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Analyst Coverage and Two Volatility Puzzles

in the Cross Section of Returns

We examine a stylized version of Miller’s (1977) hypothesis as the explanation of the puz-

zling findings of both Chordia, Subrahmanyam and Anshuman (2001) and Ang, Hodrick,

Xing and Zhang (2006). Identifying stocks that are prone to disagreement by using low

analyst coverage produces results that are strongly consistent with the model’s predictions.

The low returns to high return volatility stocks are corrections of optimistic mispricing that

arises because information arrivals generate disagreement among traders. Disagreement

also implies a negative relation between returns and shocks to trading volume. The abnor-

mal returns to a trading strategy based on idiosyncratic return volatility are explained by

the returns to a strategy based on turnover volatility, suggesting that the same economic

forces underlie both relations as the model predicts.



Introduction

Ang, Hodrick, Xing and Zhang (2006, 2009) show that stocks with high idiosyncratic

return volatility earn low average returns (hereafter referred to as the AHXZ result). Chor-

dia, Subrahmanyam and Anshuman (2001) document a similar result with respect to the

volatility of share turnover—high turnover volatility predicts low returns in the cross sec-

tion. AHXZ’s result has received a great deal of scrutiny because it seems obviously to

contradict the notion that only systematic risk is priced, and also Merton’s (1987) hypoth-

esis that under diversification leads to a return premium for stocks with high idiosyncratic

volatility. However, the Chordia et.al. (hereafter CSA) result is puzzling as well. Asset

pricing models that incorporate a role for the trading environment predict return premiums

for less liquid stocks [e.g., Brennan and Subrahmanyam (1996)]. Since trading interest in

stocks with high turnover volatility is more difficult to predict, those stocks should earn

return premiums.

In this paper, we present evidence that Miller’s (1977) hypothesis explains both the

AHXZ and CSA results. Miller argues that disagreement generates upward biased prices

because short sales costs prevent pessimists from trading as aggressively as optimists.1 As

disagreement eventually is resolved, the bias dissipates and prices fall. This has been con-

sidered as an explanation for AHXZ’s results before, using dispersion in analysts’ forecasts

to measure disagreement. In fact, AHXZ include this among the robustness tests in their

study. They find that idiosyncratic volatility retains its significance in predicting cross

sectional differences in returns after controlling for dispersion in analysts forecasts, which

suggests that Miller’s hypothesis does not fully explain the relation between returns and

idiosyncratic volatility.

There are two reasons to reexamine this. First, dispersion among analysts’ forecasts

can only be computed if there are two or more analysts, which changes dramatically

the cross section that can be included in the study. This is especially important when

explaining AHXZ’s and CSA’s results, which relate to comparisons of extreme quintiles

of the entire CRSP cross section. By omitting precisely the firms for which a paucity of

1See also Harrison and Kreps (1978), Chen, Hong and Stein (2002), Hong and Stein (2003) and Gopalan

(2003).

1



analyst coverage leaves traders most prone to disagreement, the truncation of the sample

could eliminate the differences that Miller’s hypothesis explains, creating the appearance

that Miller’s hypothesis has weak explanatory power.

Second, controlling for dispersion is not likely to eliminate return volatility as a pre-

dictor of returns even if Miller’s hypothesis is driving the AHXZ and CSA results. In

order for Miller’s hypothesis to affect returns, disagreement among traders must change

through time—a constant bias in prices will not affect returns. Disagreement arises when

traders’ interpretations differ about information that arrives, and it recedes as time passes

thereafter. In order for dispersion to eliminate return volatility, dispersion would have to

reflect accurately time variation in information flows. Since analysts update forecasts with

a lag, return volatility will still play a role by indicating whether information has arrived

that leads to disagreement. As explained below, a simple equilibrium model indicates that

an ex-ante measure of whether traders are prone to disagree can instead be combined with

return volatility to test Miller’s hypothesis. Using the entire sample to examine predic-

tions from this model, our findings are remarkably consistent with Miller’s hypothesis as

an explanation for AHXZ and CSA’s findings for returns horizons up to two years.

We model the arrival of information in a market where traders are strategic, short

positions are costly, and traders can disagree about the interpretation of news. Consensus

beliefs are correct despite disagreements, however. An important implication is that dis-

agreement and volatility are complements in predicting returns—future returns should be

related to volatility, but only among stocks for which traders are prone to disagreement.

When news arrives, it changes consensus beliefs. This shock to beliefs is reflected in equi-

librium prices, and it is the source of high return volatility. However, only the subset of

news arrivals that change beliefs, and also generate disagreement, impart an upward bias

into prices. Information arrivals that do not generate disagreement produce high return

volatility, but they do not impart an upward bias into prices. Likewise, stocks for which

traders are prone to disagreement, but that do not experience significant information ar-

rivals, will also not have bias embedded in their prices. Consequently, only stocks for which

traders are prone to disagreement and that experience significant information arrival are

predicted by the model to earn low returns.
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In addition, the anticipation of news and disagreement causes prices to rise even prior

to the actual news arrival—traders bet on the appearance of a future bias in prices when

they expect it. With the passage of time, the true value of the security is eventually

revealed, disagreement dissipates, and the bias in prices disappears. This sequence of

events implies a pattern of equilibrium returns that mirrors optimistic mispricing—i.e.,

a runup prior to a period of significant news arrival followed by low returns thereafter.

Alternatively, if traders are not prone to disagreement, this pattern does not arise even

though the arrival of news causes return volatility to be high.

We test this explanation of AHXZ’s and CSA’s results in several ways using low

analyst coverage as a proxy for whether traders are prone to disagree. This approach has

the advantage of allowing all firms to be included in the sample, which has a significant

impact on the sample size—46% of the firm-month observations in the Table 4 regressions

below would be lost under the requirement of two or more analysts.

Our first test examines whether the relation between returns and idiosyncratic return

volatility (IVOL) is different depending on whether stocks have low coverage or not. We

use three different measures of IVOL, ex-post return horizons of one month to two years,

and raw and risk adjusted returns. Consistent with the model, most of the results indicate

that the low returns following high IVOL rankings are attributable to low coverage stocks

only. The exception is returns in the month immediately following the ranking, which are

affected by liquidity related reversals. As expected, those returns are negative regardless

of coverage.2

Disagreement generates trading in our model as it does in many other models [e.g.,

Harris and Raviv (1993)], so shocks to turnover occur when information arrives about

which traders disagree. In our second test, we examine the relation between returns and the

2Stock returns are positively correlated with idiosyncratic volatility in the ranking month, so the beginning
price from which the next month’s return is computed is more likely at the ask than the bid. The ensuing

reversal of price concessions to liquidity providers [see Kaul and Nimalendran (1990)] then leads to a
negative relation between returns and idiosyncratic volatility in the month immediately following the

ranking. This contributes to the AHXZ result in the month following ranking. Some have argued that this

explains the AHXZ puzzle [see Fu (2009), Huang, Liu, Rhee and Zhang (2010), and Han and Lesmond
(2010)]. However, our findings that the AHXZ result persists over one and even two-year return horizons,

and that it is mirrored in stocks ranked by turnover volatility, indicate there is more to the AHXZ puzzle

than liquidity reversals.
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volatility of turnover. We find that the low returns to high turnover volatility documented

by CSA are also attributable to stocks with low coverage. This finding is very strong and

uniform across returns horizons, suggesting that Miller’s hypothesis explains this puzzle

as well.

Our third test considers whether return dynamics are consistent with optimistic mis-

pricing of high volatility stocks—a runup followed by returns that are negatively related

to the runup. This pattern is indeed significant, and it too is driven by stocks with low

coverage. This finding is robust across the IVOL and turnover volatility measures, and it

is incremental to the commonly observed return reversals at intermediate horizons [e.g.,

DeBondt and Thaler (1985)].

Our fourth test examines returns around earnings announcements. The concreteness of

earnings as a measure of operating performance should resolve disagreement and reduce the

bias in prices. We find that average earnings announcement returns are indeed significantly

negative for high IVOL low coverage stocks, and insignificant for low IVOL stocks and for

high IVOL stocks with high coverage. Similar results hold when the volatility of turnover

is used instead of IVOL. The significant earnings related returns are attributable to stocks

with low coverage just as in the other tests, suggesting again that the low returns are

attributable to the resolution of disagreement.

The model predicts that if disagreement is large enough to create a bias in prices,

returns vary with the cost of short sales. This is because the bias must compensate

pessimists for the costs of short selling in equilibrium. Our fifth test examines whether

the return pattern is strongest for stocks whose short sale costs are highest. We use

institutional holdings as a proxy for cross sectional differences in short sale costs. This

follows D’Avolio (2002) who finds a strong negative relation between institutional holdings

and the direct costs of short selling in proprietary data on short sale costs. Indeed, we

find that the negative relation between returns and volatility (both IVOL and turnover

volatility) among low coverage stocks is stronger if institutional holdings are low.

All five tests support the hypothesis that mispricing associated with disagreement

explains the low returns to stocks that sustain significant shocks to prices or turnover. In

fact, the strength and uniformity of the turnover results suggest that turnover volatility
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coupled with low coverage is actually a better indicator of disagreement-induced mispricing

than is IVOL and low coverage. Since the model predicts that the same economic forces

drive both relations, we ask whether the time series of returns to IVOL ranked stocks is

explained by the returns to stocks ranked by turnover volatility.

We construct long-short portfolios based on each, and we find that the significant risk

adjusted returns to the IVOL portfolio disappear after controlling for its exposure to the

returns to the turnover volatility portfolio. This supports the model’s prediction, and it

also has an important practical implication. Investment managers who wish to exploit

these effects would earn greater returns by conditioning their strategies on low coverage

and turnover volatility rather than idiosyncratic return volatility. Its economic magnitude

is one of the largest among the anomalies documented in the literature—about 80bp per

month risk adjusted over the first post-ranking year excluding January, even using generous

quintile rather than decile cutoffs and excluding penny stocks.

Our paper makes several contributions. We begin by addressing directly whether the

AHXZ result is weak or non-existent (cf. footnote 2). We show that after accounting for

both the January effect and microstructure biases, the AHXZ result is robust and highly

significant, and that it persists over return horizons up to two years. In addition, we

show that the AHXZ result is not attributable to illiquid or small stocks, or to stocks

with lottery-like payoffs. We then examine the predictions of a stylized dynamic model

of Miller’s hypothesis, and we find that the general returns patterns that characterize

both the AHXZ and CSA results are consistent with this explanation, as are the returns

associated with earnings announcements. These findings are robust to the definition of

IVOL and to the choice of return horizon, and they provide a unified explanation for two

separate puzzles.

The next section of the paper presents the model. Section 2 describes the sampling

procedure and the volatility measures. Section 3 examines the robustness of the AHXZ

result. Section 4 presents tests of the model’s predictions. Section 5 concludes.
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1. Model

We model a firm’s transition from a period of no information flow to a period in which

significant information arrives, then back again as uncertainty is resolved. This approach

is consistent with the findings of Sonmez-Seryal (2008), which we have also confirmed. She

examines ex-post changes in IVOL rankings to gauge how much of the AHXZ result is

driven by stocks that change versus persist in their IVOL quintile rankings. She shows

that returns are very high when stocks subsequently rise in IVOL quintile ranking, and

returns are low when stocks fall in ranking. The relation between returns and IVOL is also

positive for stocks that persist in their quintile ranking. She concludes that the AHXZ

result therefore must be driven by the subset of high IVOL stocks that fall from a high

ranking—i.e., the transitions are what matter. Our model explains why they should matter

when short sales are costly and traders are prone to disagree about the interpretation of

news.

This perspective is very different from existing explanations of the AHXZ and CSA

results that view volatility as a stock characteristic and argue that investors prefer high

volatility stocks to low volatility stocks [see Han and Kumar (2008) and Bali, Cakici and

Whitelaw (2011)], or that volatility measures the sensitivity to a priced factor [Chen and

Petkova (2012)]. We consider these explanations also, and the evidence strongly favors an

explanation based on transitions and Miller’s hypothesis.3

1.1 Traders’ Beliefs and Strategy Choices

We assume that 2N traders participate in a market for a single security whose per-

capita supply is X > 0. Traders have time additive mean-variance preferences over profit,

with common risk aversion parameter α. Traders are strategic, and they account for their

impact on prices when formulating trading strategies. For simplicity, we model a single

3We focus on the negative relation between returns and measures of realized volatility as in AHXZ and

CSA. However, Fu (2009) and Spiegel and Wang (2005) show there is a positive relation between returns

and expected volatility as predicted from time-series models of volatility that are estimated in-sample.
Both relations are important in the cross section [see Banerjee (2012)], suggesting that returns may also

contain a risk premium for the permanent component of volatility that is distinct from the effect related

to realized volatility examined here. However, only the realized volatility relation leads to a profitable
trading strategy. Guo, Kassa and Ferguson (2011) report that the return premium disappears when the

parameters of the time series models are estimated on a rolling basis without looking ahead.
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information arrival. We also do not distinguish between the idiosyncratic and systematic

components of information.4

Trading occurs at dates 1 and 2, and the security pays off ṽ at date 3. Traders are

identical at date 1. They all believe ṽ will be drawn at date 3 from a distribution whose

expectation is vo. With probability 1−q, no information arrives at date 2, traders continue

to hold this belief, and at date 3, ṽ is in fact drawn from a distribution having expectation

vo and variance σ2
v .

However, with probability q, information arrives at date 2 that generates disagreement

among the traders about the security’s expected payoff. N traders adopt the optimistic

belief that ṽ ∼ (vH , σ
2
v), and the other N traders adopt the pessimistic belief that ṽ ∼

(vL, σ
2
v) where vH > vL. One group’s interpretation of the information will turn out

to be correct, meaning that ṽ will be drawn at date 3 from one of these distributions.

We assume the objective probability that ṽ is drawn from either distribution is 1/2. This

means that, conditional on an information arrival at date 2, the expectation of the objective

distribution from which ṽ will be drawn at date 3 is v ≡ 1
2vH + 1

2vL. Nevertheless, traders

in both groups behave as though their subjective beliefs are correct. Figure 1 illustrates

the sequence of possible events.5

We assume that traders are aware ex-ante of the level of disagreement that will exist

if information arrives—i.e., d ≡ vH − vL is common knowledge. Traders are aware of how

different the beliefs adopted by the other group will be from their own. This assumption

prevents us from having to model inferences from prices that traders would otherwise draw

about the beliefs of others, and the strategic response of each trader to knowing that others

attempt to forecast his beliefs from prices.

4This distinction is not important empirically either. The AHXZ result is the same whether we rank
stocks by total return volatility or idiosyncratic return volatility. This is because the Fama-French (1993)

model explains little of the variation in individual stock returns that generates cross sectional differences

in return volatility. Nevertheless, the predictions below could be derived for idiosyncratic return volatility
from a model that distinguishes between systematic and idiosyncratic news and in which disagreement

arises over the idiosyncratic component.
5An even split in the population between optimists and pessimists is convenient for exposition, but not
necessary. What is important is that the split has the same proportions as the probability of ṽ being drawn

from the “H” and “L” distributions. This ensures that consensus beliefs are correct, and that any bias in

prices at date 2 is the result of strategic choices and not because traders are misinformed on average.
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At date 1, traders’ common beliefs are consistent with Bayes rule. In particular,

traders’ date-1 expectation is consistent with the three possible conditional expectations

they will adopt at date 2, and the probabilities of each:

vo = qE1

[
1

2
vH +

1

2
vL

]
+ (1− q)vo ⇒ vo =

1

2
E1 [vH ] +

1

2
E1 [vL] .

This ensures that traders’ prior expectation reflects what they know at date 1 about how

the future will unfold, and a bias in prices does not arise merely because traders are

misinformed.

A crucial assumption is that short sales are costly. This is comprised of the direct fees

paid to a broker, the difficulty in locating shares to borrow, the opportunity cost associated

with constraints on selling shares posted as collateral, and the extra effort involved in

monitoring a short versus a long position [see Lamont (2004 and 2012)]. For simplicity, we

assume there is a constant marginal cost cs per share per period to maintaining a short

position. The profit that trader j earns from holding xtj shares between dates t and t+ 1

is therefore

π̃tj ≡ (p̃t+1 − pt)xtj + csItjxtj , where Itj =

{
1 if xtj < 0

0 otherwise,

pt is the market price per share at dates t = 1 and t = 2, and p3 ≡ v.

At date 2, trader j selects a demand schedule, x2j(p2), that maximizes his utility con-

ditional on his date-2 beliefs about the distribution of ṽ and the date-2 demand schedules

of the other traders:

J2j = max
x2j(·)

{E2j [π̃2j ]− αVar2j [π̃2j ]} .

The solution conditional on no information arrival at date 2 is denoted by x̂∗2j(·), and

the solution conditional on an information arrival is denoted by x∗2j(·)—throughout the

discussion, a “hat” means conditional on no information arrival at date 2.

