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This study examines whether rates of information flow differ between trading and non-
trading periods, and whether the variances of pricing errors differ at the open and close of
trading. The approach improves on existing methods by allowing for correlation between
pricing errors and information flow, and by conducting inferences at the individual secu-
rity level. The daytime rate of information flow is about seven times the overnight rate,
and the variances of pricing errors at the open are not different from those at the close
of trading. This evidence differs from existing results based on return variance ratios.

Much of the empirical market microstructure literature predicates its analysis
on a model in which price changes have a permanent (information-related)
component and a transitory (market-friction or dealer-cost) component. Two
questions that have received a great deal of attention relate to the behavior of
these components. The first is whether, and to what extent, the rate of infor-
mation flow into prices differs during trading and nontrading periods. This is
equivalent to asking whether the variance of the permanent component per
unit time is different during periods when trading occurs than when trading
does not occur. The second question is whether “pricing errors” of differ-
ing magnitudes are associated with different trading mechanisms or trading
preceded by an overnight period of nontrading. This corresponds to asking
whether the variance of the transitory component is different depending on
which trading mechanism is used or whether trading has been halted for a
time. More generally, these questions relate to whether the permanent and
transitory components of price changes are heteroskedastic. Although both
questions share the context of this model, existing studies typically focus
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on only one issue and do not fully account for how correlation between the
components affects their results.

This article develops a method to estimate the variances of the tempo-
rary and permanent components of returns jointly, in a manner that allows
for heteroskedasticity and for correlation between the components. Hypothe-
ses concerning these variances are then tested at the individual security level.
Specifically examined is the extent to which information flow differs between
daytime and overnight periods, and whether pricing errors are different at the
open and close. This complements recent work of Hasbrouck (1991b, 1993)
and Madhavan, Richardson, and Roomans (1997), who analyze the infor-
mational and frictional components of price changes within the trading day.
Madhavan, Richardson, and Roomans base their inferences on a structural
model. Like Hasbrouck, we use a time-series approach. Our method is not
peculiar to comparisons of day/night and open/close; it could also be applied
to estimation and testing of differences in information flow and pricing errors
during distinct subperiods of days or weeks within which such differences
are thought to exist.

The empirical estimates indicate that the rate of information flow is signif-
icantly different during daytime and overnight hours for a majority of stocks
in the sample. The median daytime rate is about seven times that of the
overnight rate. However, for most of the stocks in our sample, less than 28%
of daytime information flow is associated with the flow of orders. This is
too weak for the cessation of trading overnight to be the primary explana-
tion for the difference in rates of information flow. Therefore the absence of
other sources of information appears to be the primary reason for why value
discovery slows overnight.

The evidence concerning pricing errors is that for most stocks, significant
differences between the open and close do not exist. When differences do
exist, pricing errors at the opening tend to be smaller than at the close. Of
the 100 stocks in the sample, 11 reject the null of equal variances in favor
of larger variances at the close, and only 2 reject in favor of larger variances
at the open. Most studies that examine this issue using return variance ratios
draw the opposite conclusion that the evidence is strong in favor of larger
pricing errors at the open than the close. Our estimates also suggest that
inventory effects play a larger role at the close, perhaps as a consequence of
the overnight trading suspension. Nevertheless, for most of the stocks in our
sample, their role is not sufficient to induce pricing errors at the close whose
average magnitude is larger than that of pricing errors at the open.

The article is organized as follows. Section 1 reviews the design of existing
tests and motivates our approach. Section 2 describes the analytics. Section 3
describes the data and model specification. Section 4 presents empirical
results and interpretations. Results of sensitivity tests appear in Section 5.
Section 6 concludes.
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1. Background and Motivation

This article develops a new method to test hypotheses concerning interday
price changes. However, this method is related to methods that others have
used to analyze intraday (tick-by-tick) data. In this section the intraday anal-
yses are discussed first to provide context for the approach we advocate for
examining interday issues.

For the purpose of illustrating how these methods work, consider this
simple structural model of transaction prices

pt = mt + κ1vt + κ2vt−1

mt = mt−1 + κ3(vt − Et−1[vt |ηt ])+ ηt (1)

vt = ρvt−1 + γ ηt + ut .

In this model, pt is the natural log of the transaction price at time t , and vt
is the signed order that is executed at time t . Parameters κ1 and κ2 reflect the
impact of market frictions on transaction prices: κ1 reflects the fact that initia-
tors of buy orders pay more (and sell orders receive less) than the security’s
true value to compensate liquidity providers for the costs of market making;
κ2 reflects the possibility that liquidity providers raise (lower) their quotes
when recent trading has increased (decreased) their inventory. The ρ param-
eter reflects the possibility of persistence in order flow, which could occur if
large orders are executed in a sequence of small transactions. Thus mt is the
natural log of what the price would be in the absence of market frictions.
In this model, mt is defined to be its previous value adjusted for the infor-
mation conveyed by the unexpected component of the current trade, κ3(vt −
Et−1[vt |ηt ]), and other (nontrade) news, ηt , that arrives between times t − 1
and t . The γ parameter reflects the impact of news-related portfolio rebalanc-
ing on order flow.1 The structural news and order-flow innovations, ηt and ut ,
are assumed to be mutually independent and i.i.d.2 This model is the basis
of more detailed structural specifications in several empirical microstructure
studies [e.g., Glosten and Harris (1988), Stoll (1989), Hasbrouck (1991a),
Madhavan et al. (1997)]. If γ = 0, and the κj parameters are divided by

1 The expected component of the time t trade, Et−1[vt |ηt ], is conditional on ηt because the news that arrives
between times t − 1 and t is known when the time t order arrives.

2 Under these assumptions mt is a random walk, and only market frictions generate predictability in price
changes. Though typical of empirical microstructure models, this assumption is not necessarily implied even
by standard asset pricing models without market frictions or asymmetric information [see Kirby (1998)]. The
presumption in microstructure studies is that predictability in prices associated with changes in compensation
for bearing systematic risk manifests itself over horizons that are long enough that it would not be detected
and misconstrued as market frictions in microstructure studies. In other words, over short time intervals (e.g.,
a day or less), the predictability in prices caused by market frictions sufficiently dominates that associated
with changes in compensation for bearing systematic risk that the latter can be ignored. In this article, we
compare predictability of price changes at the open and close. There is no reason to believe that an asset
pricing model would generate asymmetric predictability between the open and close. We therefore attribute
differences in this predictability to market frictions.
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half of the quoted spread, this is a standard model of the components of the
bid-ask spread [e.g., George, Kaul, and Nimalendran (1991), and Huang and
Stoll (1997)]—i.e, κ1/(

S

2 ) is the order-processing component, κ2/(
S

2 ) is the
inventory component, and κ3/(

S

2 ) is the adverse-selection component.
It is often the case in empirical microstructure work that the researcher

wishes to test hypotheses concerning variation in security prices that could
apply to a class of parametric models. In particular, he or she may sim-
ply want to quantify the importance of information and market frictions in
explaining variation in security prices. One way to estimate these quanti-
ties is first to estimate the parameters of a specific structural model such as
Equation (1), then compute var [κ3(vt − Et−1[vt |ηt ]) + ηt ] and var [κ1vt +
κ2vt−1] from the parameter estimates of the structural model. The problem
is that if Equation (1) is misspecified, these variance estimates will not be
valid.

In two important articles, Hasbrouck (1991b, 1993) demonstrates that it
is not necessary to have a detailed structural model in order to estimate
the variance in returns attributable to information flow and market frictions.
This is useful because it allows estimation of these quantities without the
maintained hypotheses, and possible specification error, associated with a
particular detailed model. Hasbrouck shows that the information and market
friction components of return variance can be estimated provided that the
price process can be represented as

pt = mt + st
mt = mt−1 + εt , (2)

where mt is a random walk, and st is a covariance stationary stochastic
process whose unconditional expectation is zero. Note that Equation (1) fits
into this framework with εt = κ3(vt−Et−1[vt |ηt ])+ηt and st = κ1vt+κ2vt−1.
With models such as Equation (1) in mind, the variances of εt and st can be
interpreted as measures of the impact of information and market frictions on
security prices. More generally, changes in security prices that are permanent
are attributed to information, while changes that are temporary are attributed
to market frictions and are referred to as “pricing errors.”3

Beveridge and Nelson (1981) and Watson (1986) show how to identify
the variances of εt and st from the moving-average representation of first
differences of a univariate series that can be modeled as in Equation (2).
Hasbrouck (1991b, 1993) generalizes their results to vector time series (e.g.,
a vector of price or quote changes and order flow). The intuition is as follows.

3 This term is simply shorthand for “deviation of the current price from its value in a frictionless market,” and
is not meant to convey that it arises because of irrationality on the part of traders. However, if traders display
irrational behavior in a manner that contributes to predictability in price changes, then irrationality will be a
determinant of the “pricing error.”
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The permanent price change, εt can be written as a revision between times
t−1 and t of an infinite-horizon forecast of the change in p (see Appendix A),

εt = lim
n→∞

{(Et [pt+n] − pt−1)− (Et−1[pt+n] − pt−1)}.

Intuitively, εt is the eventual (and hence permanent) impact on p of the
conditioning information that arrives between times t − 1 and t . Likewise,
st is the component of the price that is expected eventually to disappear (it
is temporary). So st can be written as the forecast at t of how the price
eventually will change from its current level,

−st = lim
n→∞

{Et [pt+n] − pt}.

The forecasts that are denoted by these conditional expectations can be made
from the univariate moving average representation of first differences of pt ,
or from a vector moving average that includes other variables such as order
flow. Therefore the variances of εt and st can be computed in terms of the
parameters and disturbance variance of the moving-average representation.

This approach to identifying the variances of εt and st is due to Beveridge
and Nelson. Watson points out that, in general, randomness from sources
that are independent of those that cause permanent changes in prices could
also affect st (modeled by adding an orthogonal random component to the
equation for −st just above). Though the addition of an orthogonal compo-
nent would be well suited to capture some microstructure effects (particularly
rounding errors due to price discreteness) the variance of st is not economet-
rically identified in this case. However, Watson shows that the variance of
st is identified if all of it comes from the orthogonal component; that is, if
st is assumed to be orthogonal to all polynomial lags of innovations that
cause permanent changes in prices. This assumption is not reasonable in a
microstructure context. Even in a model as simple as Equation (1), st and εt
are correlated because vt is common to both. Order arrivals convey informa-
tion and cause prices to deviate from true values. Hasbrouck (1993) discusses
this identification issue in detail and advocates using the Beveridge–Nelson
approach and a vector moving average representation that includes both price
changes and order flow. He argues that variance contributed to st by shocks
that are orthogonal to innovations in price changes and order flow should
be small.

