω. (5)

Because dealers are informed, the realized price is affected by two sources of randomness—

the information of dealers,
∑J
j=1 vj , and the flow of market orders, ω.

12



The factor 1/2 in the intercept is important. It implies that the information observed

by dealers is only partially impounded into the price schedule—the intercept is half way

between the unconditional expectation of ṽ (which is zero) and the information collectively

observed by the dealers. If
∑J
j=1 vj were common knowledge, the factor would be unity

rather than 1/2, and the intercept of the price schedule would fully reflect the information

collectively observed by the dealers. The factor is 1/2 because dealers strategically mod-

erate their trading to prevent the rents to their information from being dissipated by fully

impounding their private information into the price schedule.

Nevertheless, if an agent were able to observe directly the intercept of the price sched-

ule, he could infer the dealers’ aggregate signal. This would be useful in formulating his

own trading strategy because the aggregate signal is only partially impounded into the

price schedule. This is why, when liquidity is displayed, non-dealers can potentially use

information gleaned from the order book in formulating their market-order strategies. We

write potentially because Equation (5) is the equilibrium price schedule in a hidden market.

It remains to be shown that a similar situation occurs in a market where the order book is

visible to non-dealers—i.e., we have to verify that the order book contains useful informa-

tion when it is common knowledge that the non-dealers can observe and use information

from the order book in formulating their trading strategies.

Even though the factor 1/2 is invariant to J , the number of signals in the sum depends

on J . As more agents elect to trade as dealers, more of the security’s payoff will be reflected

(by half) in the price schedule. In addition, the slope of the price schedule is flatter when

J is greater because 1/Jδ is decreasing in J—the more dealers there are, the smaller is the

price impact of each unit of market order flow. As noted earlier, this reduces the expected

loss of the uninformed.

The bid-ask spread is narrower as well. In fact, the bid-ask spread and the expected

loss of the uninformed are equivalent measures of market quality in all the settings of

our model. The spread, defined as the difference between the prices to buy and sell small

quantities, such as P (+1)−P (−1), is given by 2/Jδ. This is proportional to the uninformed

traders’ expected loss of σ2
u/Jδ. If the expected loss of the uninformed is larger in one

setting of our model than another, the bid-ask spread is wider as well.
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2.1 Equilibrium Liquidity Provision and Demand

The foregoing discussion establishes that the number of informed agents who trade

as liquidity providers, J , is key to determining how aggressively the informed trade on

their signals, how much information is reflected in the price schedule, the slope of the price

schedule, and the expected loss suffered by the uninformed. To identify the equilibrium

value J∗, we let πj(J) and πi(J) denote the expected profit of individual dealer j and

non-dealer i, respectively, given that J agents trade as dealers.

It turns out that the expected profit of individual dealers is greater than that of non-

dealers over the entire feasible range of J when liquidity is hidden—i.e., πj(J) > πi(J)

over 2 < J ≤M . This is because, at the margin, trading as a dealer enables the agent to

earn a rent from providing liquidity. This implies that J∗,hidden = M—at the equilibrium

of a market with hidden liquidity, all M informed agents trade as dealers.

When more informed agents trade as dealers, it benefits the uninformed—their ex-

pected loss is decreasing in J over 2 < J ≤ M . So the most favorable pricing possible

for uninformed traders is achieved when J = M . This, and the fact that J∗,hidden = M ,

imply that competition on the basis of order type (in addition to the usual competition in

quantities given order type) gives rise to an equilibrium that minimizes the expected loss

sustained by the uninformed. These assertions are summarized in the following proposition

and proved in the Appendix.

Proposition 2. When liquidity is hidden, J∗,hidden = M ; i.e., all the informed agents

provide liquidity. This outcome minimizes the expected loss sustained by the uninformed

across all possible assignments of informed traders to order types.

This complements a result that Glosten (1994) obtains in a very different setting—

one where dealers are uninformed, and the informed are constrained to trade via market

orders. Glosten shows that at the limit of perfect competition, the price schedule arising

from uninformed dealers is maximally competitive in the following sense. If an uninformed

dealer or trading venue were to improve on this price schedule, for any quantity, it would

earn unconditional expected losses, holding fixed the composition of traders generating

market orders. In other words, no other “uninformed method” of liquidity provision can
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survive if it prices more aggressively than Glosten’s, when faced with the adverse-selection

risk posed by a fixed set of market order traders.

Our result relates to a different comparison, but the qualitative conclusion is similar.

We consider explicitly that informed agents can trade either as liquidity providers or liq-

uidity demanders, and we account for the optimal strategies (within the linear class) that

they adopt in each role. We show that among all possible assignments of informed agents

to roles, the assignment that emerges at the equilibrium of a market with hidden liquid-

ity is maximally competitive.12 Thus, the spirit of Glosten’s conclusion does not require

uninformed liquidity providers or perfect competition. It extends to a setting where in-

formed traders can demand or supply liquidity, and competition among liquidity providers

is imperfect .13

As described in the introduction, endogenizing liquidity provision gives rise to a “pris-

oners’ dilemma” that applies to order types. It is individually rational for the informed

agents to trade as dealers to capture rents to liquidity provision, but doing so leads all

the informed to trade aggressively and reduces their expected profit. This benefits the

uninformed traders. In a market where liquidity is hidden, all the informed agents choose

to trade as dealers. This means that across all possible assignments of informed agents to

order types, the expected loss suffered by the uninformed is minimized at the assignment

achieved at equilibrium when liquidity is hidden.

Even though the rents to providing liquidity are minimized at equilibrium, they are

still positive because the dealers are not perfectly competitive. This implies that the price

schedule in the order book is steeper than in a Kyle (1985)-type market with perfect

competition among uninformed liquidity providers and informed traders who submit only

market orders. It is precisely the non-zero rents to liquidity provision that draw the

12Since liquidity provision is not perfectly competitive in our model, it would obviously be possible to

undercut the price schedule and still earn positive expected profit. However, doing so is not optimal for

the agents in our model. See Sandas (2001) for evidence that liquidity supply is not perfectly competitive

in equities trading.
13Our results would be unaffected by also including a finite number of uninformed liquidity providers.
Such agents would compete against the informed dealers. The scale of the rents associated with providing

liquidity would be smaller. However, the informed agents would still perceive an incremental rent to

providing liquidity and all trade as dealers.
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informed agents into trading as liquidity providers in our model. This, in turn, causes

information to be incorporated into quoted prices. While those who demand liquidity

pay greater transaction costs relative to the midquote, the midquote itself more closely

approximates the security’s true value. This is summarized in the next result, which uses

the notation σ2
v = Var [ṽ].

Proposition 3. In the equilibrium of Proposition 2, the expected loss of the uninformed

is given by σuσv

2

√
(M−1)
(M−2) , which is greater than the expected loss of the uninformed in a

Kyle (1985)-type market in which M informed traders submit market orders to a perfectly

competitive, uninformed, risk-neutral market maker: σuσv

2 . In addition, the bid-ask spread,

P (1) − P (−1), is wider, and transaction prices are more volatile, in the equilibrium of

Proposition 2 than in a Kyle-type market. However, the midquote better approximates

the security’s value (in a mean-square sense) in the equilibrium of Proposition 2 than in a

Kyle-type market.

3. A Market with Displayed Liquidity

The informed are drawn into liquidity provision by a desire to capture rents to provid-

ing liquidity. When liquidity is displayed, a portion of the dealers’ information is conveyed

to the non-dealers because the non-dealers observe the order book before selecting their

orders. This creates a trade off between capturing the rent and giving up profit from

private information, which deters some informed agents from choosing to trade as dealers

when liquidity is displayed.

This deterrent has important consequences for market quality. The expected loss

suffered by the uninformed traders is not minimized across all possible assignments of

agents to order types at the equilibrium of a market with displayed liquidity. Moreover,

this loss is greater, and the midquote is also less informationally efficient, in the equilibrium

of the market with displayed liquidity than in the equilibrium of the market with hidden

liquidity.

To justify these assertions, we now consider a market in which the order book is

observed by the non-dealers before they submit their orders. This means the non-dealers’

orders can be conditioned on both their private signals and on the information conveyed
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by the order book. Equation (5) indicates that in the equilibrium of Propositions 1 and 2

(where liquidity is hidden), the dealers’ information is aggregated into the intercept of the

price schedule, P (0). Using this as a guidepost, we examine whether an equilibrium with

this feature exists when non-dealers’ strategies also condition on this particular attribute

of the order book.

Specifically, we examine whether there is an equilibrium in which (i) non-dealers

condition on the intercept of the price schedule and (ii) the intercept alone reflects the

information of dealers, thus making it rational for non-dealers to focus on only this statistic

when they observe the order book. We show that such an equilibrium exists provided, as

before, there is sufficient competition among the dealers.

Proposition 4. Assume that J > 1+ψ(J,M) traders provide liquidity andM−J demand

liquidity. There exists a symmetric equilibrium in which order strategies are linear, and

this is the unique symmetric equilibrium in which strategies are linear. Explicit expressions

for the strategies are

y(vj , P ) = γvj + δP

x(vi, P (·)) = β1vi + β2P (0)

for j = 1, . . . , J

for i = J + 1, . . . ,M

where P (0) is the intercept of the equilibrium price schedule P (·), and

β1 =
Jδ

2

γ = −
(
J − 1 + ψ(J,M)

2 ψ(J,M)

)
δ

β2 = − Jδ

M − J + 1

(
1 +

Jδ

γ

)
δ =

σu
√

2

σvi
F (J,M).

The functions ψ(·) and F (·) depend only on M and J and are defined in the Appendix. The

dealers’ and non-dealers’ equilibrium expected profits, denoted by πj and πi respectively,

satisfy

Jπj + (M − J)πi =
σ2
u

Jδ
,

where explicit expressions for πj and πi are given in the Appendix.

