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 Abstract 

 

 In this paper we describe a methodology for deriving the upper and lower profit and loss 

(P&L) bounds in the presence of counterparty risk that does not rely on either structural or 

reduced form credit models.  The methodology provides practitioners and regulators with a 

practical tool to estimate the impact on P&L of the two facets of counterparty risk: failure to 

perform and mark-to-market exposure.  We show that for many applications, the bounds are tight 

and the credit worthiness of counterparties can have a major impact on the P&L. 
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Introduction 

 

 The recent decline in credit quality over the last few years, the demise of such firms as 

Enron and Parmalat, and the concentration of credit exposure among a few major financial 

institutions are salient reminders about the importance of counterparty risk exposure1.  The rapid 

increase in the size of credit derivative markets has raised concerns about financial stability 

arising from credit risk transfer2.  One of the many facets of counterparty risk is its effects on the 

pricing of contracts and the recording of profit and loss (P&L) and associated reserves. 

 

 Counterparty risk is the risk that a party to a contract might default over the life of the 

contract.  There are two main facets to counterparty risk: (a) a mark-to-market risk and (b) failure 

to honor a contract when required to perform.  For example, consider a credit default swap where 

there is the risk that the protection seller might default and for simplicity, we assume that there is 

no risk that the protection buyer will default.  If the protection seller defaults, to restore the 

protection buyer to the position prior to default, necessitates pricing a swap with the same 

premium in the absence of counterparty risk3.  If the credit quality of the reference entity has 

deteriorated (improved) then the protection buyer suffers an economic loss (gain) in entering into 

a new contract with the same premium.  If the reference entity defaults, and the protection seller 

subsequently defaults prior to settlement, the protection buyer is exposed to the full loss from the 

reference entity.   

 

 Steps to mitigate counterparty risk span a wide spectrum: from limiting total exposure to 

individual counterparties, exposure to particular sectors, master contract agreements that facilitate 

netting, “haircuts” in pricing, posting of collateral4, to payment in advance.  Counterparty risk 

affects the value of a contract – real or financial - and failure to recognize this means that P&L is 

inaccurate and the incentive structure for traders possibly inappropriate.  For many types of 

contracts it is possible to incorporate the effects of counterparty risk directly into the pricing and 

the P&L.  For simple linear products, Johnson and Stulz (1986) consider counterparty risk using a 

structural model.  Observing that structural models are difficult to apply to real world 

                                                 
1See – Fitzpatrick ( 2002).  Fitch Ratings (2004) reports 69 % of total counterparty exposure is held by the 
top 10 institutions. 
2 See the recent Basel Committee on Banking Supervision report “Credit Risk Transfer”, (October, 2004). 
3In calculating the mark-to-market risk the usual market convention is to ignore future counterparty risk.  
We follow this convention. 
4The collateral may change over the life of the contract depending on the credit worthiness of the 
counterparty and the exposure. 
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applications, Jarrow and Turnbull (1992, 1995) address the pricing of counterparty risk using 

their reduced form methodology.  Duffie and Huang (1996) and Jarrow and Turnbull (1997) use 

this reduced form methodology for the pricing of biltateral counterparty risk for interest rate and 

foreign exchange swapsTP

5
PT and a general review of pricing counterparty risk for standard linear 

financial products is given in Arvanitis and Gregory (2001, chapter 6)6.  However, for non-linear 

products there is a major complication, that has not been addressed in the academic literature7. 

   

 For non-linear products such as collateralized debt obligations, simulation is used for 

valuation, as closed form solutions do not in general exist because of the complexity of the 

contracts.  Consequently, incorporating the mark-to-market facet of counterparty risk introduces a 

major complication.  Default by, say, the protection seller can occur at any time over the life of 

the contract.  When default occurs, it is necessary to perform a Monte Carlo simulation to 

determine the mark-to-market value.  This implies that it is necessary to perform a simulation at 

each possible time, but default can occur at any point and there are an infinite number of points 

on the real line.  Consequently brute force approaches are infeasible.  A possible solution might 

be to assume that default can occur only at a finite number of times.  Such an approach introduces 

its own set of problems and is of limited use.  Given the dependence structure between the risky 

counterparty and the reference entities, it is necessary to determine the intensity functions of the 

surviving obligors, conditional on the information set at the chosen time – see Schönbucher and 

Schubert (2001).  While this can be done for one reference entity, it quickly becomes infeasible 

for more than one reference entity – see Section 4. 

 

 Recently, Mashal and Naldi (2005) have introduced a way to avoid this computational 

limitation.  They derive upper and lower bounds for the premium of a contract in the presence of 

counterparty risk.  While it is easy to derive upper and lower bounds, the major challenge is to 

derive bounds that can be computed and thus avoid the computational barrier.  In Mashal and 

Naldi the bounds can be computed and they demonstrate that the bounds are quite tight, at least 

for ‘low’ levels of risk.  There are two advantages to the MN methodology.  First, it can be 

applied to many types of credit structures, such as credit default swaps, synthetic CDO tranches, 

                                                 
TP

5
PT The recent paper by Canabarro et al (2003) considers counterparty risk for a portfolio of securities.  They 

do not address the questions of how counterparty risk affects the pricing of a security or the misstatement in 
the P&L. 

6See Hughston and Turnbull (2001) for a treatment of collateral. 
7Jarrow and Yu (2001) consider the pricing of the debt obligations of a firm, when its credit worthiness is 
affected by the default of another firm.  They do not address the facets of counterparty risk that are the 
focus of this paper. 
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and first to default swaps.  Second, the methodology does not explicitly rely on either the 

structural or reduced form approaches to pricing credit risky assets and allows interest rates and 

any relevant state variables to be stochastic. 

  

 Mashal and Naldi do not address how the recognition of counterparty risk affects the 

P&L.  Yet senior management and regulators are concerned about how counterparty risk affects 

the value of a position.  A trade may be recorded as profitable if counterparty risk is ignored, but 

possibly unprofitable if counterparty risk is recognized.    We extend their analysis to derive 

upper and lower bounds for the misspecification in the P&L and examine the tightness of the 

bounds.  Note that we are using the term profit and loss (P&L) in a broad sense.  For most banks, 

P&L is not affected by changes in the counterparty credit quality.  It does affect earnings through 

the reserving process.   

 

 In Section 2, we derive for a structured product expressions for the P&L when only one 

counterparty can default, or both counterparties might default.  Except for simple products such 

as credit default swaps, these expressions cannot be evaluated.  We derive in Section 3 upper and 

lower bounds for the P&L.  All bounds can be computed.  In Section 4, we present the simulation 

results.  We first consider the pricing of a credit default swap in the absence of counterparty risk.  

A closed form solution exists for this case and consequently we have a bench mark to judge the 

accuracy of our simulation results.  For the P&L bounds, we introduce a control variate 

technique.  For a credit default swap, we compute the upper and lower bounds, first for the case 

of a risky protection seller, then a risky protection buyer, and finally when both counterparties are 

risky.  We also examine the impact of settlement risk on the bounds for a risky protection seller.  

We next consider an example where a trader buys protection at the premium S from one 

counterparty and sells protection on the same reference entity at the price S + b to another 

counterparty.  We show that the effects on the P&L due to counterparty risk can be substantial, 

especially if the counterparties have “high yield” ratings.  Finally, we consider a synthetic CDO 

with a collateral portfolio of 100 names and examine the impact of counterparty risk for the 

different tranches.  The sensitivity of the bounds to correlation is also examined.  The practical 

usefulness of the methodology is evaluated in Section 5. 
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2 P&L In the Presence of Counterparty Risk 

  

 In this section we draw on the analysis first given by Mashal and Naldi (2005) (MN).  We 

start by introducing some standard notation.  Consider a probability space (Ω, F, Q), equipped 

with a filtration FBt B and time zero representing the present time.  We assume the complete 

information set can be expressed as a union of the form ,HGF ttt ∪=  where GBt B is the filtration 

generated by the trajectory of a multi-dimensional Brownian motion and HBt B is the filtration 

generated by the default processes for the reference entities, )t(NRE
j , which equals one if default 

has occurred, zero otherwise, j = 1, …, n, where n represents the number of reference entities.  

