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Abstract

In this paper we focus on modeling and predicting the loss distribution for credit risky assets
such as bonds and loans. We model the probability of default and the recovery rate given default
based on shared covariates. We develop a new class of default models that explicitly account for
sector specific and regime dependent unobservable heterogeneity in firm characteristics. Based
on the analysis of a large default and recovery data set over the horizon 1980–2008, we document
that the specification of the default model has a major impact on the predicted loss distribution,
while the specification of the recovery model is less important. In particular, we find evidence
that industry factors and regime dynamics affect the performance of default models, implying
that the appropriate choice of default models for loss prediction will depend on the credit cycle
and on portfolio characteristics. Finally, we show that default probabilities and recovery rates
predicted out-of-sample are negatively correlated, and that the magnitude of the correlation
varies with seniority class, industry, and credit cycle.

1 Introduction

The predicted loss distribution is a basic input for calculating the loan loss reserves and the economic
capital, and for computing portfolio risk metrics such as value-at-risk and expected shortfall. For
an individual asset such as a bond or loan, the loss distribution depends on the probability of
default and on the recovery rate given default. The negative correlation between these two factors
has been documented empirically by academics and recognized by regulators in Basel II. The 2007–
2009 credit crisis provided a painful reminder to investors that both dimensions are very important,
when the default frequency increased and the recovery rates decreased simultaneously.

In this paper we generate the loss distribution by modeling the default probabilities and the
recovery rates with shared covariates, and we analyze their interdependence. While there is a large
literature on predicting defaults and a separate emergent literature on modeling recovery rates,
ours appears to be the first study that explicitly models the loss distribution by modeling defaults
and recoveries, and that investigates the impact of the choice of default and recovery models on
the loss distribution. This paper makes three contributions.
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The paper’s main contribution is to elucidate the impact that the choice of default and recovery
models has on the predicted loss distribution. Using an extensive default and recovery data set, we
investigate four default models and three recovery models inspired by extant finance literature, and
use them to predict the out-of-sample loss distributions in different portfolios of bonds. We choose a
one-year horizon, as suggested by regulatory requirements. We first find that based on the standard
performance metrics for default and recovery prediction used in the literature, there is virtually
no performance difference both between the four default models and between the three recovery
models. This suggests that the choice of any particular combination of default and recovery models
should have little impact on the predicted loss distribution.

We show, however, that the specification of the default model has a crucial impact on the
predicted loss distribution, and that the relative predictive performance of default models depends
on the credit cycle. For example, in years with high default frequency the default model from Duffie
et al. (2007) predicts loss distributions where the expected loss is closest to the actual realized loss,
whereas in years with low default frequency other default models lead to expected loss estimates
that are closer to the realized loss. We further show that controlling for industry-level heterogeneity
has a significant positive impact on forecasting performance, and that the choice of default model
for loss prediction should depend on the industry characteristics of the firms in the portfolio. While
the Duffie et al. (2007) model has good prediction performance for telecommunication firms over
the out-of-sample horizon 1996–2008, for the sample of manufacturing firms the best model is
a hybrid obtained by adding two macroeconomic covariates to Shumway’s (2001) specification.
Additionally, we find evidence that the choice of recovery model has a smaller impact on the
predicted loss distribution than the choice of default model.

Our second contribution is to propose a new class of default models that explicitly account for
the dynamic effects of unobservable measurement errors, incomplete information, and industry-
level heterogeneity on default probabilities. In practice investors usually have only incomplete
information about the true state of a firm. There are differences between firms that affect their
default probabilities but are not directly observable, such as variations in managerial styles, in the
skill sets of workers, and in firm culture. Even differences in such areas as production skills, resource
usage, cost control, and risk management are only partially revealed in accounting statements. This
unobservable firm heterogeneity can be modeled using shared frailties models, where the hazard rate
is multiplied by a latent random variable common to all firms in a given industry group (Gagliardini
and Gourieroux 2003, Duffie et al. 2007), and which can be assumed to follow a stochastic diffusion
process (Yashin and Manton 1997, Duffie et al. 2009). Motivated by Dai, Singleton and Yang (2007)
and Li, Li and Yu (2010) who demonstrate the importance of using regimes to model changes in
the economy, we extend the shared frailty approach by developing regime frailty models at industry
level. In these models, a multiplicative factor magnifies the impact of group-specific frailties during
periods of economic distress, and potential distress is assessed annually at industry level thus
allowing a dynamic change in the industry default risk. In a range of portfolios over different
industries and different years during the out-of-sample horizon, we find that accounting for regime
changes in the unobserved heterogeneity significantly improves the performance of default models
for predicting the loss distribution and the total number of defaults in a portfolio.
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Our regime based frailty approach complements the latent frailty approach in Duffie et al.
(2009). As Li et al. (2010) point out in the context of dynamic term structure models, it is useful
to relate the latent state variables to fundamental macroeconomic variables. In the context of
frailty, we take a step in that direction by constructing a frailty factor at industry level with two
regimes based on whether the industry is distressed or not. Our model with a different frailty for
each industry complements the model in Duffie et al. (2009) with a single economy-wide frailty,
and is computationally easier to implement. The frailty dynamics in our model, while limited on
some dimensions as compared to Duffie et al. (2009), vary over industry economic cycles and in
addition convey useful industry-specific information about defaults, which is not possible from a
model with an economy-wide frailty. Indeed, through extensive empirical analysis we demonstrate
that controlling for industry-level heterogeneity significantly improves out-of-sample forecasting
performance.

Our third contribution is to analyze the dependence of predicted default probabilities and pre-
dicted recovery rates in our joint modeling framework based on shared covariates, and to generate
new insights related to this dependence. Basel II recognizes that changes in the probability of
default and in the loss given default are generally related for most assets, and it requires finan-
cial institutions using the advanced internal ratings based approach to recognize this dependence
(Basel Committee on Banking Supervision 2005a). We show that the default probability and recov-
ery rate predicted out-of-sample are negatively correlated, consistent with regulatory requirements.
The magnitude of the correlation varies with industry, seniority, and macroeconomic conditions.

The testing of default and recovery rate prediction models is particularly relevant in light of
Basel II, which allows banks to develop their own estimates of default probabilities and of recovery
rates so that these reflect the nature of their portfolios. Banks now have an incentive to use
their own estimates to model the loss distributions, however they face challenges raised by the
plethora of existing default and recovery models. Basel II stipulates that banks’ estimates of default
probabilities and recovery rates are subject to supervisory review, but it doesn’t explicitly indicate
how financial institutions can show that their quantitative models are reasonable in order to gain
regulatory approval for the resulting estimates. In fact, regulators themselves are also unsure how
to assess whether the models that an institution uses are reasonable (Basel Committee on Banking
Supervision 2005b). This issue has assumed greater importance since the 2007–2009 credit crisis
which sent a forceful reminder to regulators about the importance of modeling and validating the
loss distribution for credit risky assets. The crisis has also prompted a new round of regulations
designed to reduce systemic risk, Basel III, which increased the minimum capital ratios to hold
against future losses. With its methodological focus and analysis insights, this paper contributes
to the Basel II and Basel III debate by addressing the challenging issues related to predicting loss
distributions.

This paper is related to several different strands of previous research. There is a large and
growing literature devoted to the modeling of the probability of default — see Shumway (2001),
Chava and Jarrow (2004), Campbell, Hilscher and Szilagyi (2008), Duffie et al. (2007), Bharath
and Shumway (2007), and Duffie et al. (2009). An extensive survey of methodologies is given
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in Altman and Hotchkiss (2005). There is also an emerging literature addressing the modeling
of the determinants of the recovery rate given default. A survey of empirical evidence regarding
the properties of recovery rates is given in Schuermann (2004) — see also Acharya, Bharath and
Srinivasan (2003). Several studies model the dependence between the probability of default and the
recovery rate given default, by assuming there is a common latent factor affecting both (Frye, 2000;
Dullmann and Trapp, 2004). However, to the best of our knowledge, there are no empirical studies
that attempt to explicitly model the covariates affecting the probability of default, the recovery
rate given default, their dependence, and the impact on the loss distribution.

The paper is structured as follows. In Section 2 we develop our modeling methodology, and in
Section 3 we describe the data set used in this study. The empirical results for the estimation of the
probability of default and of the recovery rate are given in Section 4. In Section 5 we investigate
the modeling of the loss distribution, and Section 6 concludes the paper with a summary.