Hasbrouck (1991b) estimates the variance of εt from NYSE specialists’
quote revisions and measures of order flow. He also decomposes that vari-
ance into trade-correlated and trade-uncorrelated components to compare the
impact of private versus public information on quote revisions. Hasbrouck
(1993) estimates the variance of st using intraday transaction prices to exam-
ine the proportion of variation in trade-to-trade returns that is attributable
to market frictions. Taken together, Hasbrouck’s (1991b, 1993) analyses pro-
vide variance estimates of the components of tick-by-tick changes in security
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prices that are less affected by specification error than are estimates based
on a specific structural model.

Related issues have been examined using interday data. Two questions
that have been studied extensively are whether rates of information flow
differ during trading and nontrading periods (e.g., day versus overnight), and
whether the impact of market frictions on prices is different at different times
in the trading day. These issues have interested researchers because they are
important to understanding the extent to which trading itself facilitates the
incorporation of information into prices, and whether the use of different
trading mechanisms at open and close lead to noticeable differences in price
variability related to market frictions.

These questions can be answered without a detailed structural model. They
are equivalent to asking whether the variance of εt differs between daytime
and overnight periods, and whether the variance of st at the open is different
than at the close. In fact, existing studies that compare daytime and overnight
price changes base their analyses on a generalization of Equation (2) that
accommodates heteroscedasticity in both information and pricing errors:

pct = mct + sct
mct = mot + εct
pot = mot + sot
mot = mc,t−1 + εot ,

(3)

where the ot and ct subscripts refer to the open and close on day t [see,
e.g., Stoll and Whaley (1990), Jones, Kaul, and Lipson (1994), George and
Hwang (1995), Forster and George (1996), Ronen (1997)].4 Differences in
information flow during daytime and overnight periods correspond to dif-
ferences between var [εct ] and var [εot ]. Since sot and sct have unconditional
means of zero, their variances measure the magnitudes of pricing errors at
the open and close: var [sot ] = E[s2

ot ] and var [sct ] = E[s2
ct ].

Although those studies avoid the specification error that is possible with
a detailed structural model, their methods for estimation and testing lead to
clear conclusions only if pricing errors and information are uncorrelated.
This assumption is not likely to be satisfied in markets with asymmetric
information and costly liquidity provision. In such markets, order arrivals
both convey information and impose an order-processing or inventory cost
on liquidity providers. This results in correlation between the information
and market-friction components of price changes.

The remainder of this section reviews these methods and argues that tests
based on a generalization to Beveridge–Nelson that accommodates the het-
eroscedasticity depicted in Equation (3) would be an improvement. The rea-
son for the improvement is that the Beveridge–Nelson technique delivers tests

4 The random vector of pricing errors (sct , sot )
′ is assumed to be covariance stationary with unconditional

expectation zero. The change in security value during the day and night
(
εct , εot

)′
is assumed to be a zero-

mean i.i.d. random vector; with εct and εot uncorrelated as they relate to distinct time periods.
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with clear interpretations without requiring information and pricing errors to
be uncorrelated. Section 3 shows how this generalization can be achieved.

French and Roll (1986) examine whether information flows at different
rates during trading and nontrading periods by analyzing ratios of variances
of nonoverlapping returns computed from weekday and weekend (or weekday
holiday) periods. For a comparison between daytime and overnight periods,
their statistic is

var [pct − pot ]
var [pot − pc t−1]

= var [εct ] + var [sct − sot ] + 2cov [εct , sct − sot ]
var [εot ] + var [sot − sc t−1] + 2cov [εot , sot − sc t−1]

. (4)

If pricing errors are nonexistent (or nonrandom), terms involving s disappear
and this statistic measures differences in information flow into prices between
daytime and overnight periods. Jones, Kaul, and Lipson (1994) analyze trad-
ing and nontrading days of NASDAQ stocks using variance ratios that are
similar to those of French and Roll. They assume that pricing errors and infor-
mation are independent, and note that the presence of the middle variance
term in the numerator and denominator bias these ratios toward one. Note,
however, that the nature of the bias is actually indeterminate because the
permanent and transitory components of price changes are correlated. Since
order arrivals convey information to liquidity providers and cause transaction
prices to bounce between bid and ask, the covariances in Equation (4) are
not likely to be zero.

Amihud and Mendelson (1987, 1991), Stoll and Whaley (1990), and others
examine whether the magnitudes of pricing errors are different at the open
and close of trading to test whether the existence of an overnight nontrad-
ing period or differences in the trading mechanisms used at the open and
close affect the transitory component of price changes. They analyze ratios
of overlapping 24-hour returns measured open to open and close to close:

var[pot−pot−1]

var[pct−pct−1]

=

{var[εot+εct−1]+2var[sot ]

+2(cov[sot−sot−1,εot+εct−1]−cov[sot ,sot−1])

}
{var[εot+εct ]+2var[sct ]

+2(cov[sct−sct−1,εot+εct ]−cov[sct ,sct−1])

} . (5)

The leading variance term in the numerator and denominator are equal. If all
the covariances are zero, then finding that this ratio is significantly greater
than one is evidence that the magnitude of pricing errors at the open is
greater than at the close. However, if the covariances are not all zero, the
interpretation of this variance ratio is ambiguous.

We are not the first to point out the deficiencies in tests based on Equa-
tions (4) and (5). Jones, Kaul, and Lipson (1994) and Smith (1995) were
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aware of biases due to pricing errors, and Stoll and Whaley (1990) were
aware of biases due to covariances between pricing errors and information.
However, highlighting the problems illustrates that an ideal test would isolate
the variances of information innovations and pricing errors. This is precisely
the purpose of the Beveridge–Nelson technique. By extending the Beveridge–
Nelson results to handle heteroskedastic information and pricing errors, as
depicted in Equation (3), we can dispense with Equations (4) and (5) and use
ratios such as var [εct ]/var [εot ] and var [sot ]/var [sct ] as the basis for hypoth-
esis testing. The details of this extension are presented in the next section.

Since our approach generalizes Beveridge–Nelson, variables that are thou-
ght a priori to be determinants of pricing errors should be included in the
time-series model because exclusion of relevant variables leaves variation
in pricing errors undetected. As Hasbrouck (1993) points out, order flow is
likely to be the most important variable of this type. Therefore estimates
in this article are based on a time-series model that includes both returns
and order flow. The presence of order flow also makes it possible to exam-
ine the association between order flow and the components of return vari-
ance attributable to information and market frictions (see Section 4.3). The
strength of this association provides evidence on the importance of trading
activity to the flow of information into prices.5

Ronen (1997) offers a critique of the existing literature that is different
from ours. She points out that most studies in this area draw inferences from
a cross-sectional average of Equation (4) or (5), whose standard error is
computed from the cross-sectional distribution of estimates. This approach
to inference assumes that the estimated ratios are independent draws from
an identical distribution. She points out that there is no reason to believe
that the sampling distribution of these estimates should be the same across
securities, and that the estimates are not likely to be independent because
they are obtained from stock price data during a period that is common
to each of the securities in the sample. Ronen shows that this approach
leads to biased conclusions, and advocates estimation of variance ratios using
Hansen’s (1982) generalized method of moments (GMM). Inferences can
then be conducted without relying on an i.i.d. assumption. Moreover, the
ratios can be estimated jointly in a manner that accounts for cross-sectional
correlation among the estimates. Using this procedure, she is unable to reject
the null that the vector of ratios given by Equation (5) is equal to the vector
of ones. Her estimates of Equation (4) are significantly greater than one and
similar in magnitude to those of French and Roll, but the p-value of her

5 In other related work, Harvey, Ruiz, and Sentana (1992) examine the case in which the variances of ε and s
in Equation (2) exhibit ARCH. Richardson and Smith (1994), Foster and Viswanathan (1995), and Andersen
(1996) estimate models of price changes and volume in which a common source of uncertainty determines the
second moments of both series (“mixture” models). Pricing errors associated with market frictions (i.e., st )
are not explicitly modeled in those studies, however.
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test statistic is much lower than theirs. Thus conclusions are different when
using test statistics that are not based on the cross-sectional distribution of
estimates.

Our objective is to depart from Equations (4) and (5) altogether; but in
light of Ronen’s criticism, we implement our tests in a manner that is not
based on the cross-sectional distribution of our estimates. In particular, we
estimate parameters for each individual security using GMM. This gives us
the (asymptotic) sampling error structure of the parameters for each security,
so inferences can be conducted at the individual security level. For compar-
ison, we also present results in terms of the cross-sectional distribution of
estimates, and find them to be biased as Ronen found in her comparisons
using Equations (4) and (5). Ideally we would also like to estimate param-
eters for all securities in our sample jointly. The number of parameters that
are estimated for each security in order to identify the variances of the ε and
s terms in Equation (3) makes joint estimation infeasible, however.

2. Details of the Analysis

This section describes our approach to estimation and hypothesis testing. The
stationarity assumptions made in connection with Equation (3) imply that first
differences of logarithmic transaction prices—that is, daytime and overnight
transaction returns—are covariance stationary; so they have a bivariate infi-
nite moving average representation. Since we want to augment the system
with order flow variables, we need to assume that the vector containing
returns and order flow has an infinite moving average representation. For
estimation, we further assume that this moving average representation is
invertible to a finite-order vector autoregression.

To see how a structural model can be rewritten in a way that satisfies
these assumptions, consider the structural model of Equation (1). Taking first
differences of pt , substituting for mt − mt−1, substituting for ut from the
equation for order flow, and collecting like terms yields the system

rt ≡ pt − pt−1 = (κ1 + κ3)vt + (κ2 − κ3ρ − κ1)vt−1 − κ2vt−2

+ (1 − γ κ3)ηt (6)

vt = ρvt−1 + γ ηt + ut .
Adding some zeros yields

rt = 0rt−1 + 0rt−2 + (κ1 + κ3)vt + (κ2 − κ3ρ − κ1)vt−1

− κ2vt−2 + (1 − γ κ3)ηt

vt = 0rt−1 + 0rt−2 + ρvt−1 + 0vt−2 + γ ηt + ut .
(7)

Thus the structural model in Equation (1) can be written as a bivariate vector
autoregression of order two, albeit with several coefficients of zero. The dis-
turbance to the first equation is (1−γ κ3)ηt and the disturbance to the second
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is γ ηt + ut . Note that these disturbances are correlated because order flow
depends on news.6

The returns variables used in the model we estimate are denoted, rnt ≡
pot−pc t−1 and rdt ≡ pct−pot—the overnight and daytime transaction returns
ending on day t . The order flow variables, denoted by vnt and vdt , are mea-
sures of order flow at the opening and during the daytime (excluding the
opening transaction) on day t , respectively. The “nt” subscript is used on
opening order flow because opening order flow and the opening price (and
hence the overnight return) are jointly determined. As noted above, for esti-
mation, the vector of these variables xt ≡ (rdt , rnt , vdt , vnt )

′, is assumed to
have a finite (say, pth order) autoregressive representation:

Axt = B1xt−1 + · · · + Bpxt−p + ut ut ∼ i.i.d. (0, �). (8)

Appendix B shows the standard way in which lags of xt can be stacked
and the parameter matrices redefined so that a VAR(p) can be written as a
VAR(1):

A∗x∗t = B∗x∗t−1 + u∗t , where u∗t ∼ i.i.d. (0, �∗). (9)

A∗, B∗ and �∗ are (4p × 4p) matrices, and x∗t and u∗t are (4p × 1). The
following result, proved in Appendix A, provides closed-form expressions for
the variances of εot , εct , sot , and sct in Equation (3) in terms of the autoregres-
sive parameters contained in the matrices A∗, B∗, and �∗ of Equation (9).

