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What is a Derivative? 
 

A “derivative” is a financial contract. 

Derivatives contracts get their name from the fact that they are 
“derived from” some other, “underlying” claim, contract, or asset. 
 
For instance, a gold forward contract is “derived from” the 
underlying physical asset—gold. 
 
Derivatives are also called “contingent claims.”  This term reflects 
the fact that their payoff—the cash flow—is contingent upon the 
price of something else.  Going back to the gold forward contract 
example, the payoff to a gold forward contract is contingent upon 
the price of gold at the expiration of the contract. 
 
Although derivatives are frequently considered to be something 
new and exotic, they’ve been around for millennia.  There are 
examples of derivative contracts in Aristotle and the Bible. 
 
It is true, however, that there has been an explosion in the variety, 
complexity, and use of derivatives, especially in the last 30 years. 
 
In this course, you will learn what derivatives contracts are, how 
you can use them, and how to price them. 
 
The most basic derivative is a forward contract.   

 



Basics of Forwards and Futures 
 

A forward contract is an agreement between a buyer and a seller to 
transfer ownership of some asset or commodity (“the underlying”) 
at an agreed upon price at an agreed upon date in the future. 
 
A forward contract is a promise to engage in a transaction at some 
later date. 
 
The forward contract specifies the characteristics of the 
underlying.  For example, for a commodity, it specifies the type of 
commodity (e.g., silver), the quality of the commodity (e.g., 99.9 
percent pure silver), the location of delivery, the time of delivery, 
and the quantity to be delivered.   
 
The primary use of a forward contract is to lock in the price at 
which one buys or sells a particular good in the future.  This 
implies that the contract can be utilized to manage price risk. 
 
Most forward contracts are traded in the “over the counter” (OTC) 
market.   
 
Some forward contracts are traded on organized exchanges such as 
the Chicago Board of Trade or the New York Mercantile 
Exchange.  These exchange traded contracts are called “futures 
contracts.” 
 



Forward contracts traded OTC can be customized to suit the needs 
of the transacting parties.  Exchange traded contracts are 
standardized.  This enhances liquidity.   
 
Performance on futures contracts are guaranteed by third parties 
(brokers and the clearinghouse.)  Performance on OTC forwards is 
not guaranteed.  The quality of the contractual promise is only as 
reliable as the firm making it.   
 
Forwards and futures are traded on a wide variety of commodities 
and financial assets. 
 
Commodity futures and forwards are traded on agricultural 
products (corn, soybeans, wheat, cattle, hogs, pork bellies); 
precious metals (silver, gold, platinum, palladium); industrial 
metals (copper, lead, zinc, aluminum, tin, nickel); forest products 
(lumber and pulp); and energy products (crude oil, gasoline, 
heating oil, natural gas, electricity). 
 
Financial futures and forwards are traded on stock indices (S&P 
500, Dow Jones Industrials, foreign indices); government bonds 
(US Treasury bonds, US Treasury notes, foreign government 
bonds); and interest rates (Eurodollars, EuroEuros). 
 
More recently, forward/futures trading has begun on weather and 
credit risk.  These are (no pun intended) the hottest areas in 
derivatives development. 
 



 
The Uses of Derivative Markets 

• Derivatives markets serve to shift risk. 

• Hedgers use derivatives to reduce risk exposure.  For 
instance, a refiner can lock in costs and revenues (i.e., lock in 
its margin) by buying crude oil futures and selling oil and 
gasoline futures. 

• Speculators use derivatives to increase risk exposure in the 
anticipation of making a profit. 

• Thus, derivatives markets facilitate the shifting of risk from 
those who bear it at a high cost (the risk averse) to those who 
bear it at a low cost (the risk tolerant). 

• Speculators perform a valuable service by absorbing risk 
from hedgers.  In return, they receive a reward—a risk 
premium.  The risk premium is the expected profit on a 
derivatives transaction.  Speculators may win or lose in any 
given trade, but on average speculators expect to profit. 

• The risk premium is also the cost of hedging.   



Hedging Basics 
 

Some terminology: 
 
Going “short” means to sell a forward/futures contract. 
 
Going “long” means to buy a forward/futures contract. 
 
A “short hedger” sells forwards as a hedge.  For instance, the 
holder of an inventory of crude oil is subject to price risk.  The 
value of the inventory declines if the price declines, but its value 
goes up with the price.  The inventory holder can sell a forward 
contract as a hedge.   
 
Hedging works because the forward price tends to move together 
with the value of what is being hedged.   
 
For instance, consider a firm hedging a cargo of Dubai.  The value 
of the cargo rises and falls with the price of Dubai crude at the 
location to which the cargo is being shipped.  The cargo owner can 
sell Brent forward contracts (or Brent futures contracts).  The price 
of Brent tends to move in tandem with the price of Dubai.  Hence, 
when the price of Brent rises, the price of Dubai tends to rise too.  
Similarly, Brent prices tend to decline when the Dubai price falls.  
 
For instance, assume that Dubai is currently selling at $25/bbl and 
Brent futures are selling for $28/bbl.  The firm buys the cargo of 
Dubai and sells the Brent today. 



 
By the time the cargo is delivered and sold, oil prices have moved.   
The firm sells the Dubai cargo at $23/bbl.  Brent is selling at 
$26.08.  That is, the price of Brent has fallen by $1.92 and the 
price of Dubai by $2.00.  The firm loses $2.00/bbl on its cargo, but 
gains $1.92 on the Brent position (it sold at $28, bought back at 
$26.08, for a gain of $1.92).  Thus, the firm’s net loss is $.08—
only 4 percent of what it would have lost if it hadn’t hedged. 
 
Alternatively, assume that when the cargo is delivered and sold, 
Dubai is selling for $27.25 and Brent for $30.19.  Here the firm’s 
cargo is now worth $2.25 more per bbl, but it has lost $2.19/bbl on 
its Brent futures, for a net gain of $.06/bbl.   
 
Some things to note: 
 
• The firm still faces some risk when it hedges, but the 

variability of its gains and losses is smaller when it hedges 
than when it doesn’t.  

• No hedge is “perfect.”  There is always some risk. 

• The difference between the price of what is being hedged 
(e.g., the Dubai) and the price of the hedging instrument (the 
Brent) is called the “basis.”   



• Hedgers trade “flat price risk” for “basis risk.”  That is, 
without hedging, the firm is at risk to changes in the flat price 
of Dubai.  When it hedges, it is at risk to changes in the 
difference between the prices of Dubai and Brent—i.e., it is 
at risk to basis changes.   

• The variability of the basis—and hence the risk that the 
hedger faces—depends on the correlation between the prices 
of what’s being hedged and the hedging instrument.  High 
correlation results in low basis risk and high hedge 
effectiveness. 

• Therefore, hedgers care about basis risk and correlation.  
Correlations depend on the closeness of the match between 
what’s being hedged and the hedging instrument.  There can 
be differences in quality (e.g., sweet crude vs. sour crude), 
differences in location (e.g., Henry Hub natural gas vs. 
Chicago City Gate NG), or differences in timing (spot gas vs. 
gas for delivery next month).  



• Basis behavior varies by commodity.  It can also vary over 
time.   

 
• Some examples include heating oil vs. jet fuel in the first 

Gulf War, and California Border (Topok) gas vs. HH gas 
futures in 2000. 

 
Long hedging is symmetric to short hedging.  A long hedger buys 
forward contracts to hedge risk.  As an example, an electric utility 
with a gas fired plant faces the risk that the price of gas may rise.  
It can lock in the cost of gas by purchasing a gas futures contract.  
If the price of gas delivered to its plant does rise, the additional 
cost will be offset in whole or in part by a rise in the futures 
contract.  If the price of gas falls, the firm loses on its futures 
position, but this is offset in whole or in part by the lower cost of 
purchasing gas on the cash market to fuel its plants. 
 



Delivery and Cash Settlement 
 

Most commodity forwards and futures allow the short to make 
delivery and the long to take delivery.  Typically the short has the 
option to choose when to deliver (within a pre-specified delivery 
period).   
 
Although most futures contracts call for delivery, very few 
contracts actually result in delivery.  Roughly 2 percent (give or 
take) of contracts traded actually result in delivery.   
 
This is true because most hedgers are not dealing in the commodity 
deliverable against the futures contract.  For instance, an oil refiner 
in California is not going to use WTI crude oil in Cushing, OK for 
its plant, but may use the WTI futures contract as a hedge.  That is, 
most hedgers are “cross hedgers.”  Similarly, speculators are just 
“betting” on price movements, and have no interest in owning the 
phys.   
 
Therefore, most hedgers and speculators reverse their positions 
prior to delivery.  Shorts buy back their futures prior to delivery, 
and longs sell back their futures.   
 



Even though delivery doesn’t occur on most contracts, delivery is 
important nonetheless.  Delivery ties the price of the expiring 
future to the price of the physical commodity at delivery.  That is, 
delivery (and the potential for delivery) forges the connection 
between the futures price and the price of the actual commodity.  
This is essential for hedging. 
 
Relatedly, it is essential that delivery terms in a futures contract 
reflect physical market realities.  It is important that the futures 
deliverable exhibit a high correlation with the prices of other 
varieties and locations to ensure hedging effectiveness.  Also, the 
delivery market should have sufficient capacity to reduce its 
vulnerability to manipulation (more about which later). 
 
Cash settlement is another way to tie the futures and cash markets 
together.  
 
In a cash settled contract, at expiration the buyer pays the seller the 
difference between the fixed price established in the contract and 
the reference price prevailing on the payment (expiration date). 
 



For instance, consider a cash settled contract based on the price of 
gas at the Chicago City Gate as published in Inside Ferc.  The 
contract expires in December.  When the parties enter the contract, 
they agree on a price (say, $6.00/MMBTU).  At expiration, the 
parties look at Inside Ferc to determine the CCG price.  Let’s say 
it’s $6.25.  In this case, the seller owes the buyer $.25 per 
MMBTU.  If the price were $5.80 instead, the buyer would owe 
the seller $.20/MMBTU.   
 
Cash settlement is widely used on OTC derivatives.  It’s important 
that they be based on reliable cash indices.  Unfortunately, recent 
revelations demonstrate that in the energy industry cash indices 
have been anything but reliable.   



EFPs and ADPs 
 

Although few futures contracts are ultimately settled by delivery 
under the standard delivery terms specified in an exchange’s 
futures contract, futures are frequently employed as part of a 
transfer of ownership of a commodity. 
 
The most common technique is called an EFP—an “exchange for 
physicals” (also called an “ex pit” trade, or an “exchange for 
cash.”) 
 
Typically an EFP involves two hedgers, one of which (“L”) has 
bought a futures contract in anticipation of buying the actual 
commodity at a future date, and the other (“S”) has sold a futures 
contract in anticipation of selling the actual commodity at a future 
date.  (It is sometimes said that a futures trade is a temporary 
substitute for a future physical transaction).   
 

Sometime prior to expiry of the contract, S and L decide that they 
want to trade the physical with one another.  As soon as they agree 
on a price, they want to terminate their futures positions because 
they no longer need them as a hedge.   
 



One thing they could do is just agree on a price for the phys trade 
(e.g., $30/bbl), and then each go to the futures market to offset 
their positions at the prevailing market price.  The problem with 
this is that the parties are at risk from the instant that they agree on 
the phys trade price to the time that they liquidate their futures.  
Even if they move quickly, the futures market can move a good 
deal before they close their positions.  This is “slippage” or 
“execution risk.”  
 