2 The Default and Recovery Models

In this section we first describe the specification and estimation of default models with unobservable
heterogeneity, and then we discuss several specifications of recovery rate models.

2.1 The Default Models

The sample data contains firms in G groups or industries. Let ni be the number of firms in the ith
group over the entire observation period [0, T ], and n =

∑G
i=1 ni be the total number of firms in

the sample. During [0, T ] a firm may experience a default, may leave the sample before time T for
reasons other than default (for example a merger, an acquisition, or a liquidation), or may survive
in the sample until time T . Some firms may enter the sample during the observation period. A
firm’s lifetime is censored if either default does not occur by the end of the observation period,
or if the firm leaves the sample because of a non–default event. Let Tij denote the observed and
possibly censored lifetime (duration) of the jth firm in the ith group, and let ⊥ij be the censoring
indicator, where ⊥ij= 1 if Tij is a default time and ⊥ij= 0 if Tij is a censoring time. The total
number of failures in group i is ⊥i.=

∑ni
j=1 ⊥ij . Let Xij(t) be a 1×K vector of covariates at time

t. The vector includes an intercept, as well as macroeconomic and firm-specific variables observed
at discrete time intervals.

Let λij(t) be the default intensity (the hazard function) for the jth firm in the ith group.
We assume that the unobservable heterogeneity at time t can be represented by a latent non–
negative random variable Ỹti common to all firms in the same industry, which we shall refer to
as frailty and which represents the effects of the unobservable measurement errors and missing
variables (Hougaard 2000). The frailty Ỹti acts multiplicatively on the intensity functions λij(t).
We model Ỹti as a combined effect of an industry-specific frailty factor Yi and a time-varying
indicator of industry distress. Specifically, let Ỹti = Yi∆Zi(t), where Zi(t) is an industry-specific
distress indicator, defined as Zi(t) = 1 if industry i is in distress at time t and 0 otherwise, and the
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parameter ∆ > 0 increases the impact of frailty in periods of economic distress. The hazard rates
are modeled as

λij(t) = Ỹti exp(Xij(t)β) =





Yi∆exp(Xij(t)β), if industry i is distressed

Yi exp(Xij(t)β), otherwise,
(1)

where β denotes the K × 1 vector of regression parameters. In the remainder of this section
we condition on all the observed data—the lifetimes {Tij}, censoring indicators {⊥ij}, covariates
{Xij(t)}, and distress indicators {Zi(t)}, but for the sake of simplicity we omit the conditioning
from the formulae.

The lifetimes of firms in the ith group are independent conditional on the unobserved Yi. When
the unknown Yi is integrated out, the lifetimes become dependent due to the common value of Yi.
Let us denote

H(Tij) =
∫ Tij

0
∆Zi(t) exp(Xij(t)β) dt. (2)

From (1) and (2) it follows that

∫ Tij

0
λij(t)dt =

∫ Tij

0
Yi∆Zi(t) exp(Xij(t)β) dt = YiH(Tij). (3)

The frailty model specified by (1) is a natural approach for modeling dependence and taking
into account unobservable heterogeneity. In this paper we denote the specification given by (1)
as the multiplicative frailty model, since the ∆ factor acts multiplicatively on the hazard rate. A
special case of the multiplicative frailty model is obtained when ∆ = 1. This corresponds to a
shared frailty model which does not account for regime differences in the impact of frailties. In our
subsequent analysis in Sections 4 and 5, we show that the multiplicative frailty has significantly
better prediction performance than the shared frailty, implying that regime specific differences are
important for default and loss modelling.

The multiplicative frailty model can be easily extended to the case where frailties are multivariate
rather than univariate, or obligor specific rather than shared by all obligors in the same sector. Such
extensions allow modeling of more flexible patterns of default dependence and different levels of
contagion. For example, the multiplicative frailty model implies positive correlation of defaults
within an industry, whereas some degree of negative correlation can be conceivable in practice
due to competition. The multivariate lognormal frailty model (Stefanescu and Turnbull 2006) can
accommodate negative default dependence as well and could thus be a reasonable alternative. In
practice, however, the feasibility of different model extensions will be substantially constrained by
the availability of data for estimation. For example, Duffie et al. (2009) account for time variation
in a single common frailty factor by specifying a stochastic process for the frailty; their model
cannot capture sector-specific contagion, but it does have a flexible time dynamic for the frailty.
However, they note that “...we have found that even our relatively large data set is too limited
to identify much of the time-series properties of frailty. This is not so surprising, given that the
sample paths of the frailty process are not observed, and given the relatively sparse default data.

5



For the same reason, we have not attempted to identify sector-specific frailty effects” (Duffie et al.
2009, p. 2099).

The multiplicative frailty model (1) is an approach to modeling default contagion that is struc-
turally tractable in order to make estimation feasible, and yet it has the complexity required to
account for both sector-specific effects and time dynamics. Indeed, the frailties Ỹti act at sector
level rather than economy level, and thus allow different levels of default contagion in different
industries. This is an important feature, as it may not be reasonable to assume that the contagion
in the financial industry, for example, is similar to the contagion in manufacturing. Moreover, as
we detail in the Appendix, time dynamics are captured out-of-sample through updating the prior
distribution of the frailties as the default information set evolves over time.

We assume that the sector frailties Yi are independent and identically distributed with a gamma
distribution G(1/θ, 1/θ), with θ > 0. This is a popular choice due to mathematical convenience.
The gamma density function of Y is given by

f(y) =
y1/θ−1

θ1/θΓ(1/θ)
exp(−y/θ), (4)

where Γ(·) is the gamma function. The expected value is E[Y ] = 1 and the variance is Var(Y ) = θ.

The parameters of the multiplicative frailty model (the regression coefficients β, the frailty
variance θ and the multiplicative factor ∆) can be estimated through maximum likelihood. Since
the lifetimes in each group are independent conditional on the group frailty, we obtain that the
conditional likelihood for group i is

Li(∆, β |Yi = yi) =
ni∏

j=1

[yi∆Zi(Tij) exp(Xij(Tij)β)]⊥ij · exp (−yiH(Tij)) . (5)

The marginal log–likelihood for group i is derived by integrating out the frailties:

Li(θ,∆, β) =
∫ ∞

0
Li(∆, β | yi) · f(yi) dyi, (6)

where f(yi) is the gamma density of Yi. Replacing (4) and (5) in (6), we develop the integral:

Li(θ,∆, β) =
∫ ∞

0
Li(∆, β | yi) · f(yi) dyi

=
∫ ∞

0




ni∏

j=1

[yi∆Zi(Tij) exp(Xij(Tij)β)]⊥ij · exp (−yiH(Tij))


 · y

1/θ−1
i

θ1/θΓ(1/θ)
exp(−yi/θ) dyi

=

∏ni
j=1 ∆⊥ijZi(Tij) exp(⊥ij Xij(Tij)β)

θ1/θΓ(1/θ)
×

×
∫ ∞

0
y

1/θ−1+
∑ni

j=1⊥ij

i exp(−yi(
1
θ

+
ni∑

j=1

H(Tij)) dyi. (7)

6



Let us denote w = 1
θ +

∑ni
j=1 H(Tij). The integral in (7) becomes

∫ ∞

0
y

1/θ−1+
∑ni

j=1⊥ij

i exp(−yi(
1
θ

+
ni∑

j=1

H(Tij)) dyi

=
∫ ∞

0
y

1/θ−1+⊥i.

i exp(−yiw) dyi

=
1

w1/θ+⊥i.

∫ ∞

0
(yiw)1/θ−1+⊥i. exp(−yiw) d(yiw)

=
Γ(1/θ+ ⊥i.)

(1
θ +

∑ni
j=1 H(Tij))1/θ+⊥i.

. (8)

Replacing (8) in (7) and taking logarithms, we obtain

log Li(θ,∆, β) = log Γ(⊥i. +1/θ)− log Γ(1/θ)− (1/θ) log(θ)

+
∑ni

j=1 ⊥ij [Xij(Tij)β + Zi(Tij) log(∆)]− (⊥i. +1/θ) log(1/θ +
∑ni

j=1 H(Tij)). (9)

Since the groups are independent, the marginal sample likelihood as a function of the parameters
is given by the sum of the log-likelihoods for all groups,

log L(θ,∆, β) =
G∑

i=1

log Li(θ,∆, β), (10)

and we used the fmincon optimization routine in MATLAB to maximize the likelihood numerically.
After convergence, we computed standard errors of the estimates based on the information matrix.