Likewise, at date 1, trader j selects a demand schedule x1j(p1), that maximizes his

utility conditional on his date-1 beliefs about prices, the distribution of ṽ, and the date-1

and date-2 demand schedules of the other traders:

J1j = max
x1j(·)

{
E1j [π̃1j ]− αVar1j [π̃1j ] + E1j

[
J̃2j

]}
.
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We solve for the optimal schedules {x∗1j(·), x̂∗2j(·), x∗2j(·) : j = 1, . . . , 2N} by backward

induction. If a solution exists in which all traders’ beliefs about the strategies of others are

correct, such a solution constitutes a subgame perfect Nash equilibrium. Expressions for

the equilibrium prices {p∗1, p̂∗2, p∗2} are obtained from the market clearing conditions that

equate per-capita demand and per-capita supply.

1.2 Equilibrium Strategies and Prices

Whenever traders have identical beliefs, they all hold long positions equal to their

share of per-capita supply, and short sale costs have no impact on holdings or prices. In

order for the cost of short sales to matter, the difference between optimistic and pessimistic

beliefs must be large enough that the cost actually deters short positions the pessimists

would otherwise enter. This occurs in a parameter region in which pessimists hold zero

shares (but would short if it were costless) and in a region in which pessimists hold short

positions (that are smaller in magnitude than they would be if shorting were costless). To

simplify the exposition, we ignore the former region and consider levels of disagreement

that are sufficient to generate non-zero short sales.

We show in the Appendix that there exists a d > 0 such that if d > d, there is a

subgame perfect Nash equilibrium in symmetric linear strategies that has the following

three features. First, in each subgame, the optimal strategies of traders whose beliefs are

the same are identical linear functions of their expectation of the price change over the

next period. Second, conditional on an information arrival at date 2, optimists hold long

positions and pessimists hold short positions. Third, this equilibrium is unique in the class

of symmetric linear equilibria. We now describe the dynamics of prices in this equilibrium

to flesh out the connections between return volatility, disagreement and returns.

If no information arrives at date 2, traders have identical beliefs about the date-3

payoff—i.e., that ṽ ∼ (vo, σ
2
v). Their optimal demand schedules are of the form x̂∗2j(p̂2) =

β̂(vo − p̂2) for all j, and the (endogenous) market clearing price is

p̂∗2 = vo −
X

β̂
.

The second term is a discount to compensate traders with a positive return for bearing
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risk, and the first term is traders’ consensus belief about the security’s expected payoff.6

Since vo is the expected value of the distribution from which ṽ will be drawn if information

does not arrive, the risk adjusted price is an unbiased estimate of the security’s payoff. At

equilibrium, all traders hold their per-capita share of supply: x̂∗2j(p̂
∗
2) = X for all j.

If information does arrive at date 2, optimists’ strategies are x∗2H(p2) = β(vH − p2),

and pessimists’ strategies are x∗2L(p2) = β(vL−p2+cs). It turns out that the β coefficients

are the same for optimists and pessimists and equal to β̂ in the case when information

does not arrive. The positive cs term in the pessimists’ demand schedule reduces the

aggressiveness with which they short because shorting is costly. The market clearing price

is

p∗2 = v +
cs
2
− X

β
.

The first term is traders’ consensus belief about the security’s expected payoff conditional

on the information arrival, and the third term is a discount due to risk. Since ṽ is equally

likely to be drawn from a distribution with expectation vH or vL, the expectation of

its objective distribution is v, so the consensus component of the price is unbiased as an

estimate of the security’s payoff. However, the risk adjusted price is biased upward because

pessimists hold back when shorting is costly. This bias is reflected in the middle term,

cs/2. It rewards pessimists, who are short, with an expected drop in price to compensate

for bearing the cost. The bias is analogous to the upward bias Miller (1977) argues will

arise when beliefs are divergent and short sales are costly.7

The next observation follows from the fact that traders are not myopic—a bias is

incorporated into prices before the information arrival because traders anticipate divergent

beliefs in the future. When traders anticipate that future prices might be high because

pessimists hold back, they bet now that prices will rise. This shifts current demand and

6An explicit expression for β̂ is obtained by combining Equations (A.14) and (A.23) in the Appendix.
7Such a bias does not exist by necessity in a carefully structured equilibrium model. For example, prices
are not biased in Diamond and Verrecchia’s (1987) analysis of costly short sales with divergent beliefs.

Their model is based on Glosten and Milgrom (1985) wherein prices are set by the unbiased beliefs of a

market maker who does not bear costs if his inventory is short. In our model, prices are determined by
market clearing (i.e., liquidity is provided by the trading crowd), so beliefs move prices through the orders

that traders submit. Even though beliefs are unbiased on average across traders, market clearing prices

are biased upward because pessimists trade less aggressively on their beliefs than optimists.
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prices upward, incorporating a bias into the current price. The implication is that an

upward bias due to costly short sales is imparted into prices even before the arrival of the

shock to beliefs that generates disagreement.8

At date 1, traders have identical beliefs and their demand schedules are of the form

x∗1j(p1) = γ(E1 [p2]− p1) for all j.9 The market clearing price is

p∗1 = vo + q
cs
2
− X

β
− X

γ
.

The first three terms constitute traders’ date-1 consensus expectation of the date-2 price.

The q cs2 term is a bias in the date-1 price associated with traders’ anticipation that infor-

mation will arrive with probability q and generate a bias of cs
2 in next period’s price. The

more strongly traders anticipate an information arrival at date 2, the more fully the date-1

price incorporates the future bias. The last term is a discount that compensates traders

with a positive expected return for bearing risk between dates 1 and 2. At date 1, traders

all hold their share of per-capita supply at equilibrium: x∗1j(p
∗
1) = X for all j.10

This price sequence clarifies the connections between disagreement, short sale costs

and return volatility in generating AHXZ’s IVOL puzzle. First, return volatility is not a

measure of disagreement because prices do not bounce between traders’ divergent beliefs.

Prices aggregate beliefs, so return volatility measures shocks to consensus (i.e., v − vo).

Second, disagreement generates an upward bias in prices whose magnitude depends on the

cost of short sales. Third, the bias appears prior to information arrivals to the extent

that information arrivals are anticipated. The bias reverses as the disagreement dissipates

when ṽ is drawn.

8The result that a future bias affects the current price is quite robust to the model’s specification. It

appears also in Harrison and Kreps (1978) where traders are risk neutral and perfectly competitive, traders
disagree for sure, and shorting is ruled out entirely. In our model, traders are risk averse and strategic,

they disagree with probability q, and shorting is merely costly.
9An explicit expression for γ is obtained from substituting Equation (A.26) into Equation (A.21.1a) in the

Appendix.
10The discount X

γ is compensation for the risk that information will arrive, which also depends positively on

q. Such compensation should be small for idiosyncratic news. For example, if we think of α as representing
traders’ aversion to the incremental risk associated with idiosyncratic news for this security in a diversified

portfolio, then α will be small and indeed X/γ vanishes (and q cs2 does not) as α→0 (by Equation (A.26) in

the Appendix). Alternatively, if traders hold sufficiently concentrated portfolios as envisioned in Merton
(1987), then the risk premium could be large enough to compete with the bias in affecting the price and

raw returns.
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If we define as date zero a time at which traders believe q = 0 then, by an ar-

gument similar to that used to derive p∗1, the date-zero price will have the form p∗o =

vo + risk premium. Conditional on an information arrival at date 2, the sequence of equi-

librium risk adjusted price changes is

Ro,1 = q
cs
2

(1)

R1,2 =
{
v − vo

}
+ (1− q)cs

2
(2)

R2,3 =
{
ṽ − v

}
− cs

2
. (3)

These equations illustrate how disagreement affects returns around significant information

arrivals. A news arrival,
{
v − vo

}
, contributes significant variation to prices, which leads

to a high return volatility ranking. The expected values of the terms in curly brackets

are equal to zero because the consensus is unbiased. Nevertheless, expected returns are

positive both before, and coincident with, the news arrival. The expected subsequent

return is negative as disagreement dissipates and the bias disappears. We refer to this

pattern as “optimistic mispricing.”

Equations (1) - (3) relate to the case in which information arrivals that shock consensus

also generate disagreement. However, if traders are not prone to disagree (i.e., d = 0),

there is an equilibrium in which traders have identical beliefs in each subgame, all traders

hold their share of per-capita supply, and there is no bias in prices in either period whether

information arrives or not. Equations (1) - (3) are then replaced by similar equations but

without the terms involving cs. If traders are not prone to disagree, pessimists do not

(anticipate taking positions) short when information arrives, and the equilibrium returns

need not compensate them for the costs of shorting.

Nevertheless, when information arrives, prices change because consensus shifts and{
v − vo

}
still contributes significant variation to returns. Such a shock will lead to a high

return volatility ranking that is not accompanied by a prior price runup and a subsequent

price drop. Thus, a pattern of optimistic mispricing will not be associated with high return

volatility if traders are not prone to disagreement. These ideas are summarized as follows.

Proposition 1. If traders are prone to disagree, then a price path consistent with op-

timistic mispricing will be associated with information arrivals that generate high return
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volatility. The magnitude of the mispricing is greater, the greater is the cost of short sales.

If traders are not prone to disagree, the price path will not be consistent with optimistic

mispricing whether return volatility is high or not.

Disagreement in our model drives trading volume as well. If information does not

arrive at date 2 (or if it does, but there is no disagreement), then all traders continue

to hold their per-capita share of supply and there is no trading. However, if information

arrives that generates disagreement, trading occurs between optimists and pessimists. A

large value for a statistic that measures shocks to trading volume therefore indicates both

the arrival of news and the presence of disagreement. Also conditioning on a proxy for

whether traders are prone to disagree should produce an even clearer signal of the presence

of disagreement by filtering out liquidity trading (outside our model but present in real

markets) that is unrelated to differences in beliefs. If our model is correct, a pattern of

optimistic mispricing should be at least as pronounced if a measure of turnover volatility

is used in place of IVOL as a ranking variable in empirical tests.

These observations suggest several empirically refutable hypotheses. First, the nega-

tive returns following a high volatility ranking are reversals of biases that build prior to

the ranking, so there should be an association between the size of the prior runup and the

subsequent price drop. Second, and most important, information arrival and disagreement

are both necessary to generate the AHXZ result in our model. Information arrivals that

are not accompanied by disagreement will not generate a bias. Consequently, only the

subset of high volatility stocks for which investors are prone to disagree should exhibit a

pattern consistent with optimistic mispricing. Third, the pattern of mispricing should be

at least as strong when a measure of shocks to turnover is used in place of IVOL, which

measures shocks to prices.

In our empirical tests, we use low analyst coverage to identify stocks where traders

are likely to disagree if significant news arrives.11 When coverage is low, investors have

11This contrasts with measuring the presence of disagreement among analysts and is better suited to our

particular setting for the reasons described in the introduction. See Chen, Hong and Stein (2002), Diether,

Malloy and Scherbina (2002), Jones and Lamont (2002), Lamont (2004), Nagel (2005), Boehm, Danielsen
and Sorescu (2006), Sadka and Scherbina (2007), and Yu (2011) for studies that use analyst disagreement

effectively in other settings.
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less a-priori guidance and perspectives available to help them interpret the value relevance

of news. In contrast, if many analysts follow a firm, investors have a common and large

set of professional opinions on which to anchor their beliefs and to help with interpreting

the meaning of significant information when it arrives. Our empirical analysis is therefore

a joint test of the model and low coverage as a proxy for whether traders are prone to

disagree.

The model predicts greater mispricing when the costs of short sales are large. We use

institutional holdings as a proxy for short-sale costs following D’Avolio (2002). He finds

in regressions of the direct costs of short selling on various firm characteristics, that the

most significant explanatory variable is institutional holdings—stocks with high short sale

costs have low levels of institutional holdings.

2. Data and Methods

The data consist of monthly prices, returns and other characteristics of the NYSE,

AMEX and Nasdaq companies covered by CRSP from 1963 through 2006. Price, return

and volume data are obtained from CRSP. Financial information is obtained from Compu-

stat. Data on analyst coverage are obtained from the Summary History data set compiled

by the Institutional Brokerage Estimation System (I/B/E/S). Stocks are classified each

month as having low coverage (LCOV = 1) if three or fewer analysts are listed as provid-

ing one-year earnings forecasts.12 We refer to stocks outside the low coverage group as high

coverage stocks. Although I/B/E/S coverage begins in 1976, we follow Diether, Malloy

and Scherbina (2002) in limiting our sample period to begin in January 1983. Until 1983,

the I/B/E/S coverage is sparse and unreliable. Data on institutional holdings are obtained

from Thomson Financial, compiled from the Securities and Exchange Commission’s Form

13-F, which must be filed by all U.S. institutions with over $100 million in assets.

Following AHXZ, we measure the idiosyncratic volatility of each stock as the standard

deviation of residuals from a time series regression of stock returns on the Fama-French

12Partitioning between three and four divides the overall sample nearly in half. Low coverage stocks
represent 45% of the sample of NYSE/AMEX stocks and 67% of the sample of Nasdaq stocks. The

average number of analysts covering stocks in our sample is five.
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(1993) factors:

Rit = αi + βi,MKTMKTt + βi,SMBSMBt + βi,HMLHMLt + εit. (4)

We construct three idiosyncratic volatility measures. The first is the original AHXZ

idiosyncratic volatility measure (IV OL20D). It is estimated from regressions using one

prior month of daily returns and factor data, including firm months with at least 20 ob-

servations. We also construct two other measures to identify firms by their volatility over

longer periods of time. IV OL200D is estimated using the prior 12 months of daily returns

and factor data, requiring at least 200 non-missing observations in the past year. The third

measure IV OL60M uses the prior 60 months of monthly returns and factor data, requir-

ing at least 24 months of non-missing observations [see also Fama and MacBeth (1973),

Lehmann (1990), Malkiel and Xu (2006) and Spiegel and Wang (2005)]. Considering a

variety of volatility measures provides a clearer picture of the robustness of the results

than would be possible using a single measure alone.

Following CSA, we measure the volatility of trading volume as the standard deviation

of share turnover (TV OL). Each month, turnover is calculated as trading volume divided

by shares outstanding as reported by CRSP. TV OL is calculated over 36 months ending

in the second-to-last month prior to portfolio formation.13 Nasdaq volume includes inter-

dealer trades and NYSE/AMEX volume does not, so we divide volume by two in computing

TV OL for Nasdaq stocks. Trading volume data are not available prior to November 1982

for Nasdaq stocks.

We follow the Fama-MacBeth (1973) style regression approach taken in George and

Hwang (2004) and Grinblatt and Moskowitz (2004) to measure and compare the returns to

portfolios formed by different investment strategies. This approach has the advantage of

using all the stocks in the sample. The regression coefficient estimates isolate the returns

to portfolios exhibiting particular characteristics by hedging (zeroing out) the impact of

other variables that are included as controls [see Fama (1976)].

We examine returns over future horizons of different lengths. This involves computing

returns in a given month to portfolios that were formed in each of several past months.

13Note that since CSA skip a month between ranking and computing returns, the results reported for

turnover volatility are not subject to the short term liquidity reversals discussed in footnote 2.

15



Consider the strategy of forming portfolios every month and holding the portfolios for the

next T months. In a given month t, the return to pursuing this strategy is the equal-

weighted average of the returns to T portfolios, each formed in one of the T past months

t− j (for j = 1 to j = T ). The contribution of the portfolio formed in month t− j to the

strategy’s month-t return can be identified by the coefficient estimates of a cross sectional

regression of month-t returns on portfolio selection criteria in month t− j.

The main cross sectional regression specification we work with is as follows:

Rit = b0jt + b1jtLV OLi,t−j + b2jtHV OLi,t−j + b3jtLCOVi,t−j ∗ LV OLi,t−j

+ b4jtLCOVi,t−j ∗HV OLi,t−j + b5jtBMi,t−1 + b6jtSizei,t−1 + b7jtRi,t−1

+ b8jt52WKHWi,t−j + b9jt52WKHLi,t−j + eijt,

(5)

where Rit is the return to stock i in month t, HV OLi,t−j (LV OLi,t−j) equals one if stock

i is among the top (bottom) 20% of stocks in month t − j when ranked by idiosyncratic

volatility, and LCOVi,t−j takes the value of one if stock i has no more than three analysts

covering it in month t−j. Equity market capitalization and book-to-market in month t−1

are used as control variables to capture the size and book-to-market effects in returns.

We include the prior month’s return as a control to capture predictability due to bid-

ask bounce, though as we observe later, this does not fully capture short term reversals.

These variables are included as deviations from cross sectional means to facilitate the

interpretation of the intercept. We also include winner and loser dummies based on the

52-week high momentum measure in George and Hwang (2004), which they show dominates

momentum measures based on past returns in predicting future returns.

In light of the control variables, the estimate of b0jt is the return in month t to a

“neutral” portfolio, formed in month t − j, that has neither low nor high idiosyncratic

volatility (i.e. the portfolio that includes stocks in the middle three idiosyncratic volatility

quintiles) and that hedges (zeros out) the effects of deviations from average prior month

return, average size and average book-to-market, and also the effects of momentum in

predicting returns. The sum of the estimates b0jt + b1jt is the month-t return to the low

volatility portfolio of high coverage stocks that was formed in month t − j and that has

hedged out all other effects. Similarly, the sum b0jt + b1jt + b3jt is the month-t return to a
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portfolio of low volatility stocks with low coverage that was formed in month t− j that has

hedged out all other effects. The individual coefficients are, therefore, excess returns that

isolate specific characteristics. For example, b3jt is the excess return in month t associated

specifically with low coverage in a low volatility portfolio formed in month t − j. The

remaining coefficients have similar interpretations.

