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Financial Engineering

• Since the publication of the Black-Scholes-

Merton model in 1973 there has been a

revolution in financial markets.

• This is the “Financial Engineering” Revo-

lution.

• Financial Engineering has been defined as

“the diagnosis, analysis, design, produc-

tion, pricing, and customization of solu-

tions” to corporate financial problems.

• Most notably, financial engineering involves

the creation of new derivative securities,

futures, forwards, swaps, and options of

various types.
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The Goal of This Course

• Financial engineering is a broad and diverse

subject. This course will focus on valuation

issues. That is, it will focus on how to

value derivative securities of all types.

• Accurate valuation requires you to under-

stand and use three important, related (but

distinct) disciplines.

• Stochastic calculus.

• Numerical analysis.

• Statistics and Econometrics.
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Understanding the Strengths and Weaknesses

of Received Analytical Techniques

• The tools pioneered by Black-Scholes-Merton

are incredibly powerful, but they are not

perfect.

• Some very smart people–including Scholes

and Merton–have lost immense sums–billions

and billions of dollars–by putting too much

faith in these models.

• A good practitioner must know how the

models work, their strengths, and their weak-

nesses.
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Strengths and Weaknesses

• The strength of existing valuation method-
ology are its rigor and flexibility.

• The weakness is that these methods utilize
mathematical tools that make assumptions
about the behavior of financial prices that
are inconsistent with their real world be-
havior.

• “When your only tool is a hammer, every-
thing looks like a nail.”

• “The drunk looked under the streetlight for
his car keys because the light was better
there.”

• This course will teach you how to use a
hammer, but to recognize when you’re not
driving a nail.

5



Stochastic Calculus

• Stochastic calculus is the fundamental tool

in financial engineering because the focus

of our interest is on random financial prices

such as stock or commodity prices.

• Stochastic calculus allows us to determine

how functions of random variables behave.

• Stochastic calculus works in continuous time.

It is usually easier to derive results in con-

tinuous time even though we have to dis-

cretize time in order to find solutions to

the equations that result from these deriva-

tions.
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Brownian Motion

• Brownian motion is the workhorse of stochas-

tic calculus. It is the way that randomness

is represented.

• Due to the nice properties of Brownian mo-

tion, it is the “hammer” that financial en-

gineers apply to virtually every problem

• Brownian motion is a mathematical rep-

resentation of a continuous time random

walk.
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• Some important properties of Brownian mo-

tion are (a) continuity (all sample paths are

continuous); (b) the Markov property–the

time τ probability distribution of X(t) for

t > τ depends only on X(τ) (i.e., no path

dependence), (c) it is a “Martingale,”[i.e.,

Eτ [X(t)] = X(τ), (d) it is of quadratic

variation. That is, defining ti = it/n, as

n → ∞:
n∑

j=1

[X(tj) − X(tj−1)]
2 → t

(e) over finite time increments ti−1 to ti,

X(ti)−X(ti−1) has mean zero and variance

ti − ti−1.



Stochastic Integration

• Stochastic integration is different from tra-

ditional integration.

• A stochastic integral of a function f(.) is

defined as:

W (t) =
∫ t

0
f(τ)dX(τ) =

lim
n→∞

n∑
j=1

f(tj−1)[X(tj) − X(tj−1)]

where tj = jt/n.

• The key thing to note about this expres-

sion is that the function f(.) must be “non-

anticipatory.” That is, the function in the

summation is evaluated at the left hand

point of the integration interval, tj−1.
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• Note that this integral (an “Ito integral”)

is defined as a limit in the mean-square-

sense. That is,

lim
n→∞ E{

n∑
j=1

[f(tj−1)(X(tj) − X(tj−1)] −
∫ t

0
f(τ)dX(τ)}2 = 0

• In essence, this states that the variance

of the difference between the summation

term and the integral vanishes as n goes

to infinity.



Ito’s Lemma

• Ito’s lemma is the key tool we will use to

derive valuation formulae.

• Ito’s lemma describes how functions of Brow-

nian motions behave.

• The exact derivation of Ito’s lemma is ex-

tremely technical. A heuristic approach

sufficies for our purposes.

• Consider a function of a Brownian motion

F (., .).
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• Divide the time between 0 and t into N

equal increments δt in length. Use Taylor’s

Theorem to approximate F (.):

F (Xt, t)− F (X0,0) =
N∑

j=1

Ftδt +
N∑

j=1

FxΔXt+j

+ .5
N∑

j=1

Fxx(ΔXt+j)
2 +

N∑
j=1

Fttδ
2
t

+
N∑

j=1

Ftx(δtΔXt+j)

where ΔXt+j = X(tt+j+1 − Xt+j).



• Taking the mean-square-limit of this ex-

pression as N → ∞ implies:

F (Xt) = F (X0,0) +
∫ t

0
Fx(Xτ, τ)dX(τ)

+
∫ t

0
[Ft + .5Fxx(Xτ, τ)]dτ

• The key trick is getting rid of the dX(τ)2

and replacing it with dτ . We can do this

because the mean-square-limit of X2 is t.



More on Ito’s Lemma

• By specifying a relatively general form for

dX, we can rewrite Ito’s lemma.

• Specifically, an “Ito Process” is:

dX = μ(X, t)dt + σ(X, t)dWt

• In this expression μ(X, t) is the “drift” in X

and σ(X, t) is the volatility. Moreover, dWt

is a Brownian motion.

• Ito’s lemma therefore becomes:

F (X(t), t) = F (X(0), 0)

+
∫ t

0
[Fτ + Fxμ + .5Fxxσ2]dτ +

∫ t

0
FxσdWt
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• We will see the term Fτ + Fxμ + .5Fxxσ2

repeatedly.

• Ito’s lemma is more usually seen in a stochas-

tic differential equation form rather than its

stochastic integral equation form:

dF = FxdX + Ftdt + .5Fxxσ2dt

dF = [Fτ + Fxμ + .5Fxxσ2]dt + FxσdWt



Multi-dimensional Ito’s Lemma

• If we have a function of multipe stochastic

variables xi, i = 1, . . . , N , there is a multi-

dimensional version of the Ito equation:

dF = [Ft +
N∑

i=1

μiFi + .5
N∑

i=1

N∑
j=1

Fijσij]dt

+
N∑

i=1

FiσidWi

where σij = E(dWidWj).
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Contingent Claims Pricing:

Arbitrage Derivation a la Black-Scholes

• If we make certain assumptions about the

stochastic process that an underlying claim

follows can use the stochastic calculus tools

to determine the value of a contingent claim

on this underlying (such as a forward or an

option).

• In particular, if the underlying follows an

Ito Process, we can show that the contin-

gent claim’s value solves a particular partial

differential equation. This can be shown in

two ways, both of which center on the con-

cept of arbitrage.
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• We will derive this PDE both ways. For

simplicity, we will assume the underlying

asset price follows a so-called “geometric

Brownian Motion” (GBM):

dSt = μStdt + σStdWt

where St is the underlying price at t, and

μ and σ are constants. This is called a

“stochastic differential equation” (SDE).

• In a GBM, the asset price can never be-

come negative, and percentage changes in

the asset price (returns) are normally dis-

tributed.



Key Assumptions

• We will make some key assumptions in our

analysis. Specifically:

• Zero taxes.

• Zero transactions costs.

• Continuous trading. That is, markets are

always open and you can trade every in-

stant of time without impacting price.

• Constant risk free interest rate (we will

loosen this assumption later.)
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Deriving the Valuation PDE

• Consider any contingent claim on S. This

could be a futures, a forward, an option,

or something more exotic.

• Posit that the value of the contingent claim

is a function V (St, t).

• Form a portfolio consisting of Δ units of

the underlying and one unit of the contin-

gent claim. The value of this portfolio is

Π ≡ StΔ + V (St, t).

• By Ito’s lemma, the dynamics of this claim

are:

ΔdSt + VsdSt + Vtdt + .5VssdS2
t
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• Substituting from the SDE for dSt,

dΠ = (μStΔ + μStVs + Vt)dt

+ σSt(Δ + Vs)dWt + .5σ2S2
t dt

• Note that the last term comes from the

fact that dW2
t = dt.

• We can make this portfolio riskless by set-

ting Δ = −Vs. Our equation then be-

comes:

dΠ = Vtdt + .5σ2S2
t Vssdt

• Since this portfolio is riskless it must earn

the risk free interest rate. That is, dΠ =

rΠdt = rStΔdt + rV (St, t)dt = −rStVsdt +

rV dt.



• This implies:

−rStVsdt + rV dt = Vtdt + .5σ2VSSS2
t dt

• This is a second order parabolic PDE.

• This implies our valuation equation:

rV = Vt + rStVs + .5σ2S2
t Vss

• Note that this equation holds for any claim

on S.



Boundary Conditions

• The only thing that differentiates distinct

contingent claims on the same underlying

(e.g., on the same stock) is their boundary

conditions.

• For instance, for a call expiring at T with

strike price X, we know that V (ST , T) =

max[ST − X,0]. For a put, we know that

V (ST , T) = max[X − ST ,0]. For a forward

contract, we know that V (ST , T) = ST .

