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1 Introduction

Market power manipulation–commonly known as a corner or squeeze–has be-
deviled derivatives markets since their inception. The early histories of major
exchanges, such as the Chicago Board of Trade, are filled with colorful stories
of manipulation by larger than life characters. But manipulation is not just a
historical curiosity. The soybean market was rocked by a major manipulation in
1989, copper was massively manipulated in the mid-1990s, Brent crude squeezed
at various times in the 1990s and 2000, and recently there have been allegations
of corners in aluminum and propane. Nor are corners limited to physical com-
modity markets. There is evidence of squeezes in US Treasury Bond futures
in 1986 (Cornell and Shapiro, 1989); Salomon Brothers squeezed the Two-year
Treasury Note market in 1991 (Jegadeesh, 1993); the UK Long Gilt contract
was squeezed in the 1990s (Merrick, Naik, and Yadev, 2005); there are allega-
tions that a corner of the Ten-Year Treasury Note futures contract (one of the
world’s largest) occurred in 2005; and the US Treasury and Federal Reserve
have expressed serious concerns about chronic squeezes in the Treasury repo
markets. There are also indications that credit derivatives have been squeezed
in the aftermath of credit events. Allen, Litov, and Mei (2006) document a
number of stock corners.

Manipulation casts a shadow over the markets even when corners are not
occurring. Much of the regulatory apparatus in futures, options, and securi-
ties markets is directed at detecting, preventing, and deterring market power
manipulation. Position limits, position reporting, market surveillance, internal
compliance efforts, civil and criminal prosecution, and class action litigation
are all directed at reducing the frequency and severity of manipulations. These
resource-consuming efforts are driven by the fact that manipulation strikes at
the very purpose of derivatives markets–risk transfer and price discovery–and
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imposes other deadweight losses in the form of distortions in production, con-
sumption, and transportation.

Despite the importance of manipulation to the operation of derivatives mar-
kets, there are few models that predict: (a) how a manipulator can obtain
market power from those that will suffer from it, (b) how the frequency, sever-
ity, and cost of manipulation varies with market conditions, (c) the welfare and
distributive consequences of manipulation, and (d) what are the most efficient
means to reduce the deadweight burdens of manipulation. Pirrong (1993) ana-
lyzes the “delivery end game” in detail, and Pirrong (2001) shows that market
power manipulation can occur even in cash-settled futures contracts, but both
of these articles start from the assumption that a trader has accumulated a
large position, and do not analyze the trading process by which the trader can
profitably accumulate this position.

The key problem in any analysis of how a large long accumulates a position
that confers market power is: why do the shorts who suffer from a squeeze
participate in the market? Allen, Litov, and Mei (2006) provide one approach
to answering this question. In their model, arbitrageurs with information about
fundamentals sometimes find it profitable to establish short positions even when
there is a risk that a corner by an equally-well informed large trader who has
sufficient resources to corner only some of the time; the profits from shorting
when in possession of bearish information are large enough to offset the periodic
losses from corners.

In an alternative approach to answering this question, Pirrong (1995a) builds
on an insight of Kumar and Seppi (1992) to show that a large trader can use
noise trader order flow to conceal partially his trading, and thereby accumulate
a large position through the use of a randomized (mixed) trading strategy.

The manipulator in Pirrong (1995a)–as in Kumar-Seppi (1992)–is a liquid-
ity demander. This article explores the possibility that a liquidity supplier–
specifically, a large speculator–can corner a market. This is motivated by the
fact that many famous manipulations have been undertaken by large speculative
traders.

A straightforward modification of a standard Anderson-Danthine (1981)
model of futures market equilibrium generates a variety of predictions regard-
ing the factors that facilitate manipulation, its costs, and the costs and benefits
of alternative means of reducing its frequency and severity. In this model, a
large speculator and a competitive fringe of small speculators trade with agents
who have an endowment that they can hedge by selling futures. The size of
the hedger endowment can vary. Moreover, there is uncertainty about market
fundamentals; supplies in the futures delivery market and non-delivery markets
are random, and at the time they initiate their positions market participants
know only the distribution of supply at expiration. The large speculator trades
strategically, and depending on the size of the position he takes and the realiza-
tion of the supply shock at contract expiration, sometimes squeezes the market
at delivery.

Specifically, the model predicts:
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• Manipulation occurs in equilibrium with positive probability in a deriva-
tives market with a large speculative trader.

• Manipulation occurs more frequently, and is more severe, the larger the
short hedging interest, the less elastic supply in the delivery market, the
more elastic demand in the delivery market, the lower the risk tolerance
of hedgers and small speculators, and the lower the risk tolerance of the
competitive fringe of speculators.

• Manipulation reduces hedging effectiveness by reducing the correlation
between the price of the futures and the prices of non-deliverables at ex-
piration. This reduction in hedging effectiveness reduces the welfare of
hedgers. The hedger welfare loss depends on the same factors that affect
the frequency and severity of manipulation, and in the same way.

• Large speculators effectively obtain a manipulation option that they exer-
cise when supply and demand conditions at expiration are favorable, but
do not exercise under other market conditions.

• Non-manipulating speculators benefit from manipulation, but it harms
hedgers.

• Speculative position limits reduce the frequency and severity of manip-
ulation, but actually reduce welfare because they constrain the amount
of risk that the large speculator absorbs from the hedgers. Although the
large speculator exercises market power under some supply conditions, he
also provides the beneficial function of taking on risk from the hedgers.
Position limits impede this efficient risk transfer.

• In contrast, measures that deter the exercise of market power during the
delivery period improve welfare because they constrain the exerice of mar-
ket power at expiration without constraining the speculator’s socially ben-
eficial risk bearing function.

The model offers several advantages over Pirrong (1995), Kumar and Seppi
(1992), and Allen, Litov, and Mei (2006). Specifically, it avoids the conven-
tional contrivance of noise traders, and instead relies on a structural model of
hedger participation. Moreover, it does not require that any trader (including
the manipulator) possess superior information. Relatedly, the source of short
selling–cross hedging–is realistic and pervasive in a variety of physical and finan-
cial markets, and is plausibly more important than information-based arbitrage
trading. Also, the model does not rely on ad hoc random, exogenous wealth
constraints on large trader positions to ensure the existence of an equilibrium
with corners. Furthermore, it generates a variety of implications about how the
frequency and severity of manipulation covaries with structural conditions (such
as supply and demand conditions, and the amount of hedging activity); these,
in turn, facilitate understanding of how the prevalence of corners should vary
in the cross section and in time series.
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The remainder of this article is organized as follows. Section 2 presents the
model and derives some intermediate results. Section 3 sets out and discusses
the main positive implications of the model. Section 4 discusses some policy
implications. Section 5 summarizes the article.