For a given month t, the coefficients in Equation (5) are estimated in T separate cross

sectional regressions—one regression for each j = 1, ..., T . The portfolio returns associated

with various strategies and holding periods are calculated as averages of the appropriate

coefficient estimates. For example, consider the strategy of investing in stocks with low

volatility and low coverage. The excess return in month-t to such a strategy with a K-

month holding period beginning p months after portfolio formation is S3t = 1
K

∑p+K
j=p b3jt.

All the coefficients that comprise S3t are estimated using the same cross section of month-t

returns as the dependent variable, so the sums S3t and S3s are non-overlapping returns

for t 6= s.

The numbers reported in the tables are time series means of these non-overlapping re-

turns (e.g., S1 and S3), and the corresponding t-statistics are computed from the temporal

distribution of these returns. We estimate regressions out to T = 24 and report results for

horizons {p = 0,K = 1}, {p = 1,K = 11} and {p = 12,K = 12}, and sometimes others.

2.1 Summary Statistics

Table 1 reports summary statistics for the variables used in our tests. The numbers

reported are time series averages of the cross sectional mean, median, maximum, and

minimum of each variable, and the correlations among the variables. RET (−1,−12) is the

past 12-month return, and IV OL20D, IV OL200D and IV OL60M are the idiosyncratic

volatility measures defined earlier. The low coverage dummy LCOV is a key variable

in our tests. It has a mean of 0.55—on average, 55% of the sample stocks have three

or less analysts covering them. Not surprisingly, the correlation between LCOV and

market capitalization is negative, and the correlations between LCOV and measures of

idiosyncratic volatility are moderate and positive—low coverage stocks tend to be smaller

and have higher idiosyncratic volatility. The magnitude of the correlations is between 0.18
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and 0.25. There is little correlation between LCOV and TV OL at -0.05—low coverage

stocks tend only slightly to have low volatilities of share turnover.

3. Robustness of the Return-Volatility Relation

In this section, we confirm the findings of others that the AHXZ result is sensitive

to sampling choices and microstructure biases. However, we show that after skipping the

first month and accounting for the January effect, the AHXZ result is significant in returns

up to two years after the ranking. We also consider whether the result is driven by small

firms or illiquid stocks, and we find it is not (even though small and illiquid stocks do

have high idiosyncratic volatility). The AHXZ result is also not explained by measures

of whether stocks have lottery-like payoffs. Several high daily returns in one month do

predict low returns in the following month, but not in later months. This suggests that

such measures identify stocks that experience buying pressure, and the low return in the

subsequent month is a reversal of the price concession to liquidity providers.

3.1 Idiosyncratic Return Volatility

Previous studies find the AHXZ result is nonexistent when portfolios are equally

weighted [e.g., Bali and Cakici (2008) and Huang et al. (2010)]. We therefore begin with

equally weighted portfolios by estimating Equation (5) with HV OL and LV OL dummies

as the only independent variables:

Rit = b0jt + b1jtLV OLi,t−j + b2jtHV OLi,t−j + eijt. (6)

The results are reported in the top panel of Table 2 for IV OL20D. Columns 1 and 2

report average portfolio returns one month after portfolio formation {p = 0,K = 1} with

and without January, respectively. Columns 3 and 4 report the average monthly portfolio

returns during the second month {p = 1,K = 1}, and columns 5 and 6 the third month

{p = 2,K = 1}. Columns 7 and 8 report the first year after portfolio formation, excepting

the first month {p = 1,K = 11}.

As discussed earlier, the numbers reported as the coefficients for LV OL and HV OL

are time series means (and t statistics in parentheses) of non-overlapping returns such
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as S1t = 1
K

∑p+K
j=p+1 b1jt and S2t = 1

K

∑p+K
j=p+1 b2jt. These are excess returns to equally

weighted low and high volatility portfolios relative to a benchmark equally weighted port-

folio of stocks in the middle three volatility quintiles.14 In columns 2, 4, 6 and 8, January

returns are excluded from the calculations.

We confirm the Bali and Cakici (2008) finding in Column 1. High idiosyncratic volatil-

ity stocks do not have low returns in the month following portfolio formation when equally

weighted portfolios that include January returns are considered. Low IVOL stocks have

significantly lower returns than the middle three quintile stocks, and the returns to high

IVOL stocks are not significantly different from the returns to the middle quintile stocks.

The results are opposite when January returns are excluded, however. Column 2 shows

that the equally weighted portfolio of top IVOL quintile stocks earns negative excess returns

that are quite significant. The excess return is -0.87% (t = −5.08) in the first month after

portfolio formation. This indicates why the original AHXZ result fails for equally weighted

portfolios. High idiosyncratic volatility stocks are prime candidates for tax-loss selling [see

Roll (1983), D’Mello, Ferris and Hwang (2003) and Grinblatt and Moskowitz (2004)]. They

tend to have large positive January returns, which conceal the AHXZ result. This also

explains why the AHXZ result is stronger in value weighted portfolios. Tax loss selling is

more prevalent among small firms, which tend also to have high IVOL. Weighting by value

minimizes the impact of the positive January returns to small firms on the returns to the

high IVOL portfolio.

We examine separately the returns in the month immediately following the ranking

and returns up to two years later. This follows the approach of Jegadeesh and Titman

(1993) in studying the profits to momentum strategies. This is important because high

IVOL rankings are contemporaneously correlated with high returns, so an ask-to-midquote

reversal occurs in the first month after ranking that accentuates the AHXZ result [see

Huang et.al. (2010) and Han and Lesmond (2011)]. Skipping the first month to avoid the

liquidity reversal, we find that January returns conceal the AHXZ result at longer horizons

as well.

14This approach has the advantage of indicating whether significant returns are attributable to either or

both of the extreme rankings, which is not apparent from an analysis of returns to long-short portfolios.
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When January returns are included (columns 3, 5 and 7), there is no significant

return difference between either high or low IVOL stocks and stocks in the middle three

quintiles. However, the results in columns 4, 6 and 8 show that the AHXZ result is robust

and persistent in non-January months following portfolio formation. For example, the

{p = 1,K = 11} horizon in columns 7 and 8 shows that excluding January changes an

insignificant premium to high volatility of 0.26% (t = 1.35) per month into a significant

discount of -0.35% (t = −2.18) per month.15

These results are based on samples similar to those in AHXZ, Bali and Cakici (2008)

and Huang et al. (2010), which include “penny stocks.” The relative illiquidity of these

stocks introduces noise and possibly bias into volatility rankings and measured returns

even at longer horizons [see Amihud (2002)]. In Table 3, we repeat the analysis after

excluding stocks with share prices smaller than $5 at the end of the month of portfolio

formation. This has a noticeable effect. The results are even stronger and consistent with

AHXZ when penny stocks are excluded.

The excess returns to the equally weighted portfolio of high volatility stocks are sig-

nificant and negative in the first month and the first year after portfolio formation even

when January is included. This is because the January effect is especially strong for penny

stocks—their relative illiquidity means tax-loss selling pressure has a bigger impact on their

prices. The exclusion of penny stocks leads to a uniformly significant pattern of negative

returns to high IVOL stocks, and uniformly insignificant returns to low IVOL stocks (rel-

ative to stocks in the middle three quintiles). The average excess returns to high volatility

portfolios are -1.24% (t = −8.00) in the first month and -0.40% per month (t = −2.65) in

the next eleven months after portfolio formation even with January included.

When January returns are excluded, the excess returns become even more negative.

The excess returns in the first month and first year are -1.39% (t = −8.62) and -0.70%

(t = −4.83) per month, respectively.16 Here again, the impact of short term liquidity

15Similar results hold under both the medium and long term idiosyncratic volatility measures, though

they are not tabulated to save space.
16In all cases, both here and in Table 4, the coefficients on the high and low volatility dummies are also

significantly different from each other. The untabulated results for medium and long term IVOL measures
are similar to those reported, although somewhat smaller in magnitude. For example, the excess return to

20



reversals is apparent in accentuating the low return in the first month (-1.39% versus -

0.70% per month thereafter), but liquidity reversals clearly do not explain away the AHXZ

result.

3.2 Other Relations

The influence of January returns and penny stocks creates the appearance that the

AHXZ result is non-existent. Their influence might also distort inferences concerning the

relative importance of IVOL versus other variables that have been used to explain the

AHXZ result.

3.2.a Lottery-Like Payoffs

A prominent example is the “MAX” variable of Bali, Cakici and Whitelaw (2011),

which is designed to capture the degree to which investors view a stock as having lottery-

like payoffs. It is defined as the average of the five highest daily returns during the prior

month. Bali, et.al. document negative one-month returns for high MAX stocks and argue

that this drives the AHXZ result because, after controlling for MAX, the return discount

to high IVOL stocks becomes a premium.

Column 1 of the bottom panel in Table 2 confirms their finding. High MAX (low

MAX) stocks earn a large and significant return discount (premium) in the first post-

ranking month. After controlling for MAX, the relation between returns and IVOL is

positive and significant. The relation is positive when January is excluded from the first

month returns, though not significant.

However, in months two and three, and in the eleven months after the first month, the

results are different. When January is included, both the high and low MAX dummies are

insignificant, as are the high and low IVOL dummies. When January is excluded, the high

IVOL dummies are all negative and significant despite having controlled for MAX. The

coefficients of the MAX dummies are inconsistent in sign and significance across horizons.

High MAX is significant and negative at month two, insignificant at month three and

insignificant in the eleven months after month one. Low MAX is insignificant at month

the high IV OL200D portfolios one month and one year after portfolio formation are -0.57% (t=−2.89) and
-0.29% (t=−1.55) per month, respectively. The corresponding figures when excluding January are -0.81%

(t=−3.99) and -0.67% (t=−3.70) per month.
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two, significant and negative at month three and insignificant in the eleven months after

month one.

The bottom panel of Table 3 reports the same analysis after excluding penny stocks.

As in table 2, the first month returns are low for high MAX stocks whether January is

included or not. However, in month two, neither of the MAX dummies is significant. In

month three, and the eleven months following month one, the high MAX dummy is not

significant while the low MAX dummy is significant and negative.

In contrast, the results for the IVOL dummies are quite consistent across horizons.

Regardless of whether January is included or not, the coefficients of the high IVOL dummy

are uniformly negative and strongly significant. In the eleven months following month one,

with January included, the coefficient of the low IVOL dummy is insignificant and that

of the high IVOL dummy is -0.41 (t = −5.00). Excluding January, the estimates are 0.18

(t = 2.12) for the low IVOL dummy and -0.63 (t = −8.93) for the high IVOL dummy.

Interestingly, this evidence of a significant negative relation between returns and IVOL is

stronger after having controlled for MAX than the evidence in the top panel of Table 3

where MAX is not included.

The relation between returns and IVOL is the more robust of the two relations. It is

more persistent, and it survives after controlling for biases in returns due to tax-loss selling

and the influence of penny stocks. If the MAX variable really does capture investors’

willingness to pay premium prices for lottery-like stocks, investors’ perception of which

stocks possess this attribute is very fleeting—the price premium dissipates by the end

of month one. The speed with which this disappears suggests that the MAX effect is a

liquidity reversal. This interpretation would also explain the stronger IVOL results after

controlling for MAX. If MAX accounts for liquidity effects that are not eliminated by

skipping a month, then adding MAX as a control improves the specification so the true

(negative) relation between returns and IVOL is estimated with greater precision.

3.2.b Risk Adjusted Returns

Table 4 reports the risk adjusted returns corresponding to all three measures of IVOL

and over return horizons out two years after portfolio formation. Penny stocks are excluded
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from this and all later tables. The numbers reported here for LV OL and HV OL are inter-

cepts (and t-statistics) from time series regressions in which the non-overlapping returns

such as S1t, S2t, etc., are regressed on contemporaneous Fama-French (1993) factors.

Risk adjusting strengthens the AHXZ result in both high and low volatility portfolios.

In sixteen of eighteen cases, the excess returns to high idiosyncratic volatility portfolios

are significantly negative both with and without January. Low volatility portfolio returns

are insignificant in ten cases and significantly positive in eight cases. The magnitude and

significance of the relation for both high and low idiosyncratic volatility groups is again

stronger when January is excluded. Outside January, the high volatility portfolios have

risk adjusted excess returns that are all significantly negative, irrespective of the holding

period and the volatility measure. The excess returns are strongest for IV OL20D. The

weakest returns correspond to IV OL60M , which are still strong. The first month, first

year and second year risk adjusted excess returns to the high IV OL60M portfolios are

-0.33% (t = −3.07), -0.50% (t = −5.12) and -0.47% (t = −4.76) per month, respectively.

3.2.c Size and Illiquidity

We examine the degree to which the AHXZ result is attributable to small versus

large firms (the results are not tabulated to save space).17 Regressions similar to those in

Table 4 are estimated with the addition of a dummy variable, SMALL, defined as one

for stocks whose market capitalization is below the cross sectional monthly median and

zero otherwise. This dummy is included by itself, and also interacted with the HV OL

and LV OL dummies. Two findings are noteworthy. First, the coefficients of the HV OL

dummy are significantly negative in all cases except two (they are significantly negative in

all cases in risk adjusted returns). This indicates that the AHXZ result is strong among

large firms. Second, the AHXZ result is actually weaker among small than large firms.

There are many cases in which the SMALL*HVOL coefficient is significant, and in all those

cases it is positive—i.e., the relation between returns and high idiosyncratic volatility is

less negative among small firms than among large firms. The AHXZ result is therefore

not attributable to small firms. Although high idiosyncratic volatility stocks tend to be

17Included as Table 4A in the Appendix.
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small firms, those responsible for the negative cross sectional relation between returns and

idiosyncratic volatility are not small.

We also examine whether the AHXZ result is driven by stocks that are relatively

illiquid. Similar to SMALL, we define a dummy ILLIQ to be unity if the Amihud

(2002) liquidity measure is in the upper half of the cross section in a given month, and

zero otherwise. The results, which are omitted to save space, are very similar to those

reported for SMALL.18 Controlling for ILLIQ does not eliminate the significant negative

coefficient on HV OL, and when the interaction between HV OL and ILLIQ is significant,

it weakens the AHXZ result. In other words, the AHXZ result is stronger among liquid

stocks than among illiquid stocks.

Summarizing, our results indicate that the influence of January returns is responsible

for the seeming lack of robustness of the AHXZ result in equally weighted portfolios,

particularly when the sample includes penny stocks. Once we exclude January returns

and penny stocks, equally weighted portfolios of high idiosyncratic volatility stocks have

low raw and risk adjusted returns in the first month, the first year, and even the second year

after portfolio formation. Low idiosyncratic volatility portfolios have either insignificant

or high returns. These findings hold for the short term idiosyncratic volatility measure

used in AHXZ and also for medium and long term idiosyncratic volatility measures, and

it is not attributable to small firms, illiquid stocks or stocks that have lottery-like payoffs.

4. Tests of the Model’s Predictions

The results so far confirm the existence of a robust negative relation between returns

and idiosyncratic return volatility. In this section we confirm that a stronger relation exists

for the volatility of turnover and examine whether these and other relations conform to

the predictions of the model.

4.1 Volatility of Share Turnover

Table 5 reports an analysis in which the HV OL and LV OL dummies are defined

with respect to the volatility of share turnover (highest and lowest quintiles of TV OL)

18Included as Table 4B fin the Appendix.

24



rather than idiosyncratic return volatility. The results for raw returns in the top panel of

the table confirm Chordia et. al.’s (2001) finding that there is a strong negative relation

between turnover volatility and subsequent returns. The high turnover volatility portfolio

has significant excess returns ranging from -0.63% to -0.44% per month. Only the year-

two return with January included is insignificant at -0.23% per month. All but one of the

excess returns to the low turnover volatility portfolios are insignificant in raw returns.

After adjusting for risk in the bottom panel, high (low) turnover volatility portfolios

have uniformly significantly negative (positive) excess returns for all holding periods with

and without January. For example, a zero investment strategy of taking a long position in

the low volatility portfolio and a short position in the high volatility portfolio nets 0.70%

(0.25% + 0.45%) per month in the second month (see footnote 12) after portfolio formation,

and 0.69% (0.28% + 0.41%) per month in the following eleven months. Excluding January,

the profit is 0.83% in the second month and 0.81% per month in the following eleven

months. Similar monthly returns persist for holding periods extending out two years.

If exploitable, this is one of the most profitable investment strategies documented in

the literature. Note that penny stocks have already been excluded, and we use 20% cutoffs

rather than more extreme 10% cutoffs for ranking by TV OL. Because a month is skipped

between ranking and computing returns, if there is a short term reversal in ranking by

TV OL, it is not included here. These results are consistent with the model’s prediction of

a strong negative relation between returns and shocks to trading volume.

4.2 Analyst Coverage and the Return-Volatility Relations

Our next test examines whether the negative relations between returns and IVOL

and returns and TV OL are stronger among low coverage stocks than high coverage stocks.

Indeed they are, and the low returns to high volatility low coverage stocks persist for

years. Outside the low coverage subsample, the relation between returns and idiosyncratic

return volatility (and turnover volatility) is mostly insignificant. Risk adjusted returns are

reported in Table 6. The results for raw returns are similar and not tabulated to save

space. These regressions include the control variables defined above in Equation (5), but

the coefficient estimates for the control variables have been omitted from the tables to save

25



space.