The differences between this equilibrium and that of Proposition 1 are that β2 > 0

and ψ(·) ≥ 1. If we set β2 = 0, then ψ(·) = 1 and the expressions here reduce to those

in Proposition 1. The β2 parameter captures the reliance of non-dealers’ strategies on the
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information they glean from observing the order book. If the dealers’ signals are optimistic

on average, then this is conveyed to the non-dealers by the fact that P (0) > 0. Accordingly,

the non-dealers’ demand β2P (0) more units of the security than if P (0) were equal to zero.

The ψ function captures the dealers’ strategic response to having their aggregated

signals transmitted to the non-dealers via the order book. Equation (4.6) in the Appendix

shows that the dealers’ strategies can be written as

y(vj , P ) =
(J − 1)δ

ψ

{
P − E

[
ṽ|vj , P̃ = P

]}
(6)

in the market with displayed liquidity. In a market with hidden liquidity, the dealers’

strategies can be written in exactly this form with ψ = 1. The extent to which ψ exceeds

unity is therefore the degree to which dealers scale back their orders because liquidity is

displayed rather than hidden. Thus, ψ measures the deterrent effect of displaying liquid-

ity on how aggressively the informed who trade as dealers trade on their perception of

mispricing.

If ψ > 1 when liquidity is displayed, dealers trade (strictly) less aggressively than

when liquidity is hidden, so competition among more of them is needed to produce a

price schedule with finite slope (see footnote 11). Thus, the condition J > 1 + ψ for an

equilibrium to exist in a market with displayed liquidity is analogous to the condition

J > 2 in the market with hidden liquidity of Proposition 1.14 This poses no problem for

characterizing equilibrium, however. We illustrate below that the equilibrium J∗,displayed

is always greater than 1 + ψ when M > 2.

3.1 Comparing Markets with Hidden and Displayed Liquidity

To explain how displaying liquidity affects the market, we begin with the observa-

tion that the hidden-liquidity equilibrium is one of the feasible outcomes in the displayed

market. This follows from the fact that ψ(M,M) = 1 for all M . If all the informed just

happen to trade as dealers (J = M), then there are no informed non-dealers—none to

glean information from observing the price schedule. In this case, ψ = 1 because there is

no reason for dealers to scale back their orders. This implies that if J = M in a market

14It turns out that J>1+ψ(J,M) is equivalent to J> 2
3 (M+1).
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with displayed liquidity, then traders’ strategies, expected profits, and the price schedule

are all the same as in the equilibrium of an otherwise identical market with hidden liquidity

(J∗,hidden = M).

We show below that some informed traders will in fact migrate away from trading as

dealers when liquidity is displayed—i.e, in equilibrium J∗,displayed < M . The informed back

away from trading as dealers because displaying liquidity publicizes their information and

expropriates its value. The threat this poses to each dealer extends beyond losing control

of his individual piece of information because the price schedule aggregates information. If

there are many dealers, displaying liquidity conveys a substantial informational advantage

to the non-dealers. The threat can therefore be quite large. The potential harm to each

individual dealer depends on how many dealers there are, how aggressively they trade,

and how aggressively non-dealers trade on the aggregated information they glean from the

price schedule (i.e., β2), all of which are endogenous.

There is a subtle effect at work as well. When the dealers’ information is conveyed via

the price schedule to the non-dealers, dealers’ and non-dealers’ information sets overlap,

which enables the dealers to predict better how the non-dealers will trade. Although the

dealers lose profit from having their information conveyed, the loss is tempered by their

ability to price discriminate against order flow they can predict. For example, the non-

dealers buy aggressively when they infer a high signal from the order book, so dealers

optimally reduce their quantity conditional on a high (private) signal to extract a larger

price concession from the non-dealers. This steepens the price schedule and deters the non-

dealers from trading “too” aggressively on the information they glean from the book, which

is one of the reasons why rents exist at equilibrium to the common signal the non-dealers

glean from the order book.

3.1.1 Strategies and Profit

The effects of these forces on strategy choices depend on the impact that individual

traders perceive their orders to have on their own expected profit at the margin. For ex-

ample, if J is close to M , there are many dealers and only a few non-dealers. No single

dealer’s strategy is important to the aggregate information conveyed by the price sched-
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ule. This limits the harm each individual dealer does to himself by trading aggressively.

Consequently, dealers scale back their trading only slightly in comparison to their strat-

egy in a market with hidden liquidity—i.e., ψ remains close to one. Non-dealers receive

a lot of information from the price schedule and, because they are few, they have nearly

monopolistic control of it. They do not trade very aggressively, they have a significant in-

formational advantage over the dealers, and their expected profit is high. In this situation,

some dealers clearly would be better off trading as non-dealers instead.

As traders migrate away from dealing, J decreases and the strategy of each of the

fewer remaining dealers becomes more influential in determining the aggregate informa-

tion conveyed by the price schedule. Competition among a larger number of non-dealers

intensifies, which dissipates the value (to both dealers and non-dealers) of the dealers’ in-

formation conveyed by the price schedule. Anticipating this, dealers scale back their orders

to protect the value of their information and to restrain the supply of liquidity in order to

profit from their ability to predict order flow.

The foregoing discussion suggests that ψ increases as J decreases, and that when J is

strictly less than M , ψ is greater than its hidden-market value of unity. Figure 1 illustrates

this by graphing ψ(J,M) as a function of J for M = 40 over the feasible range of J (i.e.,

J > 1 + ψ(J,M)). The graph is similar for other values of M .

The forces that determine ψ also determine expected profit. When there are few

dealers, each dealer’s information is aggregated into the price schedule with that of only

a few other dealers, and each one exercises a great deal of control over the collective

information conveyed. Many non-dealers then compete aggressively on the information

conveyed by the price schedule and their private signals. Since dealers are few, each dealer

can also forecast order flow with high precision relative to the situation in which there

are many dealers. Dealers therefore perceive their individual decisions as important at the

margin, so they trade conservatively to prevent too much information from being revealed

and to price discriminate against the non-dealers. Thus, dealers’ profit is high and non-

dealers’ profit is low when J is small.

In contrast, when J is large, a few non-dealers infer a great deal of aggregated infor-

mation from the price schedule and trade on it as near monopolists. Individual dealers
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cannot forecast order flow very well, and they do not perceive their trading as important

at the margin, so they trade aggressively. More information is conveyed via the price

schedule, which dissipates dealers’ profit. Thus, when J is large, dealers’ profit is low

and non-dealers’ profit is high. Figure 2 illustrates, by graphing the expected profit of

individual non-dealers and dealers for the case M = 40. Again, the graph is similar for

other values of M .15

3.1.2 Equilibrium Liquidity Provision and Demand

When liquidity is hidden, J∗,hidden = M because the expected profit to providing

liquidity dominates the expected profit to demanding liquidity for all J . It is apparent

from Figure 2 that this is not true when liquidity is displayed. If there are J < Ĵ dealers,

some liquidity demanders are better off switching to a strategy of supplying liquidity.

Conversely, if J > Ĵ , some liquidity providers are better off switching to a strategy of

demanding liquidity instead. Therefore, the equilibrium number of liquidity providers for

the market with displayed liquidity depicted in Figure 2 is J∗,displayed = Ĵ . When M = 40,

J∗ ≈ 37. In markets with displayed liquidity, the endogenous assignment of informed

traders to order types is interior—informed agents both supply and demand liquidity in

equilibrium.

Upon substituting the equilibrium value of δ into the profit functions, the condition

πj(J∗) = πi(J∗) simplifies to an expression that defines J∗,displayed implicitly as a function

of M alone. We denote this expression by G(J∗,M) = 0, which is given in Equation (5.1)

in the Appendix. The solid line in Figure 3 plots the locus of J∗,displayed for different values

of M . The number of informed agents who trade as liquidity providers is strictly less than

M and increases as the total number of informed agents in the market increases. Informed

traders both supply and demand liquidity in the equilibrium of a displayed market of any

“size” M . The dashed line in Figure 4 is the boundary 1 + ψ(J,M) for the existence

of equilibrium discussed in connection with Proposition 4. The fact that J∗,displayed lies

15This graphical illustration is without loss of generality. Equations (4.20) and (4.22) in the Appendix

show that the expected profit functions of the informed (and therefore the expected loss of the uninformed)
can be written as σuσvi times functions that depend only on M and J, just as in the market with hidden

liquidity. The shapes of these graphs, and the conclusions we draw from them, are invariant to the σ

parameters of the model.
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everywhere above the dashed line (for M > 2) means an equilibrium in linear strategies

always exists in a market with displayed liquidity provided that M > 2.

The endogenous assignment of informed traders between liquidity demand and sup-

ply in our model is obviously quite different from the assignment assumed in the classic

microstructure models wherein liquidity providers are uninformed and informed traders

only demand liquidity. Even when liquidity is displayed, the number of informed agents

who trade as liquidity providers remains sizable. Individual liquidity providers adapt their

strategies to the market structure by not trading so aggressively as to compete the rents

to their information to zero. The incremental rents they can earn still draw them into

trading as liquidity providers.

This has implications for the design and interpretation of empirical studies of price

discovery. If information flows into prices when orders that provide liquidity are placed in

the book and when market orders arrive, then the arrival of both types of orders should be

included in measures of the impact of private information on prices. As noted earlier, some

empirical studies adopt this perspective and conclude that significant information does flow

into prices through (limit) orders that provide liquidity [see Kavajez and Odders-White

(2001), Kaniel and Liu (2006) and Rourke (2009)].

3.1.3 Market Quality

Figure 4 plots the aggregate expected loss of the uninformed traders in a market with

displayed liquidity as a function of J . Similar to when liquidity is hidden, uninformed

trader losses are decreasing in J and minimized when all the informed trade as liquidity

providers. Since the equilibrium assignment of traders to order types is interior (i.e.,

J∗,displayed < M), the equilibrium in a displayed market does not minimize uninformed

trader losses across all possible assignments of agents to order types. If it were possible to

constrain the informed agents exclusively to supplying liquidity, doing so would lessen the

expected loss of the uninformed.