An EFP addresses this problem.  In an EFP, the parties agree to a 
price at which the parties exchange the physical and the 
underlying.  S gives up his short position and the physical 
commodity to L.  L gives cash to S.  L now has a long and a short 
futures position that offset—he is no longer exposed to the futures 
market.  Similarly, S has given up his futures exposure.   
 

The parties can transfer the futures at any price that they choose.  
This price reflects the value of the physical trade agreed to by the 
parties. 
 

The physical good traded needn’t be the same one deliverable 
under the contract.  For instance, a natural gas buyer and seller 
may use an EFP involving NYMEX Henry Hub gas futures as part 
of a trade for Alberta NG.  On NYMEX, the quantity of physical 
commodity traded must be “approximately equal to” the quantity 
of futures exchanged. 
 

It is also possible to use an EFP to establish a futures position. 
 



NYMEX also allows alternative delivery procedures, or ADPs.   
 

In an ADP, a futures long L and a futures short S who have been 
matched by the clearinghouse so that S is supposed to deliver 
against futures to L can work out delivery terms that differ from 
those set out in the exchange contract.   
 



Swaps 
 

Swaps are the most common OTC derivative. 
 
Most swaps are “vanilla” fixed price swaps.  These are like 
bundles of forward contracts.  (Though some swaps have only one 
pricing date.) 
 
Vanilla swaps are typically cash settled. 
 
The parties to a swap set: (a) the notional quantity; (b) the “tenor” 
or maturity of the swap (how long it lasts); (c) the payment dates; 
(d) the floating price index; and (e) the fixed price. 
 
The mechanics of a swap are as follows: There is a fixed payer 
price (the “long”) and a floating price payer (the “short”).  The 
fixed price payer makes the same payment to the counterparty (the 
floating price payer) every payment date.  The floating payer pays 
the counterparty (the fixed price payer) an amount that depends on 
the floating price index. 
 
The most common floating price index is currently the settlement 
price on the next to last or last trading day of the contract 
corresponding to the payment month (e.g., the January futures for 
the January payment date).  In the past contracts based on the 
average of the last 3 days of the NYMEX NG futures settlement 
prices corresponding to the payment month were common.  



However, parties could agree to any price index, e.g., Chicago City 
Gate quoted by Platts.   
 
The party whose payment obligation is larger pays the net amount 
to the counterparty.  The payment equals the absolute value of the 
difference between fixed and floating prices times the notional 
quantity.   
 
An example works best.  Consider a swap for 100,000 MMBTU 
per month (equivalent to 10 NYMEX contracts) for each month in 
September, 2005-August, 2008.  The fixed price in the swap is 
$9.075 per MMBTU.  Payments are made 5 days after the last  
trading day of the NYMEX NG futures (each month from U04-
Q07), and the floating price is based on the LD NYMEX settle 
prices.   
 
The September NYMEX contract ends trading on 8/28/2005.  The 
payment date is September 3, 2005.   
 
Assume that on 8/28/2005 the LD September futures is $8.625.  
The floating price is below the fixed price.  Therefore, the long 
owes the short.  The amount due is $.45 x 100,000 = $45,000. 
 
Assume that on 12/28/2005, the LTD January 05 futures settles at 
$9.965.  Here the short owes the long $.89 x 100,000 = $89,000. 
 



Determining The Fixed Price 
 
Fixed prices are determined at the time that the swap is negotiated 
based on the relevant forward prices at that time.  For NYMEX 
LTD, the NYMEX futures prices prevailing when the swap is 
negotiated are used to determine the fixed price. 
 
The fixed price is set so that a swap has zero value on the date that 
it is created.   
 
A hedging argument indicates how the swap price is determined.  
Consider a firm that buys a 3 year NYMEX LTD swap.  It can 
hedge this swap by selling a 3 year strip of NYMEX futures.  On 
each payment date T, this generates a cash flow of: 
 

PF Tt −,  
 
where TtF ,  is the NYMEX futures price corresponding to 
payment date T as of the date that the swap is negotiated (t).   
 
This payment is known as of t.  It can be discounted back to the 
present to determine a present value.   
 
The value of the swap given a fixed price P is therefore: 
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where DFT is the discount factor (present value) corresponding to 
date T, T1 is the first payment date, and TN is the last payment 
date.   
 
At initiation of the swap, P is set so that the value of the swap 
equals zero.  This requires: 
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Note that the swap price depends on the forward curve (the futures 
prices) and interest rates (which affect the discount factors). 
 
After the swap is initiated, the forward/futures prices change, and 
hence the value of the swap can become either positive or negative.  
(Remember this is a zero sum deal, so if it is positive to one party 
it is negative to the other.)   
 
 



The Use of Swaps 
 
Swaps are hedging instruments (and can be used as speculative 
tools as well).   
 
Consider a gas producer that wants to hedge its revenues for the 
next year.  It can sell a 1 year swap.  If prices fall, the floating 
payments in the swap become smaller, the fixed payments stay the 
same, so the net payment that the producer makes gets smaller.  
This smaller net payment offsets the effect of the lower gas price 
on the firm’s revenues.  Of course, if gas prices rise, the floating 
payments on the swap get bigger, but this is offset by higher 
revenues from the sales of phys gas.   
 
Alternatively, consider an oil refiner that wants to hedge its crude 
costs for the next 2 years.  It can buy a 2 year CL swap.  If oil 
prices rise, the refiner receives a bigger payment from the swap 
counterparty, which offsets the impact of higher crude acquisition 
costs; on the flip side, if oil prices fall, the refiner receives a 
smaller payment from the counterparty, but this is offset by the fact 
that lower crude prices mean lower costs.   
 



Other Kinds of Swaps 
 
Vanilla fixed price swaps are the most common form of energy 
swap, but there are others. 
 
Basis swaps have two floating price payers.  The net payment is 
based on the difference between two different floating indices.   
 
For instance, a basis swap may have a payoff based on the 
difference between the Chicago City Gate price and the Henry Hub 
price.  Alternatively, it might be a difference between the CCG 
price and the NYMEX LTD price. 
 
Combining a basis swap and a fixed price swap can create a swap 
that reduces basis risk.  For instance, consider a large industrial gas 
consumer in Chicago.  It can buy a NYMEX LTD swap, but since 
this is tied to Henry Hub prices, the firm bears basis risk (due to 
variations in the CCG-HH basis).   
 
However, the firm can buy the NYMEX LTD fixed price swap, 
and at the same time enter a basis swap whereby the firm pays 
NYMEX LTD plus a differential and receives the CCG price.  The 
NYMEX LTD payments on the fixed price swap and the basis 
swap cancel out.  What’s left is the fixed price in the NYMEX 
LTD swap (which the firm pays) and the CCG price plus the 
differential (which the firm receives).  This effectively locks the 
firm’s purchase price at the NYMEX swap fixed price plus the 
differential.   



 
The swap counterparties negotiate the differential in the basis 
swap.  For a swap in which Henry Hub or NYMEX prices 
determine one of the floating prices, for many locations (e.g., 
consuming locations such as the Midwest or Northeast) this 
differential is positive.  This reflects the fact that it is costly to ship 
gas from producing regions (around HH) to consuming locations.  



 
Market Mechanics: Trading 

 
There are two basic ways to buy and sell forwards—on exchange, 
or in the Over-the-Counter (OTC) market.   
 
The most important energy exchanges are the New York 
Mercantile Exchange and ICE.  NYMEX is an “open outcry” 
exchange (with an electronic after hours trading system.)  ICE is a 
fully electronic marketplace.   
 
On Nymex, a firm (or individual) submits a buy or sell order to a 
broker on the floor of the exchange.  The broker then enters the 
trading “pit” and endeavors to fill the order.  The broker shouts out 
that he wants to buy (or sell, as the case may be), and other traders 
in the pit compete to offer the best price to fill the order. 
 
The potential counterparties include other brokers representing 
other customers, or “locals” who trade on their own account.   
 
The floor procedure is an “open outcry double auction.”  It looks 
chaotic, but it is a very efficient way to buy and sell futures 
contracts.   
 
Customers can submit different kinds of orders—market orders, 
limit orders, stop orders, etc. 
 



A market order is an order to buy (or sell) at the best price 
prevailing in the market.  
 
A limit order is an order to buy (or sell) at a specified price (or 
better).   
 
A stop order is a market order that is only activated when the 
market price hits a certain level.   
 
Spread orders are also quite common on the futures market.  A 
spread order is an order to buy one contract and sell another related 
but different contract at the same time.   
 
For instance, a time (or calendar) spread involves the sale of one 
month’s contract and the purchase of another month in the same 
commodity (e.g., CL). 
 
An intercommodity spread involves the sale of one commodity and 
the purchase of another.  In energy, the “crack spread” is well 
known.  This involves the purchase of crude oil futures and the 
simultaneous sale of gasoline and heating oil.  The reverse crack 
does the opposite.  Another example is the “spark spread”—the 
sale of electricity and the purchase of natural gas. 



 
The Futures Trading Process 

Customers submit orders to brokers. 

Brokerage firms (“futures commission merchants,” aka FCMs) 
submit orders to trading system. 

In open outcry market, floor brokers shout out intention to buy 
or sell. 

Other brokers compete to take opposite side of order 

In computerized market, orders that “cross” (buy price>sell 
price) are automatically matched and executed.  



“Locals” and Liquidity 

Market makers trading on their own account, often called 
“local” traders, also compete to execute orders. 

Locals absorb order imbalances, and supply liquidity and depth 
to the floor. 

Open outcry auction facilitates competition.  Assists customers 
in assuring that they get the best possible price. 

Only best bid and offer can be shouted out. 



 
 
ICE is an electronic exchange.  Buyers and sellers enter orders by 
computer.  These orders are sent to a central computer that matches 
orders on the basis of price and time priorities.   ICE also ensures 
that trades are done only with approved counterparties within 
established credit limits.   
 
OTC markets are typically telephone markets.  OTC dealers make 
markets (i.e., quote prices).  Potential traders contact the dealer, 
negotiate a deal, and enter into a transaction.    
 
Many OTC transactions go through brokers.  This helps maintain 
the anonymity of the parties. 
 



Computerized Futures Trading 

Computerized trading of futures becoming increasingly 
common.  

No open outcry exchange has opened since 1986 (MATIF); over 
a dozen computerized exchanges have opened in this time. 

Established exchanges (e.g., CBOT, LIFFE) have computerized 
off-hours trading systems. 

IPE has recently converted to an all electronic marketplace for 
trading energy derivatives (e.g., Brent crude oil futures, UK 
NatGas). 

ICE is an all electronic exchange.  It is more analogous to an 
electronic OTC market.   

NYMEX has an after-hours electronic trading facility. 

Computerized exchanges gaining market share in head-to-head 
competition with open outcry.  



More on Computerized Trading 

Computerized trading is typically cheaper.  

Computerization reduces costs of accessing the market. 

Considerable debate on whether computerized trading is, or ever 
can be, more liquid than open outcry. 

In recent months representatives of open outcry exchanges have 
conceded the viability of computerized trading: this would have 
been unheard of even a year ago. 

 

Over 80 percent of financial futures volume on the CBOT is 
now computerized. 
 
Commodity markets (e.g., energy on NYMEX, grains on 
CBOT, meat on CME) are typically less electronic, but the IPE 
in London is moving to computerized trading despite the 
resistance of many of its local members. 



Exchanges and Standardization 

Standardization essential for either open outcry or computerized 
trading. 

Many commodities not inherently standardized: e.g., wheat. 