The first three panels report results for the three measures of idiosyncratic return

volatility. In columns 3 - 6, which skip the first month, all the significant negative rela-

tions between returns and IVOL are attributable to low coverage stocks. When January

is excluded, all the coefficients of interactions between low coverage and high IVOL are

significantly negative, and the interactions between low coverage and low IVOL are signif-

icantly positive. When January is included, the results are weaker, but still significant in

many cases.

In contrast, excess returns are either insignificant or, in two cases, significantly posi-

tive, for stocks with high IVOL and high analyst coverage in columns 3 - 6. For example,

the results for the second year after portfolio formation using IV OL200D show that out-

side January, high IVOL stocks with high coverage earn a positive excess return of 0.65%

(t = 2.19) per month; but high IVOL stocks with low coverage earn a significant 1.12% less

(t = −3.88), or -0.47% per month. The strong and significant negative relation between

IVOL and future returns after the first month is therefore attributable to stocks that have

low analyst coverage. Among high coverage stocks, there is an insignificant or positive

relation between returns and idiosyncratic return volatility. The results in columns 3 -

6 are consistent with the model and the (joint) hypothesis that low coverage measures

disagreement.

The results in columns 1 and 2 for returns in the month immediately following the

ranking by IVOL are different. The return-volatility relation is negative for both high and

low coverage stocks, and it is especially strong using the short horizon measure IV OL20D.

For example, the difference between the coefficients of HV OL and LV OL with January

included is -1.20%, which relates to high coverage stocks. For low coverage stocks, the

difference is between (HV OL+LCOV ∗HV OL) and (LV OL+LCOV ∗LV OL), which is

(-1.09 + 0.37) minus (0.11 - 0.04) or -0.79%. Comparing this to the results from columns

3 - 8 that skip the first month suggests there is a source of bias associated with a high

IVOL ranking that is both unrelated to disagreement and that dissipates quickly. This is

the liquidity reversal discussed in section 3.1. These reversals overstate the strength of the

AHXZ result at the one-month horizon regardless of analyst coverage.
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The results in the last panel of Table 6 are based on the volatility of share turnover.

There is a significant negative coefficient on the interaction between low coverage and high

volatility for all holding periods, and the low coverage low volatility coefficients are positive

and, in all but one case, significant. As with IVOL, the negative relation between returns

and TV OL is attributable to low coverage stocks only. These results are quite strong and

they too are consistent with the model’s prediction.

4.2.a Robustness Tests

We conduct two robustness tests of the results in Table 6. The first considers whether

LCOV is merely a proxy for illiquidity by also including interactions between ILLIQ and

HV OL and LV OL in the regressions. The tables are omitted to save space.19 Including

these interactions does not affect the inference that the AHXZ and CSA results are at-

tributable to low coverage. At both the one and two year horizons, the dummies for high

and low volatility are insignificant, whereas the interactions between low coverage and the

high and low volatility dummies remain significant and have signs consistent with Table 6.

Moreover, the interactions between illiquidity and the high and low volatility dummies are

opposite in sign to the AHXZ and CSA results. Reminiscent of the discussion in section

3.2.c, any additional explanatory power associated with liquidity per-se indicates that the

AHXZ and CSA results are stronger for liquid than for illiquid stocks.20

The second robustness test includes the market average volatility factor (or AV) of

Chen and Petkova (2012) alongside the Fama-French (1993) factors in computing risk

adjusted returns.21 Chen and Petkova find that the AV factor has a significant negative

price—portfolios with high exposure to the factor have low returns. They argue that

the AHXZ puzzle arises because high (low) IVOL stocks have high (low) exposure to this

factor, and therefore low (high) returns in the cross section. Since AV is also a traded factor

19Included as Table 6A in the Appendix.
20The foregoing description relates to the one- and two-year horizons beyond the first month. As explained

above, the first month is strongly affected by an ask-to-midquote reversal, which leads us to expect a high

ranking by the Amihud (2002) measure would uniformly accentuate the negative return-volatility relation
in the near month. Indeed it does for the TV OL ranking. However, it modestly weakens the first month

return following the IVOL ranking. This could be because we already screened out penny stocks, or

because Amihud’s measure is not uniformly a good proxy for month-end effective spreads.
21We are grateful to Zhanhui Chen for providing us with their factor data.
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(i.e., returns to a mimicking portfolio), the intercept of a time series regression of portfolio

returns on the Fama-French and AV factors is the average risk adjusted return. Results

for IV OL20D and TV OL only are reported in Table 7 to save space. The estimates and

inferences are nearly identical to those in Table 6. The significant excess returns to low

coverage high volatility stocks are not explained by exposures of those stocks to the AV

factor.

4.3 Analyst Coverage and the Mispricing Reflected in Past Returns

The model predicts a pattern of optimistic mispricing for high volatility stocks with

low coverage. Returns prior to and including the ranking month should be greater than was

justified by fundamentals, and the post-ranking correction of mispricing should be related

to that increase in prices. This implies that the negative excess returns documented for

high IVOL and high TV OL stocks should be larger in magnitude if returns leading up

to the ranking are high. This should hold after controlling for the general medium term

continuations and long term reversals that exist in returns [see Jegadeesh and Titman

(1993) and DeBondt and Thaler (1985)].

Table 8 reports regressions of returns on high and low volatility dummies, indicator

variables for whether the prior three year return ranks in the top or bottom third of the

cross section, and interactions between the high volatility dummy and the high and low

prior three year return indicators. Each panel reports results for a different measure of

idiosyncratic return volatility or the volatility of turnover. Within each panel, results are

reported for the entire sample on the left, and separately for the high coverage subsample

(LCOV = 0) on the right.

The results are quite consistent across volatility measures. Consider the full sample

results on the left side of the table. The coefficients of the past return variables do pick up

significant general continuation and reversal patterns in returns. Past loser stocks continue

losing over the next year, and past winners reverse in year two following the ranking year

irrespective of volatility rankings. The optimistic mispricing prediction is supported as

well. Across volatility measures and return horizons, all but one of the coefficients on the

interaction between HV OL and the high past return dummy are highly significant and
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negative. Low returns to high IVOL stocks are strongest among stocks whose past returns

are in the highest third of the cross section.

The magnitudes of the coefficients are striking. In all cases, the incremental reversal

associated with high volatility is even larger than the general reversal associated with a

high past return. For example, in Panel A using the short-run volatility measure including

January, the general reversal in year two is -0.17% per month for past winners, but -0.46%

per month (-0.17% plus -0.29%) for high volatility winners. This follows a first year excess

return of an insignificant 0.00% for past winners and a significant -0.26% per month (0.00%

plus -0.26%) for high volatility past winners.

The high coverage subsample results on the right side of the table are different. The

relation is nearly non-existent even for past returns in the highest third of the cross sec-

tion. All but one of the interactions between high past returns and high volatility are

insignificant, and none are significant when January is excluded. Taken together, these

results show there is a significant “extra” return reversal among high volatility stocks with

the biggest price runups, and it is attributable to the stocks with low analyst coverage.22

4.4 Analyst Coverage and Earnings Announcement Returns

In this subsection, we examine whether earnings announcement returns corroborate

the interpretation of the regression tests in the prior tables as consistent with the model.

The regressions show that low returns are earned by high volatility stocks with low cover-

age. If this reflects the correction of an upward bias in prices associated with disagreement,

then we expect earnings announcement returns for these stocks to be significantly nega-

tive on average, because realized earnings should resolve some of the disagreement. They

should also be more negative than the announcement returns for stocks that appear not

to be mispriced in the regression tests—i.e., all low volatility stocks, and high volatility

stocks outside the low coverage group. This is indeed the pattern that appears below, both

22The results in Table 8 are similar to those of Stambaugh, Yu and Yuan (2012). They find that high

IVOL accentuates both low and high ex-post returns to stocks identified as over and underpriced by a

composite anomalies index, and that overpricing dominates the high-IVOL group. That is, their index
of over and underpricing is used in place of past returns here, and the results are similar. They do not

examine analyst coverage, disagreement, or the connection between the AHXZ and CSA puzzles as we do

here, however.
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when volatility is measured using idiosyncratic returns and turnover.

We follow the approach of Chopra, Lakonishok and Ritter (1992), La Porta (1996) and

La Porta, Lakonishok, Shleifer and Vishny (1997). Each June, we sort stocks independently

by volatility (of either idiosyncratic returns or turnover) and analyst coverage. As before,

those with three or fewer analysts are defined as low coverage stocks, the rest as high

coverage stocks. High, medium and low volatility groups consist of stocks in the top,

middle three, and bottom volatility quintiles, respectively. For each stock, we record the

cumulative announcement return over a 3-day window (-1, 0, +1) around the next four

quarterly earnings announcements. We calculate “size adjusted” returns by subtracting

the return of the firm with median book-to-market among stocks in the same size decile

as the announcer. For each stock, the size adjusted “annual” return is the sum of the four

quarterly size adjusted returns. The numbers reported in Table 9 are temporal averages

of cross sectional means (one for each year) computed within each group. The p-values

reported correspond to t tests conducted using the time series of yearly cross sectional

means and differences in cross sectional means.

The announcement returns for high idiosyncratic volatility stocks with low analyst

coverage range from -0.87% (p value 0.02) using IV OL20D to -1.22% (p value 0.00) us-

ing IV OL60M . When investors receive information about these firms’ fundamentals via

earnings announcements, returns are negative on average. These are significant and in

most cases significantly more negative than the insignificant return to high idiosyncratic

volatility stocks with high analyst coverage.

Note also that the earnings announcement returns are not significantly different be-

tween low and high idiosyncratic volatility stocks with high coverage. This coincides with

the earlier results in Table 6 where there is no significant difference between the returns

of high and low idiosyncratic volatility stocks having high analyst coverage. Both sets of

results suggest that a bias exists only in the pricing of stocks in the low coverage high

IVOL group. These findings corroborate the interpretation of the evidence in the earlier

tables as consistent with the model.

The results based on turnover volatility (reported at the bottom of Table 9) are

much stronger. The average announcement return to high turnover volatility stocks with
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low analyst coverage is -2.27% (p value 0.00). When coverage is low, the announcement

returns of the high turnover volatility stocks are much more negative than those of the

low turnover volatility stocks—the difference is a striking -3.12% (p value 0.00). However,

when coverage is high, the announcement returns of high turnover volatility stocks are

not significantly different from zero and not different from low turnover volatility stocks.

These results further support the hypothesis that both the AHXZ result and the turnover

volatility puzzle of CSA are attributable to the optimistic mispricing of low coverage stocks

predicted by the model.

4.5 Variation in Short Sale Costs

The model predicts that the magnitude of mispricing is larger the greater are short

sale costs. In this section, we use low institutional holdings to identify stocks with the

highest short sale costs [see D’Avolio (2002) and Boehm, Danielsen, Kumar and Sorescu

(2009)]. We then examine whether the negative relation between returns and volatility,

attributable to low coverage, is stronger for stocks with low institutional holdings.

We define a dummy variable LINST to equal one for stocks with institutional holdings

in the bottom 20% of the cross section in each month. This should capture the stocks with

the highest borrowing fees as in D’Avolio (2002). The coefficient of the interaction between

low coverage and high volatility should remain negative because shorting costs are higher

than the costs of long positions even for stocks outside the bottom 20% of institutional

holdings (i.e., borrowing fees, locating shares, monitoring positions, etc.). If the model

is correct, the interaction between low coverage, low institutional holdings and volatility

should also matter. Low institutional holdings should accentuate the AHXZ and CSA

results among low coverage stocks. This is what we find.

The regression estimates are reported in Table 10.23 The negative relation between

returns and IV OL for low coverage stocks is stronger among those with low institutional

holdings. The difference between the coefficients of LCOV ∗LV OL and LCOV ∗HV OL is

significant, and so is the difference between the coefficients of LCOV ∗LINST ∗LV OL and

LCOV ∗LINST ∗HV OL. The results are similar and stronger both in the magnitude of

23The first month after portfolio formation is omitted from this and later tables to save space.
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the estimates and their significance for the volatility of turnover. For example, in the first

year, excluding January, the discount to high versus low TV OL stocks with low coverage

is 0.52% per month (0.25 + 0.27). The discount is an additional 1.19% per month (0.17

+ 1.02) for those with low institutional holdings as well.

Here again, the negative relation between returns and TV OL is more pronounced than

that of returns and IVOL. Consistent with the model, this negative relation is stronger for

stocks with low institutional holdings (i.e., high shorting costs) for both volatility measures.

4.6 Do Both Puzzles Have the Same Source?

The similarities of the IVOL and TV OL results so far suggest that a single economic

explanation underlies both the AHXZ and CSA puzzles. To address this directly we

now ask whether the returns to a long-short TV OL strategy explain the risk adjusted

returns to a long-short IVOL strategy. It turns out that the TV OL strategy returns are

highly significant in explaining the time series of IVOL strategy returns. Moreover, the

risk adjusted return to the IVOL strategy is insignificant after controlling for the TV OL

strategy’s return—the return to the long-short TV OL strategy completely absorbs the

abnormal return to the long-short IVOL strategy. We select the long-short TV OL returns

as the independent variable because it appears in the tests above to capture more strongly

the effect of Miller’s hypothesis.

We focus on {p = 1, k = 11} strategies. Returns to portfolios that are long high IVOL

and short low IVOL stocks are constructed as differences between the regression coefficients

on the high and low IVOL dummies in the cross sectional regressions. Specifically, the

returns in the “unconditional” test are differences between the coefficient estimates on

the HV OL and LV OL dummies from regressions similar to Equation (5) except that the

LCOV interactions are excluded. The returns in the “conditional” (on LCOV = 1) test

are differences between the coefficients on LCOV ∗HV OL and LCOV ∗ LV OL from the

Equation (5) regressions as reported in Table 6. These are excess returns to the long-

short strategy conditional on low coverage. The returns to unconditional and conditional

long-short TV OL portfolios are constructed similarly.

In a given month t, the long-short IVOL strategy return is comprised of returns
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from eleven portfolios, each formed over the past eleven months. These non-overlapping

monthly returns to the long-short IVOL strategy are regressed on the Fama-French (1993)

factors and the (corresponding, non-overlapping) monthly returns to the long-short TV OL

strategy. In doing so, we leave intact the one-month skip in constructing TV OL returns

as in the earlier tests. This means the TV OL rankings that define the strategy returns in

the independent variable are a month old.

The results are reported in Table 11. The regressions for the unconditional (condi-

tional) test appear in Panel A (Panel B). Both panels report estimates with and without

January returns. When the TV OL strategy returns are excluded, the intercepts are sig-

nificant as expected from the results in Table 6—a strategy that is long high IVOL stocks

and short low IVOL stocks earns a significantly negative risk adjusted return (intercepts

in Columns 1 and 3 of Panel A). Moreover, the magnitude of the intercepts is larger when

the strategy conditions on low coverage (Panel B), consistent with the hypothesis that low

coverage stocks drive the IVOL puzzle.

Alternatively, when the TVOL strategy returns are included, the intercepts are not

significantly different from zero in both panels. The abnormal returns to the long-short

IVOL strategy are completely explained by their exposure to the long-short TV OL strategy

returns. The coefficients on the TV OL strategy returns are highly significant, with t-

statistics ranging from 12.5 to 20.5. These coefficient estimates are very similar across

regressions, ranging between 0.62 and 0.68.

The consistency of these findings across the panels is striking given how different the

returns properties of the strategies are. The unconditional long-short IVOL strategy in

Panel A has positive exposure to market and size risk factors and negative exposure to the

book-to-market factor. In contrast, the long-short IVOL strategy in Panel B has negative

exposure to market and size factors and positive exposure to the book-to-market factor. In

addition, the relatively low R-squares (about 20%) of the regressions in Panel B without

the TV OL returns indicates that the conditional strategy is well hedged against the risks

captured by the Fama-French factors. In contrast, the R-squares of the corresponding

regressions in Panel A are about 70%—the unconditional long-short strategy returns have

a great deal in common with the Fama-French factors.
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Despite these differences, the TV OL strategy coefficients are remarkably similar across

regressions, and including them uniformly eliminates the significant abnormal returns to

the IVOL strategy. We cannot prove the two puzzles have a common economic source, but

this evidence seems very unlikely if they have different sources.

5. Conclusion

We reexamine weaknesses others have found in the evidence of a negative relation

between returns and idiosyncratic return volatility (IVOL) first documented by Ang, Ho-

drick, Xing and Zhang (2006) (AHXZ). We confirm the weaknesses exist, then show they

are attributable to the January effect and penny stocks (< $5 per share). Controlling for

these effects, we find that the AHXZ result is robust to variations in the data frequency,

the length of the time series used to construct idiosyncratic volatility, controls for firm

size, illiquidity, and the degree to which security returns are lottery-like. Moreover, the

significant lower returns to high IVOL portfolios last at least into the second year after

portfolio formation.

We argue that the AHXZ result arises from mispricing that is consistent with Miller’s

(1977) hypothesis, which we capture in a stylized dynamic model of strategic trading with

costly short sales. In our model, significant information arrivals generate disagreement

among traders when analyst coverage is low, and costly short sales lead pessimistic beliefs

to be underrepresented in prices. Strategic traders anticipate this, which biases prices

upward prior to information arrivals. Since information arrivals cause return volatility,

this leads to a price runup prior to a high volatility ranking and then a correction as

disagreement dissipates, but only for low coverage stocks.