• These payoff conditions are not sufficient

to determine V . We need two additional

boundary conditions. These are also driven

by the nature of the problem. For instance,

with a European call we know that V (0, t) =

0 and limS→∞ = S − e−r(T−t)X.
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• Other examples. For an American call we

know that a smooth pasting condition must

hold. For knock-out option (say a knock-

out call) the value of the claim has to be

zero at the barrier.

• Given the PDE and the barrier conditions,

we can solve for the value of the claim.



A Remarkable Feature

• Note that the value of the contingent claim

does not depend on the “true” drift of S.

That is, μ does not appear in the PDE.

The true drift is the expected return, and

depends on the risk aversion (i.e., the pref-

erences) of investors.

• For this reason, this is sometimes called

“preference free” pricing.

• Instead of the true drift, the risk free in-

terest rate appears in the valuation PDE.
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• That is, you can value the contingent claim
as if the expected return on the undelrying
equals the risk free rate. This would be
true in general if and only if all investors are
risk neutral. That is why this is sometimes
referred to as “risk neutral” pricing.

• This result is an artifact of hedging. Due to
continuous trading and the absence of ar-
bitrage, an investor can hedge away all risk
of holding the contingent claim by trading
the underlying.

• The hedge must be adjusted dynamically
and continuously because Vs changes with
the underlying price.

• Contingent claims are valued by replication
(i.e., hedging) not by expectation. The
drift affects expected payoffs, but this does
not matter for valuation purposes.



• Thus, if the underlying is traded, we can

pretend that we are in a risk neutral world.

• This is a wonderful feature because it is

notoriously hard to estimate the true drift

of asset prices.

• The alternative derivation of the pricing

equation arrives at the same conclusion us-

ing a different mathematical approach.



A Convenient Change in Variables

• The foregoing PDE is somewhat cumber-

some because it has non-constant coeffi-

cients (that is, the coefficients depend on

St). Consider the following change of vari-

ables Zt = ln(St).

• By Ito’s lemma,

dZ = (μ − .5σ2)dt + σdWt

• Using this change in variables

rV = Vt + (r − .5σ2)Vz + .5σ2Vzz

• Note that this equation has constant co-

efficients if σ is a constant. This makes

numerical solution easier.
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What Happens When the Underlying is Not

Traded?

• The foregoing analysis depends on the as-

sumption that the investor can hedge away

the dWt risk by trading the underlying–there

is a nice linear relationship between dSt and

dWt. What if the underlying itself is not

traded?

• This is relevant in many contexts. For in-

stance, if the underlying risk factor is an

interest rate, the interest rate itself is not

traded. As another example (that we will

explore in more detail later), if volatility σ is

not a constant or a function of St, but is in-

stead a stochastic process, then an option

price is a function of a non-traded asset–

the volatility.
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• Other examples: weather derivatives and

power derivatives. Weather is obviously

not a traded asset, but there are deriva-

tives written on weather. Similarly, since

power is not storable, you cannot create a

hedge portfolio that involves holding a po-

sition in spot power–I must consume power

the instant I purchase it, and cannot re-sell

it even an instant later.

• We can use our hedge derivation even if

the underlying isn’t traded, but we will no

longer be able to derive preference free re-

sults. Instead, our pricing equations will

depend on the true drift. Equivalently, any

pricing equation will have a “market price

of risk.”



Pricing with a Non-Traded Underlying

• Consider two contingent claims on some

non-traded underlying x. The claim with

value denoted by V expires at time T . The

claim denoted by G expires at time T ′ > T .

• The SDE for x is:

dxt = φdt + σxdZt

where Zt is a Brownian motion. and σx and

φ are functions of x and t.

• Form a portfolio consisting of one unit of

V and Δ units of G. By Ito’s lemma, the

dynamics of this portfolio are:

dΠ = (ΔφGx + φVx + Vt + ΔGt + .5Δσ2
xG2

xx

+ .5σ2
xV 2

xx)dt + σx(Vx + ΔGx)dZt
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• Choose Δ to make the portfolio riskless.

This requires Δ = −Vx/Gx.

• Since the portfolio is riskless, and requires

initial investment V − ΔG,

rV −rΔG = Vt+ΔGt+.5Δσ2
xG2

xx+.5σ2
xV 2

xx

• Collecting all V terms on the lhs and all G

terms on the rhs:

rV − Vt − .5σ2
xVxx

Vx
=

rG − Gt − .5σ2
xGxx

Gx



• Note that we only have one equation but

two unknowns (V and G). Note, however,

that the lhs is a function of T (and not

T ′) whereas the reverse is true of the rhs.

This is possible if and only if both sides are

independent of the maturity date. Thus,

there exists some function a(x, t) such that

rV − Vt − .5σ2
xVxx

Vx
= a(x, t)

• This is conventionally rewritten:

a(x, t) = φ − σxλ(x, t)

• The function λ is referred to as the “mar-

ket price of x risk.”



• Using this definition, we derive the follow-

ing PDE:

rV = Vt + .5σ2
xVxx + (φ − σxλ)Vx



• Note that this equation depends on the
true drift of the x process–we can’t em-
ploy the convenient assumption that the
drift of the underlying process is equal to
the risk free rate.

• Note that this derivation is more general
than the earlier one because it implies the
basic valuation equation for a traded asset.
Note that a traded asset itself must satisfy
the PDE. Thus:

rS = (φ − σxλ)

• When φ = μS and σx = σS, this implies:

λ =
μ − r

σ

• Plugging this for λ in the PDE involving
(φ − σxλ) returns the basic valuation for-
mula derived earlier. Note that we cannot
use this trick unless x is a traded asset.



Solving PDEs Using Finite Difference

Methods

• Solution of a PDE requires determination

of a function that satisfies the relevant equa-

tion at every possible value.

• Most PDEs have no closed form solution.

Even the heat equation and Black-Scholes-

Merton equations require numerical approx-

imation.

• More complicated numerical approximation

schemes are required to solve PDEs with

boundary conditions that are more compli-

cated that BSM.

• Finite difference methods are the most com-

mon means to solve PDEs.
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Alternative Approaches

• There are two basic finite difference schemes–
explicit and implicit. The binomial model
is an example of an explicit scheme.

• Explicit schemes are simpler, but (a) can
face stability problems, and (b) don’t con-
verge as quickly.

• Explicit schemes are only conditionally sta-
ble. That is, for a given choice of δt, the
method is stable only if δZ is sufficiently
small. If you choose too big a δZ, you get
numerical garbage. And I mean garbage.

• Implicit schemes are generally superior. They
are unconditionally stable. For any choice
of δt, you will get a non-garbage answer
regardless of the coarseness of the δZ grid.
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The Explicit Approach

• Although the explicit approach is deficient
in many ways, it is worthwhile to discuss it
to illustrate the basics of finite difference
methods. It is also a flexible and easy to
code approach that is useful when you need
something fast.

• All finite difference schemes start with a
grid. That is, the state variables and time
variable are discretized.

• Consider a stock price model in which the
natural log of the stock price Z is used
as the state variable. Assuming constant
σ and r, we know that the value of any
contingent claim on this stock must satisfy
the following PDE:

∂V

∂t
+ (r − .5σ2)

∂V

∂Z
+ .5σ2∂2V

∂Z2
= rV
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• Solution of the PDE via finite differences

requires approximation of the relevant par-

tial derivatives on the grid.

• Step 1: Create a grid. There are I +1 log

stock price points i = 0, . . . I. Although

it is not necessary, assume that the grid

points are evenly spaced, with each one δZ

apart. There are K time steps. Each step

is δt in length. The notation is that time

step k = 0 at expiration, and today is k =

Kδ. This notation is used because solution

involves moving backwards through time in

the grid, going from values we know (at

expiration) to those we don’t.

• Step 2: Estimate the partial derivatives.

Different schemes use different estimates.



In the explict scheme, at node i, k + 1 of

the grid:

∂Vi

∂Z
≈ V k

i+1 − V k
i−1

2δZ

where i indicates the stock price step and k

indicates the time step, and V k
i is the value

of the contingent claim at node i, k.

∂2Vi

∂Z2
≈ V k

i+1 − 2V k
i + V k

i−1

(δZ)2

∂Vi

∂t
≈ V k

i − V k+1
i

δt

• Note well: at time step k + 1 we are using

values from time step k to calculate the

partial derivatives.



• This has one plus and one minus. The plus

is (as we will see in a bit) that the explicit

method requires no solution of a system of

equations.

• The minus is that we really aren’t calculat-

ing a partial derivative because we aren’t

holding time constant. This is what in-

troduces the instability in the explicit ap-

proach.

• We now plug our estimates for the partials

into our PDE to get:

V k+1
i = AV k

i−1 + BV k
i + CV k

i+1

where A = (r − .5σ2) δt
2δZ + .5σ2 δt

δZ2, B =

1 − rδt − σ2 δt
δZ2, and C = −(r − .5σ2) δt

2δZ +

.5σ2 δt
δZ2.



• We start at k = 0, and solve for the value

of the option at time step 1, which is one

time step prior to expiration. At this time

step, we know the value of the option at

k = 0 as a function of the price in the grid;

that is given by the contractual features of

the option. So we know everything on the

right hand side of our expression, so we can

solve for V 2
i for i = 1, . . . I − 1.

• For i = 0 and i = I, we need to use bound-

ary conditions because for these values of

i we need to know the value of the op-

tion at points outside our grid to solve our

equation. I’ll talk more about boundary

conditions later.



