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1 Introduction

The use of the price in one transaction to determine the price of another–

“derived pricing”–is extremely common in financial markets. This article

explores two particular types of derived pricing: “trade at settlement” con-

tracts, and off-exchange trading through crossing networks where transac-

tions prices are based on subsequent prices in “lit” exchange auction markets.

Adaptations of well-known microstructure models to these particular types

of trading produce several interesting results.

First, when (a) private information is short-lived, and (b) some unin-

formed traders can utilize these forms of trading, but others cannot, derived

pricing causes market fragmentation: the uninformed traders who can utilize

them do so but the privately informed do not. Thus, derived pricing leads to

a partial separating equilibrium between informed and uninformed traders.

Second, this “cream skimming” fragmentation lowers the cost of the un-
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informed traders who can utilize derived pricing but raises the liquidity costs

of those who cannot. However, total adverse selection costs for uninformed

traders decline.

Third, derived pricing creates the potential for trade-based manipulation

strategies. Since the market using derived pricing serves only uninformed

traders, whereas the exchange market serves both informed and uninformed

traders, the price impact of trades is smaller in the derived pricing instrument

than on exchange. This disparity in price impact allows a manipulator to

profit by accumulating a position in the derived pricing market, and then

affect the value of that position by trading in the exchange market.

The remainder of this article is organized as follows. Second 2 presents a

model of trading in trade-at-settlement (“TAS”) contracts in the absence of

manipulation. Section 3 shows how the existence of TAS markets create ma-

nipulative opportunities, and how such manipulations affect prices. Section

4 presents an example of manipulation of TAS contracts by the trading firm

Optiver in 2008. Section 5 adapts the model to crossing networks. Section

discusses the implications of the models for the regulation of markets in the

United States. Section 7 summarizes.

2 Trading-at-Settlement Contracts

Trading-at-Settlement (“TAS”) contracts are common. For example, the

CME Group offers TAS trading on 46 different futures contracts. The trader

enters into a TAS contract prior to the determination of the futures set-

tlement price (which, for instance, is based on the volume-weighted-average

price between 2:28 and 2:29:59 for actively traded crude oil futures contracts).
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In CME Group TAS contracts, the buyer (seller) pays (receives) a price equal

to the official settlement price, plus or minus four ticks: the differential to

the settlement price is negotiated between the TAS buyer and seller in the

Globex continuous auction market.1 The possibility of a differential means

that there can be a bid/ask spread in the TAS market, and that TAS trades

can have price impact in the TAS market, as well as in the market for the

underlying futures.

To model the TAS market, I adapt the well-known Admati-Pfleiderer

(1988) (“AP88”) model of discretionary trade timing. As in AP88, there are

multiple trading periods t in a day, t = 1, 2, . . . , T . In my adaptation of the

model, the last trading period T in a day is the settlement period, and the

equilibrium price from this last round of trading is the settlement price used

to determine the price of TAS contracts. The value of the asset at T is:

Ṽ = µ +
T

∑

t=1

δ̃t (1)

where δ̃t are independent random variables. For simplicity, the δ̃t are normal,

with mean zero and variance σ2 for all t.

Immediately prior to each t, N informed traders receive signals about δ̃t.

Informed trader i receives a signal sit = δ̃t + εit, where the εit are i.i.d. For

simplicity, the εit is a normal variate, with variance φ for all i and t. Prior

to the next round of trading at t + 1, δ̃t is publicly revealed. Thus, informed

traders’ information is short-lived.2 At time t, informed trader i trades xit

contracts to maximize his profits.

1CME Rulebook, Rule 524.
2As I discuss below, similar results would obtain if informed traders’ information is

long-lived, but there are many informed traders so competition between them is intense.
See Holderness and Subrahmanyam (1992).
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In addition to informed traders, there is a continuum of uninformed liq-

uidity traders located along the line segment [0, 1]. There are two types of un-

informed traders. In each period, there are non-discretionary liquidity (noise)

traders who must trade a given quantity in that period. Non-discretionary

trader j must trade Yjt units at time t, where Yjt is a normal random vari-

able with mean zero . Furthermore, there are discretionary traders who can

choose to trade in the market at t and pay/receive the equilibrium price at

t, or to buy/sell a TAS contract. If j trades in the TAS market at t, she

trades Yjt in that market, where Yjt is a random variable. The purchase/sales

price for the TAS contract equals the market price at time T , plus/minus a

differential F that is determined in the TAS market at t.

For each t, the variance of
∫

1

0 Yjtdj = S. Furthermore, for each t, the

fraction of discretionary traders is ρ.

Finally, there is a risk neutral, perfectly competitive market maker. The

market maker observes the total net order flow ωt in the market for the

instrument, which is the sum of the informed trader orders and the liquidity

traders’ orders. The market maker also observes net order flow νt in the TAS

market. At t the market maker chooses a linear pricing schedule in the “lit”

exchange market for the instrument:

Pt = µ +
t

∑

τ=1

δ̃t + λtωt (2)

The market maker also chooses a linear pricing schedule in the TAS market:

Ut = γtνt (3)

Assume initially that there is no TAS market, so that neither discretionary

liquidity traders nor informed traders can trade in the TAS market. Then,
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the results of AM88 imply that the equilibrium involves:

λt =
σ2

N + 1

√

N

S(σ2 + φ)
(4)

Furthermore,

xit = βsit (5)

with

β =

√

S

N(σ2 + φ)
(6)

Now permit trading on the TAS market. First note that no informed

trader will trade there for any t < T because her information will become

public before the settlement price is determined, meaning that the settlement

price will incorporate this information. Therefore, it is not possible to trade

profitably on a t < T signal in the TAS market.