2 The Model

2.1 The Physical Markets

There are M +1 physical markets for the commodity. There are no connections
between the markets.1 Demand in each market is P = θD −φDq, where θD and
φD > 0 are constants, P is the spot price in the market, and q is the quantity
consumed. Supply in each market is P = θ̃S + φSq, where φS > 0 is a constant
and q is the quantity supplied to the market. θ̃S is a random variable. It takes
the same value in each market, hence in the absence of derivatives trading,
the spot prices of the commodity are perfectly correlated across markets. The
density function of θ̃s is f(θ̃s), and its cumulative distribution function is F (θ̃s).
The density of θ̃s has support [0, θD].2

2.2 The Futures Market

There is a futures contract traded on the commodity. The contract is settled
by delivery in market 1.3 Markets 2, . . . , M + 1 are “out-of-position.” Trading
in the futures market occurs at time 0, and delivery occurs at time 1.

There are three types of participants in the futures market. First, there is a
continuum of measure 1 of hedgers with endowments (contractual or physical)
in each market 2, . . . , M + 1. Hedger j at location j ∈ [0, 1] of the continuum
has an endowment of yj , and a risk tolerance (the inverse of his risk aversion

1This is for tractability. Introducing connections, through transportation, for instance,
dramatically increases the complexity of the analysis. Despite this assumption, the simple
model captures essential features of many markets. For instance, it is typically very inefficient
to ship oil from, say, the Middle East to Sullom Voe (where delivery on Brent contracts occurs.)
Thus, the Middle Eastern and Brent markets are effectively unconnected. Similarly, it is
inefficient to ship soybeans from Brazil to Illinois for delivery against Chicago Board of Trade
soybean contracts. The appendix presents a model that captures these conditions. In this
model, there is a world consumption market for a commodity, and many dispersed production
locations. There are no shipments between production locations. All of the implications
presented in the main body of the text obtain for the model presented in the appendix.

2The assumptions of linearity and fixed demand facilitate the formal analysis, but the
results presented below are not dependent on them. Along with the assumption of a uni-
form distribution of the supply shock, these assumptions permit closed form solutions for the
expected spot price at expiration, the variance of the delivery market spot price, and the co-
variance between the delivery market and non-delivery market spot prices. Such closed forms
are not available for other assumptions, e.g., isoleastic demand and lognormal distributions of
supply and demand shocks. However, the model can be solved numerically under these more
general assumptions. The results presented in section 3 below obtain under these alternative
assumptions.

3Pirrong (2001) shows that the same results would obtain in a market where the futures
are cash settled against the spot price in market 1.
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coefficient) tj. Hedgers are price takers in the physical and futures markets, and
have mean-variance preferences. That is, hedger j chooses his futures position
Hj to maximize:

UHj = yj P̄c + Hj(P̄1 − F ) − .5
VHj

tj
,

where P̄c is the expected cash price in the hedger’s market, P̄1 is the expected
cash price in the delivery market at contract expiration, F is the futures price,
and VHj is the variance of the hedger’s wealth:

VHj = y2
j σ2

c + H2
j σ2

1 + 2yjHjσ1c,

where σ2
c is the variance of the cash price in markets 2, . . .M + 1, σ2

1 is the
variance of the cash price in market 1, and σ1c is the covariance between the
prices in market 1 and markets 2, . . . , M + 1.

The total endowment of the hedgers at each location is Y =
∫
j∈[0,1] yjdj.

Hereafter I assume that hedgers are net long the commodity, so that Y > 0.
The total hedger endowment is MY > 0.4

Second, there is a continuum of measure 1 of small speculators. Speculators
have no endowment, and maximize mean-variance utilities. The risk tolerance
of speculator i is ti. Speculator i chooses her futures Si position to maximize:

USi = Si(P̄1 − F ) − .5
VSi

ti

where the variance of speculator wealth is:

VSi = S2
i σ2

1.

Since both hedgers and speculators are atomistic, they are price takers in
the futures delivery process. Hence, they liquidate their entire futures positions
at expiration.5

Third, and finally, there is a large speculator. This speculator has no endow-
ment of the physical commodity, is risk neutral, and chooses a futures position
x to maximize his expected wealth:

W = EΠ(x, θ̃S) − xF

where Π(x, θS) is the large speculator’s revenue at futures contract expiration,
and the expectation is over the distribution of the supply shock θ̃S . This revenue

4This analysis assumes that there are no hedgers in the delivery market. This is for ease
of exposition only. It is straightforward but tedious to incorporate hedging demand from the
delivery market. This introduces heterogeneity among the hedgers (as out-of-position hedgers
face basis risk, but those in the delivery market do not) which complicates the analysis, but
does not change the fundamental results. Indeed, the presence of in-position hedgers facilitates
the accumulation of large long speculative positions because these hedgers demands are not
as sensitive to the speculator’s trading because they do not suffer from basis risk.

5An atomistic trader’s taking of delivery has no effect on the period 1 futures price, but
the atomistic trader sells the commodity delivered to him at a price lower than he could sell
his futures contract at expiration. Thus, he has no incentive to take delivery.
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consists of two components: the revenue from sales of the commodity that is
delivered to him, and revenue from the sales of futures contracts. Thus,

Π(x, θS) = max
Q

{Q(θD − φDQ) + (x − Q)(θ̃S + φSQ)} (1)

In this expression, Q is the number of deliveries that the large speculator takes.6

The first term in the bracketed expression is the revenues from deliveries. The
long takes Q deliveries, which he sells at a spot price of θD −φDQ. The second
term is the revenue from sales of futures contracts. If the long takes Q deliveries,
he liquidates (sells) x − Q futures contracts. At expiration, the futures price
equals the marginal cost of delivery (Pirrong, 1993). For Q deliveries, this is
θ̃S +φSQ. If the solution to this maximization problem has Q ≤ Qc, where Qc =
(θD − θ̃S)/(φD + φS), the competitive quantity in the market, the manipulator
sells both futures and whatever deliveries he takes at the competitive price
Pc = θ̃D − φDQc = θ̃S + φSQc.