The model can be extended to assume that the covariates {Xij(t)} follow a stochastic process
with parameter vector γ, for example an autoregressive time series process. The sample likelihood
would then also include the likelihood function LX(γ) of the covariates; the maximization program
separates, implying that γ is estimated separately from β and θ. In general, the estimation of γ is the
standard numerical procedure of fitting a multivariate time series process to the covariate vectors
{X(t)}. This methodology can also be extended to the case of competing risks (Crowder 2001,
Lawless 2003, Duffie et al. 2007). Firms may exit the sample for reasons other than default, such
as a merger or an acquisition, and these non–default events are all competing risks that can cause
censoring of a firm’s lifetime. With multiple causes for exit, we may consider a multivariate frailty
model with one frailty component for each cause of exit. The likelihood function is separable under
the assumption that the frailty components are independent with gamma distributions. Maximum
likelihood estimates of the frailty variances and of the covariate parameters can be computed using
the Expectation-Maximization (EM) algorithm (Dempster, Laird and Rubin 1977).
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2.2 The Recovery Rate Models

In this subsection we briefly describe several specifications of recovery rate models. Let Ri(t) be the
recovery rate of bond i at time t. We assume that Ri(t) depends on a set of covariates Xi(t) through
a function of the linear form Xi(t)βr, where βr is a vector of regression coefficients. Note that the
covariate vector Xi(t) can include macroeconomic, industry, firm, and bond specific variables, and
thus the recovery rates will vary with bond, firm, and industry characteristics.

Many extant studies assume that recovery rates depend linearly on the available covariates
(Acharya et al. 2003, Varma and Cantor 2005), so that Ri(t) = Xi(t)βr. Note, however, that
in practice recovery rates are always non-negative and usually less than one. Since the linear
specification implies that the recovery rates are unconstrained, it can lead to predicted recovery
rates that are negative or greater than one and it is thus not appropriate for modeling recoveries.
We investigate instead two other specifications.

The probit transformation gives Ri(t) = Φ(Xi(t)βr), where Φ(·) is the cumulative distribution
function of the standard normal distribution, and it implies that Xi(t) = Φ−1(Ri(t)) (Andersen
and Sidenius 2005). The logit transformation gives Ri(t) = 1

1+exp(Xi(t)βr) , implying that Xi(t) =
log(Li(t)/Ri(t)), where Li(t) = 1−Ri(t) is the loss given default (Schönbucher 2003b). In practice,
the logit and probit models lead to very similar insights.

3 Data Description

In this section we first describe the data sources and then discuss the covariates used at different
stages of the analysis. Summary statistics for all covariates are available in Table 1.

3.1 Data Sources

Our primary data source is Moody’s Ultimate Recovery Database (Moody’s URD) that contains
information on all bonds rated by Moody’s during our sample period 1980–2008. In particular,
Moody’s URD has information on default history of the bonds and recovery rates in the event of
default (Covitz and Han 2004, Varma and Cantor 2005, Duffie et al. 2007). We restrict our atten-
tion to only those firms that are in the intersection of Moody’s URD, CRSP, and COMPUSTAT
databases during 1980–2008. The COMPUSTAT (active and research) files for this period provide
the firm level balance sheet data, and CRSP provides the market data. The sample includes 3555
firms, 46605 firm-years, and 477 defaults.

We use Moody’s definition of default in our analysis. Moody’s defines default as the event that
one or more of the following happen: (a) There is a missed or delayed disbursement of interest
and/or principal, including delayed payments made within a grace period. (b) The company files
for bankruptcy, administration, legal receivership, or other legal blocks to the timely payment
of interest or principal. (c) A distressed exchange takes place. This happens either when the
exchange has the apparent purpose of helping the borrower avoid default, or when the issuer offers
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Table 1: Data Descriptive Statistics
Mean 25th pctl 50th pctl 75th pctl Stdev

Macroeconomic variables
Term spread 1.106 0.280 1.030 2.025 1.217
Credit spread 1.106 0.745 1.030 1.345 0.440
T-bill 3-month yield 5.780 3.400 5.150 7.700 3.307
S&P 500 return 0.109 0.017 0.124 0.260 0.147
Logarithm(total defaulted debt) 2.022 0.843 1.962 3.374 1.945
Firm specific variables
Excess return 0.026 -0.231 -0.015 0.211 0.454
Relative size -8.832 -9.983 -8.781 -7.552 1.785
Volatility 0.105 0.063 0.090 0.130 0.060
Net income to total assets 0.024 0.007 0.033 0.060 0.080
Total liabilities to total assets 0.665 0.539 0.648 0.789 0.199
Distance-to-default 6.808 3.542 6.294 9.477 4.998
Stock return 0.160 -0.113 0.114 0.359 0.471
Logarithm(total assets) 7.594 6.360 7.572 8.757 1.811
Tangible assets to total assets ratio 0.358 0.125 0.313 0.579 0.268
Market to book ratio 1.520 1.052 1.239 1.635 0.990
Bond specific variables
Recovery rate 0.352 0.145 0.280 0.548 0.254
Coupon rate 9.58 8.00 10.00 12.00 3.09

bondholders a new security or a package of securities that represent a diminished financial obligation
(such as preferred or common stock, or debt with a lower coupon or par amount, lower seniority,
or longer maturity).

The default data contains one record for each year of each firm’s existence, from the year of
listing to the year when the firm has left the sample through default, merger, or other event. We
group firms into industry groups based on four digit DNUM codes. Our data contains 385 groups
ranging in size from 1 to 2582 firms, with a mean size of 107 firms and a median size of 54 firms.
The number of defaults in each group ranges from 0 to 25.

The recovery data contains one record for each defaulted bond, where recovery rate on a bond
is measured as the bond price within a month after default as given by Moody’s URD.

3.2 Covariates

3.2.1 Macroeconomic variables

In this study we report the results of our investigation on the effects of five macroeconomic variables.
These include the term spread computed as the difference between the ten year Treasury yield and
the one year Treasury yield, the credit spread computed as the difference between AAA and BAA
yields, and the three month Treasury yield, all taken from Federal Reserve’s H.15 statistical release.
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We also use the S&P 500 index trailing one year return computed from CRSP, and the logarithm
of the trailing amount of total defaulted debt (in billions of USD) taken from Moody’s 2009 default
study.

3.2.2 Industry level variables

For the frailty default models we use industry groups based on four digit DNUM industry codes
from COMPUSTAT. For the recovery rate models we identify four broad industry classes: utilities,
transportation, industrials and financials. We take the utilities class as a baseline and construct
dummy variables for the other three industry classes.

For the default analysis, we also use an industry-specific variable that shows whether the industry
is in distress in a particular time period. We follow Gilson, John and Lang (1990), Opler and
Titman (1994) and Acharya, Bharath and Srinivasan (2007) in defining an industry as distressed.
We construct an indicator variable that takes the value of one if the median stock return in that
industry during the year is less than -20%, and the value of zero otherwise. The number of distressed
industries by year varies between zero in 1980 and 227 in 2008, with a mean of 32 and a median
of 12. The number of years during 1980–2008 in which any particular industry has been distressed
varies between zero and nine, with a mean of 2.5 and a standard deviation of 1.8.

3.2.3 Firm level variables

We follow Shumway (2001) in constructing the following firm level variables: the relative size
defined as the logarithm of each firm’s equity value divided by the total NYSE/AMEX/NASDAQ
market capitalization, the excess return defined as the return on the firm minus the value-weighted
CRSP NYSE/AMEX/NASDAQ index return, the ratio of net income to total assets extracted from
COMPUSTAT, the ratio of total liabilities to total assets also extracted from COMPUSTAT, and
the volatility defined as the idiosyncratic standard deviation of the firm’s monthly stock returns
computed from CRSP.

Additionally, we also use the firm’s trailing one year stock return computed by cumulating the
firm’s monthly return from CRSP, and the distance-to-default, essentially a volatility corrected
measure of leverage based on Merton (1974) and constructed as in Bharath and Shumway (2008).

We also construct the following firm level variables from COMPUSTAT for use in the recovery
models: the logarithm of the total assets, the market to book ratio (a proxy for the firm’s growth
prospects), and the ratio of property plant and equipment to total assets (a measure of the firm’s
tangible assets). To avoid any outlier effects, all variables are winsorized at the 1% and 99% of the
cross–sectional distributions.