This immediately implies that the market maker is willing to set γt = 0.

This is true because the expected profit for the market maker of trading the

TAS contract is zero. At t, the expected price at T is:

Et(PT ) = Et[µ +
T

∑

τ=1

δ̃t + λtωt] = µ +
t−1
∑

τ=1

δ̃τ (7)

If the market maker buys a TAS, he expects to pay Et(PT ), and expects to

receive E(Ṽ ) = µ +
∑t−1

τ=1
δ̃τ .

Now consider discretionary liquidity trader j. If he trades in the exchange

market, he expects to pay a liquidity cost of λtY
2
j (the product of the expected

price λtYj and the quantity Yj). However, as just shown, the liquidity cost

in the TAS market is zero because γt = 0. Therefore, in equilibrium, all

discretionary traders choose the TAS market.
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Since no informed traders are present in the TAS market in the exchange

market, N remains unchanged. Furthermore, since all discretionary traders

choose the TAS market, the variance of liquidity trader order flow in the

exchange market is S(1 − ρ). Thus, in the new equilibrium:

λTAS
t =

σ2

N + 1

√

N

S(1 − ρ)(σ2 + φ)
(8)

β =

√

√

√

√

S(1 − ρ)

N(σ2 + φ)
(9)

Thus, TAS trading causes depth in the exchange market to decline (i.e.,

price impact of order flow increases), and the intensity of informed trading to

fall as well. The decline in the depth of the exchange market hurts the non-

discretionary liquidity traders who must trade there. However, total liquidity

costs decline due to the introduction of TAS trading. Without TAS, total

liquidity cost is:

C0 = λtS =
σ2

N + 1

√

NS

σ2 + φ
(10)

With TAS, total liquidity cost is:

CTAS = ρ · 0 + λTAS
t (1 − ρ)S =

σ2

N + 1

√

NS(1 − ρ)

σ2 + φ
< C0 (11)

Thus, TAS trading has distributive effects. It makes discretionary liquid-

ity traders better off, and non-discretionary traders worse off. On net, the

liquidity traders are better off: this benefit to liquidity traders as a whole

comes at the expense of informed traders, whose profitability declines because

they have less uninformed order flow to trade against–and profit from.

TAS therefore fragments markets. Although the term fragmentation is

often used pejoratively in securities and derivatives markets, here it is bene-

ficial for liquidity traders as a whole because it reduces adverse selection.
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The introduction reduces the informativeness of prices because it reduces

the intensity of informed trading. However, given that by assumption private

information becomes public in short order, this is of little relevance because

real investment decisions, or other decisions that are made conditional on

securities prices are little affected, or totally unaffected, by the slight delay

in the revelation of information. Indeed, given that very short-lived private

information has little social value (in terms of improving real decisions), but

can be costly to collect, this type of privately informed trading is a form

of rent seeking. By reducing the profitability of such trading, TAS markets

reduce the incentive to spend real resources in order to gain such a fleeting,

and socially useless, information advantage.

Now consider the case of long-lived information (i.e., information that is

not made public prior to T ). Here the role of TAS will depend on the amount

of competition between informed traders. Consider the case where there is a

single informed trader, i.e., N = 1. Here the equilibrium derived above will

not hold. If γt=0, the informed trader could profit by trading TAS because

the settlement price would not reflect all her information: indeed, she can

determine how much of the information is revealed in the price at T . With

N = 1, introduction of TAS cannot lead to a partial separating equilibrium in

which informed traders eschew TAS trading. Indeed, TAS trading offers no

benefit to discretionary uninformed traders because in equilibrium γt = λt.

If this were not the case, the single informed trader would shift her trading

to the market with the greater depth.

Next consider the case where information is long-lived, but N is large. As

shown by Holderness and Subrahmanyam (1992), with large N , competition
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between informed traders causes information to be incorporated into prices

almost immediately even if that information is long-lived. Thus, competition

between a large number of informed traders restores the semi-separating TAS

equilibrium for t sufficiently below T . Due to this competition, even long-

lived information produced sufficiently long before T will be incorporated

into prices by T . Thus, informed traders have no incentive to trade TAS at

such a t < T even if γt is zero (or positive, but less than λt) because the price

they pay will fully reflect their information.

Thus, TAS leads to a semi-separating equilibrium in which informed

traders do not use this order type when information is rapidly reflected in

prices, either because it is disclosed rapidly to the public, or because there

is sufficient competition between informed traders. TAS facilitates “cream

skimming” of a portion of uninformed order flow, to the detriment of the

remainder of uninformed order flow and informed traders. On balance, how-

ever, liquidity traders are better off: discretionary traders gain more than

non-discretionary ones lose.

This means that the survival of TAS trading in a particular market sheds

light on the nature of private information. Specifically, a functioning TAS

market indicates that private information for the underlying instrument is

short-lived.

There are several other implications of this analysis. First, derived pricing

such as TAS is most likely to occur in large volumes when information is

short lived or there is substantial competition between informed traders: it

is not viable when a small number of traders possess long-lived information.