2.3 Equilibrium at Delivery

To squeeze, the speculator demands deliveries that exceed the competitive quan-
tity in the delivery market (Pirrong, 1993). Therefore, the price in the delivery
market at expiration (and hence the futures price at expiration) is higher than
the competitive price if and only if Q ≥ Qc. By demanding excessive deliver-
ies, the manipulator forces excessive production of the commodity, driving up
the marginal cost of production; shorts must pay this inflated marginal cost of
production in order to acquire the good for delivery. Immediately following ex-
piration, the price in the delivery market falls below the competitive equilibrium
price because the manipulator dumps the excessive supplies of the commodity
in market 1. This post-delivery fall in price is referred to as the effect of “bury-
ing the corpse.” The cost of burying the corpse (i.e., disposing the excessive
deliveries at a depressed price) affects the profitability of manipulation, and the
cornerer will take this effect into account when deciding how many contracts to
liquidate and how many to close via delivery.

In this case, out-of-position hedgers suffer from an adverse move in the ba-
sis (i.e., the price at expiration rises relative to the prices in other markets),
and there are deadweight losses arising from a distortion of production and
consumption in the delivery market.

The delivery decision depends on θ̃S . Solution of the first order conditions
for (1) implies:

Q =
θD − θ̃S + φSx

2(φD + φS)

Q ≥ Qc when:
θ̃S ≥ θ∗S = θD − φSx

6For simplicity, I assume that the speculator has a long position. This occurs in equilibrium
given the assumption about the endowment of hedgers.
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That is, θ∗S is the value of the supply shock such that a squeeze occurs if the
supply curve’s intercept is higher than this critical level. Note that deliveries
are lower, the tighter are supply conditions (i.e., the larger is θ̃S). Further note
that for a given x, the large speculator corners the market only when there is
a sufficiently adverse supply shock. Moreover, since θ∗S is decreasing in x, the
speculator exercises market power more frequently (i.e., under a wider range of
supply conditions), the larger is x. That is, the critical level of the supply curve
is intercept is smaller with a larger x. This means that for larger x, squeezes
occur for a wider range of supply shocks.

Since price in the delivery market at expiration depends on both x and θ̃S ,
the distribution of prices at expiration depends on x. When θ̃S ≤ θ∗S the price
at expiration is the competitive price:

P1 = θ̃S(1 − A) + θDA

where A = φS/(φD+φS). When θ̃S > θ∗S , the delivery market price at expiration
equals the marginal cost of producing Q units:

P1 = θ̃S(1 − .5A) + .5θDA + .5φSAx

Therefore, the expected price at expiration is:

P̄1 =
∫ θ∗

S

0

[θ̃S(1−A)+θDA]f(θ̃S)dθ̃S+
∫ θD

θ∗
S

[θ̃S(1−.5A)+.5θDA+.5φSAx]f(θ̃S)dθ̃S

The expected price is increasing in x:

∂P̄1

∂x
= .5φSA[1 − F (θ∗S)] > 0

The variance of the market 1 price is:

σ2
1 =

∫ θ∗
S

0

[θ̃S(1 − A) + θDA]2f(θ̃S )dθ̃S

+
∫ θD

θ∗
S

[θ̃S(1 − .5A) + .5θDA + .5φSAx]2f(θ̃S )dθ̃S − P̄ 2
1 (2)

The covariance between P1 and Pc is:

σ1c =
∫ θ∗

S

0

[θ̃S(1 − A) + θDA]2f(θ̃S )dθ̃S (3)

+
∫ θD

θ∗
S

[θ̃S(1 − A) + θDA][θ̃S(1 − .5A) + .5θDA + .5φSAx]f(θ̃S)dθ̃S

− P̄1P̄c

Some results depend on the derivatives of the variance and covariance with
respect to x. Note that:

∂σ2
1

∂x
= 2E(P1 − P̄1)

d(P1 − P̄1)
dx

.
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For θ̃S < θ∗S ,
d(P1 − P̄1)

dx
= −Ĉ[1− F (θ∗S)]

where
Ĉ = .5φSAx

is a constant.
For θ̃S ≥ θ∗s ,

d(P1 − P̄1)
dx

= Ĉ − Ĉ[1 − F (θ∗S)].

Therefore,

2E(P1 − P̄1)
d(P1 − P̄1)

dx
= 2

∫ θD

θ∗
S

(P1 − P̄1)[Ĉ − Ĉ(1 − F (θ∗S))]f(θ̃S )dθ̃S

− 2
∫ θ∗

S

0

(P1 − P̄1)Ĉ[1− F (θ∗S)]f(α̃s)dθ̃S

where P1 is a function of θ̃S . This can be rewritten as:

2E(P1 − P̄1)
d(P1 − P̄1)

dx
= 2

∫ θD

θ∗
S

(P1 − P̄1)Ĉf(θ̃S)dθ̃S

− 2
∫ θD

0

(P1 − P̄1)Ĉ[1− F (θ∗S)]f(θ̃S)dθ̃S

By the definition of P̄1, the second term is zero, so:

∂σ2
1

∂x
= 2Ĉ

∫ θD

θ∗
S

(P1 − P̄1)f(θ̃S)dθ̃S > 0

A similar derivation implies that:

∂σ1c

∂x
= Ĉ

∫ θD

θ∗
S

(Pc − P̄c)f(θ̃S )dθ̃S > 0

Now note that:
∫ θD

θ∗
S

(P1 − P̄1)f(θ̃S )dθ̃S =
∫ θD

θ∗
S

P1f(θ̃S)dθ̃S − P̄1[1− F (θ∗S)]

and ∫ θD

θ∗
S

(Pc − P̄c)f(θ̃S )dθ̃S =
∫ θD

θ∗
S

Pcf(θ̃S )dθ̃S − P̄c[1 − F (θ∗S)]

Therefore,

Ĉ

∫ θD

θ∗
S

(P1 − P̄1)f(θ̃S)dθ̃S > Ĉ

∫ θD

θ∗
S

(Pc − P̄c)f(θ̃S)dθ̃S
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if
∫ θD

θ∗
S

P1f(θ̃S )dθ̃S − P̄1[1− F (θ∗S)] >

∫ θD

θ∗
S

Pcf(θ̃S)dθ̃S − P̄c[1− F (θ∗S)].