• Since we now know the value of the option

for all i at time step 1, we can proceed

to time step 2. Solve the equations again,

only using the values from time step 1 on

the right hand side. Then go to time step

3, and so on, until we reach the valuation

date.

• Couldn’t be easier, eh? Just solve I + 1

equations (one at a time) for each time

step.



The Implicit Approach

• Again start with a grid.

• In the implicit scheme, at node i, k + 1 of
the grid:

∂Vi

∂Z
≈ V k+1

i+1 − V k+1
i−1

2δZ
where i indicates the stock price step and k
indicates the time step, and V k

i is the value
of the contingent claim at node i, k.

∂2Vi

∂Z2
≈ V k+1

i+1 − 2V k+1
i + V k+1

i−1

(δZ)2

∂Vi

∂t
≈ V k

i − V k+1
i

δt

• Using this approximation, the valuation PDE
can be rewritten as:

AV k+1
i−1 + BV k+1

i + CV k+1
i+1 = V k

i
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where A = δt
2δZ(r − .5σ2) − δt

2δZ2σ2, B =

1 + δt
δZ2σ2 + rδt, and C = − δt

2δZ(r − .5σ2)−
δt

2δZ2σ2.

• Note: V−1 and VI+1 are outside the

grid, so we can only write these equa-

tions for i = 1, . . . , I − 1.

• In matrix form, we observe:

MLvk+1 = vk

where

ML =

⎛
⎜⎜⎜⎜⎜⎜⎝

A B C 0 . . .
0 A B . . . .
. 0 . . . 0 .
. . . . B C 0
. . . 0 A B C

⎞
⎟⎟⎟⎟⎟⎟⎠



• This matrix has I−1 rows and I+1 columns.

vk+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V k+1
0

V k+1
1
.
.
.
.
.

V k+1
I−1

V k+1
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



and

vk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V k
1

V k
2
.
.
.
.
.

V k
I−2

V k
I−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Solving The Equation System

• The above shows that the solution of the
PDE involves the solution of a set of linear

equations.

• Unfortunately, as written, we have I − 1

equations (the I − 1 rows of the matrices)

in I + 1 unknowns (note there are I + 1
columns. We need additional equations.

These come from the boundary conditions.

These give us the value of V at the top and

the bottom of the grid.

• Boundary conditions are defined by the prob-

lem. For a European put struck at X,
for instance, we know that when S = 0,

the put value is Xe−r(T−t). Thus, V k+1
0 =

Xe−r(k+1)δt. Similarly, when S is very large,

the value of the put is zero. Thus, V k
I = 0.
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• We use the boundary conditions to add two

additional rows to our matrix and vector–

one row corresponding to the upper bound-

ary condition and another corresponding to

the lower boundary conditon.

• Denote the new ML matrix that includes

the additonal rows as M̂L:

M̂L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 B0 C0 D0 . .
A B C 0 . . .
0 A B . . . .
. 0 . . . 0 .
. . . . B C 0
. . . 0 A B C
. . 0 AI BI CI DI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• The A0, B0, C0, D0, AI, BI, CI, DI come

from the boundary conditions.



• Finally, we need to add two rows to the

vector on the right-hand-side. This also

reflects the boundary conditions. Call this

new RHS vector v̂k.

• Our equation system now becomes:

M̂Lvk+1 = v̂k

• We’ll see how to adjust the matrices to

reflect the boundary conditions.



Dirichlet Boundary Conditions

• Dirichlet boundary conditions set the value

of the claim equal to some known number

at the top and bottom of the grid.

• For instance, the value of a European put

is 0 as the stock or futures price approaches

infinity. The value of the Euro put is Xe−r(T−t)

when S or F equals 0.

• Therefore, when using a Dirichlet condition

for the lower boundary, set A0 = 1, B0 = 0,

C0 = 0, D0 = 0, and the first row of v̂k

equal to the value of the claim when the

underlying price is its lowest value on the

grid. For instance, for a European put, set

this value equal to Xe−r(T−t) if the lowest

value of the underlying in your grid is zero.
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If the lowest value in your grid is not zero

(which will be the case if you use the log

transform, for instance) set this value equal

to Xe−r(T−t) − S0 where S0 is the lowest

value of the underlying price in your grid.

• Similarly, for a Dirichlet upper boundary

condition, set AI = 0, BI = 0, CI = 0,

D0 = 1, and the last row of v̂k equal to

the value of the claim when the underlying

price is its lowest value on the grid. For in-

stance, for a European put, set this value

to zero.



Von Neumann Conditions

• Von Neumann conditions fix the shape of

the price function at the boundaries. For

example, von Neumann conditions can set

the slope of the function at the bound-

ary equal to 1, or to zero. Alternatively,

they many set the second derivative at the

boundary to some value, such as zero.

• As an example, for a European call, the

slope of the value function should approach

1 as the stock price approaches infinity, and

the slope should approach zero as the stock

price approaches zero.

• Warning: To ease the notation what

follows assumes you are NOT using the

log transform. I’ll show you how to im-

plement this in the log transform later.
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• Consider the upper boundary condition. We
have:

∂V

∂S
= 1

• Our first order approximation of this, using
a one sided estimate of the derivative is:

V k+1
I − V k+1

I−1

δS
= 1

• So, our upper boundary condition is:

V k+1
I = δS + V k+1

I−1

or

−V k+1
I−1 + V k+1

I = −δS

• We can implement this in our matrix by
setting AI = 0, BI = 0, CI = −1, DI = 1,
and the last row of v̂k equal to −δS.



• Our lower boundary condition can be ex-

pressed:

V k+1
1 − V k+1

0 = 0

• So we implement this by setting A0 = −1,

B0 = 1, C0 = 0, D0 = 0, and the first row

of vk equal to 0.

• Many derivatives are nearly linear at the

boundaries. Puts and calls are examples of

this. So another common type of boundary

condition is to set the second derivative

equal to zero at the boundary.

• Our approximation of this is at the upper

boundary is:

V k+1
I − 2V k+1

I−1 + V k+1
I−2

δS2
= 0



or

V k+1
I−2 − 2V k+1

I−1 + V k+1
I = 0

• To implement this, set AI = 0, BI = 1,

CI = −2, DI = 1, and set the last row of

v̂k equal to 0.

• Similarly, at the lower boundary, A0 = 1,

B0 = −2, C0 = 1, D0 = 0, and the first

row v̂k equal to 0.



The Crank-Nicolson Appraoch

• A method that combines implicit and ex-

plicit methods–the Crank-Nicolson routine–

has very desirable convergence and stability

properties.

• There are some stability problems with C-

N that lead some (like Duffie) to favor

implicit schemes combined with extrapo-

lation.
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Implementing Crank-Nicolson

• Again start with our grid.

• In Crank-Nicolson, at node i, k + 1 of the
grid:

∂Vi

∂Z
≈ .5[

V k+1
i+1 − V k+1

i−1

2δZ

+
V k

i+1 − V k
i−1

2δZ
]

where i indicates the stock price step and k

indicates the time step, and V k
i is the value

of the contingent claim at node i, k.

∂2Vi

∂Z2
≈ .5

V k+1
i+1 − 2V k+1

i + V k+1
i−1

(δZ)2

+.5
V k

i+1 − 2V k
i + V k

i−1

(δZ)2

∂Vi

∂t
≈ V k

i − V k+1
i

δt
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• Note that the C-N approximations are av-

erages of the implicit and explicit approxi-

mations for the partials.

• Using this approximation, the valuation PDE

can be rewritten as:

−AV k+1
i−1 + (1 − B)V k+1

i − CV k+1
i+1 =

AV k
i−1 + (1 + B)V k

i + CV k
i+1

where A = − δt
4δZ(r − .5σ2) + δt

4δZ2σ2, B =

− δt
2δZ2σ2 − .5rδt, and C = δt

4δZ(r − .5σ2) +
δt

4δZ2σ2.



Matrix Form

• In matrix form, we observe:

MLvk+1 = MRvk

where

ML =

⎛
⎜⎜⎜⎜⎜⎜⎝

−A (1 − B) −C 0 . . .
0 −A (1 − B) . . . .
. 0 . . . 0 .
. . . . 1 − B −C 0
. . . 0 −A (1 − B) −C

⎞
⎟⎟⎟⎟⎟⎟⎠

vk+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V k+1
0

V k+1
1
.
.
.
.
.

V k+1
I−1

V k+1
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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MR =

⎛
⎜⎜⎜⎜⎜⎜⎝

A (1 + B) C 0 . . .
0 A (1 + B) . . . .
. 0 . . . 0 .
. . . . 1 + B C 0
. . . 0 A (1 + B) C

⎞
⎟⎟⎟⎟⎟⎟⎠



and

vk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V k
0

V k
1
.
.
.
.
.

V k
I−1
V k

I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Solving The Equation System

• The above shows that the solution of the
PDE involves the solution of a set of linear

equations.

• Unfortunately, as written, we have I − 1

equations (the I − 1 rows of the matrices)

in I + 1 unknowns (note there are I + 1
columns. We need additional equations.

These come from the boundary conditions.

These give us the value of V at the top and

the bottom of the grid.