Second, the volume of TAS activity should depend on the time before the

8



settlement price is determined: the potential for adverse selection in TAS, and

hence the viability of TAS trading as a mechanism for inducing self-selection

based on information, increases as the time until settlement declines. Thus,

TAS trading volume should decline through the day. Third, the impact of

TAS trades on the price of the underlying should be smaller than the price

impact of regular trades that take place in an exchange auction because TAS

traders are uninformed, whereas some traders on exchange are informed.

3 Manipulation With Derived Pricing

Trade-based manipulation (i.e., manipulative strategies that exploit the im-

pact of trades on prices) has been the subject of much controversy and some

academic research. As Jarrow (1992) pointed out, trade-based manipulation

must overcome a basic problem: even if a manipulator succeeds in driving

up prices through purchases, how can he profit if sales drive down prices

by as much or more?3 Thus, profitable trade-based manipulations require

purchases and sales have asymmetric price responses.

A variety of articles propose different sources of asymmetry. In one ex-

ample, Allen and Gorton (1992) posit that purchases are more likely to be

driven by private information than sales, so purchases will have a larger price

impact than sales: they show that this asymmetry can result in profitable

trade-based manipulation strategies. In another example, Kumar and Seppi

(1992) present a model in which a cash-settled derivatives contract trades

3If market makers are risk averse, or incur trade processing costs, if the permanent price
impacts of purchases and sales is identical, trade-based manipulative strategies will lose
money because the manipulator must compensate the market maker for trade processing
or inventory/risk costs.
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before private information is revealed, and the underlying instrument whose

price is used to determine the settlement price of the derivative is traded when

an individual or individuals has private information. With this asymmetry, a

manipulator can make a randomized purchase or sale in the derivatives mar-

ket with little price impact (because there is no private information then),

and then trade in the same direction in underlying market when the deriva-

tive is settled: due to the presence of private information at this time, this

transaction moves the settlement price of the derivative in a way that profits

(on average) the manipulator.

The analysis in Section 2 demonstrates that TAS contracts create trading

opportunities with asymmetric price impacts. This suggests that TAS may

therefore also create opportunities for profitable trade-based manipulation,

and this is indeed the csae.

To show this formally, consider a simplification of the model in Section

2. A single trader receives an informative signal at two times, t0 and T .

The information revealed (possibly noisily) to the informed trader at t0 is

revealed publicly at t1, t0 < t1 < T . As before, there is a continuum of

liquidity traders, and at t0 fraction ρ of these traders can trade TAS: the

remainder must trade on the exchange at t0. There is a continuum of noise

traders at T . As in Section 2, the variance of noise trader order flow is S at

both dates; the variance of the fundamental information is σ2 at both dates,

and the variance of signals is φ at both dates: for simplicity, I assume that

the signals are perfectly informative so φ = 0. The TAS contract settles

based on the market clearing price at T .

In addition to the liquidity traders and informed trader, and a risk neutral
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market maker, there is a manipulator. As in Kumar-Seppi (1992) this trader

is wealth constrained and subject to margin requirements which limits the

size of a trade he can make. The manipulator’s wealth is |W |. The market

maker knows the distribution of W , which is N(0, σ2
W ).

Due to the public revelation of t0 information prior to T , the informed

traders do not trade TAS at t0. Further, as before, all discretionary liquidity

traders utilize the TAS market, meaning that there will be order flow in the

TAS market. The manipulator can trade in the TAS market at t0, and then

trade on the exchange market at T : trades on the lit market impact the price

then, and therefore affect the price the manipulator pays (for purchases) or

receives (for sales) on his TAS contracts.

Assume the manipulator trades ∆ TAS contracts at t0. In addition, the

net order discretionary liquidity traders in the TAS market is e. Assume the

price in the TAS market is F (∆ + e), and that the price in the exchange

market at T is PT (x + u + z, ∆ + e), where x is the order submitted by the

informed trader; u is the net order flow of the liquidity traders, and z is the

order the manipulator submits to the exchange at T . The price is a function

of the TAS market order flow because the market maker can use this order

flow to make inferences about z.

As in Kumar-Seppi, I consider linear equilibria. At T , the market maker

implements the following pricing rule:

PT (x + u + z, ∆ + e) = µ + δ̃t0 + λT [z + u + x − E(z + u + x|∆ + e)] (12)

Given this pricing rule, the informed trader chooses x to maximize his profit:

Eu,z{x[Ṽ − PT (x + u + z, ∆ + e)]|Ṽ , ∆ + e} (13)
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Given ∆ and the pricing rule, the manipulator chooses z to maximize:

Ex,u[Ṽ (z+∆)−PT (x+u+z, ∆+e)(z+∆)|e] = Ex,u[(Ṽ −P (x+u+z))(z+∆)|e]

(14)

This expression is derived as follows. After trading at T , has a position

in the underlying of z + ∆, which is worth Ṽ (z + ∆). The manipulator

pays (receives) P (x + u + z) for each TAS contract bought (sold), and pays

(receives) the same price for each unit bought (sold) on the exchange at T .

The manipulator conditions expectations on the discretionary trader TAS

net order flow e because (a) he can infer this from total TAS order flow and

his own TAS trade, and (b) as will be seen, the market maker conditions his

price at T on TAS net order flow (because it provides information about the

nature of time T order flow).