Our empirical results are consistent with this explanation of the AHXZ result. First,

low average returns to high IVOL stocks occur almost exclusively among firms with low

analyst coverage. Outside the low coverage group, the return premium to high IVOL is

insignificant or positive. Second, returns to high IVOL stocks are lower, the greater are

their returns in the prior three years. This relation also is attributable to low coverage

stocks, suggesting the low returns are corrections of prior optimistic mispricing of low

coverage stocks.

34



These conclusions are reinforced by an analysis of returns around earnings announce-

ments. If low coverage high IVOL stocks are mispriced too high, their returns should be

negative on average when earnings are announced because the concreteness of earnings

news should reduce disagreement among traders. We find that earnings announcement

returns are indeed significantly negative for stocks with high IVOL when coverage is low,

and only in this case. This indicates that investors systematically revise their valuations

downward with news on earnings, consistent with these stocks having been mispriced too

high beforehand.

Our model also makes a prediction that is unrelated to return volatility—trading

volume is driven by disagreement. This prediction is not unique to our model, but it

provides another way to test it. Since disagreement coupled with costly short sales drives

optimistic mispricing, shocks to trading volume should predict mispricing as well or better

than shocks to returns—if we run our tests by substituting share turnover volatility for

IVOL, the results should be similar or stronger. This is exactly what we find. We confirm

the finding of Chordia, Subrahmanyam and Anshuman (2001) (CSA) that high turnover

volatility predicts low returns, and we show this relation is attributable to stocks with low

coverage. The results of all the tests described above are even stronger when turnover

volatility is used in place of idiosyncratic return volatility.

We then consider whether the economic source of the AHXZ and CSA results is the

same by testing whether the returns to a long-short IVOL strategy are explained by the

returns to a long-short strategy based on the volatility of share turnover. We find that

the significant risk adjusted returns to the IVOL strategy disappear when the returns to

the turnover strategy are included alongside the Fama-French (1993) factors in a time

series regression. We find no evidence that there is “something more” to the returns to

the long-short IVOL strategy beyond that which is captured by the strategy based on the

volatility of turnover.
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Table 1: Summary Statistics 

 
Panel A reports time-series averages of equally-weighted monthly cross-sectional mean, median, maximum and minimum of each variables used in the paper. Panel B reports 
time-series averages of equally-weighted monthly cross-sectional correlations. Using monthly data from January 1963 to December 2006, we construct indicator variables for 
each of the measures described in the text. Market CAP is market equity capitalization, Ret(-1,-12) is the one year return prior to month t, TVOL is the standard deviation of 
turnover calculated over the past 36 months ending in month -1, IVOL20D (IVOL200D)  is idiosyncratic volatility calculated from daily returns in the past month (year), 
IVOL60M is idiosyncratic volatility calculated from monthly returns over the past five years.  LCOV is a dummy that takes the value 1 if the stock is covered by three or fewer 
analysts, and takes the value zero otherwise. 

 
 

Panel A 
 
 
 
 
 
 
 
 
 
 

 
 

Panel B 
  

 Mean Median Min  Max 
Market Cap (Millions) 1460.53 1818.88 2.80 123198.14 

Ret(-1,-12) 0.214 0.13 -0.72 8.05 
Ret(-1,-36) 0.616 0.29 -0.84 25.45 

TVOL 0.036 0.02 0.01 0.13 
IVOL200D 0.024 0.02 0.01 0.11 

IVOL20D 0.021 0.02 0.00 0.15 
IVOL60M 0.095 0.09 0.03 0.49 

LCOV  0.551 0.96 0.00 1.00 

 Market Cap Ret(-1,-12) Ret(-1,-36) TVOL IVOL200D IVOL20D IVOL60M LCOV 

Market Cap 1.000        
Ret(-1,-12) -0.002 1.000       
Ret(-1,-36) 0.004 0.452 1.000      

TVOL -0.093 0.087 0.194 1.000     
IVOL200D -0.213 0.162 0.114 0.423 1.000    

IVOL20D -0.161 0.076 0.070 0.275 0.639 1.000   
IVOL60M -0.202 0.177 0.254 0.500 0.744 0.524 1.000  

LCOV -0.210 0.070 0.006 -0.045 0.253 0.184 0.198 1.000 
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Table 2: Raw Returns of High and Low Idiosyncratic Portfolios (Including Penny Stocks) 

 
Each month between January 1963 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following forms are estimated: 

1 , 2 , 1 , 2 , 3 , 4 ,5 5it ot jt i t j jt i t j ijt it ot jt i t j jt i t j jt i t j jt i t j ijtR b b LVOL b HVOL e and R b b LVOL b HVOL b LMAX b HMAX e− − − − − −= + + + = + + + + +  

where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise. LMAX5i,t-j (HMAX5i,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the MAX5 (the average of the five highest daily  return in the  month) 
for stock i is ranked in the top (bottom) 20% in month t-j, and zero otherwise.  The coefficient estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 
12 for columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). The numbers reported in the table are the time-series averages of these averages. They are in percent per month.  The 
accompanying t-statistics are calculated from the time series.  This sample includes penny stocks (price < $5).  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

  

Raw Returns, IVOL20D (NOBS=5220) 
 Column 1 

(p=0,K=1) 
 

Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=1) 

Column 4 
(p=1,K=1) 

Jan. excluded 

Column 5 
(p=2,K=1) 

 

Column 6 
(p=2,K=1) 

Jan. excluded 

Column 7 
(p=1,K=11) 

 

Column 8 
(p=1,K=11) 

Jan. excluded 
Intercept 1.38 0.99 1.31 0.92 1.30 0.90 1.26 0.85 

(5.60) (4.04) (5.35) (3.78) (5.29) (3.72) (5.04) (3.46) 
LVOL -0.27 -0.06 -0.11 0.10 -0.11 0.09 -0.09 0.13 

(-2.11) (-0.49) (-0.88) (0.82) (-0.91) (0.74) (-0.70) (1.06) 
HVOL -0.21 -0.87 -0.08 -0.72 0.00 -0.62 0.26 -0.35 

(-1.01) (-5.08) (-0.39) (-4.21) (0.01) (-3.71) (1.35) (-2.18) 
Raw Returns, IVOL20D (NOBS=5220) 

Intercept 1.46 1.08 1.32 0.93 1.29 0.91 1.22 0.84 
(5.94) (4.42) (5.38) (3.85) (5.30) (3.77) (5.06) (3.54) 

LVOL -0.49 -0.24 -0.19 0.05 -0.03 0.19 -0.06 0.16 
(-4.53) (-2.33) (-1.79) (0.49) (-0.27) (1.97) (-0.63) (1.79) 

HVOL 0.72 0.09 0.01 -0.54 -0.17 -0.68 0.17 -0.33 
(4.25) (0.72) (0.08) (-4.30) (-1.10) (-5.44) (1.25) (-2.95) 

 LMAX5 0.16 0.09 0.10 0.06 -0.11 -0.16 -0.01 -0.05 
(2.06) (1.16) (1.35) (0.76) (-1.51) (-2.04) (-0.13) (-0.72) 

 HMAX5 -1.29 -1.33 -0.14 -0.25 0.21 0.06 0.05 -0.08 
(-10.33) (-10.11) (-1.20) (-2.17) (1.93) (0.54) (0.56) (-0.89) 
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Table 3: Raw Returns of High and Low Idiosyncratic Portfolios  
 

Each month between January 1963 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following forms are estimated: 

1 , 2 , 1 , 2 , 3 , 4 ,5 5it ot jt i t j jt i t j ijt it ot jt i t j jt i t j jt i t j jt i t j ijtR b b LVOL b HVOL e and R b b LVOL b HVOL b LMAX b HMAX e− − − − − −= + + + = + + + + +  

where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise. LMAX5i,t-j (HMAX5i,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the MAX5 (the average of the five highest daily  return in the  month) 
for stock i is ranked in the top (bottom) 20% in month t-j, and zero otherwise.  The coefficient estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 
12 for columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). The numbers reported in the table are the time-series averages of these averages. They are in percent per month.  The 
accompanying t-statistics are calculated from the time series.  Penny stocks (price < $5) are excluded.  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

 

  

Raw Returns, IVOL20D (NOBS=3997) 
 Column 1 

(p=0,K=1) 
 

Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=1) 

Column 4 
(p=1,K=1) 

Jan. excluded 

Column 5 
(p=2,K=1) 

 

Column 6 
(p=2,K=1) 

Jan. excluded 

Column 7 
(p=1,K=11) 

 

Column 8 
(p=1,K=11) 

Jan. excluded 
Intercept 1.33 1.04 1.26 0.95 1.24 0.94 1.20 0.86 

(5.58) (4.29) (5.28) (3.97) (5.22) (3.91) (4.89) (3.54) 
LVOL -0.22 -0.08 -0.09 0.06 -0.09 0.05 -0.06 0.10 

(-1.82) (-0.68) (-0.75) (0.49) (-0.78) (0.42) (-0.49) (0.88) 
HVOL -1.24 -1.39 -0.70 -0.87 -0.61 -0.84 -0.40 -0.70 

(-8.00) (-8.62) (-4.50) (-5.44) (-4.08) (-5.58) (-2.65) (-4.83) 
Raw Returns, IVOL20D (NOBS=3997) 

Intercept 1.38 1.08 1.26 0.96 1.25 0.95 1.16 0.86 
(5.79) (4.50) (5.35) (4.04) (5.28) (3.99) (4.98) (3.68) 

LVOL -0.37 -0.21 -0.06 0.10 0.03 0.18 0.02 0.18 
(-3.92) (-2.18) (-0.64) (1.12) (0.34) (1.95) (0.22) (2.12) 

HVOL -0.68 -0.86 -0.70 -0.84 -0.73 -0.89 -0.41 -0.63 
(-7.03) (-8.99) (-7.35) (-8.70) (-7.58) (-9.57) (-5.00) (-8.93) 

 LMAX5 0.13 0.09 -0.06 -0.08 -0.18 -0.19 -0.10 -0.12 
(2.04) (1.30) (-0.92) (-1.17) (-2.83) (-2.90) (-1.94) (-2.16) 

 HMAX5 -0.77 -0.74 -0.01 -0.06 0.15 0.05 -0.01 -0.10 
(-5.40) (-4.85) (-0.07) (-0.45) (1.21) (0.40) (-0.10) (-0.88) 
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Table 4: Risk Adjusted Returns of High and Low Idiosyncratic Volatility Portfolios  
 

 Each month between January 1963 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

1 , 2 ,it ot jt i t j jt i t j ijtR b b LVOL b HVOL e− −= + + +  

where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise.  The coefficient estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 12 for columns labeled (p=1,K=11), and 
j=13 to 24 for columns labeled (p=12,K=12). To obtain risk-adjusted returns, we further run times-series regressions of these averages (one for each average) on the contemporaneous Fama-French factor 
realizations to hedge out the factor exposure. The numbers reported for risk-adjusted returns are intercepts from these time-series regressions. They are in percent per month and their t-statistics are in 
parentheses.  Penny stocks (price < $5) are excluded.  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

 
  

Risk Adjusted Returns, IVOL20D (NOBS=3997) 
 Column 1 

(p=0,K=1) 
Column 2 

(p=0,K=1) 
Jan. excluded 

Column 3 
(p=1,K=11) 

Column 4 
(p=1,K=11) 

Jan. excluded 

Column 5 
(p=12,K=12) 

Column 6 
(p=12,K=12) 
Jan. excluded 

Intercept 0.08 0.04 -0.06 -0.13 -0.07 -0.15 
(1.92) (0.87) (-1.33) (-2.74) (-1.24) (-3.08) 

LVOL -0.01 0.02 0.14 0.20 0.10 0.17 
(-0.28) (0.33) (2.72) (3.81) (1.76) (3.12) 

HVOL -1.22 -1.31 -0.46 -0.66 -0.14 -0.38 
(-10.95) (-11.57) (-4.47) (-6.90) (-1.30) (-4.15) 

Risk Adjusted Returns, IVOL200D (NOBS=3664) 
Intercept -0.01 -0.04 -0.05 -0.11 -0.04 -0.12 

(-0.13) (-0.91) (-1.04) (-2.15) (-0.81) (-2.39) 
LVOL 0.12 0.16 0.13 0.20 0.10 0.18 

(2.04) (2.82) (2.22) (3.31) (1.60) (2.92) 
HVOL -0.59 -0.75 -0.32 -0.60 -0.22 -0.54 

(-4.14) (-5.32) (-2.31) (-4.70) (-1.53) (-4.44) 
Risk Adjusted Returns, IVOL60M (NOBS=2519) 

Intercept 0.02 0.02 0.01 0.00 0.00 -0.03 
(0.47) (0.33) (0.23) (-0.06) (0.05) (-0.54) 

LVOL 0.06 0.08 0.05 0.08 0.03 0.07 
(1.08) (1.43) (0.95) (1.41) (0.59) (1.22) 

HVOL -0.21 -0.33 -0.31 -0.50 -0.25 -0.47 
(-1.93) (-3.07) (-2.93) (-5.12) (-2.37) (-4.76) 
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Table 5: Raw and Risk Adjusted Returns of High and Low Turnover Volatility Portfolios  
 

Each month between January 1963 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 
 

Rit = bot + b1jt LVOLi,t-j-1 + b2jt HVOLi,t-j + eijt 
 

where Rit is the return to stock i in month t,  LVOLi,t-j-1 (HVOLi,t-j-1) is the low (high) turnover volatility dummy that takes the value of 1 if the volatility of share turnover for stock i is ranked in the top (bottom) 
20% in month t-j-1, and zero otherwise. Turnover volatility is measured as the standard deviation of the share turnover using data for the past 36 months, ending in month t-2.    The coefficient estimates of a 
given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 12 for columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). To obtain risk-adjusted 
returns, we further run times-series regressions of these averages (one for each average) on the contemporaneous Fama-French factor realizations to hedge out the factor exposure. The numbers reported for 
risk-adjusted returns are intercepts from these time-series regressions. They are in percent per month and their t-statistics are in parentheses.  Penny stocks (price < $5) are excluded.  NOBS is the average 
number of stocks used in the monthly cross-sectional regressions. 

 
 

  

Raw Return,  TVOL (NOBS=3084) 
 Column 1 

(p=0,K=1) 
Column 2 

(p=0,K=1) 
Jan. excluded 

Column 3 
(p=1,K=11) 

Column 4 
(p=1,K=11) 

Jan. excluded 

Column 5 
(p=12,K=12) 

Column 6 
(p=12,K=12) 
Jan. excluded 

Intercept 1.24 1.00 1.17 0.88 1.18 0.83 
(4.79) (3.80) (4.37) (3.27) (4.41) (3.14) 

LVOL 0.10 0.19 0.14 0.26 0.04 0.21 
(0.80) (1.48) (1.10) (2.08) (0.33) (1.73) 

HVOL -0.46 -0.58 -0.44 -0.63 -0.23 -0.48 
(-2.99) (-3.58) (-2.83) (-4.22) (-1.61) (-3.59) 

Risk Adjusted Returns,  TVOL (NOBS=3084) 
Intercept -0.01 -0.03 -0.07 -0.04 -0.05 -0.01 

(-0.23) (-0.63) (-1.21) (-0.74) (-0.84) (-0.23) 
LVOL 0.25 0.29 0.28 0.31 0.19 0.25 

(4.01) (4.60) (4.30) (4.85) (2.90) (4.01) 
HVOL -0.45 -0.54 -0.41 -0.50 -0.27 -0.45 

(-5.09) (-5.98) (-4.14) (-5.72) (-2.74) (-5.09) 
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Table 6: Analyst Coverage and Risk-Adjusted Returns of High and Low Volatility Portfolios 
 
Each month between January 1983 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

0 1 , 2 , 3 , , 4 , ,

5 , 1 6 , 1 7 , 1 8 , 9 ,

* *

Re 52 52
it jt jt i t j jt i t j jt i t j i t j jt i t j i t j

jt i t jt i t jt i t jt i t j jt i t j ijt

R b b LVOL b HVOL b LCOV LVOL b LCOV HVOL
b BM b Size b t b WKHW b WKHL e

− − − − − −

− − − − −

= + + + +

+ + + + + +
 

where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise.  LCOVi,t-j  is a dummy that takes the value of 1 if the number of analyst coverage for stock i is three or less in month t-j, and is zero otherwise. The control variables are 
defined in the text, and their coefficients are omitted to save space.  The coefficient estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 12 for 
columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). To obtain risk-adjusted returns, we further run times-series regressions of these averages (one for each average) on the 
contemporaneous Fama-French factor realizations to hedge out the factor exposure. The numbers reported for risk-adjusted returns are intercepts from these time-series regressions. They are in percent per 
month and their t-statistics are in parentheses.  Penny stocks (price < $5) are excluded.  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

 

Risk Adjusted Return, IVOL20D (NOBS=3549) 
 Column 1 

(p=0,K=1) 
Column 2 

(p=0,K=1) 
Jan. excluded 

Column 3 
(p=1,K=11) 

Column 4 
(p=1,K=11) 

Jan. excluded 

Column 5 
(p=12,K=12) 

Column 6 
(p=12,K=12) 
Jan. excluded 

Intercept -0.11 -0.16 -0.06 -0.13 -0.02 -0.11 
(-1.43) (-2.15) (-0.75) (-1.75) (-0.28) (-1.59) 

LVOL 0.11 0.12 0.04 0.04 -0.03 -0.05 
(1.67) (1.76) (0.61) (0.65) (-0.48) (-0.82) 

HVOL -1.09 -0.92 0.01 -0.02 0.22 0.16 
(-5.88) (-4.88) (0.06) (-0.17) (1.91) (1.36) 

LCOV*LVOL -0.04 -0.01 0.09 0.14 0.17 0.25 
(-0.71) (-0.09) (1.69) (2.67) (2.58) (4.07) 

LCOV*HVOL 0.37 0.18 -0.21 -0.31 -0.25 -0.33 
(1.81) (0.88) (-1.60) (-2.30) (-1.84) (-2.33) 

Risk Adjusted Return , IVOL200D (NOBS=3525) 
Intercept -0.15 -0.21 -0.05 -0.12 -0.02 -0.10 

(-1.95) (-2.63) (-0.70) (-1.63) (-0.27) (-1.46) 
LVOL 0.16 0.19 0.03 0.03 0.00 -0.03 

(2.02) (2.46) (0.39) (0.34) (0.01) (-0.46) 
HVOL 0.02 0.14 0.34 0.25 0.66 0.65 

(0.04) (0.34) (1.23) (0.89) (2.30) (2.19) 
LCOV*LVOL -0.02 0.00 0.10 0.14 0.16 0.24 

(-0.29) (-0.07) (1.64) (2.45) (2.42) (3.72) 
LCOV*HVOL -0.13 -0.35 -0.47 -0.58 -0.91 -1.12 

(-0.33) (-0.85) (-1.79) (-2.17) (-3.25) (-3.88) 
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Table 6 (cont.) 
  