• Boundary conditions are defined by the prob-

lem. For a European put struck at X,
for instance, we know that when S = 0,

the put value is Xe−r(T−t). Thus, V k+1
0 =

Xe−r(k+1)δt. Similarly, when S is very large,

the value of the put is zero. Thus, V k
I = 0.
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• We use the boundary conditions to add two

additional rows to our matrix and vector–

one row corresponding to the upper bound-

ary condition and another corresponding to

the lower boundary conditon.

• Denote the new ML matrix that includes

the additonal rows as M̂L:

M̂L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 B0 C0 D0 . .
−A (1 − B) −C 0 . . .
0 −A (1 − B) . . . .
. 0 . . . 0 .
. . . . 1 − B −C 0
. . . 0 −A (1 − B) −C
. . 0 AI BI CI DI

⎞

⎠

• The A0, B0, C0, D0, AI, BI, CI, DI come

from the boundary conditions.



• Moreover we need to add two rows to the

MR matrix. Call this MR. The new top

and bottom rows are all zeros.

• Finally, we need to add a new I+1 vector rk

to the right-hand-side. This vector takes

the boundary conditions into account. It

has zeros in rows i = 2, . . . I−1. It may have

non-zero values for i = 0 and i = I. These

values depend on the boudnary conditions.

• Therefore, our new system becomes:

M̂Lvk+1 = M̂Rvk + rk



Solving the PDE

• The essence of the solution technique should

now be easy to understand.

• Start with what you know–the payoff to the

option at expiration. For a put with strike

price X, for instance, at expiration V 0
i =

max[SeZ0
i − X,0], where S is the current

stock price.

• Given V 0
i , ∀i, you know v0. Then you can

solve the linear equation system for v1.

• Now you know v1, you can solve for v2.

Continue this process until you get to vK.
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Dirichlet Boundary Conditions for C-N

• For Crank-Nicolson, when using a Dirichlet

condition for the lower boundary, set A0 =

1, B0 = 0, C0 = 0, D0 = 0, and the first

row of rk equal to the value of the claim

when the underlying price is its lowest value

on the grid. For instance, for a European

put, set this value equal to Xe−r(T−t) if

the lowest value of the underlying in your

grid is zero. If the lowest value in your grid

is not zero (which will be the case if you

use the log transform, for instance) set this

value equal to Xe−r(T−t) − S0 where S0 is

the lowest value of the underlying price in

your grid.
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• Similarly, for a Dirichlet upper boundary

condition, set AI = 0, BI = 0, CI = 0,

D0 = 1, and the last row of rk equal to

the value of the claim when the underlying

price is its lowest value on the grid. For in-

stance, for a European put, set this value

to zero.



Von Neumann Conditions

• Warning: To ease the notation what
follows assumes you are NOT using the
log transform. I’ll show you how to im-
plement this in the log transform later.

• Consider the upper boundary condition. We
have:

∂V

∂S
= 1

• Our first order approximation of this, using
a one sided estimate of the derivative is:

V k+1
I − V k+1

I−1

δS
= 1

• So, our upper boundary condition is:

V k+1
I = δS + V k+1

I−1
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or

−V k+1
I−1 + V k+1

I = −δS

• We can implement this in our matrix by

setting AI = 0, BI = 0, CI = −1, DI = 1,

and rkI = −δS.

• Our lower boundary condition can be ex-

pressed:

V k+1
1 − V k+1

0 = 0

• So we implement this by setting A0 = −1,

B0 = 1, C0 = 0, D0 = 0, and rk0 = 0.



• Many derivatives are nearly linear at the

boundaries. Puts and calls are examples of

this. So another common type of boundary

condition is to set the second derivative

equal to zero at the boundary.

• Our approximation of this is at the upper

boundary is:

V k+1
I − 2V k+1

I−1 + V k+1
I−2

δS2
= 0

or

V k+1
I−2 − 2V k+1

I−1 + V k+1
I = 0

• To implement this, set AI = 0, BI = 1,

CI = −2, DI = 1, and set rkI = 0.

• Similarly, at the lower boundary, A0 = 1,

B0 = −2, C0 = 1, D0 = 0, and rk0 = 0.



Solving the linear equation system:

The LU Decomposition

• We want to solve the following equation

for vk+1:

ˆMLvk+1 = MRvk + rk

• The brute force way to solve this equation

is to invert ML. This is computationally

expensive.

• There are other solution techniques that

are much more efficient computationally.

• For European options, the LU decomposi-

tion is the best approach.
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• You can decompose the square matrix M̂Linto

two other matrices, one of which has non-

zero elements only on the diagonal and the

sub-diagonal (L) and another which has

non-zero elements only on the diagonal and

the superdiagonal (U) such that M̂L = LU.

Also, you can scale things so that L has

ones on the diagonal.

• To apply the LU decomposition, define q =

MRvk + rk.

• Then LUv = q. One can exploit the sparse-

ness of L and U to solve this equation for

v.

• This is computationally more efficient be-

cause due to the diagonality of L and U,

they can be inverted using back-substitution.



This involves sequential solution of N equa-
tions (where N is the number of rows and
columns in the matrix of interest), each
with a single unknown.

• Matlab (and some other programs) use LU
decomposition to invert matrices. There-
fore, if you are using Matlab (or one of
these other programs) you don’t need to
do the decomposition yourself. Just use
inv(ML) or ML

−1.

• So far we have assumed that σ and r don’t
vary over time. In this case, you only have
to calculate [LU]−1 once, and apply it at
each time step.

• In more complicated problems, σ and r may
depend on time and the state variable. In
this case, A, B, and C will depend on k and
i, and the LU decomposition and inverstion
must be done at each time step.



Solving the linear equation system:

The SOR Method

• The LU method is quick (especially with

time and state independent coefficients),

but is not readily applicable to American

options. The Successive Over-Relaxation

(SOR) method is somewhat slower, but

can handle American option problems when

combined with a projection step (to get

PSOR, “Projected Successive Overrelax-

ation.)

• This method is a modification of the Gauss-

Seidel method. Like G-S, it is an iterative

method. One makes an initial guess, and

then modifies that guess iteratively.
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• On each iteration, the new value is the old

value plus a correction. One iterates until

the change between the new and old values

becomes very small.

• SOR solves for vk+1 iteratively. For Euro-

pean options the procedure is as follows.

First, one chooses an “over-relaxation pa-

rameter” ω, 1 ≤ ω ≤ 2. For n = 1, choose

ω = 1. Then define matrices D, L, and

U so that ML = D + L + U. Define Mω =

D+ωL and Nω = (1−ω)D−ωU. Given an

initial guess of vk+1
n , solve:

vk+1
n+1 = Mω

−1Nωvk+1
n + ωMω

−1q

• In this expresion, the q is derived from MRvk + rk.

It is in essence the target value.

• In this expression n is the iteration number.



• In practice, this is pretty easy. For row
i, take the i’th row of MRvk + rk. Call
this value qi. It is the “target” that you
are trying to hit. Take your initial guess
for vi. From that subtract the difference
between this qi and the i’th row of MLv

and multiply the difference by the overre-
laxation parameter ω. The difference is es-
sentially an “error”–it is the difference be-
tween the value at that iteration and your
target value. So, under SOR new value
equals old value minus ω times error. In
the G-S method, ω = 1.

• Formally:

vn+1
ik = vn

ik+
ω

Mii
(qi−

i−1∑
j=0

Mijv
n+1
kj −

I∑
j=i

Mijv
n
kj)

• Note you have to loop through each row
i = 1, . . . , I − 1 and do this for each row.



So you are double looping; you are looping

through the i’s, and then iterating on each

row.

• Usually the initial guess vk+1
0 is the option

value at the previous time-step.

• Continue to iterate until you achieve con-

vergence (within some user-specified error

tolerance). Convergence means that the

change in v from iteration n to iteration

n + 1 is small. Formally, calculate:

I∑
i=1

(vn+1
i − vn

i )2

and stop when this sum gets sufficiently

small.

• Proceed to the next time step.



• Always keep track of the number of iter-

ations until convergence. After finishing

one time step, increase ω by a little bit

(say .05). If the number of iterations re-

quired for convergence for that time step is

smaller than for the previous step, increase

ω a little more for the next time step. If

the number of iterations increases, use the

ω from the previous time step for the re-

mainder of your analysis.



• For American options, at each iteration

step, you can’t use a matrix operation be-

cause it is necessary to take into account

the possibility of early exercise.

• With an American option, at a given time

step k for each stock price step i (starting

with i = 2) calculate:

vn+1
ik = vn

ik+
ω

Mii
(qi−

i−1∑
j=0

Mijv
n+1
kj −

I∑
j=i

Mijv
n
kj)

• In this expression Mij is the element in row

i and column j of the ML matrix and qi is

the element in row i of the q vector.



• Note that in this method, to solve for the

option value at stock price node i you use

the option values for nodes 1,2, . . . , i − 1.

Immediately after solving for the value of

vn+1
ik using this method, compare this to

the exercise value of the option. If the

exercise value of the option exceeds vn+1
ik ,

replace vn+1
ik with the option exercise value

for use in calcuating vn+1
(i+1)k. If the exercise

value is smaller, use the vn+1
ik calcuated us-

ing the above formula.