Given the pricing rule, the first order conditions for the manipulator’s

problem at T imply:

z =
−∆ + E(z|∆ + e)

2
(15)

This is similar to the manipulator’s choice in Kumar-Seppi, with the excep-

tion that the manipulator’s trade at T is the opposite sign of the TAS trade

at t0, whereas in Kumar-Seppi the time T trade is in the same direction as

the trade in the cash settled derivative. This difference arises because in

Kumar-Seppi the buyer of the cash-settled derivative effectively sells it at T

at the settlement price, and hence wants to drive up that price, whereas the

buyer of a TAS contract buys at PT , and hence wants to drive down that

price. The crucial similarity is that in both cases, the manipulator takes into

account the fact that the market maker incorprates his forecast of z based on
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order flow in the t0 market into his pricing function even though it conveys

no information about fundamentals.

Adapting the proof in Kumar-Seppi to take into account the difference

between (15) and (A4) in their article produces the following equilibrium:4

z =
(κ − 1)∆ + κe

2
(16)

κ =
σ2

W

σ2
W + ρS

(17)

λT =
σ

2[S + σ2(z|∆ + e)].5
(18)

σ2(z|∆ + e) =
κρS

4
(19)

E(z|∆ + e) = κ(∆ + e) (20)

F (∆ + e) = 0 (21)

Thus, manipulation occurs in equilibrium. Furthermore, a comparison of

(18) with (10) (with N = 1 and φ = 0) shows that manipulation increases

liquidity in the T exchange market because it adds noise to the order flow

then. As a result, (a) informed traders gain, (b) T liquidity traders gain,

(c) the manipulator gains, and (d) the costs of manipulation are borne by

the t0 discretionary traders who trade in the TAS market. The discretionary

traders continue to use TAS nonetheless because price impact is still smaller

in this market.

When employing this strategy, the manipulator breaks even on the trans-

actions he undertakes during the auction that determines the settlement

price at T . The units bought (sold) during this auction are matched against

4The equilibrium at t0 is identical to the one derived in Section 2.
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an equivalent number of TAS contracts sold (bought) prior to T : since the

price received (paid) at the auction is the same as the paid (recieved) on

the matched, the trades at T are perfectly hedged. The manipulator trades

fewer units at the auction than the size of his TAS position, and he makes a

profit (on average) on those units: via the TAS, he buys (sells) at price that

on average is below (above) Ṽ .

This analysis brings home a basic lesson: order types or trading mecha-

nisms that are designed to be unattractive to informed traders, and which

thereby permit some of the uninformed to reduce their trading costs, also

create opportunities for manipulation. By design, the price impact of these

order types and trading mechanisms (such as TAS) is smaller than in the

exchange market because they facilitate self-selection by trader type, which

reduces adverse selection. But as noted by Jarrow (1992) such differential

price impact can create manipulative opportunities. Manipulative trading

is parasitic, and diminishes the value of the segmenting order type/trading

mechanism to the clientele that it is intended to serve, but if not deterred, it

is an inevitable consequence of the creation of this self-selection mechanism.

Exchanges recognize the potential for manipulation inherent in TAS. For

example, CME Rules state:

All market participants are reminded that any trading activity

that is intended to disrupt orderly trading or to manipulate or at-

tempt to manipulate a settlement price to benefit a TAS position

will subject the member and/or the market participant to disci-

plinary action for any of a number of rule violations, including,

but not limited to:
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• price manipulation or attempted price manipulation

• wash trading

• conduct detrimental to the interest or welfare of the Ex-

change or conduct which tends to impair the dignity or good

name of the Exchange

• engaging in conduct inconsistent with just and equitable

principles of trade

Thus, the CME considers the trading strategy analyzed in this section to be

manipulative. I now examine a particular alleged TAS manipulation that

occurred on CME markets, specifically, the markets for gasoline, heating oil,

and crude oil futures.

4 A Case Study: The Optiver Case

In July, 2008, the Commodity Futures Trading Commission (“CFTC”) filed

a complaint against the Dutch trading firm Optiver, alleging that it had ma-

nipulated New York Mercantile Exchange (“NYMEX”) gasoline, heating oil,

and crude oil futures contracts on various dates in March, 2007.5 The CFTC

identified the dates on which these manipulations occurred, and whether Op-

tiver was a buyer or seller on each date. Therefore, this episode provides an

informative case study of manipulation facilitated by TAS.

5United States Commodity Futures Trading Commission v. Optiver US et al 08 CIV
6560 (S.D.N.Y., 2008). Optiver settled these allegations by paying $14 million to the
CFTC under a consent order entered on April 19, 2012. In addition to the monetary
penalty, three Optiver traders were banned from trading commodities for periods ranging
from four to eight years. Optiver settled class action litigation relating to the same conduct
for $16.7 million in June, 2015. I was an expert for the Plaintiffs in that ligitation.
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The CFTC alleged that Optiver engaged in a strategy to ”bully the mar-

ket.” The trader devised a computer program that it called The Hammer

that it used to implement this strategy.

The strategy was broadly similar to that modeled in Section 3 above.

NYMEX offers a TAS order type on its Globex system. The buyer (seller)

pays (receive) the official settlement price, and receives a long (short) position

in the underlying futures contract. The settlement price equals to the volume

weighted average price (“VWAP”) during the last two minutes of trading

(2:28:00 to 2:29:59) on the Globex system, plus or minus a differential (of up

to ten ticks) negotiated between the buyer and seller at the initiation of the

TAS trade. TAS trading occurs on the Globex trading system, and begins at

6:00PM on the day prior to the relevant settlement date, and ends at 2:30PM

on the settlement date.