Exchanges economize on measurement costs by establishing 
standard grades and measures, and implementing measurement 
and arbitration systems.  Examples include CBOT, Liverpool 
Cotton Exchange.  

 

NYMEX and IPE create standardized terms for energy futures.  
These include delivery location terms (e.g., delivery of 1000 bbl 
of crude at Cushing, OK or 10,000 MMBTU of NG at Henry 
Hub) and quality terms (e.g., crude type, sulfur, gravity, 
viscosity, vapor pressure, sediment and pour point for CL). 
 
OTC markets sometimes trade contracts that mimic 
standardized NYMEX contracts (“NYMEX look alikes.)   
 
Whereas exchange trading requires standardization, OTC 
trading does not.  Nonetheless, many OTC deals are 
standardized to some degree. 



Credit Risk in Derivatives Markets 

Standardizing credit risk is the most important function of 
futures exchanges. 

Credit (default) risk always a concern in derivatives markets. 

Prices very volatile.  Losers may go bankrupt, owing large 
amounts to their counterparties. 

Even solvent losers have an incentive to “walk away” from 
losing trades. 



Standardizing Credit Risk 

Anonymous pit or computer trading requires standardization of 
credit risk. 

Futures markets accomplish this through “novation” or 
“substitution of principals.” 

Clearinghouse becomes buyer to every seller, seller to every 
buyer. 

Traders trade.  Clerks “match” buy and sell.  Once trades 
matched, clearinghouse stands as counterparty to all trades. 

Clearinghouse guarantees trade performance. 

Since in theory the clearinghouse stands behind every futures 
contract, credit risk is standardized: default risk of 
clearinghouse is same for all contracts.   

Clearinghouse capital is typically large enough to make risk of 
default low, although there have been some close calls: October, 
1987, “Silver Tuesday” in March, 1981.  



Clearinghouse Operation 

Things are actually a little bit more complicated.  A trader first 
looks to his broker for performance.  If the broker fails, the 
clearinghouse steps in. 

Clearinghouse typically guarantees only net position of each 
“clearing member” broker.  

In theory, therefore, if a brokerage fails, its customers may not 
receive all that is due them.  This has happened in the past.  
Value Partners (COMEX clearing member) in the early 80s, 
Griffin (CBT clearing member) in the late 90s.   



Margins and Other Safeguards 

Futures markets take a “belts and suspenders” approach to 
managing credit risk. 

Margins are an important link in the system 

Margins are performance bonds.  To trade futures, you must 
deposit money with your broker before you trade. 

Losses are immediately withdrawn from margin account: gains are 
immediately paid in.  This is called “marking to market.” 

Marking-to-market based on settlement price (i.e., current market 
price) from the relevant futures markets.  

Example.  I buy 1 CL futures contract.  Each contract is for 1000 
bbl. The day after I buy, the price falls $.25/bbl.  I lose $2500.  
This amount is withdrawn from my margin account.  

If my margin balance falls below some predefined level (the 
“maintenance margin”), I must post additional funds with my 
broker. 

Unless a price move wipes out my entire margin balance in one 
day, the broker has enough money to cover my losses. 

Margins are set to ensure that margin balances seldom wiped out in 
a single day. 



More on Margins 

There is actually a chain of margins.  Traders post margins with 
brokers.  Non-clearing brokers post margins with clearing brokers.  
Clearing brokers post margins with the clearinghouse.   



Other Safeguards 

Markets adopt other safeguards to reduce the likelihood of default. 

Brokers must have adequate capital. 

In US and some other countries, customer funds segregated from 
“house” funds. 

Clearing firms required to inject capital into the clearinghouse if 
clearinghouse’s capital is exhausted by a default. 



Market Catastrophes 

Failure of a clearinghouse could be catastrophic. 

Extreme price moves could cause clearinghouse failure. 

October, 1987 nearly resulted in severe financial problems for 
CME and CBOT clearinghouses. 

Silver Thursday in March, 1981 almost closed COMEX 
clearinghouse. 

Clearing system failed on Black Friday (gold corner) in 1869. 

Central Banks (the Federal Reserve in the US) may be needed to 
supply liquidity to prevent market collapse and cascade of defaults. 



Developments in Clearing 

Clearing is a very dynamic area. 

Many exchanges are exploring “common clearing.”  This would 
involve multiple exchanges forming one clearinghouse.  Indeed, 
CBT and CME have combined clearing operations (after years of 
failed attempts).   

This would economize on margin costs and systems costs, and 
should improve information flow and coordination. 

Cross-margining could also reduce demand for liquidity.  This 
could be especially useful during market “crises” such as Black 
Monday, 1987. 

Potential problem: failure of the common clearinghouse could 
bring down the entire financial system. 

Initiatives to clear OTC transactions, including energy OTC 
transactions, have taken place in recent years.  NYMEX offers 
clearing of NYMEX look-alike OTC products through its 
ClearPort system.   

In ClearPort, parties negotiate OTC deals, and then submit the 
trade to ClearPort for clearing via an Exchange for Swaps (EFS) 
transaction.  Prior to clearing, the parties negotiate an OTC deal in 
which each is the counterparty.  They then submit the swap to 
ClearPort, which becomes the central counterparty.  After clearing 
the swap buyer (seller) is long (short) futures with the same 
payment terms as the swap.     



The Intercontinental Exchange (ICE) also clears gas, power, and 
oil products.  Traders using the ICE trading system can utilize 
clearing, which allows them to trade via the ICE computer system 
even with parties with whom they do not have bilateral credit.  
Alternatively, similar to ClearPort, parties can negotiate bilateral 
deals, and then submit them via their clearing member firms to ICE 
for clearing.   The London Clearing House (LCH) clears these 
trades.   
 
OTC clearing is becoming increasingly common.  In 2004, OTC 
clearing increased by a factor of 4 (from about 500,000 contracts to 
over 2 million) on NYMEX and by a factor of 3 (from 600,000 to 
2 million contracts) on ICE.  About 80 percent of this volume is in 
NG (swaps, basis swaps, swing swaps). 
 
 
 
 
 



 Differences Between OTC and Exchange-Traded Derivatives 

OTC products not necessarily standardized (although many 
features of basic swaps and forwards are in fact highly 
standardized).  Traders of OTC products can customize features of 
these contracts; this customization not possible for exchange-
traded products. 

OTC products not traded on centralized markets.  Bilateral 
“search” market with intermediaries (“swap dealers”).  

OTC derivatives have experienced explosive growth in recent 
years, far outstripping exchange traded volume growth. 

Advantages of customization and scale appear to outweigh credit 
risk costs for many users. 

Exchange markets are increasingly serving as a way for OTC 
dealers to lay off their unmatched risk.  



OTC Derivatives and Credit Risk 

Highly rated credits (e.g., AAA, AA) dominate swap 
intermediation in interest rate and FX markets. 

A customer’s credit risk in the swap market is determined by the 
credit risk of the dealer he contracts with. 

Some discussions of central clearing in swaps/OTC derivatives 
market, but major dealers may have a vested interest in retaining 
current system.   

In the late-90s, Enron (primarily through Enron Online, its 
electronic trading platform), became the primary dealer in OTC 
energy transactions.   

It was somewhat surprising that Enron was able to achieve such a 
dominant position, given its marginal investment grade rating 
(BBB).   

Energy markets suffering in large part because eroded 
creditworthiness of market participants sharply limits their ability 
to transact.   

Clearing of OTC deals is improving the creditworthiness picture. 
Moreover, major financial institutions (e.g., Citigroup, Morgan 
Stanley, Goldman Sachs, Merrill Lynch) are entering energy 
trading in a big way, and bringing their balance sheets with them.  
This is also improving credit conditions and liquidity in the energy 
space.  



Other “Linear” Derivatives 
 

Forward/contracts and futures are the simplest derivative.  There 
are other derivative contracts that are effectively bundles of 
forwards.  These are called swap contracts. 
 

A “vanilla” swap contract is an agreement to exchange cash flows 
according to a fixed formula at certain dates in the future.  
 
Parties to the swap agree upon (a) its maturity (“tenor”), (b) its 
frequency, (c) a fixed price, and (d) a reference index. 
 
One party pays the fixed price.  This is called the “fixed price 
payer.”  The other party pays the floating price.  This is called the 
“floating price payer.”  
 
For instance, consider a monthly NG swap with a one year “tenor.” 
 
A common price reference is the “prompt month” NYMEX natural 
gas futures price at the end of the month.   
 
When the swap contract is initiated, the fixed price is set so that the 
swap has zero value.  In the present case, the fixed price will be the 
average of the present value of the strip of 12 NYMEX futures 
contracts.   
 
Each month, on the payment date, the fixed price payer owes the 
floating payer the fixed price, and the floating price payer owes the 



fixed payer the floating price.  The floating price is the NYMEX 
prompt month futures price on the payment date. 
 
Swaps can be used for hedging.  For instance, an independent gas 
producer typically sells its production at the prevailing market 
price, which goes up and down.  To smooth out its revenues, it can 
enter into a swap as the floating price payer (and receive fixed).   
 
Declines in the price of gas lower its sales revenues, but lead to 
higher payments received on the swap.  In essence, the producer 
swaps a variable set of cash flows for a fixed set of cash flows, 
thereby hedging its risk. 
 
The other party to the swap might be a firm (e.g., a gas utility) that 
buys its gas on the cash market at the prevailing market price.  This 
party would want to receive floating payments that are high when 
gas prices are high and are low when gas prices are low to even out 
its net purchasing costs.  
 
Although the producer and the utility could deal with one another, 
most swaps have a major dealer as a middleman.  This is to 
alleviate credit/performance concerns. 
 
Dealers often hedge their residual exposure through the futures 
markets.   
 
 



Commodity Derivatives: Precious Metals 

Cash and Carry Arbitrage  
 

Call St  the spot price of a commodity (silver, for instance) at time 
t.  Moreover, Ft T,  is the futures price at t for delivery at time T, r is 
the riskless interest rate between time t and T, and s is the cost of 
storage between t and T.  Assume that there is no benefit of 
holding inventories of the commodity (i.e., the rental/lease rate is 
zero).  Consider the following set of transactions.  Buy the spot 
commodity at t, store it until T.  Finance this purchase and storage 
with borrowing.  Sell the futures contract for delivery at T.  
Consider the cash flows from these transactions at dates t and T.   
 
 
TRANSACTION  Date t  Date T 
 
Buy spot    −S

t
   S

T
 

 
Borrow    S s

t
+  − +−e S sr T t

t
( )[ ] 

 
Sell Futures   0   F S

t T T,
−  

 
Pay storage   -s   0   
Net Cash Flows   0  F e S st T

r T t
t,

( )[ ]− +−  



 
All of the prices that determine net cash flows at T are known and 
fixed as of t.  Therefore, this transaction is riskless.  Since this 
transaction involves zero investment at t, in order to avoid the 
existence of an arbitrage opportunity it must be the case that the 
cash flows at T are identically 0.  Therefore, in order to prevent 
arbitrage, the following relation between spot and futures prices, 
interest rates, and storage charges must hold at t: 
 
    F e S st T

r T t
t,

( )[ ]= +−  



Reverse Cash and Carry Arbitrage 
 
Cash and carry arbitrage involves buying the spot, borrowing 
money, and selling futures.  Reverse cash and carry arbitrage 
involves selling the spot short, investing the proceeds, and buying 
futures.  In order to short sell the spot asset, an investor borrows 
the asset and sells it on the spot market.  The asset borrower must 
purchase the asset at T in order to return it to the lender.  The cash 
flows from this transaction are: 
 
TRANSACTION  Date t  Date T 
 
Sell spot    S s

t
+   −S

T
 

 
Lend        − +( )S s

t
   e S sr T t

t
( )[ ]− +  

 
Buy Futures   0   S F

T t T
−

,
  

 
           
 
Net Cash Flows   0  e S s Fr T t

t t T
( )

,[ ]− + −  
 
Note that this implies the same arbitrage relation as cash and carry 
arbitrage.   
 