The default process for the protection seller (protection buyer) )t(NPS , ( )t(NPB ) equals one if 

default has occurred, zero otherwise.   To simplify our expression, we will abuse this notation in 

cases where there is no risk of ambiguity and write N(τ) to denote the state of the default process, 

where the symbol τ is used to denote the time to default for a particular party. 

 

 We start by considering the profit and loss (P&L) for a general structure, ignoring 

counterparty risk.  We then consider the effects on the P&L if there is the risk that the protection 

seller might default. In the third section, we consider the case of a risky protection buyer and in 

the last section we consider the case where both counterparties are risky. 

 

2.1 Credit Structured Products 

 

 We start by considering a structured product tranche written on a pool of reference 

entities.  The tranche buyer is effectively purchasing protection on the collateral portfolio over a 

defined range of losses.  Let M denote the dollar exposure of a particular tranche, L(t) the 

cumulative dollar loss on the tranche up to time t, S the premium in the absence of counterparty 

risk8.  The protection buyer promises to make payments at times TB1 B, …, T BnB. The time between 

payments dates is denoted by 1jjj TT −−=∆ , j =  1, …, n.  The premium is paid at the end of each 

period and is given by +∆ ] )L(T - [MS 1-jj , j = 1, … , n, and protection is paid when losses occur9.  

The value of the premium leg is given by   

                                                 
8 In the formal derivation, we ignore the complication of accrued interest.  Accrued interest is incorporated 
in the simulations.  See O’Kane and Turnbull (2003) for a treatment of accrued interest. 
9The symbol X+  is defined as X+ = max(X, 0). 
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   ]F|])T(LM[)T,0(B[ES 01jjj
n

1j
+

−=
−∆∑     

and the value of the protection leg  

    ]F|I)u(dL)u,0(B[E 0))u(LM(
T

0

n

>∫     

where I(A) is an indicator function that equals one if the event A is true, zero otherwise.  In the 

above expression the indicator function equals one, provided losses over the life of the instrument 

do not exceed the dollar exposure of the tranche ( M > L(u)).  If losses do exceed M, the 

protection seller is not responsible for the excess losses and the indicator function is zero.  It will 

prove convenient to define some general terms.  Let  

   +
−=

−∆≡∑ ])T(LM[)T,t(B)K,k(PB 1jjj
K

kj
    

represent the discounted cash flows, where kTt ≤   and  

   )u(dLI)u,0(B)T,t(PS ))u(LM(
T

t
>∫≡    

the discounted cash flows made by the protection seller over the interval [t, T].   

 If we ignore counterparty risk, the booked profit to the protection buyer is  

    ]F|)n,1(PB[ES]F|)T,0(PS[E 00n
NC −=π    (1) 

 

By ignoring counterparty risk, we are incorrectly recording the P&L. 

 

2.2 Default by the Protection Seller 

 We start by assuming that we have purchased credit protection and there is no risk that 

we will default.  However, there is risk that the protection seller might default.  Two events will 

impose costs on us if the protection seller defaults: 

(a) no default by the reference entity, default by the protection seller; 

(b) the reference entity defaults and before settlement, the protection seller defaults. 

The first case imposes a mark-to market risk on the protection buyer and the second case a failure 

to perform risk.  We analyze both cases.  

 

 Suppose that the protection seller defaults at time PSτ over the life of the contract.  Given 

the default by the protection seller, if the tranche buyer purchased new credit protection from a 

default free protection seller, the premium remaining unchanged, the value of this new tranche to 

the protection buyer is given by 
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   ]F|)n,1z(PB[ES]F|)T,(PS[E)(V
PSPSnPSPS ττ +−τ≡τ   (2) 

          

where the index z is defined by .TT 1ZPSZ +≤τ<   The value of the tranche is the difference 

between the values of the protection leg and premium leg.   

 

 If the credit quality of the reference portfolio has improved, implying that the tranche had 

value to the original protection seller, 0)(V PS <τ , the protection buyer makes a payment of 

0)(VR PSPB ≥τ−  

to the protection seller, where 1R0 PB ≤≤ represents the fraction of the amount due.  Note that 

we have a minus sign, given that )(V PSτ is negative. 

 

 The value at time zero of the payments by the protection buyer is given by  

]F|I)(V)(UR[E]F|)n,1(PB[ES

]F|I)(V)(UR[E

]F|I])T(LM[)T,0(B[ES

0)0)(V(PSPSPB0PS

0)0)(V(PSPSPB

0)T(1jjj
n

1j

PS

PS

jPS

≤τ

≤τ

>τ
+

−=

ττ−≡

ττ−

−∆∑
 

where we redefine PBPS(1, n ) as the payments are contingent on no default by the protection 

seller and  

0II),0(B)(U )1)(N()T(PSPS PSPSn
≥τ≡τ =ττ>  

 

which represents the discount factor given that default by the protection seller occurs before 

default of the reference entity during the life of the contract. 

 

    If 0)(V PS ≥τ , the protection seller makes a payment  

)0)(VR PS
D
PS ≥τ  

to the protection buyer, where 1R0 D
PS ≤≤ represents the fraction of the amount due.  We use the 

superscript D to indicate that default by the protection seller has occurred.  If the protection seller 

defaults at time PSτ during the life of the contract, then the losses within a settlement period ∆ will 

not be covered.  This means subtracting the amount )(L)(L PSPS ∆−τ−τ  from the stated losses 

paid and the protection seller making a payment ])(L)(L[R PSPS
D
PS ∆−τ−τ .  The value at time 

zero of the payments by the protection seller is given by  
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]F|I)(V)(UR[E]F|)T,0(PS[E

]F|I)(V)(UR[E

]F|I])(L)(L[)R1(),0(B[E

]F|I)I)u(dL)u,0(B[E

0)0)(V(PSPS
D
PS0nPS

0)0)(V(PSPS
D
PS

0)T(PSPS
D
PSPS

0)u()u(LM(
T

0

PS

PS

PSn

PS

n

>τ

>τ

τ≥

>τ>

ττ+≡

ττ+

∆−τ−τ−τ−

∫
 

where we redefine )T,0(PS nPS to include the loss during the settlement period.  

 

 We assume that ]R[E]R[E D
PSPB ≥ . This is a reasonable assumption, given that only the 

protection seller has defaulted.  Second, we assume that the random recovery rates are 

independent of the other stochastic factors.  This is a simplifying assumption, as we know from 

the work of Acharya et al (2003) and Altman et al (2005) that default rates and recovery rates are 

negatively correlated.   Given these assumptions, the P&L becomes 

]F|])(V)R(E),(V)R(Emin[)(U[EFP

]F|])(V)R(E),(V)R(Emin[)(U[E

]F|)n,1(PB[SE]F|)T,0(PS[E

0PSPBPS
D
PSPSPS

0PSPBPS
D
PSPS

0PS0nPS
C
PS

τττ+≡

τττ+

−=π

 (3) 

 
where FPPS denotes the P&L incorporating the effects of failure to perform in the event of default 

by the risky protection seller.  The second term on the right side reflects the mark-to-market facet 

of counterparty risk on the P&L. 

 

2.3 Default By the Protection Buyer 
 
 Here we now assume that the counterparty risk is on the side of the protection buyer.  

Suppose that the protection buyer defaults at time PBτ .  If 0)(V PB <τ , the swap has value to the 

protection seller10 and consequently the protection buyer makes a payment of 

0)(VR PB
D
PB ≥τ−  

 

to the protection seller, where D
PBR denotes the recovery rate given default by the protection buyer.  