In order to investigate the extent of collinearity within the spectrum of firm specific information
relevant for default, we perform an exploratory factor analysis on all seven covariates. We find
that there are three significant factors corresponding to the eigenvalues greater than one of the
correlation matrix, and these factors together explain 78% of the total variance. Table 2 gives the
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Table 2: Factor Loadings for Firm Specific Variables

Factor 1 Factor 2 Factor 3

Excess return .981 .025 -.005

Volatility .143 -.841 -.029

Relative size .120 .784 .078

Net income to total assets -.010 .350 .696

Total liabilities to total assets .014 .054 -.909

Distance-to-default .286 .584 .440

Stock return .980 .062 .009

factor loadings for the seven variables; the first factor loads highly on the excess return and on the
stock return, the second factor is strongly correlated with volatility, relative size, and distance-to-
default, while the third factor loads highly on the accounting variables net income to total assets
and total liabilities to total assets. These results suggest that two dimensions are probably not
sufficient for capturing the range of firm-specific information relevant for default, and that at least
three dimensions of firm-specific covariates can be necessary in a default model.

3.2.4 Bond level variables

Our recovery rate models include the coupon rate , the logarithm of the time to maturity and the
seniority as bond level variables. We identify four classes of seniority in ascending order of claim
priority: subordinate, senior subordinate, senior unsecured and senior secured. We take subordinate
bonds as baseline and construct dummy variables for the other three seniority classes.

4 Default and Recovery — Empirical Results

In this section we discuss the estimation results for the default and recovery models described in
Section 2, and investigate their predictive performance.

4.1 Default Models: In-Sample Estimates

We report here the results for four default models, a subset of the many models that we investigated.
In particular, the first model MD1 includes the same covariates as in Shumway (2001), while the
fourth model MD4 is the specification from Duffie et al. (2007).

Table 3 reports the estimation results. For comparison, we fitted the four default models first
with a shared frailty and then with a multiplicative frailty in the hazard rate.1 In the multiplicative
frailty models the frailty variance θ is statistically significant, providing evidence of default clus-
tering. The frailty multiplicative factor ∆ is also highly statistically significant, and its magnitude

1We also fitted a shared frailty model with industry distress as a covariate — this model had lower log-likelihoods
than those of the multiplicative frailty model in Table 3 for all four covariate specifications. For parsimony, the details
are not shown here but are available from the authors.
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Table 3: Frailty Default Models: Estimation Results
Shared frailty Multiplicative frailty

MD1 MD2 MD3 MD4 MD1 MD2 MD3 MD4

Frailty variance θ 0.088 0.117 0.093 0.142 0.022 0.073 0.029 0.111

(0.050) (0.038) (0.051) (0.035) (0.011) (0.032) (0.012) (0.046)

Multiplicative factor ∆ 2.568 2.456 2.577 2.265

(0.281) (0.284) (0.282) (0.266)

Intercept -9.903 -6.457 -10.082 -3.268 -10.181 -6.728 -10.376 -3.469

(0.507) (0.702) (0.530) (0.126) (0.376) (0.421) (0.416) (0.159)

Excess return -2.201 -1.845 -2.280 -2.059 -1.719 -2.138

(0.179) (0.304) (0.183) (0.169) (0.179) (0.175)

Relative size -0.258 -0.247 -0.263 -0.272 -0.260 -0.278

(0.054) (0.041) (0.054) (0.037) (0.036) (0.037)

Volatility 2.061 1.969 2.0327 1.933

(0.331) (0.321) (0.208) (0.213)

Net income to total assets -0.426 -0.366 -0.393 -0.347

(0.747) (0.731) (0.516) (0.519)

Total liabilities to total assets 1.709 1.738 1.728 1.759

(0.463) (0.448) (0.231) (0.231)

Distance-to-default -0.308 -0.372 -0.305 -0.371

(0.061) (0.050) (0.022) (0.020)

Stock return -2.017 -1.935

(0.363) (0.196)

Term spread 0.099 0.100

(0.050) (0.046)

Credit spread 0.022 0.035

(0.149) (0.135)

T-bill 3-month yield -0.078 -0.062

(0.014) (0.021)

S&P 500 return 1.365 1.240

(0.342) (0.318)

Log likelihood -1735 -1579 -1732 -1595 -1703 -1553 -1701 -1573

N 3308 3140 3308 3140 3308 3140 3308 3140
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indicates that default contagion is much stronger in bad than in good economic periods. Almost all
the covariate effects parameters are statistically significant and of the expected sign. Exceptions
are the effects of credit spread in model MD3, and the coefficient for net income to total assets
which is not significant in models MD1 and MD3, consistent with insights from Shumway (2001).
Note also that, contrary to expectation but similar with results from Duffie et al. (2007), the
coefficient for the S&P 500 return is positive in model MD4. The sign and order of magnitude of all
estimated coefficients are consistent with other published default studies—for example, Campbell
et al. (2008), Duffie et al. (2007), Shumway (2001), and Zmijewski (1984).

For the default models with shared frailty, the signs of all estimated coefficients remain un-
changed, with only small changes in the magnitudes of the coefficients. For each specification there
is a deterioration in the log-likelihood function compared to that of the corresponding default model
with multiplicative frailty.

Figure 1 illustrates the dynamic updating of the frailty distributions for each sector, as described
in the Appendix. The figure plots the annual variation of the average frailties estimated from default
models MD1 and MD4. The frailty values plotted here are computed as annual averages of the
estimated frailties for each industry group, weighted by the number of firms in the group:

Yt =
∑G

i=1 ntiE[Ỹti | Ft]∑G
i=1 nti

,

where nti is the number of firms in industry group i at time t, and E[Ỹti | Ft] is the expected frailty
value conditional on the information set Ft up to time t given by equation (11) in the Appendix.
The Yt values can thus be interpreted as annual aggregate measures of default risk across all firms.
For comparison, the plot also presents the logarithm of the annual number of defaults. The annual
variation of estimated frailties mirrors closely the actual realized default frequency. The patterns of
variation are broadly similar on the comparable horizon to those of Figure 2 in Duffie et al. (2009)
which gives the conditional posterior means of their single common frailty.

Figure 2 plots the annual frailty values estimated from models MD1 and MD4 for specific
industry groups in three different sectors: telecommunications (television broadcasting stations),
manufacturing (railroad equipment), and retail (shoe stores). The plots show that the patterns of
annual variation are very different across industries, emphasizing the importance of accounting for
industry-specific effects of contagion and unobservable heterogeneity.

4.2 Default Models: Out-of-Sample Performance

In this subsection we investigate the out-of-sample forecasting performance of the four default mod-
els, using a one year horizon as suggested by regulatory requirements. We take several approaches to
assessing forecasting performance, and study their relative ability to differentiate between models.
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Figure 2: Annual Frailty Values, Specific Industries
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4.2.1 Individual firm defaults

We first focus on predicting individual firm defaults, an approach extensively employed in extant
literature. We define the out-of-sample horizon to be the period 1996–2008. For each year t during
1996–2008, we compute parameter estimates from data between 1980 and t − 1, then we forecast
default probabilities during year t for each firm that is alive at the beginning of that year. The
firms are then ranked into deciles in descending order of their forecasted default probabilities, and
for each year we compute the cumulative percentages and counts of defaults in the top two deciles
since 1996.

Table 4 summarizes the cumulative percentages and counts in the top two deciles. For each
model and each year, the table presents the percentages and counts of defaults classified in the top
two deciles since 1996. For example, between 1996–1998 model MD1 with shared frailty correctly
ranked 46 out of the 48 defaulted firms (or 95.83%) in the top two deciles. Overall, the predictive
performance of all models is very similar, correctly identifying around 92-93% of the defaulting
firms in the first two deciles over the horizon 1996–2008. This is consistent with the results for
model MD4 reported in Duffie et al. (2007).

The results in Table 4 show that models with multiplicative and shared frailty are virtually
identical in their prediction performance for individual firm defaults, both at annual level and
at aggregate level over the entire horizon. In fact, the performance of shared frailty models as
measured by this standard metric is in all years slightly superior to that of multiplicative frailty
models, although the differences are negligible. Therefore, modeling regime changes in frailty
effects through a multiplicative factor does not bring obvious improvements when individual firm
default is the focus of the analysis. As we show in the next section, however, the benefits of
using multiplicative frailties are substantial when the focus is on modeling portfolio defaults. The
multiplicative frailty outperforms the shared frailty in this case, and this further translates into
better performance for predicting loss distributions in Section 5.2.