Note: This analysis assumes that the arbitrageur holds inventories 
of the commodity.  If he doesn’t, he does not save on storage 
charges by selling the commodity.  This drives a wedge (equal to 
the cost of storage) between the cash-and-carry and reverse-cash-
and-carry arbitrage restrictions. 
 



Implied Repo Rates 
 
Arbitrage restrictions define relations between spot and futures 
prices and interest rates that must hold in order to prevent traders 
from earning riskless profits with no investment.  Since there are 
many futures markets, in order to identify arbitrage opportunities 
in several markets simultaneously, it is convenient to convert spot-
futures price relations into a common variable.  Since for a given 
trader the same interest rate should apply to any arbitrage 
transaction, regardless of whether the transaction is in gold, silver, 
Treasury bonds or corn, the obvious common variable is an interest 
rate.  Therefore, traders use spot and futures price to calculate an 
implied interest rate.  This is commonly called the implied 
repurchase ("repo") rate, because the repo rate represents the rate at 
which most large traders can borrow or lend. 
 
To calculate an implied repo rate, take natural logarithms of the 
basic arbitrage expression.  This implies: 
 
   ln ( ) ln[ ],F r T t S st T t= − + +  
 
Simplifying this expression, and recognizing that the difference 
between two logs equals the log of their ratio, produces: 
 

    ln[ ] / ( ),F
S s

T t rt T

t

i

+
− =  



 
This is the interest rate implied by spot and futures prices.  If this 
implied repo rate is lower than the actual repo rate at which a 
trader can borrow/lend, the trader can borrow cheaply through the 
futures market, and lend through the repo market.  Conversely, if 
the implied repo rate exceeds the rate at which the trader can 
borrow/lend through the money market, he should lend through the 
futures market and borrow through the repo market.  Moreover, by 
comparing implied repo rates from futures on different 
commodities (e.g., gold vs. S&P 500) a trader can identify cheap 
borrowing and rich lending opportunities. 



The Pricing of Energy and Industrial Metal Futures: 
Spread Relations 

  
Precious metal futures are pretty straightforward.  Usually they sell 
at near full carry (i.e., in contango).  Lease rates are typically 
small, and there is an active market for leasing precious metal 
inventories.   
 
Pricing energy and industrial metal futures is a little more 
complicated.  In particular, the relations between spot and futures 
prices, and between nearby and deferred futures prices are much 
more complex than is the case with precious metals. 
 
For example, sometimes oil, heating oil, or copper trade at nearly 
full carry.  Other times, the futures prices are far below spot prices-
-that is, the market is in “backwardation.”  Moreover, the market 
can move from contango to backwardation to contango very 
quickly.   
 
This raises the question: what determines the spreads between 
futures and spot prices for energy products and industrial metals? 
 
The so-called “theory of storage” provides the answer to this 
question.  In essence, this theory states that futures prices serve to 
ensure that consumption of these commodities is distributed 
efficiently over time.   
 



Consider two situations: 
 
Case 1.  Supplies of the commodity (e.g., copper) are abundant.  
Delivery warehouses are full.  Producers are operating with excess 
capacity.   
 Under these conditions, it makes sense to store some of the 
commodity.  Abundant supplies are on hand, and to consume them 
all would glut the market today, and perhaps leave us exposed to a 
shortage in the future. 
 Traders will store the commodity (i.e., hold inventories) if 
and only if this is profitable.  By storing (rather than selling) the 
commodity, the trader gives up the spot price (which he could 
capture by selling the commodity), and incurs interest and 
warehousing expenses.  Storage is profitable only if 
futures/forward prices are above the spot price by the costs of 
interest and storage.  That is, storage is profitable only if the 
market is at a carry/contango.  If stores are huge, the market must 
be at full carry. 
 
Case 2.  Current supplies are very scarce relative to expected 
future production and supplies.  That is, there is a temporary 
shortage.  Producers are operating at or near capacity. 
 In these circumstances, it is foolish to store the commodity--
it is scarce today relative to expected future supplies.  Therefore, 
we should consume available supplies and hold close to zero 
inventories.  (This exhaustion of inventories is sometimes called a 
“stock-out.”)   



 Since the commodity is scarce today relative to what we 
expect in the future, the current spot price may be above the 
forward price.  That is, the spot price must rise as high as 
necessary to ration the limited supplies.  Moreover, there is no 
need to reward storage.  Therefore, the market need not exhibit a 
carry.  Thus, backwardation is possible.



 
There are some implications of this analysis: 
 
Implication 1. The spread between spot and futures prices, 
adjusted for carrying costs, should depend upon the stocks held in 
inventory.   When stocks are low, the market should be in 
backwardation; when stocks are high, the market should be at 
nearly full carry. 
 
The industrial metals markets illustrate this clearly. 
 
The theory also has implications for the volatility of prices, and the 
correlation between spot and forward/future prices.  This is of 
great importance in risk management and option pricing 
applications. 
 
Implication 2. When stocks are short prices should be more 
volatile.  For those who are familiar with supply and demand 
analysis, a shortage implies that the supply curve is inelastic, i.e., 
steep.  The steeper the supply curve, the more volatile spot prices.  
Since shortages are associated with backwardation, we expect very 
volatile prices in an inverted market (i.e., a market with 
backwardation), and less volatile prices when the market shows a 
carry.  
 



Implication 3. Again calling upon supply and demand analysis, 
we know that short run supply curves are less elastic than long run 
supply curves.  This implies that spot prices should be more 
volatile than forward/futures prices.  Moreover, the difference in 
short run and long run supply elasticities should be greatest, the 
shorter are supplies today.  Thus, the difference between spot 
volatility and forward volatility should rise as the market moves 
towards backwardation.  Furthermore, this difference should be 
greater, the longer the time to delivery on the deferred contract. 
 
Implication 4. When a stockout occurs, the cash-and-carry 
arbitrage link between spot and forward prices is broken.   Under 
these conditions, spot and forward prices can move independently.  
When stocks are abundant, arbitrage ensures that spot and futures 
prices move together--the futures-spot spread equals the cost of 
carry.  Thus, spot and forward/futures prices should be highly 
correlated when the market is at a carry, but may exhibit very low 
correlation when the market is in backwardation.  Moreover, since 
a stockout is more likely, the longer the time to expiration of the 
deferred forward, the correlation between spot and forward/future 
prices should be lower, the greater the maturity of the 
forward/future.  
 



Squeezes, Hugs, and Corners 
 
Another factor which affects spot-futures spreads is a 
manipulation.  A manipulation--sometimes referred to as a squeeze 
or corner, or a “hug” for a mild manipulation--occurs when a 
single trader accumulates a long futures/forward position that is 
larger than the physical supplies that can be delivered 
economically against these contracts.  Rather than incur large costs 
to acquire deliverable supplies, as contract expiration approaches 
shorts are willing to buy back their contracts from the long at a 
premium.  
 
This causes a unique pattern in prices.  The price of the expiring 
future/forward that is being cornered rises--sometimes 
precipitously--relative to the deferred futures/forward price.  Since 
the expiring future/forward and the spot price must converge 
during the delivery period, this means that the spot price rises 
relative to the deferred forward/future too.  As soon as shorts close 
out their positions, the spot price collapses.  The effect of final 
liquidation of a corner on spot prices is sometimes called the 
“burying the corpse effect.”  A sharp increase in shipments to 
delivery warehouses also occurs.   
 
Squeezes/corners are not unknown in commodity derivative 
markets.  Exchanges and governments attempt to prevent or deter 
them, but they still occur from time to time. The experience of the 
zinc market in 1989 provides a good illustration of the effects of a 
squeeze on spreads. 



 
Moral of the story: When trading commodities, if you are short you 
must always be aware of the possibility of a manipulation.  
Monitor futures market and cash market activity continuously to 
make sure that you are not unexpectedly caught in a squeeze.  
 



Non-Storable Commodities 
 

• There are also futures and forward contracts traded on non-
storable commodities. 

• These include: electricity, weather, bandwidth, live animals 
(e.g., hogs and cattle). 

• Non-storability has a big impact on price dynamics and 
forward pricing. 

• Storage mitigates price volatility—inventories are 
accumulated when demand is low and supply is high, thereby 
reducing the magnitude of price declines under these 
conditions, and are drawn from when demand is high and 
supply is low, thereby mitigating the magnitude of price 
increases. 

• Without storage, inventories cannot “smooth” the effects of 
supply and demand shocks.   

• This implies that prices of non-storables—notably 
electricity—can be extremely volatile.  



Forward Prices for Non-Storables 
 

• Due to non-storability, cash-and-carry arbitrage is 
impossible—you can’t hold an inventory of electricity 
from the nighttime to the afternoon. 

• This contributes to considerable intra-day variation in 
prices for non-storables with systematic intra-day variation 
in demand or supply. 

• It also makes cash-and-carry arbitrage pricing methods—
“preference free” pricing techniques—impossible for non-
storables. 

• Therefore, estimating forward prices (and forward curves) 
for non-storables must take a different tack. 

• Forward price=expected spot price + risk premium 



Electricity Forward Pricing 
 

• For electricity, for markets in which good spot price and 
demand (load) data are available, such as PJM, California, 
or Australia, can estimate expected spot prices using 
traditional statistical techniques.   

• Statistical distribution of demand can be estimated 
accurately. 

• Use observed spot-price/load data to estimate a function 
that relates prices to load. 

• Combine demand distribution and spot price/load relation 
to estimate an expected spot price. 

• Estimating risk premium is trickier—need to use market 
forward price data. 

• Essential to take risk premium into account when  pricing 
power forwards because this risk premium is huge, 
especially on-peak. 



Power Derivatives Markets 

• Power derivatives markets have grown, albeit somewhat 
slower than had been anticipated in the mid-1990s. 

• Virtually all power forward and options trading done over-
the-counter. 

• Exchange markets have languished. 

• Heterogeneity of electricity (especially locational 
differences) have impeded development of liquid power 
forward markets—heterogeneity fragments liquidity. 

• Credit issues (note effects of 1998 Midwest price spike, 
California crisis) have also impeded market development. 

• Finally, lack of integration of financial and physical 
markets has impeded development. 

• Until these issues are resolved, power derivatives trading 
may prove treacherous. 



 

 

Weather Derivatives 

• Weather derivatives are a new frontier in derivatives 
trading. 

• Weather derivatives trading almost exclusively OTC, 
although there are exchange-listed contracts on the CME. 

• Typical weather derivative product is based on heating- or 
cooling degree days. 

• One heating degree day occurs when the low temperature 
is one degree below 65o for one day.  A cooling degree 
day occurs when the high temperature is one degree above 
65o for one day. 

• Most weather derivatives are heating or cooling degree 
day options.  For instance, you could have a contract that 
pays $1 per cooling degree day times the difference 
between total cooling degree days in Chicago in July, 
2002 and 250, if that difference is positive and zero if it is 
not. 