At time zero, the value of the payments by the protection buyer is given by  

                                                 
10 Recall that we are defining the value )(V PBτ , as 

]F|)n,1z(PB[ES]F|)T,(PS[E)(V
PBPBnPBPB ττ +−τ≡τ  
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]F|I)(V)(UR[E]F|)n,1(PB[ES

]F|I)(V)(UR[E

]F|I])T(LM[)T,0(B[ES

0)0)(V(PBPB
D
PB0PB

0)0)(V(PSPB
D
PB

0)T(1jjj
n

1j

PB

PS

jPB

≤τ

≤τ

>τ
+

−=

ττ−≡

ττ−

−∆∑
 

 

where we redefine PBPB(1, n) as the payment stream is contingent on no default by the protection 

buyer and 

0II),0(B)(U )()1)(N(PBPB PBREPB
≥τ≡τ τ>τ=τ  

which represents the discount factor given that default by the protection buyer occurs before 

default of the reference entity during the life of the contract. 

 

 If 0)(V PB ≥τ , the protection seller makes a payment  

0)(VR PBPS ≥τ  

 

to the protection buyer.  At time zero, the value of the payments by the protection seller is given 

by  

]F|I)(V)(UR[E]F|)T,0(PS[E 0)0)(V(PBPBPS0n PB >τττ+  

where 

)u(dLII)u,0(B)T,0(PS )u())u(LM(
T

0
nPB PB

n

>τ>∫≡
 

Note that we do not consider the joint default of the reference entity and the protection buyer.  If 

the protection buyer defaults, apart from any mark-to-market payment, accrued interest is also 

due.  In this analysis we are ignoring accrued interest.  We do include accrued interest in the 

simulations, where the protection buyer is assumed to make a payment of 

)TT(1jPB
D
PBC jPB1j

I)T(RS ≤τ<− −
−τ .  Default by the reference entity triggers payment by the 

protection seller. 

 

 If we had sold protection, the P&L becomes 

]F|I)(V)(UR[E

]F|I)(V)(UR[E

]F|)T,0(PS[E]F|)n,1(PB[ES

0)0)(V(PBPBPS

0)0)(V(PBPB
D
PB

0n0
C
PB

PB

PB

>τ

≤τ

ττ−

ττ−

−=π
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In this case, it is reasonable to assume that )R(E)R(E PS
D
PB ≤ , implying that the above expression 

can be written in the form 

  
]F|])(V)R(E,)(V)R(Emax[)(U[EFP

]F|])(V)R(E,)(V)R(Emax[)(U[E

]F|)T,0(PS[E]F|)n,1(PB[ES

0PB
D
PBPBPSPBPB

0PB
D
PBPBPSPB

0nPB0PB
C
PB

τττ−≡

τττ−

−=π

 (4) 

The term FPPB denotes the P&L incorporating the effects of failure to perform in the event of 

default by the risky protection buyer.  The second term on the right side reflects the mark-to-

market facet of counterparty risk on the P&L. 

 

Note that the last term on the right side of expressions (3) and (4) arises because of the 

mark-to-market risk.  If Monte Carlo simulation is used for the valuation ignoring counterparty 

risk, then in both cases we face a computation problem.  The risky counterpart can default any 

time over the life of the contract and when default occurs, it is necessary to undertake a new 

simulation to determine the value ),(V τ   where τ denotes the stopping time of the risky 

counterparty, implying that we need to undertake a simulation within a simulation. 

 

2.4 Both Counterparties Risky 

 

 Up to the present point, we have only considered the case of either the protection seller or 

the protection buyer being risky.  This is a common assumption, in the setting of reserves.  In 

reality, the protection buyer and seller may be of similar credit quality and hence either is equally 

likely to default.  In the following analysis, we allow either party to default.  However, we ignore 

the possibility of both counterparties defaulting together, as this is such a rare event it adds only 

complication without additional benefit11.  The default swap premium is denoted by SB.   

 

 Suppose that the protection seller defaults at time PSτ  before default by the protection 

buyer.  Given the default by the protection seller, if the protection buyer purchased new credit 

protection, the premium remaining unchanged, the value of this new contract to the protection 

buyer, ignoring all future counterparty risk, is given by 

 

                                                 
11 Regulators are concerned by systemic risk – the failure of one institution causing the failure of other 
institutions.  This analysis allows for systemic risk through the modeling the dependence of the stopping 
times.  We are simply ruling out two counterparties defaulting at the same time. 
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]F|)n,1z(PB[ES]F|)T,(PS[E)(V
PSPSnPSPS ττ +−τ=τ  

where the index z is defined by .TT 1ZPSZ +≤τ<   

 

 If 0)(V PS <τ , the swap had value to the protection seller, and the protection buyer makes 

a payment of 

0)(VR PSPB <τ−  

to the protection seller.  Note that we have a minus sign given that V(.) is negative. If   

0)(V PS ≥τ , the protection seller makes a payment 0)(VR PS
D
PS ≥τ   to the protection buyer.   

 

 Suppose now that the protection buyer defaults at time PBτ  before the protection seller.  

Given the default by the protection buyer, the value of a new credit contract on the same 

reference portfolio to the protection buyer, is given by 

  

]F|)n,1z(PB[ES]F|)T,(PS[E)(V
PBPBnPBPB ττ +−τ≡τ  

where the index z is defined by .TT 1ZPBZ +≤τ<    

 

 If 0)(V PB <τ , the swap had value to the protection seller, and the protection buyer makes 

a payment of 

0)(VR PB
D
PB ≥τ−  

to the protection seller.  If 0)(V PB ≥τ , the protection seller makes a payment 0)(VR PBPS ≥τ  to the 

protection buyer.   

 

 For the two cases, the value of the payments by the protection buyer is given by  

]F|I)(V)(UR[E

]F|I)(V)(UR[E]F|)n,1(PB[ES

0)0)(V(PBPB
D
PB

0)0)(V(PSPSPB0

PB

PS

≤τ

≤τ

ττ−

ττ−
 

where  

0II),0(B)(U )1)(N()(PSPS PSPSRE
≥τ≡τ =ττ>τ  

 

and  

0II),0(B)(U )1)(N()(PBPB PBPBRE
≥τ≡τ =ττ>τ  
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 The value of the payments by the protection seller is given by  

  

]F|I)(V)(UR[E

]F|I)(V)(UR[E]F|)T,0(PS[E

0)0)(V(PBPBPS

0)0)(V(PSPS
D
PS0n

PB

PS

>τ

>τ

ττ+

ττ+
 

 

where we redefine )T,0(PS n to include the loss during the settlement period. 

           

 The P&L from buying protection is  

 

  
]F|])(V)R(E,)(V)R(Emax[)(U[E

]F|])(V)R(E,)(V)R(Emin[)(U[E

]F|)n,1(PB[ES]F|)T,0(PS[E

0PB
D
PBPBPSPB

0PSPBPS
D
PSPS

00n
C
PBS

τττ+

τττ+

−=π

  (5a) 

Again, we rewrite this expression in the form 

  
]F|])(V)R(E,)(V)R(Emax[)(U[E

]F|])(V)R(E,)(V)R(Emin[)(U[E

FP

0PB
D
PBPBPSPB

0PSPBPS
D
PSPS

PBS
C
PBS

τττ+

τττ+

=π

  (5b) 

The first term on the right side, FPPBS is the P&L incorporating the failure to perform in the event 

of default by either counterparty. The second and third terms reflects the mark-to-market facet of 

counterparty risk on the P&L if either the protection seller or protection buyer defaults. 
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3 Upper and Lower Bounds 

   

 In this section, we establish upper and lower bounds for the P&L in the presence of 

counterparty risk.  We first consider the case that the protection seller might default, second, the 

case that the protection buyer might default and finally the case when either the protection buyer 

or seller might default.   