Theorem 1. With reference to Equation (9), suppose x∗t and u∗t are (4p×
1). Let ei be the (4p × 1) vector with unity in the ith position and zeros
elsewhere, and define the (4p × 4) matrix H ≡ (e1 e2 e3 e4). If A

−1
∗ exists

and the eigenvalues of A−1
∗ B∗ lie inside the unit circle, then the variances of

the random-walk innovations in Equation (3) can be written as

var [εct ] = (e1 + ′e2)
′!{1;1}(e1 + ′e2)+ 2(e1 + e2)

′!{3;1}(e1 + ′e2)

+ (e1 + e2)
′!{3;3}(e1 + e2)

var [εot ] = (e1 + e2)
′!{24;24}(e1 + e2);

6 An alternative specification that does not include contemporaneous order flow in the returns equation can
be obtained by substituting for vt in the first equation from the second. However, the specification that
includes contemporaneous order flow is convenient for the analysis in Section 5.3, so we report results for
that specification throughout the article. The conclusions drawn from the results in Tables 2–4 are not sensitive
to which specification is used.
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the variances of the Beveridge–Nelson stationary components can be written
as

var [sct ] = (e1 + e2)
′(S −!{1234;1234}

)
(e1 + e2)

var [sot ] = (e1 + ′e2)
′!{24;24}(e1 + ′e2)

+ (e1 + ′e2)
′(S −!{1234;1234}

)
(e1 + ′e2);

and the variances of innovations in the Beveridge–Nelson stationary compo-
nents can be written as

var [sct − Eot [sct ]] = (e1 + e2)
′ !{13;13} 

′(e1 + e2)

var [sot − Ect−1[sot ]] = (e1 + ′e2)
′!{24;24}(e1 + ′e2);

where

vec [S] = [I − ⊗ ]−1vec [!{1234;1234}],  = A−1
∗ B∗,

!{α1;α2} = {A∗ − B∗}−1H
(
I{α1}�I{α2}

)
H ′{(A∗ − B∗)

−1}′,

� = H ′�∗H, �∗ = E[u∗tu
′
∗t ],

and I{αj } is the 4 × 4 matrix with unity in the combination of diagonal posi-
tions specified in the vector αj and zeros elsewhere (e.g., I{13} has unity on
the first and third diagonals, whereas I{1234} is the 4 × 4 identity matrix).7

Though these formulas look daunting, they are straightforward to use. To get
estimates of the variances of εot , εct , sot , and sct in Equation (3), substitute
estimates of autoregressive parameters A∗, B∗, and �∗ into the formulas in
Theorem 1. Ratios of these variances can then be used to test the hypotheses
described in Section 1. The ratio var [sot ]/var [sct ] indicates the extent to
which the magnitude of pricing errors is greater at the open than at the
close; and var [εct ]/var [εot ] is a measure of the rate of information flow
during daytime hours relative to overnight hours. Since pricing errors at a
given point in time can relate to return and order flow shocks from the recent
or distant past, var [sct − Eot [sct ]]/var [sct ] and var [sot − Ect−1[sot ]]/var [sot ]
are computed as indicators of the extent to which pricing errors are related to
current, rather than past, shocks to returns and order flow.8 These variances
are used in Section 4 to examine the influences of inventory control on return
dynamics.

7 If A is an n × m matrix, then vec [A] denotes the nm column vector whose first n elements are the first
column of A, whose second n elements are the second column of A, etc. [see, e.g., Dhrymes (1984, p. 102)].

8 These cannot be regarded as lagged adjustment to information, since their effect is only temporary. Similar
variances in terms of εct and εot are not meaningful because information is unforecastable by definition—that
is, Eot [εct ] = Ect−1[εot ] = 0.
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An advantage of our approach is that Theorem 1 provides exact expressions
for the variances of εot , εct , sot , and sct in terms of the autoregressive param-
eters, rather than approximating these expressions by truncating the moving
average as in Hasbrouck (1991b, 1993). The variances of εot , εct , sot , and sct
can then be estimated as exact functions of estimates of the autoregressive
parameters. These formulas are crucial to performing inference at the indi-
vidual security level because there is no clear way to adjust standard errors of
test statistics for the approximation errors introduced by truncation. Numeri-
cal partial derivatives can be computed from exact formulas. The asymptotic
distributions of test statistics are identified in terms of these partial derivatives
and the asymptotic distribution of estimators of the autoregressive parameters.
This enables us to draw inferences at the individual security level and avoid
the problems that Ronen (1997) shows arise when drawing inferences from
a cross-sectional distribution of variance ratios.

In the empirical sections that follow, the autoregressive parameters in
A∗, B∗, and �∗ are estimated using Hansen’s (1982) GMM. Estimates of
the expressions in Theorem 1 (and their ratios, assuming they are finite
at the true parameter values) are nonlinear but smooth functions of GMM
estimators. Under standard regularity conditions, their asymptotic distribu-
tions are normal, with moments that can be estimated as well-defined func-
tions of the GMM parameter estimates and covariance matrix [see Hamilton
(1994, p. 414)].

Finally, it is important to note that even if contemporaneous order flow is
included in the returns equations, the disturbances to the return and order flow
equations can still be correlated. Therefore the corresponding off-diagonal
term of �∗ should not be constrained to zero. This is apparent in Equation (7).
When γ �= 0, the disturbances to the equations for rt and vt are correlated
because news affects order flow.

3. Sample Selection and Model Specification

3.1 Sample
The sample of securities is obtained from the Center for Research on Secu-
rity Prices (CRSP) files. Stocks that were listed on the NYSE, but not on the
London or Tokyo Stock Exchanges, and that traded on at least 800 days over
the 1986–1989 period were ranked into quartiles by average daily trading
volume in dollars.9 The top 50 stocks in each quartile were identified. These
50 were sorted in alphabetical order by ticker symbol. The sample contains
the first 25 of those stocks for which there were more than 100 days of data
on the files of the Institute for the Study of Security Markets (ISSM) for
1986–1989. This latter screen is applied to eliminate when-issued markets.

9 See Barclay, Litzenberger, and Warner (1990) and Forster and George (1995, 1996) for comparisons of
internationally cross-listed and non-cross-listed stocks.
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The data are drawn from the set of NYSE quotations, transaction prices, and
volume files of the ISSM for 1986–1989.10 For each stock, the time series
of daytime and overnight returns is constructed using the prices of the first
and last transactions of each day reported in the ISSM files, adjusted for
cash distributions, stock dividends, and splits. Order flow at the opening and
during the rest of the day is computed using the share volume of individual
transactions reported on the ISSM tape (adjusted for splits and stock divi-
dends), and the algorithm suggested by Lee and Ready (1991) to determine
whether each order is a purchase or a sale.

Although they are computed in a similar manner, opening and daytime
order flow variables have different economic interpretations. If the stock
opens with a trade, it is signed using the difference between the opening
price and the previous day’s closing price (or midquote if the stock closes
with the posting of quotes rather than with a trade); if it opens with the post-
ing of quotes, opening order flow is zero. For actively traded stocks, opening
transactions involve the crossing of several orders, which are not individ-
ually observable. Consequently, for the most active stocks, this variable is
almost never a measure of net order flow at the opening, but a measure of
total trading at the opening signed by the overnight return. Daytime order
flow is computed by cumulating the signed individual transactions that occur
throughout the day, excluding the first transaction if the stock opens with
a trade. Assuming that the signing algorithm is correct, this variable is a
precise measure of net order flow. Since opening and daytime order flow are
treated as separate variables, the difference in their construction does not cre-
ate stationarity problems that would occur if an alternating sequence of these
variables were treated as a single order flow series. Nevertheless, they do
have different economic interpretations, which might affect the interpretation
of the results. This possibility is explored in Section 5.

Descriptive statistics are contained in Table 1. The equity capitalization of
stocks in each quartile is approximately four times that of stocks in the next
(lowest) quartile of dollar trading volume. This sample is similar to what we
would have gotten had securities initially been ranked on equity capitalization
rather than dollar volume. Stocks in the highest-volume quartile (quartile 1)
tend to have less return volatility than stocks in quartiles 2–4, and greater
share volume—measured as the absolute value of the order flow variable—
both at the open and during the day. In fact, average absolute order flow
during the day decreases by a factor of approximately 2.5 between quartiles 1
and 2, and 3 and 4, and by a factor of two between quartiles 2 and 3. Average
absolute order flow at the opening is approximately 8% of its daytime level
for stocks in quartiles 2–4, and 14% for stocks in quartile 1.

10 We replicated our tests after excluding October 1987. Those results led to the same conclusions as the results
reported in the tables below.
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3.2 Specification
The results reported below are based on a four-variate autoregressive model
involving daytime and overnight returns, and daytime and opening order flow.
Enough parameters are included to account for dependence of up to two lags
on each of the four variables, which accounts for 48 hours in clock time.
This specification is relatively parsimonious, yet its lag structure should be
sufficient to capture the effects of microstructure frictions whose impact on
transaction prices is more complicated than the geometric decay implied by
first-order autoregression. The same specification is estimated for all stocks
in the sample to avoid data snooping, and facilitate cross-sectional compar-
isons.11

To simplify the description of model specification, it helps to reorder the
vector xt so that daytime variables appear before overnight variables in the
list: x̂t ≡ (rdt , vdt , rnt , vnt )′. The model we estimate is equivalent to

Âx̂t = B̂1x̂t−1 + B̂2x̂t−2 + ût , (10)

where

Â =


1 a13 a12 a14

0 1 a32 a34

0 0 1 a24

0 0 0 1

 B̂1 =


b11 b13 b12 b14

b31 b33 b32 b34

b21 b23 b22 b24

b41 b43 b42 b44



B̂2 =


c11 c13 0 0

c31 c33 0 0

c21 c23 c22 c24

c41 c43 c42 c44


and

�̂ ≡ E[ût û
′
t ] =


ω11 ω13 0 0

ω13 ω33 0 0

0 0 ω22 ω24

0 0 ω24 ω44

 .