Since allocations in the case of J = M in a market with displayed liquidity correspond

to the equilibrium in a market with hidden liquidity, it also follows that uninformed trader

losses are greater at the equilibrium of a displayed market than at the equilibrium of an
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otherwise identical hidden market. Displaying liquidity leads informed traders to compete

less aggressively overall, and their expected profit is greater, than in an otherwise identical

market in which liquidity is hidden. This suggests that market architectures that allow

liquidity to be hidden are friendlier to uninformed traders than are architectures that

mandate the display of liquidity.

The implication for bid-ask spreads follows directly from the observation that the

uninformed traders’ expected loss is smaller at equilibrium when liquidity is hidden than

when it is displayed. The slope of the price schedule is 1/Jδ, which is proportional to the

expected loss of the uninformed traders, σ2
u/Jδ. The bid-ask spread, P (1) − P (−1), and

the price impact of market orders, are therefore less at the equilibrium of a market with

hidden liquidity than a market with displayed liquidity.

Hidden liquidity favors the informational efficiency of midquotes as well. This follows

from the facts that J∗,hidden > J∗,displayed, and ψ = 1 in a hidden market whereas ψ > 1 in

a displayed market. A larger number of informed traders act as dealers, and each of them

trades more aggressively, when liquidity is hidden than when it is displayed. Consequently,

the midquote incorporates more information and is a better predictor (in a mean-square

sense) of the true security value in a market with hidden liquidity than in a market with

displayed liquidity.

Summarizing, a market in which informed traders can hide their orders that provide

liquidity has lower transaction costs and more informationally efficient midquotes than

an otherwise identical market in which liquidity provided is displayed. One might expect

that displaying liquidity improves market quality by publicizing private information that

traders would otherwise exploit for profit. However, it is precisely because display robs

the informed of their informational advantage that they alter their strategies by trading

less aggressively and by shifting to demanding liquidity rather than supplying it. This

reduces the intensity of competition that exists in filling the order book and in clearing

the market—less information is incorporated into the midquote, bid-ask spreads are wider

and greater adverse-selection costs are borne by the uninformed.

3.1.4 Large Markets
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Displaying liquidity degrades market quality because it deters the informed from pro-

viding liquidity. In this section, we examine whether this deterrent disappears as the

market becomes large—i.e., as M →∞. Increasing the number of informed agents creates

additional competitors. It is therefore possible that the relevance to market quality of

whether liquidity is hidden or displayed might disappear as the market grows. Alterna-

tively, if the market quality differences persist, it suggests that the display features of a

market’s architecture are relevant to small and large markets alike.16

We show that the differences in market quality persist even in large markets. Growth

in a market’s size does not eliminate the deterrent effect of display on the informed agents’

willingness to provide liquidity and to trade aggressively on their perception of mispricing.

Even if a market is large, display still robs the informed of informational rents when

compared to a large hidden market. This, in turn, deters the informed from providing

liquidity and from trading aggressively, as illustrated in the following result.

Proposition 5. In a market with displayed liquidity, G(J∗,M) → 0 if and only if J∗ =

M −M 1
3 + O(1) where O(1) denotes terms of order zero and lower in M (which remain

bounded as M → ∞). Moreover, J∗ = M −M 1
3 + O(1) implies that ψ(J∗,M) = M −

M
1
3 +O(1) when M is large.

In a hidden market of any size, J∗,hidden = M . This is not true in a displayed market,

even if it is large. The proposition says the asymptotic solution for J∗,displayed grows with

the size of the market in such a way that the gap between M and J∗,displayed also grows.

Even in large markets, display deters informed agents numbering M
1
3 from providing

liquidity. Figure 5 plots the ratio of the equilibrium number of liquidity demanders to

its asymptotic limit: J∗−M
M

1
3

. The graph illustrates that the asymptotic approximation is

rather close even for moderate M—the ratio is about 0.90 when M = 40.

Also important to market quality is the asymptotic behavior of ψ, which describes how

the informed who do trade as dealers hold back in trading on their perception of security

mispricing. The ψ parameter equals unity in a hidden market of any size. However,

ψdisplayed ∼ J∗ >> 1 in a large market. When liquidity is displayed, those who do

16We are grateful to the referee for suggesting this analysis.
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trade as dealers hold back more as the market grows larger. For M in the range of 100,

for example, ψdisplayed ≈ 95. Those who trade as dealers in a displayed market trade

only 1/95th as aggressively per unit of perceived mispricing as their counterpart dealers

in a hidden market. The implications for the expected loss of the uninformed and the

informativeness of midquotes are discussed below.

Both J∗ and ψ are independent of the σ parameters of the model. This means the

deterrent is robust in the sense that it persists independently of how the quality of indi-

vidual traders’ information and the magnitude of uninformed trading is modeled to scale

with M . For example, if σ2
vi is held fixed as M grows, the overall informational advantage

of the informed over the uninformed grows with M . Alternatively, one could specify that

σ2
vi = σ2

v/M for fixed σ2
v . This distributes smaller bits of information among ever greater

numbers of traders as M grows, and keeps their overall informational advantage constant.

Similarly for uninformed trading, one could model σ2
u as fixed, so only the population of

informed traders grows. Alternatively, if σ2
u scales up with M , then the magnitude of

uninformed trading also increases as the number of informed traders grows. Regardless of

these modeling choices, the deterrent persists in large markets.

The next result identifies the implications of the deterrent for the expected loss of the

uninformed. In view of the results above, one would expect the uninformed to lose more

when liquidity is displayed than when it is hidden even in a large market. This is indeed

what we find.

Proposition 6. As the market grows large, the expected loss of the uninformed asymp-

totes to 1
2M

1
2σuσvi when liquidity is hidden and to M

2
3σuσvi when liquidity is displayed.

The expected loss of the uninformed is therefore greater by a factor of 2M
1
6 in a large

market with displayed liquidity than in a large market with hidden liquidity. When M =

100, the uninformed lose about four times as much in a large displayed market than in a

large hidden market. This also is independent of how the σ parameters are modeled to

scale with M .

The relation between price and order flow variability is interesting as well. Variation

in transaction prices arises from two sources. The first is information impounded into the
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price schedule because the informed place orders into the book. The second is information

and noise associated with the clearing of informed and uninformed market orders against

the book. The relative importance of these sources of price variability can be measured

by the squared correlation (R2) between prices and market-order flow. The smaller is the

R2, the more important is information impounded into the order book by the informed

traders who provide liquidity.

Since display deters informed traders from providing liquidity, we expect the R2 to be

larger when liquidity is displayed than when it is hidden. The next proposition confirms

this intuition.

Proposition 7. As the market grows large, R2
hidden asymptotes to 1

2 and R2
displayed

asymptotes to 1.

When liquidity is hidden, half the variation in the transaction price is explained by dealers’

information moving the price schedule as their orders fill the book. The other half is

explained by order flow, which has no information content because all the informed trade

as liquidity providers, J∗,hidden = M . The trading strategies pursued by the informed

induce information-related variation into the midquote that exactly matches the variation

associated with uninformed market-order flow.

The situation is very different when liquidity is displayed. The relative importance

of dealers’ information vanishes completely because the incentive for dealers to hold back

grows so strongly as the market grows. The information of non-dealers and noise from

uninformed trading come to dominate the impact of the dealers’ orders on the price.

This is important because the impact of dealers’ information on the price is what creates

informationally efficient midquotes. Display impedes this in small markets, and causes it

to die out completely in large markets. As with Propositions 5 and 6, these results are

invariant of how the σ parameters are modeled to scale with M .

4. When are Markets with Hidden and Displayed Liquidity Equiv-

alent?

Hiding liquidity enhances market quality because the informed compete more aggres-

sively when they trade as liquidity providers than when they trade as liquidity demanders.
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Display threatens informational rents, which causes some informed traders to migrate away

from liquidity provision. This happens in small and large markets. An interesting question

is whether there are circumstances under which this does not happen, and market quality

is unaffected by whether liquidity is hidden or displayed.

If agents have no private information to begin with, informational rents are necessarily

zero, and display poses no threat that would cause a migration of agents from providing

toward demanding liquidity. Display also poses no threat if those who trade as dealers

possess private information, yet earn zero expected profit on it at equilibrium when liquidity

is hidden. In this case also, display itself causes no incremental loss of informational rents

because such rents are totally competed away even when liquidity is hidden.

In this section, we show that this happens when dealers have identical signals. One

would expect this result if dealers were modeled as Bertrand-style competitors because

identical signals implies that dealers have the same valuation of the security–i.e., perfect

competition with common values would imply zero profit. However, we show that it

happens even though dealers engage in strategic competition.

Dealers still earn profit from providing liquidity (by capturing the bid-ask spread),

but they do not profit from their signal about the security’s payoff even when liquidity is

hidden. Whether liquidity is hidden or displayed has no impact on their strategies and the

quality of the market is unaffected by whether liquidity is hidden or displayed when the

dealers’ signals are identical.

Interestingly, such aggressive trading on a common signal is unique to the dealers. If

the non-dealers share a signal in common, they do not trade so aggressively as to compete

away totally the rents to their signal. The non-dealers moderate their trading and, at

equilibrium, their expected profit depends on how much of the security’s payoff their

information explains. They earn expected profit too, however its source is their common

informational advantage over the uninformed agents.

This illustrates again that agents trade on information more aggressively as liquidity

providers than as liquidity demanders. What is remarkable is that the intensity of compe-

tition is so extreme as to render common information worthless to dealers. The results in

the previous section for large markets show that growing the number of informed competi-
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tors does not intensify competition in a manner that extinguishes the impact of whether

liquidity is hidden or displayed on market quality. The results in this section identify

what does. Eliminating heterogeneity in the dealers’ information intensifies competition

in a manner, and to a degree, that whether liquidity is hidden or displayed is irrelevant to

market quality. This is true in both small and large markets.

