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All of the analysis we have done so far assumes that the random move-

ments in prices are driven by Brownian Motions. Brownian motions are

continuous. But we know that in the real world, prices “jump” or “gap.”

That is, they exhibit discontinuities. If you didn’t know that before the last

month (this being written in April 2020), you sure as hell know it now!

So-called “jump models” have been developed to address this phenomenon.

These models assume that prices move discontinuously (“jump”) at random

times. The time between jumps is described by a an exponential distribution,

which has the density:

f(t) = λe−λt

Here, λ is the “intensity” of the jump process, and measures the average

number of jumps per unit time. For example, if λ = 10, on average there are

10 jumps per year. The average time between jumps is:

E(t) =
∫

∞

0

tf(t)dt = λ

∫
∞

0

te−λtdt =
1

λ

where the last step can be shown using integration by parts and simplifying.

Thus, if there are 10 jumps per year on average, on average there is 1/10th

of a year between jumps.
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Jump models specify a counting process Nt, which is the total number of

jumps that have occurred by time t. Thus, dNt = 1 or dNt = 0, depending

on whether a jump occurs at t.

Jump models also allow the magnitude of the jumps to be random. For

example, jumps could be distributed lognormal, with mean zero and standard

deviation ν.

Jump-diffusion models combine a jump process and a standard diffusion

process to characterize the dynamics of a risky asset price:

d ln St = (µ − .5σ2)dt + σdWt + dNtJ̃

where J̃ is the (random) size of the jump.

Note that in this expression µ is the drift under the equivalent measure

that turns the discounted price process into a martingale. We cannot assume

µ = r here because we cannot hedge the jump risk, and recall that there is

a unique measure (with µ = r) only if we can hedge all risks.

If we assume J̃ is lognormal, we can derive closed form expressions for the

value of European options if the asset follows a jump process. If we want to

value more complicated claims, or if we want to assume J̃ is not lognormal,

we need to value contingent claims via simulation.

Just as we can create random normal variates in Matlab, we can create

random exponential variates using the random command in Matlab. The first

step is to create a probability density using the makedist command, such

as pdexp=makedist(‘Exponential’,mu) where mu is a previously defined

average time between jumps.

Then, we can sample jumpmax jump intervals (i.e., times between jumps)

by a command like jumptimes=random(pdexp,jumpmax,1). We then deter-

mine the jump times by summing up the jump intervals. Choose jumpmax

so that the time of the last jump almost always exceeds the expiration date
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of the opton you are interested in. Then once you have simulated the jump

times, you can simulate the size of each jump by drawing from a distribution

for J̃ . This could be lognormal, but if you are simulating you are not limited

to this distribution.

How you use the simulated jumps depends on the kind of option you are

valuing. If you are valuing a European option, you can simulate the diffusion

(non-jump) part of the stock price movement by drawing from the normal

distribution as we have already done, and then simulate the jump contribu-

tion by adding up all of the jumps that occur at times before expiration, and

adding together the jump and diffusion parts.

If you are valuing a path dependent option, like an Asian option, or an

option with early exercise, like a Bermudan, you need to proceed as follows.

Consider an Asian option with Na averaging dates. Simulate the stock price

based on the diffusion component for each averaging date. Call this value at

averaging date i Sd

i
. To figure out the simulated price at date i, Ss

i
, add to

Sd

i
all the jumps that occur prior to date i. So note that you have to loop

over all the payment dates.
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