 

3.1 Credit Risky Protection Seller 

 

 If we purchase protection, paying a premium S B on a tranche of a structured product, from 

expression (3) the P&L can be written in the form  

 

  ]F|])(V)(U)R(E),(V)(U)R(Emin[[EFP 0PSPSPBPSPS
D
PSPS

C
PS ττττ+≡π  (6) 

 

The above expression cannot be evaluated, in general.  To understand why, consider the 

type of algorithm we would use if we attempted to evaluate the above expression.  Suppose that 

we perform a simulation involving, say, 100,000 runs. 

Step 1 

For each run, generate the default times for all the reference entities and the protection 

seller over the life of the tranche.  We refer to the history of defaults over the life of the 

tranche as a path.  Calculate the discounted cash flows to the different parties12.   

Step 2 

 If the protection seller defaults over the life of the contract, it is necessary to determine 

the value of the tranche at the time of the default, )(V PSτ , in order to evaluate whether the 

protection seller makes a payment to the protection buyer if the value of the replacement 

tranche is positive or vice versa.  To determine the value of the tranche, )(V PSτ , we must 

undertake a separate simulation. 

Step 3 

 Go back to Step 1 and repeat steps 1 and 2 for the total number of runs. 

 

It is the requirement to perform a separate simulation in Step 2 that makes this approach 

infeasible.  Default by the protection seller can occur at any point over the life of the contract, and 

                                                 
12 The cash flows are discounted at the risk free rate of interest, given that we are using the pricing measure. 
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there are an infinite number of points.  At each point, it is necessary to undertake a separate 

simulation. 

 

 While we cannot evaluate expression (6), we can however derive upper and lower 

bounds.  We first derive the upper bound.  

 

Proposition Upper Profit Bound 

 

 An upper profit bound is given by 

 }]F|)(V)(U[E)R(E],F|)(V)(U[E)R(Emin{FP 0PSPSPB0PSPS
D
PSPS

UC
PS ττττ+=π  (7) 

 

Proof 

 Given that min(. ,. )is a concave function, then applying Jensen’s inequality to expression 

(6) gives 

UC
PS

0PSPSPB0PSPS
D
PSPS

C
PS }]F|)(V)(U[E)R(E],F|)(V)(U[E)R(Emin{FP

π=

ττττ+≤π
 

 

We can evaluate expression (7).  The expression involves the present value of 

replacement tranche, ]F|)(V)(U[E 0PSPS ττ , which we can estimate.  The pricing algorithm now 

becomes: 

Step 1 

Generate the default times for all the reference entities and the protection seller over the 

life of the tranche.  Calculate the discounted cash flows to the different parties. 

Step 2 

 If the protection seller defaults over the life of the contract, we need to calculate the cash 

flows to the protection buyer and the new protection seller. But along the path, we know 

the history of remaining defaults and we can determine the discounted value of the 

payments made by the protection buyer and the new protection seller. We store these 

values. 

Step 3 

 Go back to Step 1 and repeat steps 1 and 2 for the total number of runs. 

Step 4 
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 We can now estimate the present value of the replacement tranche ]F|)(V)(U[E 0PSPS ττ  

and evaluate expression (7). 

 

 

Lower Profit Bound 

 To derive a lower bound requires more work.  The trick that facilitated ease of 

computation in expression (7) was avoiding computation of the value of the contract at the time 

of the default by the protection seller.  At the time of default by the protection seller and 

assuming that default by the reference entity had not occurred, condition on a particular path over 

the remaining life of the contract; that is, conditional on the information set
nTF , the net cash flow 

to the protection buyer is  

    )n,1z(PBS)T,(PS)(C nPSPS +−τ≡τ    (8) 

We know if and when the reference entity defaults over the remaining interval )T,( nPSτ , given 

that we have conditioned on the information set .F
nT  Unlike expression (6), which is in terms of 

the market value of the future cash flows, expression (8) simply considers a single conditional 

cash flow. 

Proposition 

 A lower profit bound is given by    

   }F|])(C)R(E,)(C)R(Emin[)(U{EFP 0PSPBPS
D
PSPSPS

LC
PS τττ+≡π  (9) 

 

Proof 

To prove the lower profit bound, we need to prove 

0LC
PS

C
PS ≥π−π  

 

Now    

   

}F|]F|])(C)R(E),(C)R(E[min[E)(U{E

}F|]F|])(V)R(E),(V)R(E[min[E)(U{E

0PSPBPS
D
PSPS

0PSPBPS
D
PSPS

LC
PS

C
PS

PS

PS

τ

τ

τττ−

τττ=π−π
 

Consider a particular state in 
PS

Fτ  and define 

]F|])(C)R(E),(C)R(Emin[[E

])(V)R(E),(V)R(Emin[L

PSPS
D
PSPSPB

PS
D
PSPSPB

τττ−

ττ≡
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We need to show that 0L ≥ .  Again, using Jensen’s inequality, we have  

])(V)R(E),(V)R(Emin[

]F|])(C)R(E),(C)R(Emin[[E

PS
D
PSPSPB

PS
D
PSPSPB PS

ττ−≥

ττ− τ  

which implies that 0L ≥ , and hence 

     0LC
PS

C
PS ≥π−π      

 

implying that (9) is a lower bound. 

 

We can evaluate expression (9).  The expression involves the net cash flow to the 

protection buyer along a path, )(C PSτ .  The pricing algorithm now becomes: 

Step 1 

Generate the default times for all the reference entities and the protection seller over the 

life of the tranche.  Calculate the discounted cash flows to the different parties. 

Step 2 

 If the protection seller defaults over the life of the contract, along the path we know the 

history of remaining defaults and we can determine the net cash flow to the protection 

buyer. We then compute the term ])(C)R(E,)(C)R(Emin[ PSPBPS
D
PS ττ  and store the value. 

Step 3 

 Go back to Step 1 and repeat steps 1 and 2 for the total number of runs. 

Step 4 

 We can now evaluate expression (9). 

 

 We have now established upper and lower bounds for the profit  

     LC
PS

C
PS

UC
PS π≥π≥π     (10) 

         

The difference  
C
PS

NC
PS

C
PS π−π≡π∆  

is a measure of the misstatement in the profit of the trade from ignoring counterparty risk.  We 

can bound this misspecification in the P&L: 

    UC
PS

NC
PS

C
PS

LC
PS

NC
PS π−π≥π∆≥π−π     (11) 
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3.2 Credit Risky Protection Buyer 

 

 If we had sold protection to a credit risky protection buyer, rewriting expression (4), the 

P&L is 

 

  }F|])(V)(U)R(E),(V)(U)R(Emax[{EFP 0PBPB
D
PBPBPBPSPB

C
PB ττττ−=π  (12) 

 

Proposition Upper Profit Bound 

 An upper bound is given by  

  }]F|)(V)(U[E)R(E],F|)(V)(U[E)R(Emax{FP 0PBPB
D
PB0PBPBPSPB

UC
PB ττττ−=π  (13)  

Proof 

 Given that max(.,.) is a convex function, then applying Jensen’s inequality to expression 

(12) gives 

UC
PB

0PBPB
D
PB0PBPBPSPB

C
PB }]F|)(V)(U[E)R(E],F|)(V)(U[E)R(Emax{FP

π=

ττττ−≤π
 

 

Proposition Lower Profit Bound 

 

 A lower profit bound is given by  

 

 ]F|]F|)](C)R(E),(C)R(E[max[E)(U[EFP 0PB
D
PBPBPSPBPB

LC
PB PBΓτττ−=π   (14) 

The proof is similar to the proof for the lower profit bound in the case of a risky protection seller, 

so details are omitted13. 