To model dealers with a common signal and also to contrast them with non-dealers

who have a common signal in a single setting, we assume that the numbers of agents who

trade as dealers and as non-dealers are already determined. The security’s payoff has two

components: ṽ = ṽ1 + ṽ2, where ṽ1 and ṽ2 are independent normal random variables with

zero means and variances σ2
v1 and σ2

v2 , respectively. All dealers j observe the same signal

sj = v1 before submitting their supply schedules. All non-dealers i observe si = v2 prior

to submitting their market orders.17 Consider first a market in which liquidity is hidden.

Proposition 8. Assume that sj = v1 for j = 1, . . . , J and si = v2 for i = 1, . . . , N . If

J > 2, there exists a symmetric equilibrium in which dealers’ and non-dealers’ strategies

are linear, and this is the unique symmetric equilibrium in which strategies are linear.

Explicit expressions for the strategies are

y(v1, P ) = γv1 + δP and x(v2) = βv2

where

γ = −δ β =
Jδ

N + 1
, and Jδ =

σu
σv2

(
1

N
+ 1

)√
J − 2

1
N (J − 1) + 1

.

The dealers’ and non-dealers’ equilibrium expected profits, denoted by πj and πi respec-

tively, satisfy

Jπj +Nπi =
σ2
u

Jδ
and πi =

βσ2
v2

N + 1
.

Substituting dealers’ equilibrium strategies into the market clearing condition, solving

for the price schedule, and noting that γ = −δ, yields

P (ω) = v1 +
1

Jδ
ω, (7)

17The primary dealers of government securities might be an example of a network of dealers that is

predetermined and observes nearly identical information that non-dealers do not have. In many countries,
primary dealers are the exclusive counterparties to central banks’ open market operations. This gives

primary dealers information about the central bank’s trading strategy that other market participants do

not have [see Arnone and Iden (2003)].
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where, as before, ω ≡
∑N
i=1 xi + u is the net flow of market orders. Dealers’ private

information, v1, anchors the price schedule as if it were the unconditional expected security

value. Thus, information held in common among the dealers affects prices as though it

were public information—dealers’ common private information is fully priced into the order

book. Accordingly, it would be useless for non-dealers to condition their strategies on

information in the order book if it were visible because the price schedule fully reflects the

information.

Now consider the situation in which the book is visible to the non-dealers before they

choose their orders. Suppose the non-dealers conjecture that the dealers’ common signal is

fully reflected in prices at equilibrium, and they therefore ignore the order book as a source

of information. The non-dealers then adopt the same trading strategies they would follow

if the order book were hidden. This implies that the equilibrium price schedule is given by

Equation (7), and the non-dealers’ conjecture is correct. The equilibrium in Proposition

8 is therefore also an equilibrium when the order book is displayed. So whether the order

book is hidden or displayed is irrelevant to the allocation of profit across traders and also

irrelevant to measures of market quality.

Substituting for β and Jδ yields explicit expressions for the non-dealers’ and dealers’

expected profit in terms of exogenous variables:

πi =

(
σv2σu
N + 1

)√
J − 2

N(J +N − 1)

πj =
(σv2σu

J

)√ N

(J − 2)(J +N − 1)
.

(8)

The non-dealers’ expected profit depends on the quality of their private information, σv2 ,

but dealers’ expected profit is independent of σv1 . Dealers do not profit from their signal.

Despite being strategic, dealers submit price contingent orders that compete away all

the rents to the information they hold in common. In contrast, non-dealers do not compete

their informational rents to zero, even though they also have common information. This

asymmetry between dealers and non-dealers is attributable entirely to how order type

affects the intensity of competition, as observed in the sections above [see also Bernhardt

and Taub (2006)]. This is separate from the effect of traders competing more aggressively
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on the basis of common versus diverse information [see Foster and Viswanathan (1994)

and Holden and Subrahmanyam (1994)].

The dealers’ strategies are price contingent and non-dealers’ strategies are not. Allow-

ing a monopolist (or duopolist) dealer the degree of control that a price contingent strategy

provides enables him to make infinite expected profit in our model because uninformed

trading is not price elastic (see footnote 11). However, if there are more than two dealers,

the additional control that price contingent strategies provide for earning profit is domi-

nated by how such control elevates the aggressiveness of competition between the dealers.

As few as J = 3 dealers with common signals are enough that price contingent strategies

intensify competition to the point of totally eliminating their informational rents.

Dealers do earn positive expected profit by providing liquidity to the non-dealers and

the uninformed. The rents to liquidity provision captured by the dealers behave as a tax

on the non-dealers for access to the market. The aggregate expected profit dealers capture,

Jπj is a fraction of that earned by the non-dealers:

Jπj =

(
N + 1

J − 2

)
Nπi. (9)

The dealers’ profit is increasing in N , and when the number of non-dealers approaches

zero, so does the dealers’ expected profit (i.e., Jπj → 0 as N → 0). For a given number

of non-dealers, the higher is the quality of their information or the more uninformed

trading there is, the larger is σv2σu and the greater are the informed non-dealer and dealer

profits. Thus, dealers literally capture a share of the informational rents that the non-

dealers extract from the uninformed traders. The share dealers capture is increasing in the

number of non-dealers and decreasing in the number of dealers, as intuition would suggest.

5. Conclusion

The desire by market participants to trade dark on off-exchange venues has pressured

exchanges to offer trade types that allow the placement of hidden orders into exchange

order books. Exchanges, regulators and market professionals seem divided on whether

allowing liquidity to be hidden is good or bad for market quality. Ambivalence and even

skepticism about allowing hidden orders on exchanges seems well founded in the intuition
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of classic microstructure theory. Informed traders impose adverse selection costs on the

uninformed by camouflaging their orders among those of the uninformed. Allowing the

informed literally to hide their orders would seem to exacerbate the adverse selection costs

faced by the uninformed, which will drive them away from the market.

We study the impact of hidden liquidity on market quality using a model of securities

trading in which informed agents coexist as liquidity demanders as in Kyle (1985) and

liquidity providers as in Kyle (1989). Our model is well suited to this question because it

enables us to endogenize the two key elements of traders’ strategies that affect the level of

competition and market quality. The first is the attraction of informed agents to trading

as liquidity providers or demanders according to whether liquidity is hidden or displayed.

The second is the greater intensity with which the informed compete when more of them

provide liquidity. Several studies extend Kyle’s models, but none considers the situation

where informed agents coexist as liquidity demanders and liquidity providers.

If the informed must display orders that provide liquidity, they lose a portion of their

informational advantage because the order book discloses information in their orders to

other traders. This does make liquidity demanders better informed than they would have

been otherwise. However, it also causes informed agents to back away from liquidity

provision, which weakens competition among liquidity providers and also among liquidity

demanders. We show that the reduction in competition dominates. The net effect is

that the trading costs of uninformed agents are higher, bid-ask spreads are wider and

the informational efficiency of midquotes is lower in markets that require liquidity to be

displayed than in markets where liquidity is hidden.

Our model considers situations in which liquidity is either hidden or displayed. Some

exchanges take a hybrid approach wherein orders can only be partially hidden (reserve or

iceberg orders), and displayed liquidity has priority over liquidity that is hidden. Although

less extreme than a mandate of full display, these policies still weaken the incentives of the

informed to trade as liquidity providers. Such incentives are what deliver the improvements

in market quality associated with hidden liquidity in our model. Our results suggest the

better policy is to allow fully hidden liquidity with no requirement of partial display and

no reduction in priority.
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There is nothing in the logic behind our results that suggests traders should be pre-

vented from displaying orders if they want their orders to be displayed. In fragmented

markets, displaying orders can attract potential counter parties away from other venues

[see Hendershott and Jones (2005)]. In our model, orders that supply liquidity are consol-

idated and there is no reason for traders to advertise to attract counter parties.

Our model suggests that innovations, which at first might seem to advantage one

group of traders over another, can improve market quality by encouraging more aggressive

competition. This perspective could be useful in addressing the controversy over whether

high-frequency traders (HFTs) are good for markets or not. The academic studies of

HFTs suggest that, as a group, HFTs primarily provide liquidity, and they seem to be

able to predict price changes a tick or two ahead [see Boehmer, Fong and Wu (2011),

Hasbrouck and Saar (2011) and Kirilenko, Kyle, Samadi and Tuzun (2011)].18 There have

been allegations of front-running.19 However, the broader concerns of markets, regulators

and market professionals seems to be that the speed advantage of HFTs over other traders

harms market quality through the submission and nearly immediate cancelation of large

numbers of orders. Remedies proposed include (i) charging order cancelation fees, (ii)

requiring a minimum duration of orders placed in the book, (iii) fines for exceeding a set

order-to-trade ratio, and (iv) requirements to post at the NBBO a certain percentage of

the time.20

Liquidity providers’ strategies, in our model and in others, are price contingent order

schedules. These are implemented by placing collections of limit orders into the book, the

vast majority of which will not be executed. Any change in the state of the market, such

as the arrival or execution of market orders, will lead liquidity providers to revise their

order schedules. This naturally leads to cancelations of large numbers of orders in relation

to orders executed. The faster liquidity providers perceive the state of the market to be

18See also Chester Spatt’s comments in “Does High Speed Trading Hurt the Small Investor?” Wall Street

Journal, October 10, 2011.
19See “SEC Probes Ties to High-Speed Traders,” Wall Street Journal, April 3, 2012.
20Item (iii) is already in force in some exchanges, though the fines are small—e.g. 0.01 - 0.03 Euro per

order exceeding a ratio of 100-to-1; see “Bourses Play Nice Cop to Head Off Speed-Trade Rules,” Reuters,

April 10, 2012.
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changing (e.g., because the flow orders or news is rapid), the greater will be the intensity

of cancelations.