• Weather derivatives can be used to manage quantity risk.  
For instance, the quantity of power or natural gas sold by 
an energy company depends on weather conditions.  So 
does the price.  Can use weather derivatives to manage 
this risk.   

• Retailers can use them to manage risks due to weather.  
Retail sales for certain products are very sensitive to 
weather.   

• Although degree-day options are the most common, 
weather derivatives can be based on rainfall, snowfall, or 
any other measurable weather variable. 

• Like power derivatives, due to lack of storability 
arbitrage-based pricing of weather derivatives not 
possible.  Need to utilize historical data on weather 
(corrected for global warming???) to estimate expected 
payoffs, then adjust by a risk premium. 



Determining the Risk Premium 

• For storables, our arbitrage analysis shows that the risk 
premium is irrelevant to determining the relation between 
spot and forward prices.  That is, for these goods we can use 
“risk preference free” pricing to determine these relative 
prices.  However, even for storables the risk premium affects 
the level of futures and spot prices, and their average 
movements through time. 

• The earliest theory of the risk premium is due to Keynes.  
Keynes posited that hedgers are typically short futures.  That 
is, they are typically holders of inventories of a commodity 
(e.g., corn) and they sell futures as a hedge.   

• Since hedgers are net short, speculators must be net buyers in 
equilibrium (since total buys=total sells).  Speculators will 
not absorb risk unless they are rewarded by profiting on 
average.  Buying futures is profitable on average if futures 
prices rise on average.  That is, speculators will enter the 
market only if the futures price is below the spot price 
expected at contract expiration.  In this theory, the futures 
price tends to “drift up” over time—the speed of the drift 
measures the risk premium. 



• In Keynes’ theory, futures prices are “downward biased.”  

• In Keynes’ theory, this downward bias makes short hedging 
costly (since short hedgers lose on average) so they will tend 
to hedge less than 100 percent of their risk. 

• If long hedgers outnumber short hedgers (at a futures price 
equal to the expected spot price) futures prices must be 
upward biased to attract speculative interest.  

• Thus, net hedging interest determines whether futures prices 
are upward or downward biased. 

• For some markets (exchange traded futures) there is data on 
net hedging interest in the form of the CFTC’s “Commitment 
of Traders Reports” available on the www.  



The Magnitude of the Risk Premium 

• The foregoing implies that the size of the risk premium 
depends on (a) net hedging demand at a price equal to the 
expected spot price, and (b) the risk aversion of speculators.   

• The greater the hedging imbalance, the greater the risk 
premium (in absolute value). 

• The more risk averse the speculators, the greater the risk 
premium (in absolute value). 

• The risk aversion of speculators depends on (a) how well the 
futures market is integrated with the broader financial 
markets, and (b) the correlation between the futures price and 
movements in the market portfolio. 

• Usually it is the case that risk premia will be smaller if the 
futures market is well integrated with broader financial 
markets because integration makes it possible for diversified 
speculators to participate in the market; diversification 
reduces speculator risk exposure.  

• CAPM-type models imply that the higher the beta between 
the futures price and the overall market, the greater the 
upward drift in the futures price. 



Estimating the Risk Premium 

• The risk premium is the difference between the futures price 
and the expected spot price.  Also, the risk premium affects 
the expected change in the futures price.  

• Thus, estimation of the risk premium requires either 
estimation of the expected spot price, or estimation of the 
drift in futures prices. 

• Since the risk premium affects both the costs of hedging and 
the benefits of speculation, both require estimation of 
expected spot prices.  Thus, spot price forecasting is an 
important part of hedging and speculation. 

• For most goods and commodities it is hard to estimate 
expected spot prices with accuracy.  Electricity and weather 
may be exceptions. 

 



Credit Derivatives 
 

• Credit derivatives are another new type of financial 
contract.  This is a rapidly growing market. 

• Credit derivatives allow firms to hedge the risks of default 
on loans.  For example, a bank that loans money to a 
customer loses if that customer defaults.  The bank may be 
able to sell-off some portion of the credit risk without 
selling the loan, by entering into a credit derivatives 
transaction. 

• Almost all credit derivatives are traded over the counter.   

• There are a variety of credit derivative products in wide 
use. 



Credit Event Derivatives 
 

• A credit event derivative between party A and party B 
involves (a) a periodic payment from A to B, (b) the 
definition of a “credit event”, and (c) a payment from B to 
A if a “credit event” occurs. 

• A credit event may be a bankruptcy or ratings downgrade, 
for instance.  Although defining a credit event seems 
straightforward, it is not.  The events in Russia in 1998 
provide an illustration of the difficulties of defining a 
credit event.   

• A may be a bank that wants to reduce its exposure to 
default by a particular borrower.  B may be an insurance 
company or other financial firm that is willing to bear 
default risk. 

• The size of the payment made in the event of a credit 
event is related to the impact of the event on the value of 
the loan. 

• The size of periodic payment depends on the price the 
market charges to bear credit risk.  Yield spreads between 
bonds of differing credit risk measure the market price of 
credit risk.   Thus, the periodic payment should be related 
to yield spreads. 



Total Return Swaps 
 

• Total return swaps are another common type of credit 
derivative. 

• In a total return swap, A and B exchange payments, where 
the magnitude of the payments swapped depend on the 
total returns on instruments of different credit-worthiness. 

• For instance, the swap may involve A paying B the total 
return (interest plus capital gain/loss) on a BBB bond, and 
B paying A the LIBOR rate. 

• This would make sense for A if he owned BBB bonds and 
didn’t want to bear the credit risk.  In essence, this deal 
passes the credit risk to B without selling the actual bond. 



Why Use Credit Derivatives? 
 

• It seems somewhat weird that firms would alter credit risk 
exposures through credit derivatives—why don’t they just 
trade the underlying loans?  That is, why would a bank 
that wants to reduce credit exposure enter a total return 
swap instead of just selling off credit-risky loans? 

• Taxes, accounting, and regulatory arbitrage.  Sales of 
loans may have adverse impact on taxes or reported 
earnings or the balance sheet.  For instance, a gain or loss 
must be recognized on sale for tax or accounting purposes, 
but may not be recognized if credit risk is transferred 
through a credit derivatives transaction.  Also, some 
intermediaries may operate under regulations that limit 
their ability to purchase below-investment grade bonds, 
but that do not limit their ability to use credit derivatives. 

• Liquidity.  Credit derivatives may be more liquid than the 
underlying securities.  This is typically the case since most 
credit derivatives have shorter maturities (e.g., one year) 
than the underlying securities (e.g., five years).  
Information asymmetries are plausibly smaller for shorter 
term instruments, making them more liquid 



  
OPTIONS BASICS 

 
1. A call option gives the owner the right, but not the obligation, to 
buy the underlying asset (e.g., a stock, a bond, a currency, a futures 
contracts) at a fixed price.  This fixed price is called the "strike 
price."  Call options have a fixed expiration date.  Time to 
expiration can range between days and years.   
 
2. A put option gives the owner the right, but not the obligation to 
sell the underlying asset at a fixed price.   
 
3. There are two basic types of options: European and American.  
The holder of a European option can exercise it only on the 
expiration date.  That is, there is no early exercise for European 
options.  In contrast, the holder of an American option can exercise 
it any time prior to the expiration date as well as on the expiration 
date itself.   Most exchange traded options are American.  Many 
over the counter options are European. 
 
4. Energy options traded on NYMEX and IPE. 
 
5. OTC energy options markets are also important. 
 
6. Many contracts have options embedded in them.  Power supply 
contracts in particular have many embedded options.  Many NG 
contracts also embed options (e.g., swing options). 
  



HEDGING WITH OPTIONS 
 
Recall that futures and forward (or swap) hedges allow you to lock 
in a price (abstracting from basis risk). 

Options allow you to place a ceiling or a floor on price exposure.  

The seller of a commodity can buy a put to place a floor on its 
revenues.  The strike price of the put (minus the cost of buying it) 
is a floor on the price that the seller will receive.  For instance, a 
seller of natural gas buys a put struck at $5.00 per MMBTU for 
$.25/MMBTU.  The put expires in April.  If the price of NG in 
April is $4.25, the firm exercises its put, gets $5.00, and delivers 
the gas.  Net of the option premium, it receives $4.75.  The same is 
true if the price of gas is $4.00 in April.  However, if the price of 
gas is above $5.00, the firm gets to pocket the entire amount. 

The buyer of a commodity can buy a call to place a ceiling on its 
costs.  A utility buying gas can buy a call struck at $6.00 (say) that 
expires in January.  If the price of gas is above $6.00, the firm 
exercises its call, receives the gas, and pays $6.00 plus the 
premium regardless of how high the price rises.  Conversely, if the 
price of gas is below $6.00 in January, the firm lets the call expire 
unexercised and benefits from the lower gas price.  Thus, the firm 
caps its price exposure at $6.00 plus the option premium. 



 

Options can be used in various combinations to create customized 
payoff patterns.  For instance, a gas seller can reduce the cost of 
obtaining downside protection by giving up some upside potential.  
It does so by buying a put (which costs money) but selling a call 
(which generates a cash inflow).   This is called a “collar” or a 
“range forward.”



 

ARBITRAGE RESTRICTIONS 
 
Futures/Forward options prices must obey certain arbitrage 
restrictions.    
 
1. Put-call parity.  Consider European options forward contract 
with current forward price tF   A position consisting of a call 
struck at K and a short put with strike K provides the same payoffs 
as a forward contract with a forward price equal to K.  Both 
options expire at time T.  Thus, the present value of a forward 

contract with a forward price of K equals )()( KFe t
tTr −−− .  

Since the long call-short put position gives the same payoff as a 
forward contract, it must be the case that the value of this position 
equals the value of the forward contract.  That is: 
 

 )(),,,(),,,( )( KFeTtKFpTtKFc t
tTr

tt −=− −−  
 
This is called the put-call parity relation. 
 
2. Given put and call prices, the forward price, the strike price, and 
the time to expiration, it is possible to solve the put-call parity 
expression for an implied interest rate in order to determine 
whether these prices present an arbitrage opportunity. 



 
 

EARLY EXERCISE OF OPTIONS 
 
Early exercise has one clear disadvantage: by exercising an option, 
a trader gives up the value of the option over its remaining life.  
This value must be positive.  Therefore, early exercise is desirable 
if and only if there is some off-setting benefit.  There is only one 
possible source of such a benefit.  Namely, there is a potential 
value to early exercise if this allows the owner of the option to 
receive cash flows earlier. 
 
Case 1. Call on a non-dividend paying stock.   
 
 Assume the owner of a call with strike price K and time to 
expiration T exercises the option at t<T, and borrows money in 
order to pay the strike price.  Then, at T, the wealth of the trader is 
S e KT

r T t− −( ) .  If the trader had not exercised the option, his 
wealth at T would equal max[ , ]0 S KT − .  It is clear that the 
trader's wealth is greater if he does not exercise early.  This is true 
for two reasons, first, if the price of the stock falls below the strike 
price between t and T, the trader won't exercise the option at T, and 
thus isn't "stuck" with a less valuable stock.  Second, by deferring 
exercise, the call owner saves the interest on the strike price over 
the period t to T.  Conclusion: Never exercise a call on a non-
dividend paying stock early. 
 
Case 2. Call on a dividend paying stock. 