Risk Adjusted Return IVOL60M (NOBS=2596) 
 Column 1 

(p=0,K=1) 
Column 2 

(p=0,K=1) 
Jan. excluded 

Column 3 
(p=1,K=11) 

Column 4 
(p=1,K=11) 

Jan. excluded 

Column 5 
(p=12,K=12) 

Column 6 
(p=12,K=12) 
Jan. excluded 

Intercept -0.09 -0.11 0.02 -0.01 0.05 0.02 
(-1.05) (-1.37) (0.30) (-0.10) (0.72) (0.21) 

LVOL 0.16 0.19 0.04 0.06 -0.02 -0.04 
(1.98) (2.31) (0.58) (0.70) (-0.25) (-0.44) 

HVOL 0.21 0.26 -0.08 -0.06 0.11 0.08 
(0.89) (1.09) (-0.39) (-0.31) (0.53) (0.37) 

LCOV*LVOL 0.09 0.11 0.12 0.15 0.16 0.21 
(1.48) (1.68) (2.06) (2.39) (2.41) (3.20) 

LCOV*HVOL -0.26 -0.42 -0.30 -0.47 -0.50 -0.64 
(-1.01) (-1.62) (-1.53) (-2.33) (-2.42) (-3.01) 

Risk Adjusted Return TVOL (NOBS=3089) 
Intercept -0.11 -0.15 -0.04 -0.10 0.02 -0.05 

(-1.29) (-1.81) (-0.46) (-1.28) (0.29) (-0.68) 
LVOL 0.12 0.16 0.04 0.06 0.08 0.08 

(1.35) (1.87) (0.47) (0.76) (1.04) (0.96) 
HVOL -0.11 -0.13 -0.09 -0.12 -0.04 -0.13 

(-1.02) (-1.23) (-0.86) (-1.21) (-0.33) (-1.07) 
LCOV*LVOL 0.15 0.16 0.29 0.34 0.18 0.28 

(1.85) (2.05) (3.87) (4.77) (1.97) (3.29) 
LCOV*HVOL -0.32 -0.40 -0.39 -0.51 -0.37 -0.44 

(-2.26) (-2.73) (-3.09) (-4.10) (-3.16) (-3.65) 
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Table 7: Fama-French and Chen-Petkova Factor Risk Adjusted Returns   
 
 
Each month between January 1983 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

0 1 , 2 , 3 , , 4 , ,

5 , 1 6 , 1 7 , 1 8 , 9 ,

* *

Re 52 52
it jt jt i t j jt i t j jt i t j i t j jt i t j i t j

jt i t jt i t jt i t jt i t j jt i t j ijt

R b b LVOL b HVOL b LCOV LVOL b LCOV HVOL
b BM b Size b t b WKHW b WKHL e

− − − − − −

− − − − −

= + + + +

+ + + + + +
 

where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 20% in month 
t-j, and zero otherwise.  LCOVi,t-j  is a dummy that takes the value of 1 if the number of analyst coverage for stock i is three or less in month t-j, and is zero otherwise. The control variables are defined in the text, and their 
coefficients are omitted to save space.  The coefficient estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 12 for columns labeled (p=1,K=11), and j=13 to 24 
for columns labeled (p=12,K=12). To obtain risk-adjusted returns, we further run times-series regressions of these averages (one for each average) on the contemporaneous Fama-French factors and Chen-Petkova AV 
factor realizations to hedge out the factor exposure. The numbers reported for risk-adjusted returns are intercepts from these time-series regressions. They are in percent per month and their t-statistics are in parentheses.  
Penny stocks (price < $5) are excluded.  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 
  

Risk Adjusted Return, IVOL20D (NOBS=3549) 
 Column 1 

(p=0,K=1) 
Column 2 

(p=0,K=1) 
Jan. excluded 

Column 5 
(p=1,K=11) 

Column 6 
(p=1,K=11) 

Jan. excluded 

Column 7 
(p=12,K=12) 

Column 8 
(p=12,K=12) 
Jan. excluded 

Intercept -0.16 -0.22 -0.10 -0.18 -0.04 -0.14 
(-2.15) (-3.06) (-1.29) (-2.46) (-0.59) (-2.01) 

LVOL 0.09 0.10 0.01 0.02 -0.04 -0.06 
(1.31) (1.47) (0.21) (0.29) (-0.60) (-0.93) 

HVOL -1.00 -0.84 0.11 0.08 0.32 0.26 
(-5.39) (-4.41) (1.03) (0.73) (2.84) (2.19) 

LCOV*LVOL -0.05 -0.01 0.09 0.14 0.14 0.22 
(-0.78) (-0.16) (1.68) (2.73) (2.09) (3.60) 

LCOV*HVOL 0.42 0.23 -0.20 -0.30 -0.28 -0.37 
-2.02 (1.09) (-1.50) (-2.22) (-2.07) (-2.59) 

Risk Adjusted Return, TVOL (NOBS=3087) 
Intercept -0.16 -0.22 -0.08 -0.15 0.00 -0.08 

(-2.03) (-2.70) (-0.93) (-1.89) (0.01) (-1.06) 
LVOL 0.10 0.15 0.01 0.04 0.06 0.05 

(1.14) (1.73) (0.13) (0.48) (0.74) (0.67) 
HVOL -0.07 -0.10 -0.03 -0.07 0.03 -0.06 

(-0.67) (-0.92) (-0.27) (-0.70) (0.25) (-0.55) 
LCOV*LVOL 0.13 0.15 0.27 0.32 0.15 0.25 

(1.67) (1.83) (3.57) (4.48) (1.60) (2.93) 
LCOV*HVOL -0.25 -0.34 -0.39 -0.52 -0.38 -0.46 

(-1.74) (-2.27) (-3.01) (-4.11) (-3.20) (-3.73) 
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Table 8: Past Returns and High and Low Volatility Portfolios 
 

Each month between January 1963 (1983 for the high coverage sample) and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

0 1 , 2 , 3 , , 4 , , 5 , 6 ,

7 , 1 8 , 1 9 , 1 10 , 11 ,

3 Re 3 Re 3 Re * 3 Re *

Re 52 52
it jt jt i t j jt i t j jt i t j i t j jt i t j i t j jt i t j jt i t j

jt i t jt i t jt i t jt i t j jt i

R b b Low Y t b High Y t b Low Y t HVOL b High Y t HVOL b LVOL b HVOL
b BM b Size b t b WKHW b WKHL

− − − − − − − −

− − − −

= + + + + + +

+ + + + + t j ijte− +
 

where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise.  High 3Y Reti,t-j (Low 3Y Reti,t-j) is a dummy that takes the value of 1 if the past three year return for stock i is ranked  in the top (bottom) 30% in month t-j, and is zero 
otherwise. The control variables are defined in the text, and their coefficients are omitted to save space.  The coefficient estimates of a given independent variable are averaged over j=2 to 12 for columns 
labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). To obtain risk-adjusted returns, we further run times-series regressions of these averages (one for each average) on the contemporaneous 
Fama-French factor realizations to hedge out the factor exposure. The numbers reported for risk-adjusted returns are intercepts from these time-series regressions. They are in percent per month and their t-
statistics are in parentheses.  Penny stocks (price < $5) are excluded.  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

 
 
 

Panel A: 20-Day Idiosyncratic Return Volatility Measure  

 Risk Adjusted Returns  IVOL20D  
All Firms (NOBS=2330) 

Risk Adjusted Returns  IVOL20D  
High Coverage Sample  (NOBS=1174) 

 Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 
Jan. excluded 

Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 
Jan. excluded 

Intercept 
 

0.05 0.04 0.08 0.05 -0.02 0.02 0.02 0.06 
(1.04) (0.69) (1.60) (1.12) (-0.18) (0.20) (0.25) (0.70) 

Low 3 yr Ret -0.09 -0.21 -0.04 -0.12 -0.07 -0.24 -0.17 -0.30 
(-1.26) (-2.97) (-0.61) (-1.81) (-0.48) (-1.75) (-1.18) (-2.12) 

High 3 yr Ret 0.00 0.02 -0.17 -0.17 -0.03 -0.01 -0.10 -0.13 
(0.05) (0.43) (-3.44) (-3.32) (-0.40) (-0.13) (-1.27) (-1.54) 

Low 3yr Ret*HVOL 0.03 0.04 -0.06 -0.07 0.32 0.23 -0.19 -0.11 
(0.29) (0.42) (-0.58) (-0.59) (1.42) (0.99) (-0.69) (-0.40) 

High 3yr Ret*HVOL -0.26 -0.23 -0.29 -0.34 -0.02 0.09 -0.25 -0.22 
(-2.97) (-2.63) (-3.24) (-3.68) (-0.11) (0.47) (-1.13) (-0.96) 

LVOL -0.01 0.01 -0.02 0.00 0.07 0.11 0.03 0.08 
(-0.18) (0.28) (-0.50) (0.04) (1.24) (1.86) (0.57) (1.40) 

HVOL -0.15 -0.24 0.08 0.02 -0.03 -0.08 0.23 0.13 
(-1.97) (-3.04) (1.10) (0.29) (-0.26) (-0.68) (1.55) (0.87) 
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Panel B: Volatility of Share Turnover 

 

 
  

 Risk Adjusted Returns  TVOL  
All Firms (NOBS=2030) 

Risk Adjusted Returns  TVOL  
High Coverage Sample  (NOBS=1068) 

 Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 
Jan. excluded 

Column 1 
(p=1,K=11) 

Column 2 
(p=1,K=11) 

Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 
Jan. excluded 

Intercept 0.02 0.01 0.07 0.05 0.02 0.08 0.01 0.07 
(0.39) (0.18) (1.28) (0.99) (0.24) (0.81) (0.13) (0.76) 

Low 3 yr Ret -0.08 -0.22 -0.02 -0.10 0.04 -0.08 -0.11 -0.17 
(-0.92) (-2.62) (-0.23) (-1.26) (0.26) (-0.45) (-0.65) (-1.01) 

High 3 yr Ret 0.08 0.11 -0.13 -0.13 0.01 0.03 -0.10 -0.12 
(1.55) (2.11) (-2.81) (-2.71) (0.13) (0.37) (-1.36) (-1.45) 

Low 3yr Ret*HVOL 0.05 0.09 0.00 0.02 0.04 -0.05 0.11 0.01 
(0.49) (0.80) (-0.04) (0.15) (0.15) (-0.21) (0.47) (0.04) 

High 3yr Ret*HVOL -0.34 -0.28 -0.16 -0.14 -0.27 -0.16 -0.08 -0.11 
(-4.49) (-3.60) (-2.21) (-1.89) (-2.08) (-1.25) (-0.66) (-0.91) 

LVOL 0.13 0.15 0.08 0.11 0.04 0.07 0.10 0.15 
(2.41) (2.90) (1.49) (2.12) (0.53) (0.84) (1.24) (1.73) 

HVOL -0.13 -0.23 -0.12 -0.23 0.05 -0.08 0.06 -0.04 
(-1.67) (-3.06) (-1.55) (-3.04) (0.45) (-0.66) (0.54) (-0.35) 
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Table 9: Earnings Announcement Returns for Portfolios Sorted on Volatility and Analyst Coverage 
 

Every June from 1983 to 2006, we sort firms independently into two groups by analyst coverage (three or less analysts is low coverage, greater than three is high coverage) and three groups by idiosyncratic 
volatility (top 20%, middle 60% and bottom 20%), and form portfolios based on these groupings.    For each firm, we then compute the average abnormal return over the four quarterly announcement returns 
following portfolio formation and annualize this number by multiplying by four.   Following La Porta et al (1997), we benchmark each earnings announcement return by the firm with median book-to-market 
in the same size decile as the announcer.  The numbers in the table are the equally weighted average annualized earning announcement abnormal (net of benchmark) returns in percent. The column labeled H-
L is the difference between the returns to high and low leverage groups, and p-values relate to a test of the null hypothesis that the difference between the mean abnormal returns of high and low leverage 
groups is zero.  Penny stocks (price < $5) are excluded.   

                                           
            
 

 
  

Coverage L M H H-L p-value Coverage L M H
L 0.34 -0.05 -0.87 -1.21 0.00 L 264 855 380

p-value 0.12 0.67 0.02
H -0.14 0.51 -0.87 -0.73 0.18 H 273 811 159

p-value 0.43 0.00 0.10

Coverage L M H H-L p-value Coverage L M H
L 0.38 0.03 -1.03 -1.41 0.00 L 259 855 385

p-value 0.09 0.84 0.00
H 0.04 0.47 -0.60 0.19 0.38 H 296 799 147

p-value 0.87 0.01 0.39

Coverage L M H H-L p-value Coverage L M H
L 0.05 0.51 -1.22 -1.27 0.00 L 189 649 265

p-value 0.85 0.00 0.00
H -0.26 0.49 -0.16 0.72 0.81 H 228 593 143

p-value 0.21 0.00 0.66

Coverage L M H H-L p-value Coverage L M H
L 0.85 0.13 -2.27 -3.12 0.00 L 333 737 213

p-value 0.00 0.29 0.00
H -0.05 0.45 -0.47 -0.42 0.26 H 139 765 283

p-value 0.85 0.00 0.13

STURN STURN

Cumulative Abnormal Returns Number of Stocks 

IVOL20D IVOL20D

IVOL60M IVOL60M

IVOL200D IVOL200D



 
 

47 

 
 

Table 10: Low Institutional Holdings, Low Coverage and Volatility 
 
Each month between January 1983 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

0 1 , 2 , 3 , , 4 , , 5 , , , 6 , , ,

7 , 1 8 , 1 9 , 1 10

* * * * * *

Re 5
it jt jt i t j jt i t j jt i t j i t j jt i t j i t j jt i t j i t j i t j jt i t j i t j i t j

jt i t jt i t jt i t jt

R b b LVOL b HVOL b LCOV LVOL b LCOV HVOL b LCOV LINST LVOL b LCOV LINST HVOL
b BM b Size b t b

− − − − − − − − − − − −

− − −

= + + + + + +

+ + + + , 11 ,2 52i t j jt i t j ijtWKHW b WKHL e− −+ +
 

where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 20% in month 
t-j, and zero otherwise.  LCOVi,t-j  is a dummy that takes the value of 1 if the number of analyst coverage for stock i is three or less in month t-j, and is zero otherwise. LINSTi,t-j  is a dummy that takes the value of 1 if the 
institutional holdings  for stock i is ranked in the bottom 20% in month t-j, and is zero otherwise The control variables are defined in the text, and their coefficients are omitted to save space.  The coefficient estimates of a 
given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 12 for columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). To obtain risk-adjusted returns, we 
further run times-series regressions of these averages (one for each average) on the contemporaneous Fama-French factors  realizations to hedge out the factor exposure. The numbers reported for risk-adjusted returns are 
intercepts from these time-series regressions. They are in percent per month and their t-statistics are in parentheses.  Penny stocks (price < $5) are excluded.  NOBS is the average number of stocks used in the monthly 
cross-sectional regressions. 
 