Improving Accuracy:

Richardson Extrapolation

• The greater the number of time steps and

asset steps, the more accurate your solu-

tion. The Crank-Nicolson method is accu-

rate O(δt2, δZ2).

• Increasing accuracy in this way is compu-

tationally expensive, because the number

of calculations is proportional to 1/δtδZ.

• Richardson extrapolation allows you to get

accuracy O(δt2, δS3).
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• To implement RE, first solve the problem

for a given number of asset steps (e.g.,

20). Call the value of the option given this

approach V1 and the asset step δS1. Then

increase the number of asset steps (e.g., to

30). Call the option value using this grid

V2 and the asset step δS2. The RE value

of the option is:

V ∗ =
δS2

2V1 − δS2
1V2

δS2
2 − δS2

1



Richardson Extrapolation and the Implicit

Method

• One virtue of the C-N method is that it

is second-order accurate even without ex-

trapolation, whereas the implicit method is

only first order accurate.

• However, the C-N method frequently ex-

hibits some instabilities in valuations for

at-the-money strikes. These instabilities

are especially evident when graphing the

Greeks–the Deltas and Gammas of the op-

tion.
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• The implicit method does not exhibit these

spurious oscillations. So how can we can

our cake and eat it too? (Or as a famous

trader I know always says–how can we have

our cake and cookie too?) That is, how

can we get second order accuracy and no

spurious oscillations?

• It’s easy. Just do the implicit method with

Richardson Extrapolation on the time step.

• First estimate the value using N1 time steps.

Call this value V1, Then estimate the value

using 2N1 time steps. Call this value V2.

The extrapolated value is VE = 2V2 − V1.

VE is second-order accurate and exhibits no

spurious oscillations.



Jump Conditions

• Handling discrete cash flows (e.g., dividends)

and some other conditions (e.g., periodic

rather than continuous monitoring of a bar-

rier for a barrier option) requires use of so-

called “Jump Conditions.” They are called

this because key variables (e.g., the stock

price) jumps when something happens (e.g.,

a dividend is paid.

• Assume a dividend of size D will be paid at

time td. Note that the value of the option

must not change as a result of the dividend

payment (everyone knows the dividend will

be paid). Immediately before the dividend

is paid, the option is worth V (S, t−d ). Imme-

diately afterwards, it is worth V (S−D, t+d ).

Thus, V (S, t−d ) = V (S − D, t+d ).
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• We address this problem as follows. Pro-

ceed backwards through the grid in the

usual fashion. When you reach td, solve the

value of the option in the usual way. Then

implement the jump condition. At each as-

set step i at time step k (corresponding to

td), define Ẑi = ln[exp(Zi) − D].

• Next define:

i∗ = Int[
Ẑi − Z0

δZ
]

μ =
Zi∗+1 − Ẑ

δZ

V (Zi, t
−
d ) = μV (Zi∗, t

+
d )+(1−μ)V (Zi∗+1, t+d )

• You have to be careful when i is small, as

in this case î < 0. In this case, just use

i∗ = 0 and μ = 1.



• You have to be clever about setting up your

time steps. In certain cases, you can just

move the dividend to the closest payment

date (taking care to adjust by the time

value of money involved in displacing the

timing of the dividend). Alternatively, you

can create a new time step corresponding

exactly to the divident payment. Here you

have to be careful when constructing your

δt to make sure that at that new time step

you are using the right δt when calcuating

your A, B, and C coefficients.

• If the option is an American call, you have

to take into account the possibility of early

exercise. In this case, you need to utilize

the SOR technique discussed earlier.



Martingale Methods

• There is an alternative (and equivalent)

way to value derivatives. This involves use

of Martingale Methods.

• In essence, Martingale Methods imply that

any derivative can be valued by calculating

its discounted expected cash flows under

some probability measure.

• Calculating an expectation involves inte-

grating over the relevant probability mea-

sure.

• Thus, integration methods (Gaussian, Monte

Carlo) can be used to value derivatives.
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• Some elegant mathematical theory–notably

Kolmogorov’s backward equation and the

Feynman-Kac formula–show that the value

function implied by calculating the expec-

tation under the relevant probability mea-

sure must satisfy the same valuation PDE

we derived using the Black-Scholes arbi-

trage approach. Thus, the two methods

are different ways of skinning the same cat

(apologies to PETA members).

• The fact that the methods are equivalent

derives from the fact that the absence of

arbitrage is a necessary (and sometimes

sufficient) condition for the existence of

the relevant probability measure required

to calculate the expectation.



Martingales

• A martingale is a “zero drift” stochastic

process. That is, Wt is a martingale if

E[WT |Wt] = Wt ∀T ≥ t

• Martingales have very desirable properties

that facilitate solution of valuation prob-

lems.
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Probability Measure

• A probability measure assigns probabilities

to events.

• Formally, define a state space Ω that de-

fines all the possible states of the world–all

the things that can happen. An event is a

group of states of the world.

• A σ-field allows specification of sets of events

to which probabilities can be assigned. A

σ-field A on Ω has the following properties

(a) Ω ∈ A, (b) if Ai ∈ A, then the comple-

ment of Ai, AC
i ∈ A, and (c)if Ai ∈ A, i =

1, . . . , n then ∪n
i=1Ai ∈ A.
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• The elements of A are called measurable

sets. A probability measure associates to

each measurable set a real number in [0,1].

The probability measure P has several prop-

erties: (a) P(Ω) = 1; (b) if Ai ∩ Aj =

∅ ∀i �= j, then P(∪n
i=1Ai) =

∑n
i=1P(Ai);

and (c) P(∅) = 0.

• A probability measure quantifies the likeli-

hood of events. A triplet {Ω,A,P} is called

a proability space.



• In financial mathematics and engineering

the probability measure is almost always

the Gaussian (or normal) distribution. The

Gaussian distribution is like the streetlight

under which the drunk looks for his keys–

we use it not necessarily because it is ap-

propriate, but because the light is better

there.



Equivalent Measures

• The concept of an equivalent measure is

key in modern valuation theory.

• Consider a probability measure P that de-

fines the probability that a particular ran-

dom variable Z will take a particular value.

An equivalent measure Q (a) has same null

sets, but (b) a different mean. That is, if

P(Z = Z∗) = 0, then Q(Z = Z∗) = 0, but

EP [Z] �= EQ[Z].

• We care about probability measures for stochas-

tic processes. Consider a stochastic pro-

cess Xt with associated probability mea-

sure P. To be specific, assume dXt =

γ(X, t)dt + σ(X, t)dWt. dWt is a Brownian

motion under the probability measure P.
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• Define processes u(X, t) and α(X, t) such

that

σ(X, t)u(X, t) = γ(X, t)− α(X, t)

Assume E[exp{.5 ∫ t
0 u(x, s)2ds}] < ∞. De-

fine a process Mt as follows:

Mt = exp{−
∫ t

0
u(s)dWs − .5

∫ t

0
u(s)2ds}

• Given these preliminaries, we can state an

important result that eases valuation prob-

lems. This is called Girsanov’s theorem.



Girsanov’s Theorem

• Girsanov’s theorem states that if we start

with a process Xt, we can create another

process that has an arbitrary drift α(X, t)

under an equivalent measure Q. Specifi-

cally,

dXt = α(X, t)dt + σ(X, t)dW̃t

where dW̃t is a Brownian motion under the

probability measure

dQ = MtdP
Mt is referred to as the Radon-Nikodym

derivative.

• Equivalently,

dW̃t = u(X, t) + dWt
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• In essence, Girsanov’s theorem states that
given an initial process, we can create an
equivalent process with an arbitrary mean
by adjusting simultaneously the probability
measure. This adjusted probability mea-
sure is called an equivalent measure.

• Note that W̃t is a martingale under the al-
ternative measure Q, but not under the
original measure P. Similarly, Wt is a mar-
tingale under P, but not under Q.

• There are arbitrarily many equivalent mea-
sures. One special equivalent measure is an
equivalent martingale measure. Under an
equivalent martingale measure, discounted
prices of securities are martingales. That
is, for an asset price S, if interest rates are
constant, under the equivalent martingale
measure Q,

EQ[e−r(T−t)ST |St] = St



If interest rates are stochastic,

EQ[e−
∫ T
t r(s)dsST |St] = St



The Link Between the Absence of Aribtrage

and the

Existence of an Equivalent Martingale

Measure

• Girsanov’s theorem is extremely useful be-

cause there is a link between the absence

of arbitrage and the existence of an equiv-

alent martingale measure. There are two

key results.

• First, if there exists an “equivalent martin-

gale measure” Q such that all discounted

prices processes are martingales under Q,

then there are no arbitrage opportunities.

• Second, under certain technical conditions,

the absence of arbitrage implies the ex-

istence of a unique equivalent martingale

measure.
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• In finite state space models, the absence of

arbitrage always implies the existence of an

equivalent measure. In continuous models

(with an infinite number of states), addi-

tional technical conditions are required to

ensure the existence of an equivalent mea-

sure.

• This is where Girsanov’s theorem comes

in. The theorem tells us how to create an

equivalent measure so that asset prices rise

at the risk free rate.



An Example

• Assume interest rates are constant. Con-

sider a stock that follows the stochastic

process

dSt = μStdt + σStdZ

where dZ is a Brownian motion.