 
 Assume the firm pays a dividend equal to D at t<T.  If the 
call owner exercises at t, his wealth at T equals: 
 
    S e K DT

r T t− −−( ) ( ) 
 
This may (but may not) exceed max[ , ]0 S KT −  because by 
exercising the call early, the owner receives the dividend.  
Therefore, unlike the case with a call on a non-dividend paying 
stock, we can't say for certain that the payoffs to early exercise are 
always lower than the payoffs from exercise at expiration.  If this 
dividend is large enough, it may exceed the interest on the strike 
price and the option value foregone from early exercise.  Thus, you 
may exercise a call on a dividend paying stock early.  If you do 
exercise early, you will only do so immediately before the payment 
of a dividend (i.e., on the cum dividend date). 
 If the future value of the dividend is smaller than the value of 
the interest paid on the strike price from t to T, early exercise will 
not be optimal.  The value of this interest equals e K Kr T t( )− − .  If 
e K K e Dr T t r T t( ) ( )− −− >  then  
 
 S e K D S K S KT

r T t
T T− − < − < −−( ) ( ) max[ , ]0   

 
and therefore early exercise is not profitable. 
 Intuitively, this means that if the dividend received by 
exercising early is not large enough to compensate the option 



holder for the interest incurred on the strike price due to early 
exercise, early exercise cannot be optimal. 
 
Case 3. Put on a non-dividend paying stock. 
 Consider a trader who owns a put and a share of the 
underlying stock.  If he exercises the put at t<T and invests the 
strike proceeds, his wealth at t equals e Kr T t( )− .  There are some 
values of the stock price such that this exceeds the trader's wealth 
at T if he does not exercise the put at t, max[ , ]0 K S ST T− + .  
By exercising early, the put owner receives cash flows (i.e., the 
proceeds from exercise) earlier; the interest earned on the strike 
price over this interval of time.  This may compensate the trader 
for the gains he would earn by holding onto the stock if the price of 
the stock were to rise above the strike price between t and T.  Early 
exercise of a put can be optimal at any time prior to expiration. 
 
Case 4. Put on a dividend paying stock. 
 All else equal, dividend payments cause the price of the stock 
to decline.  Therefore, if the put is not protected against dividend 
payments, dividends tend to induce the holder of a put to defer 
exercise in order to take advantage of this predictable price 
decline.  It still may be the case, however, that the advantages of 
receiving the proceeds from exercise early (i.e., the interest earned 
on the strike price) offsets this effect. 
 



Case 5. Puts and calls on futures contracts. 
 When the holder of an option on a futures contract exercises, 
she receives a cash payment equal to the difference between the 
strike price and the futures price at the time of exercise and a 
futures position.  For example, if the futures price at exercise 
equals Ft , the holder of a put receives a cash payment equal to 
K Ft−  and a short futures position at the market price.  The value 
of the short position equals 0.  Early exercise of either a put or a 
call therefore leads to an acceleration of cash flows.  Therefore, 
one cannot rule out early exercise of futures options. 
 
Case 6. Calls on foreign currency. 
 Foreign currencies can be invested at interest; recall that this 
is equivalent to a continuous dividend yield.  Therefore, there may 
be advantages to exercising a call on a foreign currency early in 
order to receive this cash flow over a longer period of time.  
 



 
Early exercise requires a modification in the put-call parity 
expression.  In particular, we can no longer derive an equality 
restriction, but only an inequality restriction.   
 
First consider the case of American puts and calls on non-dividend 
paying stocks.  We know that the value of an American call on a 
non-dividend paying stock equals the value of a European call on 
the same stock (with the same strike and time to expiration).  
Moreover, we know that an American put may be exercised prior 
to expiration.  This option to exercise early has value, so an 
American put must be more valuable than a European put.   
 
Therefore,  
 

 )(),,,(),,,( )( KFeTtKFPTtKFC t
tTr
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A BINOMIAL MODEL OF FUTURES PRICE 
MOVEMENTS 

 
In order to derive a formula for futures option prices, we must first 
specify a model that describes how futures prices move.   
 
Our first model is a so-called binomial model because at any point 
in time, it is assumed that the percentage change in the futures 
price--the stock "return"--can take only two values, u>1 (an "up" 
move) or d<1 (a "down" move).  The probability of an up move 
equals q, and the probability of a down move equals 1-q.  We will 
see that these actual probabilities are irrelevant to the pricing of 
options.   
 
The binomial model divides time between the present and the 
expiration date of an option into discrete intervals of equal length.  
Each interval is ∆t  in length.  By allowing more intervals between 
now and expiration, this interval becomes shorter.  In the limit, 
with an infinite number of intervals, the length of an interval 
becomes vanishingly small, and equal to dt . 
 
That is, if the futures price equals F  today, it may equal either 

FuF >  or FdF <  at the end of the next interval of time.   
 
It is possible to show that as the length of a time interval becomes 
vanishingly small, the distribution of futures prices is lognormal.  
We will utilize this fact in deriving the Black formula for pricing 
options. 



 



USING THE BINOMIAL MODEL TO PRICE AN OPTION 
 
Consider a portfolio of a short position in a single call on a futures, 
and ∆ shares of the futures underlying the call.  Assume the value 
of the call in ∆t units of time equals cu if the futures price rises 
over this interval, and equals cd  if the futures price falls.  Thus, at 
t+∆t the value of the portfolio equals ucuF −∆  if the futures 
price rises, and equals dcdF −∆  if the futures price falls.   
 
Note that we can choose ∆ to make the value of the portfolio the 
same regardless of whether the futures price rises or falls. 
 
Formally, choose ∆ such that 
 
   du cdFcuF −∆=−∆  
or 
 

   
)( duF

cc du
−
−

=∆  

 
Since the value of the portfolio doesn't depend upon the futures 
price change, the portfolio is riskless.  Therefore, the return on the 
portfolio must equal the risk free rate.  That is, if the value of the 
call today equals c, then: 
 



  du
tr cdFcuFce −−∆=−−∆=−∆ )1()1()(  

 
This expression is somewhat different from that relevant for a 
futures option.  Buying shares to hedge the option costs money.  
Buying the forward/futures contract requires no initial outlay of 
funds.



 
Solving for c implies: 
 
   c e pc p cr t

u d= + −− ∆ [ ( ) ]1  
 
where 
 

    
du
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−
−
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Note that the value of the call at t is equal to the expected present 
value of the call at t+∆t, using p to measure the probability of an 
up move and (1-p) to measure the probability of the down move. 
 
It is essential to recognize that p is not equal to q, the true 
probability of a futures price increase.  Instead, p is the probability 
of an up move such that today’s futures price equals what the 
futures price is expected to be at t+∆t.  This would occur in a 
market where traders are risk neutral.  That is, if there is no risk 
premium. 
 
This analysis implies that we can price options as if we are in a 
risk neutral world!   Put differently, we don't need to know the 
expected change in the futures price to price options on that 
futures.  This is true because we can form a portfolio consisting of 
the future and the option to eliminate all risk.   



In order to determine the price of the call, we work backwards 
from the end of the binomial tree because at the end of the tree we 
know the values of the option.   
 
That is, we use “backward induction” repeatedly to value an option 
on an underlying future.  We go backwards because we know the 
payoffs to the option at the expiration date, and can therefore apply 
our formula repeatedly by proceeding from the end of time to the 
beginning.  
 
The main choice you must make in establishing a binomial tree is 
for u and d.  We choose these parameters such that the theoretical 
value of the variance of the stock given by the binomial model 
equals the actual value of the variance of the future we are 
interested in.   
 
Remember that the variance of a future’s return equals the 
expected value of the squared deviation between the realized return 
and the expected return.  The expected return in our risk neutral 
model equals 0.  The return in an upmove equals u and the return 
in a down move equals d.  Therefore, the variance equals: 
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where σ is the actual standard deviation of the future’s return. 



 
The first equality follows from the fact that  
 
   dFppuFF )1( −+=  
 
We have already found the relation between p and u and d.  Thus, 
we have one equation in two unknowns.  We eliminate one 
unknown by choosing d=1/u.  
 
If we solve all of this for u, we get: u e t= σ ∆  if ∆t is small. 



DERIVATION OF THE FORMULA FOR p. 
 
First, define a er t= ∆ .   
 
Then: 
 
  accFuF u =+∆−∆  
Substituting for ∆ implies: 
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Gathering terms with cu and cd: 
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Define )/()1( dudp −−=  then note that  
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Thus,  
 
   ac pc p cu d= + −( )1  
 
Dividing both sides by a produces the expression presented earlier. 
It is important to note that if the probability of an upmove in the 
futures price equals p, then the expected futures price change is 
zero. 
 
To see why, note that if the probability of an upmove equals p, the 
expected value of the future next period equals: 
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This implies that the futures price does not drift up or down.  In 
other words, there is no risk premium.  



Use of the Binomial Model 
 
A major advantage of the binomial model is that it can be used to 
value American options for which early exercise is possible, and 
hence valuable.  An example illustrates this. 
 
First consider the example of  puts on a futures contract.   
 
In this example, σ=.40, T-t=.4167, r=.1, F=30, K=30.  If we divide 
the time until expiration into 5 segments, we get        
∆t=.4167/5=.0833. 
 
Given these values, we can determine p=.4712, and 1-p=.5288.  
Also u=1.122, d=.8909, and  9917.0084.1/1 ==∆− tre . 
 
Let’s first value a European put. 
 
We start by creating our tree of futures prices.  Each node on the 
tree corresponds to the futures price at some date in the future.  
The dates we look at are equally spaced. 
 
We look at 5 time steps to expiry, so there are six possible futures 
prices at expiration, ranging from 53.44 to 16.84.   
 



We now start at these expiration date futures prices and see what 
the payoff to our put is for each of them.  When the futures price is 
53.44, we aren’t going to exercise, so here the payoff is 0.  When 
the futures price is 16.84, we will exercise, and get 30-
16.84=13.16. 
 
We now step ∆t (i.e., one time step) closer to the present and apply 
our formula.  For instance, when the futures price 4 weeks from 
now has gone up 4 weeks in a row, and equals 47.61, the formula 
gives us a value of zero, because regardless of whether the futures 
price goes up or down in the next step, the value of the option will 
be zero. 
 
However, if the futures price has gone up two times and down two 
times (and the order doesn’t matter) and the futures price is 30 
again, the payoff to the option is zero if the futures price goes up in 
the last week, but is 3.27 if the futures price goes down.  
Therefore, at this node the value of the option is  
 
.9917[.4711*0+.5288*3.27] =1.72.   
 
We perform this exercise for each of the 5 possible futures prices 4 
periods from now.   
 
Given these 5 values, we now proceed to 3 periods from the 
present and again apply our formula.  Working back this way gives 
our option value, which in this case is 4.54. 
 



 
 
The procedure for an American option is pretty similar, except that 
it is necessary to perform an additional check at each node of the 
tree.  Specifically, we check whether it is better to hold the option 
at that node, or exercise it. 
 
To determine the value we get from holding the option, we apply 
our formula.  For instance, when the futures price is 30 in 4 
periods, the formula tells us that the value of the option is 1.72.  If 
we exercise, we get nothing.  Therefore, we’ll hold.  We then plug 
in 1.72 as the value of our option as we proceed back to 3 periods 
prior to expiry. 
 
Conversely, if the futures price is 18.90 one period before 
expiration, the value we get from holding the option is: 
 
.9917[.4711*8.78+.5288*13.16] =11.00.   
 
Exercising the option generates a payoff of 30-18.90=11.10.  It’s 
better to exercise than hold, so we exercise early.  We use 11.10 as 
the value of the option after 4 down moves when proceeding 
backwards through the tree. 
 
This demonstrates how we can use the binomial option to calculate 
American option prices.   
 