 

 We have now established upper and lower bounds for the profit  

 

    LC
PB

C
PB

UC
PB π≥π≥π      (15) 

    

                                                 
13 Let 

)](V)R(E),(V)R(Emax[

]F|)](C)R(E),(C)R(E[max[EL

PB
D
PSPBPB

PB
D
PSPBPB PB

ττ−

ττ= Γ  

and applying Jensen’s gives the result. 
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The difference  
C
PB

NC
PB

C
PB π−π≡π∆  

 

is a measure of the misstatement in the P&L of the trade.  

 

 

3.3 Both Counterparties Risky 

 If we had purchased protection, rewriting expression (5), the P&L is given by   

  
]F|])(V)R(E,)(V)R(Emax[)(U[E

]F|])(V)R(E,)(V)R(Emin[)(U[EFP

0PB
D
PBPBPSPB

0PSPBPS
D
PSPSPBS

C
PBS

τττ+

τττ+=π
 (16) 

 

 

Proposition Upper Profit Bound 

An upper profit bound is given by  

 

 
]F|]F|)](C)R(E),(C)R(E[max[E)(U[E

}]F|)(V)(U[E)R(E],F)(V)(U[E)R(Emin{FP

0PB
D
PBPBPSPB

0PSPS
D
PS0PSPSPBPBS

UC
PBS

PBΓτττ+

ττττ+=π
 (17) 

The proof follows by combining the proofs for the upper bound for a risky protection seller and 

the lower bound for a risky protection buyer, so details are omitted. 

 

Proposition Lower Profit Bound 

A lower profit bound is given by  

 

  
}]F|)(V)(U[E)R(E],F|)(V)(U[E)R(Emax{

}F|)](C)R(E,)(C)R(Emin[)(U{EFP

0PBPB
D
PB0PBPBPS

0PS
D
PSPSPBPSPBS

LC
PBS

ττττ+

τττ+=π
 (18) 

The proof follows by combining the proofs for the lower bound for a risky protection seller and 

the upper bound for a risky protection buyer. 
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4 Results 

 

 In this section we investigate the practical implications of counterparty risk.  We consider 

two different types of instruments: a credit default swap and a synthetic collateralized debt 

obligation (CDO).  For a credit default swap we have a closed form solution and this provides us 

with a benchmark to check the accuracy of our Monte Carlo simulations.  In cases where a closed 

form solution exists, we can generate an exact solution incorporating counterparty risk and 

consequently there is no need for upper and lower bounds.  Such cases provide a bench mark for 

the upper and lower bounds.  For our second case, a synthetic CDO, closed form solutions do not 

exist. 

 We start by first documenting the accuracy of the Monte Carlo simulation.  In the second 

part, we compute the P&L bounds for three cases: (a) the protection seller; (b) the protection 

buyer; and (c) both counterparties are subject to default risk.  Often a trader will buy protection at 

the price S and off-set the position by selling protection on the same reference entity at the price 

(S + b), where b is the spread.  The normal procedure is to record the P&L as the present value of 

the spread.  We estimate the misstatement in the P&L due to neglecting counterparty risk.  In the 

last part, we consider a synthetic CDO.   

 

4.1 Modeling Default Dependence  

 

 To model default dependence we use a normal copula.  A copula function binds together 

individual marginal distributions to form the multivariate distribution14.  The normal copula, first 

introduced by Li (2000), has become the industry standard15.  

 

Parameter Assumptions 

 We list the assumptions used in the simulations.  These assumptions are similar to those 

used in Mashal and Naldi (2005). 

1 We assume a flat term structure of interest rates, at 2%, assuming continuous 

compounding16.   

2 The reference entity has a deterministic recovery rate of 35%. 

                                                 
14For a short introduction to copula functions see Schonbucher (2003, section 10.7) and for a more detailed 
discussion see Nelsen (1999). 
15 See Bank of America (2004). 
16 In practice the current swap curve would be used. 
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3 If the protection seller defaults, the recovery rates for the protection seller and for the 

protection buyer are assumed to be independent of other state variables and 

%35)R(E D
PS = and %.100)R(E PB =  

4 If the protection buyer defaults, the recovery rates for the protection seller and for the 

protection buyer are assumed to be independent of other state variables and 

%35)R(E D
PB = and %.100)R(E PS =  

5 Asset correlations between any two entities are all equal to 25%. 

6 The intensities for all reference entities are assumed equal, and state independent.   

7 Notional value is $1mm. 

8 The number of simulations is fixed at 100,000. 

9 The settlement period is assumed to be zero, except in Table 2, Part (B). 

 Many of theses assumptions can be relaxed without affecting the bounds, though the 

simulations may become more involved.  For example, if the reference term structure of interest 

rates is stochastic, then this is also simulated.   

 

4.2 Pricing a Simple Credit Default Swap 

 

 For a credit default swap, we have a closed form solution that allows us to compute the 

present value of the cash flows to the protection buyer, seller and the theoretical premium, p, 

given our assumptions and ignoring counterparty risk.  This provides us with a benchmark, with 

which to compare the accuracy of our simulations.   

 

 We estimate the present value of the payment by the protection seller, ]F|),0(PS[E 0REτ , 

the present value of the payments by the protection buyer for a unit premium, ]F|)n,1(PB[E 0 , and 

the estimated premium, p̂ , using expression (1).  We also calculate the estimated value of the 

swap, defined as  

]F|)n,1(PB[Ep]F|),0(PS[E 00RE −τ≡π)  

where p is the theoretical premium.  If the estimated probability of default is less (greater) than 

the theoretical value, then the present value of the payment by the protection seller will be under 

(over) estimated and the present value of the payments by the protection buyer over (under) 

estimated, implying that the estimated value of the swap will be negative (positive).  The 

estimated value of the swap will tend to zero, as the estimated premium tends to its theoretical 

value.  We repeat the estimation exercise 30 times and report in Table 1 the mean value and the 
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standard deviation.  The mean values are compared to their theoretical values.  For all variables, 

the mean value is within two standard deviations of its theoretical value.  

 

 For the reference entity, we consider two intensities of 1 percent and 4 percent, which are 

representative of investment grade and high-yield names.   When the intensity of the reference 

entity is 1 percent, the mean of the estimated probability of default over the five year period is 

slightly greater than its theoretical value. Consequently, the mean of the payment to the protection 

buyer (PV to PB) is slightly greater than its theoretical value and the mean of the payment to the 

protection seller (PV to PS) slightly less than its theoretical value.  The estimated premium is 

greater than its theoretical value.  When the intensity of the reference entity is 4 percent, the mean 

of the estimated probability of default over the five year period is slightly less than its theoretical 

value. Consequently, the estimated premium is less than its theoretical value and the mean value 

of the swap is slightly negative.  

 

 The high degree of accuracy more than justifies the number of simulations being fixed at 

100,000.  However, we did a number of additional checks using one million runs.  These results 

are not reported. 

 

Exact Valuation 

 

 With a simple default swap it is possible to value a replacement instrument just after a 

counterparty defaults using a closed form expression.  Schönbucher and Schubert (2001) derive 

general expressions for the intensity function and survival probabilities of the reference entity 

after the protection seller defaults.  Given our assumptions, the intensity function for the reference 

entity, after default by a counterparty, is now time dependent and consequently numerical 

integration is used to estimate the value of the replacement swap.   