This holds if: ∫ θD

θ∗
S

(P1 − Pc)
f(θ̃S)

1 − F (θ∗S)
dθ̃S > P̄1 − P̄c

The left-hand-side is the expected value of the difference between the manip-
ulative and competitive prices conditional on manipulation occuring, and the
right-hand-side is the unconditional mean of the difference between the manip-
ulated price and the price in the markets where manipulation does not occur.
Since the market 1 price and the price in the other markets is the same when
manipulation does not occur, but the market 1 price is higher when manip-
ulation occurs, the conditional expectation of the difference must exceed the
unconditional expectation of the difference. This, in turn, implies that

∂σ2
1

∂x
≥ 2

∂σ1c

∂x
.

This further implies that due to manipulation, the correlation between the mar-
ket 1 price and the prices in the out-of-position markets declines as the size of
the large speculator’s position increases over some range of x.

2.4 Futures Market Equilibrium

Information in the model is perfect and complete. Hedgers and the small specu-
lator observe the large speculator’s trade, x, so the results are not driven by the
ability of the large speculator to hide in the order flow. Moreover, all market
participants observe Y , and have the same information about the distribution
of θ̃S . Hence, manipulation does not occur due to any information advantage
by the large speculator.

It is well known that the price-taking, mean-variance utility out-of-position
hedger j chooses:

Hj = −yj
σ1c

σ2
1

+ tj
P̄1 − F

σ2
1

.

The first term is the variance minimizing hedge. The second term is the spec-
ulative component of the hedger’s position. Short hedging is costly when there
is a risk premium (P̄1 −F > 0.) The second term reflects the adjustment to the
hedge arising from this risk premium. Similarly, speculator i chooses:

Si = ti
P̄1 − F

σ2
1

.

Equilibrium in the futures market requires:

x + M

∫
j∈[0,1]

Hjdj +
∫

i∈[0,1]

Sidi = 0.
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Combined with the expressions for Hj and Si, this implies that in equilibrium:

x − MY
σ1c

σ2
1

+ (MTH + TS)
P̄1 − F

σ2
1

= 0

where TH =
∫

j∈[0,1]
tjdj and TS =

∫
i∈[0,1]

tidi. Thus:

F = P̄1 − MY
σ1c

TT
+ x

σ2
1

TT
, (4)

where TT = MTH +TS is the total risk bearing capacity (risk tolerance) supplied
by agents other than the large speculator.

Note that
dF

dx
=

∂P̄1

∂x
− MY

TT

∂σ1c

∂x
+

σ2
1

TT
+

x

TT

∂σ2
1

∂x
. (5)

The large speculator takes into account this impact of his trading activity on
the futures price when choosing x. Specifically, when choosing x to maximize
(1), he solves the first order condition:

dW

dx
= E

dΠ(x, θ̃S)
dx

− F − x
dF

dx
= 0.

The envelope implies that dΠ(x, θ̃S)/dx = P̄1. Substituting from (5) and (6),
the first order condition becomes:

xMY

TT

∂σ1c

∂x
+

MY

TT
σ1c − x

∂P̄1

∂x
− 2σ2

1x

TT
− x2

TT

∂σ2
1

∂x
= 0. (6)

3 Analysis of the Futures Market Equilibrium

The model makes several predictions about equilibrium and welfare in a market
that can be manipulated. Some of these results can be proved analytically.
Others can be shown numerically.

The key analytical results are:

• Manipulation occurs with positive probability. That is, Q ≥ Qc(θ̃S) with
positive probability. To see why, note that manipulation occurs with pos-
itive probability when θ∗S < θD. This occurs, in turn, whenever x > 0.
Consider the first derivative of the manipulator’s objective function W
when x = 0:

dW

dx
=

MY

TT
σ1c > 0

Thus, x = 0 is not an equilibrium, and in fact the large speculator chooses
x > 0.
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• The foregoing implies that stealth is not necessary for corners to occur
in equilibrium.7 Although the ability to trade without being detected
(or at least with some possibility of escaping detection) presumably re-
duces the price impact of the large speculator’s trading, and thereby in-
creases the profitability of that trading, in the model the large speculator
squeezes with positive probability even though his trading is completely
transparent. Nonetheless, corners are not perfectly predictable at the time
traders initiate positions, because supply shock realizations also determine
whether or not they occur.

• The frequency of manipulation, and the deadweight losses arising there-
from, are increasing in Y. Note that

dx/d(MY ) = −∂2W/∂x∂(MY )
∂2W/∂x2

.

The numerator in this expression is

x

TT

∂σ1c

∂x
+

σ1c

TT
> 0,

but the denominator is negative (by the second order conditions for a max-
imum), so the derivative is positive. This occurs because the large specu-
lator takes a larger position when the hedging interest is larger. Since the
severity and frequency of manipulation are increasing in x, the greater the
hedging demand for futures, the worse the deadweight losses from corners.
This implies that futures markets with a large out-of-position hedging in-
terests are more susceptible to manipulation than smaller futures markets.

• The frequency, severity, and cost of manipulation is decreasing in hedger
and small speculator risk tolerance TT . Note that:

dx

dTT
= −∂2W/∂x∂TT

∂2W/∂x2

Moreover:

∂2W

∂x∂TT
=

−1
TT

[−2σ2
1x

TT
− x2

TT

∂σ2
1

∂x
+

xMY

TT

∂σ1c

∂x
+

MY

TT
σ1c]

By (6), term in brackets is x∂P̄1/∂x > 0, so ∂2W/∂x∂TT is negative, and
∂2W/∂x2 is negative from the second order conditions for a maximum.
Thus, dx/dTT is negative. Since manipulation is more frequent and severe,
the larger is x, this implies that greater risk bearing capacity by small
speculators and hedgers reduces manipulation.