Analytically, the binomial model is straightforward.  In order to 
increase the accuracy of this approach, however, it is necessary to 
make ∆t fairly small by increasing the number of time intervals.  
This can increase the cost of computing options prices using the 
binomial method.   
 
Thus, when pricing an option, we face a trade off: the binomial 
method can handle early exercise easily, but is computationally 
cumbersome.   
 
This raises the question, is there a more computationally tractable 
model? 
 
The answer is yes:  If we are willing to consider only European 
options, it is possible to produce an option pricing model that is 
very easy to use--the Black model. 
 



THE BLACK MODEL FOR FUTURES OPTIONS 
 
The Black-Scholes model is essentially the same as the binomial 
pricing model when the number of time intervals approaches 
infinity, i.e., as ∆t becomes arbitrarily close to zero.  This is 
sometimes called a "continuous time" model in contrast to the 
"discrete time" binomial model because we no longer divide the 
time line into several discrete periods, but instead consider time as 
a continuum. 
 
It is possible to show that as the number of time steps approaches 
infinity, the return on the underlying future obeys a normal 
distribution.  The normal distribution is simply the well-known bell 
shaped curve.   
 
Recall that the return on a stock equals the percentage change in 
price on the future.  Also note that over a very small time interval 
dt the return on a stock equals: 
 
    tdtt FF lnln −+  
 
Thus, if the return on the futures in the continuous time world is 
normally distributed, then the futures price in the future is 
lognormally distributed. 
 
It is also essential to remember that in valuing options we can 
assume that the expected change in the futures price is zero.  



Again, this is because we can construct a portfolio including the 
future and the option that is riskless.   
 
This can be represented formally.  If the stock price at T (which 
may be the expiration date of an option) is lognormally distributed, 
then we can write: 
 

  ZtTtT
tT eFF −+−−= σσ ))(5.( 2

 
where Z is a normally distributed variable with expected value 
(i.e., mean) equal to 0.  
 
(You can check that this expression is correct by taking the natural 
logs of both sides.  You will find that the difference in the logs is 
normally distributed because Z is normally distributed.) 
 
We can now value a European option that expires at T.  Recall that 
the value of the option at t is the expected present value of the 
payoffs of the option at T, where we use the riskless interest rate to 
discount these payoffs.  Also remember that any expected value is 
the sum of the possible payoffs multiplied by the probability of 
receiving a given payoff.  In our analysis, the size of the payoff 
depends upon the realization of Z because Z determines the stock 
price at T.  Moreover, because Z is normally distributed, the 
probability of observing any given Z is 
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Note that the Π in this expression is the mathematical constant 
Pi=3.14159 . . . 



We can use this information to value an option.  Consider a call 
option with strike price K.  We know that the option's payoff is 
positive if and only if: 
 

  KeFF ZtTtT
tT ≥= −+−− σσ ))(5.( 2

 
 
There is a value of Z, call it Z*, such that this expression holds 
with equality.  This is the "critical value" of Z: For larger Z, the 
call is in the money at expiration, for smaller Z, the option is out of 
the money.  Therefore: 
 

  KZtTtTFt ln*))(5.(ln 2 =−+−−+ σσ  
 
Solving for Z* implies: 
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Given this result, the expected present value of this option's 
payoffs (and hence its price) is: 
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This expression holds because the payoff to the option is 0 when 
Z<Z*.   
 
Doing a little substitution, we get 
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Consider the exponentials.  We can add the exponential terms to 
get the following exponent: 
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Define a new variable 
 
    y Z T t= − −σ  
 
Note that y is normally distributed (because Z is).  Moreover,  
 
   y T t Z Z T t2 2 2 2= − + − −σ σ( )  
 
In addition, the call option is in the money if 
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Then we can rewrite the first term in our integral as  
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This is just equal to N(-y*), where N(x) gives the area under a 
normal distribution curve to the left of x.  Thus, the first term in 
our integral is: 
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Now consider the second term in our integral: 
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Putting the two terms together produces the Black formula for the 
call: 
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and  
 
    d d T t2 1= − −σ  
 
We can then use put-call parity to get the value of a put.  Recall: 
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Then 
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Note that N x N x( ) ( )= − −1 .  Therefore,  
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OPTIONS ON OTHER ASSETS 
 
One can rewrite the Black-Scholes formula for a call as follows: 
 
 c e e S N d KN dr T t r T t
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Note that the term multiplying N d( )1  is the forward price of a 
non-dividend paying stock. 
 
One can also rewrite the term inside the normal function in the 
model as: 
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Note that the numerator in the logarithm term is also the forward 
price of a non-dividend paying stock.  In general, it is possible to 
show that to find the value of a call on some other type of asset, 
one simply uses the forward price of the asset wherever one finds 
the forward price of the stock in the Black-Scholes equation.  For 
example, for a European call on a dividend paying stock, we use 
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where FVD is the future value of the dividend on the stock.  As a 
result, we can write the price of a European call on a dividend 
paying stock as: 
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We can use similar reasoning to price options on other assets.  For 
example, consider an option on a futures or forward contract.  The 
forward price of the futures (or forward) price is just the futures 
(forward) price itself.  Therefore, if the futures price equals  
Ft T,  then the price of a call option on this future is: 
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This formula is called the “Black Model.”  
 
Finally, consider the value of an option on a foreign currency.  If 
the foreign interest rate is rF  and the spot price of the currency is 
St  then  
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where 
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DYNAMIC HEDGING: DELTA, GAMMA, AND VEGA 
 

The Black-Scholes model also describes how the price of the 
option changes when certain underlying variables change.  For 
example: 
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The interpretation for this "Delta" is exactly the same as the 
interpretaion of the ∆ in the binomial model: It gives the number of 
shares of stock to hold with a short call position in order to form a 
riskless position.  To see why, note that if one holds ∆ shares of 
stock and one short call, the change in the value of the portfolio is  
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Note that the value of this position doesn't change even if the 
futures price changes.  Thus, it is riskless. 
 
Put differently, if one wants to hedge a single long call, one sells ∆ 
futures. 
 



It is possible to show that if one changes ∆ continuously in 
response to changes in the futures price, one's position will be 
riskless.  This is called "dynamic hedging."  It is necessary to 
change ∆ every instant for this strategy to work perfectly. 
 
Of course, in the real world, it is impossible to make such 
adjustments.  Moreover, transactions costs make this strategy 
prohibitive.  Therefore, it is necessary to make adjustments less 
frequently.   
 
It is desirable to know, however, when it is necessary to make 
changes most frequently.  The "Gamma" of an option provides this 
information. 
 
Formally,  
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That is, Γ tells you how rapidly ∆ changes when the futures price 
changes.  It quantifies the curvature of the option price function.   
 
This is important information for a trader managing the risk of an 
option position.  Left untended, a position with substantial Γ>0 
may become overhedged (i.e., the trader's actual stock position 
becomes substantially larger than the optimal ∆) or may become 



unerhedged (i.e., the traders actual futures position becomes 
substantially smaller than the optimal ∆) in response to even small 
changes in the stock price.  Put differently, you are likely to need 
to change a hedge position quickly if there is a lot of Gamma.  
Gamma neutral hedgers (i.e., hedgers with positions with Γ=0) can 
sleep better than hedgers with substantial Gamma (either positive 
or negative). 
 
The other important variable a hedger needs to track is Vega.  This 
gives the sensitivity of the option price to changes in σ.   That is,  
 

    Υ =
∂
∂σ

c
 

 
Remember that Black assumes that volatility is constant over time.  
In reality, however, volatility can change rapidly.  If so, a trader 
with substantial Vega is subject to large gains or losses.  Just as a 
hedger wants to know his vulnerability to futures price moves, he 
should also track his risk to volatility changes.  
 
These "Greeks" are important for another reason.  Consider a 
trader who wants to purchase or sell an option that is not traded on 
an organized exchange, or on the OTC market.  (For example, an 
individual might want to buy a 5 year call on WTI).  Even though 
the trader cannot trade the option, he can replicate the payoffs of 
the option synthetically by dynamically buying or selling the 
futures underlying the option. 



 
That is, at every instant of time, the trader holds ∆ units of the 
future underlying the option, where ∆ gives the delta of the option 
he wants to replicate.  If the trader can adjust the position 
continuously and costlessly, such a strategy will produce cash 
flows at option expiration that are exactly identical to those of the 
option. 
 
You may also want to replicate an option that is traded.  For 
example, if you want to buy a put, but you think puts are 
overpriced in the market (e.g., the implied volatility of traded puts 
is greater than your forecast of volatility), you may wish to 
replicate the put through a dynamic trading strategy.  Similarly, 
you can arbitrage the market by buying (selling) underpriced 
(overpriced) options, and dynamically replicating off-setting 
positions. 
 
In reality, it is impossible (and very costly!) to adjust the portfolio 
continuously in this fashion.  This is particularly true if the option 
is near the money, so has a lot of Gamma.  Moreover, the dynamic 
hedger is vulnerable to changes in volatility.  The problems faced 
by "portfolio insurers" (traders who attempted to replicate calls on 
the stock market through dynamic hedging techniques) on 
10/19/87 provides a graphic illustration of the potential problems. 
 
In order to address these problems, the trader can add traded 
options to his portfolio.  The trader's objective is to match the 
Delta, Gamma, and Vega of his portfolio to the Delta, Gamma, and 



Vega of the option the trader desires to replicate.  This reduces the 
amount of adjustment needed, and provides some insurance against 
volatility shocks. 
 
For example, consider replicating an option with ∆=∆* and Γ=Γ*.  
You can use the underlying stock and an option with ∆=∆** and 
Γ=Γ** to construct your replicating portfolio.  To get a delta and 
gamma match, you have two equations and two unknowns.  The 
unknowns are NS , the number of shares of stock to trade, and No , 
the number of options to buy or sell as part of your hedge portfolio.  
Formally, solve: 
    
   ∆ ∆* **= +N NS o  
and  
 
    Γ Γ* **= No  
 
You could also construct a delta, gamma, and vega matched 
position.  To do so require two options and the stock.  You have to 
solve three equations in three unknowns here.     



 
Note that even a gamma matched or gamma and vega matched 
position must be adjusted over time.  Recently, researchers have 
developed strategies that allow you to create “fire-and-forget” 
hedges.  That is, using these techniques, you can replicate an 
option by constructing a portfolio at the initiation of the trade, and 
never adjusting the portfolio until the expiration date of the option 
you want to replicate.  As you might guess, this requires you to 
trade in a large number of options.   
 



FORMULAE FOR GAMMA, VEGA, AND THETA 
(The Π in the formulae is the mathematical constant 3.14159) 
 
The Gamma of a Euro futures call or put equals: 
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The Vega of a Euro futures call or put equals: 
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The Theta of a Euro call equals: 
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The Theta of a Euro put equals: 
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Note that Theta is unambiguously negative for a Euro call, but may 
be positive for a Euro put.   
 
For a call, Gamma, Delta, and Theta are related by this equation: 
 

   Γ+Θ= 225. Frc σ  
 
A similar expression holds for a put.   
 



 Using the Black Model 
 

• Most of the inputs to the Black model are observable.  
These include: the strike price, the underlying price, the 
interest rate, and time to expiration.  One key input is not 
observable—the volatility.   

• Good option values depend on good volatility values.   

• Where do volatility values come from?  There are two 
sources: historical data and implied values. 

• Historical volatilities are calculated using historical data 
on returns.   For instance, to calculate the volatility for 
NGk, one would plug historical data on NG percentage 
price changes into a spreadsheet and calculate the standard 
deviation (adjusted for the data frequency).   

