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Analyst Coverage and the Cross Sectional Relation
Between Returns and Volatility

The January effect conceals a significant negative relation between returns and idiosyn-
cratic volatility at horizons up to two years. Controlling for January and the influence of
penny stocks, we find that this relation, first documented by Ang, Hodrick, Xing and Zhang
(2006), is robust to various measures of idiosyncratic volatility even after skipping a month
to account for bid-ask reversals. The relation is not attributable to small firms or stocks
with lottery-like payoffs. We model and empirically test the hypothesis that low returns
to high volatility stocks are corrections of optimistic mispricing that arises because news
shocks generate disagreement among traders. Our empirical tests, which use low analyst
coverage as a proxy for disagreement, are consistent with this explanation of both AHXZ’s
result and the negative relation between returns and turnover volatility documented by
Chordia, Subrahmanyam and Anshuman (2001). Among other findings, we show that the
negative relations between returns and idiosyncratic volatility, and returns and turnover
volatility, exist only among low coverage stocks.



Introduction

Traditional asset pricing models predict there should be no return premium to secu-

rities’ idiosyncratic volatility because investors eliminate such risk by holding optimally

diversified portfolios. However, Merton (1987) considers a setting of limited diversification

where investors’ holdings are restricted to subsets of stocks that are “known” to them. Id-

iosyncratic volatility then contributes to portfolio risk and is priced, with higher volatility

stocks earning higher average returns. From either of these perspectives, the result docu-

mented by Ang, Hodrick, Xing and Zhang (2006, 2009) is puzzling. They show empirically

that high idiosyncratic volatility stocks earn low average returns (henceforth referred to as

the AHXZ result).

Several explanations have been proposed for this finding. Han and Kumar (2008) and

Bali, Cakici and Whitelaw (2011) argue that investors prefer securities with lottery-like

payoffs, implying that such stocks have low equilibrium expected returns. Jiang, Xu and

Yao (2009) argue that high idiosyncratic return volatility predicts low earnings, which are

accompanied by low returns. Others argue that the AHXZ result is spurious by document-

ing its sensitivity to sampling choices [e.g., Bali and Cakici (2008)] and to accounting for

short-term reversals [e.g., Fu (2009), Huang, Liu, Rhee and Zhang (2010), and Han and

Lesmond (2010)]. AHXZ examine returns beginning in the month immediately following

the computation of idiosyncratic volatility. Since stock returns are positively correlated

with idiosyncratic volatility in the ranking month, the beginning price from which the

next month’s return is computed is more likely at the ask than the bid. The ensuing re-

versal of these price concessions to liquidity providers [see Kaul and Nimalendran (1990)]

then leads to a negative relation between idiosyncratic volatility and returns in the month

immediately following the ranking.

In this paper, we reconsider the AHXZ result by examining separately the returns

in the month immediately following the ranking and returns up to two years later. This

follows the approach of Jegadeesh and Titman (1993) in studying the profits to momen-

tum strategies. We also examine the impact of January and penny stocks. We confirm

the findings that led others to conclude the AHXZ result is sensitive to sampling choices.
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However, we also show that even after skipping the first month, the AHXZ result is quite

robust up to two years after the ranking once we control for January and the influence

of penny stocks. High volatility stocks are prime candidates for tax-loss selling [see Roll

(1983), D’Mello, Ferris and Hwang (2003) and Grinblatt and Moskowitz (2004)]. The im-

pact of this selling pressure is especially pronounced for penny stocks, which are relatively

illiquid. Their positive January returns conceal what is otherwise a strong and persistent

negative relation between future returns and idiosyncratic volatility. After accounting for

the January effect, the AHXZ result is consistently significant in raw and risk adjusted

returns and when using idiosyncratic volatility measured from (i) daily returns of the past

month, (ii) daily returns of the past year and (iii) monthly returns of the past five years.

These findings indicate quite strongly that the AHXZ result is real and that it requires an

economic explanation.

Among our findings, we show that the AHXZ result is not driven by small firms

(though small firms do have high idiosyncratic volatility) or because high idiosyncratic

volatility predicts low earnings (it does, but not for the stocks that drive AHXZ’s result).

We also show that it is not explained by measures of whether stocks have lottery-like

payoffs. Several high daily returns in one month do predict low returns in the following

month, but not in later months. This suggests the high daily returns identify stocks that

experience buying pressure, and the low return in the subsequent month is a reversal of the

price concession to liquidity providers. We then consider an information based explanation

that predicts which firms should dominate in generating the AHXZ result in the sample.

We test its implications and find they fit both the AHXZ result and the equally puzzling

findings of Chordia, Subrahmanyam and Anshuman (2001) that returns are low for stocks

with high volatility of share turnover.

Our explanation is based on the substantial accumulation of evidence that the differ-

ential higher cost of short versus long positions leads to upward biased prices when traders

disagree [see Chen, Hong and Stein (2002), Diether, Malloy and Scherbina (2002), Jones

and Lamont (2002), Gopalan (2003), Lamont (2004), Nagel (2005), Boehm, Danielsen and

Sorescu (2006), Sadka and Scherbina (2007), and Boehm, Danielsen, Kumar and Sorescu

(2009)]. This idea is attributed to Miller (1977) who argues verbally that costly short
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sales prevent pessimists from trading as aggressively as optimists, which leads to upward

biased prices. Several rigorous models have this feature also [see, e.g., Harrison and Kreps

(1978), Chen, Hong and Stein (2002), Hong and Stein (2003) and Gopalan(2003)]. As

disagreement eventually is resolved, the bias dissipates and prices fall. This explains a

principal finding in the papers cited above that future returns are low for stocks with high

dispersion among analysts’ earnings forecasts.

We examine whether this phenomenon explains AHXZ’s result. It might seem im-

mediate that this can be done by considering whether analyst dispersion or idiosyncratic

return volatility (IVOL) is the stronger predictor of returns in a test that casts them as

substitutes.1 There are two problems with this. First, disagreement and IVOL play dis-

tinct roles in the economics of Miller’s hypothesis. If Miller’s hypothesis is true, they are

not substitutes but complements as described below. Second, dispersion among analysts’

forecasts can only be computed if there are two or more analysts. This omits a large

portion of the sample, precisely the firms for which a paucity of analyst coverage leaves

traders most prone to disagreement.

In order for Miller’s hypothesis to affect returns, disagreement (or costs) must change

through time because a constant bias in prices will not affect returns. For disagreement

to change, beliefs must change. IVOL is a measure of changes in beliefs because IVOL

is computed from market clearing prices, which reflect the impact of information arrivals

on traders’ beliefs. If Miller’s hypothesis explains AHXZ’s result, then only the subset of

news arrivals that change beliefs, and also generate disagreement, will impart an upward

bias into prices. High measures of IVOL and disagreement are therefore complements

in predicting a bias in prices. Alternatively, information arrivals that do not generate

disagreement will produce a high IVOL ranking, but they will not impart an upward bias

into prices. A proper test of whether Miller’s hypothesis explains AHXZ’s result requires

interacting IVOL and a measure of disagreement.

We present a simple dynamic model that captures these ideas. We assume that traders

are strategic, short positions are costly, and traders can disagree about the interpretation

of news. Consensus beliefs are correct despite disagreements, however. When news arrives,

1AHXZ conduct such a test as a robustness check.
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it changes consensus beliefs. This shock to beliefs is reflected in equilibrium prices, and it

is the source of high return volatility but not bias.

If the news also creates disagreement, equilibrium prices are biased (too high) in

relation to fundamental value because pessimists optimally trade less aggressively than

optimists. We show that the anticipation of news causes prices to rise even prior to the

actual news arrival. This is because traders bet on the appearance of a future bias in prices

when they expect it. The true value of the security is eventually revealed, disagreement

dissipates, and the bias in prices disappears. The temporal pattern of equilibrium returns

therefore mirrors that of optimistic mispricing—i.e., a runup prior to a period of significant

news arrival(s) followed by low returns thereafter. Alternatively, if news does not generate

disagreement, this mispricing pattern does not arise even though return volatility is high.

We test this explanation of AHXZ’s result in four ways, using low analyst coverage as

a proxy for whether traders disagree about the interpretation of significant news. Our first

test examines whether the relation between returns and idiosyncratic volatility is different

depending on whether stocks have low coverage or not. We use the three measures of

IVOL described above, ex-post return horizons of one month to two years, and raw and

risk adjusted returns. Most of the results indicate that the low returns following high

IVOL rankings are attributable to low coverage stocks only. The exception is returns in

the month immediately following the ranking, which are affected by short-term reversals.

As expected, those returns are negative regardless of coverage.

Disagreement generates trading in our model as it does in many other models [e.g.,

Harris and Raviv (1993)], so shocks to turnover indicate the arrival of information about

which traders disagree. In our second test, we examine the relation between returns and

the volatility of turnover. We find that the low returns to high turnover volatility, first doc-

umented by Chordia, et.al. (2001), are also attributable to stocks with low coverage. This

finding is very strong and uniform across returns horizons, suggesting that disagreement

plays a role in this puzzle as well.

Our third test considers whether return dynamics are consistent with optimistic

mispricing—a runup followed by low returns for high IVOL stocks. This pattern is indeed

significant and is driven by stocks with low coverage. It is robust across the various IVOL
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and turnover volatility measures, and it is incremental to the commonly observed reversal

pattern at intermediate horizons [e.g., DeBondt and Thaler (1985)]. Finally, we examine

returns around earnings announcements because the concreteness of earnings should re-

solve disagreement. We find that average earnings announcement returns are significantly

negative for high IVOL low coverage stocks, and insignificant for low IVOL stocks and for

high IVOL stocks with high coverage. Similar results hold in both tests when the volatility

of turnover is used instead of IVOL.

The results of all four tests support the hypothesis that mispricing associated with

disagreement explains low returns to stocks that sustain significant shocks to prices or

turnover. In fact, the strength and uniformity of the turnover results suggest that turnover

volatility coupled with low coverage is actually a better indicator of information arrivals

that generate disagreement than is IVOL and low coverage.

Finally, we attempt to characterize how coverage affects disagreement, and to identify

the type of information about which traders disagree. We compare stocks with long and

short histories of low coverage and find that those with long histories drive the result.

Excess returns are not significantly negative for high volatility stocks that are new to the

low coverage group—in many cases, their excess returns are positive though not significant.

What matters for mispricing is the level of coverage over a long period of time and not

merely coverage at the time of an information arrival. This suggests that whether news

arrivals create disagreement is related to how the general availability of analysis (financial

models, commentary, and forecasts) helps traders to interpret news, and not the specifics

of the forecast revisions or recommendation changes that analysts make in response to

particular news items.

We then examine accounting operating performance (ROA) for five years prior and

two years after the year in which stocks are ranked as having high IVOL or turnover

volatility. Among high volatility stocks, the time paths of ROA are quite different between

those with a history of low coverage and those without. For low coverage stocks, ROA

increases strongly in the three years before ranking and decreases in the two years after—

i.e., operating performance improves prior to the ranking year then reverses afterward. In

contrast, for high coverage stocks, ROA decreases in the years both prior and subsequent
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to the ranking year. These patterns suggest that whether improvements in operating

performance will continue is a common issue about which disagreement exists.

Our paper makes several contributions. First, we show that the AHXZ result is robust

even after accounting for short term reversals, and that it is not attributable to illiquid

or small stocks, or stocks with lottery-like payoffs. Second, we model an informational

explanation for the AHXZ result that links it to mispricing that arises from disagreement

among traders. Third, we demonstrate that the returns patterns that characterize both the

AHXZ and Chordia, et.al. (2001) results are consistent with the mispricing explanation,

as are the returns associated with earnings announcements. These findings are robust to

the definition of IVOL and to the choice of returns horizon, and they provide a unified

explanation for two separate puzzles (AHXZ and Chordia, et.al.). Finally, we show that

the patterns in coverage and ROA suggest that the mispricing underlying the AHXZ and

Chordia, et.al. results arises because traders disagree about the persistence of recent

performance improvements for stocks with a history of low coverage.

The next section of the paper presents the model. Section 2 describes the sampling

procedure and the idiosyncratic volatility measures. Section 3 examines the robustness

of the AHXZ result. Section 4 presents tests of the mispricing hypothesis. Section 5

concludes.

1. Model

Idiosyncratic components of price changes arise from arrivals of firm specific news or

idiosyncratic liquidity shocks. We focus on news because, as discussed in the introduction,

others have addressed the role of liquidity shocks and their reversals in explaining the

AHXZ result. In our model, equilibrium prices aggregate traders’ beliefs, so news that has

a large impact on consensus beliefs generates a price shock that leads to high measured

return volatility. We examine the impact on security returns when news also generates

disagreement among traders.

Dynamics are an important part of our story. As noted in the introduction, if dis-

agreement does not change through time, evidence of mispricing will not appear in returns.

We model a firm’s transition from a period of no information flow to a period in which
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significant information arrives, then back again after uncertainty is resolved. This infor-

mational approach to explaining the AHXZ result is quite different from treating IVOL as

an intrinsic attribute or characteristic, and arguing that investors prefer high IVOL stocks

to low IVOL stocks. Instead, our approach is consistent with Sonmez-Seryal (2008), who

examines changes in IVOL rankings to gauge how much of the AHXZ result is driven by

stocks that change versus persist in their IVOL quintile rankings. She shows that returns

are very high when stocks rise in IVOL quintile ranking, and returns are low when stocks

fall in ranking. The relation between returns and IVOL is also positive for stocks that

persist in their quartile ranking. She concludes that the AHXZ result is therefore driven

by the subset of high IVOL stocks that fall from their high ranking—i.e., the transitions

are what matter. We offer an explanation as to why they matter.

To keep things simple, we model the transitions associated with a single information

arrival. This allows the price sequence and whether return volatility is high or low to

be endogenous. In addition, traders in our model are strategic, and they account for

their impact on prices when formulating trading strategies. Gopalan (2003) presents a

static model of perfect competition with assumptions that are similar to ours in order to

model Miller’s (1977) hypothesis. A static model suffices for his purpose, but dynamics

are required to capture the transitions that we hypothesize drive the AHXZ and Chordia,

et.al. results.

1.a Timing and Beliefs

Assume that 2N traders participate in a market for a single security whose per-capita

supply is X > 0. Traders have time additive mean-variance preferences over profit, with

common risk aversion parameter α. Trading occurs at dates 1 and 2, and the security pays

off ṽ at date 3.

Traders are identical at date 1. They all believe ṽ will be drawn at date 3 from a

distribution whose expectation is vo. With probability 1−q, no information arrives at date

2, traders continue to hold this belief, and at date 3 ṽ is in fact drawn from a distribution

having expectation vo and variance σ2
v.

However, with probability q, information arrives at date 2 that generates disagreement
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among the traders about the security’s expected payoff. N traders adopt the optimistic

belief that ṽ ∼ (vH , σ2
v), and the other N traders adopt the pessimistic belief that ṽ ∼

(vL, σ2
v) where vH > vL. One group’s interpretation of the information will turn out to be

correct, meaning that ṽ will be drawn at date 3 from one of these distributions. We assume

the objective probability that ṽ is drawn from either distribution is 1/2. This means that,

conditional on an information arrival at date 2, the expectation of the objective distribution

from which ṽ will be drawn at date 3 is v ≡ 1
2vH + 1

2vL. However, traders in both groups

behave as though their subjective beliefs are correct. Figure 1 illustrates the sequence of

possible events.2

We assume that traders are aware ex-ante of the level of disagreement that will exist

if information arrives and creates disagreement at date 2—i.e., d ≡ vH − vL is common

knowledge. This implies that if information arrives, traders learn both their own revised

beliefs and the revised beliefs of the other group. This assumption prevents us from having

to model inferences from prices that traders would otherwise draw about the beliefs of

others, and the strategic response of each trader to knowing that others attempt to forecast

his beliefs from prices. Although the difference d is fixed, the scale of vH and vL can be

viewed by traders ex-ante as random.

Traders hold common date-1 beliefs, which are consistent with Bayes rule. In partic-

ular, traders’ date-1 expectation is consistent with the three possible conditional expecta-

tions they will adopt at date 2, and the probability of each:

vo = qE1

[
1
2
vH +

1
2
vL

]
+ (1 − q)vo =

1
2
E1 [vH ] +

1
2
E1 [vL] .

This ensures that the prior vo reflects what traders know at date 1 about how the future

will unfold, so a bias in prices does not arise because traders are misinformed at date 1.

A crucial assumption is that short sales are costly. This is comprised of the direct

fees paid to a broker, the difficulty in locating shares to borrow, the opportunity cost

associated with constraints on selling shares posted as collateral, and the extra effort

2An even split in the population between optimists and pessimists is convenient for exposition, but not
necessary. What is important is that the split has the same proportions as the probability of ṽ being drawn

from the “H” and “L” distributions. This ensures that consensus beliefs are correct, and that any bias in

prices is the result of strategic choices and not traders merely being misinformed on average.
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involved in monitoring a short versus a long position [see Lamont (2004)]. For simplicity,

we assume there is a constant marginal cost cs per share per period to maintain a short

position. The profit that trader j realizes from holding xtj shares between dates t and

t+ 1 is therefore

π̃tj ≡ (p̃t+1 − pt)xtj + csItjxtj , where Itj =
{

1 if xtj < 0
0 otherwise,

pt is the market price per share at dates t = 1 and t = 2, and p3 ≡ v.

At date 2, trader j selects a demand schedule, x2j(p2), that maximizes his utility con-

ditional on his date-2 beliefs about the distribution of ṽ and the date-2 demand schedules

chosen by other traders:

J2j = max
x2j(·)

{E2j [π̃2j ] − αVar2j [π̃2j]} .

The solution conditional on no information arrival at date 2 is denoted by x̂∗2j(·), and

the solution conditional on an information arrival is denoted by x∗2j(·)—throughout the

discussion, a “hat” means conditional on no information arrival at date 2.

Likewise, at date 1, trader j selects a demand schedule x1j(p1), that maximizes his

utility conditional on his date-1 beliefs about prices, ṽ1, and the date-1 and date-2 demand

schedules of the other traders:

J1j = max
x1j(·)

{
E1j [π̃1j ] − αVar1j [π̃1,j] + E1j

[
J̃2j

]}
.