From this perspective, the “remedies” above raise the cost of providing liquidity versus

demanding liquidity in a manner similar to the effect of mandating the display of liquidity

in our model. It deters traders who would otherwise provide liquidity from doing so, which

reduces competition and degrades market quality. Our analysis cautions that measures to

level the playing field between fast and slow traders might actually deny slow traders the

greater benefits of robust competition among those who trade fast.
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APPENDIX

Proof of Proposition 1: The proof follows exactly the steps of the proof of Proposition 4, except non-dealers

do not condition on the intercept of the price schedule. The result turns out to be the same as the expressions

in Proposition 4 with β2 = 0 and ψ(·) = 1.‖

Proof of Proposition 2: An interior equilibrium assignment of agents between dealing and trading via market

orders is Ĵ ∈ {2, . . . ,M} such that:

(i) Agents i trading via market order have no incentive to switch to supply schedules

πi(Ĵ) ≥ πj(Ĵ + 1), and

(ii) agents j trading via supply schedules have no incentive to switch to market orders

πj(Ĵ) ≥ πi(Ĵ − 1).

Ignoring the integer constraint, an interior equilibrium Ĵ is a point at which πi and πj cross when both are

regarded as functions of J .1

Substituting from the expected profit expressions in Proposition 1, πj(Ĵ) = πi(Ĵ) is equivalent to

Ĵπj(Ĵ) =
σ2
u

Ĵδ
− (M − Ĵ)πi(Ĵ) = Jπi(Ĵ)

σ2
u

Ĵδ
= M

Ĵδ

4
σ2
vi

(Ĵδ)2 =
4

M

σ2
u

σ2
vi

.

Substituting the expression for Jδ in Proposition 1 yields

(
4σ2

u

σ2
vi

) Ĵ − 2

Ĵ
[
(M − Ĵ) + (Ĵ − 1)

]
 =

4

M

σ2
u

σ2
vi

or

Ĵ = 2M. (2.1)

Thus, there is a single crossing point of πi and πj in the domain J ∈ (2,∞) at Ĵ = 2M . Furthermore, πj

crosses πi from above because

lim
J→2

πi(J) = 0 and lim
J→2

πj(J) =∞.

Since the crossing point exceeds M , all informed traders elect to trade as dealers and equilibrium J∗ is at

the boundary, J∗ = M . ‖

1It is easy to show that if an equilibrium exists while ignoring the integer constraint, then an equilibrium also exists under the

constraint that J take only integer values. Details are available from the authors.
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Proof of Propositions 3: Substituting J = M from Proposition 2 into the expression for uninformed trader

expected losses in Proposition 1 yields

σ2
u

Mδ
=
σuσvi

2

√
M(M − 1)

M − 2
=
σuσv

2

√
M − 1

M − 2
,

where the last equality follows from σ2
v = Mσ2

vi. This is the first expression in the statement of Proposition

3. To obtain the second expression, note that if liquidity is provided by a perfectly competitive, uninformed,

risk-neutral market maker, the price schedule is P̂ (ω̂) = E [ṽ|ω̂], where ω̂ =
∑M
i=1 x̂i + u because informed

traders submit market orders only. The derivation of a linear equilibrium follows the steps in Kyle (1985)

with minor modifications, so we do not reproduce them here. The solution is:

x̂i = β̂vi for i = 1, . . . ,M

P̂ (ω̂) = λ̂ω̂

where

β̂ =
σu
σv

and λ̂ =
σv
2σu

.

Expected profit of informed trader i is

π̂i = E
[
(ṽ − P̂ (ω̂))x̂i

]
= E

[
(ṽ − λ̂x̂i)x̂i

]
= E

[
viβ̂vi − λ̂β̂2v2i

]
= σ2

viβ̂(1− λ̂β̂)

= σ2
vi

σu
σv

(
1− 1

2

)
=
σuσv

2

where the last equality follows from σ2
v = Mσ2

vi.

The equilibrium price schedule of Proposition 1 is easily shown to be

P (ω) =
1

2

M∑
i=1

vi +

(
σv
2σu

√
M − 1

M − 2

)
ω (3.1)

where ω = u because the informed do not use market orders in equilibrium. A standard calculation shows

that the price function of a perfectly competitive, uninformed, risk-neutral market maker in our informational

environment is given by

P̂ (ω̂) = 0 +

(
σv
2σu

)
ω̂. (3.2)

where ω̂ =
∑M
i=1 β̂vi+u, β̂ = σu

σv
, and the “hats” denote the competitive market maker setting. Substituting

these into (3.2) yields

P̂ (ω̂) =
1

2

M∑
i=1

vi +

(
σv
2σu

)
u. (3.3)

Using (3.1) and (3.3), the midpoints of the bid and ask prices are

P (0) =
1

2

M∑
i=1

vi and P̂ (0) = 0.
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Thus,

E
[
(ṽ − P̃ (0))2

]
< E

[
(ṽ − P̂ (0))2

]
,

midquotes in the equilibrium of Proposition 2 are better predictors of ṽ in a mean-square error sense than

are midquotes in a market with an uninformed, perfectly competitive, risk-neutral market maker.

The bid-ask spread is the difference between prices quoted for unit-sized market buy and sell orders.

Thus,

s ≡ P (1)− P (−1) =
σv
σu

√
M − 1

M − 2

ŝ ≡ P̂ (1)− P̂ (−1) =
σv
σu
,

so s > ŝ. Finally, the difference in the variance of prices is evident from equations (3.1) and (3.3):

Var
[
P̃ (ũ)

]
−Var

[
P̂ (ũ)

]
=

{√
M − 1

M − 2
− 1

}
σ2
u.

This concludes the proof.‖

Proof of Proposition 4: Consider non-dealers first. Suppose non-dealer i believes that (i) dealers j ∈ J ≡

{1, . . . , J} follow symmetric strategies of the form yj = γvj + δP , and (ii) other non-dealers k 6= i follow

symmetric strategies of the form xk = β1vk + β2θ where θ ≡ P (0) is the intercept of the consolidated price

schedule. Then non-dealer i perceives the market clearing condition as

γ
∑
j∈J

ṽj + JδP̃ = ω̃ where ω̃ = xi + β1
∑
k∈I∼i

ṽk + (M − J − 1)β2θ + ũ,

I ≡ {J + 1, . . . ,M}, and I ∼ i is the set of integers in I with the exception of i. Equivalently, non-dealer i

perceives the market clearing price as a realization of the random variable

P̃ = P̃ (ω̃) = −γ
δ
vJ +

1

Jδ
ω̃ where vJ =

1

J

∑
j∈J

ṽj ,

which implies

θ =
−γ
δ
vJ .

Non-dealer i chooses xi to maximize expected profit conditional on his private information si = vi and his

observation of the intercept θ:

max
xi

E

[(
M∑
h=1

ṽh +
γ

δ
vJ −

1

Jδ

(
xi + β1

∑
k∈I∼i

ṽk + (M − J − 1)β2θ + ũ

))
xi

∣∣∣∣vi, θ
]
.

Since E [vJ |θ] = − δ
γ θ and E [ṽk|vi] = 0 for k 6= i, the first-order condition implies

xi =
Jδ

2
vi −

1

2

{
J(Jδ + γ)

δ

γ
+ (M − J − 1)β2

}
θ.
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The second-order condition is satisfied if δ > 0, which we verify later. Thus, if non-dealer i believes others

follow symmetric linear strategies, he also follows a strategy that is linear in his signal and the intercept of

the price schedule. Symmetry among non-dealers’ strategies implies the coefficients of non-dealer i’s strategy

are equal to the corresponding coefficients of the other non-dealers’ strategies; i.e.,

β1 =
Jδ

2
(4.1)

and β2 equals the coefficient on θ. After simplifying,

β2 =
−Jδ

M − J + 1

(
1 +

Jδ

γ

)
. (4.2)

Now consider dealers. Suppose dealer j believes that (i) other dealers k 6= j follow symmetric strategies

of the form yk = γvk + δP and (ii) non-dealers i ∈ I follow symmetric strategies of the form xi = β1vi+β2θ.

Then dealer j perceives the market clearing condition as

γ
∑

k∈J∼j

ṽk + (J − 1)δP̃ + yj = ω̃ where ω̃ = β1
∑
i∈I

ṽi + (M − J)β2θ + ũ,

and J ∼ j is the set of integers in J with the exception of j. Equivalently, dealer j perceives the market

clearing price as a realization of the random variable

P̃ = P̃ (ω̃) =
−γ
δ
vJ∼j +

1

(J − 1)δ
(ω̃ − yj) where vJ∼j =

1

J − 1

∑
k∈J∼j

ṽk, (4.3)

and the intercept of the price function as the realization of

θ̃ ≡ P̃ (0) =
−γ
δ
vJ∼j −

1

(J − 1)δ
yj . (4.4)

Dealer j′s strategy is a signal and price contingent supply schedule yj(sj , P ) that maximizes expected profit

for each realization of the market clearing price P̃ = P and signal s̃j = vj :

max
yj(·)

E

[(
−γ
δ
vJ∼j +

1

(J − 1)δ

[
β1(M − J)vI + β2(M − J)θ̃ + ũ− yj(vj , P )

]
− ṽ
)
yj(vj , P )

]

where vI =
1

M − J
∑
i∈I ṽi. Substituting from (4.4) for θ̃ and collecting like terms, this problem is equivalent

to selecting yj(·) to maximize

E

[(
−γ
δ
vJ∼j +

1

(J − 1)δ

[
β1(M − J)vI − β2(M − J)

γ

δ
vJ∼j + ũ− ψyj(vj , P )

]
− ṽ
)
yj(vj , P )

