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Levy Processes

• Geometric Brownian Motion is very tractible,

and captures some salient features of spec-

ulative price dynamics, but it is somewhat

limiting.

• The continuity of the Brownian Motion is

very convenient–it makes the hedging deriva-

tions go–but it is not necessarily realistic.

Real world prices “jump” or “gap.”

• A Levy Process is a more general way of

characterizing price dynamics. It is more

more general and flexible–a Brownian mo-

tion is a Levy Process, but not all Levy

Processes are Brownian Motions.
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A Definition of the Levy Process

• A Levy Process is (a) CADLAG, (b) has

independent random increments, i.e., X1−
X0, X2−X1, . . . , Xn−Xn−1 are independent,

(c) stationary, i.e., the probability law of

Xt+h−Xt does not depend on t, and (d) is

stochastically continuous, i.e., limh→0P(|Xt+h−
Xt| ≥ ε) = 0 ∀ε > 0.

• Condition (d) does not mean that sam-

ple paths are necessarily continuous. It

just excludes discontinuities at fixed (non-

random) times.
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• Moreover, if Xt is a Levy process, its dis-
tribution is infinitely divisible. This means
that if the distribution of any increment has
a given distribution F , then there exists a
partition of the increment (i.e., the incre-
ment is a sum of sub-increments) where
the elements of the partition (i.e., the sub-
increments) have the same distribution.

• For instance, the normal distribution is in-
finitely divisible. Any normal variable can
be expressed as the sum of other normals.

• There is a Levy Process associated with
every infinitely divisible distribution. Simi-
larly, there is an infinitely divisible distribu-
tion associated with every Levy Process.

• This means that any infinitely divisible dis-
tribution can be used as the law charac-
terizing a Levy Process that describes the
dynamics of some speculative price.



• Since a probability distribution is associ-

ated with a characteristic function, valua-

tion using Levy Processes frequently uti-

lizes the characteristic function associated

with the relevant infinitely divisible distri-

bution.



A Decomposition

• The Levy-Ito decomposition implies that
every Levy Process is a sum of (a) a Brow-
nian Motion with drift, (b) a finite activity
jump process, and (c) an infinite activity
jump process.

• The jump processes in the LP mean that
it is not necessarily continuous.

• The jumps are represented as compound
Poisson processes.

• The finite activity jump process means that
there is a finite number of jumps with ab-
solute value larger than 1.

• The infinite activity jump component can
have infinitely many small jumps.
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Model Building

• There are two basic types of jump models.

• In jump-diffusion models, the normal evo-

lution of prices is characterized as a dif-

fusion, but at random intervals there are

periodic jumps (perhaps of random size).

• Infinite activity models have no diffusion

part–instead, infinite numbers of jumps in

every interval generate interesting small time

behavior.
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• In jump diffusion models, there is a Brow-

nian component, jumps are rare, and the

distribution of jump sizes is known. These

models can readily characterize the volatil-

ity smile, and are easy to simulate, but

their densities are not available in closed

form.

• Infinite activity models needn’t have a Brow-

nian part; the process moves by jumping

around a lot. There is is no distribution

of jump sizes because they arrive infinitely

often, but sometimes closed form densities

of the process are available. These mod-

els can accurately capture historical price

processes.

• Sometimes infinite activity models can be

created by ”subordination” of a Brownian

process.



Subordination

• The basic idea behind subordination is that

prices are represented as a “time changed”

Brownian motion. That is, there is some

increasing random process that depends on

calendar time. This increasing random pro-

cess measures “business time.” The price

process depends on business time.

• Perhaps a better way to think about this is

to view things in terms of information flow.

Sometimes the rate of information flow is

large. Sometimes the rate of information

flow is small. Subordination essentially al-

lows the rate of information flow to vary

randomly over time.
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• Let X(t) be a Levy Process, and let Tt be

a subordinator, i.e., a Levy Process with

almost surely non-decreasing sample paths.

Then X(Tt) is a subordinated process.