7Easterbrook (1986) emphasizes the importance of position concealment on the success of
manipulation. The manipulator in Pirrong (1995a) and Kumar-Seppi (1992) also profits from
the ability to conceal positions.
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This is an intuitive result. The large speculator faces a lower and more
elastic derived demand for his services, the greater the risk tolerance of
the hedgers, and the greater the risk tolerance of the small speculators
he must compete with. With a lower and more elastic derived demand,
he chooses a smaller position. Hence, greater competition for the large
speculator reduces the severity of manipulation problems.

• The large speculator chooses a smaller position x when he can manipulate
than when manipulation is precluded (due, for instance, to the imposition
of punishment that deters this conduct.) Note that when manipulation is
precluded, the large speculator buys .5MY contracts because in this case,
the average price in the delivery market, the covariance between prices in
the delivery and non-delivery markets, and the variance of the price in the
delivery market do not depend on x (because in the absence of manipu-
lation, price in the delivery market is the competitive price regardless of
the size of the large speculator’s position.) Thus, the relevant first order
condition is:

dW

dx
=

MY

TT
σ1c − 2σ2

1x

TT
= 0

which implies x = .5MY since σ2
1 = σ1c in the absence of manipulation.

Now consider the derivative of the speculator’s objective function evalu-
ated at x = .5MY when manipulation can occur:

dW

dx
=

M2Y 2

2TT
[
∂σ1c

∂x
− .5

∂σ2
1

∂x
] − Y

TT

∂P̄1

∂x
+

Y

TT
[σ1c − σ2

1 ].

Since each of these terms is negative when x > 0, the derivative is negative,
meaning that the large speculator increases his wealth by reducing his
futures position below .5MY .

This result may seem counterintuitive, but it is sensible. The prospect for
manipulation affects prices. When manipulation is possible, the futures
price is higher, and more sensitive to the large speculator’s purchases than
when it is not. Recognizing that his purchases drive up prices, the large
speculator trades less intensively.

• Hedgers trade less when manipulation can occur. That is, the |Hj| are
smaller when corners occur than when they are precluded.

This can be proved by contradiction. Recall that

−Hj = yj
σ1c

σ2
1

− P̄1 − F

σ2
1

Since when corners can occur σ1c/σ2
1 < 1, whereas this ratio equals 1 when

corners cannot occur, the only way that |Hj| can increase when corners
can occur is for −(P̄1 − F )/σ2

1 to increase, and hence for (P̄1 − F )/σ2
1

to decline. If this happens, however, Si declines for all i. Furthermore,
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it was just shown that x is smaller when the large speculator can corner
than when he cannot. Thus, for the |Hj| to be higher when manipulation
can occur than when it cannot, the

∫
i∈[0,1]

Sidi +x must be smaller. This
violates the equilibrium condition.

−M

∫
j∈[0,1]

Hjdj =
∫

i∈[0,1]

Sidi + x

Derivation of results regarding the impact of manipulation on welfare and
risk premia must be performed numerically because expression (6) is in general
a highly non-linear function of x, and cannot be solved in closed form. This nu-
merical solution provides insights on the impact of manipulation on risk premia
and futures pricing. Several figures depict visually the key results.

The numerical solution assumes that the distribution of θ̃S is uniform on the
interval [0, θD]. In this case:

P̄1 =
1

θD
{
∫ θ∗

S

0

[θ̃S(1−A)+θDA]dθ̃S +
∫ θD

θ∗
S

[θ̃S(1− .5A)+ .5θDA+ .5φSAx]dθ̃S}

Simplifying this integral, it is straightforward to show that P̄1 is an increasing,
quadratic function of x.

The variance of the market 1 price is:

σ2
1 =

1
θD

{
∫ θ∗

S

0

[θ̃S(1 − A) + θDA]2dθ̃S

+
∫ θD

θ∗
S

[θ̃S(1 − .5A) + .5θDA + .5φSAx]2dθ̃S} − P̄ 2
1 (7)

Simplification of this integral implies that this variance is a cubic function of
the large speculator’s position x.

The covariance between P1 and Pc is:

σ1c =
1

θD
{
∫ θ∗

S

0

[θ̃S(1 − A) + θDA]2dθ̃S (8)

+
∫ θD

θ∗
S

[θ̃S(1 − A) + θDA][θ̃S(1 − .5A) + .5θDA + .5φSAx]dθ̃S}

− P̄1P̄c

This is also a cubic function of x. Along with (6) these results imply that the
first order condition is a quartic function of x.

The figures are are derived from the solution of the problem for θD = 200/3,
θD = 1, φD = 1, φS = .25, and M = 10. Moreover, TT is set so that in
the absence of the large speculator, when Y is equal to the mean value of
Qc, P̄c − F = .025P̄c, that is, so that the mean futures price discount (which
rewards speculators for bearing risk) is 2.5 percent of the mean competitive
price. Moreover, TH = .1TT .
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• Although the likelihood of a squeeze is higher when x is large, and x is
increasing in Y , the futures price is decreasing in Y . Increasing Y has
two effects: a hedging pressure effect, and a manipulation effect. When
Y is large, hedgers want to sell more futures, ceteris paribus. This tends
to depress the futures price. When corners can occur, (a) the effect of
manipulation on hedging effectiveness reduces hedger supply of futures
positions, and (b) increases the expected spot price at expiration; these
factors tend to counter the impact of greater hedging pressure. In equilib-
rium, however, the hedging pressure effect dominates, and therefore the
amount of risk that hedgers transfer to small speculators is increasing in
Y . This increase in hedging pressure depresses the futures price. Figure
1 presents the relation between the futures price and Y .

This result suggests that a manipulator’s trading will exhibit negative cor-
relation with prices. If Y varies over time, the large speculator’s purchases
will be largest when Y is largest. The resultant hedging pressure causes
the futures price to be lower than with smaller Y . Thus, the large specula-
tor’s purchases are negatively correlated with the futures price. Moreover,
when he squeezes, his sales occur at a high price.

This result also implies that the risk premium P̄1 − F is increasing in Y
because (a) P̄1 is increasing in x, which is increasing in Y , and (b) F is
decreasing in Y .