We solve for the optimal schedules {x∗1j(·), x̂∗2j(·), x∗2j(·) : j = 1, . . . , 2N} by backward

induction. If a solution exists in which all traders’ beliefs about the strategies of others

are correct, such a solution constitutes a subgame perfect Nash equilibrium. Expressions

for the equilibrium prices {p∗1, p̂∗2, p∗2} can be obtained from the market clearing conditions

that equate per-capita demand and per-capita supply:

1
2N

2N∑

j=1

x̂∗2j(p̂
∗
2) = X and

1
2N

2N∑

j=1

x∗tj(p
∗
t ) = X for t = 1, 2.
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1.b Equilibrium Prices

Whenever traders have identical beliefs, they all hold long positions equal to their

share of per-capita supply, and short sale costs have no impact on holdings or prices.

In order for the cost of short sales to affect holdings and prices, the difference between

optimistic and pessimistic beliefs must be large enough that the cost actually deters short

positions the pessimists would otherwise enter. This occurs over parameter regions in

which pessimists hold zero shares (but would short if it were costless) and short positions

(that are smaller in magnitude than they would be if shorting were costless). To simplify

the exposition, we ignore the former region and consider levels of disagreement that are

sufficient to generate non-zero short sales.

We show in the Appendix that there exists a d > 0 such that if d > d, there is a

subgame perfect Nash equilibrium in symmetric linear strategies.3 In each subgame, the

optimal strategies of traders whose beliefs are the same are identical affine functions of

their expectation of the price change over the next period. Conditional on an informa-

tion arrival at date 2, optimists hold long positions and pessimists hold short positions.

This equilibrium is unique in the class of symmetric linear equilibria. We now describe

the dynamics of prices in this equilibrium to flesh out the connections between IVOL,

disagreement and returns.

If no information arrives at date 2, traders have identical beliefs about the date-3

payoff—i.e., that ṽ ∼ (vo, σ2
v). Their optimal demand schedules are of the form x̂∗2j(p̂2) =

β̂(vo − p̂2) for all j, and the market clearing price is

p̂∗2 = vo −
X

β̂
.

The first term is traders’ consensus belief about the security’s expected payoff, and the

second term is a discount to compensate traders with a positive return for bearing risk.4

Since vo is the expected value of the distribution from which ṽ will be drawn if information

does not arrive, the risk adjusted price is an unbiased estimate of the security’s payoff. At

equilibrium, all traders hold their per-capita share of supply: x̂∗2j(p̂
∗
2) = X.

3An explicit expression for d is given in Equation (A.27) in the Appendix.
4An explicit expression for β̂ is obtained by combining Equations (A.14) and (A.23) in the Appendix.
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If information does arrive at date 2, optimists’ strategies are x∗2H(p2) = β(vH − p2),

and pessimists’ strategies are x∗2L(p2) = β(vL−p2+cs). It turns out that the β coefficients

are the same for optimists and pessimists, and are equal to β̂ in the case when information

does not arrive. The positive cs term in the pessimists’ demand schedule reduces the

aggressiveness with which they short because shorting is costly. The market clearing price

is

p∗2 = v +
cs
2

− X

β
.

The first term is traders’ consensus belief about the security’s expected payoff after infor-

mation arrives, and the third term is a discount due to risk. Since ṽ is equally likely to

be drawn from a distribution with expectation vH or vL, the expectation of its objective

distribution is v, so the consensus component of the price is unbiased as an estimate of

the security’s payoff. However, the risk adjusted price is biased upward because pessimists

hold back when shorting is costly. This bias is reflected in the middle term, cs/2. It re-

wards pessimists, who are short, with an expected drop in price to compensate for bearing

the cost.

The bias is analogous to the upward bias Miller (1977) argues will arise when beliefs are

divergent and short sales are costly. This does not necessarily hold in a carefully structured

equilibrium model. For example, prices are not biased in Diamond and Verrecchia’s (1987)

analysis of costly short sales with divergent beliefs. Their model is based on Glosten and

Milgrom (1985) wherein prices are set by the unbiased beliefs of a market maker who does

not bear costs if his inventory is short. In our model, prices are determined by market

clearing, so beliefs move prices through the orders that traders submit. Even though beliefs

are unbiased on average across traders, market clearing prices are biased upward because

pessimists trade less aggressively on their beliefs than optimists.

The next point is less obvious and follows from the dynamics of traders’ strategic

choices—the bias is incorporated into prices before the information arrival because traders

anticipate divergent beliefs in the future. When traders anticipate that future prices might

be high because pessimists hold back, they bet now that prices will rise. This shifts current

demand and prices upward, incorporating a bias into the current price. The implication

is that the upward bias due to costly short sales is imparted into prices even before the
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arrival of the shock to beliefs that generates disagreement.

At date 1, traders have identical beliefs and their demand schedules are of the form

x∗1j(p1) = γ(E1 [p2] − p1) for all j.5 The market clearing price is

p∗1 = vo + q
cs
2

− X

β
− X

γ
.

The first three terms constitute traders’ date-1 consensus expectation of the date-2 price.

The q cs

2 term is a bias in the date-1 price associated with traders’ anticipation that in-

formation will arrive with probability q and generate a bias of cs

2 in next period’s price.

The more strongly traders anticipate an information arrival at date 2, the more the date-1

price incorporates the future bias. The last term is a discount that compensates traders

with a positive expected return for bearing risk between dates 1 and 2. At date 1, traders

all hold their share of per-capita supply at equilibrium: x∗1j(p
∗
1) = X for all j.6

This price sequence clarifies the possible connections between disagreement, short sale

costs and IVOL in generating the IVOL puzzle. First, IVOL is not a measure of disagree-

ment because prices do not bounce between traders’ divergent beliefs. Prices aggregate

beliefs, so IVOL measures shocks to consensus (i.e., v − vo). Second, disagreement gener-

ates an upward bias in prices. However, the bias appears prior to information arrivals to

the extent that information arrivals are anticipated. The bias reverses as the disagreement

dissipates when ṽ is drawn.

If we define as date zero a time at which traders believe q = 0 then, by an ar-

gument similar to that used to derive p∗1, the date-zero price will have the form p∗o =

vo + risk premium. Conditional on an information arrival at date 2, the sequence of equi-

5An explicit expression for γ is obtained from substituting Equation (A.26) into Equation (A.21.1a) in the

Appendix.
6The discount X

γ is compensation for the risk that information will arrive, which also depends positively

on q. This will be small for idiosyncratic news, but may seem important here only because we are working

with a single security model in which opportunities for diversification are suppressed. If we think of
α as representing traders’ aversion to the incremental risk associated with this security in a diversified

portfolio, then α will be small and indeed X/γ vanishes (and q cs
2 does not) as α→0 (by Equation (A.26)

in the Appendix). Alternatively, if traders do hold undiversified portfolios as in Merton (1987), then the

risk premium could be large enough to compete with the bias in affecting the price.
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librium risk adjusted price changes is

Ro,1 = q
cs
2

(1)

R1,2 =
{
v − vo

}
+ (1 − q)

cs
2

(2)

R2,3 =
{
ṽ − v

}
− cs

2
. (3)

These equations illustrate how disagreement affects returns around significant information

arrivals. News causes
{
v − vo

}
to contribute significant variation to prices, which leads

to a high IVOL ranking. The expected value of the terms in curly brackets is equal to

zero because consensus is unbiased. However, expected returns are positive both before,

and coincident with, the news arrival. The expected subsequent return is negative as

disagreement dissipates and the bias disappears.

Equations (1) - (3) relate to the case in which information arrivals that shock consensus

also generate disagreement. If they do not (i.e., d = 0), there is an equilibrium in which

traders have identical beliefs in all subgames, traders each hold their share of per-capita

supply, and there is no bias in prices in either period whether information arrives or not.

Conditional on an information arrival at date 2 that does not generate disagreement,

Equations (1) - (3) are replaced by similar equations but without the terms involving cs,

because traders do not short. When information arrives, prices change because consensus

shifts (v − vo will still contribute significant variation to prices). Such a shock will lead

to a high IVOL ranking, which is not accompanied by a prior price runup and subsequent

price drop. Thus, a pattern of mispricing will not be apparent on average around high

IVOL rankings if information arrivals do not also generate disagreement.

Disagreement in our model drives trading volume as well. If information does not

arrive at date 2 (or if it does, but there is no disagreement), all traders continue to hold

their per-capita share of supply and there is no trading. However, if information arrives

that generates disagreement, trading occurs between optimists and pessimists. A large

value for a statistic that measures shocks to trading volume therefore indicates both the

arrival of news and the presence of disagreement. Further conditioning on low analyst

coverage is an even tighter screen for the presence of disagreement. If our model is correct,

a pattern of optimistic mispricing should be at least as pronounced if a measure of volume
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volatility is used in place of IVOL as a ranking variable in the empirical tests.

These observations suggest several empirically refutable hypotheses. First, the neg-

ative returns following a high IVOL ranking are reversals of biases that build prior to

the ranking, so there should be an association between the size of the prior runup and

the subsequent price drop. In other words, the price pattern should resemble optimistic

mispricing around a high IVOL ranking that is corrected ex-post. Second, and most im-

portant, information arrival and disagreement are both necessary to generate the AHXZ

result in our model. Information arrivals that are not accompanied by disagreement will

not generate a bias. Consequently, only the subset of high IVOL stocks for which there

is significant disagreement should exhibit a pattern consistent with optimistic mispricing.

Third, the pattern of mispricing should be at least as strong when a measure of shocks to

turnover is used in place of IVOL, which measures shocks to prices.

In our empirical tests, we use low analyst coverage to identify whether shocks to beliefs

are likely to generate disagreement. When coverage is low, traders have less guidance to

process the value relevance of news. In contrast, if many analysts follow a firm, investors

have a common and large set of professional opinions to anchor their beliefs and to help

with interpreting the meaning of significant information. Using analyst coverage as a proxy

for disagreement has the advantage of allowing all firms to be included in the sample. Using

dispersion in analysts forecasts instead requires that two analysts follow a firm in order for

the firm to be included in the sample. This limitation is severe. For example, the average

sample size in our Table 2 regressions is 5220 stocks per month. This falls to 2494 under

the requirement of two or more analysts.

2. Data and Methods

The data consist of monthly prices, returns and other characteristics of the NYSE,

AMEX and Nasdaq companies covered by CRSP from 1963 through 2006. Price, return

and volume data are obtained from CRSP. Financial information is obtained from Compu-

stat. Data on analyst coverage are obtained from the Summary History data set compiled

by the Institutional Brokerage Estimation System (I/B/E/S). Stocks are classified each

month as having low coverage (LCOV = 1) if three or fewer analysts are listed as pro-
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viding one-year earnings forecasts.7 For expositional ease, we refer to stocks outside the

low coverage group as high coverage stocks. Although I/B/E/S coverage begins in 1976,

we follow Diether, Malloy and Scherbina (2002) in limiting our sample period to begin in

January 1983. Until 1983, the I/B/E/S coverage is sparse and unreliable.

Following AHXZ, we measure the idiosyncratic volatility of each stock as the standard

deviation of residuals from a time series regression of stock returns on the Fama-French

(1993) factors:

Rit = αi + βi,MKTMKTt + βi,SMBSMBt + βi,HMLHMLt + εit. (4)

We construct three idiosyncratic volatility measures that differ both in data frequency

and in the length of the time series used to estimate the regression. The first is the orig-

inal AHXZ idiosyncratic volatility measure (IV OL20D). It is estimated from regressions

using one prior month of daily returns and factor data, including firm months with at

least 20 observations. We also construct two other measures to identify firms by their

volatility over longer periods of time. IV OL200D is estimated using the prior 12 months

of daily returns and factor data, requiring at least 200 non-missing observations in the

past year. The third measure IV OL60M uses the prior 60 months of monthly returns and

factor data, requiring at least 24 months of non-missing observations [see also Fama and

MacBeth (1973), Lehmann (1990), Malkiel and Xu (2006) and Spiegel and Wang (2005)].

Considering a variety of volatility measures enables us to provide a clearer picture of the

robustness of the results than would be possible using a single measure alone.

Following Chordia et al. (2001), we measure the volatility of trading volume as the

standard deviation of share turnover (STURN). Each month, turnover is calculated as

trading volume divided by shares outstanding as reported by CRSP. STURN is calculated

over 36 months ending in the second-to-last month prior to portfolio formation.8 Nasdaq

volume includes inter-dealer trades and NYSE/AMEX volume does not, so we divide

7Partioning between three and four divides the overall sample nearly in half. Low coverage stocks represent

45% of the sample of NYSE/AMEX stocks and 67% of the sample of Nasdaq stocks. The average number

of analysts covering stocks in our sample is five.
8Note that this results in a month being skipped by construction, so the results reported for turnover

volatility are not subject to the critique of short term reversals associated with bid-ask bounce discussed

in the Introduction.
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volume by two in computing STURN for Nasdaq stocks. Trading volume data is not

available prior to November 1982 for Nasdaq stocks.

We follow the Fama-MacBeth (1973) style regression approach taken in George and

Hwang (2004) and Grinblatt and Moskowitz (2004) to measure and compare the returns to

portfolios formed by different investment strategies. This approach has the advantage of

using all the stocks in the sample. The regression coefficient estimates isolate the returns

to portfolios exhibiting particular characteristics by hedging (zeroing out) the impact of

other variables that are included as controls [see Fama (1976)].

We examine returns over future horizons of different lengths. This involves computing

returns in a given month to portfolios that were formed in each of several past months.

Consider the strategy of forming portfolios every month and holding the portfolios for the

next T months. In a given month t, the return to pursuing this strategy is the equal-

weighted average of the returns to T portfolios, each formed in one of the T past months

t− j (for j = 1 to j = T ). The contribution of the portfolio formed in month t− j to the

strategy’s month-t return can be identified by the coefficient estimates of a cross sectional

regression of month-t returns on portfolio selection criteria in month t− j.

The main regression specification we work with is as follows.

Rit = b0jt + b1jtLV OLi,t−j + b2jtHV OLi,t−j + b3jtLCOVi,t−j ∗ LV OLi,t−j

+ b4jtLCOVi,t−j ∗HV OLi,t−j + b5jtBMi,t−1 + b6jtSizei,t−1 + b7jtRi,t−1

+ b8jt52WKHWi,t−j + b9jt52WKHWi,t−j + eijt,

(5)

where Rit is the return to stock i in month t, HV OLi,t−j (LV OLi,t−j) equals one if stock

i is among the top (bottom) 20% of stocks in month t − j when ranked by idiosyncratic

volatility, and LCOVi,t−j takes the value of one if stock i has no more than three analysts

covering it in month t−j as reported in the I/B/E/S Summary History file. Equity market

capitalization and book-to-market in month t− 1 are used as control variables to capture

the size and book-to-market effects on returns. We include the prior month’s return as a

control to capture predictability due to bid-ask bounce, though as we observe later, this

does not fully capture short term reversals. These variables are included as deviations

from cross sectional means to facilitate the interpretation of the intercept. We also include
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winner and loser dummies based on the 52-week high momentum measure in George and

Hwang (2004), which they show dominates momentum measures based on past returns.

In light of the control variables, the estimate of b0jt is the return in month t to a

“neutral” portfolio, formed in month t − j, that has neither low nor high idiosyncratic

volatility (i.e. the portfolio that includes stocks in the middle three idiosyncratic volatility

quintiles) and that hedges (zeros out) the effects of deviations from average prior month

return, average size and average book-to-market, and also the effects of momentum in

predicting returns. The sum of the estimates b0jt + b1jt is the month-t return to the low

volatility portfolio of high coverage stocks that was formed in month t − j and that has

hedged out all other effects. Similarly, the sum b0jt + b1jt + b3jt is the month-t return to a

portfolio of low volatility stocks with low coverage that was formed in month t−j that has

hedged out all other effects. The individual coefficients are, therefore, excess returns that

isolate specific characteristics. For example, b3jt is the excess return in month t associated

specifically with low coverage in a low volatility portfolio formed in month t − j. The

remaining coefficients have similar interpretations.

For a given month t, the coefficients in Equation (5) are estimated in T separate cross

sectional regressions—one regression for each j = 1, ..., T . The portfolio returns associated

with various strategies and holding periods are calculated as averages of the appropriate

coefficient estimates. For example, consider the strategy of investing in low volatility (and

low coverage) portfolios. The excess return in month-t (and the incremental component

attributable to low coverage) to such a strategy with a K-month holding period beginning

pmonths after portfolio formation is S1t = 1
K

∑p+K
j=p b1jt (and S3t = 1

K

∑p+K
j=p b3jt). All the

coefficients in S·t are estimated using the same month-t returns as the dependent variable,

so the sums S·t and S·s are non-overlapping returns for t 6= s.

The numbers reported in the tables are time series means of these non-overlapping

returns (e.g., S1 and S3), and the corresponding t-statistics are computed from the tem-

poral distribution of returns. We estimate regressions out to T = 24 and report results for

horizons {p = 0, K = 1}, {p = 1, K = 11} and {p = 12, K = 12}, and sometimes others.
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2.1 Summary Statistics

Table 1 reports summary statistics for the variables used in our tests. The numbers

reported are time series averages of the cross sectional mean, median, maximum, and

minimum of each variable, and the correlations among the variables. RET (−1,−12) is the

past 12-month return, and IV OL20D, IV OL200D and IV OL60M are the idiosyncratic

volatility measures defined earlier. The low coverage dummy LCOV is a key variable

in our tests. It has a mean of 0.55—on average, 55% of the sample stocks have three

or less analysts covering them. Not surprisingly, the correlation between LCOV and

market capitalization is negative, and the correlations between LCOV and measures of

idiosyncratic volatility are moderate and positive—low coverage stocks tend to be smaller

and have higher idiosyncratic volatility. The magnitude of the correlations is between 0.18

and 0.25. There is little correlation between LCOV and STURN at -0.05—low coverage

stocks tend only slightly to have low volatilities of share turnover.

3. Average Returns to High and Low Volatility Portfolios

This section shows that the AHXZ result is robust across all three idiosyncratic volatil-

ity measures, across different holding periods ranging from the first month through the

second year after portfolio formation, and to the inclusion of controls for firm size and

Bali, Cakici and Whitelaw’s (2011) “MAX” variable.