The a13 and a24 parameters incorporate contemporaneous order flow into the
equations for daytime and overnight returns, respectively. Note that variables

11 Even if a simpler specification is the true model for some securities, inferences will not be biased because the
distributions of test statistics account for the precision with which the parameters are estimated. Parameter
estimates that are insignificantly different from zero receive little weight in testing the significance of variance
components.
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with the same time subscript are ordered in clock time—nt precedes dt .
Therefore overnight returns and opening order flow precede daytime returns
and order flow. The upper-right (2 × 2) submatrix of Â captures the depen-
dence of daytime variables on variables of the previous overnight. Similarly
the upper-right (2 × 2) submatrix of B̂1 captures the dependence of day-
time variables on returns and order flow from two nights prior. These effects
account for two lags of dependence in daytime variables on overnight vari-
ables, so the upper-right (2 × 2) submatrix of B̂2 contains zeros. The off-
diagonal elements of �̂ capture the covariance between disturbances to the
equations for contemporaneous returns and order flow. Recall from our dis-
cussion of Equation (7) that these covariances can be nonzero even though
contemporaneous order flow is included in the returns equations. The zeros in
the off-diagonal blocks reflect the assumption that the lag structure implicit
in Equation (10) (i.e., two lags of each variable, 48 hours in clock time) is
sufficient to capture the cross-serial dependence in the data. This specification
involves 40 parameters to be estimated for each security.12

Following Gallant, Rossi, and Tauchen (1992), mean return and order flow
effects associated with day of the week and turn of the year are accounted
for by estimating regressions of each variable on an intercept and indicators
for each of Tuesday through Friday, and an indicator for the first 14 days
of January. The residuals from these regressions (estimated separately for
each security) are then used to estimate the vector autoregressions. GMM
estimates of Equation (8) are obtained separately for each of the 100 secu-
rities in the sample. Estimation for each security involves 42 orthogonality
conditions—32 “least-squares normal equations,” and 10 equations for the
distinct elements of �.13 Estimates of the variances of εot , εct , sot , and sct are
obtained by substituting estimates of the autoregressive parameters into the
formulas in Theorem 1. Hypothesis tests are based on asymptotic normality
of functions of GMM estimators [e.g., see Hamilton (1994, p. 414)].

In principle, parameter estimates should be obtained jointly for all securi-
ties in a manner that accounts for correlation of ut vectors across securities;
but the number of parameters involved in such an exercise exceeds what

12 The subscripts on the individual elements of these matrices correspond to their row-column positions in the
“nonhat” matrices in Equation (8). It is important to note that the formulas in Theorem 1 are based on
the arrangement in Equation (8), and are not valid for the arrangement in Equation (10). Estimates from
Equation (10) must be rearranged before using the formulas in Theorem 1 to calculate the variances of return
components.

13 Specifically, the “least-squares normal equations” are of the form

E[uizik] = 0,

where ui is the disturbance of equation i in Equation (8) and zik is predetermined variable k of equation i
in Equation (8). All right-hand-side variables are predetermined, with the exception of daytime order flow
in the daytime returns equation and opening order flow in the overnight returns equation. The equations for
elements of � are of the form

E[uiuj − ωij ] = 0,

where ωij is set to zero for those elements of � that are zero in Equation (8).
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can feasibly be estimated. Consequently, hypothesis testing is done at the
individual security level, and we report rejection rates in the tables below.
That these tests are not necessarily independent should be kept in mind when
drawing conclusions.

4. Empirical Results and Interpretations

4.1 Information flow
Table 2 reports the analysis of rates of information flow. The first row of
the table reports cross-sectional medians of the difference between the day-
to-night ratio of information flow and 0.37, by quartile—6.5/17.5 = 0.37
is the ratio of trading to nontrading hours in each 24-hour period. The sec-
ond row reports the proportion of securities in the quartile category (con-
taining 25 securities total) for which the null hypothesis that the variance
ratio equals 0.37 is rejected. The third row reports the cross-sectional aver-
age of the z-ratios from the hypothesis tests on individual securities. The
results indicate that the null is rejected by a majority of securities in the
sample, and by a majority in each quartile. The interpretation of this is that
information flow per unit time is greater during business than nonbusiness
hours. To understand the economic magnitude of the point estimates, note
that (17.5/6.5)× var [εct ]/var [εot ] is the proportionality factor by which the
rate of daytime information flow exceeds that of overnight information flow.
The smallest such median value is (17.5/6.5)× (1.8568 + 0.37) = 6.00 for
quartile 4; the values for quartiles 1–3 range between 6.55 and 7.96.14 These
numbers are closer to Jones, Kaul and Lipson’s (1994) estimates of 3 to 5
for NASDAQ stocks than to French and Roll’s (1986) and Ronen’s (1997)
estimates of 12 to 13 for NYSE/AMEX stocks.

It is possible that information flow decreases overnight when trading ceases
because order flow conveys information about security value (e.g., traders’
private information). The flow of non-order-flow news (e.g., public news sto-
ries) that is relevant to the values of these securities could also slow substan-
tially when trading in the U.S. ceases. To examine the relative importance
of trading, Jones, Kaul, and Lipson and French and Roll compare return
volatility during 24-hour periods containing business days on which there is
no trading to such periods when trading occurs. The approach in this arti-
cle allows for a more direct comparison by estimating the proportion of the
variance of the permanent component of price changes that is attributable to
order flow. These estimates, in Section 4.3 below, indicate that the informa-
tion revealed through orders is not the dominant effect. For the absence of
order flow alone to imply proportionality factors in the 6–8 range, trading

14 To the extent that the first transaction of the day occurs late for stocks in quartile 4, a portion of morning
information flow is attributed to the overnight period for these stocks.
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would have to explain between 83% and 88% (i.e., 5/6 to 7/8) of the variabil-
ity of permanent changes in prices during the day. Estimates in Section 4.3
are almost all less than 28%. This suggests that the overnight reduction in
information flow is primarily related to sources of information other than
trading activity such as news stories, disclosures by the firms themselves,
and prices and trading activity in related securities markets.

4.2 Pricing errors
Table 3 reports the results concerning pricing errors at the open and close.
The first row contains cross-sectional medians of the difference between the
ratio of variances of pricing errors at the open and close and unity. The
second row reports rejection rates for tests of the hypothesis that the variance
ratios are equal to unity—that is, that the variances of pricing errors at the
open and close are equal—and the third row contains the cross-sectional
average z-ratios from these hypothesis tests. Overall, only 13% of the stocks
in the sample reject the hypothesis that the variance ratio is unity; most
of these rejections (11 of 13) indicate that the variance of pricing errors
at the close is larger than at the open. These estimates and inferences are
very different from those in studies that use ratios of return variances as
in Equation (4) [e.g., Amihud and Mendelson (1987, 1991), and Stoll and
Whaley (1990), Forster and George (1996)]. In those studies, average and
median ratios are greater than one, and large relative to the dispersion of the
cross-sectional distribution of ratios. The inference typically drawn in those
studies is that pricing errors are larger at the open than at the close.15

The difficulty with drawing inferences about variance ratios from the cross-
sectional distribution of estimates is apparent in the last two rows in the
table. For the sample overall, the cross-sectional average variance ratio indi-
cates that pricing errors at the open are 32.82% larger than those at the
close, an estimate that is significant in view of the dispersion of the cross
section of estimates. This occurs despite the fact that 87% of the stocks in
the sample do not reject the null; and of those that do reject, most of the
rejections are because the variance of pricing errors at the close is greater
than at the open. This indicates that the biases identified by Ronen (1997)
for traditional variance ratio computations are also present for the ratios of
return component variances estimated here. This highlights the importance
of conducting inferences in a manner that avoids computing standard errors
from the cross-sectional distribution of estimates.

There are some a priori reasons to believe that pricing errors at the open
could be smaller than at the close. First, if liquidity providers are risk averse,

15 An exception is George and Hwang (1995), who analyze returns of stocks traded on the Tokyo Stock Exchange
using Ronen’s (1997) approach to joint estimation of Equation (4). They document return variance ratios that
are not different from, or less than, unity for stocks in the three less-active quartiles of Tokyo trading. Only
Tokyo stocks in the most-active quartile have return variance ratios exceeding one.
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they will demand price concessions to absorb orders that move their inven-
tories out of balance—“static” inventory considerations. The trading day
provides opportunities to rebalance inventories that do not exist overnight.
Consequently, pricing errors associated with static inventory considerations
should be smaller at the open than at the close. We refer to these as “static”
to distinguish them from the “dynamic” efforts of liquidity providers to trade
out of an inventory imbalance created by previous trades, which are discussed
below. Second, the NYSE opening and closing procedures pool orders that
are designated for the open or close and execute them at a single price.
Madhavan’s (1992) model predicts that pooling orders reduces the transi-
tory deviations of transaction prices from true security value because traders’
idiosyncratic motivations for trading diversify away. If a greater degree of
pooling occurs at the open than at the close, then we would expect pricing
errors to be smaller at the open than at the close. Direct evidence on the
numbers of orders crossed in the opening and closing transactions for our
sample period is not available. However, in each of the more recent years
1991–1999, the number of orders executed at the opening of the NYSE is
approximately double the number executed at the close.16 This suggests that
a greater degree of pooling occurs at the opening than at the close.

The importance of the static inventory effect differs depending on how
actively the stock is traded. Opportunities to unwind undesirable inventory
positions are more abundant for active stocks than inactive stocks. Therefore
the price concession charged to absorb order imbalances at the beginning
of the day should be smaller for active stocks. This makes pricing errors
smaller at the open for active stocks than inactive stocks, predicting that
the ratio var [sot ]/var [sct ] would be smaller for active stocks. The medians
in Table 3 indicate that the variance ratios tend to be smaller for stocks in
quartiles 1 and 2 than stocks in quartiles 3 and 4. This pattern across quartiles
is consistent with the hypothesis that static inventory effects are important
determinants of pricing errors for those stocks whose pricing errors differ
between open and close.

To evaluate the importance of inventory effects for the entire sample of
stocks, we examine historical dependence in pricing errors. Suppose, for
example, that pricing errors occur because transaction prices bounce between
the bid and ask of a constant spread that is centered on the security’s true
value. If purchases and sales are equally likely and serially uncorrelated,
the expected transaction price is the security’s true value and the expected
pricing error is zero. If, instead, order sign is serially correlated, the devi-
ation between the security’s true value and future transaction prices can be
forecasted. In this case, pricing errors will exhibit historical dependence.
If liquidity providers alter their quotations to induce inventory-equilibrating
trades—“dynamic” inventory considerations—pricing errors will depend on

16 We are grateful to George Sofianos for providing these data.
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the trading history. The duration of such dependence is greater, the longer it
takes liquidity providers to resolve the effects of shocks to inventories. There-
fore one way to assess the importance of dynamic inventory considerations
on pricing errors is to check for significant historical dependence.