]

where ψ ≡ 1+
(
M−J
J−1

)(
β2

δ

)
. Pointwise optimization yields a collection of first order conditions, each relating

to a particular realization of the signal and price:

E

[
−γ
δ
vJ∼j +

1

(J − 1)δ

[
β1(M − J)vI − β2(M − J)

γ

δ
vJ∼j + ũ− 2ψyj

]
− ṽ
∣∣∣∣vj , P̃ = P

]
= 0.
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The collection of second-order conditions are satisfied if ψ/δ > 0, which is verified below. Substituting (4.4)

for θ in the expression for ω̃, and substituting the result into (4.3) yields

P̃ =
−γ
δ
vJ∼j +

1

(J − 1)δ

[
β1(M − J)vI − β2(M − J)

γ

δ
vJ∼j + ũ− ψyj

]
(4.5)

so the collection of first-order conditions is equivalent to

E

[
P̃ − ṽ − ψ

(J − 1)δ
yj

∣∣∣∣vj , P̃ = P

]
= 0

or

yj =
(J − 1)δ

ψ

{
P − E

[
ṽ|vj , P̃ = P

]}
(4.6)

for each realization {vj , P}. From the perspective of dealer j, all variates are jointly normal so

E
[
ṽ|vj , P̃ = P

]
= E

[
ṽ1 + · · ·+ ṽJ + ṽJ+1 + · · ·+ ṽM |vj , P̃ = P

]
= vj + (J − 1)E

[
ṽk|vj , P̃ = P

]
+ (M − J)E

[
ṽi|vj , P̃ = P

]
where k ∈ J ∼ j and i ∈ I. Using the expression in (4.5) for P̃ , we have

E
[
ṽk|vj , P̃ = P

]
=
C1
V

(
P − E

[
P̃ |vj

])
=
C1
V

(
P +

ψ

(J − 1)δ
yj

)
(4.7)

E
[
ṽi|vj , P̃ = P

]
=
C2
V

(
P − E

[
P̃ |vj

])
=
C2
V

(
P +

ψ

(J − 1)δ
yj

)
(4.8)

where

C1 ≡ Cov
[
ṽk , P̃ |vj

]
=

−γ
(J − 1)δ

ψσ2
vi for k ∈ J ∼ j

C2 ≡ Cov
[
ṽi , P̃ |vj

]
=

β1
(J − 1)δ

σ2
vi for i ∈ I, and

V ≡ Var
[
P̃ |vj

]
= ψ2

(γ
δ

)2 σ2
vi

J − 1
+

(
1

(J − 1)δ

)2 {
(M − J)β2

1σ
2
vi + σ2

u

}
.

Therefore, (4.7) and (4.8) imply

E
[
ṽ|vj , P̃ = P

]
= vj +

(J − 1)C1 + (M − J)C2
V

[
P +

ψ

(J − 1)δ
yj

]
.

Substituting this into (4.6) and solving for yj yields the dealer’s strategy

yj(vj , p) =
(J − 1)δ

ψ

{(
1− φ
1 + φ

)
P −

(
1

1 + φ

)
vj

}
,

where φ ≡ (J − 1)C1 + (M − J)C2
V

. Thus, if dealer j believes the others follow symmetric linear strategies,

he also follows a strategy that is linear in the realizations of his signal and the price. Symmetry among the

dealers’ strategies implies

δ =
(J − 1)δ(1− φ)

ψ(1 + φ)
⇐⇒ φ =

J − 1− ψ
J − 1 + ψ

(4.9)
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and

γ =
−(J − 1)δ

(1 + φ)ψ
.

Substituting for φ from (4.9) yields
γ

δ
=
−(J − 1 + ψ)

2ψ
. (4.10)

To identify ψ, substitute from (4.2) and (4.10) into the definition of ψ:

ψ ≡ 1 +

(
M − J
J − 1

)(
β2
δ

)
= 1 +

(
M − J
J − 1

)(
−J

M − J + 1

)[
1 + J

(
−2ψ

J − 1 + ψ

)]
This is a quadratic equation whose negative root can be ruled out because it yields a negative ψ, which

violates the requirement of the second-order conditions that ψ/δ > 0 (that δ > 0 is verified below). The

solution for ψ depends only on J and M :

ψ∗ ≡
Z +

√
Z2 − 4

[
J
(

M−J
M−J+1

)
− (J − 1)

]
2

≡ ψ(J,M) (4.11)

where

Z = J

(
2J − 1

M − J + 1

)(
M − J
J − 1

)
− (J − 2). (4.12)

Using (4.11) and (4.12) it is easy to show that J ≤M implies ψ∗ ≥ 1 with equality iff J = M . Substituting

ψ∗ back into (4.10) yields
γ

δ
=
−(J − 1 + ψ∗)

2ψ∗
. (4.13)

Substituting this into (4.2) and simplifying yields

β2
δ

=
J

M − J + 1

[
(2J − 1)ψ∗ − (J − 1)

J − 1 + ψ∗

]
, (4.14)

which is positive because ψ∗ ≥ 1.

To identify δ, equate the definition of φ to the expression given for it in (4.9)

(J − 1)C1 + (M − J)C2 =

(
J − 1− ψ∗
J − 1 + ψ∗

)
V.

Substituting from above for C1, C2 and V, substituting ψ∗ for ψ, and using the solutions for endogenous

parameters obtained so far yields the following equation for δ2:

1

δ2
=
σ2
vi

σ2
u

(J − 1)2

2

{
(J − 1 + ψ∗)

2

[
1

J − 1− ψ∗
− 1

2

(
1

J − 1

)]
+
J(M − J)

J − 1

[
J − 1 + ψ∗
J − 1− ψ∗

− 1

2

(
J

J − 1

)]}
.

(4.15)

The requirement that J > 1+ψ∗ in the statement of the proposition ensures that δ > 0. To see why, observe

that if J > 1 + ψ∗, then the term in curly brackets is positive and there is a unique δ > 0 that satisfies

(4.15), so an equilibrium exists that is linear and this equilibrium is unique in the linear class. If J < 1 +ψ∗
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then the term in curly brackets is negative and there is no real δ that satisfies (4.15). If J → 1 + ψ∗ then

δ →∞, which means dealers’ strategies are undefined, so an equilibrium does not exist in linear strategies.

Equations (4.2),(4.11) - (4.15) constitute the solution stated in the proposition. The function F (J,M)

referenced in the proposition is defined as 1/(J − 1) times the square root of the inverse of the expression in

curly brackets in (4.15). Thus,

δ =
σu
√

2

σvi
F (J,M). (4.16)

The unconditional expected profit of non-dealer i in equilibrium is

πi ≡ E
[(
ṽ − P̃∗

)
xi(ṽi, θ̃)

]
where xi(·) is agent i’s optimal strategy and P̃∗ is the equilibrium price schedule (i.e., evaluated at dealers’

and non-dealers’ optimal strategies). Thus,

πi = E

[[
ṽ − θ̃ − 1

Jδ

(
β1
∑
I
vi + β2(M − J)θ̃ + ũ

)]
(β1ṽi + β2θ̃)

]

= β1σ
2
vi

[
1− β1

Jδ

]
+ β2E

[
ṽθ̃
]
− β2

[
1 + (M − J)

β2
Jδ

]
E
[
θ̃2
]

The fact that θ̃ = −γδ vJ implies E
[
ṽθ̃
]

= −γδ σ
2
vi and E

[
θ̃2
]

=
(
γ
δ

)2 σ2
vi

J . In addition, β1/Jδ = 1/2, so

πi =
β1σ

2
vi

2
− β2σ2

vi

γ

δ

{
γ

Jδ

[
1 + (M − J)

β2
Jδ

]
+ 1

}
. (4.17)

Substituting for γ/δ from (4.13), and β2/δ inside the curly brackets from (4.14),

πi =
β1σ

2
vi

2
− β2σ2

vi

(J − 1 + ψ∗)

2ψ∗
G(J,M)

where

G(J,M) ≡ (J − 1 + ψ∗)

2Jψ∗

{
1 +

M − J
M − J + 1

[
J

(
2ψ∗

J − 1 + ψ∗

)
− 1

]}
− 1. (4.18)

Substituting for the remaining β1 and β2 using (4.1) and (4.14) yields

πi = Jδσ2
viH(J,M),

where

H(J,M) =
1

4
− 1

M − J + 1

[
J

(
2ψ∗

J − 1 + ψ∗

)
− 1

]
(J − 1 + ψ∗)

2ψ∗
G(J,M). (4.19)

Finally, substituting for δ from (4.16) yields

πi = σuσvi × J
√

2F (J,M)H(J,M). (4.20)

This shows that πi can be factored into the product σuσvi, and an expression involving only J and M .
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The unconditional expected profit of informed dealer j in equilibrium is

πj ≡ E
[(
P̃∗ − ṽ

)
yi(ṽj , P̃∗)

]
where yi(·) is dealer j’s optimal strategy. Thus,

πj = δE
[
(P̃∗ − ṽ)P̃∗

]
+ γE

[
(P̃∗ − ṽ)ṽj

]
.

Since the market clears,

P̃∗ =
−γ
δ
vJ +

1

Jδ

(
β1

M−J∑
i=1

vi − β2(M − J)
γ

δ
vJ + ũ

)
.

By (4.1), β1/Jδ = 1/2 so

P̃∗ − v = −
{
γ

Jδ

[
1 + (M − J)

β2
Jδ

]
+ 1

}∑
j∈J

ṽj −
1

2

M−J∑
i=1

ṽi +
1

Jδ
ũ.

Multiplying and taking expectations yields

E
[
(P̃∗ − ṽ)P̃∗

]
= −

{
γ

Jδ

[
1 + (M − J)

β2
Jδ

]
+ 1

}(
−γ
Jδ

)[
1 + (M − J)

β2
Jδ

]
Jσ2

vi

− 1

4
(M − J)σ2

vi +

(
1

Jδ

)2

σ2
u

E
[
(P̃∗ − ṽ)ṽj

]
= −

{
γ

Jδ

[
1 + (M − J)

β2
Jδ

]
+ 1

}
σ2
vi ≡ −{·}σ2

vi.