  

 In all the simulation results, we find that the value of the replacement swap, )(V PSτ , is 

positive .  This greatly simplifies the explanation of the results.  For the case of a risky protection 

seller, the value of the swap with counterparty risk, as given by expression (3), simplifies as  

)(V)R(E])(V)R(E),(V)R(Emin[ PS
D
PSPSPBPS

D
PS τ=ττ  

given that )(V PSτ is positive.  Therefore expression (3) can be written 
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]F|)(V)R(E)(U[EFP 0PS
D
PSPSPS

C
PS ττ+=π    (19) 

  

The upper P&L bound – see expression (7) - becomes 

]F|)(V)R(E)(U[EFP 0PS
D
PSPSPS

UC
PS ττ+=π  

implying that the upper premium bound becomes the exact: 
UC
PS

C
PS π=π      (20) 

 

 For the case of a risky protection buyer, see expression (4), the value of the swap 

simplifies, as  

)(V)R(E])(V)R(E),(V)R(Emax[ PBPSPB
D
PBPBPS τ=ττ  

Therefore the expression (4) for the value of a swap with counterparty risk becomes  

 

]F|)(V)R(E)(U[EFP 0PBPBPBPB
C
PB ττ−=π   (21) 

 

The P&L upper bound becomes 

]F|)(V)R(E)(U[EFP 0PBPBPBPB
UC
PB ττ−=π  

Hence, from expression (21), the upper P&L bound becomes exact: 

 
UC
PB

C
PB π=π      (22) 

 

Both valuation expressions (19) and (21) can be directly estimated in the simulation.  

While there is no need to undertake a separate valuation using numerical integration, in the results 

reported below we did both methods as a check.  

 

4.3 Measurement of the P&L Bounds 

 

 We first compute the profit bounds for the case of a risky protection seller, using 

expression (10), and then for the case of a risky protection buyer using expression (15).  Given 

the size of the volatility for the estimate of the swap value in Table 1, we use a control variate 

approach17, to improve the accuracy of our estimates.  The premium for a swap with no 

counterparty risk is set such that the value of the swap is zero, when initiated.  We can estimate 

                                                 
TP

17
PT See Rubinstein (1981), chapter 4 for details. 
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the value of this swap using Monte Carlo and can use it as a control variate.  The estimate of the 

profit bound, ),(Y β  using the control variate is given by 

)v(Y)(Y S −πβ−=β  

where Y is the estimate of the profit bound; Sπ is the estimate of the value of a simple swap 

without counterparty risk; v is the value of the simple swap; and β is set to minimize the variance 

of the estimate: ).var(/),Ycov( SS ππ=β   The premium is set such that the value of the simple 

swap is zero (v = 0). 

 

 In Table 2, we examine how the width of the P&L bounds changes as the risk of a 

counterparty changes.  The intensity of the counterparty is varied from 50 basis points, which is 

representative of an A credit, to 400 basis points, representative of a high-yield name.  In Part A 

we consider only a risky protection seller.  All the bounds are negative and relative tight.  When 

the intensity of the reference entity is 1 percent, the upper bound varies from - 431 for an 

investment grade counterparty to -1,890 for a high-yield counterparty.  Figure 1 shows the 

variation of the width between the upper and lower bounds with counterparty risk.  It is seen that 

the variation is approximately linear.  We know that for this special case the upper P&L bounds 

are exact.  Consequently, for the case of a risky protection seller with an intensity of 50 basis 

points, we are over estimating the P&L by approximately $431 for a swap on a reference entity 

with an intensity of 1 percent.  The P&L is over estimated by $804, when the intensity of the 

reference entity is 4 percent. 

 

 Failure to perform is one facet of counterparty risk.  It occurs when the reference entity 

defaults and before settlement, the protection seller also defaults.  Ex ante the effect on the price 

of a swap should be relatively small, given that the probability of this occurrence is small.  It 

depends on the probability of the joint events of the reference entity defaulting and then default 

by the protection seller before settlement.  Ex post, the consequences are however large. The 

protection buyer was expecting a payment of )R1(N RE− from the protection seller, given default 

by the reference entity, where N is the notional of the swap.  The payment is reduced to 
D
PSRE R)R1(N − , if the protection seller defaults before settlement.    

 

 In Table 2, Part A, the settlement period is zero.  In Part B, settlement period is one 

month.  Comparing the results in the two tables, we see that settlement risk increases the absolute 
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values of the bounds, though the effect is quite small if the intensity of the protection seller is 

small.  The impact of settlement risk becomes more noticeable, as the risk of default by either the 

protection seller or the reference entity increases.  

 

 In Part C, we consider a risky protection buyer.  In this case, counterparty risk is 

miniscule. If the protection buyer defaults, then assuming the value of the replacement swap is 

positive18, the protection seller makes a payment of )(V PBτ to the protection buyer.  There is no 

mark-to-market risk for the protection buyer.  The protection seller is however exposed to the loss 

of accrued interest if the protection buyer defaults.  In present value terms this is very small.  In 

the reported results, the upper bound is practically zero, irrespective of the risk of the protection 

buyer.  In Figure 2, the width of the bounds increases with the intensity of the protection buyer.  

The variation is approximately linear. 

 

Both Counterparties Risky 

  

 In the setting of reserves, it is common practice to assume that it is only the other 

counterparty is risky, while in reality either party to the contract might default.  In Table 3, we 

consider the upper and lower bounds when buying credit protection. In Part A, it is assumed that 

the intensity of the protection buyer and seller are equal.  It is seen that the lower bound is 

decreasing, as the intensity of the counterparties increases. The upper bound is U-shaped.  This is 

not surprising, given the results in Table 2.  Recall the upper bound for buying protection, is the 

upper bound for the risky protection seller plus the upper bound for the risky protection buyer.  

Table 2, Part A, shows the upper bound for a risky protection seller, assuming we are buying 

protection. As the intensity of the counterparties increases, the upper bound decreases.  Table 2, 

Part C, shows the lower bound for a risky protection buyer, assuming we are selling protection. 

The lower bound decreases, as the intensity of the counterparties increases. This implies that if 

we had purchased protection and there is the risk that we might default, the upper bound 

increases as the intensity of default increases.  We can use the results in Table 2 to approximate 

the bounds.  For example, if the intensities for the reference entity is 1 percent and for the 

counterparties 50 basis points, an estimate of the upper bound is -431 - (-204) = -227, which is 

close to reported value of -218 in Table 3. 

 

                                                 
18 It should be stressed that this assumption is not made in the simulations. 
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 In Part B, the intensity of the protection seller is fixed at 50 basis points and the intensity 

of the protection buyer varied.  The lower bound is relatively insensitive to variations in the credit 

worthiness of the protection buyer, while the upper bound is U-shaped.  When the upper bound is 

positive and the lower bound negative, this raises the question of whether the true P&L is positive 

or negative.  In general, this question cannot be answered.  The upper bounds in Table 3 depend 

in large part on the upper bound for the protection buyer.  We know from expression (22) that for 

selling protection the upper bound for a risky protection buyer is exact, not the lower bound. This 

implies that it is perhaps imprudent to assume the true P&L is positive. 
 

 

4.4 P&L Misstatement: Off-setting Position  

   

 Consider the case of a trader buying protection on a reference entity at the price S from 

one counterparty and immediately off-setting the risk by selling protection at the price (S + b) to 

another counterparty, where b denotes the bid/ask spread and is non-negative.  If we neglect 

counterparty risk, the P&L simply reflects the present value of the spread, b, over the life of the 

instrument:  

]F|)n,1(PB[Eb
]F|)T,0(PS[E]F|)n,1(PB[E)bS(

]F|)n,1(PB[ES]F|)T,0(PS[E

0

0n0

00n
NC
b

=
−++

−=π
 

 

For the first part of the trade, the trader is exposed to counterparty risk of the protection seller and 

in the second part of the trade, to the counterparty risk of the protection buyer.  Taking into 

account the risky counterparties, the P&L should be 
C
PB

C
PS

C
b π+π≡π  

Using expressions (10) and (15) we can bound this P&L 

 

    )()( UC
PB

UC
PS

C
b

LC
SB

LC
PS π+π≤π≤π+π     (23) 

 

The misstatement in the P&L of the swap is given by 
C
b

NC
b

C
b π−π≡π∆  

and using expression (19) the bounds are given by  

    )()( UC
PB

UC
PS

NC
b

C
b

LC
PB

LC
PS

NC
b π+π−π≥π∆≥π+π−π   (24) 
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 In Table 4, we consider two cases.  In Part A, the intensity of the reference entity is 1 

percent and the spread is 10 basis points, which is a spread often observed for liquid investment 

grade names.  The P&L ignoring counterparty risk is  

631,4NC
b =π  

on a notional of $1mm.  The first part of the trade involves buying protection from a risky 

protection seller. If the intensity of the protection seller is 50 basis points, the value of the P&L 

lies between 

431641 C
PS −≤π≤−  

The second part of the trade involves selling protection to a risky protection buyer at a spread of 

10 basis points.  If the intensity for the protection buyer is 50 basis points, the upper and lower 

bounds are  

631,4376,4 C
PB ≤π≤  

We know from Table 2, that upper bound is insensitive to the credit risk of the protection buyer.  