Early in the trading day, Optiver established a position in the TAS market

(a buy of April 2007 gasoline futures TAS, say) by submitting limit orders.

One of the features of The Hammer was an algorithm intended to optimize

Optiver’s TAS order submission strategy in order to increase the likelihood

that these orders would be executed. Optiver would usually accumulate the

bulk of its TAS position during the morning of the settlement day. If it ob-

tained a sufficiently large TAS position, starting about 2:25 (three minutes

prior to the beginning of the settlement window) Optiver began to trade

heavily in the underlying (e.g., April 2007 gasoline futures) in the opposite

direction as its TAS position through market orders. Optiver’s volume during

the 2:25-2:30 period was roughly equal to the size of the TAS position it had

accumulated. Optiver traded so that approximately 25 percent of its volume
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was executed from 2:25-2:27:59, and the remainder during the settlement pe-

riod. It intended that its volume during the 2:28-2:29:59 settlement window

would represent such a large fraction of total volume during this period that

its average execution price during this period would approximately equal the

VWAP, and thus the settlement price.

In broad strokes, Optiver’s strategy was similar to that derived in the

model in Section 3. The firm established a large TAS position well prior

to settlement, and traded in large volume in the auction market during the

settlement period. Moreover, the volume traded during the settlement period

was a fraction of the size of the TAS position Optiver accumulated prior to

the auction.

The differences between the model of Section 3 and Optiver’s strategy

reflect simplifications to make the model more tractable and transparent.

First, unlike in the model, there was no single closing call auction on

NYMEX to determine the settlement price: instead, the settlement price

was the average of prices over a two-minute interval in a continuous auction.

However, Optiver’s strategy was tailored to try to replicate a feature of the

model, namely the fact that futures trades during the settlement period were

hedged by a portion of the TAS position.

Second, in the actual market it was of course not the case that the “true”

value of the underlying was revealed after the closing auction, so that Op-

tiver’s expected profit was not based on the difference between this true value

and the settlement price. Instead, Optiver’s profit was determined by the

difference between the price on its futures trades during the 2:25-2:27:59 pre-

settlement period, and the final settlement price. In the case when Optiver
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was selling futures because it had bought TAS, it anticipated that although

its sales during the pre-settlement period would drive down prices, its sales

during the settlement window would drive down prices further, and cause

the settlement price to be less than its average transaction price during the

pre-settlement period.

A tedious yet straightforward modification of the model of Section 3 can

accommodate this. Specifically, the model can be modified by adding a

trading period T− < T . In the most straightforward modification, the ma-

nipulator chooses to trade z− units at T−, and then is constrained to trade

−∆ − z− at T : that is, its position after the close of trading at T must be

flat. Optiver in fact did this, and it can be rationalized as reflecting the

manipulator’s aversion to the risk of carrying an open position overnight (as

is the case for most market making firms, like Optiver). This simplifies the

analysis by reducing the number of choice variables (to ∆ and z−).

The main complication arising from this modification is that the manip-

ulator’s trading at T− reveals information about the time-T trade −∆ − z−

that the market maker can use to adjust his pricing function. Although this

complication makes the analysis more involved, the same basic result follows:

manipulation is profitable.

An evaluation of price movements on the days that the CFTC alleges

that Optiver demonstrates that its trading often did move prices by a sub-

stantial amount in the direction of its end-of-day trading. Figure 1 depicts

the second-by-second average of the bid-ask midpoint in NYMEX May gaso-

line (“RBOB”) futures on the nine days the CFTC alleged it “bullied” this

market. The figure starts at 2:20:00, and continues through 2:45:59: trad-
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ing continued on Globex even after the settlement window ended. Figure

2 depicts the bid-ask midpoints by second for May heating oil futures on

the four alleged manipulation dates for that contract. Figure 3 presents the

bid-ask midpoints by second for May crude oil futures on the five alleged

manipulation dates.

These figures demonstrate several points. First, prices moved in the di-

rection of Optiver’s futures trading (and hence in the opposite direction of its

TAS trading) on most of the alleged manipulation days. The formal model

implies that since net order flows from other traders (informed traders and

liquidity traders) (a) is sometimes opposite the manipulator’s, and (b) can be

larger in absolute value than the manipulator’s, there will be days on which

prices move in the opposite direction of the manipulator’s trading. According

to the model, the manipulator makes money on average across manipulative

attempts, not on each attempt.

Second, the price movements are largely permanent.6 This conforms with

the model’s prediction. The manipulator’s trade in the settlement period auc-

tion cannot be distinguished from those of noise traders or informed traders.

Moreover, since trades have a price impact only because of the presence

of informed traders who cause adverse selection, and since information has

permanent price impacts, the manipulative trades have a permanent price

impact.

6In the microstructure literature, the “permanent” price impact of a trade is typically
measured by looking at the change in the bid-ask midpoint from the time of a trade, to
some period thereafter. Depending on the study, the ending price may be measured one,
two, five, ten or even thirty minutes after the trade in question. The graphs measure the
price change 15 minutes after the end of Optiver’s trading, and hence the 2:45 price is a
measure of the permanent price impact, according to the literature.
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The fact that the manipulator’s trades cannot be distinguished from in-

formed trades has other implications that are borne out in the Optiver case.