• As an example, let Tt be a Gamma pro-

cess. This is a stochastic process with

increments that obey a Gamma distribu-

tion. (The Gamma distribution is a gener-

alization of the factorial function). Draws

from the Gamma distribution are always

positive, so the sum of Gamma distributed

variates is increasing. The Gamma disti-

bution has two parameters, the mean and

variance.



• One constructs a Variance Gamma Pro-
cess by (a) for each time, take a draw of a
Gamma increment, (b) add this Gamma in-
crement to the sum of previous draws, (c)
use this sum to measure the “trading” or
“business time,” and (d) measure a GBM
at this trading time.

• VG is an infinite activity process.

• There are other Levy Processes that can
be constructed through subordination. In
essence, any a.s. non-decreasing stochas-
tic process can be used as the subordina-
tor. Another example is an Inverse Gaus-
sian process.

• These things are very easy to simulate, and
sometimes have closed form distributions
(or characteristic functions).



An Example: Variance Gamma

• The VG is an infinite variation process. It

consists of a very larg number of small

jumps.

• Usually the mean parameter for the Gamma

distribution is set equal to 1. That is, on

average, business time is the same as clock

time. Put differently, the rate of informa-

tion flow is on average σ, but sometimes it

is faster and some times it is slower.

• Choose a variance parameter ν. This mea-

sures the variability in the rate of informa-

tion flow.
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• In the VG model, returns are normal con-

ditional on the draw of the Gamma busi-

ness time variable. Moreover, the draw of

the conditionally Gaussian return is inde-

pendent of the draw of business time. The

business time/total information flow at t is

Tt, which is the Gamma variate.

• In the true measure, the log price at clock

time t is:

Xt = θTt + σ
√

TtZ

• Moving to an equivalent measure, we will

change the drift of the price process to:

Xt = θTt + ωt + σ
√

TtZ

where ω is an adjustment to the drift so

that the discounted stock price is a mar-

tingale.



• To price vanilla European options, exploit-

ing the independence of the gamma and

normal variates, we just integrate twice:

V = e−rτ
∫

γ(Tt)
∫

f(S0eθTt+ωt+σ
√

TtZ)n(Z)dZdTt

where f(.) is the payoff function.

• Note that the market is incomplete in the

VG case. We have two sources of risk (the

business time/information flow and the Gaus-

sian draw) but only one hedging instrument–

the underlying.

• Indeed, we have an embarrasment of riches.

We have three parameters that we can ad-

just to turn the process into a Martingale.

This shouldn’t be surprising. Recall if the

market is not complete, that the EMM is

not unique.



• Specifically, to make the process a Martin-

gale,

ω =
1

ν
ln(1 − θν − .5σ2ν)

• Remember what von Neumann said: Give

me four parameters and I can fit an ele-

phant! Give me 5, and I can make it swing

its trunk.



Pros and Cons of LP

• A Levy Process can capture certain fea-

tures of empirical return distributions that

the Gaussian cannot. For instance, non-

Gaussian LPs cn lead to heavy tails in the

return distribution. Similarly, they can al-

low skewness. (For instance, in the VG the

sign of θ determines the skew.)

• The ability to generate distributions ex-

hibiting skewness and heavy tails allows LPs

to result in volatility smiles and skews of

various shapes.
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• However, LPs cannot capture other fea-

tures of price dynamics. These include,

volatility clustering, positive autocorrela-

tions in absolute returns (remember, LP

increments are independent), and leverage

effects (the fact that absolute/squared re-

turns tend to be negatively correlated with

returns).

• More complicated LP models can address

some of these issues. For instance, adding

jumps in the price process and stochastic

volatility can generate volatility clustering

and realistic smile behavior. An autocor-

related volatility process with a negative

correlation between the price process and

the vol process generates volatlity cluster-

ing and leverage effects. The jumps gen-

erate smiles in short date options. The

stochastic volatility can be tuned to match

longer dated smiles.



• Again–remember von Neumann.