3.1 Idiosyncratic Return Volatility

Some previous studies examining the robustness of the AHXZ result [e.g., Bali and

Cakici (2008) and Huang et al. (2010)] focus on the one-month idiosyncratic volatility

measure (IV OL20D) used by AHXZ and do not examine returns beyond the first year

after portfolio formation. These studies find the AHXZ result is strong among value

weighted portfolios but nonexistent when portfolios are equally weighted. To be sure our

explanation addresses the source of their findings, we begin with equally weighted portfolios

by estimating Equation (5) with HV OL and LV OL dummies as the only independent

variables:

Rit = b0jt + b1jtLV OLi,t−j + b2jtHV OLi,t−j + eijt. (6)
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The results are reported in the top panel of Table 2 for IV OL20D. The table contains

eight columns. Columns 1 and 2 report average portfolio returns one month after portfolio

formation {p = 0, K = 1} with and without January, respectively. Columns 3 and 4

report the average monthly portfolio returns during the second month {p = 1, K = 1},

and columns 5 and 6 the third month {p = 2, K = 1}. Columns 7 and 8 report the first

year after portfolio formation, excepting the first month {p = 1, K = 11}.

As discussed earlier, the numbers reported as the coefficients of LV OL and HV OL are

time series means (and t statistics in parentheses) of returns such as S1t = 1
K

∑p+K
j=p+1 b1jt

and S2t = 1
K

∑p+K
j=p+1 b2jt. However, in columns 2, 4, 6 and 8, January returns are excluded

from the calculations. These are important to examine, especially for high volatility port-

folios, because high volatility stocks tend to be small in market capitalization and their

high volatility makes them more likely than other stocks to be big winners and big losers.

Big losers are prime candidates for tax-loss selling at year end. The relative illiquidity

of these stocks magnifies the tax loss selling effect on January returns [see Roll (1983),

D’Mello, Ferris and Hwang (2003), and Grinblatt and Moskowitz (2004)].

The coefficients reported for LV OL and HV OL are the excess returns to equally

weighted low and high volatility portfolios relative to a benchmark equally weighted port-

folio of stocks in the middle three volatility quintiles. We confirm the Bali and Cakici

(2008) findings in our sample. High idiosyncratic volatility stocks do not have low returns

in the month following portfolio formation when equally weighted portfolios that include

January returns are considered (Column 1). Low IVOL stocks have significantly lower

returns than middle three quintile stocks, and the returns to high IVOL stocks are not

significantly different from the returns to middle quintile stocks.

The results are opposite when January returns are excluded, however. Column 2 shows

that the equally weighted portfolio of top IVOL quintile stocks earns negative excess returns

that are quite significant. The excess return is -0.87% (t = −5.08) in the first month after

portfolio formation. This indicates why the original AHXZ result fails for equally weighted

portfolios—high idiosyncratic volatility stocks tend to have large positive January returns,

which conceal the AHXZ result. This also explains why the AHXZ result is stronger in

value weighted portfolios. Tax loss selling is more prevalent among small firms, which tend
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also to have high IVOL. Weighting by value minimizes the impact of the positive January

returns to small firms on the returns to the high IVOL portfolio.

Recall, however, that Huang et.al. (2010) and Han and Lesmond (2011) show that

the first month’s return contains a reversal due to price concessions to liquidity providers

in the ranking month. Skipping the first month to avoid the short term reversal shows

that the January returns conceal the AHXZ result at longer horizons as well.

There is no significant return difference between either high or low IVOL stocks and

stocks in the middle three quintiles when January returns are included (columns 3, 5 and

7). However, the results in columns 4, 6 and 8 show that the AHXZ result is robust

and persistent in non-January months following portfolio formation. For example, the

{p = 1, T = 11} horizon in columns 7 and 8 shows that excluding January changes an

insignificant premium to high volatility of 0.26% (t = 1.35) per month into a significant

discount of -0.35% (t = −2.18) per month.9 Despite the influence of microstructure biases

on the month one returns, the persistence of returns out to two years (seen later in Table

4) indicates strongly that the AHXZ result is much more than just a short term liquidity

reversal.

These results are based on a sample similar to those in AHXZ, Bali and Cakici (2008)

and Huang et al. (2010) that includes “penny stocks,” whose relative illiquidity introduces

noise and possibly bias into volatility rankings and measured returns even at longer hori-

zons [see Amihud (2002)]. In Table 3, we repeat the analysis after excluding stocks with

share prices smaller than $5 at the end of the month of portfolio formation. This has a

noticeable effect on the results, which are even stronger and consistent with AHXZ.

The excess returns to the equally weighted portfolio of high volatility stocks are sig-

nificant and negative in the first month and the first year after portfolio formation even

when January is included. This is because the January effect is especially strong for penny

stocks. The exclusion of penny stocks leads to a uniformly significant pattern of negative

returns to high IVOL stocks, and uniformly insignificant returns to low IVOL stocks (rel-

ative to stocks in the middle three quintiles). The average excess returns to high volatility

9Similar results hold under both the medium and long term idiosyncratic volatility measures, though they

are not tabulated to save space.
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portfolios are -1.24% (t = −8.00) in the first month and -0.40% per month (t = −2.65)

in the next eleven months after portfolio formation even with January included. When

January returns are excluded, the excess returns become even more negative. The excess

returns in the first month and first year are -1.39% (t = −8.62) and -0.70% (t = −4.83)

per month, respectively.10 Here again, the impact of short term reversals can be seen in

the first month where the coefficient -1.39 is about double the average of -0.70 over the

next eleven months.

The influence of January returns and (illiquid) penny stocks creates the appearance

that the AHXZ result is non-existent. Their influence might also distort inferences con-

cerning the relative importance of IVOL versus other variables thought to explain the

AHXZ result. A prominent example is the “MAX” variable of Bali, Cakici and Whitelaw

(2011), which is designed to capture the degree to which investors view a stock as having

lottery-like payoffs. It is defined as the average of the five highest daily returns during

the prior month. Bali, et.al. document negative one-month returns for high MAX stocks

and argue that this drives the AHXZ result because, after controlling for MAX, the return

discount to high IVOL stocks becomes a premium. The bottom panels of Tables 2 and 3

examine the impact of January and penny stocks on their conclusions.

Column 1 of the bottom panel in Table 2 confirms their finding. High MAX (low MAX)

stocks earn a large and significant return discount (premium) in the first post-ranking

month. After controlling for MAX, the relation between returns and IVOL is positive.

This is also true when January is excluded from month one returns. However, in months

two and three, and in the eleven months after the first month, the results are different.

When January is included, both the high and low MAX dummies are insignificant, as are

the high and low IVOL dummies. When January is excluded, the high IVOL dummies

are all negative and significant despite having controlled for MAX. The coefficients of the

MAX dummies are inconsistent in sign and significance across horizons. High MAX is

significant and negative at month two, insignificant at month three and insignificant in the

10The untabulated results for medium and long term volatility measures are very similar, although some-

what smaller in magnitude. For example, the excess return to the high IV OL200D portfolios one month
and one year after portfolio formation are -0.57% (t=−2.89) and -0.29% (t=−1.55) per month, respectively.

The corresponding figures when excluding January are -0.81% (t=−3.99) and -0.67% (t=−3.70) per month.
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eleven months after month one. Low MAX is insignificant at month two, significant and

negative at month three and insignificant in the eleven months after month one.

The bottom panel of Table 3 reports the same analysis after excluding penny stocks.

As in table 2, the month one returns are low for high MAX stocks whether January is

included or not. However, in month two, neither of the MAX dummies are significant. In

month three, and the eleven months following month one, the high MAX dummy is not

significant while the low MAX dummy is significant and negative.

In contrast, the results for the IVOL dummies are quite consistent across horizons. Re-

gardless of whether January is included or not, the coefficients of the high IVOL dummy are

uniformly negative and strongly significant. For example, in the eleven months following

month one, with January included, the coefficient of the low IVOL dummy is insignificant

and that of the high IVOL dummy is -0.41 (t = −5.00). Excluding January, the estimates

are 0.18 (t = 2.12) for the low IVOL dummy and -0.63 (t = −8.93) for the high IVOL

dummy. Interestingly, this evidence of a significant negative relation between returns and

IVOL is stronger after having controlled for MAX than the evidence in the top panel where

MAX is not included.

The relation between returns and IVOL is the more robust of the two effects. It is

more persistent, and it survives controlling for biases in returns due to tax-loss selling and

accounting for the illiquidity of penny stocks. If the MAX variable really does capture

investors’ willingness to pay premium prices for lottery-like stocks, investors’ perception

of which stocks possess this attribute is very fleeting—the price premium dissipates by the

end of month one. The speed with which this disappears suggests that the MAX effect is

a liquidity reversal. This interpretation could also explain the stronger IVOL results after

controlling for MAX. If MAX accounts for liquidity effects that are not accounted for by

skipping a month, then adding MAX as a control improves the specification so the true

(negative) relation between returns and IVOL is estimated with greater precision.

Table 4 reports results for risk adjusted returns for all three measures of IVOL and over

return horizons out two years from portfolio formation. Penny stocks are excluded from

this and all later tables. The figures reported for LV OL and HV OL are intercepts (and

t-statistics) from time series regressions in which S1t, S2t, etc., which are non-overlapping
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returns, are regressed on contemporaneous Fama-French (1993) factors.

Risk adjusting strengthens the AHXZ result in both high and low volatility portfolios.

In sixteen of eighteen cases, the excess returns to high idiosyncratic volatility portfolios

are significantly negative both with and without January. Low volatility portfolio returns

are insignificant in ten cases and significantly positive in eight cases. The magnitude and

significance of the relation for both high and low idiosyncratic volatility groups is again

stronger when January is excluded. Outside January, the high volatility portfolios have

risk adjusted excess returns that are all significantly negative, irrespective of the holding

period and the volatility measure. The excess returns are strongest for IV OL20D. The

weakest returns correspond to IV OL60M , which are still strong. The first month, first

year and the second year risk adjusted excess returns to the high IV OL60M portfolios are

-0.33% (t = −3.07), -0.50% (t = −5.12) and -0.47% (t = −4.76) per month, respectively.

Table 5 examines the degree to which the AHXZ result is attributable to small versus

large firms. Regressions similar to those in Table 4 are estimated with the addition of

a dummy variable, SMALL, defined as one for stocks whose market capitalization is

below the cross-sectional monthly median and zero otherwise. This dummy is included

by itself, and also interacted with the HV OL and LV OL dummies. The coefficient of

HV OL (LV OL) is the excess return to high (low) volatility large firms relative to medium

volatility large firms. The corresponding excess return to small firms is the sum of the

coefficient of HV OL (LV OL) and the interaction between SMALL and HV OL (LV OL).

Raw returns are examined in this table.

Two results are noteworthy. First, the coefficients of the HV OL dummy are signifi-

cantly negative in all cases except two (they are significantly negative in all cases in risk

adjusted returns that are omitted to save space). This indicates that the AHXZ result is

strong among large firms. Second, the AHXZ result is actually weaker among small than

large firms. There are many cases in which the SMALL*HVOL coefficient is significant,

and in all those cases it is positive—i.e., the relation between returns and high idiosyncratic

volatility is less negative among small firms than among large firms. The AHXZ result

is therefore not attributable to small firms. Although high idiosyncratic volatility stocks

tend to be small firms, those responsible for the negative relation between returns and
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idiosyncratic volatility are not small.

Summarizing, our results indicate that the influence of January returns are responsible

for the seeming lack of robustness of the AHXZ result in equally weighted portfolios,

particularly when the sample includes penny stocks. Once we exclude January returns

and penny stocks, equally weighted portfolios of high idiosyncratic volatility stocks have

low raw and risk adjusted returns in the first month, the first year, and even the second year

after portfolio formation. Low idiosyncratic volatility portfolios have either insignificant

or high returns. This holds for the short term idiosyncratic volatility measure used in

AHXZ and also for the medium and long term idiosyncratic volatility measures, and it is

not attributable to small firms or firms that have lottery-like payoffs. Next, we document

that the relation between returns and the volatility of share turnover is even stronger than

the relation between returns and idiosyncratic return volatility.

3.2 Volatility of Turnover

Table 6 reports an analysis in which the HV OL and LV OL dummies are defined with

respect to the volatility of share turnover (highest and lowest quintiles of STURN defined

above) rather than idiosyncratic return volatility. The results for raw returns confirm

Chordia et. al.’s (2001) finding that there is a strong negative relation between turnover

volatility and subsequent returns. The high turnover volatility portfolio has significant

excess returns ranging from -0.63% to -0.44% per month. Only the year-two return with

January included is insignificant at -0.23% per month. All but one of the excess returns

to the low turnover volatility portfolios are insignificant in raw returns.

After risk adjustment, high (low) turnover volatility portfolios have uniformly signifi-

cantly negative (positive) excess returns for all holding periods with and without January.

For example, a zero investment strategy of taking a long position in the low volatility port-

folio and a short position in the high volatility portfolio nets 0.70% (0.25% + 0.45%) per

month in the first month after portfolio formation, and 0.69% (0.28% + 0.41%) per month

in the following eleven months. Excluding January, the profit is 0.83% in the first month

and 0.81% per month in the following eleven months. Similar monthly profits persist for

holding periods extending out two years.
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If exploitable, this is one of the most profitable investment strategies documented in

the literature. Note that penny stocks have already been excluded, we use 20% cutoffs

rather than more extreme 10% cutoffs for ranking by STURN , and a month is skipped

between ranking and computing returns. So if there is a short term reversal in ranking

by STURN, it is not included here. These results are consistent with the observation in

Section 1 that low ex-post returns should be stronger using the volatility of trading volume

than return volatility if the AHXZ result arises from disagreement among traders.

4. Tests of the Mispricing Hypothesis

The results so far describe two robust negative relations—one between returns and

idiosyncratic return volatility, and another between returns and the volatility of share

turnover. In this section we examine whether these relations are consistent with the mis-

pricing predictions discussed in Section 1.

4.1 Analyst Coverage and the Return-Volatility Relations

Our first test examines whether the two negative relations are stronger among low

coverage firms than high coverage firms. The results are consistent with this hypothesis,

and the low returns to high IVOL low coverage stocks persist for years. Outside the low

coverage subsample, the relation between returns and idiosyncratic return volatility (and

turnover volatility) is mostly positive and sometimes significant. Results for risk adjusted

returns are reported in Table 7. The results for raw returns are similar and not tabulated

to save space. These regressions include the control variables defined above in Equation

(5), but the coefficient estimates for the control variables have been omitted to save space.

The first three panels of the table report results for the three measures of idiosyncratic

return volatility. In columns 3 - 8, which skip the first month, all the significant negative

relations between returns and IVOL are attributable to low coverage stocks. When Jan-

uary is excluded, all the coefficients of interactions between low coverage and high IVOL

are significantly negative, and the interactions between low coverage and low IVOL are

significantly positive. When January is included, the results are weaker, but still significant

in many cases.
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In contrast, excess returns are generally positive, and in two cases significantly posi-

tive, for stocks with high IVOL and high analyst coverage in columns 3 - 8. For example,

the results for the second year after portfolio formation using IV OL200D show that out-

side January high IVOL stocks with high coverage earn a positive excess return of 0.65%

per month, but high IVOL stocks with low coverage earn a significant 1.12% less, or -0.47%

per month. The results in columns 3 - 8 indicate that the strong and significant negative

relation between IVOL and future returns after the first month is attributable to stocks

that have low analyst coverage. Among high coverage stocks, there is an insignificant or

positive relation between returns and idiosyncratic return volatility.

The results in columns 1 and 2 for returns in the month immediately following the

ranking by IVOL are different. The return-volatility relation is negative for both high and

low coverage stocks, and it is especially strong using the short horizon measure IV OL20D.

For example, the difference between the coefficients of HV OL and LV OL with January

included is -1.20%, which relates to high coverage stocks. For low coverage stocks, the

difference is between (HVOL+LCOV ∗HV OL) and (LV OL+LCOV ∗LV OL), which is

(-1.09 + 0.37) minus (0.11 - 0.04) or -0.79%. Comparing this to the results from columns

3 - 8 suggests there is a source of bias associated with a high IVOL ranking that is both

unrelated to disagreement and that dissipates quickly. This is consistent with the findings

of Fu (2008), Huang, Liu, Rhee and Zhang (2010) and Han and Lesmond (2010) that

liquidity based reversals exist in the first post ranking month for high IVOL stocks. These

reversals overstate the strength of the AHXZ result at the one-month horizon regardless

of analyst coverage.

The results in the last panel of Table 7 are based on the volatility of share turnover.

There is a significant negative coefficient on the interaction between low coverage and high

volatility for all holding periods including columns 1 and 2, and the low coverage low

volatility coefficients are positive and in most cases significant. These results are quite

strong and they are consistent with the hypothesis that mispricing is attributable to low

coverage stocks. They are also consistent with liquidity reversals driving the IVOL results

reported above for month one. Recall that the computation of STURN ends one month

before portfolio formation, so a month is skipped between ranking and the returns analyzed
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in these regressions. This eliminates the short term reversal, and the uniformly low returns

to high volatility stocks in month one. The negative relation between returns and STURN

is attributable to low coverage stocks only.

4.2 Analyst Coverage and the Mispricing Reflected in Past Returns

The model predicts that the negative ex-post returns to high volatility stocks are cor-

rections of mispricing that arises when disagreement is high. If this is true, returns prior to

and including the ranking month are greater than was justified by fundamentals, and the

post-ranking correction of mispricing should be related to the increase in prices. This im-

plies that the negative excess returns documented for high IVOL and high STURN stocks

should be larger in magnitude if returns leading up to the ranking are high. This should

hold after controlling for the general short term continuations and long term reversals in

returns [see Jegadeesh and Titman (1993) and DeBondt and Thaler (1985)].

Table 8 reports regressions of returns on high and low volatility dummies, indicator

variables for whether the prior three year return ranks in the top or bottom third of the

cross section, and interactions between the high volatility dummy and the high and low

prior three year returns indicators. Each panel reports results for a different measure of

idiosyncratic return volatility or the volatility of turnover. Within each panel, results are

reported for the entire sample on the left, and separately for the high coverage subsample

(LCOV = 0) on the right.

The results are quite consistent across volatility measures. Consider the full sample

results on the left side of the table. The coefficients of the past return variables do pick up

significant general continuation and reversal patterns in returns. Past loser stocks continue

losing over the next year, and past winners reverse in year two following the ranking year

irrespective of volatility rankings. The mispricing prediction is supported as well. Either

a negative coefficient of the interaction between HV OL and the high past return dummy,

a positive coefficient of the interaction between HV OL and the low past return dummy,

or both, indicate that pre- and post-ranking returns are more negatively related for high

volatility stocks than stocks outside the high volatility group. Across all volatility measures

and return horizons, all but one of the former coefficients are significantly negative. The
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latter coefficients are not significant, however. The mispricing prediction is supported by

stocks whose past returns are in the highest third of the cross-section.