• Total surplus (hedger utility plus small speculator utility plus large trader
expected profit minus deadweight loss from consumption and production
distortions in the delivery market) as a fraction of total surplus when ma-
nipulation is precluded is declining in Y (M). This is depicted in Figure 2.
This occurs because as Y increases and manipulation becomes more fre-
quent and severe, hedgers must incur more basis risk. In response, hedgers
sell fewer futures per unit of endowment because the greater frequency and
severity of manipulation reduces σ1c/σ2

1 (the variance minimizing hedge
ratio), and inflates the risk premium (P̄1 − F )/σ2

1. That is, manipulation
reduces the effectivness of hedging (by increasing the variability of the
basis), and also increases its cost (the risk premium.) This reduces hedger
utility. Speculator utility rises, but not by enough to offset the effect of
(a) the deadweight losses arising from manipulation, and (b) the decrease
in hedger utility.

• The frequency, severity, and cost of manipulation is increasing in φS . That
is, manipulation is less (more) frequent, and severe, and costly, when sup-
ply in the delivery market is more (less) elastic. This is readily understood.
A higher φS (i.e., a flatter supply curve) means that (a) the competitive
quantity in the delivery market is larger, ceteris paribus, so a larger po-
sition is required to manipulate the market, and (b) it is less costly to
enhance supply in the delivery market in response to a manipulator’s de-
mand for excessive deliveries. Similarly, the frequency, severity, and cost
of manipulation is decreasing in φD. When demand is inelastic, the cost

14



of burying the corpse is large because the less elastic the demand, the
more the cornerer depresses the post-delivery price when he dumps his
deliveries on the market. The higher cost of burying the corpse reduces
the speculator’s incentive to manipulate the market.

4 Policy Implications

This analysis has some important policy implications. First, restrictions on
the size of the position that large speculator can hold actually reduce welfare.
Figure 3 depicts the ratio between total surplus when the large long can only
hold half as many futures contracts as he would buy in the absence of a position
limit, and total surplus when the large long’s positions are not restricted, as a
function of Y . Note that this fraction is less than or equal to one, and decreasing
in Y . This is an important result, because position limits are a widely employed
(or advocated) as a means of preventing manipulation.8

This result reflects the fact that the large speculator plays two roles, one
beneficial, one not. The speculator’s rent-seeking manipulative activities reduce
surplus. However, the speculator also facilitates hedging by bearing risk more
efficiently than the hedgers, or the small speculators. Although position limits
reduce manipulation, and the deadweight losses associated therewith, they also
limit the amount of risk that the large speculator absorbs from the hedgers. In
this model, the losses arising from this latter effect of position limits more than
offset the benefits arising from a reduction in manipulation. That is, position
limits throw out the baby with the bath. They indiscriminately curtail the
large speculator’s efficiency enhancing activities as well as his efficiency reducing
ones. Indeed, since as noted above a speculator who can manipulate buys fewer
futures than he would than one who is precluded from doing so, position limits
are perverse because they restrain his trading–and risk bearing–even further.9

This implies that different measures to curb manipulation are preferable to
speculative position limits. It further implies that a desirable policy is one that
constrains the ability to exercise market power at delivery without constraining
the large speculator’s socially beneficial risk bearing function. That is, efforts
forcused on reducing the exercise of market power at expiration are more efficient
than restrictions on the accumulation of large positions because the former
measures constrain rent seeking activities without limiting the large speculator’s
ability to perform the valuable function of absorbing risk from hedgers.10

8A different form of position limit also reduces welfare below the level that would obtain
when manipulation can occur and the large speculator’s positions are not restricted. Specif-
ically, welfare falls if the manipulator’s position is limited to the average competitive supply
in the delivery market.

9Since x is less than half the position the large speculator would amass if manipulation is
precluded, this position limit forces him to hold one-quarter of the position he would hold if
he were prevented from squeezing at expiration.

10Implementation of measures that preclude the exercise of market power at expiration
will not result in a first best outcome. The large speculator still exercises market power in
period 0 because he faces a downward sloping demand for his risk bearing services (due to
the limited risk bearing capacity of the hedgers and small speculators.) As a result he buys
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Another way to reduce manipulative losses without constraining speculative
risk bearing is to deter the exercise of market power through the imposition of
sanctions ex post. The analysis also provides insight on this issue. Specifically,
the model implies that the large speculator essentially holds a manipulation
option. For a given x, the large speculator’s delivery period revenues are an
increasing, convex function of the supply shifter θ̃S . The convexity arises because
Π(x, θ̃S) is a convex function of θ̃S . Note that, by the envelope theorem:

dΠ(x, θ̃S)
dθ̃S

= x − Q

Therefore:
d2Π(x, θ̃S)

dθ̃2
S

= − dQ

dθ̃S

=
1

2(φD + φS)
> 0

Intuitively, the manipulator takes fewer deliveries when supply is lower because
he profits on the contracts he liquidates and loses money on the deliveries he
takes due to the cost of burying the corpse. Low supply allows him to liquidate
more contracts at a higher price and reduce the losses from burying the corpse.
Thus, d2Π(x, θ̃S)/dθ̃2

S > 0.
This convexity means that the large speculator’s payoff at expiration is ef-

fectively an option on the supply shock. For small values of the supply shifter
(indicating abundant supply), the speculator does not exercise market power.
Only when supply conditions are sufficiently tight (i.e., when θ̃S > θ∗S) does he
squeeze, and due to the convexity, he squeezes harder, the lower is supply.

This has important policy implications because of some decisions in ma-
nipulation cases. In particular, in in re Indiana Farm Bureau, the Commodity
Futures Trading Commission found that a large trader could not be found guilty
of manipulation if he acquired his futures position without the specific intent to
manipulate the market, but just took advantage of tight market conditions at
delivery that were not forseen at the time he initiated his position.11 An admin-
istrative law judge made a similar determination in in re Abrams.12 Relatedly,
it is sometimes said that markets are subject to “natural squeezes” that occur
because of adverse supply shocks during the delivery period (e.g., a crop failure
or transportation breakdown at delivery.)13

The model suggests that these decisions, and the idea of a “natural squeeze,”
are logically defective. In particular, the model implies that the large speculator

fewer futures contracts than is first best to inflate the risk premium. Recall that if he cannot
manipulate, the large speculator purchases futures in a quantity equal to half the endowment
of the hedgers. In the first best solution, the large speculator should purchase futures in an
amount equal to 100 percent of the hedger endowment.

11In re Indiana Farm Bureau Cooperative Association [1982-1984 Transfer Binder] Com-
modity Futures Law Reporter (CCH) ¶21,796 (CFTC, 1982).