4.2.2 Portfolio defaults

The loss distribution for a portfolio of bonds or loans depends on the distribution of defaults within
the portfolio and on the losses associated with each default. The ability to predict the number of
defaults in a portfolio is thus critical for generating the loss distribution. Consequently, we next
focus on forecasting the total number of defaults in a portfolio, an approach of major importance for
risk and portfolio managers. Predicting the total number of defaults involves the actual magnitudes
of default probabilities, rather than just the ordinal risk ranking of firms as in Section 4.2.1.

We consider the entire portfolio of all firms, and we predict out-of-sample the total number of
defaults in this portfolio for each year during 1996–2008. Table 5 summarizes the expectations of
the annual default distributions predicted by the four default models with either a shared frailty
or a multiplicative frailty. The table also gives the root mean squared errors of prediction (RMSE)
over the horizon 1996–2008, based on the realized default counts relative to the expected defaults

for each year. The RMSE is computed as RMSE =
√∑n

i=1(predi−actuali)2

n , where n = 13 is the
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Table 4: Default Forecasting: Cumulatively Correctly Classified Defaults
Shared frailty Multiplicative frailty

MD1 MD2 MD3 MD4 MD1 MD2 MD3 MD4

1996 88.89% 100% 88.89% 100% 88.89% 100% 88.89% 100%

8/9 8/8 8/9 8/8 8/9 8/8 8/9 8/8

1997 94.44% 100% 88.89% 100% 94.44% 100% 88.89% 100%

17/18 16/16 16/18 16/16 17/18 16/16 16/18 16/16

1998 95.83% 95.35% 93.75% 95.35% 93.75% 95.35% 91.67% 95.35%

46/48 41/43 45/48 41/43 45/48 41/43 44/48 41/43

1999 94.05% 93.24% 92.86% 91.89% 92.86% 93.24% 91.67% 91.89%

79/84 69/74 78/84 68/74 78/84 69/74 77/84 68/74

2000 93.91% 92.31% 93.04% 92.31% 90.43% 91.35% 89.57% 90.38%

108/115 96/104 107/115 96/104 104/115 95/104 103/115 94/104

2001 94.19% 91.77% 93.60% 91.77% 91.28% 91.14% 90.12% 90.51%

162/172 145/158 161/172 145/158 157/172 144/158 155/172 143/158

2002 93.64% 92.04% 93.18% 92.54% 91.82% 92.04% 90.91% 90.55%

206/220 185/201 205/220 186/201 202/220 185/201 200/220 182/201

2003 94.21% 92.83% 93.80% 92.83% 92.56% 92.83% 91.74% 91.03%

228/242 207/223 227/242 207/223 224/242 207/223 222/242 203/223

2004 93.70% 92.34% 93.31% 92.34% 92.52% 92.77% 91.73% 90.64%

238/254 217/235 237/254 217/235 235/254 218/235 233/254 213/235

2005 93.94% 92.28% 93.56% 92.68% 92.80% 92.68% 92.05% 91.06%

248/264 227/246 247/264 228/246 245/264 228/246 243/264 224/246

2006 93.70% 92.46% 93.33% 92.86% 92.59% 92.86% 91.85% 91.27%

253/270 233/252 252/270 234/252 250/270 234/252 248/270 230/252

2007 93.80% 92.55% 93.43% 92.94% 92.70% 92.94% 91.97% 91.37%

257/274 236/255 256/274 237/255 254/274 237/255 252/274 233/255

2008 92.76% 91.85% 92.41% 92.96% 91.38% 92.22% 90.34% 91.48%

269/290 248/270 268/290 251/270 265/290 249/270 262/290 247/270
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Table 5: Portfolio Predicted Default
Expected number of defaults

Year Defaults Shared frailty Multiplicative frailty

realized MD1 MD2 MD3 MD4 MD1 MD2 MD3 MD4

1996 9 15.45 12.99 16.19 15.62 13.89 11.45 13.11 11.84

1997 9 11.10 10.07 10.66 9.80 10.26 9.13 9.40 8.70

1998 30 13.84 12.24 12.15 12.91 16.63 14.72 13.73 14.31

1999 36 28.87 34.00 28.96 43.28 26.73 31.64 25.66 38.93

2000 31 27.99 26.96 28.90 23.99 32.92 38.36 29.13 29.17

2001 57 24.36 27.88 24.55 22.28 24.29 25.82 29.88 25.39

2002 48 14.55 17.31 12.24 21.40 19.54 23.50 17.35 31.58

2003 22 17.88 19.78 19.93 35.94 14.53 16.17 16.04 27.67

2004 12 6.78 5.38 7.74 4.60 6.33 4.78 6.95 3.75

2005 10 5.62 5.10 5.65 5.51 5.06 4.25 6.07 4.56

2006 6 6.49 6.31 5.88 6.01 5.41 5.14 4.88 4.94

2007 4 5.03 4.27 4.42 3.97 5.16 4.65 4.61 4.51

2008 16 8.23 11.20 8.30 15.17 16.04 20.39 16.38 25.61

Out-of-sample RMSE 3.79 3.62 3.85 3.77 3.64 3.53 3.58 3.41

number of years in the out-of-sample horizon, and predi and actuali are the predicted and realized
aggregate default numbers in year i. For all four models, the prediction errors are substantially
smaller when the hazard rate includes a multiplicative frailty rather than a shared frailty factor.
In Section 5.2 we shall see that this better default prediction performance of multiplicative frailty
models translates into better loss prediction performance as well.

Table 5 reports performance measures aggregated over the entire horizon and all industries.
We next pursue a disaggregate analysis by year; for conciseness, we henceforth focus on default
models with multiplicative frailties. Figure 3 gives the predicted distributions of the annual number
of defaults during 2001–2008 in the entire portfolio of all firms. In most years, the four models
predict quite different distributions; also, both the expectation and the variability of the predicted
distributions can change substantially between years.

We conclude the disaggregate analysis by year with an assessment of the time dynamics of
default rate predictions. We consider all models with multiplicative frailty, and focus first on the
entire portfolio of all firms and second on separate portfolios of firms from the telecommunications,
manufacturing, and retail sectors. The four plots in Figure 4 show the annual realized default rates
in each of these portfolios, as well as the out-of-sample predictions from all models. The patterns
of annual variation of default rates in the four portfolios are very different. In most years the
predictions from all four models are fairly close to the realized default rates in all portfolios. The
few exceptions are the large increases in realized default rates around the crisis years 2001–2002.

As discussed in the previous subsection, all four default models have almost identical performance
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Figure 3: Distribution of Annual Number of Defaults for Multiplicative Frailty Default Models

18



1996 1998 2000 2002 2004 2006 2008
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Year

D
ef

au
lt 

R
at

e

All Firms

 

 

Actual
MD1
MD2
MD3
MD4

1996 1998 2000 2002 2004 2006 2008
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Year

D
ef

au
lt 

R
at

e

Telecommunication Firms

 

 

Actual
MD1
MD2
MD3
MD4

1996 1998 2000 2002 2004 2006 2008
0

0.005

0.01

0.015

0.02

0.025

0.03

Year

D
ef

au
lt 

R
at

e

Manufacturing Firms

 

 

Actual
MD1
MD2
MD3
MD4

1996 1998 2000 2002 2004 2006 2008
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Year

D
ef

au
lt 

R
at

e

Retail Firms

 

 

Actual
MD1
MD2
MD3
MD4

Figure 4: Annual Realized and Predicted Default Rates
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according to standard metrics. They predict, however, very different distributions for the total
portfolio defaults. When interest centers exclusively on predicting individual firm default, the
traditional metrics can be an adequate measure of model performance. When interest, however,
lies in predicting quantities that involve the actual magnitudes of default probabilities rather than
just their ranking (for example, predicting the number of defaults in a portfolio), the ordinal ranking
is no longer an adequate measure of model performance. This issue will be particularly relevant in
for loss distributions in Section 5.

4.3 Recovery Rate Models

In this subsection we discuss three recovery rate models that we later use for modelling loss. Our
goal is not to derive new predictive models for recovery rates or to investigate exhaustively the
determinants of recoveries, since extant literature has already focused on this topic (Acharya et al.,
2003 and 2007). The modelling of recovery rates in this paper is only a preliminary stage towards
the ultimate objective of assessing the impact of default and recovery models on predicted loss.

Extant literature showed that contract characteristics, firm specific variables and macroeconomic
variables are important factors that affect recovery rates. We experimented with many model
specifications using the variables described in Section 3. The models that we retained during the
model selection process have little or no redundant information in the form of covariates that
are not statistically significant. We next briefly discuss the general insights from our analysis of
many different covariate specifications, then we describe the three models that we retain for our
subsequent analysis of predicted loss.