The magnitudes of the coefficients of the interactions between high past returns and

high volatility are striking. In all cases, the incremental reversal associated with high

volatility is even larger than the general reversal associated with a high past return. For

example, in Panel A using the short-run volatility measure, the general reversal in year

two is -0.17% per month for past winners, but -0.46% per month (-0.17% plus -0.29%) for

high volatility winners. This follows a first year excess return of insignificant 0.00% for

past winners and a significant -0.26% per month (0.00% plus -0.26%) for high volatility

past winners.

The high coverage sample results on the right side of the table are different. The

relation is nearly non-existent even for past returns in the highest third of the cross sec-

tion. All but one of the interactions between high past returns and high volatility are

insignificant in the high coverage group, and none are significant when January is ex-

cluded. Taken together, these results show there is a significant “extra” return reversal

among high volatility stocks with the biggest price runups, and it is attributable to the

stocks with low analyst coverage.

4.3 Analyst Coverage and Earnings Announcement Returns

In this subsection, we examine whether earnings announcement returns corroborate

the mispricing interpretation of the regression tests in the prior tables. The regressions

show that low returns are earned by high volatility stocks with low coverage. If this

reflects an upward bias in prices associated with disagreement, then we expect earnings

announcement returns for these stocks to be significantly negative on average, because

realized earnings resolve some of the disagreement. They should also be more negative

than the announcement returns for stocks that appear not to be mispriced in the earlier

tests—i.e., all low volatility stocks, and high volatility stocks outside the low coverage

group. This is indeed the pattern that appears below, both when volatility is measured

using idiosyncratic returns and turnover.

We follow the approach of Chopra, Lakonishok and Ritter (1992), La Porta (1996) and
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La Porta, Lakonishok, Shleifer and Vishny (1997) for examining corrections of mispricing.

Each June, we sort stocks independently by volatility (of either idiosyncratic returns or

turnover) and analyst coverage. As before, those with three or fewer analysts are defined

as low coverage stocks, the rest as high coverage stocks. High, medium and low volatility

groups consist of stocks in the top, middle three, and bottom volatility quintiles, respec-

tively. For each stock, we record the cumulative announcement return over a 3-day window

(-1, 0, +1) around the next four quarterly earnings announcements. We calculate “size ad-

justed” returns by subtracting the return of the firm with median book-to-market among

stocks in the same size decile as the announcer. For each stock, the size adjusted “annual”

return is the sum of the four quarterly size adjusted returns. The numbers reported in

Table 9 are temporal averages of cross sectional means (one for each year) computed within

each group. The p-values reported correspond to t tests conducted using the time series

of yearly cross sectional means and differences in cross sectional means.

The results in Table 9 corroborate the interpretation of the evidence in Tables 7 and

8 as consistent with the model. The announcement returns for high idiosyncratic volatil-

ity stocks with low analyst coverage range from -0.87% (p value 0.02) using IV OL20D

to -1.22% (p value 0.00) using IV OL60M . When investors receive information about

these firms’ fundamentals via earnings announcements, returns are negative on average.

These are significant and in most cases more negative than the insignificant return to

high idiosyncratic volatility stocks with high analyst coverage. Note also that the earnings

announcement returns are not significantly different between low and high idiosyncratic

volatility stocks with high coverage. This coincides with the earlier results in Table 7 where

there is no significant difference between the returns of high and low idiosyncratic volatility

stocks having high analyst coverage. Both sets of results suggest that a bias exists in the

pricing of only the stocks in the low coverage high IVOL group.

The results based on turnover volatility (reported at the bottom of Table 9) are similar

to those above, except that the magnitude is much larger. The average announcement

return to high turnover volatility stocks with low analyst coverage is -2.27% (p value 0.00).

When coverage is low, the announcement returns of the high turnover volatility stocks are

much more negative than those of the low turnover volatility stocks—the difference is a
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striking -3.12% (p value 0.00). However, when coverage is high, the announcement returns

of high turnover volatility stocks are not significantly different from zero and not different

from low turnover volatility stocks. These results further support the hypothesis that the

AHXZ result and the turnover volatility puzzle of Chordia et.al. (2001) are attributable

to the mispricing of low coverage stocks.

4.4 Persistence in Low Coverage and Operating Performance

We now turn from testing whether the mispricing hypothesis explains the AHXZ and

Chordia et.al. (2001) results to characterizing the mispricing. Specifically, we attempt to

shed light on how disagreement is related to low coverage, and whether mispricing relates

to information that analysts are likely to have an advantage at interpreting. We examine

two issues. First, since analysts’ reports are forward looking, they provide context for

interpreting future news. So if a stock migrates from high to low coverage, we would

not expect mispricing to materialize immediately. Instead, whether a stock has a history

of low coverage should be the important factor for explaining cross-sectional variation in

mispricing.

Second, security analysts specialize in interpreting the impact of news for the purpose

of forecasting earnings. This specialty is distinct from that of “strategists” or “technicians”

whose forecasts are based more on macroeconomic trends, perceptions of sentiment, trading

activity and liquidity than on individual companies’ earnings. If our story that analyst

coverage resolves disagreement about news is correct, it should relate most clearly to

disagreement about future earnings. We showed earlier that earnings announcements seem

to resolve past disagreement, which is concentrated among high IVOL low coverage stocks.

Now we examine whether the pattern in earnings itself is different for high IVOL low

coverage stocks than stocks in the other groups.

We first examine firms’ coverage histories to determine whether recent or persistent low

coverage is associated with the mispricing of high IVOL stocks. Table 10 reports estimates

of regressions similar to those in Table 7, but the regressions incorporate a variable to

distinguish between all low coverage high volatility stocks, and those with persistent low

coverage. The variable PCOV is defined as unity if a stock was covered by three or
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less analysts three years prior to the ranking month, and zero otherwise. The regression

coefficient of LCOV ∗HV OL is the risk adjusted return to high volatility stocks that only

recently became low coverage, in excess of the return to all high volatility stocks. The

coefficient of PCOV ∗ LCOV ∗ HV OL is the additional risk adjusted return associated

with a history of low coverage.

Two observations from Table 10 are noteworthy. First, the additional return to per-

sistent low coverage is negative across volatility measures and return horizons. It is sig-

nificantly negative in many cases across the four panels of the table, and uniformly signif-

icantly negative when volatility is measured using turnover. Second, the returns to high

IVOL stocks that have low coverage but not persistent low coverage are mostly positive

and insignificant. This means the negative returns to low coverage high volatility stocks

documented earlier are driven by those that have persistent low coverage. High volatility

stocks that are new to the low coverage group have indistinguishable or higher risk ad-

justed returns than stocks with high volatility that are outside the low coverage group.

Viewed through the lens of our model, these findings suggest that significant news arrivals

generate disagreement for stocks that have had low coverage for an extended period of

time, but not stocks that are recently dropped from coverage. The disciplining effect of

analyst coverage on beliefs and prices fades slowly when firms are dropped from coverage.

Second, we examine earnings patterns via firms’ return on assets (ROA) from five

years prior to two years after portfolio formation. Table 11 reports average ROA for

firms by annual volatility ranking (as in Table 9) and by whether coverage is high or low.

Since historical low coverage drives the overpricing, this table groups firms into cells by

current volatility and historical coverage. A firm with low coverage for the past five years

will be included in low coverage cells throughout. However, consider a firm with a high

volatility ranking that had low coverage in only the past year. Its ROA is included in

the average computed for the low coverage high volatility groups in years -1 through +2,

but its ROA is included in the average for high coverage high volatility stocks in years

-5 and -2 when it had high coverage. For future years, firms are grouped using year-zero

coverage, so the year-two numbers show the average ROA for firms ranked in a particular

volatility/coverage category at year zero.
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The table indicates three important differences between low and high coverage stocks

with high volatility. First, the ROA of high coverage high volatility stocks is similar to that

of their medium and low volatility counterparts. In contrast, low coverage high volatility

stocks’ ROA is strikingly low compared to stocks in all other groups. For example, the

difference in ROA between high and low volatility high coverage stocks using the 200-day

measure of volatility is -1.10% (3.82% versus 4.92%) in year -1. For low coverage stocks

the difference is -5.46% (1.59% versus 7.04%). Comparisons in years -5 and -3 are similar.

Second, the trend in ROA for high coverage high volatility stocks is negative from year -3

to 0 and 0 to +2. The trend in ROA for low coverage high volatility stocks is strongly

positive until year zero, and then it reverses. The p values indicate that both the trend

and the reversal are highly significant for all volatility measures, including the volatility of

share turnover.

The path of earnings for high volatility stocks with low coverage is quite distinct from

that of their high coverage counterparts, and that of stocks outside the high volatility

group. Low coverage high volatility stocks have historically low, but strongly up-trending,

earnings that deteriorate subsequent to their rankings as high volatility stocks. In contrast,

the earnings pattern for high volatility stocks outside the low coverage groups is a continued

mild down trend from year -3 to +2.

The distinction between these patterns suggests that disagreement among traders

concerns the persistence of improvements in operating performance of low coverage firms.

This disagreement leads to optimistic mispricing of improvements in operating performance

that are not sustained to the extent expected by optimistic traders. A correction in prices

occurs when earnings are subsequently announced, thus generating the AHXZ and Chordia,

et.al. (2001) results.

The third important difference relates to the sheer magnitude of the price runup in the

three years prior to ranking, which is reported in the bottom panels in Table 11. Within

each volatility group, low coverage stocks outperform high coverage stocks. The difference

is most dramatic in the high volatility group, where returns to low coverage stocks are

between two and three times as large as those of the high coverage stocks. For example,

among stocks ranked high using the 200-day measure of idiosyncratic volatility, returns
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are 172% over the past three years for low coverage stocks versus 51% for high coverage

stocks. This also is consistent with optimistic mispricing of the positive earnings trend

experienced by low coverage stocks.

We do not have a formal hypothesis (or test) that explains the sign of the trend in

past operating performance by coverage—i.e., the fact that a high volatility ranking for low

coverage stocks is associated with an improvement in past operating performance, versus

a deterioration for stocks outside the low coverage group. However, the improvement for

low coverage stocks occurs from a very low baseline relative to other stocks. If analysts

prefer not to cover firms whose operating performance is very poor (perhaps because of a

distaste for making bleak forecasts), then very poor past performance itself contributes to

low coverage [see McNichols and O’Brien (1997)]. Among firms that exist at a point in

time, those with very poor historical performance will be covered by few analysts and will

likely have experienced a performance improvement. These feedback and survival effects

could explain the directional association between coverage that is low and performance

that is improving among stocks that survived until the ranking month.

Finally, accounting for historical coverage is important to documenting the distinct

patterns in ROA in Table 11. If stocks were grouped by current coverage, so the low

coverage portfolios also included firms just recently dropped from coverage, the evidence

of growth in ROA would have been undetected. This is because firms that are new to the

low coverage group have deteriorating operating performance and low past returns. These

offset the high past returns and the uptrend in ROA of the historically low coverage firms.

This also is consistent with a feedback and survival explanation of the link between analyst

coverage and past operating performance.

5. Conclusion

We reexamine weaknesses others have found in the evidence of a negative relation

between returns and idiosyncratic volatility (IVOL) first documented by Ang, Hodrick,

Xing and Zhang (2006) (AHXZ). We confirm the weaknesses exist, then show they are

attributable to the January effect and penny stocks (< $5 per share). Controlling for these

effects, we find that the AHXZ result is robust to variations in the data frequency, the
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length of the time series used to construct idiosyncratic volatility, controls for firm size,

and the degree to which security returns are lottery-like. Moreover, the significant lower

returns to high IVOL portfolios last at least into the second year after portfolio formation.

We argue that the AHXZ result arises from mispricing that is consistent with Miller’s

(1977) hypothesis, which we capture in a stylized dynamic model of strategic trading with

costly short sales. In our model, significant information arrivals generate disagreement

among traders when analyst coverage is low, and costly short sales lead pessimistic beliefs

to be underrepresented in prices. Strategic traders anticipate this, which biases prices

upward prior to information arrivals. Since information arrivals cause return volatility,

this leads to a price runup prior to a high volatility ranking and then a correction as

disagreement dissipates, but only for low coverage stocks.

Our empirical results are consistent with this explanation of the AHXZ result. First,

low average returns to high IVOL stocks occur almost exclusively among firms with low

analyst coverage. Outside the low coverage group, the return premium to high IVOL is

insignificant or positive. Second, returns to high IVOL stocks are lower, the greater are

their returns in the prior three years. This relation also is attributable to low coverage

stocks, suggesting the low returns are corrections of prior optimistic mispricing of low

coverage stocks.

These conclusions are reinforced by an analysis of returns around earnings announce-

ments. If low coverage high IVOL stocks are mispriced too high, their returns should be

negative on average when earnings are announced because the concreteness of earnings

news should reduce disagreement among traders. We find that earnings announcement

returns are significantly negative for stocks with high IVOL when coverage is low, and

only in this case. This indicates that investors systematically revise their valuations down-

ward with news on earnings, consistent with these stocks having been mispriced too high

beforehand.

Our model also makes a prediction that is unrelated to return volatility—trading

volume is driven by disagreement. This prediction is not unique to our model, but it

provides another way to test it. Since disagreement coupled with costly short sales drives

optimistic mispricing, shocks to trading volume should predict mispricing as well or better
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than shocks to returns. When we run our tests by substituting share turnover volatility for

return volatility, the results should be similar or stronger. This is exactly what we find. We

confirm the finding of Chordia, Subrahmanyam and Anshuman (2001) that high turnover

volatility predicts low returns, and we show this relation is attributable to stocks with low

coverage. Results of the other tests described above involving returns of the prior three

years and those involving earnings announcement returns are also stronger when turnover

volatility is used in place of idiosyncratic return volatility.

Finally, we attempt to further characterize why mispricing arises and what type of

information it relates to. We distinguish between firms that have a history (3 years) of low

coverage from those that are new to the low coverage group. We find that the AHXZ and

Chordia et. al. results are driven by firms with a history of low coverage. We then examine

accounting operating performance (return on assets) for stocks in various volatility and

coverage groups. The patterns in ROA are quite different for high volatility stocks inside

versus outside the low coverage group.

Low coverage high volatility stocks, on average, have weak ROA compared to stocks in

the other groups, but the trend in past ROA is strong and positive. This trend reverses in

the two years following the high volatility ranking. ROA for high volatility stocks outside

the low coverage group is also weak, but the trend is downward in the past and the future.

Since these stocks experience no predictable returns, the market prices the downward trend

in operating performance without bias. By contrast, the market seems to overestimate the

persistence of the upward trend in operating performance for low coverage stocks, which is

followed by a reversal. Coupling this with the model suggests that traders disagree about

the persistence of improving operating performance when analyst coverage is low. Since

short sales are costly, pessimists do not trade as aggressively as optimists, resulting in

optimistic mispricing of those stocks while performance is improving.

Our findings shed light on hypotheses advanced in other recent papers. Han and

Kumar (2008) find that the AHXZ result is concentrated among stocks that are dominated

by retail investors as measured by the proportion of trades smaller than $5,000. This is

consistent with some of our results because stocks dominated by retail investors typically

have low coverage. However, their explanation is that retail investors prefer to hold and
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actively trade in high idiosyncratic volatility stocks. They hypothesize that the utility

gained from active speculation leads investors to be willing to suffer low returns to holding

these stocks. In a similar vein, Bali, Cakici and Whitelaw (2011) argue that investors prefer

securities with lottery-like payoffs. These explanations do not fit with the insignificant

or positive return premiums we document for high volatility stocks with high analyst

coverage. Their stories are also not consistent with negative excess returns that are larger

after bigger price runups, or downward average revaluations at earnings announcements

for high volatility firms with low coverage. Moreover, we examine explicitly Bali, et.al.’s

MAX variable, and we find their conclusion that IVOL is subsumed by MAX is driven

by January and penny stocks. Significance of their MAX variable is limited to the first

month after portfolio formation, suggesting that it captures short term reversals relating

to bid-ask bounce [Fu (2009), Huang et. al (2010) and Han and Lesmond (2011)] rather

than investors’ preferences.

Jiang, Xu and Yao (2009) argue that high IVOL predicts low returns because high

IVOL predicts poor future earnings. For the sample as a whole, we also find that high IVOL

predicts poor earnings. This is not why high IVOL predicts low stock returns, however.

High IVOL stocks outside the low coverage group do not have low returns even though

they have negative earnings growth. In fact, among high IVOL stocks, the deterioration in

earnings between years 0 and 2 is greater for those with high coverage than those with low

coverage; yet excess returns are not negative for the high coverage firms. Our results instead

favor the interpretation that high IVOL predicts low stock returns because disagreement

generates optimistic mispricing among low coverage firms that is later corrected.

36



APPENDIX

Date 2

Whether or not information arrives at date 2, trader j solves

J2j = max
x2j(·)

E2j

[
(ṽ − p2)x2j(p2) + csI2jx2j(p2) − ψ2x2j(p2)2

]
. (A.1)

The ψ2 parameter captures the utility cost associated with risk aversion and equals the

product of the risk aversion coefficient and the variance of profit for trader j between

dates 2 and 3. Since the variance of profit in each subtree is endogenous, we first solve the

model for unspecified ψ parameters, then we close the model at the end by solving for the

equilibrium ψ parameters in terms of the underlying model parameters.

Pointwise optimization of (A.1) yields a family of first-order conditions

(E2j[ṽ] − p2) −
∂p2

∂x2j
x2j + csI2j − 2ψ2x2j = 0

that the trader’s optimal choice must satisfy at each p2. It will be apparent later that

the second order condition for a maximum, ∂p2
∂x2j

+ 2ψ2 > 0, is satisfied in equilibrium.

Rearranging the FOC yields an expression for trader j’s optimal demand schedule at date

2:

x∗2j(p2) =
E2j[ṽ] − p2 + csI2j

∂p2
∂x2j

+ 2ψ2

. (A.2)

Date 2 with Information Arrival

We now establish the existence of a symmetric Nash equilibrium conditional on an

information arrival at date 2. (In what follows, time subscripts are dropped where this

creates no ambiguity.) Suppose a given pessimist j conjectures the other traders follow

symmetric linear strategies, where the strategies can differ by “type” (pessimist vs. opti-

mist). Specifically, trader j conjectures:

xk =
{
βL(vL − p− cs) for all k = L and k 6= j

βH(vH − p) for all k = H.
(A.3)

Under this conjecture, pessimist j perceives the market clearing condition to be

xj + (N − 1)xL +NxH = 2NX.
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Substituting from (A.3) and solving for p,

p =
(N − 1)βL(vL + cs) +NβHvH

(N − 1)βL +NβH
+

xj + 2NX
(N − 1)βL +NβH

.