  

Risk Adjusted Return, IVOL20D(NOBS=3549) Risk Adjusted Return, TVOL(NOBS=3087) 
 Column 1 

(p=1,K=11) 
Column 2 

(p=1,K=11) 
Jan. excluded 

Column 3 
(p=12,K=12) 

Column 4 
(p=12,K=12) 
Jan. excluded 

Column 5 
(p=1,K=11) 

Column 6 
(p=1,K=11) 

Jan. excluded 

Column 7 
(p=12,K=12) 

Column 8 
(p=12,K=12) 
Jan. excluded 

Intercept -0.06 -0.13 -0.02 -0.11 -0.04 -0.10 0.02 -0.05 
(-0.75) (-1.76) (-0.28) (-1.59) (-0.45) (-1.26) (0.30) (-0.67) 

LVOL 0.04 0.04 -0.03 -0.05 0.05 0.07 0.08 0.08 
(0.65) (0.71) (-0.47) (-0.79) (0.56) (0.88) (1.10) (1.04) 

HVOL 0.01 -0.02 0.22 0.17 -0.08 -0.12 -0.04 -0.13 
-0.07 (-0.15) (1.93) (1.38) (-0.85) (-1.21) (-0.36) (-1.10) 

LCOV*LVOL 0.11 0.17 0.14 0.24 0.19 0.25 0.12 0.21 
(2.41) (3.94) (2.35) (4.30) (2.59) (3.39) (1.32) (2.48) 

LCOV*HVOL -0.10 -0.15 -0.13 -0.15 -0.21 -0.27 -0.27 -0.29 
(-0.75) (-1.13) (-1.01) (-1.10) (-1.95) (-2.35) (-2.34) (-2.38) 

LCOV*LINST*LVOL -0.07 -0.10 0.04 0.00 0.18 0.17 0.14 0.14 
(-0.90) (-1.26) (0.52) (0.04) (2.52) (2.26) (1.75) (1.72) 

LCOV*LINST*HVOL -0.26 -0.34 -0.26 -0.39 -0.77 -1.02 -0.53 -0.77 
(-2.17) (-2.83) (-2.32) (-3.54) (-3.66) (-4.96) (-2.97) (-4.55) 
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Table 11: TVOL Returns Explain IVOL Returns 
 

Each month between January 1983 and December 2006, (j=1,…,12) cross-sectional regressions of the following form are estimated: 

0 1 , 2 , 3 , 1 4 , 1 5 , 1 6 , 7 ,Re 52 52it jt jt i t j jt i t j jt i t jt i t jt i t jt i t j jt i t j ijtR b b LVOL b HVOL b BM b Size b t b WKHW b WKHL e− − − − − − −= + + + + + + + +  

For Panel A and the following  cross-sectional regressions of the following form are estimated: 

0 1 , 2 , 3 , , 4 , , 5 , 1 6 , 1 7 , 1 8 , 9 ,* * Re 52 52it jt jt i t j jt i t j jt i t j i t j jt i t j i t j jt i t jt i t jt i t jt i t j jt i t j ijtR b b LVOL b HVOL b LCOV LVOL b LCOV HVOL b BM b Size b t b WKHW b WKHL e− − − − − − − − − − −= + + + + + + + + + +  

each month between January 1963 and December 2006, 24 (j=1,…,12) for Panel B, where Rit is the return to stock i in month t, for Panel A and  LVOLi,t-j (HVOLi,t-j) is the low (high) volatility dummy that 
takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 20% in month t-j, and zero otherwise.  LCOVi,t-j  is a dummy that takes the value of 1 if the number of analyst coverage 
for stock i is three or less in month t-j, and is zero otherwise.  The coefficient estimates b2jt  - b1jt (Panel A) and b4jt  - b3jt (Panel B)  are averaged over j=2 to 12. This procedure is performed each month first 
with IVOLD20 as the volatility measure, and is repeated with TVOL as the volatility.  The resultant time series from IVOLD20 is regressed on that from TVOL (denoted as LS-STRUN in panel A and LS-
STRUN-LCOV in panel B) along with Fama-French three factors (Market, SMB, HML.)  The intercepts reported are in percentage per month and  t-statistics are in parentheses.  Penny stocks (price < $5) are 
excluded. 

 
 

  
Panel B: Conditional on Low Coverage 

 

Column 1 
(p=1,K=11) 

 

Column 2 
(p=1,K=11) 

 

Column 3 
(p=1,K=11) 
Jan excluded 

Column 4 
(p=1,K=11) 
Jan excluded 

Intercept -0.34 0.11 -0.50 0.08 

 
(-2.18) (0.93) (-3.30) (0.64) 

Market -0.07 -0.13 -0.08 -0.12 

 
(-1.79) (-4.26) (-1.99) (-4.02) 

SMB -0.20 -0.28 -0.22 -0.25 

 
(-4.23) (-7.47) (-4.47) (-6.71) 

HML 0.16 0.04 0.17 0.06 

 
(2.66) (0.90) (2.83) (1.18) 

LS-TVOL-LCOV 
 

0.67  0.68 

  
(13.84) 

 
(12.53) 

     R-square 0.18 0.53 0.23 0.53 

Panel A: Unconditional  

 

Column 1 
(p=1,K=11) 

  

Column 2 
(p=1,K=11) 

  

Column 3 
(p=1,K=11) 
Jan excluded 

Column 4 
(p=1,K=11) 
Jan excluded 

Intercept -0.32 -0.07 -0.43 -0.12 

 
(-3.48) (-1.08) (-4.72) (-1.67) 

Market 0.34 0.06 0.34 0.03 

 
(15.08) (2.81) (14.75) (1.48) 

SMB 0.49 0.22 0.45 0.17 

 
(16.86) (8.80) (14.78) (6.49) 

HML -0.29 -0.05 -0.30 -0.08 

 
(-8.57) (-1.77) (-8.38) (-2.91) 

LS-TVOL 
 

0.62 
 

0.65 

  
(20.49) 

 
(19.13) 

     R-square 0.70 0.85 0.72 0.85 



APPENDIX

Date 2

Whether or not information arrives at date 2, trader j solves

J2j = max
x2j(·)

E2j

[
(ṽ − p2)x2j(p2) + csI2jx2j(p2)− ψ2x2j(p2)2

]
. (A.1)

The ψ2 parameter captures the utility cost associated with risk aversion and equals the

product of the risk aversion coefficient and the variance of profit for trader j between

dates 2 and 3. Since the variance of profit in each subtree is endogenous, we first solve the

model for unspecified ψ parameters, then we close the model at the end by solving for the

equilibrium ψ parameters in terms of the underlying model parameters.

Pointwise optimization of (A.1) yields a family of first-order conditions

(E2j [ṽ]− p2)− ∂p2
∂x2j

x2j + csI2j − 2ψ2x2j = 0

that the trader’s optimal choice must satisfy at each p2. It will be apparent later that

the second order condition for a maximum, ∂p2
∂x2j

+ 2ψ2 > 0, is satisfied in equilibrium.

Rearranging the FOC yields an expression for trader j’s optimal demand schedule at date

2:

x∗2j(p2) =
E2j [ṽ]− p2 + csI2j

∂p2
∂x2j

+ 2ψ2

. (A.2)

Date 2 with Information Arrival

We now establish the existence of a symmetric Nash equilibrium conditional on an

information arrival at date 2. (In what follows, time subscripts are dropped where this

creates no ambiguity.) Suppose a given pessimist j conjectures the other traders follow

symmetric linear strategies, where the strategies can differ by “type” (pessimist vs. opti-

mist). Specifically, trader j conjectures:

xk =

{
βL(vL − p− cs) for all k = L and k 6= j

βH(vH − p) for all k = H.
(A.3)

Under this conjecture, pessimist j perceives the market clearing condition to be

xj + (N − 1)xL +NxH = 2NX.

1



Substituting from (A.3) and solving for p,

p =
(N − 1)βL(vL + cs) +NβHvH

(N − 1)βL +NβH
+

xj + 2NX

(N − 1)βL +NβH
.

Therefore, trader j perceives

∂p

∂xj
=

1

(N − 1)βL +NβH
(A.4.1)

if he is a pessimist (i.e., j = L). Similar reasoning implies

∂p

∂xj
=

1

NβL + (N − 1)βH
(A.4.2)

if j = H. Combining (A.4.1) and (A.4.2) with (A.2) implies that if trader j conjectures

the others follow the strategies in (A.3), then trader j’s optimal strategy is

x∗2j =


vL−p+csIL

1
(N−1)βL+NβH

+2ψ
if j = L

vH−p+csIH
1

NβL+(N−1)βH
+2ψ

if j = H.
(A.5)

This is the same form as the conjectured strategies in Eq. (A.3) provided that IL = 1

and IH = 0. Thus, if trader j conjectures that others follow the strategies in (A.3), it is

optimal for trader j to follow the same strategy if the following conditions are satisfied:

1

βL
=

1

(N − 1)βL +NβH
+ 2ψ and

1

βH
=

1

NβL + (N − 1)βH
+ 2ψ (A.6.1)

βL > 0 and βH > 0 (A.6.2)

βL(vL − p∗ + cs) < 0 and βH(vH − p∗) > 0. (A.6.3)

Eq. (A.6.1) says that pessimists share a common strategy coefficient, and optimist share

a common strategy coefficient. Eq. (A.6.2) ensures the second-order condition is satisfied

for both trader types. Eq. (A.6.3) says that pessimists hold short positions (IL = 1) and

optimists hold long positions (IH = 0) at the price, p∗, that clears the market. Therefore,

a symmetric equilibrium exists with optimists taking long positions and pessimists short

positions if (A.6.1) - (A.6.3) are satisfied.

First, we find a solution to the pair of equations in (A.6.1) that satisfies (A.6.2).

Rewrite the equations in (A.6.1) as

NβL +NβH = 2βL + 2ψβL [(N − 1)βL +NβH ]

NβL +NβH = 2βH + 2ψβH [(N − 1)βH +NβL] .
(A.7)

2



Equating these

2βH {1 + ψ [(N − 1)βH +NβL]} = 2βL {1 + ψ [(N − 1)βL +NβH ]}

βH − βL = ψ {βL [(N − 1)βL +NβH ]− βH [(N − 1)βH +NβL]}

βH − βL = ψ(N − 1)(βL + βH)(βL − βH).

Either βH − βL = 0 or βH + βL = −1
ψ(N−1) . The latter possibility is not consistent with

(A.6.2). Consider then the possibility that βH = βL = β. Using either of the equations in

(A.7) to solve for β:

2Nβ = 2β + 2ψβ[(2N − 1)β]

β =
N − 1

ψ(2N − 1)
> 0 (A.8)

Thus, (A.6.1) has a unique solution that satisfies (A.6.2).

To verify (A.6.3), we need an expression for the market-clearing price. In the proposed

equilibrium, the market-clearing condition and price are

Nβ(vL − p∗ + cs) +Nβ(vH − p∗) = 2NX

p∗ =
1

2
(vL + vH) +

cs
2
− X

β
. (A.9)

The equilibrium price equals the consensus valuation at date 2 plus an upward bias equal

to one half the short-sale cost, minus a risk premium. Using (A.9), the condition in (A.6.3)

that pessimists have short positions in equilibrium can be written as

β

[
vL −

1

2
(vL + vH + cs) +

X

β
+ cs

]
< 0,

or equivalently as

vH − vL > cs + 2
X

β
. (A.10)

The difference between optimists’ and pessimists’ beliefs about value must be greater than

the short sale cost plus two times the price discount due to risk in order for pessimists

to hold short positions in equilibrium. The condition in (A.6.3) that optimists hold long

positions in equilibrium can be written as

β

[
vH −

1

2
(vL + vH + cs) +

X

β

]
> 0,

3



or equivalently as

vH − vL > cs − 2
X

β
(A.11)

which is implied by (A.10).

Therefore, if an information arrival at date 2 generates divergence in beliefs that

is large enough to satisfy (A.10), then there is a symmetric Nash equilibrium in linear

strategies at date 2 where optimists hold long positions and pessimists hold short positions.

In that equilibrium, the market clearing price has the form:

price = consensus beliefs + bias− risk premium.

To solve for strategies at date 1 below, we need expressions for equilibrium (i.e.,

optimized) expected utility at date 2 for each trader type. Using Eq. (A.1), expected

optimist utility is

J2H(p∗2) ≡ J2H |p∗2

= (vH − p∗2)x∗2H(p∗2)− ψ2x
∗
2H(p∗2)2

= β(1− ψβ) (vH − p∗2)
2
, (A.12.1)

and expected pessimist utility is

J2L(p∗2) ≡ J2L|p∗2

= (vL − p∗2 + cs)β(vL − p∗2 + cs)− ψ2β
2(vL − p∗2 + cs)

2

= β(1− ψβ)(vL − p∗2 + cs)
2, (A.12.2)

where β is defined in (A.8) and p∗2 is defined in (A.9). The key observation is that neither

J2H(p∗2) nor J2L(p∗2) depend on choices or prices at date 1, so J2H(p∗2) and J2L(p∗2) are

irrelevant to the optimization of date-1 holdings.

Date 2 without Information Arrival

If no information arrives at date 2, all traders continue to believe E [ṽ] = vo. If trader

j conjectures the other 2N − 1 traders follow a strategy of the form

x̂k = β̂(vo − p̂) for all k 6= j,

4



then his perception of market clearing is

x̂j + (2N − 1)β̂(vo − p̂) = 2NX

p̂ = vo +
1

(2N − 1)β̂
(x̂j − 2NX)

and therefore
∂p̂

∂x̂j
=

1

(2N − 1)β̂
.

By (A.2), trader j’s optimal strategy is then

x̂∗j =
vo − p̂+ csIj

1
(2N−1)β̂

+ 2ψ
,

which is the same form as the conjecture above provided that Ij = 0 (i.e., trader j holds a

long position). A symmetric equilibrium with all traders holding long positions will exist

if the following conditions are satisfied:

1

β̂
=

1

(2N − 1)β̂
+ 2ψ (A.13.1)

β̂ > 0 (A.13.2)

β̂(vo − p̂∗) > 0. (A.13.3)

The interpretations of these equations are analogous to those of (A.6.1) - (A.6.3). Solving

(A.13.1) implies

β̂ =
N − 1

ψ(2N − 1)
> 0 (A.14)

which satisfies (A.13.2). The market-clearing price derives from the market clearing con-

dition

2Nx̂∗j (p̂
∗) = 2NX

p̂∗ = vo −
X

β
, (A.15)

so (A.13.3) is satisfied because

β̂(vo − p̂∗) = β̂

(
vo − vo +

X

β̂

)
= X > 0.

5



Thus, if information does not arrive, there is a symmetric Nash equilibrium in linear

strategies at date 2 where all traders hold (identical) long positions. In this equilibrium,

trader j’s expected utility is

J2o(p̂
∗
2) ≡ J2o|p̂∗2

= (vo − p̂∗2) x̂∗2(p̂∗2)− ψx̂∗2(p̂∗2)2

= β̂ (vo − p̂∗2)
2 − ψβ̂2 (vo − p̂∗2)

2

= β̂
(

1− ψβ̂
)

(vo − p̂∗2)
2
,

where β̂ and p̂∗2 are given in (A.14) and (A.15). The key observation is that J2o(p̂
∗
2) does

not depend on choices or prices at date 1, so J2o(p̂
∗
2) is irrelevant to the optimization of

date-1 holdings.

Date 1

At date 1, trader j seeks to maximize expected long-run utility, given a probability q

that information will arrive next period and generate divergent beliefs, and a probability

1− q that information will not arrive:

max
x1j(·)

q E1

[
(p∗2 − p1)x1j(p1) + J̃2j(p

∗
2)
]

+ (1− q) E1

[
(p̂∗2 − p1)x1j(p1) + J̃2o(p̂

∗
2)
]

+ csI1jx1j(p1)− ψ1x1j(p1)2.

To simplify notation, the term involving the short-position indicator, I1j , is suppressed. It

eventually drops out (just as in the analysis of date 2 when no information arrives) because

traders are identical at date 1.1 Trader j’s problem is therefore

max
x1j(·)

(
qE1 [p∗2] + (1− q)E1 [p̂∗2]− p1

)
xj1(p1)− ψ1x1j(p1)2

+ qE1

[
J̃2j(p

∗
2)
]

+ (1− q)E1

[
J̃2o(p̂

∗
2)
]
. (A.16)

Now, E1

[
J̃2o(p̂

∗
2)
]

= J2o(p̂
∗
2) because no new information arrives between dates 1 and 2 in

the “hat” case. For the case where information does arrive, there is equal liklihood that

trader j will adopt optimistic and pessimistic beliefs, so

E1

[
J̃2j(p

∗
2)
]

=
1

2
E1

[
J̃2H(p∗2)

]
+

1

2
E1

[
J̃2L(p∗2)

]
.