Among the contract characteristics, no variable was consistently statistically significant. The
coupon rate has a positive and marginally significant coefficient in some models, which is to be
expected given the results in Acharya et al. (2003). The impact of the logarithm of maturity
outstanding is negative and also marginally significant in some models, while the logarithm of the
issue size is not significant, similar to results from Acharya et al. (2003). To model the seniority
class of a bond, we use three seniority dummies and take the subordinate class as baseline. All
three dummies (senior subordinate, senior unsecured and senior secured) were generally statistically
significant. Although the differences between their estimated coefficients are relatively small, the
ordering of the coefficients is as expected implying that senior secured bonds earn on average
higher recoveries than senior unsecured bonds, which in turn have larger recoveries than senior
subordinated bonds.

Among the firm characteristics, the relative size, the logarithm of total assets, the market to
book ratio, the volatility and the ratio of total liabilities to total assets were statistically significant
in most models. We use four industry dummies following Moody’s classification: financials, indus-
trials, transportation and utilities. We take utilities as baseline, and find that the coefficients of
financials, industrials and transportation dummies are generally significant and negative in most
models.

Among the macroeconomic variables, the Treasury 3-month yield and the logarithm of the
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amount of all defaulted debt are statistically significant in most models. The credit spread and
term spread are not significant in any model that we investigated.

To account for the potential effect of unobserved common factors on recoveries, all models include
year dummies. We have also investigated whether the estimated annual frailties from the default
models fitted in Section 4.1 have explanatory power for recoveries, by including them as additional
covariates. Their effect, however, was consistently not significant in all recovery models.

These insights are summarized in Table 6 which reports the estimates from fitting three selected
recovery models among the multitude of models that we investigated. For each model we estimate
both the logit and probit specifications described in Section 2.2. The results were similar, so we
only report in Table 6 the estimates for the logit models.

We are not aware of any studies that examine the out-of-sample prediction performance of
recovery rate models. We assess the performance of models MR1, MR2 and MR3 by using a rolling
horizon calibration method. Similar to the methodology for default prediction, we define the out-
of-sample horizon to be 1996–2008. For each year t, we estimate parameters for all recovery models
from data between 1980 and t− 1, then we forecast recovery rates during year t for all outstanding
bonds of each firm that is alive at the beginning of that year. These forecasts are then compared
with the actual realized recovery rates for bonds defaulted during year t. The average root mean
square errors of prediction (RMSE) are reported in the last line of Table 6. The out-of-sample
RMSE values are virtually identical across all three recovery rate models.

5 Loss Distributions

In this section we first investigate the correlation between default probabilities and recovery rates
predicted out-of-sample. Next, we describe the methodology for predicting loss and we investigate
the out-of-sample loss distributions obtained under different default and recovery models.

5.1 Default and Recovery Correlation

Empirical evidence shows that ex-post the frequency of default and the recovery rate given default
are negatively correlated (Altman et al. 2005). We investigate whether this empirical relation
between actual realized default frequencies and average recoveries is also apparent in the predicted
default probabilities and recovery rates. Note that the empirical relation is based on aggregate
data, since it involves frequencies of multiple firm defaults. Our study, however, investigates the
correlation at individual firm level, as our methodology allows the computation of individual firm
default probabilities.

Table 7 summarizes the aggregate correlations between predicted out-of-sample default prob-
abilities and recovery rates, for each pair of frailty default and recovery models. For firms with
multiple bonds of the same seniority, we take the average of the predicted recovery rates within the
same seniority class. We stratify the firms by industry and the bonds by seniority, and within each
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Table 6: Recovery Rate Models: Estimation Results and Out-of-Sample Prediction
MR1 MR2 MR3

Intercept 4.8935 1.1574 5.4528

(1.6127) (0.5115) (1.0877)

Coupon rate 0.0162 0.0290

(0.0167) (0.0169)

Logarithm(maturity outstanding) -0.1869

(0.0955)

Senior subordinate 0.6174 0.3316 0.2948

(0.2130) (0.2220) (0.2088)

Senior unsecured 0.9734 0.7132 0.7667

(0.1536) (0.1394) (0.1524)

Senior secured 1.1463 0.7593 0.8048

(0.2615) (0.3044) (0.2822)

Financials -0.9994 -1.2209 -0.4829

(0.4840) (0.5700) (0.5842)

Industrials -0.8836 -0.9939 -0.9383

(0.3613) (0.4340) (0.3981)

Transportation -1.2385 -1.3978 -1.2403

(0.3709) (0.4727) (0.4278)

Excess return 0.1175

(0.1819)

Volatility -1.6446

(0.8215)

Net income to total assets 0.3005

(0.6826)

Total liabilities to total assets 0.6398

(0.2694)

Relative size 0.1391 0.2522

(0.0704) (0.0584)

Logarithm(total assets) -0.2033 -0.3348

(0.0808) (0.0628)

Market to book ratio -0.2502 -0.4416

(0.1334) (0.1550)

Tangible assets to total assets ratio 0.3450

(0.3086)

Distance-to-default 0.0479

(0.0303)

T-bill 3-month yield -0.0871 -0.0688

(0.0345) (0.0356)

S&P 500 return 0.0861 0.5058

(0.4113) (0.4167)

Logarithm(total defaulted debt) -0.1620 -0.3033

(0.0627) (0.0558)

N 849 794 830

Out-of-sample RMSE 0.2487 0.2584 0.2559
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Table 7: Aggregate Correlations of Default Probabilities and Recovery Rates
Utilities Industrials Financials

Seniority Default Recovery models Recovery models Recovery models

models MR1 MR2 MR3 MR1 MR2 MR3 MR1 MR2 MR3

Subordinate MD1 -0.17 -0.30 -0.20 -0.27 -0.33 -0.29 -0.22 -0.20 -0.07

MD2 -0.17 -0.34 -0.17 -0.35 -0.32 -0.29 -0.32 -0.29 -0.13

MD3 -0.22 -0.32 -0.23 -0.29 -0.32 -0.29 -0.23 -0.20 -0.07

MD4 -0.24 -0.39 -0.23 -0.44 -0.27 -0.30 -0.33 -0.28 -0.10

Sample size 139 3010 830

Senior MD1 -0.83 -0.55 -0.51 -0.36 -0.11 0.08

subordinate MD2 -0.82 -0.54 -0.49 -0.49 -0.13 0.04

MD3 -0.82 -0.55 -0.50 -0.41 -0.12 0.07

MD4 -0.82 -0.53 -0.48 -0.55 -0.23 -0.12

Sample size 2105 29

Senior MD1 -0.16 -0.24 -0.12 -0.34 -0.27 -0.31 -0.33 -0.29 -0.13

unsecured MD2 -0.20 -0.28 -0.16 -0.47 -0.35 -0.49 -0.36 -0.32 -0.15

MD3 -0.19 -0.24 -0.13 -0.34 -0.24 -0.29 -0.35 -0.30 -0.13

MD4 -0.25 -0.34 -0.19 -0.50 -0.33 -0.45 -0.40 -0.34 -0.16

Sample size 669 6795 1221

Senior MD1 -0.18 -0.13 -0.11 -0.16 -0.22 -0.30

secured MD2 -0.21 -0.20 -0.11 -0.24 -0.34 -0.35

MD3 -0.22 -0.16 -0.13 -0.18 -0.24 -0.30

MD4 -0.35 -0.30 -0.22 -0.27 -0.33 -0.35

Sample size 506 589

industry and seniority class we compute the bivariate Pearson correlation coefficient between the
predicted default probability and the recovery rate across all firms and all years. The correlations
are not computed for utilities senior subordinate bonds and financials senior secured bonds where
the sample sizes are less than 10.

Almost all the aggregate correlations are negative and highly statistically significant. They vary
with industry group and seniority level, and also with the choice of default and recovery models.
For any given choice of recovery model, the correlations obtained with default models MD1 and
MD3 are similar, usually smaller in absolute value than those obtained with default model MD2,
which in turn are generally smaller than those obtained with default model MD4.