Historical dependence can be measured by computing the proportion of
pricing error variance that is attributable to an innovation; the complemen-
tary proportion measures historical dependence. The difference between the
realized pricing error at the close and a forecast of it made at the previ-
ous open is the innovation in the pricing error at the close: sct − Eot [sct ].
The innovation in the pricing error at the open is defined as the difference
between the pricing error realized at the open and a forecast made at the pre-
vious close: sot − Ect−1[sot ]. Theorem 1 provides formulas for the variances
of these innovations.

Since it is difficult to alter overnight an inventory that is unbalanced at the
close, liquidity providers should be more aggressive in resolving inventory
imbalances that exist prior to the close and would be carried overnight than
those that exist at the opening and would be carried or unwound throughout
the day. This implies that less historical dependence should exist in pricing
errors at the close than at the open. Whether this difference should be more
pronounced for less-active than more-active stocks depends on how much
prices are expected to change overnight relative to during the day for these
classes of stocks. The results in Table 2 indicate that the variance of perma-
nent changes in prices overnight relative to the daytime is similar across quar-
tiles (perhaps slightly larger for stocks in quartile 4). Consequently inventory
control should not lead to large differences across quartiles in the extent to
which historical dependence should be greater in pricing errors at the open
than at the close.

Table 4 reports one minus the proportions of the pricing error variances
at the open and close that are attributable to an innovation. This table shows
evidence of statistically significant historical dependence at both the open
and the close. Rejection rates are between 48% and 80% for tests of the
hypothesis that all of the variation in pricing errors relates to their innovation.
In addition, median historical dependence is greater for pricing errors at the
open than at the close (63.71% versus 52.70%) for the sample as a whole.
Some caution should be exercised in interpreting this difference, however.
It is possible that using signed opening volume makes pricing errors at the
open more dependent on unexpected overnight returns and opening order
flow than they would be if we could observe true net order flow at the open.
Nevertheless, these findings are consistent with the hypothesis that dynamic
inventory management is a determinant of pricing errors for a majority of
stocks in the sample.17

17 Price continuity rules could also induce historical dependence in the temporary component of transaction
prices. If stocks are not actively traded, closing prices may not reflect information about security value that is
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4.3 Association between trading activity and pricing errors and
information flow

This section examines the extent to which variation in permanent and tran-
sitory components of returns are associated with innovations in order flow.
These associations shed light on some of the hypotheses discussed earlier as
possible explanations for the behavior of pricing errors and rates of informa-
tion flow.

Innovations in order flow are denoted by u3t and u4t in Equations (8)–(10).
Our objective is to estimate the portion of the variances of εot , εct , sot , and
sct in Theorem 1 that is attributable to these innovations. If the disturbances
to the returns and order flow equations were uncorrelated, we could achieve
this by setting the variances of the returns equation disturbances, u1t and u2t ,
equal to zero in the equations in Theorem 1. Hasbrouck (1991b), assumes
that the time-series innovations to returns and order flow are uncorrelated, and
uses this approach to compute the contribution of order flow to the permanent
component of intraday quote revisions. This assumption is valid if news
affects order flow only indirectly through quote revisions. If news affects
order flow directly, as in Equation (1), the disturbances will be correlated.

With correlated disturbances, we can use this idea to approximate the con-
tribution of order flow. To do this we set to zero the variances of the returns
equation disturbances and the covariances between them and the order flow
equation disturbances. Although this is only an approximation, we can show
in the context of Equation (1) that this approximation provides an upper
bound on the portion of variance in the permanent and temporary compo-
nents attributable to innovations in order flow.

To see how this approach produces an upper bound in the context of
Equation (1), note that the VAR implied by Equation (1) is given in
Equation (6). The disturbance to the returns equation in Equation (6), which
we will call η̂, is equal to a constant times the structural news shock: η̂t =
(1 − γ κ3)ηt . The disturbance to the order flow equation, ût is a composite of
the structural news and order flow shocks: ût = γ ηt + ut . Furthermore, the
permanent component of the price change is εt = κ3(vt −Et−1[vt |ηt ])+ηt =
κ3ut + ηt , and the temporary component is st = κ1vt + κ2vt−1.

contained in order flow because of the specialist’s smoothing of the price path. For this to affect our estimates,
however, the smoothing would have to be slow enough that information in order flow at the opening or earlier
is not reflected in the closing price. This seems extreme except, perhaps, for the most inactively traded stocks.
Price continuity rules could induce historical dependence in opening prices. Although the specialist is not
required to provide enough liquidity so that opening prices are within a certain dollar amount of the previous
close, he is generally required to provide liquidity on the side of the market where it is lacking at the opening
in case of a large imbalance. This would have the effect of smoothing the price path from the prior close to
the opening. It is difficult to know whether this has an important effect on our estimates. If the imbalance
at the open is a surprise, smoothing over it by providing liquidity will not lead the opening pricing error to
be historically dependent. However, if the imbalance is forecastable from the prior day’s price change and/or
order flow, then the specialist’s smoothing will result in a pricing error that is historically dependent.
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Writing the variance of the permanent component in terms of the VAR
disturbances:

εt = κ3ut + ηt
= κ3ût + η̂t

var [εt ] = κ2
3 var [ût ] + var [η̂t ] + 2κ3 cov [η̂t , ût ]

= κ2
3 {σ 2

u + γ 2σ 2
η } + var [η̂t ] + +2κ3cov [η̂t , ût ].

Note that var [η̂t ] = (1 − γ κ3)
2σ 2
η and 2κ3cov [η̂t , ût ] = 2κ3γ (1 − γ κ3)σ

2
η .

Setting these terms to zero yields

var [εt ]|var [η̂]=0,cov [η̂,û]=0 = κ2
3 {σ 2

u + γ 2σ 2
η } > κ2

3σ
2
u = var [εt ]|var [η]=0.

The left-hand side is the variance of the permanent component computed by
setting to zero the variance of the VAR disturbance to the returns equation,
and its covariance with the disturbance to the order flow equation. The right-
hand side is the variance of the permanent component attributable to the
structural shock to order flow (i.e., what is left after setting to zero the
structural news shock). The inequality indicates that by setting the VAR dis-
turbance variance and covariance to zero, we obtain an upper bound estimate
of the true portion of the variance of ε attributable to order flow innovations.
Note that this is the tightest upper bound we can get with this approach
because the sign of the covariance term, 2κ3γ (1 − γ κ3)σ

2
η , can either be

positive or negative and larger in absolute value than κ2
3γ

2σ 2
η .

Similar logic applies to the temporary component of price changes. In the
context of Equation (1), the variance of st is

var [st ] = κ2
1 var [vt ] + κ2

2 var [vt−1] + 2κ1κ2 cov [vt , vt−1],

where

var [vt ] = γ 2σ 2
η + σ 2

u

1 − ρ2 = var [ût ]/(1 − ρ2)

cov [vt , vt−1] = ρ var [vt ] = ρ var [ût ]/(1 − ρ2).

Expressing var [st ] in terms of the variances and covariances of the VAR
disturbances,

var [st ] = [κ2
1/(1 − ρ2)] var [ût ] + [κ2

2/(1 − ρ2)] var [ût ]

+ 2κ1κ2ρ var [ût ]/(1 − ρ2)

=
(
κ2

1 + κ2
2 + 2κ1κ2ρ

1 − ρ2

)
var [ût ].

Since neither var [η̂t ] nor cov [η̂t , ût ] enters the expression, setting them
equal to zero gives us no tighter a bound on var [st ]|σ 2

η=0 than var [st ] itself.
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Table 5
Percentage of variance of permanent component of returns attributable to variation in order flow

All quartiles Quartile 1 Quartile 2 Quartile 3 Quartile 4

Daytime information flow attributable
to daytime order flow:

90th percentile 28% 35% 26% 19% 24%
75th percentile 19% 28% 15% 13% 19%
Median 9% 18% 7% 7% 11%
25th percentile 5% 9% 1% 1% 6%
10th percentile 1% 6% 0% 0% 1%

Overnight information flow attributable
to opening order flow:

90th percentile 22% 16% 11% 44% 26%
75th percentile 8% 6% 4% 14% 10%
Median 2% 1% 3% 2% 2%
25th percentile 0% 0% 0% 0% 0%
10th percentile 0% 0% 0% 0% 0%

The variance of information flow attributable to order flow is computed by substituting the autoregressive parameter estimates
into the formulas for var [εjt ](j ε {o, c}) in Theorem 1, and setting the (1, 1), (2, 2), (1, 3) and (2, 4) elements of � to zero. The
numbers reported in the tables are percentiles of the cross-sectional distribution expressed as a percentage of the total variance
of information flow, var [εjt ]. The estimation period is 1986–1989, and the average and median number of daily observations
used to obtain these estimates appear in the last two rows of Table 2. Each quartile category contains 25 of the top 50 stocks
in each quartile of dollar trading volume for NYSE stocks during the 1986–1989 period.

However, one could imagine that market frictions that are not modeled in
Equation (1) could cause st to depend on lagged news shocks. In that case,
the expression above would have var [η̂t ] and cov [η̂t , ût ] terms also, and the
bound produced by setting them equal to zero would be tighter than the
entirety of var [st ].