1When traders are identical and there is a symmetric equilibrium, all traders hold their share of per-capita

supply of the security, which results in long positions because the security is in positive net supply.
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We established earlier that J2o(p̂
∗
2), J2H(p∗2) and J2L(p∗2) are all independent of date-1

holdings and prices, so these terms in (A.16) are irrelevant to the date-1 optimization of

(A.16). Consequently, the family of first-order conditions that characterize x1j(·) is

qE1 [p∗2] + (1− q)E1 [p̂∗2]− p1 −
∂p1
∂x1j

x1j − 2ψ1x1j = 0

for each p1, noting that both p∗2 and p̂∗2 are independent of date-1 choices. It will be

apparent later that the second order condition for a maximum, ∂p1
∂x1j

+ 2ψ1 > 0, is satisfied

in equilibrium. Rearranging the FOC yields an expression for trader j’s optimal demand

schedule at date 1:

x∗1j(p1) =
qE1 [p∗2] + (1− q)E1 [p̂∗2]− p1

∂p1
∂x1j

+ 2ψ1

. (A.17)

Suppose trader j conjectures that other traders follow the strategy

x1k = γ

(
vo + q

cs
2
− X

β
− p1

)
for all k 6= j. (A.18)

Then trader j’s perception of market clearing is that

x1j + (2N − 1)γ

(
vo + q

cs
2
− X

β
− p1

)
= 2NX

p1 = vo + q
cs
2
− X

β
+
x1j − 2NX

(2N − 1)γ
.

and so
∂p1
∂x1j

=
1

(2N − 1)γ
. (A.19)

Substituting (A.19) into (A.17) and using the fact that j has a rational prior about how his

beliefs will change if information arrives (i.e., vo = E1

[
1
2vL + 1

2vH
]
) implies that trader

j’s demand schedule is

x∗1j(p1) =
q
(
vo + cs

2 −
X
β

)
+ (1− q)

(
vo − X

β̂

)
− p1

1
(2N−1)γ + 2ψ1

=
vo + q cs2 −

X
β − p1

1
(2N−1)γ + 2ψ1

. (A.20)

where we have used the fact that β̂ = β in the two date-2 equilibria above. Eq. (A.20)

is the same form as the conjecture in (A.18). A symmetric equilibrium with all traders
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holding long positions will therefore exist if the following conditions are satisfied:

1

γ
=

1

(2N − 1)γ
+ 2ψ1 (A.21.1)

γ > 0 (A.21.2)

γ

(
vo + q

cs
2
− X

β
− p∗1

)
> 0. (A.21.3)

The interpretation of these is the same as (A.13.1) - (A.13.3). Solving (A.21.1) implies

γ =
N − 1

ψ1(2N − 1)
> 0 (A.21.1a)

which satisfies (A.21.2). The market-clearing price satisfies

2Nx∗1j(p
∗
1) = 2NX

p∗1 = vo + q
cs
2
− X

β
− X

γ
, (A.22)

so (A.21.3) is satisfied because

γ

(
vo + q

cs
2
− X

β
− p∗1

)
= X > 0.

Therefore, there is a symmetric Nash equilibrium in linear strategies at date 1 where

all traders hold identical long positions. In that equilibrium, the market clearing price

(A.22) has the form:

price = consensus beliefs + (q × date-2 bias)− risk premium.

The bias here is exactly the bias in the date-2 price conditional on an information arrival,

scaled by the probability of an information arrival.

Solving for ψ1, ψ2 and d

Since traders maximize mean-variance preferences, the quadratic cost modeled above

using ψ parameters arises from risk aversion. The common risk aversion parameter is α, so

the equivalence between the quadratic costs and the variance component of mean-variance

preferences is as follows:

ψt
(
x∗tj
)2

= αVartj [π̃jt] = αVartj [p̃t+1 − pt]
(
x∗tj
)2

ψt = αVartj [p̃t+1 − pt]

8



so, for each sub-tree of the game,

ψt =


αVar [ṽ − p∗2] if info arrives at t = 2

αVar [ṽ − p̂∗2] if info does not arrive at t = 2

αVar [p̃2 − p∗1] if t = 1.

where p̃2 equals p∗2 with probability q and p̂∗2 with probability 1 − q. We derive explicit

expressions for the equilibrium values of the ψ parameters next.

Case 1: If information arrives at t = 2 then

p∗2 = v +
cs
2
− X

β

ṽ − p2∗ = ṽ − v − cs
2
− X

β
.

At t = 2, agent j knows v because he knows his own beliefs vj and those of the other

group. Therefore,

Var2j [ṽ − p∗2] = Var2 [ṽ] = σ2
v .

Case 2: If information does not arrive at t = 2 then

p̂∗2 = vo −
X

β

ṽ − p̂∗2 = ṽ − vo +
X

β

therefore

Var2j [ṽ − p̂∗2] = Var2 [ṽ] = σ2
v .

Cases 1 and 2 together imply that ψ2 is the same in both date-2 subtrees:

ψ2 = ασ2
v . (A.23)

Case 3: Recall from above that the definition of p̃2 is

p̃2 =

{
p∗2 = v + cs

2 −
X
β with probability q

p̂∗2 = vo − X
β with probability 1− q.

Subtracting Eq. (A.22) from these expressions we have

p̃2 − p∗1 =

{
v − vo + (1− q) cs2 + X

γ with probability q

−q cs2 + X
γ with probability 1− q.

(A.24)
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The form of this is

Ỹ =

{
Z̃ with probability q

K with probability 1− q,

where K is a constant, and Z̃ is a random variable conditional on the top state occurring.

The variance of a random variable of this form is

Var
[
Ỹ
]

= qVar
[
Z̃
]

+ q(1− q)
(
E
[
Z̃
]
−K

)2
. (A.25)

Substituting from (A.24) into (A.25) yields

Var1 [p̃2 − p∗1] = qVar1
[
v
]

+ q(1− q)
(cs

2

)2
,

so

ψ1 = αq

{
Var1

[
v
]

+ (1− q)c
2
s

4

}
. (A.26)

The differences between the expressions (A.23) and (A.26) arise because the uncertainty

resolved between dates 1 and 2 relates to whether or not information arrives that shifts the

mean of the distribution of ṽ and by how much, whereas the uncertainty resolved between

dates 2 and 3 is the realization of ṽ.

Finally, combining (A.10) and (A.23) yields an expression, in terms of exogenous

variables, for the extent of divergence in beliefs required to support an equilibrium where

pessimists hold short positions and optimists long positions:

d = vH − vL > cs + 2ασ2
vX

(
2N − 1

N − 1

)
≡ d. (A.27)
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Table 4A 

Small Firms and Raw Returns of High and Low Idiosyncratic Volatility Portfolios 
 
Each month between January 1963 and December 2006, 24 (j=1,…,24) cross-sectional regressions of the following form are estimated: 

0 1 , 2 , 3 , 4 , , 5 , ,4 * *it jt jt i t j jt i t j jt i t j jt i t j i t j jt i t j i t j ijtR b b SMALL b LV L b HVOL b SMALL LVOL b SMALL HVOL e− − − − − − −= + + + + + +  

where Rit is the return to stock i in month t,  LVOLi,t-j (HVOLi,t-j) is the low (high) idiosyncratic volatility dummy that takes the value of 1 if the idiosyncratic volatility for stock i is ranked in the top (bottom) 
20% in month t-j, and zero otherwise.  SMALLi,t-j  is a dummy that takes the value of 1 if firm i’s market capitalization is below the median of the sample in month t-j, and is zero otherwise.  The coefficient 
estimates of a given independent variable are for j=1 for columns labeled (p=0,K=1), and averaged over j=2 to 12 for columns labeled (p=1,K=11), and j=13 to 24 for columns labeled (p=12,K=12). The 
numbers reported in the table are the time-series averages of these averages. They are in percent per month.  The accompanying t-statistics are calculated from the time series.  Penny stocks (price < $5) are 
excluded.  NOBS is the average number of stocks used in the monthly cross-sectional regressions. 

 
 

  
Raw Returns, IVOL20D (NOBS=3990) 

 Column 1 
(p=0,K=1) 

Column 2 
(p=0,K=1) 

Jan. excluded 

Column 3 
(p=1,K=11) 

Column 4 
(p=1,K=11) 

Jan. excluded 

Column 5 
(p=12,K=12) 

Column 6 
(p=12,K=12) 
Jan. excluded 

Intercept 1.22 1.00 1.08 0.86 1.02 0.75 
(5.03) (4.05) (4.53) (3.54) (4.13) (3.03) 

SMALL 0.31 0.09 0.22 -0.02 0.18 -0.05 
(3.19) (0.93) (2.32) (-0.18) (1.91) (-0.58) 

LVOL -0.12 -0.04 -0.01 0.09 -0.05 0.07 
(-0.98) (-0.28) (-0.12) (0.73) (-0.43) (0.61) 

HVOL -1.34 -1.41 -0.58 -0.82 -0.23 -0.55 
(-7.20) (-7.16) (-3.42) (-4.86) (-1.43) (-3.64) 

SMALL*LVOL -0.27 -0.16 -0.09 0.00 -0.01 0.09 
(-3.96) (-2.31) (-1.62) (0.07) (-0.20) (1.55) 

SMALL*HVOL 0.00 -0.04 0.20 0.24 0.19 0.26 
(-0.03) (-0.31) (2.26) (2.53) (2.30) (3.05) 

Raw Returns, IVOL200D (NOBS=3534) 
Intercept 1.17 0.95 1.13 0.89 1.05 0.77 

(4.62) (3.67) (4.50) (3.50) (4.05) (2.98) 
SMALL 0.25 0.03 0.22 0.01 0.20 -0.01 

(2.49) (0.36) (2.30) (0.11) (2.13) (-0.14) 
LVOL -0.06 0.06 -0.07 0.06 -0.06 0.08 

(-0.40) (0.38) (-0.53) (0.43) (-0.48) (0.60) 
HVOL -0.82 -1.00 -0.57 -0.86 -0.45 -0.83 

(-3.29) (-3.78) (-2.62) (-3.95) (-2.12) (-4.08) 
SMALL*LVOL -0.16 -0.05 -0.05 0.04 -0.07 0.02 

(-2.00) (-0.68) (-0.76) (0.51) (-0.94) (0.28) 
SMALL*HVOL 0.24 0.25 0.33 0.34 0.26 0.30 

(1.46) (1.49) (2.73) (2.67) (2.13) (2.34) 
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 Table 4A (Continued) 
 
 

 
 
 
 
 

  

Raw Returns, IVOL60M (NOBS=2420) 
Intercept 

 
1.26 1.06 1.23 1.03 1.14 0.91 

(5.53) (4.58) (5.47) (4.52) (5.01) (3.98) 
SMALL 0.24 0.01 0.24 0.01 0.20 -0.02 

(2.57) (0.12) (2.60) (0.16) (2.26) (-0.21) 
LVOL -0.13 -0.05 -0.14 -0.05 -0.14 -0.03 

(-1.11) (-0.42) (-1.26) (-0.46) (-1.23) (-0.27) 
HVOL -0.28 -0.42 -0.43 -0.62 -0.35 -0.63 

(-1.43) (-2.05) (-2.41) (-3.40) (-2.07) (-3.79) 
SMALL*LVOL -0.03 0.04 -0.07 0.00 -0.05 0.03 

(-0.38) (0.53) (-1.01) (-0.06) (-0.71) (0.37) 
SMALL*HVOL -0.02 -0.02 0.15 0.11 0.14 0.17 

(-0.20) (-0.20) (1.50) (1.05) (1.28) (1.45) 
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Table 4B  
 

  

Raw Returns, IVOL20D (NOBS=3990) 
 Column 1 

(p=0,K=1) 
Column 2 

(p=0,K=1) 
Jan. excluded 

Column 3 
(p=1,K=11) 

Column 4 
(p=1,K=11) 

Jan. excluded 

Column 5 
(p=12,K=12) 

Column 6 
(p=12,K=12) 
Jan. excluded 

Intercept 1.31 1.17 1.05 0.91 0.92 0.71 
(4.20) (3.57) (3.47) (2.89) (2.95) (2.20) 

ILLIQ 0.02 -0.08 0.21 0.10 0.15 0.07 
(0.18) (-0.56) (1.65) (0.75) (1.30) (0.60) 

LVOL -0.08 0.00 0.13 0.22 0.08 0.20 
(-0.41) (-0.02) (0.74) (1.20) (0.47) (1.17) 

HVOL -1.59 -1.67 -0.94 -1.21 -0.35 -0.75 
(-5.70) (-5.69) (-3.74) (-4.85) (-1.47) (-3.45) 

ILLIQ *LVOL -0.11 -0.06 -0.12 -0.09 -0.04 -0.04 
(-1.02) (-0.52) (-1.32) (-0.96) (-0.50) (-0.40) 

ILLIQ *HVOL 0.25 0.24 0.48 0.53 0.25 0.37 
(1.32) (1.26) (3.56) (3.73) (1.88) (3.03) 

Raw Returns, IVOL200D (NOBS=3534) 
Intercept 1.25 1.12 1.08 0.94 0.93 0.72 

(3.96) (3.38) (3.47) (2.91) (2.92) (2.18) 
ILLIQ 0.01 -0.09 0.22 0.11 0.18 0.11 

(0.11) (-0.62) (1.65) (0.83) (1.39) (0.83) 
LVOL 0.05 0.13 0.14 0.24 0.10 0.25 

(0.23) (0.62) (0.75) (1.20) (0.54) (1.29) 
HVOL -0.92 -1.11 -0.91 -1.26 -0.57 -1.08 

(-2.55) (-2.95) (-3.00) (-4.21) (-1.82) (-3.75) 
ILLIQ *LVOL 0.00 0.06 -0.12 -0.10 -0.08 -0.08 

(0.04) (0.50) (-1.23) (-0.99) (-0.81) (-0.81) 
ILLIQ *HVOL 0.29 0.30 0.63 0.66 0.33 0.48 

(1.22) (1.21) (3.82) (3.79) (1.78) (2.67) 
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Table 4B (Continued) 

 
 
 
 
 
 
 
 
 
  

Raw Returns, IVOL60M (NOBS=2420) 
Intercept 

 
1.34 1.26 1.22 1.14 1.04 0.90 

(4.71) (4.21) (4.35) (3.89) (3.61) (2.99) 
ILLIQ 0.03 -0.09 0.23 0.10 0.18 0.09 

(0.23) (-0.76) (1.95) (0.86) (1.55) (0.73) 
LVOL -0.05 0.00 0.01 0.07 0.01 0.10 

(-0.28) (-0.01) (0.09) (0.40) (0.05) (0.59) 
HVOL -0.38 -0.58 -0.71 -0.95 -0.50 -0.84 

(-1.29) (-1.87) (-2.64) (-3.57) (-1.99) (-3.42) 
ILLIQ *LVOL 0.11 0.21 -0.10 -0.02 -0.05 0.01 

(1.14) (2.27) (-1.13) (-0.21) (-0.56) (0.08) 
ILLIQ *HVOL 0.00 0.06 0.33 0.34 0.26 0.32 

(-0.02) (0.33) (2.40) (2.39) (1.59) (1.88) 
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Table 6A 

Risk Adjusted Return, IVOL20D (NOBS=3549) 
 Column 1 

(p=0,K=1) 
Column 2 

(p=0,K=1) 
Jan. excluded 

Column 5 
(p=1,K=11) 

Column 6 
(p=1,K=11) 

Jan. excluded 

Column 7 
(p=12,K=12) 

Column 8 
(p=12,K=12) 
Jan. excluded 

Intercept -0.10 -0.16 -0.06 -0.13 -0.02 -0.10 
(-1.42) (-2.14) (-0.75) (-1.76) (-0.24) (-1.53) 

LVOL 0.13 0.14 0.02 0.02 -0.04 -0.07 
(1.91) (1.97) (0.36) (0.35) (-0.69) (-1.15) 

HVOL -1.12 -0.94 -0.14 -0.16 0.10 0.01 
(-5.73) (-4.77) (-1.18) (-1.36) (0.78) (0.08) 

LCOV*LVOL 0.03 0.06 0.07 0.11 0.13 0.20 
(0.42) (0.95) (1.31) (2.01) (2.24) (3.31) 

LCOV*HVOL 0.32 0.21 -0.53 -0.62 -0.54 -0.68 
(1.40) (0.88) (-3.92) (-4.53) (-4.05) (-5.11) 

ILLIQ*LVOL -0.22 -0.20 0.15 0.17 0.15 0.22 
(-2.70) (-2.40) (2.36) (2.82) (2.11) (3.35) 

ILLIQ*HVOL -0.02 -0.12 0.63 0.61 0.59 0.71 
(-0.11) (-0.55) (4.96) (5.04) (4.11) (5.92) 

Risk Adjusted Return, TVOL(NOBS=3087) 
Intercept -0.10 -0.15 -0.04 -0.10 0.02 -0.05 

(-1.28) (-1.79) (-0.47) (-1.28) -0.27 (-0.70) 
LVOL 0.13 0.19 0.01 0.03 0.05 0.04 

(1.56) (2.23) (0.08) (0.41) (0.66) (0.53) 
HVOL -0.06 -0.08 -0.09 -0.12 -0.06 -0.15 

(-0.55) (-0.71) (-0.85) (-1.19) (-0.49) (-1.23) 
LCOV*LVOL 0.08 0.11 0.16 0.22 0.10 0.18 

(0.98) (1.42) (2.30) (3.18) (1.26) (2.32) 
LCOV*HVOL -0.07 -0.13 -0.39 -0.49 -0.45 -0.53 

(-0.49) (-0.83) (-2.96) (-3.85) (-4.08) (-4.61) 
ILLIQ*LVOL 0.07 0.02 0.21 0.20 0.15 0.18 

(0.89) (0.22) (3.16) (2.98) (2.04) (2.55) 
ILLIQ*HVOL -0.93 -1.00 0.01 -0.04 0.33 0.33 

(-5.69) (-5.89) (0.11) (-0.33) (2.32) (2.50) 
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