Therefore, trader j perceives

∂p

∂xj
=

1
(N − 1)βL +NβH

(A.4.1)

if he is a pessimist (i.e., j = L). Similar reasoning implies

∂p

∂xj
=

1
NβL + (N − 1)βH

(A.4.2)

if j = H. Combining (A.4.1) and (A.4.2) with (A.2) implies that if trader j conjectures

the others follow the strategies in (A.3), then trader j’s optimal strategy is

x∗2j =





vL−p+csIL
1

(N−1)βL+NβH
+2ψ

if j = L

vH−p+csIH
1

NβL+(N−1)βH
+2ψ

if j = H.
(A.5)

This is the same form as the conjectured strategies in Eq. (A.3) provided that IL = 1

and IH = 0. Thus, if trader j conjectures that others follow the strategies in (A.3), it is

optimal for trader j to follow the same strategy if the following conditions are satisfied:

1
βL

=
1

(N − 1)βL +NβH
+ 2ψ and

1
βH

=
1

NβL + (N − 1)βH
+ 2ψ (A.6.1)

βL > 0 and βH > 0 (A.6.2)

βL(vL − p∗ + cs) < 0 and βH(vH − p∗) > 0. (A.6.3)

Eq. (A.6.1) says that pessimists share a common strategy coefficient, and optimist share

a common strategy coefficient. Eq. (A.6.2) ensures the second-order condition is satisfied

for both trader types. Eq. (A.6.3) says that pessimists hold short positions (IL = 1) and

optimists hold long positions (IH = 0) at the price, p∗, that clears the market. Therefore,

a symmetric equilibrium exists with optimists taking long positions and pessimists short

positions if (A.6.1) - (A.6.3) are satisfied.

First, we find a solution to the pair of equations in (A.6.1) that satisfies (A.6.2).

Rewrite the equations in (A.6.1) as

NβL +NβH = 2βL + 2ψβL [(N − 1)βL +NβH ]

NβL +NβH = 2βH + 2ψβH [(N − 1)βH +NβL] .
(A.7)
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Equating these

2βH {1 + ψ [(N − 1)βH +NβL]} = 2βL {1 + ψ [(N − 1)βL +NβH ]}

βH − βL = ψ {βL [(N − 1)βL +NβH ] − βH [(N − 1)βH +NβL]}

βH − βL = ψ(N − 1)(βL + βH)(βL − βH).

Either βH − βL = 0 or βH + βL = −1
ψ(N−1)

. The latter possibility is not consistent with

(A.6.2). Consider then the possibility that βH = βL = β. Using either of the equations in

(A.7) to solve for β:

2Nβ = 2β + 2ψβ[(2N − 1)β]

β =
N − 1

ψ(2N − 1)
> 0 (A.8)

Thus, (A.6.1) has a unique solution that satisfies (A.6.2).

To verify (A.6.3), we need an expression for the market-clearing price. In the proposed

equilibrium, the market-clearing condition and price are

Nβ(vL − p∗ + cs) +Nβ(vH − p∗) = 2NX

p∗ =
1
2
(vL + vH) +

cs
2

− X

β
. (A.9)

The equilibrium price equals the consensus valuation at date 2 plus an upward bias equal

to one half the short-sale cost, minus a risk premium. Using (A.9), the condition in (A.6.3)

that pessimists have short positions in equilibrium can be written as

β

[
vL − 1

2
(vL + vH + cs) +

X

β
+ cs

]
< 0,

or equivalently as

vH − vL > cs + 2
X

β
. (A.10)

The difference between optimists’ and pessimists’ beliefs about value must be greater than

the short sale cost plus two times the price discount due to risk in order for pessimists

to hold short positions in equilibrium. The condition in (A.6.3) that optimists hold long

positions in equilibrium can be written as

β

[
vH − 1

2
(vL + vH + cs) +

X

β

]
> 0,
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or equivalently as

vH − vL > cs − 2
X

β
(A.11)

which is implied by (A.10).

Therefore, if an information arrival at date 2 generates divergence in beliefs that

is large enough to satisfy (A.10), then there is a symmetric Nash equilibrium in linear

strategies at date 2 where optimists hold long positions and pessimists hold short positions.

In that equilibrium, the market clearing price has the form:

price = consensus beliefs + bias − risk premium.

To solve for strategies at date 1 below, we need expressions for equilibrium (i.e.,

optimized) expected utility at date 2 for each trader type. Using Eq. (A.1), expected

optimist utility is

J2H(p∗2) ≡ J2H |p∗2
= (vH − p∗2)x

∗
2H(p∗2) − ψ2x

∗
2H(p∗2)

2

= β(1 − ψβ) (vH − p∗2)
2
, (A.12.1)

and expected pessimist utility is

J2L(p∗2) ≡ J2L|p∗2
= (vL − p∗2 + cs)β(vL − p∗2 + cs) − ψ2β

2(vL − p∗2 + cs)2

= β(1 − ψβ)(vL − p∗2 + cs)2, (A.12.2)

where β is defined in (A.8) and p∗2 is defined in (A.9). The key observation is that neither

J2H(p∗2) nor J2L(p∗2) depend on choices or prices at date 1, so J2H(p∗2) and J2L(p∗2) are

irrelevant to the optimization of date-1 holdings.

Date 2 without Information Arrival

If no information arrives at date 2, all traders continue to believe E [ṽ] = vo. If trader

j conjectures the other 2N − 1 traders follow a strategy of the form

x̂k = β̂(vo − p̂) for all k 6= j,
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then his perception of market clearing is

x̂j + (2N − 1)β̂(vo − p̂) = 2NX

p̂ = vo +
1

(2N − 1)β̂
(x̂j − 2NX)

and therefore
∂p̂

∂x̂j
=

1

(2N − 1)β̂
.

By (A.2), trader j’s optimal strategy is then

x̂∗j =
vo − p̂+ csIj

1
(2N−1)β̂

+ 2ψ
,

which is the same form as the conjecture above provided that Ij = 0 (i.e., trader j holds a

long position). A symmetric equilibrium with all traders holding long positions will exist

if the following conditions are satisfied:

1

β̂
=

1

(2N − 1)β̂
+ 2ψ (A.13.1)

β̂ > 0 (A.13.2)

β̂(vo − p̂∗) > 0. (A.13.3)

The interpretations of these equations are analogous to those of (A.6.1) - (A.6.3). Solving

(A.13.1) implies

β̂ =
N − 1

ψ(2N − 1)
> 0 (A.14)

which satisfies (A.13.2). The market-clearing price derives from the market clearing con-

dition

2Nx̂∗j (p̂
∗) = 2NX

p̂∗ = vo −
X

β
, (A.15)

so (A.13.3) is satisfied because

β̂(vo − p̂∗) = β̂

(
vo − vo +

X

β̂

)
= X > 0.
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Thus, if information does not arrive, there is a symmetric Nash equilibrium in linear

strategies at date 2 where all traders hold (identical) long positions. In this equilibrium,

trader j’s expected utility is

J2o(p̂∗2) ≡ J2o|p̂∗2
= (vo − p̂∗2) x̂

∗
2(p̂

∗
2) − ψx̂∗2(p̂

∗
2)

2

= β̂ (vo − p̂∗2)
2 − ψβ̂2 (vo − p̂∗2)

2

= β̂
(
1 − ψβ̂

)
(vo − p̂∗2)

2
,

where β̂ and p̂∗2 are given in (A.14) and (A.15). The key observation is that J2o(p̂∗2) does

not depend on choices or prices at date 1, so J2o(p̂∗2) is irrelevant to the optimization of

date-1 holdings.

Date 1

At date 1, trader j seeks to maximize expected long-run utility, given a probability q

that information will arrive next period and generate divergent beliefs, and a probability

1 − q that information will not arrive:

max
x1j(·)

q E1

[
(p∗2 − p1)x1j(p1) + J̃2j(p∗2)

]
+ (1 − q) E1

[
(p̂∗2 − p1)x1j(p1) + J̃2o(p̂∗2)

]

+ csI1jx1j(p1) − ψ1x1j(p1)2.

To simplify notation, the term involving the short-position indicator, I1j , is suppressed. It

eventually drops out (just as in the analysis of date 2 when no information arrives) because

traders are identical at date 1.11 Trader j’s problem is therefore

max
x1j(·)

(
qE1 [p∗2] + (1 − q)E1 [p̂∗2] − p1

)
xj1(p1) − ψ1x1j(p1)2

+ qE1

[
J̃2j(p∗2)

]
+ (1 − q)E1

[
J̃2o(p̂∗2)

]
. (A.16)

Now, E1

[
J̃2o(p̂∗2)

]
= J2o(p̂∗2) because no new information arrives between dates 1 and 2 in

the “hat” case. For the case where information does arrive, there is equal liklihood that

trader j will adopt optimistic and pessimistic beliefs, so

E1

[
J̃2j(p∗2)

]
=

1
2
E1

[
J̃2H(p∗2)

]
+

1
2
E1

[
J̃2L(p∗2)

]
.

11When traders are identical and there is a symmetric equilibrium, all traders hold their share of per-capita

supply of the security, which results in long positions because the security is in positive net supply.
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We established earlier that J2o(p̂∗2), J2H(p∗2) and J2L(p∗2) are all independent of date-1

holdings and prices, so these terms in (A.16) are irrelevant to the date-1 optimization of

(A.16). Consequently, the family of first-order conditions that characterize x1j(·) is

qE1 [p∗2] + (1 − q)E1 [p̂∗2] − p1 −
∂p1

∂x1j
x1j − 2ψ1x1j = 0

for each p1, noting that both p∗2 and p̂∗2 are independent of date-1 choices. It will be

apparent later that the second order condition for a maximum, ∂p1
∂x1j

+2ψ1 > 0, is satisfied

in equilibrium. Rearranging the FOC yields an expression for trader j’s optimal demand

schedule at date 1:

x∗1j(p1) =
qE1 [p∗2] + (1 − q)E1 [p̂∗2] − p1

∂p1
∂x1j

+ 2ψ1

. (A.17)

Suppose trader j conjectures that other traders follow the strategy

x1k = γ

(
vo + q

cs
2

− X

β
− p1

)
for all k 6= j. (A.18)

Then trader j’s perception of market clearing is that

x1j + (2N − 1)γ
(
vo + q

cs
2

− X

β
− p1

)
= 2NX

p1 = vo + q
cs
2

− X

β
+
x1j − 2NX
(2N − 1)γ

.

and so
∂p1

∂x1j
=

1
(2N − 1)γ

. (A.19)

Substituting (A.19) into (A.17) and using the fact that j has a rational prior about how his

beliefs will change if information arrives (i.e., vo = E1

[
1
2vL + 1

2vH
]
) implies that trader

j’s demand schedule is

x∗1j(p1) =
q
(
vo + cs

2
− X

β

)
+ (1 − q)

(
vo − X

β̂

)
− p1

1
(2N−1)γ + 2ψ1

=
vo + q cs

2 − X
β − p1

1
(2N−1)γ + 2ψ1

. (A.20)

where we have used the fact that β̂ = β in the two date-2 equilibria above. Eq. (A.20)

is the same form as the conjecture in (A.18). A symmetric equilibrium with all traders
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holding long positions will therefore exist if the following conditions are satisfied:

1
γ

=
1

(2N − 1)γ
+ 2ψ1 (A.21.1)

γ > 0 (A.21.2)

γ

(
vo + q

cs
2

− X

β
− p∗1

)
> 0. (A.21.3)

The interpretation of these is the same as (A.13.1) - (A.13.3). Solving (A.21.1) implies

γ =
N − 1

ψ1(2N − 1)
> 0 (A.21.1a)

which satisfies (A.21.2). The market-clearing price satisfies

2Nx∗1j(p
∗
1) = 2NX

p∗1 = vo + q
cs
2

− X

β
− X

γ
, (A.22)

so (A.21.3) is satisfied because

γ

(
vo + q

cs
2

− X

β
− p∗1

)
= X > 0.

Therefore, there is a symmetric Nash equilibrium in linear strategies at date 1 where

all traders hold identical long positions. In that equilibrium, the market clearing price

(A.22) has the form:

price = consensus beliefs + (q × date-2 bias) − risk premium.

The bias here is exactly the bias in the date-2 price conditional on an information arrival,

scaled by the probability of an information arrival.

Solving for ψ1, ψ2 and d

Since traders maximize mean-variance preferences, the quadratic cost modeled above

using ψ parameters arises from risk aversion. The common risk aversion parameter is α, so

the equivalence between the quadratic costs and the variance component of mean-variance

preferences is as follows:

ψt
(
x∗tj

)2 = αVartj [π̃jt] = αVartj [p̃t+1 − pt]
(
x∗tj

)2

ψt = αVartj [p̃t+1 − pt]
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so, for each sub-tree of the game,

ψt =





αVar [ṽ − p∗2] if info arrives at t = 2
αVar [ṽ − p̂∗2] if info does not arrive at t = 2
αVar [p̃2 − p∗1] if t = 1.

where p̃2 equals p∗2 with probability q and p̂∗2 with probability 1 − q. We derive explicit

expressions for the equilibrium values of the ψ parameters next.

Case 1: If information arrives at t = 2 then

p∗2 = v +
cs
2

− X

β

ṽ − p2∗ = ṽ − v − cs
2

− X

β
.

At t = 2, agent j knows v because he knows his own beliefs vj and those of the other

group. Therefore,

Var2j [ṽ − p∗2] = Var2 [ṽ] = σ2
v.

Case 2: If information does not arrive at t = 2 then

p̂∗2 = vo −
X

β

ṽ − p̂∗2 = ṽ − vo +
X

β

therefore

Var2j [ṽ − p̂∗2] = Var2 [ṽ] = σ2
v.

Cases 1 and 2 together imply that ψ2 is the same in both date-2 subtrees:

ψ2 = ασ2
v. (A.23)

Case 3: Recall from above that the definition of p̃2 is

p̃2 =

{
p∗2 = v + cs

2
− X

β
with probability q

p̂∗2 = vo − X
β with probability 1 − q.

Subtracting Eq. (A.22) from these expressions we have

p̃2 − p∗1 =

{
v − vo + (1 − q) cs

2
+ X

γ
with probability q

−q cs

2 + X
γ with probability 1 − q.

(A.24)
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The form of this is

Ỹ =
{
Z̃ with probability q
K with probability 1 − q,

where K is a constant, and Z̃ is a random variable conditional on the top state occurring.

The variance of a random variable of this form is

Var
[
Ỹ

]
= qVar

[
Z̃

]
+ q(1 − q)

(
E

[
Z̃

]
−K

)2

. (A.25)

Substituting from (A.24) into (A.25) yields

Var1 [p̃2 − p∗1] = qVar1
[
v
]
+ q(1 − q)

(cs
2

)2

,

so

ψ1 = αq

{
Var1

[
v
]
+ (1 − q)

c2s
4

}
. (A.26)

The differences between the expressions (A.23) and (A.26) arise because the uncertainty

resolved between dates 1 and 2 relates to whether or not information arrives that shifts the

mean of the distribution of ṽ and by how much, whereas the uncertainty resolved between

dates 2 and 3 is the realization of ṽ.

Finally, combining (A.10) and (A.23) yields an expression, in terms of exogenous

variables, for the extent of divergence in beliefs required to support an equilibrium where

pessimists hold short positions and optimists long positions:

d = vH − vL > cs + 2ασ2
vX

(
2N − 1
N − 1

)
≡ d. (A.27)
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Table 1: Summary Statistics 

 
Panel A reports time-series averages of equally-weighted monthly cross-sectional mean, median, maximum and minimum of each variables used in the paper. Pane B reports 
time-series averages of equally-weighted monthly cross-sectional correlations. Using monthly data from January 1963 to December 2006, we construct indicator variables for 
each of the measures described in the text. Market CAP is market equity capitalization, Ret(-1.-12) is the one year return prior to month t, STURN is the standard deviation of 
turnover calculated over the past 36 months ending in month -1, IVOL20D (IVOL200D)  is idiosyncratic volatility calculated from daily returns in the past month (year), 
IVOL60M is idiosyncratic volatility calculated from monthly returns over the past five years.  LCOV is a dummy that takes the value 1 if the stock is covered by three or fewer 
analysts, and takes the value zero otherwise. 