• The solution to this SDE under the “true”

measure is:

EP[ST ] = S0eμT =
∫ ∞
−∞

S0e(μ−.5σ2)T+σ
√

TZe−.5Z2

√
2π

• (Prove that ST = S0e(μ−.5σ2)T+σ
√

TZ sat-

isfies the above SDE–Use Ito’s Lemma.)

45



• Referring back to the statement of Gir-

sanov’s theorem, I can choose an arbitrary

drift by adjusting the probability measure.

• I want a drift rSt. Thus, if I choose:

u(S, t) =
μ − r

σ

and a new Brownian motion:

dZ̃t = u(S, t) + dZt

I get:

dSt = rSt + σStdZ̃t



where Z̃t is a martingale under the equiva-

lent measure Q:

dQ =
e−.5Z̃2

√
2π



Using the Martingale Approach

• The martingale approach allows us to de-
termine the value of any contingent claim
expiring at T as:

V = EQ[Pt(St)e
− ∫ T

0 r(s)ds]

where Pt(St) is the payoff to the claim at
t ≤ T .

• Once we have established the equivalent
measure, we can value any contingent claim
by calculating an expectation over this mea-
sure.

• Expectations involve calculations of inte-
grals. Thus, implementing the equivalent
martingal approach entails use of numerical
integration. Numerical integration meth-
ods include Gaussian quadrature and Monte
Carlo techniques.
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Numeraires

• A “numeraire” is an asset used to discount
cash flows.

• So far we have implicitly worked using a
particular “numeraire” to discount cash flows
in our valuation formulae. This is the “money
market account” numeraire. This is an ac-
count that grows at the risk free rate of
interest.

• Although the money market account is the
most common numeraire, it is not the only
one. Moreover, sometimes clever choice of
a different numeraire can make valuation
easier.

• The Numeraire Irrelevance Theorem tells
us that we should get the same value for
a contingent claim regardless of the nu-
meraire we use.
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• The theorem states that if P and Q are

two numeraires, the value of any contin-

gent claim is given by V :

Vt = PtEP [VT/PT ] = QtEQ[VT /QT ]



• In this expression, the notation EQ (resp.

EP ) means that the expectation is taken

under a measure in which VT/QT (resp.

VT/PT ) is a martingale.

• This expression suggests that when we change

numeraires, we must change probability mea-

sures. Girsanov’s theorem tells us how to

do this



Determining the Drift Under a Given

Numeraire

• Assume initially that we use the money

market account Bt = ert as the numeraire.

There is another asset, S1t, with dS1t =

μ1S1tdt + σ1S1tdW1, that we want to use

as a numeraire. Consider the numeraire

ratio Nt = S1t/Bt. By Ito’s lemma:

dNt

Nt
=

dS1t

S1t
− dBt

Bt
− dS1t

S1t

dBt

Bt

• Note that dBt/Bt = rdt, and that the last

term in the above expression is therefore

of o(dt). Thus,

dNt

Nt
= −rdt + μ1dt + σ1dW1

48



• Now Girsanov’s theorem comes into play.

A corollary to the theorem (there are many

ways to express GT) implies that if dWi is

a Brownian motion under the measure im-

plied by the money market numeraire, then

dW̃i = dWi−dWi(dNt/Nt) is a Brownian mo-

tion under the measure implied by the new

numeraire.

• Note that dWi−dWi(dNt/Nt) = σ1ρdt, where

ρ = E(dW1dWi).

• We can apply this to the numeraire as-

set. Recall that when the money market

account is the numeraire, dS1t = rS1tdt +

σ1S1tdW1. Thus, when S1t is the numeraire,

dS1t = rS1tdt + σ2
1S1ydt + σ1S1tdW̃1.

• We can apply this to other assets. Con-

sider asset two, such that when the money



market account is the numeraire dS2t =

rS2tdt + σ2S2tdW2. Thus, when S1t is the

numeraire, dS2t = rS2tdt + σ1σ2ρS2tdt +

σ2S2tdW̃2.



An Example: The Quanto Forward

• A “quanto” is a contract with a payoff de-

termined by an asset with a price expressed

in currency A, but paid in currency B. For

instance, consider a contract with a payoff

equal to the FTSE 100 stock index paid in

dollars. If the index is 4000 at expiration,

the quanto holder gets 4000 dollars.

• It is easy to figure out the value of a for-

ward on the FTSE paid in pounds. As-

suming no dividends for simplicity, using a

pound sterling money market account as

the numeraire, Ft+τ = euτSt where u is the

sterling riskless rate and St is the FTSE

spot price.
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• To price the quanto, let’s change numeraires

from the sterling money market to the dol-

lar money market. In doing so, we have to

be careful about converting the sterling to

dollars. Calling Dt the value of the ster-

ling money market at t, and Ct the value

of the dollar/sterling exchange rate, the

dollar value of the old numeraire is DtCt,

where dCt = μCCtdt + σCCtdWC. Our nu-

meraire ratio Nt is therefore Bt/DtCt. By

Ito’s lemma:

dNt

Nt
= rdt − udt − μCdt − σCdWC + σ2

Cdt



• Under the old numeraire dSt = uStdt +

σSStdWS. By GT, under the new measure:

dSt = uStdt − σCσSρCSdt + σSStdW̃S

where W̃S is a Brownian motion under the

new measure implied by the new numeraire.

• Call the quanto forward price k. This price

sets the value of the forward contract to
zero. Under the new measure, for a quanto

expiring at T > t

0 = E[(ST − k)/BT ] = e−r(T−t)E[ST − k]

• Given the process for S under the new nu-

meraire,

E[ST ] = Ste
(u−ρσCσS)(T−t)St

• This implies that k = Ste
(u−ρσCσS)(T−t)St.



The Links Between the PDE and Martingale

Approaches:

Komogorov’s Backward Equation and

Feynman-Kac

• The martingale and arbitrage approaches

to contingent claim valuation seem extremely

different. In fact, though, they give the ex-

act same answer.

• Two remarkable results prove that these

approaches are equivalent. The first theorem–

Komogorov’s backward equation–is relevant

when interest rates are constant. The second–

the Feynman-Kac formula–is relevant when

interest rates are stochastic.

50



• Kolmogorov’s equations states that if one

defines erTu(x, t) = Ex[f(x, T)], where x is

the Ito proces

dx = μ(x, t)dt + σ(x, t)dW

then

ru = ut + μ(x, t)ux + .5σ2(x, t)uxx

subject to the conditon u(T, x) = f(x).

Under the equivalent measure, μ(x, t) = r.

This implies:

ru = ut + rux + .5σ2(x, t)uxx

• This is identical to the equation we used

to derive the Black-Scholes formula.

• The Feynman-Kac formula extends this re-

sult to the case of stochastic interest rates.



Another Way of Showing the Equivalence of

the Approaches

• We can also use the Girsanov theorem to

illustrate the equivalence between the ar-

bitrage portfolio and equivalent martingale

approaches.

• Consider an asset with SDE dSt = μStdt +

σStdWt where dWt is a Brownian motion

under the true probablity measure P.

• We know that under the EMM e−rtSt is a

martingale. Note:

de−rtSt = −re−rtSt + e−rtdSt =

e−rt[−rSt + μStdt + σStdWt]

51



• The Girsanov theorem implies we can find

another process dW̃t such that

dW̃t = dWt + dXt

in which W̃t is a martingale under the prob-

ability measure Q with

dQ = e
∫ t
0 XudWu−.5

∫ t
0 X2

ududP

• Subsituting, we get:

de−rtSt = e−rt[−rSt + μStdt

+ σStdW̃t − σStdXt]



• For this to be a martingale, it must be the
case that the drift is zero. Hence:

St(−r + μ + σdXt) = 0

This requires:

dXt =
μ − r

σ
dt

• Now consider a contingent claim V . Its
discounted value must also be a martin-
gale under the equivalent measure. Ito’s
lemma implies the dynamics of the dis-
counted value are:

de−rtV = e−rt[−rV + Vt + VsμSt + .5σ2S2
t Vss]dt

+ e−rtσStVsdWt

• Next substitute dW̃t = μ−r
σ + dWt. This

implies:

de−rtV = e−rt[−rV + Vt + VsrSt + .5σ2S2
t Vss]dt

+ e−rtσStVsdW̃t



• This must be a martingale, which implies:

−rV + Vt + VsrSt + .5σ2S2
t Vss = 0

• Again–the Black-Scholes equation!



Valuing Contingent Claims Through

Integration

• The Martingale approach implies that we

can value contingent claims by taking an

expectation. Taking an expectation involves

integrating over a probability distribution.

• There are two basic integration techniques–

explicit integration, and Monte Carlo inte-

gration.