Table 5 reports estimates of the proportion of the permanent component
of daytime and overnight returns attributable to unexpected order flow. For
the entire sample, the 90th percentile of the distribution is 28% for daytime
returns and 22% for overnight returns. The interpretation of these results is
that, for most of the sample, less than 28% (22%) of daytime (overnight)
information flow is attributable to variation in unexpected order flow. That
the daytime proportions are less than 28% for most of the sample is the
basis for our earlier conclusion that the reduction in information flow that
occurs overnight is not simply a result of the cessation of trading; but that the
flow of information from other sources must also decrease during overnight
periods.18

At first glance it may seem surprising that permanent changes in prices are
not more strongly related to trading activity, since private information comes
to be reflected in prices through trading. However, Roll’s (1984) study of
orange juice futures finds that weather explains only about 7% of orange juice
futures returns, and that weather and announcements about weather explain

18 That the numbers are larger at the opening could reflect some degree of spurious correlation induced between
the overnight return and opening order flow by the fact that opening volume is signed using the overnight
return. The first sensitivity test in the next section addresses this possibility further.
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Table 6
Percentage of variance of transitory component of returns attributable to variation in order flow

All quartiles Quartile 1 Quartile 2 Quartile 3 Quartile 4

Pricing error at close attributable
to order flow:

90th percentile 84% 92% 80% 71% 84%
75th percentile 61% 66% 61% 53% 55%
Median 34% 32% 19% 41% 41%
25th percentile 12% 25% 7% 8% 11%
10th percentile 5% 19% 5% 4% 7%

Pricing error at open attributable
to order flow:

90th percentile 84% 82% 81% 67% 89%
75th percentile 57% 55% 68% 51% 57%
Median 38% 43% 34% 33% 42%
25th percentile 20% 21% 12% 15% 26%
10th percentile 9% 11% 6% 9% 19%

The variance of the transitory component of returns attributable to order flow is computed by substituting the autoregressive
parameter estimates into the formulas for var [sjt ](j ε {o, c}) in Theorem 1, and setting the (1, 1), (2, 2), (1, 3), and (2, 4) elements
of � to zero. The numbers reported in the tables are percentiles of the cross-sectional distribution expressed as a percentage
of the total variance of the transitory component of returns, var [sjt ]. The estimation period is 1986–1989, and the average
and median number of daily observations used to obtain these estimates appear in the last two rows of Table 2. Each quartile
category contains 25 of the top 50 stocks in each quartile of dollar trading volume for NYSE stocks during the 1986–1989
period.

only about 27% of the variability of squared orange juice futures returns.
Though his study does not distinguish between permanent and temporary
components of returns, it does illustrate how small the contribution to price
variability can be from a variable that would intuitively seem to have a great
deal of information content.

Table 6 reports the proportions of the variances of pricing errors that are
associated with unexpected order flow. These estimates can be interpreted
as the extent to which deviations of transaction prices from true value are
associated with the unexpected arrival of orders, both currently and in the
past. This can be viewed as a measure of the importance of both static and
dynamic inventory considerations on pricing errors. For individual firms, the
numbers range from 4% to more than 90%, so right tails of the cross-sectional
distributions do not provide useful bounds as they did above. Nevertheless,
the medians of these distributions indicate that between 34% and 38% of
the variation in pricing errors is attributable to order flow for the typical
security in our sample. For example, if both the closing and opening prices
of the typical security are the result of aggregating orders and crossing them
at a single price, these estimates indicate that between 34% and 38% of the
variability of the deviation of these prices from the true security value is
attributable to current and past surprises in order flow.

5. Sensitivity Tests

This section explores whether the pricing error results in Table 3 that con-
flict with findings in the existing literature are artifacts of the manner in
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which the order flow variables are constructed. Daytime order flow is the
sum of signed individual orders, whereas opening order flow is constructed
by signing opening volume using the overnight price change. This raises two
potential problems. First, some overnight price changes will be related to
the disclosure of public information and unrelated to trading at the open. In
these instances, signing opening order flow using the overnight price change
misallocates to order flow variance that is due to price changes. This will
affect the ability of the time-series model to explain price changes. Though
we do not know the nature of the effect, it is possible that it could bias
estimates in a manner that makes the variance of pricing errors at the close
appear larger than those at the open. Specifically, if misallocation of variance
lessens the model’s ability to forecast daytime price changes relative to its
ability to forecast overnight price changes, then estimates of pricing error
variances will be biased in a way that makes pricing errors at the open small
in relation to pricing errors at the close. This is because the pricing error
at the open (close) is the component of the opening (closing) price that is
forecasted to reverse itself during the day (night) and thereafter.

We cannot observe the degree to which variance might be misallocated
to order flow. However, a symptom of this misallocation is that it induces
spurious positive correlation between the time series of overnight returns
and opening order flow. Suppose that the true, but unobservable, correlation
between opening order flow and the overnight return is similar across stocks
within quartiles. In this case, cross-sectional variation in estimated correla-
tions will reflect differing degrees of spurious correlation induced by our
sampling procedure. Under this assumption, securities with large estimated
correlations will be those with a greater misallocation of variance.

Our first diagnostic examines this possibility. We check whether the ranks
of the variance ratios and test statistics in Table 3 are cross-sectionally corre-
lated with the ranks of the estimated correlations between the time series of
overnight returns and opening order flow. This will tell us whether the rejec-
tions in Table 3 could be associated with misallocated variance. For three of
the four quartiles, the rank correlations are not significant at the 10% level.
For quartile 4, the rank correlation is significant, but positive. This evidence is
consistent with the absence of significant misallocation of variance. However,
it does not prove that such misallocation does not exist. If the assumption
made above does not hold, it is possible that variance is misallocated, but
the degree of misallocation does not generate cross-sectional differences in
correlations between opening order flow and the overnight return because it
is overwhelmed by cross-sectional differences in the true correlations.

The second potential problem is that when orders are pooled at the open,
opening order flow is a measure of signed volume because the extent to
which orders offset each other is not observable. Although both daytime and
opening order flow variables are proxies, opening order flow is likely to be
a poorer proxy for stocks that frequently open with the pooling of orders.
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Having proxies with unequal error precisions might bias the comparisons
between pricing error variances at the open and close. In particular, precise
measurement of daytime order flow may make a greater portion of returns
subsequent to the close forecastable conditional on daytime order flow rel-
ative to the forecastability of returns subsequent to the open conditional on
(a noisier proxy for) opening order flow. If this were true, the variance of
pricing errors at the close could erroneously appear to be greater than at the
open.

A check for this requires an avoidance of conditioning on order flow vari-
ables that are observed with asymmetric levels of precision. Since the true
variables are not observable, we cannot estimate the relative precisions of
the proxies. However, we can eliminate the asymmetry by reconstructing
Table 3 using estimates from a vector autoregression that excludes order
flow variables. This also eliminates whatever conditioning information order
flow contains for future price changes that is orthogonal to current and past
price changes. Nevertheless, the manner in which these results differ from
those in Table 3 will provide some indication of how the asymmetry might
have affected our conclusions.

Table 7 reports the same statistics as Table 3, computed from estimates of
a bivariate vector autoregression of daytime and overnight returns only. There
are some striking differences from Table 3. The median ratio for quartile 1
changes sign and is now positive. This is exactly what would be expected
if noisy measurement of opening order flow impedes the model’s ability to
forecast price changes after the opening, because the stocks in quartile 1 are
those for which pooling of orders is likely to be most frequent. Despite this,
the overall sample median ratio is more negative than in Table 3. Moreover,
all rejections of the null that the pricing error variances are the same at the
open and close favor the alternative that pricing error variance is larger at
the close, even for quartile 1. This suggests that conditioning on order flow
variables that are measured with asymmetric precision might have induced
noise, but not bias, into the inferences drawn in Table 3. The inferences
without order flow indicate uniformly that when pricing error variances differ
between the open and close, the variance of the error at the close is greater
than at the open.

Beyond their diagnostic value, the Table 7 estimates provide an interesting
comparison to extant studies because they condition on the same sample
information—opening and closing prices—as the earlier literature’s return
variance ratio comparisons of the open and close. Table 7 indicates that the
findings in Table 3 are not a result of having conditioned on order flow.
Instead, it is the combination of estimating variances of return components
in a manner that accounts for their correlation and conducting hypothesis
tests at the individual security level that overturn the return variance ratio
results. These findings show that estimates of pricing error variances at the
open and close using our approach are typically not different (or are greater
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at the close) even when conditioned on the same sample information as used
in the earlier studies.

6. Conclusion

This article provides methods that improve on return variance ratios to test
hypotheses concerning differential rates of information flow and magnitudes
of pricing errors (transitory components of price changes). The methods are
applied to a comparison of rates of information flow during daytime and
overnight periods, and the magnitudes of pricing errors at the open and close
of trading.

Estimates of relative rates of information flow indicate that information
flow per hour decreases significantly overnight. Median rates of information
flow overnight are approximately one-seventh the daytime rate per hour—
decreases that are smaller than reported in the existing literature on listed
stocks. Estimates of the proportion of variation in information flow that
is associated with order flow indicate that this decrease is too large to be
explained by the overnight cessation of trading. This evidence suggests that
disclosures made by the media during nonbusiness hours, and prices of other
securities that trade offshore, are not informative enough for value discovery
to continue unimpeded overnight for a majority of the stocks in our sample.19

Our estimates of the magnitudes of pricing errors indicate that pricing
errors at the open and close are not significantly different for most stocks; but
when differences do exist, pricing errors at the close tend to be greater than
at the open. This is very different from what others have concluded based on
estimates of NYSE return variance ratios. The results also reinforce Ronen’s
(1997) conclusion that caution should be exercised in interpreting tests based
on cross-sectional distributions of variance ratios. Those tests ignore corre-
lation between permanent and transitory components of returns, and do not
fully account for the effects of estimation error in drawing inferences.

Though these findings challenge views that overnight trading suspensions
and opening auction mechanisms are important sources of microstructure-
induced pricing errors, our estimates also suggest that inventory effects play
a larger role at the close, perhaps as a consequence of the overnight trading
suspension. However, for most stocks, their role is not large enough to induce
pricing errors at the close whose average magnitude is larger than that of the
pricing errors at the open.

Appendix A: Preliminary Results and Proof of Theorem 1

Since we have not, as yet, assumed that returns have an ARMA representation, we need
a slightly stronger assumption than covariance stationarity of st to prove Facts 1 and 2. In

19 Our sample does not contain stocks that are listed in London or Tokyo.
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particular, we assume that the {sjt }t process has an infinite moving average representation (or
equivalently that the Wold decomposition is purely indeterministic [see Hamilton (1994, p.
109)]). Under the ARMA assumption made later (Remark 1), st does indeed have an infinite
moving average representation (Fact 3).

Fact 1. mjt = limn→∞ Ejt [pot+n] = limn→∞ Ejt [pct+n] for j ∈ {o, c}.

Proof. First, note that for each j ∈ {o, c},

Ejt [po t+n] = Ejt [mot+n] + Ejt [sot+n].

Since alternate mjt are a random walk,

Ejt [mot+n] = mjt .

Since sot has an infinite moving average representation, Ejt [sot+n] and Ejt−n [sot ] are equal in
distribution for all n—they are identical polynomial lags of zero-mean i.i.d. random variables.
Consequently they have the same limiting distribution as n→ ∞:

lim
n→∞

Ejt [sot+n] = lim
n→∞

Ejt−n[sot ] = 0.

The second term is the unconditional expectation of sot , which is zero. Therefore both forecasts
have distributions that converge to that of a degenerate random variable that is equal to zero
with probability one. This implies that

lim
n→∞

Ejt [pot+n] = mjt + lim
n→∞

Ejt [sot+n]

= mjt .