After simplifying and using the fact that δ/2 = β1/J ,

πj =
σ2
u

J2δ
− δ

4
(M − J)σ2

vi + {·} (M − J)
β2
Jδ
γσ2

vi

=
σ2
u

J2δ
− β1

2J
σ2
vi(M − J) + {·} (M − J)

β2
Jδ
γσ2

vi

=
σ2
u

J2δ
− 1

J

[
β1
2

+ β2
(J − 1 + ψ∗)

2ψ∗
{·}
]
σ2
vi(M − J)

Jπj =
σ2
u

Jδ
− (M − J)πi (4.21)

the last line follows from (4.13) and the expression for πi in (4.17). To see that dealer profit can be factored

just as πi in (4.20) above, substitute for δ from (4.16) and for πi from (4.20) into (4.21)

Jπj = σuσvi
F (J,M)−1

J
√

2
− (M − J)σuσviJ

√
2F (J,M)H(J,M). (4.22)

Dividing by J shows that πj can be written as the product of σuσvi and an expression involving only J and

M . ‖

Proof of Proposition 5: First we derive an equation that defines J∗ implicitly as a function of M alone. Then

we show that the functional form J∗(M) = M −M 1
3 uniquely satisfies this equation as M →∞.
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At the equilibrium J∗ we have πi = πj . By Equation (4.20)

πj = πi = σuσviJ∗
√

2F (J∗,M)H(J∗,M)

and by (4.21) we have

J∗πj + (M − J∗)πi = Mπi =
σ2
u

J∗δ
.

Combining these yields
σ2
u

J∗δM
= σuσviJ∗

√
2F (J∗,M)H(J∗,M).

Making use of (4.16) to substitute for δ leaves

G(J∗,M) ≡ 2MJ2
∗ F (J∗,M)2H(J∗,M)− 1 = 0 (5.1)

as the equation that identifies the equilibrium number of dealers, J∗, when liquidity is displayed. Since G is

independent of all model parameters except J and M , the equilibrium number of dealers J∗, depends only

on M .

Consider a solution to (5.1) of the form

J∗(M) = M(1− ε(M)) (5.2)

where the function ε(·) is non-negative and converges to zero as M →∞. Write (4.12) as

Z = (2J − 1)

(
J

J − 1

)(
M − J

M − J + 1

)
− (J − 2).

Since both J and M − J increase as M increases, we can use the asymptotic approximations J
J−1 ∼ 1 + 1

J

and M−J
M−J+1 ∼ 1 − 1

M−J for the second and third factors of the first term. Substituting from (5.2) for J

yields

Z ∼ [2M(1− ε(M))− 1]

(
1 +

1

M(1− ε(M))

)(
1− 1

Mε(M)

)
−M(1− ε(M)) + 2

= M(1− ε(M))− 2

ε(M)
+ 3− 1

Mε(M)
− 1

M(1− ε(M))
+

1

M2ε(M)(1− ε(M))
.

Ignoring the constant and lower-order terms we have

Z ∼M(1− ε(M))− 2

ε(M)
(5.3)

at J∗ when M is large.

We repeat the same type of calculation four additional times. First, upon substituting (5.2) into (4.11)

and dropping lower-order terms implies that ψ∗ ∼ Z, so

ψ∗ ∼M(1− ε(M))− 2

ε(M)
. (5.4)
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Second, substituting (5.2) and (5.4) into (4.18), simplifying and ignoring lower-order terms yields

G(J∗,M) ∼ −1

Mε(M)
. (5.5)

Third, (5.2), (5.4) and (5.5) into (4.19), and again simplifying and dropping lower-order terms yields

H(J∗,M) ∼ M

(Mε(M))2
. (5.6)

Finally, squaring the definition of F (·) yields

F (J∗,M)2 =
1

(J∗ − 1)2

{
(J∗ − 1 + ψ∗)

2

[
1

J∗ − ψ∗ − 1
− 1

2

(
1

J∗ − 1

)]
+
J∗(M − J∗)
J∗ − 1

[
J∗ − 1 + ψ∗
J∗ − ψ∗ − 1

− 1

2

(
J∗

J∗ − 1

)]}−1
.

Substituting from (5.2) and (5.4), noting that J∗ − ψ∗ ∼ 2
ε(M) , simplifying and dropping lower-order terms

yields

F (J∗,M)2 ∼ 1

2M4ε(M)
(5.7)

when M is large.

Substituting (5.2), (5.6) and (5.7) into the expression for G in (5.1) yields the asymptotic approximation

G(J∗,M) ∼ 2M [M(1− ε(M))]
2

(
1

4M4ε(M)

)
M

(Mε(M))2
− 1

when M is large. Setting this equal to zero and solving for ε(M) shows that (5.1) is satisfied when M is

large if and only if

ε(M) =
1

M
2
3

. (5.8)

This implies that a solution of the form

J∗(M) = M −M 1
3 (5.9)

satisfies (5.1) when M is large. Note that this is the only asymptotic solution because candidates for J∗

that possess other orders of M (i.e., that differ from M and M
1
3 ), or whose coefficients differ from 1 and -1,

respectively, will violate (5.1) as M →∞. ‖

Proof of Proposition 6: By Proposition 1, the loss of the uninformed in a market with hidden liquidity and

J dealers is given by

σ2
u(Jδ)−1 = σ2

u

{
2σu
σvi

√
J − 2

J(M − 1)

}−1
for arbitrary J . Since J∗,hidden = M we have

√
M σ2

u(J∗δ)
−1 = σ2

u

{
2σu
σvi

√
M(M − 2)

M(M − 1)

}−1
.
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As the market grows large,

lim
M→∞

√
M σ2

u(J∗δ)
−1 =

1

2
σuσvi.

Thus,

σ2
u(J∗,hiddenδ)

−1 ∼
√
M

2
σuσvi (6.1)

in a large market.

By Proposition 4, the loss of the uninformed in a market with displayed liquidity and J dealers is given

by

σ2
u(Jδ)−1 = σ2

u

{
σu
σvi

√
2 J F (J,M)

}−1
.

By (5.7), F ∼ 1

M2
√

2ε(M)
when evaluated at J∗, so

J∗δ ∼
(
σu
σvi

)√
2 [M(1− ε(M))]

1

M2
√

2ε(M)
∼
(
σu
σvi

)
1√

M
√
Mε(M)

.

By (5.8), Mε(M) = M
1
3 , so

J∗δ ∼
(
σu
σvi

)(
1

M
2
3

)
and

σ2
u(J∗,displayedδ)

−1 ∼M 2
3σuσvi. (6.2)

The ratio of (6.2) to (6.1) indicates that the the expected loss of the uninformed is greater in a large displayed

market than a large hidden market by a factor of 2M
1
6 . ‖

Proof of Proposition 7: Consider first a market with hidden liquidity. Equations for the price and market-

order flow for arbitrary J are

P̃ =
1

2

J∑
j=1

ṽj +
1

Jδ
ω̃ and ω̃ = β

M∑
i=J+1

ṽi + ũ.

Because J∗,hidden = M , equation (6.1) is equivalent to J∗δ ∼ 2σu

σvi

1√
M

. This, and the fact that β = Jδ/2,

imply that β ∼ σu

σvi

1√
M

. These relations imply the following asymptotics

Cov
[
P̃ , ω̃

]
=

1

J∗δ
Var [ω̃] ∼

√
M

2
σuσvi

Var
[
P̃
]

=
1

4
J∗σ

2
vi +

(
1

J∗δ

)2

Var [ω̃] ∼ M

2
σ2
vi

Var [ω̃] = β2(M − J)σ2
vi + σ2

u ∼ σ2
u.

Therefore,

R2 ∼
M
4 σ

2
uσ

2
vi

M
2 σ

2
uσ

2
vi

=
1

2

in a market with hidden liquidity.
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Now consider a market with displayed liquidity. Equations for the price and market-order flow for

arbitrary J are

P̃ =
−γ
Jδ

J∑
j=1

ṽj +
1

Jδ
ω̃ and ω̃ = β1

M∑
i=J+1

ṽi + (M − J)β2

−γ
Jδ

J∑
j=1

ṽj

+ ũ.

where

J∗δ =
σu
σvi

√
2J∗F (M,J∗) ∼

(
σu
σvi

)(
1

M
2
3

)
−γ
J∗δ

=
1

J∗

(
J∗ − 1 + ψ∗

2ψ∗

)
∼ 2M(1− ε(M))− 1

4M(1− ε(M))
∼ 1

2

β1 =
J∗δ

2
∼
(
σu
σvi

)(
1

2

)(
1

M
2
3

)
β2 =

−J∗δ
M − J∗ + 1

(
1 +

J∗δ

γ

)
∼ σu
σvi

(
M−

2
3

Mε(M) + 1

)
=
σu
σvi

(
1

M +M
2
3

)
∼
(
σu
σvi

)
1

M
.

These relations imply the following asymptotics

Cov
[
P̃ , ω̃

]
∼M 2

3 σviσu

Var
[
P̃
]
∼M 4

3σ2
vi

Var [ω̃] ∼ σ2
u.

Therefore,

R2 ∼

(
M

2
3σviσu

)2
M

4
3σ2

viσ
2
u

= 1

in a market with displayed liquidity.‖

Proof of Proposition 8: Consider non-dealers first. Suppose non-dealer i believes that (i) dealers j ∈

{1, . . . , J} follow symmetric strategies of the form yj = γv1 + δP , and (ii) other non-dealers k 6= i fol-

low symmetric strategies of the form xk = βv2. Then non-dealer i perceives the market clearing condition

as

Jγṽ1 + JδP̃ = ω̃ where ω̃ = xi + (N − 1)βv2 + ũ,

or equivalently that the market clearing price is the realization of the random variable

P̃ = P̃ (ω̃) =
−γ
δ
ṽ1 +

1

Jδ
ω̃.