Are the patterns detected in aggregate correlations over the entire horizon 1996–2008 preserved
for disaggregate annual correlations? Figure 5 gives the annual correlations between out-of-sample
predicted default probabilities and recovery rates for each pair of frailty default models MD1 and
MD4 and recovery models MR1 and MR2. The firms are all industrials, and the recovery rates are
all for senior unsecured bonds (the class with the largest number of recoveries). It is apparent from
Figure 5 that the annual variation of correlations is related to the credit cycle. The correlations
increase in absolute value as the state of the economy worsens in 2001, then decrease as the economy
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Figure 5: Annual Correlations of Default Probabilities and Recovery Rates

improves during 2003–2004. This is consistent with insights from Das and Hanouna (2009) who also
find that the correlations of default probabilities and recovery rates become increasingly negative
with increasing default risk. The patterns of annual variation differ considerably between the
correlations computed with model MR1 and those computed with model MR2. For any specific
default model, the correlations implied by MR1 are generally smaller in absolute value than those
from MR2. The main difference between models MR1 and MR2 is in the way in which firm-specific
information is taken into account, since the distance-to-default is the only firm-level covariate
included in model MR2. Figure 5 thus shows that the modeling of firm-specific information in
the recovery models has a significant impact on both the level and the annual variation of the
correlation values. Figure 5 also shows that for any specific recovery model the correlations implied
by default model MD4 are generally larger in absolute value than those implied by MD1, although
the difference is marginal. These results are consistent with the patterns in aggregate correlations
from Table 7.

5.2 Predicted Loss Distributions

We next investigate the impact that the choice of default and recovery models has on predicted loss
distributions. We assume that the face value of each bond is one. With the notation from previous
sections, let us denote by ⊥i (t) an indicator function that equals 1 if firm i defaults in period t

conditional on survival up to period t, and 0 otherwise. Let us also denote by Ri(t) the recovery
rate for bonds of firm i at time t. The loss Li(t) from obligor i in period t is then Li(t) = 1−Ri(t)
if ⊥i (t) = 1, and Li(t) = 0 if ⊥i (t) = 0. The expected loss over the next period computed at t is
Et[Li(t+1)] = Et[⊥i (t+1) · (1−Ri(t+1))], where both ⊥i (t+1) and Ri(t+1) depend on a set of
covariates Xi(t+1). It is also possible to compute the expected loss over multiple periods horizons.
This entails modelling the evolution of the covariates, for example by means of a stochastic process
such as an autoregressive time series.

We exemplify the methodology by predicting loss distributions in different portfolios. We first
focus on the entire portfolio of all firms. Using the predicted default probabilities and recovery
rates, for every year during 1996–2008 we generated the out-of-sample loss distributions from each
default and recovery model. The loss distributions are based on 10000 simulated loss scenarios.
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When a firm defaults, we assume that all its outstanding bonds default and we compute the loss
using the predicted recovery rate for each bond. The overall loss in a simulation scenario is the loss
from all outstanding bonds of all firms defaulting in the scenario.

Table 8: Loss Prediction Errors, All Firms
Multiplicative frailty Shared frailty

Model MD1 MD2 MD3 MD4 MD1 MD2 MD3 MD4

Portfolio aggregate loss error

MR1 25.4382 23.4363 22.2222 19.6478 29.4810 27.7474 29.8769 27.7540

MR2 26.1152 24.0247 23.2348 19.3375 30.0079 28.2652 30.3478 27.0297

MR3 26.6799 24.7662 23.7334 20.8743 30.3155 28.6837 30.6795 28.4023

Loss per bond error

MR1 0.0226 0.0205 0.0204 0.0163 0.0263 0.0247 0.0266 0.0236

MR2 0.0229 0.0208 0.0209 0.0159 0.0266 0.0250 0.0268 0.0230

MR3 0.0236 0.0217 0.0216 0.0175 0.0269 0.0254 0.0272 0.0243

We first investigate the aggregate performance in loss prediction over the entire out-of-sample
horizon 1996–2008. We consider default models with multiplicative and with shared frailty, in
order to assess whether the multiplicative frailty factor improves prediction performance. Since the
number of bonds outstanding changes every year, we consider two different loss measures: the total
aggregate loss in the portfolio (the sum of losses on all bonds), and the loss per bond (equal to the
aggregate loss divided by the number of bonds each year). Table 8 reports the root mean squared
error (RMSE) over annual loss predictions for each combination of default and recovery models.
The table shows that, for all recovery models, all default models and prediction of both aggregate
loss and loss per bond, the default model with multiplicative frailty has a significantly smaller
RMSE than the default model with shared frailty. It is also apparent that, for any recovery model,
default model MD4 has consistently the lowest RMSE, followed by models MD2 and MD3 with
similar performance. This is true both for prediction of the aggregate loss in the entire portfolio
and for prediction of loss per bond. Recovery model MR1 has in most cases the smallest RMSE,
although the error differences across the three recovery models are small. This implies that the
choice of recovery model has a smaller impact on predicted loss performance than the choice of
default model.

We next investigate the predicted loss distributions for bonds stratified by industry. We focus
separately on the telecommunication, manufacturing, and retail sectors, and consider all firms in
these sectors with debt outstanding. Using a similar analysis as for the entire portfolio for all firms,
we report in Table 9 the mean squared errors of out-of-sample predictions for all combinations
of recovery models and default models with multiplicative and shared frailty. The numbers from
Table 9 support at industry level the insights from the aggregate analysis in Table 8. Default models
with multiplicative frailty perform better than default models with shared frailty, particularly for
telecommunication firms. Table 9 also shows that no single default model is uniformly best for all
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Table 9: Loss Prediction Errors, Various Industries
Multiplicative frailty Shared frailty

Model MD1 MD2 MD3 MD4 MD1 MD2 MD3 MD4

Telecommunication firms

Portfolio aggregate loss error

MR1 6.1183 4.7418 5.2950 3.3174 8.1779 7.2245 8.7093 6.9793

MR2 6.9506 5.8211 5.9144 4.3877 8.7159 7.9429 9.1789 7.6117

MR3 6.6384 5.2960 5.6994 3.9531 8.5233 7.5969 9.0103 7.3661

Loss per bond error

MR1 0.0674 0.0525 0.0586 0.0389 0.0893 0.0790 0.0951 0.0781

MR2 0.0761 0.0637 0.0653 0.0491 0.0949 0.0865 0.0999 0.0839

MR3 0.0729 0.0583 0.0630 0.0449 0.0930 0.0830 0.0983 0.0819

Manufacturing firms

Portfolio aggregate loss error

MR1 3.0267 2.9238 2.1984 3.7115 3.1412 3.1529 3.1117 4.5154

MR2 3.1748 3.0993 2.5553 3.6936 3.2572 3.2792 3.2255 4.3725

MR3 3.2197 3.1011 2.4564 3.6895 3.3304 3.3317 3.3000 4.4695

Loss per bond error

MR1 0.0063 0.0061 0.0046 0.0077 0.0066 0.0065 0.0065 0.0092

MR2 0.0066 0.0065 0.0053 0.0077 0.0068 0.0068 0.0067 0.0090

MR3 0.0067 0.0065 0.0051 0.0076 0.0070 0.0069 0.0069 0.0092

Retail firms

Portfolio aggregate loss error

MR1 7.6429 7.5489 7.2019 7.2202 7.5667 7.3603 7.5661 7.1488

MR2 7.6924 7.6009 7.3576 7.3162 7.6276 7.4355 7.6334 7.2493

MR3 7.6895 7.6120 7.2762 7.3043 7.6271 7.4517 7.6283 7.2421

Loss per bond error

MR1 0.0486 0.0480 0.0458 0.0460 0.0480 0.0467 0.0480 0.0452

MR2 0.0489 0.0484 0.0468 0.0467 0.0484 0.0472 0.0484 0.0459

MR3 0.0488 0.0484 0.0463 0.0465 0.0484 0.0473 0.0484 0.0458

industries; indeed, MD4 is generally best for telecommunication firms, while model MD3 is best for
retail and manufacturing firms, both for predicting aggregate loss and loss per bond. In terms of
recovery specifications, model MR1 again has lower prediction errors than MR2 and MR3 in almost
all cases, although the differences among the three recovery models in all three industry groups are
relatively small.