An identical argument using pct+n competes the proof. ‖
Fact 2 (Representation of Components in Terms of Returns). The random-walk innovations
can be written as

εct = lim
n→∞

{Ect [pct+n − pot ] − Eot [pct+n − pot ]}
εot = lim

n→∞
{Eot [pot+n − pct−1] − Ect−1[pot+n − pct−1]}.

The stationary components can be written as

−sct = lim
n→∞

Ect [pot+n − pct ]
−sot = lim

n→∞
Eot [pct+n − pot ].

The surprises in the stationary components can be written as

−{sct − Eot [sct ]} = lim
n→∞

{Ect [pot+n − pct ] − Eot [pot+n − pct ]}
−{sot − Ect−1[sot ]} = lim

n→∞
{Eot [pct+n − pot ] − Ect−1[pct+n − pot ]}.
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Proof. From Equation (2) in the text,

εct = mct −mot
= lim

n→∞
Ect [pct+n] − lim

n→∞
Eot [pc t+n]

= lim
n→∞

{Ect [pct+n − pot ] − Eot [pct+n − pot ]},

where the second equality follows from Fact 1. A similar argument provides the formula for εot .
For the stationary components, use Equation (2) again,

−sct = mct − pct
= lim

n→∞
Ect [pot+n] − pct

= lim
n→∞

{Ect [pot+n] − pct },

where the second equality follows from Fact 1. A similar argument yields the formula for −sot .
For the surprise in sct , note that

−{sct − Eot [sct ]} = −sct − {mot −mot − Eot [sct ]}
= −sct − {mot − (Eot [mct ] + Eot [sct ])}
= −sct − {mot − Eot [pct ]}.

We just showed that −sct = limn→∞{Ect [pot+n] − pct }; and from Fact 1, we have mot =
limn→∞ Eot [pct+n]. Substituting these into the expression just above yields

−{sct − Eot [sct ]} = lim
n→∞

{Ect [pot+n] − pct } − { lim
n→∞

Eot [pct+n] − Eot [pct ]}
= lim

n→∞
{Ect [pot+n − pct ] − Eot [pct+n − pct ]}.

A similar argument yields the formula for the surprise in sot . ‖
Remark 1. Assume that the vector xt ≡ (rdt , rnt , vdt , vnt )′ is covariance stationary, where rdt =
pct − pot and rnt = pot − pct−1. It therefore has an infinite moving average representation that
can be written as

xit =
∞∑
k=0

βi1(k)u1t−k +
∞∑
k=0

βi2(k)u2t−k +
∞∑
k=0

βi3(k)u3t−k

+
∞∑
k=0

βi4(k)u4t−k for i = 1, . . . , 4 (A.1)

where ut ≡ (u1t , . . . , u4t )
′ is an i.i.d. random vector of disturbances. The next result provides

formulas for the limits in Fact 2 in terms of moving average coefficients and realizations of the
disturbance vector ut . Note that no particular autoregressive structure for xt is assumed as yet.

Fact 3 (Representation of Components in Terms of VMA Parameters and Disturbances).
Define β∗

ih(j) ≡ ∑∞
k=j βih(j). The random-walk innovations can be written as

εct = {
β∗

11(0)+ β∗
21(1)

}
u1t +

{
β∗

13(0)+ β∗
23(1)

}
u3t

εot = {
β∗

12(0)+ β∗
22(0)

}
u2t +

{
β∗

14(0)+ β∗
24(0)

}
u4t .
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The stationary components can be written as

−sct =
∞∑
j=1

{[
β∗

11(j)+ β∗
21(j)

]
u1t−j+1 + [

β∗
12(j)+ β∗

22(j)
]
u2t−j+1

+ [
β∗

13(j)+ β∗
23(j)

]
u3t−j+1 + [

β∗
14(j)+ β∗

24(j)
]
u4t−j+1

}
−sot = {

β∗
12(0)+ β∗

22(1)
}
u2t +

{
β∗

14(0)+ β∗
24(1)

}
u4t

+
∞∑
j=1

{[
β∗

11(j)+ β∗
21(j + 1)

]
u1t−j + [

β∗
12(j)+ β∗

22(j + 1)
]
u2t−j

+ [
β∗

13(j)+ β∗
23(j + 1)

]
u3t−j + [

β∗
14(j)+ β∗

24(j + 1)
]
u4t−j

}
.

The surprises in the stationary components can be written as

−{
sct − Eot [sct ]

} = {
β∗

11(1)+ β∗
21(1)

}
u1t +

{
β∗

13(1)+ β∗
23(1)

}
u3t

−{
sot − Ect−1[sot ]

} = {
β∗

12(0)+ β∗
22(1)

}
u2t +

{
β∗

14(0)+ β∗
24(1)

}
u4t .

Proof. Available from authors upon request.

Lemma 1 (Component Variances in Terms of VMA Parameters). Define
σih ≡ cov [uit , uht ]. The variances of the random-walk innovations are

var[εct ] =
[
β∗

11(0)+β∗
21(1)

β∗
13(0)+β∗

23(0)

]′[
σ11 σ13

σ13 σ33

][
β∗

11(0)+β∗
21(1)

β∗
13(0)+β∗

23(0)

]

var[εot ] =
[
β∗

12(0)+β∗
22(0)

β∗
14(0)+β∗

24(0)

]′[
σ22 σ24

σ24 σ44

][
β∗

12(0)+β∗
22(0)

β∗
14(0)+β∗

24(0)

]
.

The variances of the stationary components are

var[sct ] =
∞∑
j=1




β∗

11(j)+β∗
21(j)

β∗
12(j)+β∗

22(j)

β∗
13(j)+β∗

23(j)

β∗
14(j)+β∗

24(j)


′

cov[ut ,ut ]


β∗

11(j)+β∗
21(j)

β∗
12(j)+β∗

22(j)

β∗
13(j)+β∗

23(j)

β∗
14(j)+β∗

24(j)




var[sot ] =
[
β∗

12(0)+β∗
22(1)

β∗
14(0)+β∗

24(1)

]′[
σ22 σ24

σ24 σ44

][
β∗

12(0)+β∗
22(1)

β∗
14(0)+β∗

24(1)

]

+
∞∑
j=1




β∗

11(j)+β∗
21(j+1)

β∗
12(j)+β∗

22(j+1)

β∗
13(j)+β∗

23(j+1)

β∗
14(j)+β∗

24(j+1)


′

cov[ut ,ut ]


β∗

11(j)+β∗
21(j+1)

β∗
12(j)+β∗

22(j+1)

β∗
13(j)+β∗

23(j+1)

β∗
14(j)+β∗

24(j+1)



.

The variances of the surprises in the stationary components are

var [sct − Eot [sct ]] =
[
β∗

11(1)+ β∗
21(1)

β∗
13(1)+ β∗

23(1)

]′ [
σ11 σ13

σ13 σ33

][
β∗

11(1)+ β∗
21(1)

β∗
13(1)+ β∗

23(1)

]

var [sot − Ect−1[sot ]] =
[
β∗

12(0)+ β∗
22(1)

β∗
14(0)+ β∗

24(1)

]′ [
σ22 σ24

σ24 σ44

][
β∗

12(0)+ β∗
22(1)

β∗
14(0)+ β∗

24(1)

]
.
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Proof. These formulas follow directly from computing variances of the expressions in
Fact 3. ‖

Remark 2. We now assume that the VMA(∞) representation inverts to a finite VAR. In this
case, the moving average coefficients can be solved from the autoregressive parameters, so the
variances in Lemma 1 can be expressed in terms of autoregressive parameters. Appendix B
shows the standard way in which the parameter matrices of a VAR(p) can be redefined so that
the model can be written as a VAR(1); except that xt and ut become (4p × 1) vectors. It is
the first four elements of these vectors whose random-walk and stationary components we care
about. Therefore it suffices to work out the details for a VAR(1), where xt and ut are (4p × 1)

Axt = Bxt−1 + ut ,

then focus our analysis on the first four elements of these vectors. Assuming that A−1 exists,
the VAR(1) is equivalent to

xt =  xt−1 + A−1ut where  = A−1B,

or

xt =
∞∑
k=0

 kA−1ut−k (A.9)

provided that the eigenvalues of  are inside the unit circle. This is the vector form of
Equation (A.1). Thus the moving average coefficient, βih(k), is the (i, h)th element of  kA−1.
Lemma 2 provides formulas in terms of VAR parameters for the infinite sums of moving average
coefficients in Lemma 1. Theorem 1 provides formulas for the variances in Lemma 1 in terms
of the VAR parameters.

Lemma 2 (Connection Between VMA and VAR Parameters). Suppose xt and ut are (4p ×
1). Let ei be the (4p × 1) vector with unity in the ith position and zeros elsewhere, and define
the (4p × 4) matrix H ≡ (e1 e2 e3 e4). We have


β∗
i1(j)

β∗
i2(j)

β∗
i3(j)

β∗
i4(j)

 = H ′{ j [I − ]−1
A−1}′ei ,

and

∞∑
j=1




β∗

11(j)+ β∗
21(j)

β∗
12(j)+ β∗

22(j)

β∗
13(j)+ β∗

23(j)

β∗
14(j)+ β∗

24(j)


′

�


β∗

11(j)+ β∗
21(j)

β∗
12(j)+ β∗

22(j)

β∗
13(j)+ β∗

23(j)

β∗
14(j)+ β∗

24(j)




= (e1 + e2)
′(S −!)(e1 + e2),
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and

∞∑
j=1




β∗

11(j)+ β∗
21(j + 1)

β∗
12(j)+ β∗

22(j + 1)

β∗
13(j)+ β∗

23(j + 1)

β∗
14(j)+ β∗

24(j + 1)


′

�


β∗

11(j)+ β∗
21(j + 1)

β∗
12(j)+ β∗

22(j + 1)

β∗
13(j)+ β∗

23(j + 1)

β∗
14(j)+ β∗

24(j + 1)




= (e1 + ′e2)
′(S −!)(e1 + ′e2),

where

vec [S] = [
I − ⊗ ]−1

vec [!],

! = {[
I − ]−1

A−1
}
H�H ′ {[I − ]−1

A−1
}′

 = A−1B, and � = H ′cov[ut ,ut ]H.

Proof. By definition of βih(k) as the (i, h)th element of  kA−1,

β∗
ih(j) ≡

∞∑
k=j
βih(k) =

∞∑
k=j
e′
i 

kA−1eh = e′
i

{ ∞∑
k=0

 j+k
}
A−1eh

= e′
i 

j

{ ∞∑
k=0

 k
}
A−1eh = e′

i 
j [I − ]−1A−1eh.

This implies that



β∗
i1(j)

β∗
i2(j)

.

.

.