Specifically, information that is relevant for the price of one futures maturity

(e.g., April crude oil) is relevant for the price of prices for other maturities.

Thus, trades in one futures maturity impact the prices of other maturities.

And indeed, in March, 2007, Optiver’s trades in the front month futures con-

tracts resulted in price movements similar to those observed in Figures 1-3,

with the magnitude of these impacts generally declining with maturity (as

predicted by the theory of storage–see Pirrong, 2011).

Moreover, in the case of crude oil and refined product futures, information

that is relevant for one (e.g., crude oil) can be relevant for the others. And

indeed this was the case in March, 2007.

These points can be demonstrated in a regression framework. I have

obtained data on Optiver’s trading in the front month (April) gasoline, heat-

ing oil, and crude oil futures during the 2:25-2:30 period for each day in

March, 2007. Furthermore, based on transaction data and bid-ask data from

NYMEX, using a tick test I have estimated net aggressive order flow for

the 2:25-2:45 time interval: I subtracted Optiver’s net orders from this net

aggressive order flow to determine net order flow from traders other than

Optiver. I then estimate regressions of the following form:

∆Fimt = αi +
3

∑

j=1

βjmQjt +
3

∑

j=1

γjmIjt + εit (22)

In this expression, ∆Fit is the change in maturity m futures price i from

2:25-2:45 on day t. Index i equals 1 for gasoline futures, 2 for heating oil

futures, and 3 for crude oil futures. I examine four different maturities m:
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April, May, June, and July The variable Qjt is Optiver’s net order in futures

contract j: days on which Optiver did not trade are included in the sample,

so the values of Qjt are equal to zero for these days. The variable Ijt is the net

non-Optiver aggressive order flow for the front month of futures contract j on

day t. Note that the regression coefficients are indexed by m, meaning that

price impacts of trading in April futures contracts can differ across maturities

and contracts.

The results of this analysis are presented in Table 1. The number of

coefficients is large, so the table presents only the coefficients on Optiver’s

trading. The results are readily summarized. First, Optiver’s trades in the

front month of a given contract (e.g., gasoline) are associated with permanent

movements in the prices of at least the first four maturities of that contract in

the direction of the trade, i.e., buys (sells) are associated with higher (lower

prices). Second, Optiver’s trades in front month gasoline futures are associ-

ated with permanent price movements in the direction of the trade in each of

the first four maturity heating oil futures contracts, and Optiver’s trades in

front month heating oil futures are associated with permanent price move-

ments in the direction of the trade in each of the first four maturity gasoline

futures contracts. The coefficients on Optiver’s trades in a given commodity

(e.g., gasoline) in the regression using the price change of that commodity

are all significant at the one percent level. Coefficients on Optiver’s trades

in gasoline (heating oil) in the heating oil (gasoline) regressions are all sig-

nificant at the 10 percent level, and sometimes significant at the 1 percent

level.7

7The signs of the coefficients on net aggressive order flow are typically of the right sign,
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It should also be noted that Optiver’s trades from 2:25-2:30 were almost

perfectly negatively correlated with the size of its TAS position, and that

the coefficients of regressions of its trades during this period against its TAS

position are statistically indistinguishable from -1.00 for heating oil and crude

oil. The coefficient for gasoline, -.88, is statistically different from -1.00 at

the 1 percent level.

Overall, these results demonstrate that Optiver’s actions in March, 2007,

and the effects of those actions, are consistent with the theory of TAS manip-

ulation. The firm accumulated large TAS positions, and then traded in the

opposite direction of those positions shortly before and during the settlement

period. On average, these trades caused the price of the future to move in the

direction of the trade: indeed, as expected given the informational linkages

between different maturities, and between related commodities, trades in one

maturity of one commodity often affected other maturities and commodities.

Moreover, these impacts were permanent.

5 Crossing Networks and Other Dark Pools

Dark pools are a ubiquitous part of the equity trading landscape. There

are many different types of dark pools that employ different pricing models.

Some are dark pools are essentially auction markets that allow the entry

of priced orders, and may or may not include a market maker (usually the

broker-dealer who operates the platform). Some dark pools are crossing

networks (“CN”) that cross offsetting orders at a price derived from another

market. Even here there is diversity. Some cross contra orders continuously,

but not always, and are not statistically significant.
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usually at the bid-ask midpoint derived from exchanges. Others cross orders

periodically, and use a price from an exchange market from some time after

the cross. For example, POSIT uses the average of the bid and offer from

seven minutes after the cross. Instinet Last Daily Cross and Barclays Internal

CN utilize the official closing price of the stock.8

This last type of dark pool bears the closest similarity to the models of

Sections 2 and 3, and these models can be modified to demonstrate that this

type of dark pool serves the same economic function as TAS, and is subject

to the same kind of manipulation. The main modification is necessitated

by the execution risk in CNs. (See Zhu, 2014 for an issue of execution risk

in dark pools.) That is, if the number of buy orders in the cross is greater

than (less than) the number of sell orders, only a fraction of the buy orders

(sell orders) will be executed. Thus, in contrast to the TAS market, and

the model of the TAS market presented above, there is no market maker to

absorb order imbalances in the CN.

The fraction of an order submitted to a CN that is executed depends on

the allocation rule. A common allocation rule is pro rata. For simplicity, I will

assume that rule is employed: the analysis is easily modified to incorporate

alternative rules, including those that give priority to volume.