Non-dealer i then chooses xi to maximize expected profit conditional on his information si = v2:

max
xi

E

[(
ṽ1 + v2 +

γ

δ
ṽ1 −

1

Jδ
[xi + (N − 1)βv2) + ũ]

)
xi
∣∣v2] .

Since E [ṽ1|v2] = 0, the first-order condition implies

xi =
1

2
[Jδ − (N − 1)β] v2.
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The second-order condition is δ > 0, which we later show is satisfied by choosing the positive root of the

quadratic that defines δ. This verifies that if any non-dealer i believes the others follow symmetric linear

strategies, he also follows a strategy that is linear in si = v2. Symmetry among the non-dealers’ strategies

implies that any non-dealer i’s strategy coefficient must be equal to the coefficient he believes defines the

strategies of the other non-dealers:

β =
1

2
[Jδ − (N − 1)β] ⇐⇒ β =

Jδ

N + 1
. (8.1)

Now consider dealers. Suppose dealer j believes that (i) other dealers k 6= j follow symmetric strategies

of the form yk = γv1 + δP and (ii) non-dealers i ∈ {1, . . . , N} follow symmetric strategies of the form

xi = βv2. Then dealer j perceives the market clearing condition as

(J − 1)
(
γv1 + δP̃

)
+ yj = ω̃ where ω̃ = Nβṽ2 + ũ,

or equivalently that the market clearing price is a realization of the random variable

P̃ = P̃ (ω̃) =
−γ
δ
v1 +

1

(J − 1)δ
(ω̃ − yj) . (8.2)

Dealer j then chooses a price-contingent supply schedule yj(sj , p) to maximize expected profit for each

realization of the market clearing price P̃ = P and signal s̃j = v1

max
yj(·)

E

[(
−γ
δ
v1 +

1

(J − 1)δ
(Nβṽ2 + ũ− yj)− ṽ

)
yj

]
.

Pointwise optimization yields a collection of first-order conditions, each relating to a particular realization

of the signal and price:

E

[(
−γ
δ
v1 +

1

(J − 1)δ
(Nβṽ2 + ũ− 2yj)− ṽ

) ∣∣v1, P̃ = P

]
= 0.

The second-order condition is satisfied if δ > 0, which is verified below. Substituting for ω in (8.2) yields,

P̃ =
−γ
δ
v1 +

1

(J − 1)δ
(Nβṽ2 + ũ− yj) so the first-order condition is equivalent to

E

[
P̃ − ṽ − 1

(J − 1)δ
yj
∣∣v1, P̃ = P

]
= 0

or

yj = (J − 1)δ
(
P − E

[
ṽ|v1, P̃ = P

])
. (8.3)

From the perspective of dealer j, all variates are jointly normal, so

E
[
ṽ|v1, P̃ = P

]
= v1 + E

[
ṽ2|v1, P̃ = P

]
= v1 +

C
V

(
P − E

[
P̃ |v1

])
= v1 +

C
V

(
P +

γ

δ
v1 +

1

(J − 1)δ
yj

)
(8.4)
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where

C ≡ Cov
[
ṽ2 , P̃ |v1

]
=

Nβ

(J − 1)δ
σ2
v2 (8.5)

V ≡ Var
[
P̃ |v1

]
=

(Nβ)2σ2
v2 + σ2

u

(J − 1)2δ2
. (8.6)

Substituting (8.4) into (8.3) and solving for yj yields

yj(v1, P ) = (J − 1)δ

{(
1− CV
1 + C

V

)
P −

(
1 + C

V
γ
δ

1 + C
V

)
v1

}
.

This verifies that if any dealer j believes the others follow symmetric linear strategies, he also follows a

strategy that is linear in sj = v1 and the realized price P . Symmetry among the dealers’ strategies implies

that any dealer j’s strategy coefficients must be equal to the coefficients he believes define other dealers’

strategies:

δ = (J − 1)δ

(
1− CV
1 + C

V

)
⇐⇒ C

V
=
J − 2

J
(8.7)

and

γ = −(J − 1)δ

(
1 + C

V
γ
δ

1 + C
V

)
using (8.7)

= −(J − 1)

(
1 + J−2

J
γ
δ

1 + J−2
J

)
⇐⇒ γ

δ
= −1. (8.8)

To identify separately γ and δ, substitute (8.5) and (8.6) into (8.7)

Nβ

(J − 1)δ
σ2
v2 =

J − 2

J

{
(Nβ)2σ2

v2 + σ2
u

(J − 1)2δ2

}
.

Substituting for β from (8.1) gives an expression in terms of δ alone. Solving that expression for δ and

selecting the positive root so second-order conditions are satisfied yields

δ =
N + 1

J

σu
σv2

√
J − 2

N(J +N − 1)
. (8.9)

Equations (8.1), (8.8) and (8.9) define the parameter values that characterize a symmetric equilibrium that

is unique in the linear class. Note that the assumption in the proposition that J > 2 ensures that δ is real

valued.

The unconditional expected profit of dealer j in equilibrium is

πj ≡ E
[(
P̃∗ − ṽ

)
ỹj∗

]
where yj∗ is the dealer’s optimal strategy and P∗ is the equilibrium price schedule (i.e., evaluated at dealers’

and non-dealers’ optimal strategies). Thus,

πj = E

[(
ṽ1 +

ω̃∗
Jδ
− ṽ1 − ṽ2

)
δ(P̃∗ − ṽ1)

]
= δE

[(
ω̃∗
Jδ
− ṽ2

)
ω̃∗
Jδ

]
where ω̃∗ =

NJδ

N + 1
ṽ2 + ũ.
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Substituting for ω̃∗ and taking expectations yields

πj = δ

{
N

N + 1

(
N

N + 1
− 1

)
σ2
v2 +

(
1

Jδ

)2

σ2
u

}
. (8.10)

Substituting from (8.9) for δ and simplifying yields

πj =
σuσv2
J

√
N

(J − 2)(J +N − 1)
. (8.11)

From this, it is easy to show that

∂πj
∂σv2

> 0
∂πj
∂σu

> 0
∂πj
∂J

< 0 and
∂πj
∂N

> 0.

Unconditional expected profit of non-dealer i in equilibrium is

πi = E
[(
ṽ − P̃∗

)
x̃i∗

]
= E

[(
ṽ1 + ṽ2 − ṽ1 −

ω̃∗
Jδ

)
βṽ2

]
= βE

[
ṽ22 −

1

Jδ
(Nβṽ2 + ũ)ṽ2

]
= β

(
1− Nβ

Jδ

)
σ2
v2 .

Substituting for β from (8.1) and simplifying yields

πi =
Jδ

(N + 1)2
σ2
v2 . (8.12)

Substituting for δ from (8.9) yields

πi =
σv2σu
N + 1

√
J − 2

N(J +N − 1)
. (8.13)

From this, it is easy to show that

∂πi
∂σv2

> 0
∂πi
∂σu

> 0
∂πi
∂N

< 0 and
∂πi
∂J

> 0.

Finally, note that (8.10) is equivalent to

πj = −Nδ
σ2
v2

(N + 1)2
+

1

J2δ
σ2
u.

Using (8.12) to substitute for the first term

πj = −N
J
πi +

σ2
u

J2δ

or

Jπj +Nπi =
σ2
u

Jδ
.

This completes the proof of Proposition 8. ‖
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Figure 1 

Dealer Strategies in Markets with Displayed Liquidity 
 
The parameter (J,M) is plotted as a function of J for the case M = 40 over the feasible range 
where J > 1 + (J,M).  M is the number of informed traders and J is the number of informed who 
trade as liquidity providers.  The extent to which  > 1 indicates how much less aggressive are 
liquidity providers’ orders when liquidity is displayed versus hidden.  When J = 39,   5;  
liquidity providers trade about one-fifth as aggressively in a displayed market than an otherwise 
identical hidden market.  When J = 40,  = 1; liquidity providers trade as aggressively in a 
displayed as in a hidden market. 
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Figure 2 
Equilibrium Profit Functions in a Market with Displayed Liquidity 

 
The heavy (light) line is a graph of the profit of an individual dealer (non-dealer) as a function of 
the number of informed agents who trade as dealers, J, when there are a total of M = 40 informed 
agents.  The dealer’s profit decreases, and the non-dealer’s profit increases in J.  With M = 40, 
dealer and non-dealer profits are equal when approximately 37 informed agents trade as dealers.   
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Figure 3 
Equilibrium Number of Liquidity Providers when Liquidity is Displayed 

 
The solid line plots the number of informed agents who trade as dealers, JM, as a function of 
the total number of informed agents M.  The dashed line is the boundary 1+ (J,M) below which 
the an equilibrium does not exist.  The fact that J(M) plots above the dashed line for all M >2 
implies that the equilibrium in Proposition 4 exists for all M >2.   
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Figure 4 
Uninformed Trader Expected Loss in a Market with Displayed Liquidity 

 
The expected loss of the uninformed is plotted as a function of J for the case M = 40 over the 
feasible range where J > 1 + (J,M).  The loss of the uninformed decreases monotonically as the 
number of dealers increases and are minimized when all the informed agents choose to provide 
liquidity, i.e., when J = M.   
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Figure 5 
Convergence to Large Market Limit 

 
The line graphs the number of informed who trade as liquidity demanders (non-dealers), M – J, 
divided by 3/1M , as a function of the total number of informed agents M.  As shown in 
Proposition 5, this ratio converges to one in the large-market limit as M .  The graph 
indicates that convergence occurs rather quickly, being close to one even for M = 40. 
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