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Public debate and public policy regarding Covid-19, AKA the CCP virus,
have been driven by data on the prevalence of the illness derived from testing.
In this note I show why this is an extremely dubious basis for policy. Due to
the nature of testing, it does not measure what we really want to measure.

In the first instance, what we want to measure is the likelihood of contract-
ing the virus, as a function of time. This can be represented as a probability
at any time (measured from the timing of “case zero”) or as a hazard rate
(the probability of contracting the virus conditional on not having contracted
it at a previous date).

The basic problems with test-based data are (a) the error rates in the
test, and (b) the non-random nature of the testing. Basic probability theory,
and in particular Bayes’ Law, help understand these problems.

Denote P(C|+) the probability of having CCP virus conditional on test-
ing positive; P(4|C) the probability of testing positive if you are indeed
infected (a “true positive,” or T'P); P(—|C) the probability of testing nega-
tivve if you are infected (a false negative, or F'N); P(+|NC') the probability
of testing positive if in fact you are not infected (a false positive, or F'P);

P(—|NC) the probability of testing negative when not infected (a true neg-
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ative, or T'N), and P(C) = p, the (unconditional) probability of infection.
Note that if testing was random, p is what we are interested in: the actual
probability of being infected: momentarily I will show that one cannot derive
this probability from the test data we have, because testing is not random.
Note that p, whether viewed as a cumulative probability or a hazard rate,
should depend on time. Indeed, for forecasting in order to determine policy,
this time dependence is essential. If the hazard rate declines over time, due to
biological factors or endogenous behavioral responses (a point emphasized by
Richard Epstein), forecasts based on exponential extrapolations exaggerate
wildly the risks. Despite this importance, I suppress that time dependence
to simplify the analysis. Just note that all of the problems apparent in the
simplified analysis are even more acute when one tries to condition on time.

Bayes’ Rules says:
P(H]C)p
(+]C)p + P(+INC)(1 - p)
That is, the probability of having CCP virus, conditional on a positive test

P(CI+) =

result, depends on the unconditional probability of being infected, and the

rates of false and true positives. Similarly:
P(=1C)p
(=1C)p+ P(=INC)(1 = p)

If there are high rates of error, the foregoing kinds of calculations are

P(Cl-) =

conventionally used to demonstrate that tests overstate the true probability
that someone with a positive test is infected, especially if the underlying
unconditional probability of an infection is small. That is of use when de-
termining how to treat (or not) someone with a positive test. But our main
interest is in estimating the unconditional probability of infection.

To get at this, note that the probability of testing positive is:
a=PH[C)p+P(HINC)(1 - p)
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and the probability of testing negative is:
1—a="P(=|C)p+P(=INC)1-p)
One tests either positive or negative, so:
1=PH|C)p+ P(HINC)(1 = p) + P(=|C)p+ P(=|NC)(1 - p)

With a set of test results, and knowledge of the error rates, it would be
possible to infer p. This is problematic in current conditions for a variety of
reasons. For example, how do you determine the rate of false positives for a
disease that may not result in symptoms? Or may result in symptoms that
are indistinguishable from other illnesses (e.g., flu)? Perhaps the former issue
could be addressed by defining condition C' as “symptomatic coronavirus,”
which is what we are mainly interested in anyways. The latter issue is more
difficult to address. Moreover, different tests have been used, and testing
protocols differ across countries, making it difficult to pool data.

If one defines C' as being symptomatic, asymptomatic positive tests are
false positives. There is anecdotal evidence that is a serious matter. For
instance, several NBA players tested positive, but are asymptomatic. The
same is true of other public figures.

All this means that we are unlikely to have good estimates of test error
rates, and hence are unlikely to be able to correct test results to extract p.

Even if we could adjust the frequency of positive and negative test results
for test error rates to recover p, this would not reveal P(C'), because p is the
unconditional probability of infection among the tested population. But if
tests are not random—and it is clear that they are not, the tested group is
not representative of the population at large, and hence p is a biased measure

of the probability of infection in the population at large.



To expand the notaton, p = P(C|T), i.e., it is the probability that some-

one has the virus, conditional on being tested. Again applying Bayes’ Rule:
P(TICYP(C)
(TCYP(C) + P(TINC)(1 = P(C))

What we really want to know is p* = P(C). If testing is random, P(T|C) =

p =P(C|T) =
p=P(CIT) = 5

P(T|NC), which would mean that p* = p. That is, if testing were random,
error rate corrected test frequencies could provide an unbiased estimate of
what we really want to know.

But we know that testing is not random. The symptomatic and exposed
are more likely to have been tested. Given that CV19 symptoms are similar
to those for influenza, influenza sufferers are more likely to be tested. Fur-
thermore, the symptomatic are more likely to have other health conditions
that makes them more likely to express symptoms, and hence are unrepresen-
tative of the population at large. Also, the influential are more likely to have
been tested, and the influential are not representative. The hypochondriacial
are more likely to have been tested. They are also unrepresentative.

Do you see the problem here? What we want to know is p*~the proba-
bility of contracting the virus. (We actually want to know this probability
conditional on a plethora of factors, including domicile (and the climate in
that domicile), age, health condition, and on and on.) The results of tests
are many steps removed from what we want to know. The reliablity of the
tests, and crucially, the fact that testing is not random, stand between the
test results that are reported obsessively and what we really want to know.

My conclusion from this is that test results are more likely to mislead
than provide helpful guidance. The foregoing analysis implies that if the
tests are completely accurate (no false positives or false negatives) and if
testing is random, than test rates measure accurately the rate of coronovirus

incidence. But we know neither condition is true, and not even remotely
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correct.

So if the test data are so defective, what should we look at? What we
care about is acute illness and death from this disease. Such outcomes will
be reflected in aggregate data on hospital admissions for acute respiratory
conditions, death rates overall, and death rates from respiratory illness. That
is, if this is a prevalent, deadly virus, death rates should be elevated.

Moreover, these data should reflect crucial conditioning variables, such as
age, location, date of death (respiratory ailments and deaths being strongly
seasonal), and pre-existing conditions (obesity, blood pressure, heart condi-
tions, renal conditions, respiratory health, smoking status, etc.). Such data
exist on a historical basis. Use those data to benchmark current conditions
to see whether indeed we are experiencing something outside the realm of
ordinary experience—an in particular, so far outside historical experience to
justify incurring trillions of cost in terms of lost income. Moreover, by con-
ditioning on variables related to expected lifespan, productivity, etc., we can
develop more targeted policy responses.

So forget the tests. Don’t look at those. Demand data on what we really
need to focus on: illnesses and death of the type that the CCP virus can

cause.