Consider the modeling framework of Section 2, with a CN replacing the

TAS market: for now, there are no manipulators. To take into account the

possibility of incomplete order fills in the CN, I assume that all unmatched

orders are submitted to the exchange for execution at the market price at

T + ≥ T : the orders not matched in the CN are therefore subject to adverse

8See Degryse, Van Achter, and Wuyts (2006) for a description of crossing networks.
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selection.9 Further, I assume that the orders are matched in the CN at the

market clearing price at T .

In that framework, discretionary uninformed traders prefer to submit or-

ders to the CN even though there is a probability that less than 100 percent

of their order will be crossed. The intuition is straightforward: the discre-

tionary uninformed incur liquidity (price impact) costs on all orders executed

on the exchange at T . Conversely, they incur no liquidity/price impact cost

on orders matched on the CN. Therefore, discretionary liquidity trader j

wants to maximize the fraction of his order Yj that is executed on the CN.

He does so by submitting his entire order there. This is true for all j. As be-

fore, in the framework of Section 2, where private information is short-lived

because it is revealed publicly prior to T or because of competition between

informed traders, the informed shun the CN.

This implies that the CN serves the same function as TAS orders. It

screens out informed traders, thereby reducing the exposure of a subset of

uninformed traders to adverse selection.

And as in the TAS model, the existence of this pool of uninformed orders

that incur no liquidity cost creates the asymmetric price response necessary

for a manipulative strategy to work. To incorporate the lack of a market

maker, and hence the possibility that some orders submitted to the CN will

not be executed, the model must be modified slightly. Specifically, it is

insufficient to specify a distribution of net discretionary uninformed order

flow. Instead, it is necessary to specify a distribution for total uninformed buy

9In the manipulation model discussed below, the analysis is somewhat simpler if T
+

>

T . In the model without manipulation, the primary conclusion is readily demonstrated if
T

+ = T .
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orders and a distribution for total uninformed sell orders. These distributions

must have positive support, such as a rectified Gaussian, inverse Gaussian,

or lognormal. Denote the distribution for the discretionary sell orders gs(ys)

and a distribution of discretionary buy orders gb(yb).

Assume the manipulator submits an order ∆ > 0 to the CN: a symmetric

analysis holds for a sell order. Under a pro rata rationing rule, the number

of the manipulator’s units that are matched is:

α(ys, yb, ∆)∆ = min[∆,
∆ys

∆ + yb

] = ∆ min[1,
ys

∆ + yb

] (23)

Therefore, the fraction of the order executed is:

α(ys, yb, ∆) = min[1,
ys

∆ + yb

] (24)

Consider the manipulator’s decision at T , when the crossing price is de-

termined at the exchange auction. Assume that the market maker on the

exchange chooses a linear pricing rule. This pricing rule reflects the dark na-

ture of the crossing network: the exchange market maker cannot condition

on the order flow in the CN. Therefore:

PCN
T (x + u + z) = Pt0 + λCN

T (x + u + z) (25)

where as before x is the informed trader’s order; u is the net non-discretionary

liquidity order flow; and z is the manipulator’s order at T .10 Note that due

to the darkness of the CN, the market maker cannot condition his pricing

rule on the order flow in the CN.

10This version of the model assumes that the unmatched discretionary liquidity trader
order flow is executed on the exchange at T

+
> T . All of the conclusions hold when the

liquidity orders that are not matched in the CN are executed at T .
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The informed trader’s decision is, as usual:

x =
V − Pt0

2λCN
T

(26)

Given ∆, the manipulator maximizes:

EV,u,yb,ys
[(V − PCN

T )(α(yb, ys, ∆)∆ + z)] (27)

This simplifies to:

−λCN
T Eyb,ys

[z2 + zα(yb, ys, ∆)∆] (28)

The relevant first order condition is:

z =
−∆Eyb,ys

α(yb, ys, ∆)

2
(29)

This is similar to the manipulator’s choice in the TAS setting, with the

exceptions that (a) ∆ is multiplied by the expected fraction of the manipula-

tor’s CN order that is matched, and (b) the manipulator takes into account

the expected discretionary order flow that is executed on the exchange be-

cause of incomplete matching. This latter factor is irrelevant in the TAS case,

because all discretionary order flow is executed in the TAS market. Further-

more, the expectation depends on ∆, because the manipulator’s order affects

the cross.

Note that z depends on the execution fraction α. Since this fraction

depends on the rationing rule, the intensity of manipulative trading (given

∆) will as well. Rationing rules that give priority to volume result in a larger

α than the pro rata rule, and therefore induce more aggressive manipulative

trading on the exchange when the crossing price is determined.
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It is possible to show that as in Section 3, and as in Kumar-Seppi, the

manipulator’s profit is strictly increasing in |∆|. Therefore, as before the

manipulator takes the largest position that his wealth W allows, and ran-

domizes between buying and selling in the CN. Given the distribution of

W , and the densities gb(.) and gs(.), it is possible to estimate the distribu-

tion of z. This, in turn allows determination of the variance of order flow

z, which I denote as σ2
z,CN , implying that the variance of the order flow is

Sf = σ2+(1−ρ)S+σ2
z,CN . The linear pricing rule is determined by regressing

V on f , which produces:

λCN
T =

cov(V, V
2
)

λCN
T Sf

(30)

Thus:

λCN
T =

√

√

√

√

σ2

2Sf

(31)

The variable z will not be Gaussian, and its distribution will depend on

the densities of the discretionary buy and sell order flows (as well as on the

specific allocation rule).11 It is therefore not possible to solve for Sf in closed

form, but it can be done numerically.