In this case, the upper bound is 4,631 irrespective of the intensity of the protection buyer. 

Combining these two expressions, we have 

200,4735,3 C
b ≤π≤  

where .C
SB

C
PS

C
b π+π=π  

 Given the assumptions, we know that upper P&L bounds are exact, implying that    

 

431C
PS −=π  and 631,4C

PB =π  

and the correct P&L is  

200,4C
PB

C
PS

C
b =π+π=π  

The misstatement in the P&L is 

4,631 – 4,200 = 431 

or 9.3 % of the recorded amount.  The misstatement in the P&L is sensitive to the risk of the 

protection seller, though insensitive to the risk of the protection buyer.  If the intensity of the 

protection seller is 400 basis points, the misstatement in the P&L is 40.8 %.  

 

 In Table 4, Part B, the intensity of the reference entity is 4 percent and the spread is 30 

basis points, which is a spread often observed for high yield names.  The P&L ignoring 

counterparty risk is 12,927.  The correct P&L, taking into account counterparty risk is 
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120,12924,12804C
SB

C
PS

C
b =+−=π+π=π  

and the misstatement in the P&L is 

12,927 – 12,120 = 807 

or 6.2 % of the recorded amount.  Again, the misstatement in the P&L increases as the risk of the 

protection seller increases. 

 

 The results in Table 4 provide a quantification of the well known fact that the main risk is 

on the side of the protection seller.  The usual rationale is that if you purchase protection and the 

reference entity defaults, failure to perform by the protection seller has a large cost.  There is a 

small probability19 of a large loss.  Here, however, the rationale is different.  The risk arises 

because of the mark-to-market loss if the protection seller defaults.  Default increases the 

intensity of the reference entity and the cost of new protection increases, implying a mark-to-

market loss for the protection buyer. The impact on the P&L can be significant. Even when the 

intensities for the protection seller and buyer are 50 basis points, the misstatement in the P&L is 

9.3 % for an investment grade reference entity and 6.2 % for a high-yield reference entity. 

 

4.5 Aggregation 

 

 Up to the present point we have considered a contract in isolation in order to determine 

the impact of counterparty risk on the P&L.  This information is useful in its own right, as it 

provides information on how the contract will be priced in the market.  However, any financial 

institution usually has a portfolio of contracts with the same counterparty.  The desirability of an 

additional contract with the same counterparty will depend in part on its impact on the aggregate 

dollar cost of the counterparty risk exposure.  In risk management, various ways are used to 

monitor aggregate counterparty risk: two common measures are the total nominal exposure and 

the exposure at default20.  Here we are measuring the impact of counterparty risk on aggregate 

valuation. This provides information to senior management about the cost of counterparty risk 

and can affect the desirability of the contract to the institution.  

 

 Some of the contracts may be covered under a Master Agreement (MA) that facilitates 

netting.  Some reference entities may be in contracts that are covered under a MA and in contracts 

                                                 
19The probability is small because it depends on the joint event of default by the reference entity followed 
by default of the protection seller within the settlement period. 
20 Both measures are usually adjusted for netting if a Master Agreement exists. 
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not covered.  To determine the marginal impact of the contract it is necessary to simulate the 

default times of the counterparty and all the reference entities in the different contracts.  For each 

simulation path, the cash flows are determined for all the contracts.  If the counterparty defaults, 

the contracts in existence at the time of the default are split into two groups: those covered under 

a MA and the remaining contracts.  For those covered under a MA the aggregate value is 

calculated and upper/lower bounds determined for the aggregate.  For those not covered they are 

treated individually.  By aggregating across the upper (lower) bounds, the institution can 

determine the marginal impact of the contract.   

 

4.6 Upper and Lower P&L Bounds for a Synthetic CDO. 

 

 In Table 5, we consider a synthetic CDO.  The collateral is composed of 100 names, each 

with the same notional amount of one million.  We compute the spreads for three tranches of 

different seniority: an equity tranche exposing the investor (the protection seller) to the first 5% 

of the portfolio losses, a mezzanine tranche covering the (5 – 10) % of portfolio losses and a 

senior tranche for all remaining losses.  The notional value for the equity and mezzanine tranches 

is 5 million and the senior tranche 90 million.  All names are assumed to have an intensity of 2 

percent and the same correlation.  All other assumptions remain unchanged.  We consider only 

counterparty risk on the side of the protection seller.  We treat the CDO as a unity: there is only 

one protection seller for the whole instrument.  Alternatively, we could treat each tranche as a 

separate instrument with different investors. 

 

   In all cases the bounds are negative, implying that the P&L is being over stated.  For 

example, if the intensity for the protection seller is 50 basis points, the correct P&L for the equity 

tranche is between -9,209 and -10,394.  The misstatement is not significant, given the notional is 

5 million.  For all tranches, the upper and lower bounds decrease, as the intensity of the protection 

seller increases.  This is to be expected, given the results in Table 2.  The bounds for the 

mezzanine tranche are substantially greater in absolute magnitude than the bounds for the equity 

tranche.  A similar comment applies to the senior tranche, though the notional for this tranche is 

90 million.  

 

 Table 6 shows the sensitivity of the bounds to correlation.  The correlation between all 

names is assumed to be equal.  For the equity tranche, the premium (not shown) and the upper 

bound, increase in absolute magnitude, as the correlation increases.  The lower bound is relatively 
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insensitive.  A similar comment applies for the mezzanine tranche. For the senior tranche, 

increases in the correlation increase the risk to the tranche and the bounds increase in absolute 

magnitude.  In all cases, the bounds are negative and tight. 

 

5 Evaluation and Summary 

 

We have described a methodology for deriving the upper and lower P&L bounds in the 

presence of counterparty risk.  The methodology is quite general and can be applied to a wide 

range of contracts subject to counterparty risk.  It does not rely on either structural or reduced 

form credit models.  The methodology provides practitioners and regulators with a practical tool 

for the determination of reserves to incorporate the two facets of counterparty risk: failure to 

perform and mark-to-market exposure.  To be of use, the bounds must be relative tight and to be 

of importance, the misspecification must be substantial.  The usefulness and relevance of the 

methodology will depend on the particular application.  

 

 If the bounds have the same sign, then there is either over or under estimation of the 

P&L.  Tight bounds allow the P&L to be pinned down.  For many of the examples shown, the 

bounds are relatively tight and of the same sign.  This was not the case when we allowed either 

counterparty to default.  Depending on the risk (intensity) of the reference entity, the bounds 

could differ in sign.  In Table 4, we considered a common form of trade: buying protection of a 

reference entity from one counterparty and selling protection on the same reference entity to 

another counterparty.  It is shown that the misstatement in the P&L can be substantial.  The 

sensitivity of the bounds to correlation depends on the type of contract.  For equity and 

mezzanine tranches of a synthetic CDO, the bounds were relatively insensitive.  This was not the 

case for the senior tranche.  For all tranches the bounds were negative and relatively tight. 
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Table 1 

Credit Default Swap: No Counterparty Risk 
 

 

The figures in parenthesis are the standard deviations of the estimates. 