• If the Black model were strictly correct, this approach 
would be the right one.  Moreover, if the Black model 
were strictly correct—that is, if volatility was truly 
constant—you would want to get as much historical data 
as is available to get the most precise estimates of 
volatility possible. 

• An alternative approach is to use “implied volatility.”  In 
this approach, you find the value of σ that sets the value of 
the option given by the Black formula equal to the value 
of the option observed in the marketplace. 



• Implied volatility can be estimated with extreme accuracy 
using the “Solver” function of Excel.  There are very good 
approximations that you can use to determine the implied 
volatility for an at-the-money option.    

• Obviously, if one uses the implied volatility, one is 
assuming that (a) the model is correct, and (b) the option is 
correctly priced.  Thus, implied volatility cannot be used 
to determine whether a particular option is mis-priced.  So 
what is it good for? 

• If the Black model is correct, all options should have the 
same implied vol.  Therefore, comparing implied 
volatilities across options allows one to determine whether 
options on the same underlying are mis-priced relative to 
one another.  Buy the option with low volatility, sell the 
option with high volatility. 

• Also, you can use the implied volatility to get more 
accurate measures of the “Greeks.” 

• In practice, most options are quoted using an implied 
volatility (that is then plugged into the Black formula).  
Therefore, most options traders think in vol terms rather 
than in price terms, and option trading is essentially 
volatility trading. 



How Well Does the Black Model Work? 

 
• The Black model is the most influential theory ever 

introduced in finance, and perhaps in all of the social 
sciences.  Despite this success, it has its weaknesses.  
Practitioners have learned how to patch the holes in Black. 

• We know that the Blackmodel is not strictly correct.  First, 
contrary to the model’s predictions, there are systematic 
differences in implied volatility by strike price and time to 
expiration.   

• Most important, deep in-the-money and deep out-of-the-
money options have consistently different volatilities than at-
the-money options.  This is referred to as the “volatility 
smile.”     

• This implies that σ cannot be constant.   

• This is confirmed by empirical evidence.  This evidence 
shows that volatility varies systematically over time.  
Moreover, volatility “clumps”—big price moves tend to 
follow big price moves, and small price moves tend to follow 
small price moves.   



Dealing With the Smile 

• There are two basic approaches to the smile. 

• The first approach posits that volatility is a function of the 
underlying price and time.  That is, ),( tFσ .  Using very 
advanced techniques, one can find such a function that fits a 
variety of options prices.  (Many practitioners use a crude 
approach that gives a very unreliable and unstable estimate of 
this function). 

• The second approach is to post that volatility is random and 
to write down a specific stochastic process for volatility. 

• The second approach is probably more realistic, but raises 
many difficulties.  Most important, volatility risk cannot be 
hedged using the underlying.  Consequently, any pricing 
formula must include a volatility risk premium.   

• Some practitioners and academics assume that this risk 
premium is zero.  This results in convenient pricing formulae, 
but is inconsistent with a great deal of evidence.  Most 
notably, options hedged against moves in the underlying 
price earn a positive risk premium—this wouldn’t happen if 
vol risk premia equal zero. 

• Thus, the smile is a knotty issue that most practitioners 
address in an ad hoc manner.   



How Exotic 

• So far we have considered “vanilla” options—basic 
puts and calls. 

• Other kinds of options—“exotics”—are traded in the 
OTC market. 

• Although the variety of exotics is limited only by the 
imagination of traders, some exotics are more common 
than others. 

• Sometimes exotics are bundled implicitly in securities. 



Digital or “Bet” Options 
 

• A digital option pays a fixed amount of money if a certain 
event occurs. 

• For instance, a digital call on Microsoft struck at $75 that 
pays $10, pays $10 if the price of MSFT at expiration 
exceeds $75, regardless of whether the price at expiration is 
$75.01 or $175.  Similarly, a digital put struck at $75 that 
pays $10, pays $10 if the price of the underlying at expiration 
is $74.99 or $0. 

• The value of a digital is easy to determine.  A digital call 

value is )( 2
)( dPNe tTr −−  where P is the payoff and d2 is 

the same as in the B-S formula.  Similarly, a digital put value 

is )( 2
)( dPNe tTr −−− . 

• Digitals are traded in the OTC market, but perhaps the most 
(in)famous example of digital options was embedded in 
bonds bought by Orange County CA in the early 1990s.  To 
raise yields the Orange Cty treasurer bought bonds that had 
embedded short digital options on interest rates.   

• A “one touch” option is an American digital.  It is called a 
one touch because it is optimal to exercise as soon as the 
underlying price hits (“touches”) the strike price (do you 
know why?) 



Knock-Options 

• Knock options come in several varieties.   

• Knock-in options.  These are options with an underlying 
option that comes into existence only if some condition is 
met.  There are up-and-in and down-and-in varieties.  For 
example, an up-and-in call with a strike price of $75 and a 
“knock barrier” of $100 has a payoff at expiration if-and-
only-if the underlying price hit or exceeded $100 some time 
prior to expiration.   

• Knock-out options.  These are options that go out of 
existence if some condition is met.  For example, a down-
and-out call struck at $75 with a knock barrier of $50 expires 
worthless if the underlying price hits or is less than $50 at 
any time during the option’s life.  Thus, even if the stock 
price is $100 at expiration, the option is worthless if the stock 
price hit $50 prior to expiration. 

• Knock-options are “path dependent” because their payoff 
depends not only on the value of the underlying at expiration, 
but the path that the underlying price follows prior to 
expiration. 

• Manipulation can be an issue with these “barrier options.” 



Asian Options 

• An Asian option has a payoff that depends on the average 
price of the underlying over some time period.  

• For instance, an Asian call on crude oil with a monthly 
averaging period has a payoff that depends on the average 
price of crude oil over a one-month-long period. 

• There are average price options where the strike price is set 
prior to expiration, and the payoff is based on the difference 
between an average price and the pre-agreed strike price. 

• There are also “average strike” options where the strike price 
is the average price on the underlying during some averaging 
period, and the payoff is based on the difference between the 
value of the underlying at expiration and this strike price. 

• There are no closed form solutions for Asian options with 
arithmetic averaging.  Various numerical techniques can be 
used to price them. 



Some Other Exotics 

• Compound options.  These are options on an option, such as 
a put on a call, or a call on a call.  There are formulae for 
valuing such options given Black-Scholes assumptions. 

• Exchange options.  These give you the right, but not the 
obligation to exchange one asset for another. There are 
formulae for valuing such options given Black-Scholes 
assumptions. 

• “COD” (cash-on-delivery) options.  Here you only pay the 
premium if they wind up in the money.  These options can 
have a negative payoff. 

• Quantos.  Cross-currency options are the most common 
example.  An example is a contract on the Nikkei Index with 
the payoff converted to USD.  This conversion can occur at 
either an exchange rate set when the option is written or the 
exchange rate prevailing at expiration.  The payoff to the 
option is Xmax[S-K,0] where X is the exchange rate, S is the 
value of the Nikkei, and K is the strike price (in JY).  Here 
there are two sources of risk—the Nikkei index (in yen), and 
the JY-USD exchange rate.   

• Compos.  These are options with payoffs max[XS-K,0] where 
the strike price is in the domestic currency. 



• Lookbacks.  Lookbacks are path dependent options because 
the payoff depends on the maximum (or minimum) price 
reached by the underlying during the option’s life.  For 
instance, a lookback call with a strike price K has a payoff 
max[max(S)-K,0] where max(S) is the maximum priced 
achieved by the underlying during the life of the option.  
Obviously this lookback is more valuable than a vanilla call. 



Issues With Exotics 

• Exotics frequently present serious hedging difficulties, 
especially when they are near the money and close to 
expiration. 

• For example, a digital option’s gamma is positive when it is 
out of the money and negative when it is the money.  Right 
before expiration, the option’s gamma is positive infinity at a 
price immediately below the strike price and negative infinity 
at a price immediately above the strike price.  This behavior 
makes it hard to hedge. 

• As another example, a knock-out option has an infinite 
gamma when the underlying price is at the knock-out 
boundary. 

• Compound options have high gammas when they are at the 
money because they are options on options—the convexity in 
the underlying option compounds the convexity in the “top” 
option. 

• Recall that convexity also has ramifications for the sensitivity 
option value to volatility.  Hence, some exotics may have 
substantial vol (vega) risk. 



Get Real 

• Heretofore we have discussed options that are financial 
claims. 

• The world is full of non-financial—“real”—options. 

• In particular, virtually all business investment and 
operational decisions involve choice—i.e., optionality. 

• Option to defer investment.  

• “Time-to-build” option—build a project in stages with the 
choice to abandon after each stage. 

• Option to increase or reduce investment scale. 

• Option to abandon. 

• Option to switch inputs or outputs (operational flexibility). 

• Growth options (R&D, leases on property or resources). 

• Combinations of the above options. 



Valuing Real Options 

• Traditional capital budgeting approaches ignore real options.  
This is unfortunate as real options may have a large affect on 
the profitability of investment. 

• Firms may underinvest, overinvest, or invest at the wrong 
time if they ignore real options. 

• Increasingly firms are using option pricing techniques to 
evaluate investment projects. 

• Given the intense informational demands, it is often not 
practical to use these techniques to get precise estimates of 
real option value.   

• Nonetheless, the use of options valuation techniques forces 
firms to analyze the characteristics of their investments more 
rigorously. 



An Example 

• Consider a firm that has the option to defer investment in 
drilling a gas well.  It can invest today, spend $104, and get a 
well worth $100 (i.e., which generates $100 in net present 
value).  From an NPV perspective, this project is a turkey. 

• However, the investment is risky.  In one year, if good news 
about the value of gas arrives, the well is worth $180.  If bad 
news arrives, it is worth $60.  The interest rate is 8 percent 
per year. 

• In terms of our binomial model, u=1.8 and d=.6.  The 
“pseudo-probability” is (1.08-.6)/(1.8-.6)=.4.   

• The option to delay the project one year is therefore [.4(180-
104)+.6(0)]/1.08=28.15 

• Exercise:  Show that the value to delay the project for up to 
two years is worth $31.82, and the value to delay the project 
for up to three years is worth $45.01. 



Intuition 

• The intuition here is pretty straightforward—the option to 
delay allows you to wait for the arrival of information, 
namely whether gas prices are going to rise or fall.  Since 
better information means better investment decisions, you the 
option to delay is valuable. 

• The simple example here implies that you will never invest if 
you always have the option to delay.  This is an American 
call option.  Under the assumptions of the analysis (with no 
intermediate cash flows) standard analysis implies that 
deferral is always the best choice. 

• In the real world, investments throw off benefits only if the 
firm invests in the asset.  These benefits are like dividends 
and can induce the firm to exercise the call option early. 

• In commodity markets, for instance, prices tend to be “mean 
reverting”—that is, if the price is higher (lower) than average 
today, it is expected to fall (rise).  This mean reversion can 
make it optimal to invest now rather than waiting.   



Implications 

• Real options have important implications. 

• Under some circumstances, the value of investment 
options is increasing in uncertainty (i.e., the volatility of 
the value of the asset). 

• An increase in uncertainty induces firms to defer 
investment. 

• Policy uncertainty (e.g., uncertainty in tax, regulatory or 
monetary policy) can affect firm investment strategies.   
One would expect to see greater levels of investment in 
“stable” jurisdictions (countries, states) than “unstable” 
ones 



 