• Which is appropriate depends on circum-

stances.
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Explicit Integration

• Let’s take the simplest case–a European

call option with time τ to expiration struck

at K. The payoff to this option is max[S −
K,0]. The Martingale approach implies that

the value of this call is:

C(S, K, τ) =

e −rτ
∫ ∞
−∞

max[Se(r−.5σ2)τ−σ
√

τZ − K,0]

· e−.5Z2

√
2Π

• We note that we can solve for a critical

value of Z, Z∗ such that S − K = 0. This

is:

Z∗ =
ln S

K + (r − .5σ2)τ

σ
√

τ
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• Thus

C(S, K, τ) = e−rτ
∫ Z∗

−∞
[Se(r−.5σ2)τ−σ

√
τZ − K]

· e−.5Z2
dZ√

2Π

• Consider the term
∫ Z∗

−∞
Se−.5σ2τ−σ

√
τ e−.5Z2

dZ√
2Π

• The exponent is: −.5σ2τ −σ
√

τ − .5Z2. We
can use the trick of “completing the square
to simplify this:

−.5(σ2τ + 2σ
√

τ + Z2) = −.5(Z + σ
√

τ)2

• Define a new variable Y = Z + σ
√

τ . Since
Z ≤ Z∗, Y ≤ Z∗ + σ

√
τ ≡ Y ∗ Thus,

∫ Z∗

−∞
Se−.5σ2τ−σ

√
τ e−.5Z2

dZ√
2Π

=
∫ Y ∗

−∞
S

e−.5Y 2
dY√

2Π



• This is SN(Y ∗), where N(.) is the cumu-

lative normal distribution. It can be es-

timated with arbitrary accuracy using nu-

merical techniques.

• Now consider the term

∫ Z∗

−∞
K

e−.5Z2
dZ√

2Π

• This is just KN(Z∗).

• Therefore,

C(S, K, τ) = SN(Y ∗) − e−rτKN(Z∗)

• This is the Black-Scholes-Merton formula.



Monte Carlo Integration

• Monte Carlo techniques are extremely com-

mon in financial applications.

• In a Monte Carlo approach, one simulates

the behavior of the price of the underlying

using large numbers of random draws, and

then calculates the option value as a sam-

ple average of the payoffs of the option.

• Consider an option with 100 days to matu-

rity. First draw 100 standard normal vari-

ables z1, . . . , z100. This implies a series of

100 stock prices. The stock price on day

j is

Sj = S0e(r−.5σ2)(j/365)+(σ/
√

365)
∑j

i=1 zi
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• On day 100, the value of the option is:

max[S100 − K,0].

• Save the value of the option at expira-

tion. Repeat this process many times (e.g.,

10,000 times) and take the average of all

the values you get. Discount the average

to reflect the time value of money. The

discounted average is the value of the op-

tion.



Path Dependent Options

• One advantage of Monte Carlo is that you

can value so-called path-dependent options.

• A path-dependent option has a payoff that

depends on the path the underlying price

follows, not just the value of the underlying

at expiration.

• An example of a path-dependent option

is a “knock-out” call. This option be-

comes valueless if the value of the underly-

ing reaches some level prior to expiration.

• In a Monte Carlo valuation approach, you

can set the value of the option equal to

zero on any path that crosses the “knock-

out” barrier.
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Increasing the Accuracy of MC

• There are a variety of techniques to im-

prove the accuracy and speed of Monte

Carlo.

• In the antithetic variable technique, in your

first sample use zi, in your second sample

use −zi.
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• The control variable technique requires the

existence of a related option that has an

analytical solution. For instance, consider

an “Asian” option. An Asian option has

a payoff that equals the average of the

underlying price over some time interval.

There is no analytical solution for an Asian

option with a payoff given by an arithmetic

average of prices. There is, however, a an-

alytical solution for the value of an Asian

option based on a geometric average.

• In the control variate technique, calcualate

the value of both the geometric and arith-

metic Asian using MC. Call the value of

the arithmetic option value given by the

MC approximation as A. Call the value of

the geometric value given by the MC as G.

Call the analytical value of the geometric

option G∗. Then estimate the value of the

arithmetic Asian as A + (G − G∗).



• Quasi-random sequences use a special al-

gorithm to choose the zi. An example is

the Sobol’ sequence. By insuring that there

are fewer “gaps” and “clumps” in the zi,

quasi-random sequences allows you to use

fewer random samples when estimating your

option value. Due to this, the accuracy of

the MC approximation is proportional to

1/M using qrs, instead of 1/
√

M using a

basic random number generator, where M

is the sample size.



Which Valuation Method is Best?

• Explicit integration is preferable for Euro-
pean options.

• Monte Carlo is frequently the best approach
when (a) valuing options that have payoffs
that depend on several underlying variables
(e.g., stochastic volatility) and (b) certain
path dependent options.

• Monte Carlo cannot handle American op-
tions.

• PDE techniques are best for American op-
tions. Moreover, PDE approaches are fre-
quently flexible enough to value path-dependent
options (such as Asians). This requires
increasing the number of state variables,
which raises computation (and program-
ming) costs.
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How Well Do These Approaches Work?

• These valuation approaches work well when

its assumptions closely approximate reality.

• The key assumption is that the behavior of

financial prices is well-approximated by an

Ito Process.

• Unfortunately, there’s a lot of evidence that

financial prices don’t behave like Ito Pro-

cesses.
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The Volatility Smile

• If volatility is constant, then all options on

the same underlying should have the same

“implied volatility.” An implied vol is the

volatility parameter that sets the option

value given by the BSM model equal to

the market price of the option.

• If volatility is a function of S and t, as is

permissable with an Ito Process, then day

after day, the function σ(S, t) that best fits

options prices shouldn’t change.
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• We know that implied volatility is not the

same for all options. Indeed, there is some-

thing called the volatility smile, or volatility

“smirk.” That is, implied volatilities are a

function of the strike price. The implied

vol for at-the-money options is lower than

the implied vol for options with lower strike

prices, and is sometimes lower than the

implied vol for options with higher strike

prices.



Financial Orthodentia:

Fixing the Smile ;-)

• On a given day, you can choose (using

complex mathematical techniques) a func-

tion σ(S, t) that fits the volatility smile.

• Derman and Kani first derived a method

for implementing this approach based on

binomial trees. Although this is popular,

and widely used, it is numerically crude.

It faces what as known as an “overfitting

problem.” There is an infinite number of

σ(S, t) functions that can fit a finite num-

ber of option prices exactly. Which one to

choose? The DK approach always gives

you one such function, but if you change

the data (e.g., the options prices) by the

tiniest amount, the DK approach will give
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you a completely different function. That

is, the DK approach is not stable.

• There are other, very advanced approaches

that avoid overfitting. These are called

“inverse techniques.”

• Even if you use inverse techniques, you may

run into problems. This technique is good

if and only if the underlying price process

is an Ito process. If it isn’t, this approach

will not work.

• There is evidence that stock, bond, and

commodity prices are not Ito processes.



• With an Ito process, using inverse tech-
niques you should get the same σ(S, t) func-
tion every day. In fact, you don’t. More-
over, an Ito process implies that volatility
depends only on the underlying price. In
fact, there is a lot of evidence that volatil-
ity changes a lot and that these changes
cannot be attributed solely to changes in
the underlying price.

• Indeed, there is an immense body of ev-
idence showing that volatility varies ran-
domly over time, and that this variation is
largely independent of movements in the
underlying price.

• Random volatility can explain the smile.

• If volatility is random–that is, stochastic–
then the Ito process-based approach will
give incorrect option valuations.



Valuation With Stochastic Volatility

• Volatility is not a traded asset. Therefore,

if we want to use volatility as a state vari-

able then (a) we now have two state vari-

ables (the underlying and the volatility) and

(b) we have to use a formula with a market

price of risk.

• Let’s specify a fairly general S volatility

process:

dσ = μσ + νdWσ

where the parameters μσ and ν are poten-

tially functions of σ and t.

• Then, calling λ the market price of volatil-

ity risk, our valuation PDE for a contingent

claim with value V becomes:
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rV = Vt + .5ν2Vσσ + (μσ − νλ)Vσ

+ rStVS + .5S2
t σ2VSS + StσνVSσ



Implementation

• This is a two-dimensional parobolic PDE.

It can be solve using a variety of meth-

ods, including finite differences (especially

useful for American options), Monte Carlo

integration, or Fourier techniques.
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• Solving the model also requires specifica-

tion of the volatlity process parameters.

There are several standard processes that

are tractible (but perhaps not completely

realistic) used for this purpose.

• Solving the model also requires knowledge

of the current value of σ and estimation

of the volatility process parameters. Since

σ is not observed directly, these are hard

problems. That is, σ is a “latent” process

that requires some fancy statistics to es-

timate. One approach is to use discrete

time (e.g., daily data) to estimate the pa-

rameters. This is feasible if the discrete

time model (e.g., a GARCH model) has a

continuous time limit.



• Another problem is that it is necessary to
estimate a market price of risk.

• Initially, practitioners assumed λ = 0. Much
empirical evidence shows that this is incor-
rect. If it were true, delta hedged options
positions would earn the riskless rate. In
fact, returns on such positions deviate sub-
stantially from the riskless rate. This im-
plies that there is another risk premium af-
fecting options prices. A likely candidate is
volatility risk.

• λ is also an unobserved function.

• The theoretically purest way to address all
these problems is to use historical options
price data as well as underlying price data
to estimate μσ, ν, and λ, and these parame-
ters plus current options prices to estimate
σ. This is a demanding process.



Jumps

• Eyeballing any financial time series one sees

instances where prices seem to change dis-

continuously. That is, they “jump” or “gap.”

• Remember that Brownian motions have con-

tinuous sample paths–they do not exhibit

jumps. Thus, Ito processes cannot capture

the jumpiness observed in prices.

• One way to address this issue is to utilize

so-called “jump-diffusion” models. These

marry a Brownian motion process and a

Poisson process.