The estimate values and their standard deviation are estimated by repeating the simulation 30 times.  

PV to PB denotes the present value of the cash flow to the protection buyer. 

PV to PS denotes the present value of the cash flows to the protection seller, given a unit premium. 

The value of the swap is defined as: 

PV of payment to protection buyer – Theoretical Premium * PV of unit payments to protection seller. 

The maturity of the swap is 5 years. 
*This is the probability of default over the life of the swap.

 Estimated Value Theoretical Value Estimated Value Theoretical Value 

     
*Probability of Default % 4.9380 

(0.05) 

4.8771 18.1165 

(0.06) 

18.1269 

     
PV to PB 30,557 

(336) 

30,180 112,262 

(371) 

112,312 

     
PV to PS 4,630,053 

(1,272) 

4,631,475 4,308,067 

(1,907) 

4,308,924 

     
Value of Swap 386.21 

(345) 

0 -27.84 

(421) 

0 

     
Estimated Premium (bps) 66.00 

(0.75) 

65.16 260.58 

(0.98) 

260.65 

 Intensity 1% 
 

Intensity 4% 
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Table 2 

P&L Bounds 

 

Part A 

 Risky Protection Seller 

 

 Intensity of Reference Entity 

 Intensity 1 % Intensity 4 % 

Intensity of 

Protection Seller 

(bps) 

Lower Bound Upper Bound Lower Bound Upper Bound 

50 -641 -431 -1,416 -804 

100 -1,156 -735 -2,713 -1,466 

200 -2,009 -1,172 -5,402 -2,884 

300 -2,821 -1,572 -7,541 -3,729 

400 -3,542 -1,890 -9,549 -4,452 

 

Part B 

 Risky Protection Seller: Settlement Risk 

 
 Intensity of Reference Entity 

 Intensity 1 % Intensity 4 % 

Intensity of 

Protection Seller 

(bps) 

Lower Bound Upper Bound Lower Bound Upper Bound 

50 -661 -451 -1,461 -849 

100 -1,180 -759 -2,777 -1,529 

200 -2,042 -1,205 -5,525 -3,006 

300 -2,873 -1,625 -7,693 -3,881 

400 -3,630 -1,978 -9,760 -4,664 

Settlement period is one month. 
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Part C 

 Risky Protection Buyer 

 

 Intensity of Reference Entity 

 Intensity 1 % Intensity 4 % 

Intensity of 

Protection Buyer 

(bps) 

Lower Bound Upper Bound Lower Bound Upper Bound 

50 -204 0.03 -580 0.10 

100 -413 0.06 -1,205 0.21 

200 -824 0.11 -2,476 0.40 

300 -1,235 0.16 -3,759 0.61 

400 -1,644 0.22 -5,057 0.80 
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Figure 1 

Width of Bounds 

Part A  

Risky Protection Seller 

 

 
Series 1 refers to reference entity with an intensity of 1 percent. 
Series 2 refers to reference entity with an intensity of 4 percent. 

 
Figure 2 

Risky Protection Buyer 
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Series 1 refers to reference entity with an intensity of 1 percent. 
Series 2 refers to reference entity with an intensity of 4 percent. 
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Table 3 

P&L Bounds: Both Counterparties Risky 

 

Part A 

 
 Intensity of Reference Entity 

 Intensity 1 % Intensity 4 % 

Intensity of 

Counterparties 

(bps) 

Lower Bound Upper Bound Lower Bound Upper Bound 

50 -622 -218 -1,363 -196 

100 -1,082 -282 -2,585 -223 

200 -1,862 -306 -4,963 -253 

300 -2,518 -242 -6,701 301 

400 -3,076 -114 -8,290 922 

 

 

 

Part B 

 Sensitivity to Risky Protection Buyer 

 
 Intensity of Reference Entity 

 Intensity 1 % Intensity 4 % 

Intensity of 

Protection Buyer 

(bps) 

Lower Bound Upper Bound Lower Bound Upper Bound 

50 -622 -218 -1,363 -196 

100 -606 -2 -1,348 423 

200 -356 447 -1,307 1,698 

300 -528 873 -1,259 2,999 

400 -513 1,286 -1,229 4,297 

 
The intensity of the Protection Seller is 50 basis points.
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Table 4 
P&L Misstatement: Off-setting Position 

Part A 
Spread 10 basis points 

Bounds for Each Leg of the Trade 
Protection Seller Protection Buyer 

Intensity (bps) Lower Bound Upper Bound Intensity (bps) Lower Bound Upper Bound 

50 -641 -431 50 4,376 4,631 

100 -1156 -735 100 4,116 4,631 

200 -2009 -1172 200 3,603 4,631 

400 -3542 -1890 400 2584 4,631 

Intensity of reference entity 1 percent.   

Round Trip Bounds 
Intensity 

Protection Seller 

(bps) 

Intensity 

Protection Buyer 

(bps) 

Lower Bound Upper Bound Misstatement Percentage Error 

50 50 3,735 4,200 431 9.3 

100 100 2,960 3,896 735 15.9 

200 200 1,594 3,459 1,172 25.3 

400 400 -958 2,741 1,890 40.8 

P&L of trade ignoring counterparty risk $4,631 

Part B 

Spread 30 basis points 
Bounds for Each Leg of the Trade 

Protection Seller Protection Buyer 
Intensity (bps) Lower Bound Upper Bound Intensity (bps) Lower Bound Upper Bound 

50 -1,416 -804 50 12,223 12,924 
100 -2,713 -1,466 100 11,471 12,924 
200 -5,402 -2,884 200 9,946 12,925 
400 -9,549 -4,452 400 6,852 12,925 

Intensity of reference entity 4 percent.  . 

Round Trip Bounds 
Intensity 

Protection Seller 

(bps) 

Intensity 

Protection Buyer 

(bps) 

Lower Bound Upper Bound Misstatement Percentage Error 

50 50 10,807 12,120 807 6.2 

100 100 8,758 11,458 1,469 11.4 

200 200 4,544 10,040 2,886 22.3 

400 400 -2,697 8,472 4,454 34.5 

P&L of trade ignoring counterparty risk $12,927
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Table 5 

Synthetic CDO P&L Bounds 

Risky Protection Seller 

 

 Equity (0 – 5) % Mezzanine (5 – 10) % Senior (10- 100) % 

Intensity  (bps) Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

0 0 0 0 0 0 0 

50 -10,394 -9,209 -21,917 -20,078 -53,646 -50,476 

100 -22,706 -19,689 -43,823 -39,323 -96,009 -88,319 

200 -46,073 -38,666 -81,109 -70,467 -157,579 -140,646 

300 -69,460 -56,824 -116,500 -98,730 -210,897 -183,850 

400 -92,702 -73,846 -152,112 -126,362 -263,303 -224,720 

 
Portfolio of 100 reference entities. 

Notional of each reference entity = $1 mm. 

Intensity of reference entities = 2 % 

. Table 6 

Synthetic CDO P&L Bounds 

Sensitivity to Correlation 

 

 Equity (0 – 5) % Mezzanine (5 – 10) % Senior (10- 100) % 

Correlation Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

5 -21,201 -14,133 -35,062 -26,935 -11,550 -8,551 

10 -22,469 -16,707 -40,330 -33,159 -28,710 -23,649 

15 -22,929 -18,114 -42,702 -36,451 -48,433 -41,933 

20 -22,975 -19,152 -43,571 -38,253 -71,105 -63,779 

25 -22,706 -19,689 -43,823 -39,323 -96,009 -88,319 

30 -21,976 -19,644 -43,331 -39,580 -123,832 -116,068 

35 -21,091 -19,335 -42,455 -39,448 -152,569 -144,989 

 
Portfolio of 100 reference entities. 

Notional of each reference entity = $1 mm. 

Intensity of reference entities = 2 % 

Intensity of protection seller = 100 bps. 
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