12In re Abrams [1988-1989 Transfer Binder] 2 Commodity Futures Law Reporter (CCH)
¶24,408 (CFTC, 1989).

13This concept has been widely accepted at least since the time of the Report of the Federal
Trade Commission on the Grain Trade (1926). Some legal commentary similary endorses this
view. Pirrong (1997) criticizes it.

16



has no specific intent to manipulate the market when he initiates his position.
He takes a position that permits him to manipulate if conditions are favorable.
That is, in this model, all squeezes are natural in some sense in that whether or
not the market is squeezed depends on exogenous supply conditions unknown
to the speculator when he initiates his position. Put another way, in the model
squeezes occur, and are most severe, when supply conditions are tight due to
factors beyond the speculator’s control. He exploits these conditions oppor-
tunistically. The logic of Indiana Farm Bureau gives the speculator a legal pass
on this conduct.

The model also sheds light on the political economy of anti-manipulation
restrictions. Although manipulation causes deadweight losses, it also has dis-
tributive effects. The utility of hedgers is lower when manipulation can occur,
but in the numerical solution of the model the utility of the small speculators is
actually higher. This reflects the finding that manipulation actually inflates the
risk premium. Relatedly, it occurs because in equilibrium, a large speculator
who can squeeze buys fewer futures than one who cannot (due, for instance,
to a limit on the number of deliveries he can take.) This effectively increases
the derived demand for the small speculators’ risk bearing services. Although
the reduction in hedging reduces this derived demand, in the model the former
effect dominates, thereby increasing the small speculators’ utilities.

Pirrong (1995b) argues that these distributive effects explain the historical
reluctance of exchanges to adopt anti-corner rules (or to enforce them aggres-
sively). The model provides support for that view, in that exchange member-
ships were dominated by small speculators and brokers that serviced them.

5 Summary and Conclusion

This article presents a straightforward model of derivatives market manipula-
tion by a large speculator. In contrast with earlier models of manipulation by
liquidity demanders, this model shows that large liquidity suppliers sometimes
manipulate markets at contract expiration in equilibrium even if their trading is
not partially or fully concealed. The model implies that these periodic corners
reduce the hedging effectiveness of derivatives markets, inflate risk premia, and
transfer wealth from hedgers to speculators. Hedgers use manipulated contracts
(albeit less intensively) because they still allow them to reduce risk.

The model suggests that certain regulatory tools–notably speculative posi-
tion limits–and legal doctrines–particularly the requirement that a manipulation
conviction requires a finding of specific manipulative intent at the time a position
is initiated and the concept of a “natural squeeze”–are perverse. Speculative
position limits indeed restrict speculators’ abilities to exercise market power,
but they also inefficiently constrain their beneficial risk bearing activities, and
in the model the latter effect dominates. The model also implies that a large
speculator’s behavior at contract expiration depends not merely on the size of
his position, but on the supply and demand conditions prevailing at expiration.
The large speculator accumulates a position knowing that he will manipulate
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only under certain states of the world during the delivery period. The speculator
holds a manipulation option which he may, or may not, exercise, depending on
the realization of supply and demand conditions at expiry. That is, all squeezes
are in some sense “natural,” because exogenous supply and demand conditions
determine whether the holder of a large long position can profitably manipulate.

The model also shows that the size of the hedging interest–parameterized
in the model by the size of hedger endowments–is a crucial determinant of the
frequency and severity of manipulation. Manipulation problems are more acute,
the larger the short out-of-position hedging interest. The models suggests that
the recent growth in the size of many derivatives markets, fueled by the growth
of hedge funds and trends in global savings, has made these markets more
vulnerable to corners and squeezes.

The model further suggests that structural features in derivatives markets
encourage manipulation. In particular, liquidity considerations often make it ef-
ficient to concentrate trade in a single contract, or a small number of contracts.
For instance, global oil hedging is dominated by the Brent and West Texas In-
termediate contracts. The deliverable supply in these markets is small relative
to hedging interest. That is, most oil hedgers are “out-of-position” because they
are not hedging Brent or WTI cash market positions. The model implies that
these markets are particularly vulnerable to manipulation. The large hedging
interest facilitates the accumulation of large speculative positions; the limited
sizes of the delivery markets (relative to hedging interest and speculative posi-
tions) makes these contracts vulnerable to squeezes by the holders of these large
speculative positions.

In sum, manipulation occurs in a standard futures market equilibrium model
even when information about trading activity is known to all. Although stealth
arguably facilitates manipulation, it is not necessary for it to occur. Instead,
the frequency and severity of manipulation is driven more by structural mar-
ket conditions, notably the size of the out-of-position hedging interest relative
to the size of the delivery market. These manipulations are costly, impeding
efficient risk transfer and causing deadweight distortions in consumption and
production. Thus, well-designed regulations that constrain the ability of large
speculators to exercise market power at contract expiration can improve welfare.
But the model also shows that some commonly used regulations can actually
make matters worse.

A Appendix: Models With Demand and Supply

Connections Between Markets

This appendix presents an alternative model demonstrate that the results de-
rived above hold under alternative assumptions about the structure of the phys-
ical markets. The motivation for this model is a global market for a commodity,
such as oil or corn. In such markets, there is a global demand for the commodity,
and production occurs in many spatially dispersed areas. Typically, the produc-
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ing regions ship to consumption markets, and there are no shipments between
production regions. For instance, soybeans are produced in South America and
the United States, and shipped to major consumption markets in Asia and
Europe, but soybeans are not shipped from South America to the American
Midwest. Similarly, Brent crude oil and WTI crude are shipped to major con-
sumption markets, but recently Brent has not been shipped to the US, or WTI
to Britain.

The “world” demand for the commodity in the model is Qd = αd−βdP where
P is the price of the good in the consumption market, Qd is total consumption,
and αd > 0 and βd > 0 are parameters. There are M + 1 production areas
for the commodity. The supply curve in each market is Qs = α̃s + βsP with
βs > 0, and α̃s > α

¯s = −αdβs/βd.
14 As in the main text, α̃s is the same in each

production location. Also as in the main text, there is a futures contract with
delivery in market 1. Finally, α̃s is distributed uniform on the interval [α

¯s, ᾱs].
In the absence of manipulation, the competitive price is:

Pc =
αd − (M + 1)α̃s

βd + (M + 1)βs

The competitive quantity is:

Qc =
αdβs + α̃sβs

βd + (M + 1)βs
.