 
 

Panel A 
 
 
 
 
 
 
 
 
 
 

 
 

Panel B 
  

 Mean Median Min  Max 
Market Cap (Millions) 1460.53 1818.88 2.80 123198.14 
Ret(-1,-12) 0.214 0.13 -0.72 8.05 
Ret(-1,-36) 0.616 0.29 -0.84 25.45 
STURN 0.036 0.02 0.01 0.13 
IVOL200D 0.024 0.02 0.01 0.11 
IVOL20D 0.021 0.02 0.00 0.15 
IVOL60M 0.095 0.09 0.03 0.49 
LCOV  0.551 0.96 0.00 1.00 

 Market Cap Ret(-1,-12) Ret(-1,-36) STURN IVOL200D IVOL20D IVOL60M LCOV 

Market Cap 1.000        

Ret(-1,-12) -0.002 1.000       
Ret(-1,-36) 0.004 0.452 1.000      

STURN -0.093 0.087 0.194 1.000     

IVOL200D -0.213 0.162 0.114 0.423 1.000    
IVOL20D -0.161 0.076 0.070 0.275 0.639 1.000   

IVOL60M -0.202 0.177 0.254 0.500 0.744 0.524 1.000  
LCOV -0.210 0.070 0.006 -0.045 0.253 0.184 0.198 1.000 



 
 

 
Table 2: Raw Returns of High and Low Idiosyncratic Portfolios (Including Penny Stocks) 

 
Each month between January 1963 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following forms are estimated: 

1 , 2 , 1 , 2 , 3 , 4 ,5 5it ot jt i t j jt i t j ijt it ot jt i t j jt i t j jt i t j jt i t j ijtR b b LVOL b HVOL e and R b b LVOL b HVOL b LMAX b HMAX e− − − − − −= + + + = + + + + +  
where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise. LMAX5i,t-j (HMAX5i,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the MAX5 (the average of the five highest daily  return in the  month) 
for stock i is ranked in the top (bottom) 20% in month t-j, and zero otherwise.  The coefficient estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 
12 for columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). The numbers reported in the table are the time-series averages of these averages. They are in percent per month.  The 
accompanying t-statistics are calculated from the time series.  This sample includes penny socks (price < $5).  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

  

Raw Returns, IVOL20D (NOBS=5220) 
 Column 1 

(p=0,K=1) 
 

Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=1) 

Column 4 
(p=1,K=1) 

Jan. excluded 

Column 5 
(p=2,K=1) 

 

Column 6 
(p=2,K=1) 

Jan. excluded 

Column 7 
(p=1,K=11) 

 

Column 8 
(p=1,K=11) 

Jan. excluded 
Intercept 1.38 0.99 1.31 0.92 1.30 0.90 1.26 0.85 

(5.60) (4.04) (5.35) (3.78) (5.29) (3.72) (5.04) (3.46) 
LVOL -0.27 -0.06 -0.11 0.10 -0.11 0.09 -0.09 0.13 

(-2.11) (-0.49) (-0.88) (0.82) (-0.91) (0.74) (-0.70) (1.06) 
HVOL -0.21 -0.87 -0.08 -0.72 0.00 -0.62 0.26 -0.35 

(-1.01) (-5.08) (-0.39) (-4.21) (0.01) (-3.71) (1.35) (-2.18) 
Raw Returns, IVOL20D (NOBS=5220) 

Intercept 1.46 1.08 1.32 0.93 1.29 0.91 1.22 0.84 
(5.94) (4.42) (5.38) (3.85) (5.30) (3.77) (5.06) (3.54) 

LVOL -0.49 -0.24 -0.19 0.05 -0.03 0.19 -0.06 0.16 
(-4.53) (-2.33) (-1.79) (0.49) (-0.27) (1.97) (-0.63) (1.79) 

HVOL 0.72 0.09 0.01 -0.54 -0.17 -0.68 0.17 -0.33 
(4.25) (0.72) (0.08) (-4.30) (-1.10) (-5.44) (1.25) (-2.95) 

 LMAX5 0.16 0.09 0.10 0.06 -0.11 -0.16 -0.01 -0.05 
(2.06) (1.16) (1.35) (0.76) (-1.51) (-2.04) (-0.13) (-0.72) 

 HMAX5 -1.29 -1.33 -0.14 -0.25 0.21 0.06 0.05 -0.08 
(-10.33) (-10.11) (-1.20) (-2.17) (1.93) (0.54) (0.56) (-0.89) 



 
 
 

Table 3: Raw Returns of High and Low Idiosyncratic Portfolios  
 

Each month between January 1963 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following forms are estimated: 

1 , 2 , 1 , 2 , 3 , 4 ,5 5it ot jt i t j jt i t j ijt it ot jt i t j jt i t j jt i t j jt i t j ijtR b b LVOL b HVOL e and R b b LVOL b HVOL b LMAX b HMAX e− − − − − −= + + + = + + + + +  
where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise. LMAX5i,t-j (HMAX5i,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the MAX5 (the average of the five highest daily  return in the  month) 
for stock i is ranked in the top (bottom) 20% in month t-j, and zero otherwise.  The coefficient estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 
12 for columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). The numbers reported in the table are the time-series averages of these averages. They are in percent per month.  The 
accompanying t-statistics are calculated from the time series.  Penny socks (price < $5) are excluded.  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

 

  

Raw Returns, IVOL20D (NOBS=3997) 
 Column 1 

(p=0,K=1) 
 

Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=1) 

Column 4 
(p=1,K=1) 

Jan. excluded 

Column 5 
(p=2,K=1) 

 

Column 6 
(p=2,K=1) 

Jan. excluded 

Column 7 
(p=1,K=11) 

 

Column 8 
(p=1,K=11) 

Jan. excluded 
Intercept 1.33 1.04 1.26 0.95 1.24 0.94 1.20 0.86 

(5.58) (4.29) (5.28) (3.97) (5.22) (3.91) (4.89) (3.54) 
LVOL -0.22 -0.08 -0.09 0.06 -0.09 0.05 -0.06 0.10 

(-1.82) (-0.68) (-0.75) (0.49) (-0.78) (0.42) (-0.49) (0.88) 
HVOL -1.24 -1.39 -0.70 -0.87 -0.61 -0.84 -0.40 -0.70 

(-8.00) (-8.62) (-4.50) (-5.44) (-4.08) (-5.58) (-2.65) (-4.83) 
Raw Returns, IVOL20D (NOBS=3997) 

Intercept 1.38 1.08 1.26 0.96 1.25 0.95 1.16 0.86 
(5.79) (4.50) (5.35) (4.04) (5.28) (3.99) (4.98) (3.68) 

LVOL -0.37 -0.21 -0.06 0.10 0.03 0.18 0.02 0.18 
(-3.92) (-2.18) (-0.64) (1.12) (0.34) (1.95) (0.22) (2.12) 

HVOL -0.68 -0.86 -0.70 -0.84 -0.73 -0.89 -0.41 -0.63 
(-7.03) (-8.99) (-7.35) (-8.70) (-7.58) (-9.57) (-5.00) (-8.93) 

 LMAX5 0.13 0.09 -0.06 -0.08 -0.18 -0.19 -0.10 -0.12 
(2.04) (1.30) (-0.92) (-1.17) (-2.83) (-2.90) (-1.94) (-2.16) 

 HMAX5 -0.77 -0.74 -0.01 -0.06 0.15 0.05 -0.01 -0.10 
(-5.40) (-4.85) (-0.07) (-0.45) (1.21) (0.40) (-0.10) (-0.88) 



 
 
 

Table 4: Risk Adjusted Returns of High and Low Idiosyncratic Volatility Portfolios  
 

 Each month between January 1963 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

1 , 2 ,it ot jt i t j jt i t j ijtR b b LVOL b HVOL e− −= + + +  
where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise.  The coefficient estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 12 for columns labeled (p=1,K=11), and 
j=13 to 24 for columns labeled (p=12,K=12). To obtain risk-adjusted returns, we further run times-series regressions of these averages (one for each average) on the contemporaneous Fama-French factor 
realizations to hedge out the factor exposure. The numbers reported for risk-adjusted returns are intercepts from these time-series regressions. They are in percent per month and their t-statistics are in 
parentheses.  Penny socks (price < $5) are excluded.  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

 
  

Risk Adjusted Returns, IVOL20D (NOBS=3997) 
 Column 1 

(p=0,K=1) 
Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=11) 

Column 4 
(p=1,K=11) 

Jan. excluded 

Column 5 
(p=12,K=12) 

Column 6 
(p=12,K=12) 

Jan. excluded 
Intercept 0.08 0.04 -0.06 -0.13 -0.07 -0.15 

(1.92) (0.87) (-1.33) (-2.74) (-1.24) (-3.08) 
LVOL -0.01 0.02 0.14 0.20 0.10 0.17 

(-0.28) (0.33) (2.72) (3.81) (1.76) (3.12) 
HVOL -1.22 -1.31 -0.46 -0.66 -0.14 -0.38 

(-10.95) (-11.57) (-4.47) (-6.90) (-1.30) (-4.15) 
Risk Adjusted Returns, IVOL200D (NOBS=3664) 

Intercept -0.01 -0.04 -0.05 -0.11 -0.04 -0.12 
(-0.13) (-0.91) (-1.04) (-2.15) (-0.81) (-2.39) 

LVOL 0.12 0.16 0.13 0.20 0.10 0.18 
(2.04) (2.82) (2.22) (3.31) (1.60) (2.92) 

HVOL -0.59 -0.75 -0.32 -0.60 -0.22 -0.54 
(-4.14) (-5.32) (-2.31) (-4.70) (-1.53) (-4.44) 

Risk Adjusted Returns, IVOL60M (NOBS=2519) 
Intercept 0.02 0.02 0.01 0.00 0.00 -0.03 

(0.47) (0.33) (0.23) (-0.06) (0.05) (-0.54) 
LVOL 0.06 0.08 0.05 0.08 0.03 0.07 

(1.08) (1.43) (0.95) (1.41) (0.59) (1.22) 
HVOL -0.21 -0.33 -0.31 -0.50 -0.25 -0.47 

(-1.93) (-3.07) (-2.93) (-5.12) (-2.37) (-4.76) 



 
 
 

Table 5: Small Firms and Raw Returns of High and Low Idiosyncratic Volatility Portfolios 
 
Each month between January 1963 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

0 1 , 2 , 3 , 4 , , 5 , ,4 * *it jt jt i t j jt i t j jt i t j jt i t j i t j jt i t j i t j ijtR b b SMALL b LV L b HVOL b SMALL LVOL b SMALL HVOL e− − − − − − −= + + + + + +  
where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise.  SMALLi,t-j  is a dummy that takes the value of 1 if firm i’s market capitalization is below the median of the sample in month t-j, and is zero otherwise.  The coefficient 
estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 12 for columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). The 
numbers reported in the table are the time-series averages of these averages. They are in percent per month.  The accompanying t-statistics are calculated from the time series.  Penny socks (price < $5) are 
excluded.  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

 
 

  Raw Returns, IVOL20D (NOBS=3990) 
 Column 1 

(p=0,K=1) 
Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=11) 

Column 4 
(p=1,K=11) 

Jan. excluded 

Column 5 
(p=12,K=12) 

Column 6 
(p=12,K=12) 
Jan. excluded 

Intercept 1.22 1.00 1.08 0.86 1.02 0.75 
(5.03) (4.05) (4.53) (3.54) (4.13) (3.03) 

SMALL 0.31 0.09 0.22 -0.02 0.18 -0.05 
(3.19) (0.93) (2.32) (-0.18) (1.91) (-0.58) 

LVOL -0.12 -0.04 -0.01 0.09 -0.05 0.07 
(-0.98) (-0.28) (-0.12) (0.73) (-0.43) (0.61) 

HVOL -1.34 -1.41 -0.58 -0.82 -0.23 -0.55 
(-7.20) (-7.16) (-3.42) (-4.86) (-1.43) (-3.64) 

SMALL*LVOL -0.27 -0.16 -0.09 0.00 -0.01 0.09 
(-3.96) (-2.31) (-1.62) (0.07) (-0.20) (1.55) 

SMALL*HVOL 0.00 -0.04 0.20 0.24 0.19 0.26 
(-0.03) (-0.31) (2.26) (2.53) (2.30) (3.05) 

Raw Returns, IVOL200D (NOBS=3534) 
Intercept 1.17 0.95 1.13 0.89 1.05 0.77 

(4.62) (3.67) (4.50) (3.50) (4.05) (2.98) 
SMALL 0.25 0.03 0.22 0.01 0.20 -0.01 

(2.49) (0.36) (2.30) (0.11) (2.13) (-0.14) 
LVOL -0.06 0.06 -0.07 0.06 -0.06 0.08 

(-0.40) (0.38) (-0.53) (0.43) (-0.48) (0.60) 
HVOL -0.82 -1.00 -0.57 -0.86 -0.45 -0.83 

(-3.29) (-3.78) (-2.62) (-3.95) (-2.12) (-4.08) 
SMALL*LVOL -0.16 -0.05 -0.05 0.04 -0.07 0.02 

(-2.00) (-0.68) (-0.76) (0.51) (-0.94) (0.28) 
SMALL*HVOL 0.24 0.25 0.33 0.34 0.26 0.30 

(1.46) (1.49) (2.73) (2.67) (2.13) (2.34) 



 
 
 

 Table 5 (Continued) 
 
 
 
 
 
 
 
 
 
  

Raw Returns, IVOL60M (NOBS=2420) 
Intercept 

 
1.26 1.06 1.23 1.03 1.14 0.91 

(5.53) (4.58) (5.47) (4.52) (5.01) (3.98) 
SMALL 0.24 0.01 0.24 0.01 0.20 -0.02 

(2.57) (0.12) (2.60) (0.16) (2.26) (-0.21) 
LVOL -0.13 -0.05 -0.14 -0.05 -0.14 -0.03 

(-1.11) (-0.42) (-1.26) (-0.46) (-1.23) (-0.27) 
HVOL -0.28 -0.42 -0.43 -0.62 -0.35 -0.63 

(-1.43) (-2.05) (-2.41) (-3.40) (-2.07) (-3.79) 
SMALL*LVOL -0.03 0.04 -0.07 0.00 -0.05 0.03 

(-0.38) (0.53) (-1.01) (-0.06) (-0.71) (0.37) 
SMALL*HVOL -0.02 -0.02 0.15 0.11 0.14 0.17 

(-0.20) (-0.20) (1.50) (1.05) (1.28) (1.45) 



 
 
 

Table 6: Raw and Risk Adjusted Returns of High and Low Turnover Volatility Portfolios  
 

Each month between January 1963 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

1 , 2 ,it ot jt i t j jt i t j ijtR b b LVOL b HVOL e− −= + + +  
where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) turnover volatility dummy that takes the value of 1 if the volatility of share turnover for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise. Turnover volatility is measured as the standard deviation of the share turnover using data for the past 36 months, ending in month t-2.    The coefficient estimates of a 
given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 12 for columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). To obtain risk-adjusted 
returns, we further run times-series regressions of these averages (one for each average) on the contemporaneous Fama-French factor realizations to hedge out the factor exposure. The numbers reported for 
risk-adjusted returns are intercepts from these time-series regressions. They are in percent per month and their t-statistics are in parentheses.  Penny socks (price < $5) are excluded.  NOBS is the average 
number of stocks used in the monthly cross-sectional regressions. 

 
 

  

Raw Return,  STURN (NOBS=3084) 
 Column 1 

(p=0,K=1) 
Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=11) 

Column 4 
(p=1,K=11) 

Jan. excluded 

Column 5 
(p=12,K=12) 

Column 6 
(p=12,K=12) 

Jan. excluded 
Intercept 1.24 1.00 1.17 0.88 1.18 0.83 

(4.79) (3.80) (4.37) (3.27) (4.41) (3.14) 
LVOL 0.10 0.19 0.14 0.26 0.04 0.21 

(0.80) (1.48) (1.10) (2.08) (0.33) (1.73) 
HVOL -0.46 -0.58 -0.44 -0.63 -0.23 -0.48 

(-2.99) (-3.58) (-2.83) (-4.22) (-1.61) (-3.59) 
Risk Adjusted Return  STURN (NOBS=3084) 

Intercept -0.01 -0.03 -0.07 -0.04 -0.05 -0.01 
(-0.23) (-0.63) (-1.21) (-0.74) (-0.84) (-0.23) 

LVOL 0.25 0.29 0.28 0.31 0.19 0.25 
(4.01) (4.60) (4.30) (4.85) (2.90) (4.01) 

HVOL -0.45 -0.54 -0.41 -0.50 -0.27 -0.45 
(-5.09) (-5.98) (-4.14) (-5.72) (-2.74) (-5.09) 



 
 
 

Table 7: Analyst Coverage and Risk-Adjusted Returns of High and Low Idiosyncratic Volatility Portfolios 
 
Each month between January 1983 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

0 1 , 2 , 3 , , 4 , ,

5 , 1 6 , 1 7 , 1 8 , 9 ,

* *

Re 52 52
it jt jt i t j jt i t j jt i t j i t j jt i t j i t j

jt i t jt i t jt i t jt i t j jt i t j ijt

R b b LVOL b HVOL b LCOV LVOL b LCOV HVOL
b BM b Size b t b WKHW b WKHL e

− − − − − −

− − − − −

= + + + +

+ + + + + +
 

where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise.  LCOVi,t-j  is a dummy that takes the value of 1 if the number of analyst coverage for stock i is three or less in month t-j, and is zero otherwise. The control variables are 
defined in the text, and their coefficients are omitted to save space.  The coefficient estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 12 for 
columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). To obtain risk-adjusted returns, we further run times-series regressions of these averages (one for each average) on the 
contemporaneous Fama-French factor realizations to hedge out the factor exposure. The numbers reported for risk-adjusted returns are intercepts from these time-series regressions. They are in percent per 
month and their t-statistics are in parentheses.  Penny socks (price < $5) are excluded.  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

 

Risk Adjusted Return, IVOL20D (NOBS=3549) 
 Column 1 

(p=0,K=1) 
Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=1) 

Column 4 
(p=1,K=1) 

Jan. excluded 

Column 5 
(p=1,K=11) 

Column 6 
(p=1,K=11) 

Jan. excluded 

Column 7 
(p=12,K=12) 

Column 8 
(p=12,K=12) 

Jan. excluded 
Intercept -0.11 -0.16 -0.02 -0.08 -0.06 -0.13 -0.02 -0.11 

(-1.43) (-2.15) (-0.25) (-1.04) (-0.75) (-1.75) (-0.28) (-1.59) 
LVOL 0.11 0.12 0.10 0.13 0.04 0.04 -0.03 -0.05 

(1.67) (1.76) (1.52) (2.00) (0.61) (0.65) (-0.48) (-0.82) 
HVOL -1.09 -0.92 -0.30 -0.35 0.01 -0.02 0.22 0.16 

(-5.88) (-4.88) (-1.59) (-1.81) (0.06) (-0.17) (1.91) (1.36) 
LCOV*LVOL -0.04 -0.01 -0.01 0.01 0.09 0.14 0.17 0.25 

(-0.71) (-0.09) (-0.20) (0.15) (1.69) (2.67) (2.58) (4.07) 
LCOV*HVOL 0.37* 0.18 -0.21 -0.22 -0.21 -0.31 -0.25 -0.33 

(1.81) (0.88) (-1.01) (-1.05) (-1.60) (-2.30) (-1.84) (-2.33) 
Risk Adjusted Return , IVOL200D (NOBS=3525) 

Intercept -0.15 -0.21 -0.04 -0.10 -0.05 -0.12 -0.02 -0.10 
(-1.95) (-2.63) (-0.50) (-1.29) (-0.70) (-1.63) (-0.27) (-1.46) 

LVOL 0.16 0.19 0.08 0.12 0.03 0.03 0.00 -0.03 
(2.02) (2.46) (1.05) (1.50) (0.39) (0.34) (0.01) (-0.46) 

HVOL 0.02 0.14 0.38 0.40 0.34 0.25 0.66 0.65 
(0.04) (0.34) (0.87) (0.85) (1.23) (0.89) (2.30) (2.19) 

LCOV*LVOL -0.02 0.00 0.02 0.03 0.10 0.14 0.16 0.24 
(-0.29) (-0.07) (0.28) (0.56) (1.64) (2.45) (2.42) (3.72) 

LCOV*HVOL -0.13 -0.35 -0.34 -0.50 -0.47 -0.58 -0.91 -1.12 
(-0.33) (-0.85) (-0.81) (-1.10) (-1.79) (-2.17) (-3.25) (-3.88) 



 
 
 
 
 

Table 7 (cont.) 
 