β∗
i,4p(j)

 = {
e′
i 

j
[
I − ]−1

A−1
}′

and 
β∗
i1(j)

β∗
i2(j)

β∗
i3(j)

β∗
i4(j)

 = H ′{e′
i 

j
[
I − ]−1

A−1
}′
,

the first statement in Lemma 2. Consequently


β∗

11(j)+ β∗
21(j)

β∗
12(j)+ β∗

22(j)

β∗
13(j)+ β∗

23(j)

β∗
14(j)+ β∗

24(j)

 = H ′{e′
1 

j
[
I − ]−1

A−1
}′ +H ′{e′

2 
j
[
I − ]−1

A−1
}′

= H ′{(e1 + e2)
′ j

[
I − ]−1

A−1
}′

= H ′{ j [I − ]−1
A−1

}′
(e1 + e2).
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Define the quadratic form

Qj ≡ (e1 + e2)
′{ j [I − ]−1

A−1
}
H�H ′ { j [I − ]−1

A−1
}′
(e1 + e2)

= (e1 + e2)
′ j

{[
I − ]−1

A−1
}
H�H ′ {[I − ]−1

A−1
}′
( ′)j (e1 + e2)

= (e1 + e2)
′ j!( ′)j (e1 + e2)

where ! = {[I − ]−1A−1}H�H ′ {[I − ]−1A−1}′. Therefore,

∞∑
j=1

Qj = (e1 + e2)
′
{ ∞∑
j=0

 j!( ′)j −!
}
(e1 + e2) = (e1 + e2)

′(S −!)(e1 + e2)

where S ≡ ∑∞
j=0 

j!( ′)j . It remains to show that vec [S] = [
I − ⊗ ]−1

vec [!].
From the definition of S,

S − S ′ =
∞∑
k=0

 k!( ′)k −
∞∑
k=0

 k+1!( ′)k+1 = !.

Vectorize both sides and rearrange

vec [S − S ′] = vec [!]

vec [S] − vec [ S ′] = vec [!]

vec [S] − (I ⊗ )vec [S ′] = vec [!]

vec [S] − (I ⊗ )( ⊗ I )vec [S] = vec [!]

using the fact that, for general conformable matrices A and B, vec [AB] = (I ⊗ A)vec [B] =
(B ′ ⊗ I )vec [A]. Since (A⊗ B)(C ⊗D) = (AC ⊗ BD) this further simplifies to

vec [S] − ( ⊗ )vec [S] = vec [!]

or [
I − ⊗ ]vec [S] = vec [!].

Provided that
[
I − ⊗ ]−1

exists,

vec [S] = [
I − ⊗ ]−1

vec [!].

Finally, note that


β∗

11(j)+ β∗
21(j + 1)

β∗
12(j)+ β∗

22(j + 1)

β∗
13(j)+ β∗

23(j + 1)

β∗
14(j)+ β∗

24(j + 1)


= H ′{e′

1 
j
[
I − ]−1

A−1
}′ +H ′{e′

2 
j+1

[
I − ]−1

A−1
}′

= H ′{(e1 + ′e2)
′ j

[
I − ]−1

A−1
}′

= H ′{ j [I − ]−1
A−1

}′
(e1 + ′e2).
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Define the quadratic form

Wj ≡ (e1 + ′e2)
′{ j [I − ]−1

A−1
}
H�H ′ { j [I − ]−1

A−1
}′
(e1 + ′e2).

Reasoning identical to that applied to Qj above yields

∞∑
j=1

Wj = (e1 + ′e2)
′(S −!)(e1 + ′e2),

which completes the proof. ‖
Theorem 1 (Component Variances in Terms of VAR Parameters). Stated in text.

Proof. Define Î{ik} to be the 2 × 4 matrix with unity in the (1, i)th and (2, k)th positions and
zero elsewhere. From Lemma 2 we have

Î{24}H
′{ j [I − ]−1

A−1
}′
ei =

[
0 1 0 0
0 0 0 1

]
β∗
i1(j)

.

.

.

β∗
i4(j)

 =
[
β∗
i2(j)

β∗
i4(j)

]

and

Î{24}� Î
′
{24} =

[
0 1 0 0
0 0 0 1

]
σ11 . . . σ14

.

.

.
. . .

.

.

.

σ14 . . . σ44




0 0
1 0
0 0
0 1

 =
[
σ22 σ24

σ42 σ44

]
.

Combining these formulas and the statements in Lemmas 1 and 2, using the fact that I{ik} =
Î ′
{ik} Î{ik}, implies that

var[εot ] = [
Î{24}H

′{[I− ]−1A−1
}′
e1 + Î{24}H

′{[I− ]−1A−1
}′
e2

]′
Î{24}�Î

′
{24}

×[
Î{24}H

′{[I− ]−1A−1
}′
e1 + Î{24}H

′{[I− ]−1A−1
}′
e2

]
= [
e′

1

{
[I− ]−1A−1

}+e′
2

{
[I− ]−1A−1

}]
H
(
I{24}�I{24}

)
H ′

×[{
[I− ]−1A−1

}′
e1 +{

[I− ]−1A−1
}′
e2

]
= (e′

1 +e′
2)
{
[I− ]−1A−1

}
H
(
I{24}�I{24}

)
H ′{[I− ]−1A−1

}′
(e1 +e2)

= (e1 +e2)
′!{24;24}(e1 +e2).

Similar reasoning implies

var [sct − Eot [sct ]] = [
H ′{ [I − ]−1A−1

}′
(e1 + e2)

]′
× (
I{13}�I{13}

)[
H ′{ [I − ]−1A−1

}′
(e1 + e2)

]
= (e1 + e2)

′ !{13;13} 
′(e1 + e2),

and

var [sot − Ect−1[sot ]] = [
H ′{[I − ]−1A−1

}′
e1

+H ′{ [I − ]−1A−1
}′
e2

]′(
I{24}�I{24}

)
×[
H ′{[I − ]−1A−1

}′
e1 +H ′{ [I − ]−1A−1

}′
e2

]
= (e1 + ′e2)

′!{24;24}(e1 + ′e2).
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Noting that ! in Lemma 2 is the same as !{1234;1234} here, the second expression in Lemma 2
immediately implies

var [sct ] = (e1 + e2)
′(S −!{1234;1234}

)
(e1 + e2).

The formula for var [sot − Ect−1[sot ]] just above, and the second expression in Lemma 2, yield

var [sot ] = (e1 + ′e2)
′!{13;13}(e1 + ′e2)

+ (e1 + ′e2)
′(S −!{1234;1234}

)
(e1 + ′e2).

The argument for var [εct ] is slightly more complicated. Define Î{i·} to be the 2×4 matrix having
unity in the (1, i)th position and zeros elsewhere; and Î{·k} to be the 2 × 4 matrix having unity
in the (2, k)th position and zeros elsewhere. Note that Î{ik} = Î{i·} + Î{·k}. Using these definitions,
the first expression in Lemma 2 implies that

[
β∗

11(0)+β∗
21(1)

β∗
13(0)+β∗

23(0)

]
= Î{13}H

′{[I− ]−1A−1
}′
e1

+Î{1·}H
′{ [I− ]−1A−1

}′
e2 + Î{·3}H

′{[I− ]−1A−1
}′
e2

= (
Î{1·} + Î{·3}

)
H ′{[I− ]−1A−1

}′
e1

+Î{1·}H
′{[I− ]−1A−1

}′
 ′e2 + Î{·3}H

′{[I− ]−1A−1
}′
e2

= Î{1·}H
′{[I− ]−1A−1

}′
(e1 + ′e2)

+Î{·3}H
′{[I− ]−1A−1

}′
(e1 +e2).

Using the first expression in Lemma 1

var [εct ] = {
Î{1·}R

′(e1 + ′e2)+ Î{·3}R
′(e1 + e2)

}′
Î{13}�Î

′
{13}

× {
Î{1·}R

′(e1 + ′e2)+ Î{·3}R
′(e1 + e2)

}
where the substitution R ≡ H ′{[I − ]−1A−1

}′
has been made to simplify notation. Multiplying

this expression yields

var [εct ] = {
(e1 + ′e2)

′R Î ′
{1·} Î{13}� Î

′
{13} + (e1 + e2)

′R Î ′
{·3} Î{13}� Î

′
{13}

}
×{
Î{1·}R

′(e1 + ′e2)+ Î{·3}R
′(e1 + e2)

}
= (e1 + ′e2)

′R Î ′
{1·} Î{13}� Î

′
{13} Î{1·}R

′(e1 + ′e2)

+ (e1 + e2)
′R Î ′

{·3} Î{13}� Î
′
{13} Î{1·}R

′(e1 + ′e2)

+ (e1 + ′e2)
′R Î ′

{1·} Î{13}� Î
′
{13} Î{·3}R

′(e1 + e2)

+ (e1 + e2)
′R Î ′

{·3} Î{13}� Î
′
{13} Î{·3}R

′(e1 + e2).
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Now, Î ′
{1·} Î{13} = I{1} and Î ′

{·3} Î{13} = I{3}, so this simplifies to

var [εct ] = (e1 + ′e2)
′R I{1}�I{1}R

′(e1 + e2)

+ 2(e1 + e2)
′R I{3}�I{1}R

′(e1 + ′e2)

+ (e1 + e2)
′R I{3}�I{3}R

′(e1 + e2)

= (e1 + ′e2)
′!{1;1}(e1 + ′e2)+ 2(e1 + e2)

′!{3:1}(e1 + ′e2)

+ (e1 + e2)
′!{3;3}(e1 + e2).

Finally, the expression for !{α1 ,α2} in the statement of the theorem can be obtained by noting

that [I − ]−1A−1 = [I − A−1B]−1A−1 = [A− B]−1. ‖

Appendix B: Representation of VAR(p) as VAR(1)

Consider a vector autoregression in m variables with p lags. Let yt be the m × 1 vector of
variables and ut be the m× 1 vector of disturbances in the VAR(p):

Ayt = B1yt−1 + B2yt−2 + · · · + Bpyt−p + ut , where ut ∼ i.i.d. (0, �),

A, Bs, and � are m×m matrices. Arrange the variables as follows:
A 0 0 ··· 0
0 I 0 ··· 0
0 0 I ··· 0
.
.
.

.

.

.
.
.
.
. . .

.

.

.

0 0 0 ··· I




yt

yt−1

yt−2

.

.

.

yt−p+1

=


B1 B2 ··· Bp−1 Bp
I 0 ··· 0 0
0 I ··· 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 ··· I 0




yt−1

yt−2

yt−3

.

.

.

yt−p

+


ut
0
0
.
.
.

0


Where 0 is the m×m matrix of zeros and I is the m×m identity matrix. Rewrite this as

A∗x∗t = B∗x∗t−1 + u∗t , where u∗t ∼ i.i.d. (0, �∗)

and

�∗ =


� 0 · · · 0 0
0 0 · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · 0 0

 .
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