If the large speculator takes Q deliveries, the price in the consumption market
(at which the speculator sells the units delivered to him) is determined by the
solution of the equilibrium condition:

M(α̃s + βsP ) + Q = αd − βdP,

which implies:

P =
αd − Mα̃s − Q

βd + Mβs
.

Moreover, the marginal cost of delivery of Q units in market 1 is:

P1 = − α̃s

βs
+

Q

βs
.

Therefore, the analog to the manipulator’s maximization problem (1) in this
model is:

Π(αs, x) = max
Q

{Qαd − Mα̃s − Q

βd + Mβs
+ (x − Q)(− α̃s

βs
+

Q

βs
)}.

Solution to this problem implies that the large speculator holding x > 0 futures
chooses to take deliveries:

Q =
αdβs + α̃sβd + x(βd + Mβs)

2[βd + (M + 1)βs]
.

14This constraint ensures that the competitive quantity is always positive.
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Q ≥ Qc when:

α̃s ≤ α∗
s :=

−αdβs

βd
+

x(βd + Mβs)
2βd(M + .5)

.

Here, a small value of α̃s corresponds to a small supply (i.e., an adverse supply
shock). Thus, the speculator only manipulates at expiration when supply is low.
Moreover, the likelihood of manipulation is larger, the larger is x. Furthermore,
note that the critical value of the supply shock is linear in x. All of these features
were found in the model in the main text.

When a manipulation occurs, the manipulator sells futures contracts at the
price:

P1 = − α̃s

βs
+

1
βs

αdβs + α̃sβd + x(βd + Mβs)
2[βd + (M + 1)βs]

.

Note that this is a linear function of x. Thus, as in the model in the main
text, the expected price at delivery in market 1 is a quadratic function of x, the
variance of this price is a cubic function of x, as is the covariance between this
price and the price in the other markets (and the consumption price). Finally,
due to these facts, the first order condition is a quartic function of x. Therefore,
the main features of this model are identical to those of the model in the main
text.

Note further that two main results–that x is increasing in Y and decreasing
in TT –hold in this model as well, as the first order condition is the same in
the two models. Moreover, the result that x ≤ .5MY also holds because it is
possible to prove (using an analysis very similar to that presented in the main
text) that:

∂σ2
1

∂x
≥ 2

∂σ1c

∂x

This, along with the facts that σ1c ≤ σ2
1 and ∂P̄1/∂x > 0 implies that dW/dx <

0 when evaluated at x = .5MY . Thus, as in the main model, the large speculator
chooses x < .5MY . Therefore, all of the analytical results derived in the main
text hold in this alternative model.

Moreover, numerical solution of this model generates all of the results for the
welfare effects of manipulation, its effect on the risk premium, and the effect of
position limits, as presented for the main model. There is one difference between
models that deserves some comment. Whereas in the main model, manipula-
tion has no effect on prices in markets 2, . . .M , in this model a manipulation
depresses prices in these other markets. In essence, manipulation stimulates
excessive production in market 1 to satisfy the manipulator’s inefficiently large
demand for deliveries. His dumping of this excessive delivery market output
post-delivery depresses the prices in the other markets. That is, the burying
the corpse effect is spread among all the various markets. This encourages ma-
nipulation, because the manipulator incurs a lower cost from disposing of units
delivered to him than is the case when the burying the corpse effect falls ex-
clusively on the price in the delivery market (as in the main model). Further,
burying the corpse is less costly for a given quantity of deliveries, the flatter
the supply curves in the various out-of-position market, because in this case
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output adjustment in the out-of-position markets cushions the price impact of
the market 1 output distortion.

This analysis is sufficient to show that the main implications of the model
presented in the text continue to hold even under very different assumptions
about the structure of the market. In particular, the model in the appendix
permits some inter-connections between markets because the demand in any
one market is a derived demand that depends on supply in the other markets.
This is a plausible condition for many important commodities.

It is possible to extend the model even further to permit the possibility of
transportation between production regions. Specifically, consider the case where
the cost of shipping between any production market 2, . . . , M + 1, and market
1 is τ per unit of the commodity. In this case, whenever the difference between
P1 and the prices in the other markets exceeds τ , total supply of the commodity
at this price in markets 2, . . . , M + 1 is available for delivery. This occurs when
the large speculator takes a sufficiently large volume of deliveries, because these
deliveries (a) drive up the price in market 1, and (b) depress the prices in the
other markets. Thus, at this critical level of Q (denoted by Q̂), which depends on
the realization of α̃s, there is a discontinuity in the supply of deliveries. Unless
x is extremely large, the large speculator will never take more than Q̂ deliveries.
In this model, the relation between P1 and x will be piecewise linear in α̃s, with
three different segments. The first segment corresponds to large supply, when
manipulation does not occur. The second segment is for a sufficiently adverse
supply shock, in which event the manipulator takes deliveries from only market
1, and the difference between the price in market 1 and the price in the other
markets is less than τ. The third segment is for very small values of the supply
shock, in which case the speculator takes the number of deliveries that makes
the inter-market price differential to equal τ exactly. The location of the break
points depends on x.

Since P1 is a linear function of x in each of these segments (with a slope of
zero in the first and third segments, and a positive slope in the second), all of
the results derived in the main model, and the model analyzed formally in the
appendix follow. Indeed, it is possible to allow the transport costs to market
1 to differ between markets 2, . . . , M + 1. For each different transportation
cost value, there is a discontinuity in the marginal cost of deliveries function,
the location of which depends on x and α̃s. The analysis of Pirrong (1993)
implies that in this case, the large speculator will choose to take deliveries only
from market 1, or in an amount corresponding to one of the discontinuities.
If, for instance, the speculator takes deliveries in an amount where the fourth
discontinuity in the supply of deliveries curve occurs, he will take deliveries from
market 1, and the markets with two lowest transportation costs. The linearity
assumptions for supply and demand ensure that the analytical results continue
to hold even in this more complicated model.

Thus, the results obtained for the model presented in the main text con-
tinue to hold in the presence of connections between the physical markets, ei-
ther indirectly via derived demand linkages arising from supplying a common
consumption market, or directly via transportation.
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