 

 
 
  

Risk Adjusted Return IVOL60M (NOBS=2596) 
 Column 1 

(p=0,K=1) 
Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=1) 

Column 4 
(p=1,K=1) 

Jan. excluded 

Column 5 
(p=1,K=11) 

Column 6 
(p=1,K=11) 

Jan. excluded 

Column 7 
(p=12,K=12) 

Column 8 
(p=12,K=12) 

Jan. excluded 
Intercept -0.09 -0.11 0.02 0.00 0.02 -0.01 0.05 0.02 

(-1.05) (-1.37) (0.30) (-0.02) (0.30) (-0.10) (0.72) (0.21) 
LVOL 0.16 0.19 0.11 0.15 0.04 0.06 -0.02 -0.04 

(1.98) (2.31) (1.33) (1.75) (0.58) (0.70) (-0.25) (-0.44) 
HVOL 0.21 0.26 0.07 0.06 -0.08 -0.06 0.11 0.08 

(0.89) (1.09) (0.29) (0.26) (-0.39) (-0.31) (0.53) (0.37) 
LCOV*LVOL 0.09 0.11 0.07 0.08 0.12 0.15 0.16 0.21 

(1.48) (1.68) (1.10) (1.21) (2.06) (2.39) (2.41) (3.20) 
LCOV*HVOL -0.26 -0.42 -0.36 -0.48 -0.30 -0.47 -0.50 -0.64 

(-1.01) (-1.62) (-1.53) (-1.99) (-1.53) (-2.33) (-2.42) (-3.01) 
Risk Adjusted Return STURN (NOBS=3089) 

Intercept -0.11 -0.15 -0.01 -0.06 -0.04 -0.10 0.02 -0.05 
(-1.29) (-1.81) (-0.12) (-0.75) (-0.46) (-1.28) (0.29) (-0.68) 

LVOL 0.12 0.16 0.02 0.06 0.04 0.06 0.08 0.08 
(1.35) (1.87) (0.22) (0.67) (0.47) (0.76) (1.04) (0.96) 

HVOL -0.11 -0.13 -0.01 -0.07 -0.09 -0.12 -0.04 -0.13 
(-1.02) (-1.23) (-0.13) (-0.66) (-0.86) (-1.21) (-0.33) (-1.07) 

LCOV*LVOL 0.15 0.16 0.28 0.32 0.29 0.34 0.18 0.28 
(1.85) (2.05) (3.88) (4.35) (3.87) (4.77) (1.97) (3.29) 

LCOV*HVOL -0.32 -0.40 -0.42 -0.46 -0.39 -0.51 -0.37 -0.44 
(-2.26) (-2.73) (-3.06) (-3.20) (-3.09) (-4.10) (-3.16) (-3.65) 



 
 
 

Table 8: Past Returns and High and Low Volatility Portfolios 
 

Each month between January 1963 (1983 for the high coverage sample) and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

0 1 , 2 , 3 , , 4 , , 5 , 6 ,

7 , 1 8 , 1 9 , 1 1 0 , 1 1 ,

3 Re 3 Re 3 Re * 3 Re *

Re 52 52
it jt jt i t j jt i t j jt i t j i t j jt i t j i t j jt i t j jt i t j

jt i t jt i t jt i t jt i t j jt i

R b b Low Y t b High Y t b Low Y t HVOL b High Y t HVOL b LVOL b HVOL
b BM b Size b t b WKHW b WKHL

− − − − − − − −

− − − −

= + + + + + +

+ + + + + t j ijte− +
 

where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise.  High 3Y Reti,t-j (Low 3Y Reti,t-j) is a dummy that takes the value of 1 if the past three year return for stock i is ranked  in the top (bottom) 30% in month t-j, and is zero 
otherwise. The control variables are defined in the text, and their coefficients are omitted to save space.  The coefficient estimates of a given independent variable are averaged over j=2 to 12 for columns 
labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). To obtain risk-adjusted returns, we further run times-series regressions of these averages (one for each average) on the contemporaneous 
Fama-French factor realizations to hedge out the factor exposure. The numbers reported for risk-adjusted returns are intercepts from these time-series regressions. They are in percent per month and their t-
statistics are in parentheses.  Penny socks (price < $5) are excluded.  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

 
 
 

Panel A: 20-Day Idiosyncratic Return Volatility Measure  

 Risk Adjusted Returns  IVOL20D  
All Firms (NOBS=2330) 

Risk Adjusted Returns  IVOL20D  
High Coverage Sample  (NOBS=1174) 

 Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 

Jan. excluded 

Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 

Jan. excluded 
Intercept 

 
0.05 0.04 0.08 0.05 -0.02 0.02 0.02 0.06 

(1.04) (0.69) (1.60) (1.12) (-0.18) (0.20) (0.25) (0.70) 
Low 3 yr Ret -0.09 -0.21 -0.04 -0.12 -0.07 -0.24 -0.17 -0.30 

(-1.26) (-2.97) (-0.61) (-1.81) (-0.48) (-1.75) (-1.18) (-2.12) 
High 3 yr Ret 0.00 0.02 -0.17 -0.17 -0.03 -0.01 -0.10 -0.13 

(0.05) (0.43) (-3.44) (-3.32) (-0.40) (-0.13) (-1.27) (-1.54) 
Low 3yr Ret*HVOL 0.03 0.04 -0.06 -0.07 0.32 0.23 -0.19 -0.11 

(0.29) (0.42) (-0.58) (-0.59) (1.42) (0.99) (-0.69) (-0.40) 
High 3yr Ret*HVOL -0.26 -0.23 -0.29 -0.34 -0.02 0.09 -0.25 -0.22 

(-2.97) (-2.63) (-3.24) (-3.68) (-0.11) (0.47) (-1.13) (-0.96) 
LVOL -0.01 0.01 -0.02 0.00 0.07 0.11 0.03 0.08 

(-0.18) (0.28) (-0.50) (0.04) (1.24) (1.86) (0.57) (1.40) 
HVOL -0.15 -0.24 0.08 0.02 -0.03 -0.08 0.23 0.13 

(-1.97) (-3.04) (1.10) (0.29) (-0.26) (-0.68) (1.55) (0.87) 



 
 
 
 
 

Panel B: 200-Day Idiosyncratic Return Volatility Measure 

 

  

 Risk Adjusted Returns  IVOL200D 
All Firms  (NOBS=2340) 

Risk Adjusted Returns  IVOL200D  
High Coverage Sample  (NOBS=1305) 

 Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 

Jan. excluded 

Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 

Jan. excluded 
Intercept 

 
0.06 0.04 0.09* 0.07 -0.08 -0.04 0.01 0.06 

(1.21) (0.82) (1.85) (1.45) (-0.68) (-0.30) (0.11) (0.50) 
Low 3 yr Ret -0.12 -0.23 -0.05 -0.13 -0.14 -0.31 -0.31 -0.43 

(-1.66) (-3.31) (-0.71) (-1.94) (-0.86) (-1.94) (-1.86) (-2.56) 
High 3 yr Ret 0.01 0.04 -0.18 -0.18 0.03 0.05 -0.14 -0.19 

(0.25) (0.77) (-3.64) (-3.48) (0.28) (0.47) (-1.47) (-1.84) 
Low 3yr Ret*HVOL 0.15 0.11 -0.28 -0.27 0.72 0.58 -0.29 -0.29 

(0.94) (0.69) (-1.53) (-1.44) (0.87) (0.74) (-0.30) (-0.28) 
High 3yr Ret*HVOL -0.49 -0.57 -0.37 -0.42 -1.35 -1.13 0.42 0.48 

(-3.37) (-3.92) (-2.57) (-2.87) (-1.83) (-1.60) (0.42) (0.46) 
LVOL -0.02 -0.01 -0.04 -0.03 0.14 0.18 0.03 0.08 

(-0.40) (-0.13) (-0.69) (-0.61) (1.45) (1.69) (0.28) (0.83) 
HVOL -0.06 -0.17 -0.08 -0.21 0.57 0.51 0.14 0.12 

(-0.43) (-1.20) (-0.55) (-1.46) (1.11) (1.13) (0.18) (0.15) 



 

 

Panel C: 60-Month Idiosyncratic Return Volatility Measure 

 
 
  

 Risk Adjusted Returns  IVOL60M  
All Firms (NOBS=1989) 

Risk Adjusted Returns  IVOL60M  
High Coverage Sample  (NOBS=1023) 

 Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 

Jan. excluded 

Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 

Jan. excluded 
Intercept 

 
0.04 0.04 0.08 0.07 -0.02 0.01 0.00 0.05 

(0.71) (0.66) (1.50) (1.38) (-0.24) (0.10) (0.03) (0.50) 
Low 3 yr Ret -0.10 -0.23 -0.06 -0.14 -0.06 -0.24 -0.14 -0.26 

(-1.41) (-3.16) (-0.89) (-2.10) (-0.39) (-1.56) (-0.83) (-1.65) 
High 3 yr Ret 0.07 0.10 -0.10 -0.10 0.02 0.04 -0.06 -0.09 

(1.30) (1.84) (-2.16) (-1.94) (0.25) (0.48) (-0.80) (-1.11) 
Low 3yr Ret*HVOL -0.02 0.03 0.06 0.14 0.12 0.50 0.55 0.59 

(-0.13) (0.23) (0.38) (0.90) (0.25) (1.06) (1.01) (1.08) 
High 3yr Ret*HVOL -0.39 -0.36 -0.33 -0.32 -0.24 -0.01 0.31 0.22 

(-4.09) (-3.70) (-3.46) (-3.31) (-0.62) (-0.03) (0.87) (0.62) 
LVOL 0.00 0.00 -0.04 -0.04 0.05 0.10 0.04 0.08 

(0.02) (0.02) (-0.69) (-0.79) (0.56) (1.13) (0.45) -0.93 
HVOL -0.05 -0.18 -0.07 -0.20 0.04 -0.13 -0.06 -0.03 

(-0.48) (-1.65) (-0.69) (-1.85) (0.14) (-0.44) (-0.18) (-0.09) 



 
 
 
 
 

Panel D: Volatility of Share Turnover 
 

 
 
 
 
 
 
  

 Risk Adjusted Returns  STURN  
All Firms (NOBS=2030) 

Risk Adjusted Returns  STURN  
High Coverage Sample  (NOBS=1068) 

 Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 

Jan. excluded 

Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 

Jan. excluded 
Intercept 0.02 0.01 0.07 0.05 0.02 0.08 0.01 0.07 

(0.39) (0.18) (1.28) (0.99) (0.24) (0.81) (0.13) (0.76) 
Low 3 yr Ret -0.08 -0.22 -0.02 -0.10 0.04 -0.08 -0.11 -0.17 

(-0.92) (-2.62) (-0.23) (-1.26) (0.26) (-0.45) (-0.65) (-1.01) 
High 3 yr Ret 0.08 0.11 -0.13 -0.13 0.01 0.03 -0.10 -0.12 

(1.55) (2.11) (-2.81) (-2.71) (0.13) (0.37) (-1.36) (-1.45) 
Low 3yr Ret*HVOL 0.05 0.09 0.00 0.02 0.04 -0.05 0.11 0.01 

(0.49) (0.80) (-0.04) (0.15) (0.15) (-0.21) (0.47) (0.04) 
High 3yr Ret*HVOL -0.34 -0.28 -0.16 -0.14 -0.27 -0.16 -0.08 -0.11 

(-4.49) (-3.60) (-2.21) (-1.89) (-2.08) (-1.25) (-0.66) (-0.91) 
LVOL 0.13 0.15 0.08 0.11 0.04 0.07 0.10 0.15 

(2.41) (2.90) (1.49) (2.12) (0.53) (0.84) (1.24) (1.73) 
HVOL -0.13 -0.23 -0.12 -0.23 0.05 -0.08 0.06 -0.04 

(-1.67) (-3.06) (-1.55) (-3.04) (0.45) (-0.66) (0.54) (-0.35) 



 
 
 

Table 9: Earnings Announcement Returns for Portfolios Sorted on Volatility and Analyst Coverage 
 

Every June from 1983 to 2006, we sort firms independently into two groups by analyst coverage (three or less analysts is low coverage, greater than three is high coverage) and three groups by idiosyncratic 
volatility (top 20%, middle 60% and bottom 20%), and form portfolios based on these groupings.    For each firm, we then compute the average abnormal return over the four quarterly announcement returns 
following portfolio formation and annualize this number by multiplying by four.   Following La Porta et al (1997), we benchmark each earnings announcement return by the firm with median book-to-market 
in the same size decile as the announcer.  The numbers in the table are the equally weighted average annualized earning announcement abnormal (net of benchmark) returns in percent. The column labeled H-
L is the difference between the returns to high and low leverage groups, and p-values relate to a test of the null hypothesis that the difference between the mean abnormal returns of high and low leverage 
groups is zero.  Penny socks (price < $5) are excluded.   

                                           
            
 

 
  

Coverage L M H H-L p-value Coverage L M H
L 0.34 -0.05 -0.87 -1.21 0.00 L 264 855 380

p-value 0.12 0.67 0.02
H -0.14 0.51 -0.87 -0.73 0.18 H 273 811 159

p-value 0.43 0.00 0.10

Coverage L M H H-L p-value Coverage L M H
L 0.38 0.03 -1.03 -1.41 0.00 L 259 855 385

p-value 0.09 0.84 0.00
H 0.04 0.47 -0.60 0.19 0.38 H 296 799 147

p-value 0.87 0.01 0.39

Coverage L M H H-L p-value Coverage L M H
L 0.05 0.51 -1.22 -1.27 0.00 L 189 649 265

p-value 0.85 0.00 0.00
H -0.26 0.49 -0.16 0.72 0.81 H 228 593 143

p-value 0.21 0.00 0.66

Coverage L M H H-L p-value Coverage L M H
L 0.85 0.13 -2.27 -3.12 0.00 L 333 737 213

p-value 0.00 0.29 0.00
H -0.05 0.45 -0.47 -0.42 0.26 H 139 765 283

p-value 0.85 0.00 0.13

STURN STURN

Cumulative Abnormal Returns Number of Stocks 

IVOL20D IVOL20D

IVOL60M IVOL60M

IVOL200D IVOL200D



 

Table 10: Persistent Low Coverage and High and Low Volatility Portfolios 

Each month between January 1983 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

0 1 , 2 , 3 , , 4 , , 5 , , ,

6 , 1 7 , 1 8 , 1 9 , 1 0 ,

* * * *

Re 52 52
it jt jt i t j jt i t j jt i t j i t j jt i t j i t j jt i t j i t j i t j

jt i t jt i t jt i t jt i t j jt i t j ijt

R b b LVOL b HVOL b LCOV LVOL b LCOV HVOL b PLCOV LCOV HVOL
b BM b Size b t b WKHW b WKHL e

− − − − − − − − −

− − − − −

= + + + + +

+ + + + + +
 

where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise. LCOVi,t-j is a dummy that takes the value of 1 if the number of analysts covering stock i is three or less in month t-j. PLCOVi,t-j is a dummy that takes the value of 1 if the 
number of analysts covering for stock i is 3 or less in month t-j-36.  The coefficient estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 12 for 
columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). To obtain risk-adjusted returns, we further run times-series regressions of these averages (one for each average) on the 
contemporaneous Fama-French factor realizations to hedge out the factor exposure. The numbers reported for risk-adjusted returns are intercepts from these time-series regressions. They are in percent per 
month and their t-statistics are in parentheses. Penny socks (price < $5) are excluded.   NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

 

  

Risk Adjusted Returns, IVOL20D (NOBS=3134) 
 Column 1 

(p=0,K=1) 
Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=1) 

Column 4 
(p=1,K=1) 

Jan. excluded 

Column 5 
(p=1,K=11) 

Column 6 
(p=1,K=11) 

Jan. excluded 

Column 7 
(p=12,K=12) 

Column 8 
(p=12,K=12) 
Jan. excluded 

LVOL 0.09 0.11 0.06 0.11 -0.01 0.02 -0.07 -0.07 
(1.26) (1.57) (0.85) (1.58) (-0.14) (0.26) (-1.26) (-1.11) 

HVOL -0.89 -0.72 -0.08 -0.11 0.06 0.06 0.18 0.15 
(-4.04) (-3.16) (-0.32) (-0.44) (0.52) (0.50) (1.40) (1.11) 

LCOV*LVOL -0.07 -0.06 -0.05 -0.06 0.06 0.08 0.13 0.18 
(-1.08) (-0.87) (-0.79) (-0.91) (1.03) (1.43) (2.00) (2.87) 

LCOV*HVOL 0.44 0.30 -0.20 -0.24 0.16 0.08 -0.17 -0.25 
(1.01) (0.68) (-0.36) (-0.42) (0.73) (0.39) (-0.87) (-1.19) 

PLCOV*LCOV*HVOL -0.31 -0.34 -0.07 -0.06 -0.44 -0.50 0.02 0.00 
(-0.79) (-0.83) (-0.13) (-0.10) (-2.27) (-2.49) (0.09) (0.01) 

Risk Adjusted Returns, IVOL200D (NOBS=3144) 
LVOL 0.07 0.13 0.00 0.06 -0.05 -0.03 -0.07 -0.07 

(0.90) (1.60) (-0.03) (0.75) (-0.69) (-0.35) (-0.96) (-0.92) 
HVOL -0.06 0.19 0.18 0.31 0.24 0.28 0.60 0.52 

(-0.11) (0.33) (0.33) (0.53) (0.70) (0.76) (1.63) (1.41) 
LCOV*LVOL -0.03 -0.05 0.01 -0.01 0.07 0.09 0.13 0.18 

(-0.52) (-0.66) (0.13) (-0.18) (1.23) (1.45) (2.00) (2.68) 
LCOV*HVOL 1.31 0.85 0.56 0.27 -0.17 -0.41 -0.70 -0.82 

(1.61) (1.00) (0.71) (0.33) (-0.34) (-0.76) (-1.27) (-1.42) 
PLCOV*LCOV*HVOL -1.34 -1.22 -0.62 -0.60 -0.21 -0.24 -0.17 -0.22 

(-2.11) (-1.86) (-1.08) (-1.01) (-0.57) (-0.63) (-0.39) (-0.48) 



 
 

Table 10 (Continued) 
 
 
 

 
 
  

Risk Adjusted Returns, IVOL60M (NOBS=2693) 
 Column 1 

(p=0,K=1) 
Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=1) 

Column 4 
(p=1,K=1) 

Jan. excluded 

Column 5 
(p=1,K=11) 

Column 6 
(p=1,K=11) 

Jan. excluded 

Column 7 
(p=12,K=12) 