63



• A Poisson process is one that exhibits no

change with probability 1−λdt and changes

with probability λdt. That is, the poisson

process q is dq = 0 with probability 1 − λdt

and dq = 1 with probability λdt. λ is re-

ferred to as the intensity of the jump pro-

cess.

• a stock price model that incorporates the

jump is:

dS = μSdt + σSdW + (J − 1)Sdq

• In this expression, J gives the magnitude

of the jump. J can be deterministic (e.g.,

J = .9, indicating that the stock prices falls

10 percent during a jump) or J can be a

random variable.



• Although the jump process can be specified

quite generally to describe observed data

accurately, jumps pose acute problems for

valuation.

• Remember that the valuation methods that

we have used so far rely on hedging and

replication arguments. The jump compo-

nent cannot be hedged using the underly-

ing, however.

• If the magnitude of the jump is known and

takes a single value (i.e, J is a constant)

then we can construct a hedge portfolio

consisting of two options and the under-

lying. This introduces a market price of

risk.



• If the jump magnitude is stochastic things
get even more complicated. If J takes on K

values, we need a portfolio of K+1 options
and the underlying to hedge all relevant
risks. This injects K risk prices. Note that
if J is a continuous random variable, and
hence K = ∞, we have an infinite number
of risk prices!

• Various models have been proposed to fi-
nesse this issue. Most implicitly or explic-
itly assume that the jump risk is diversi-
fiable, or can be priced using the CAPM.
Such models calculate values through in-
tegration. These approaches are further
examples of looking for our keys under the
lamppost.

• Jump models also pose serious estimation
issues. That is, it is not a trivial task to
estimate the parameters of a jump process.



• Jump models have become especially pop-

ular for pricing electricity derivatives be-

cause electricity prices are very jumpy. This

points out a serious issue–descriptively ac-

curate characterizations of price processes

may not lead to reliable pricing models.

Even if we know the probability and in-

tensity of jumps, unless we know how the

market prices these jumps we cannot de-

rive reliable pricing models. Even if we can

take expectations under the true measure

(because we have characterized the statis-

tical properties of the jumpy price series)

we can’t value unless we know the relevant

probabilities under the equivalent measure.



• Jump models also pose problems in elec-

tricity because λ is time dependent–a jump

is more likely in the summer than the fall,

for instance. Moreover, the distribution of

J is almost certainly time dependent–big

jumps are more likely in the summer.

• Jump models provide a great illustration of

the dilemmas of derivative pricing; descrip-

tively accurate models seldom can be in-

corporated in the available valuation frame-

work. Practitioners therefore face a trade-

off between descriptive accuracy and valu-

ation feasibility.



Interest Rate Models

• One of the most important areas of deriva-

tives modeling involves fixed income mar-

kets. Modeling derivatives on fixed income

products requires modeling interest rates.

• There are two basic “flavors” of interest

rate models: (a) spot rate models, and (b)

Heath-Jarrow-Morton forward rate models.

• The spot rate models are much more tractible.

We will focus on those.
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Spot Rate Models

• Spot rate models characterize the dynam-

ics of the instantaneous interest rate–the

interest rate at which you can borrow or

lend over the next instant.

• There is in fact no real world analogue to

the instantaneous spot rate–it is merely a

modeling convenience.

• The generic spot rate model is a single fac-

tor model of the type:

drt = θ(r, t)dt + σ(r, t)dz

• Different models make different assump-

tions about θ(., .) and σ(., .).
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• The earliest model is the Vasicek model:

dr = a(b − r)dt + σdz

• in the Vasicek model, a > 0, b > 0, and σ

are constants. This model exhibits “mean

reversion.” That is, when r > b, the spot

rate tends to fall; when r < b, the interest

rate tends to rise. Thus, the interest rate

reverts to the long range mean value of b.

• Interest rates can become negative in this

model. This is a potentially serious prob-

lem (especially when dealing in low interest

rate environments).

• The Cox-Ingersoll-Ross (CIR) model:

dr = a(b − r)dt + σ
√

rdz



• This “square root process” model rules out

negative interest rates. It implies that in-

terest rate volatility rises with interest rates.

• The Ho-Lee model:

dr = θ(t) + σdz

• The Hull-White model:

dr = (θ(t) − ar)dt + σdz

• This model adds mean reversion to Ho-

Lee.

• Negative interest rates are possible in both

Ho-Lee and Hull-White.



A Generalized Overview to Pricing Interest

Rate Derivatives

• Given a spot rate model, we can use our

standard pricing techniques to value any

fixed income derivative.

• Call V (r, t) the value of an interest sensitive

contingent claim. Then:

rV = Vt+.5σ(r, t)2Vrr+[θ(r, t)−σ(r, t)λ(r, t)]Vr

• Note that we have to include a market price

of risk because the spot rate is not a traded

asset.

• The spot rate models discussed earlier are

used largely because they are tractible, and

allow closed-form solutions of this equation

for certain instruments.
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• In particular, it is possible to solve analyti-

cally for zero coupon bond prices using the

spot rate models discussed above. A zero

coupon bond that matures at T has the

boundary condition V (r, T) = 1.

• For the spot rate models, the zero coupon

bond price PT is of the form

PT (r, t) = A(t, T)e−B(t,T )r(t)

• In the Vasicek model:

B(t, T) =
1 − e−a(T−t)

a

and

A(t, T) = exp[
(B(t, T) − T + t)(a2b − .5σ2)

a2

− σ2B(t, T)2

4a
]



• There is also a closed form solution for
a European call or put option on a zero
coupon bond in the Vasicek model.

• In the CIR model:

B(t, T) =
2(eγ(T−t) − 1)

(γ + a)(eγ(T−t) − 1) + 2γ

A(t, T) = [
2γe.5(T−t)(a+γ)

(γ + a)(eγ(T−t) − 1) + 2γ
]2ab/σ2

where γ =
√

a2 + 2σ2.

• In the Ho-Lee model, B(t, T) = 1 and

lnA(t, T) = ln
P (0, T)

P (0, t)
− (T − t)

∂P (0, t)

∂t

− .5σ2t(T − t)2

• In Hull-White:

B(t, T) =
1 − e−a(T−t)

a



lnA(t, T) = ln
P (0, T)

P (0, t)
− B(t, T)

∂P (0, t)

∂t

− 1

4a3
σ2(e−aT − e−at)2(e2at − 1)



Term Structures

• Each spot rate model implies a term struc-

ture of interest rates. The term structure

is a curve that gives the interest rate as a

function of maturity. The T -period inter-

est rate is the yield on a zero coupon bond

with maturity T .

• The Vasicek model allows an upward slop-

ing, downward sloping, or “humped” term

structure. This is somewhat limiting.

• The Ho-Lee and Hull-White models allow

“exact” fitting of the term structure be-

cause of the “fudge factor” θ(t). One can

choose θ(t) to fit term structures exactly.

67



• Note that since you are fitting the models

to market prices, the θ(t) function implic-

itly includes a market price of risk.

• To calculate θ(t) in HL, collect zero prices

for every maturity. Use these prices (or the

prices from Eurodollar futures or FRAs) to

calculate instantaneous forward rates. An

instantaneous forward rate for time t is the

rate that I can lock in today for borrowing

at t for repayment at t+dt. Call the forward

rate for maturity t F (0, t). Then, in HL:

θ(t) = Ft(0, t) + σ2t

• This is sometimes approximated as θ(t) =

Ft(0, t), The partial derivative is estimated

using finite differences.



• In HW, follow the same data collection pro-

cedure, exept use:

θ(t) = Ft(0, t) + aF (0, t) +
σ2

2a
(1 − e−2at)

• This is often approximated as

θ(t) = Ft(0, t) + aF (0, t)



Calibration

• This process of fitting θ(t) is called “cali-
bration.”

• Calibration gives an exact fit to the term
structure.

• This exact fit seems comforting, but in fact
is dangerous. ALWAYS BEWARE A PER-
FECT FIT. Perfect fitting in fact implies
“overfitting.”

• The problem here is similar to the problem
with Derman-Kani discussed earlier. If I fit
θ(t) using one set of data, and then change
the data only slightly, I’ll get a completely
different θ(t).

• Inverse problem techniques are more ap-
propriate for this analysis.
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How Well do Short Rate Models Work?

• Short rate models are extremely popular.

They have some serious problems, though.

• For one thing, single factor models are of

dubious validity. Principal components anal-

ysis suggests that there are multiple factors–

at least three, perhaps as many as 10–

driving interest rates. The three strongest

factors appear to be “shift,” “twist,” and

“hump.” Thus, single factor models can’t

mimic the dynamics of real world interest

rates.

• Multi-factor models seem to be a desirable

alternative, but they are considerably more

complicated to implement.
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• Relatedly, if the models were correct we

should see the same θ(t) functions day af-

ter day. In fact, we don’t. This reflects the

fact that the calibration papers over serious

limitations in the models’ ability to capture

real world interest rate dynamics. In partic-

ular, the models cannot reliably capture the

extreme steepness of the term structure at

the very short-maturity section. The fit-

ted θ(t) functions imply that the short end

should “flatten out” but it usually doesn’t.

• There is also substantial evidence of stochas-

tic volatility in interest rates. The standard

models don’t capture this.