The aggregate analysis over the entire horizon 1996–2008 has so far shown that the default mod-
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Table 10: Annual Predicted Loss, Multiplicative Frailty
Year Loss N Expected value Standard deviation

MD1 MD2 MD3 MD4 MD1 MD2 MD3 MD4

1996 0.65 1205 9.04 6.28 8.62 7.82 6.18 5.21 5.88 6.75

1997 2.81 1305 7.49 6.09 6.85 6.45 6.75 5.56 6.33 6.24

1998 18.13 1367 13.11 11.15 10.58 12.45 5.92 5.08 5.42 5.65

1999 21.54 1375 24.18 29.47 23.07 42.24 9.45 9.79 9.42 12.93

2000 30.15 1309 33.69 40.42 29.54 40.82 11.45 12.50 10.68 14.56

2001 80.18 1299 31.97 32.10 53.35 39.86 9.84 10.38 14.49 13.26

2002 59.89 1242 32.32 39.37 37.43 61.96 10.07 10.76 11.92 15.75

2003 23.20 1272 19.47 21.49 21.79 54.52 11.56 12.79 12.23 22.54

2004 8.93 1286 7.27 5.17 8.21 4.57 8.49 7.06 8.79 8.19

2005 21.84 1270 7.43 5.59 9.55 7.52 12.24 9.51 13.86 12.59

2006 3.43 1227 6.60 5.72 5.82 6.97 5.89 5.63 5.66 7.91

2007 1.50 1152 6.15 5.56 6.17 6.39 5.63 4.73 7.13 6.13

2008 94.68 1047 24.43 32.67 24.86 55.85 15.95 19.39 15.69 33.21

els with multiplicative frailties perform better for loss prediction than those with shared frailties,
and that recovery model MR1 is marginally better than models MR2 and MR3. We next pursue
a disaggregate analysis by year; for conciseness, we henceforth focus on default models with mul-
tiplicative frailties, and on recovery model MR1. For all the subsequent analysis, the results from
recovery models MR2 and MR3 are similar to the ones from recovery model MR1, emphasizing
that the specific choice of recovery model has much less of an impact on predicted loss distributions
than the choice of default model.

Figure 6 gives the probability density functions of the annual loss distributions during 2001–
2008, predicted by all four multiplicative frailty default models and recovery model MR1. In most
years the loss distributions are relatively similar. The main exceptions are distributions generated
with MD3 in 2001, and with MD4 in 2001–2003 and 2008, which have both significantly higher
expectations and variances. These are also the years with the highest default frequency and realized
aggregate loss; this suggests that, to a larger extent than the other default models, model MD4
captures more of the uncertainty and high volatility related to the negative state of the economy
in those years, and allows for a larger upward adjustment of the predicted expected loss in periods
of economic distress. The comparison with the corresponding annual distributions of total default
numbers between 2001–2008 from Figure 3, shows that the annual patterns of default predictions
are largely conserved in loss prediction. In particular, this holds for the differences in default and
loss distributions predicted by MD4 in 2002–2003 and 2008. This is consistent with the earlier
insight that the choice of default model is the main factor for differences in loss predictions.

Table 10 summarizes the annual aggregate loss distributions for the entire portfolio of all firms
from Figure 6. The table reports the expectation and standard deviation of the loss distributions,
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Figure 6: Loss Distributions for Multiplicative Frailty Default Models

the total number of bonds outstanding, and the actual realized loss every year. Consistent with the
insights from Figure 6, the loss distributions from default model MD4 have often larger variability
than the other loss distributions, particularly in those years with high loss and default frequency,
2001–2002 and 2008.
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Figure 7: Annual Realized and Predicted Loss per Bond

To conclude the disaggregate analysis, we next assess the time dynamics of the loss per bond
predictions from all default models and recovery model MR1, first in the entire portfolio of all firms
and then separately in portfolios of firms from the telecommunications, manufacturing, and retail
sectors. The plots in Figure 7 show the annual realized loss per bond in each of these portfolios, as
well as the loss per bond predictions over the horizon 1996–2008. The patterns of annual variation
of the loss per bond in the four portfolios are very different. In most years the predictions from all
models are fairly close to the realized loss per bond in all portfolios. The few exceptions are the
large increases in realized loss around the crisis years 2001–2002 and 2008; while the predictions
succeed in capturing the jump in realized loss for telecommunication firms in 2002, they are less
successful at capturing the large loss for retail firms in 2001, or for the portfolio of all firms in 2008.
Again, the annual patterns in loss per bond from Figure 7 mirror closely the corresponding annual
patterns in default rates predictions from Figure 4.

We further test the different loss distributions adapting a methodology from Egorov, Hong and
Li (2006), and Hong, Li and Zhao (2007). Let Lt be the loss on a specific portfolio at time t, and
let lt be the realized loss. Given information at time t, the density function of the loss for the
next period t + 1 is denoted by ft(u). Let Xt = P [Lt+1 ≤ lt+1] =

∫ lt+1

0 ft(u) du be the cumulative
probability function for the loss at time t + 1. The random variables Xt are independent and
uniformly distributed on [0, 1]. Following Berkowitz (2001), let Zt = Φ−1(Xt), where Φ(·) is the
standard normal cdf. If the densities ft(u) fit the actual realized loss, then Zt are independent and
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Figure 8: Normal Quantile Plots for Transformed Predicted Loss

normally distributed.

We consider the portfolio of all bonds and the horizon 1996–2008, and we assess normality of
Zt using quantile plots. Figure 8 gives the quantile plots for annual loss predicted out-of-sample
by all four default models with multiplicative frailty and recovery model MR1. The plots suggest
that the transformed predicted loss values from model MD1 are closer to normality than those
from the other three default models. However, the Jarque-Bera and Lilliefors tests fail to reject the
normality assumption for Zt computed with all default models.

6 Conclusions

This paper focuses on modeling and validating the loss distribution with sector specific and regime
dependent unobservable heterogeneity in firm characteristics. To generate the loss distribution, it
is necessary to model the probability of default and the recovery rate given default. In this paper
we address two main issues—the modeling of sector specific and regime dependent unobservable
heterogeneity, and the appropriate choice of default and recovery models for loss prediction.

We first focus on default prediction and account for unobservable heterogeneity using a multi-
plicative frailty model with industry specific and regime dependent factors. Based on the analysis
of a large default data set over 1980–2008, we show that four default models inspired by extant
literature have very similar performance according to standard metrics that use relative ordinal
rankings of default probabilities. We present a different approach that compares the actual realized
number of defaults in a given portfolio with the total number of defaults predicted out-of-sample,
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and find that under this metric the differences between the four default models predictions can be
substantial. We show that controlling for industry-level heterogeneity significantly improves out-
of-sample forecasting performance, and that the appropriate choice of default model subsequently
has a crucial impact on loss prediction.

We next address the modeling of recovery rates, and find that three different specifications for
recovery in the event of default have similar out-of-sample performance. We show that the default
probabilities and recovery rates predicted out-of-sample are negatively correlated, and that the
magnitude of the correlation is related to the credit cycle and varies with industry and seniority.

Finally, we investigate the impact that the choice of default and recovery models has on the
predicted loss distribution. We show that the default model specification significantly affects the
predicted loss distribution, while the choice of recovery model has only a marginal impact. We prove
that accounting for regime dynamics in the default models is crucial for loss predictions, as regime-
dependent multiplicative frailty models perform significantly better than shared frailty models. We
also find strong industry effects which must guide the choice of an appropriate default model for
loss prediction; for example, the Duffie et al. (2007) model performs best for telecommunication
firms and in years with high default frequency. In contrast, the Shumway (2001) model enhanced
with two macroeconomic covariates performs best for manufacturing firms and in years with low
default frequency. These regime and industry effects imply that, for any practical application, the
appropriate choice of default models for loss prediction will depend on the credit cycle and on
portfolio characteristics.

APPENDIX: Dynamic Frailty Update

Over time as more default information becomes available, we update dynamically the parameter
estimates and the frailty distribution for each sector. For each year t, let E[Ỹti | Ft] = E[Yi∆Zi(t) |
Ft] = ∆Zi(t)E[Yi | Ft] be the expectation of the frailty term Ỹti conditional on the information set
Ft up to time t. Let θt, βt and ∆t be the values of the parameters estimated on data up to time t.
Conditional on Ft, the frailty Yi has a gamma distribution G(Ati, Cti) with scale parameter Cti =
1/θt +

∑nij

j=1,Tij≤t H(Tij) and shape parameter Ati = 1/θt +
∑nij

j=1,Tij≤t ⊥ij , and with conditional
mean given by

E[Yi | Ft] = Ati/Cti. (11)

As t varies, the dynamic Bayesian updating of the frailty distributions for each sector is shown
in Figure 1 which plots the annual expected frailties aggregated across all industry sectors. If no
firms within a particular sector default, this might increase confidence in the credit worthiness of
the firms in this sector and decrease the frailty. Conversely, if there is a failure in a particular
sector or the aggregate number of defaults in the economy increases, this might adversely affect the
assessment of credit worthiness and increase the frailty.
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