Column 8 
(p=12,K=12) 
Jan. excluded 

LVOL 0.08 0.12 0.02 0.08 -0.04 -0.02 -0.07 -0.07 
(0.94) (1.42) (0.24) (0.89) (-0.54) (-0.22) (-0.87) (-0.80) 

HVOL 0.26 0.28 0.13 0.11 -0.02 -0.01 0.25 0.19 
(1.05) (1.11) (0.54) (0.47) (-0.09) (-0.05) (1.12) (0.83) 

LCOV*LVOL 0.08 0.09 0.06 0.06 0.10 0.12 0.12 0.17 
(1.13) (1.27) (0.84) (0.79) (1.66) (1.85) (1.73) (2.37) 

LCOV*HVOL 1.52 1.21 0.52 0.37 0.47 0.29 0.09 -0.12 
(2.70) (2.09) (1.00) (0.68) (1.11) (0.65) (0.21) (-0.28) 

PLCOV*LCOV*HVOL -1.88 -1.70 -0.91 -0.88 -0.84 -0.83 -0.71 -0.61 
(-3.41) (-2.97) (-1.90) (-1.73) (-2.24) (-2.08) (-1.82) (-1.52) 

Risk Adjusted Returns, STURN (NOBS=2708) 
LVOL 0.08 0.16 -0.03 0.04 0.02 0.08 0.12 0.16 

(0.96) (1.71) (-0.33) (0.40) (0.23) (0.89) (1.43) (1.84) 
HVOL -0.09 -0.15 0.05 -0.04 -0.01 -0.08 0.01 -0.12 

(-0.69) (-1.13) (0.35) (-0.33) (-0.09) (-0.67) (0.07) (-0.88) 
LCOV*LVOL 0.11 0.10 0.25 0.25 0.23 0.25 0.11 0.16 

(1.45) (1.28) (3.48) (3.35) (3.18) (3.44) (1.18) (1.87) 
LCOV*HVOL 0.43 0.50 0.08 0.10 0.02 -0.07 0.18 0.12 

(1.71) (1.91) (0.31) (0.37) (0.09) (-0.31) (0.79) (0.52) 
PLCOV*LCOV*HVOL -0.95 -1.10 -0.72 -0.75 -0.61 -0.65 -0.64 -0.66 

(-3.81) (-4.42) (-2.62) (-2.68) (-3.07) (-3.15) (-2.70) (-2.65) 



 
Table 11: Return on Assets and Past Stock Returns for Portfolios Sorted on Volatility and Analyst Coverage 

 
Every June from 1983 to 2006, we sort firms independently into two groups by analyst coverage (three or less is “low coverage”, all others are “high coverage” ) and three groups by idiosyncratic volatility 
or turnover volatility (top 20%, middle 60% and bottom 20%), and two groups of market capitalization . We report size-adjusted means (as in Table 10) from a simple average of the large- and small-firm 
time series. Return on assets is the ratio of income before extraordinary items to total book assets. Past 36-month return is the equally-weighted portfolio returns from June to May in the three-year period 
prior to the year of ranking, reported in percent.  Idiosyncratic volatility and turnover volatility rankings are based on current year (year 0) figures. In the ROA panel, the  rankings of analyst coverage for 
years -5, -3 , -1  and changes from year -3 to 0  are based on analyst coverage in years -5, -3 , -1  and -3  respectively.  The rankings of analyst coverage for years 0 and 2 and changes from year 0 to 2 are 
based on analyst coverage in year 0.  In the panel containing past 36 month returns, the  ranking of analyst coverage are based on analyst coverage in year -3.  Penny socks (price < $5) are excluded.   

  

  
IVOL200D 

 
IVOL20D 

                 
  

L   M   H   H-L 
 

L   M   H   H-L 

 
Analyst 

Coverage 
Return on Assets 

 (percent)  
Return on Assets 

 (percent) Year    

-5 H 5.25 
 

5.98 
 

3.88 
 

-1.37 
 

6.01 
 

5.62 
 

4.33 
 

-1.68 
L 6.06 

 
5.16 

 
1.26 

 
-4.80 

 
5.43 

 
4.81 

 
3.40 

 
-2.03 

-3 H 5.60 
 

6.24 
 

4.94 
 

-0.67 
 

5.70 
 

5.96 
 

5.46 
 

-0.24 
L 6.76 

 
5.42 

 
1.22 

 
-5.53 

 
6.19 

 
5.25 

 
2.93 

 
-3.26 

-1 H 4.92 
 

5.90 
 

3.82 
 

-1.10 
 

5.18 
 

5.61 
 

4.65 
 

-0.52 
L 7.04 

 
5.95 

 
1.59 

 
-5.46 

 
6.49 

 
5.82 

 
3.16 

 
-3.34 

0 H 4.82 
 

5.81 
 

3.65 
 

-1.17 
 

5.03 
 

5.56 
 

4.36 
 

-0.66 
L 6.96 

 
6.39 

 
3.30 

 
-3.66 

 
6.50 

 
6.29 

 
4.53 

 
-1.97 

2 H 4.49 
 

5.21 
 

1.88 
 

-2.62 
 

4.63 
 

4.86 
 

3.03 
 

-1.60 
L 6.73 

 
6.44 

 
1.65 

 
-5.08   6.57 

 
6.20 

 
3.56 

 
-3.01 

change from -3 to 0 H -0.14   -0.78   -3.03   -2.89 
 

-0.74 
 

-0.84 
 

-2.30 
 

-1.56 
L 0.37 

 
1.05 

 
2.76 

 
2.39 

 
0.38 

 
1.12 

 
2.08 

 
1.70 

p values H 0.74 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.01 
L 0.17   0.00   0.00   0.00   0.08   0.00   0.00   0.00 

change from 0 to 2 H -0.33 
 

-0.61 
 

-1.78 
 

-1.45 
 

-0.39 
 

-0.70 
 

-1.33 
 

-0.94 
L -0.23 

 
0.04 

 
-1.65 

 
-1.42 

 
0.07 

 
-0.08 

 
-0.97 

 
-1.04 

p values H 0.02 
 

0.00 
 

0.01 
 

0.03 
 

0.00 
 

0.00 
 

0.04 
 

0.02 
L 0.14   0.91   0.01   0.03   0.08   0.00   0.00   0.00 

                 
  

L   M   H   H-L 
 

L   M   H   H-L 

 
Analyst 

Coverage 
Past 36-Month Return 

 (percent)  
Past 36-Month Return 

 (percent)     

 
H  32.93 

 
49.39 

 
50.59 

 
17.66 

 
34.31 

 
47.30 

 
57.41 

 
23.10 

 
L 39.32   78.72   172.49   132.17   45.91   80.45   156.33   110.42 

 
H-L 6.39 

 
29.33 

 
121.90 

 
115.49 

 
11.60 

 
33.15 

 
98.92 

 
87.32 

 
p value 0.03 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 



 
Table 11 (cont.) 

 

  
IVOL60M 

 
STURN 

                 
  

L   M   H   H-L 
 

L   M   H   H-L 

 
Analyst 

Coverage 
Return on Assets 

 (percent)  
Return on Assets 

 (percent) Year    

-5 H 4.31 
 

5.03 
 

3.00 
 

-1.30 
 

6.31 
 

5.94 
 

3.96 
 

-2.36 
L 6.55 

 
6.36 

 
2.68 

 
-3.87 

 
5.17 

 
4.92 

 
1.43 

 
-3.75 

-3 H 5.32 
 

6.38 
 

4.53 
 

-0.79 
 

6.14 
 

6.11 
 

5.47 
 

-0.67 
L 5.93 

 
5.88 

 
1.01 

 
-4.92 

 
5.30 

 
4.81 

 
1.65 

 
-3.64 

-1 H 4.82 
 

5.93 
 

4.12 
 

-0.70 
 

5.15 
 

5.61 
 

4.92 
 

-0.23 
L 6.54 

 
6.09 

 
2.16 

 
-4.38 

 
5.37 

 
4.91 

 
2.18 

 
-3.19 

0 H 4.44 
 

5.65 
 

4.61 
 

0.17 
 

4.97 
 

5.33 
 

4.66 
 

-0.31 
L 6.52 

 
6.18 

 
4.69 

 
-1.83 

 
5.27 

 
5.07 

 
3.60 

 
-1.67 

2 H 4.31 
 

5.03 
 

3.00 
 

-1.30 
 

4.71 
 

4.91 
 

3.00 
 

-1.71 
L 6.55 

 
6.36 

 
2.68 

 
-3.87   5.12 

 
4.79 

 
1.86 

 
-3.27 

change from -3 to 0 H -0.03 
 

-1.09 
 

-1.72 
 

-1.68 
 

-0.98 
 

-1.29 
 

-1.91 
 

-0.94 
L 0.34 

 
0.45 

 
4.41 

 
4.07 

 
-0.21 

 
0.43 

 
3.12 

 
3.32 

p values H 0.94 
 

0.00 
 

0.02 
 

0.02 
 

0.00 
 

0.00 
 

0.02 
 

0.05 
L 0.11   0.12   0.00   0.00   0.20   0.06   0.00   0.00 

change from 0 to 2 H -0.13 
 

-0.61 
 

-1.60 
 

-1.47 
 

-0.26 
 

-0.42 
 

-1.66 
 

-1.40 
L 0.03 

 
0.18 

 
-2.01 

 
-2.04 

 
-0.15 

 
-0.29 

 
-1.75 

 
-1.60 

p values H 0.32 
 

0.00 
 

0.01 
 

0.02 
 

0.12 
 

0.02 
 

0.01 
 

0.03 
L 0.85   0.64   0.00   0.00   0.24   0.08   0.00   0.01 

                 
  

L   M   H   H-L 
 

L   M   H   H-L 

 
Analyst 

Coverage 
Past 36-Month Return 

 (percent)  
Past 36-Month Return 

 (percent)     

 
H 32.74 

 
42.91 

 
76.97 

 
44.23 

 
31.81 

 
38.50 

 
73.16 

 
41.35 

 
L 36.37   65.46   213.38   177.01   49.69   71.77   198.97   149.27 

 
H-L 3.63 

 
22.55 

 
136.40 

 
132.77 

 
17.88 

 
33.27 

 
125.81 

 
107.92 

 
p values 0.66 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 



References
Amihud, ,Y., 2002, Illiquidity and Stock Returns: Cross-Section and Time-Series Effects,
Journal of Financial Markets, 5, 31-56.

Ang, A., R. J. Hodrick, Y.Xing, and X. Zhang, 2006, The Cross-Section of Volatility and
Expected Return, Journal of Finance, 61, 259-299.

Ang, A., R. J. Hodrick, Y.Xing, and X. Zhang, 2009, High Idiosyncratic Volatility and
Low Returns: International and Further U.S Evidence, Journal of Financial Economics,
91, 1-23.

Bali, T. G., and N. Cakici, 2008, Idiosyncratic Volatility and the Cross-Section of Expected
Return, Journal of Financial Quantitative Analysis, 43, 29-58.

Bali, T., N. Cakici and R. Whitelaw, 2011, Maxing Out: Stocks as Lotteries and the
Cross-Section of Expected Returns, Journal of Financial Economics, 99, 427-446.

Boehm, R., B. Danielson, P. Kumar and S. Sorescu, 2009, Idiosyncratic Risk and the
Cross Section of Stock Returns: Merton (1987) Meets Miller (1977), Journal of Financial
Markets, 12, 438-468.

Boehme, R., B. Danielsen, and S. Sorescu, 2006, ”Short-sale Constraints, Dispersion of
Opinion and Overvaluation, Journal of Financial and Quantitative Analysis, 41, 455-487.

Chen, J., H. Hong, and J. Stein, 2002, Breadth of Ownership and Stock Returns, Journal
of Financial Economics, 66, 171-205.

Chopra, N., J. Lakonishok and J. Ritter, 1992, Measuring Abnormal Performance: Do
Stocks Overreact? Journal of Financial Economics, 31, 235-268.

Chordia, T., A. Subrahmanyam, and V.R. Anshuman, 2001, Trading Activity and Ex-
pected Stock Returns, Journal of Financial Economics, 59, 3-32.

Chua, C.T., J. Goh, and Z. Zhang, 2010, Expected Volatility, Unexpected Volatility, and
the Cross-section of Stock Return, Journal of Financial Research, 33, 103-123.

DeBondt, W. and R. Thaler, 1985, Does the Stock Market Overreact?, Journal of Finance,
40, 793-805.

Diamond, D. and R. Verecchia, 1987, Constraints on Short-Selling and Asset Price Ad-
justment to Private Information, Journal of Financial Economics, 18, 277-311.

Diether, K., C. Malloy, and A. Scherbina, 2002, Differences of Opinion and the Cross-
Section of Stock Returns, Journal of Finance 57, 2113-2141.

D’Mello, R., S. Ferris, and C. Y. Hwang , 2003, The tax-loss selling hypothesis, market
liquidity, and price pressure around the turn-of-the-year, Journal of Financial Markets 6,
73-98.

Fama, E., 1976, Foundations of Finance: Portfolio Decisions and Securities Prices, Basic
Books Inc, New York.

Fama, E. and J. MacBeth, 1973, Risk, Return and Equilibrium: Empirical Tests, Journal

47



of Political Economy, 81, 607-636.

Fama, E. and K. R. French, 1993, Common Risk Factors in the Returns of Stocks and
Bonds, Journal of Financial Economics, 33, 3-56.

Fu, F., 2009, Idiosyncratic Risk and the Cross-Section of Expected Stock Returns, Journal
of Financial Economics, 91, 24-37.

George, T., and C. Y. Hwang, 2004, The 52-Week High and Momentum Investing, Journal
of Finance, 59, 2145-2176.

Glosten, L. and P. Milgrom, 1985, Bid, Ask and Transaction Prices in a Specialist Market
with Heterogeneously Informed Traders, Journal of Financial Economics, 14, 71-100.

Gopalan, M., 2003, Short Constraints, Difference of Opinion and Stock Returns, Working
Paper, Duke University.

Grinblatt, M., and T. Moskowitz, 2004, Predicting Stock Price Movements from Past
Returns: the Role of Consistency and Tax Loss Selling, Journal of Financial Economics,
71, 541-579.

Han, B., and A. Kumar, 2008, Retail Clienteles and the Idiosyncratic Volatility Puzzle,
Working Paper, University of Texas at Austin.

Han, Y. and D. Lesmond, 2011, Liquidity Biases and the Pricing of Cross-sectional Id-
iosyncratic Volatility, Review of Financial Studies, 24, 1590-1629.

Harris, M., and A. Raviv, 1993, Differences of Opinion Make a Horse Race, Review of
Financial Studies, 6, 473-506.

Harrison, J. and D. Kreps, 1978, Speculative Investor Behavior in a Stock Market with
Heterogeneous Expectations, The Quarterly Journal of Economics, 92, 323-336.

Hong, H. and J. Stein, 2003, Differences of Opinion, Short-Sales Constraints and Market
Crashes, Review of Financial Studies, 16, 487-525.

Huang, W., Q. Liu, G. Rhee, and L. Zhang, 2010, Return Reversals , Idiosyncratic Risk
and Expected Returns, Review of Financial Studies, 23, 147-169.

Jegadeesh, N., and S. Titman, 1993, Returns to Buying Winners and Selling Losers: Im-
plications for Market Efficiency, Journal of Finance 48, 65-91.

Jiang, G.J., D. Xu and T. Yao, 2009, The Information Content of Idiosyncatic Volatility ,
Journal of Financial Quantitative Analysis, 44, 1-28.

Jones, C.M., and O. Lamont, 2002, Short-Sale Constraints and Stock Returns, Journal of
Financial Economics, 66, 207-239.

Kaul, G. and M. Nimalendran, 1990, Price Reversals: Bid-Ask Errors or Market Overre-
action?, Journal of Financial Economics, 28, 67-93.

La Porta, R., 1996, Expectations and the Cross-Section of Stock Returns, Journal of
Finance, 51, 1715-1742.

48



La Porta, R., J. Lakonishok, A. Shleifer, and R. Vishny, 1997, Good News for Value Stocks:
Further Evidence on Market Efficiency, Journal of Finance, 52, 859-874.

Lamont, O., 2004, Short Sale Constraints and Overpricing, Short Selling: Strategies, Risks,
and Rewards, edited by Frank J. Fabozzi.

Lehmann, 1990, Fads, Martingales, and Market Efficiency, Quarterly Journal of Economics,
105, 1-28.

Malkiel, B. G. , and Y. Xu, 2006, Idiosyncratic Risk and Security Returns. Working Paper,
University of Texas at Dallas.

McNichols, M. and P. O’Brien, 1997, Self-Selection and Analyst Coverage, Journal of
Accounting Research, 35, 167-199.

Merton, R.C., 1987, A Simple Model of Capital Market Equilibrium with Incomplete
Information . Journal of Finance, 42, 483-510.

Miller, E. 1977, Risk, Uncertainty and Divergence of Opinion, Journal of Finance, 32,
1151-1168.

Nagel, S., 2005,Short Sales, Institutional Investors and the Cross-Section of Stock Returns,
Journal of Financial Economics, 78, 277-309.

Roll, R.,1983, Vas ist das? The Turn-of-the-Year Effect and the Return Premium of Small
Firms, Journal of Portfolio Management 9, 18-28.

Sadka, R. and A. Scherbina, 2007, Analyst Disagreement, mispricing, and liquidity, Journal
of Finance 62, 2367-2403.

Sonmez-Seryal, F., 2008, Rethinking Idiosyncratic Volatility: Is it really a Puzzle?, Work-
ing Paper, University of Toronto.

Speigel, M.I., and X. Wang, 2005, Cross-Sectional Variation in Stock Returns: Liquidity
and Idiosyncratic Risk, Working Paper, Yale School of Management.

49


	IVOL-Fig&Tables-100411.pdf
	IVOLTables-052311.pdf
	Table 1: Summary Statistics
	Panel A
	Table 2: Raw Returns of High and Low Idiosyncratic Portfolios (Including Penny Stocks)
	Table 3: Raw Returns of High and Low Idiosyncratic Portfolios
	Table 4: Risk Adjusted Returns of High and Low Idiosyncratic Volatility Portfolios
	Table 5: Small Firms and Raw Returns of High and Low Idiosyncratic Volatility Portfolios
	Table 5 (Continued)
	Table 6: Raw and Risk Adjusted Returns of High and Low Turnover Volatility Portfolios
	Table 7: Analyst Coverage and Risk-Adjusted Returns of High and Low Idiosyncratic Volatility Portfolios