Thus, CNs utilizing derived pricing are vulnerable to manipulation.12

The intuition is virtually identical to that for TAS. Crossing networks are

11
z is not Gaussian even though ∆ is Gaussian because in (29) ∆ is multiplied by a

non-linear function of ∆.
12Degryse, Van Achter, and Wuyts (2006) argue that CNs reduce the profitability of

this form of manipulation by delaying fixing of the crossing price to 5-7 minutes after
the cross. This would mitigate the ability of the manipulator to exploit temporary price
impacts arising from market maker risk aversion or trade processing costs. However, the
price impacts related to adverse selection are permanent, and even with delayed pricing,
the manipulator could exploit these effects. The models studied herein assume risk neutral
market makers, and no trade processing costs. Therefore, price impacts are due to adverse
selection alone, and CNs that use delayed pricing are subject to the kind of manipulation
modeled here.
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unattractive to traders whose private information is short lived due to its im-

pending announcement, or robust competition between the informed. Thus,

by design, CNs cater to uninformed traders, and trades executed on CNs do

not impact prices. This creates an asymmetry between the CN and the main

exchange where the informed and some uninformed trades, and a manipu-

lator can exploit this asymmetry by establishing a position in the dark CN,

and trading on exchange in order to affect the price at which the CN order

is executed.

The formal model assumes a time lag between the crossing of orders and

the pricing of the crossed orders. Some crossing networks, including the

largest (Liquidnet) cross continuously at the market midpoint. This raises

the issue of whether these continuous crossing networks (“CCN”) are subject

to manipulation similar to that modeled above.

A manipulator could submit an order to the continuously crossing CN,

and simultaneously trade on the contra side in the market used to set the

crossing price, and profit in a similar way as a trader in TAS or a delayed

pricing CN. However, for this strategy to work, there would have to be some

other reason for informed traders to eschew trading in the CCN.

The mechanism for this separation posited above is the mandated pricing

delay, which screens out those with short-lived private information. CCNs

have no mandated pricing delay, but for operational reasons, including fac-

tors created by CCN rules, there can be significant delays between order

submission and execution, low execution probabilities, and incomplete exe-

cutions. Zhu (2014) shows that all of these factors make a trading venue

relatively unattractive to informed traders, especially those with short-lived
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information. Thus, to be viable (by being attractive to discretionary liquidity

traders because of lower adverse selection risk), CCNs must have a mecha-

nism for screening out informed traders. But this is precisely what makes

them vulnerable to manipulative strategies like those modeled here.

One last issue deserves comment. In the formal model the manipulator’s

trade on exchange is based on the expected execution ratio on the CN. The

manipulator’s profits cannot be reduced, and could be increased, if the on-

exchange trade could be conditioned on information about ys and yb, which

permits more precise estimates of the execution ratio α(yb, ys, ∆). Thus, the

manipulator would like to pierce the dark.

CCNs are likely to be more vulnerable to this than CNs using delayed

pricing. A trader can send a small order to a CCN (sometimes called “ping-

ing the pool”): if that order is executed, the trader learns that there is a

potential cross of a larger order. Given this information, the trader can (a)

determine whether a manipulation opportunity exists, and (b) condition his

manipulative strategy (direction and size in both the CCN and the exchange

market) on this information.

Of course informed traders could also utilize this “pinging” strategy to

pick off liquidity-trader orders in the CCN. But if the CCN is too vulnerable

to such predatory informed trading, it will not attract liquidity trader order

flow.

This demonstrates yet again the yin and yang of the trading mechanisms

studied here: the very features that make a trading mechanism attractive

to liquidity traders because they facilitate the screening of informed traders

make the mechanism a useful part of a manipulative trading strategy.
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6 Regulation of Manipulation of Derived Pric-

ing Mechanisms Under US Law

Manipulation is illegal in futures markets under the Commodity Exchange

Act, and in securities markets under the Securities Exchange Act. The fore-

going analysis sheds light on how the burden of proof could be met in a case

involving manipulation of a derived pricing mechanism.

Commodities law in the United States imposes a four part test to prove

manipulation: (a) the existence of an artificial price, (b) the ability to cause

an artificial price, (c) the accused in fact caused the artificial price, and (d)

the accused specifically intended to cause the artificial price. Under securities

law, it suffices to show that the accused traded with the intent of distorting

prices. Since the required elements of proof for securities manipulation are a

subset of those for commodities, I will discuss the issue in terms of the latter.

First consider the existence of an artificial price. As with much manip-

ulation law, there is some dispute about the definition of this concept, but

in a nutshell it means a price that diverges from the competitive price that

reflects supply and demand fundamentals: put differently, it is the price that

would prevail but for a manipulative act.

In the context of a trade-based manipulation, the manipulative act is a

trade or trades intended to move the price that is used to determine the pay-

off to a position in a contract or instrument held by the manipulator, e.g.,

the settlement price used to determine the price of a TAS. If it is determined

that an alleged manipulator traded during and perhaps before the settlement
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window13, an event study methodology can be used to quantify the impact of

his trading. In the case of a single manipulative trade, the price movement

during the period of his trading can be calculated, and compared to a mea-

sure of variability during a similar time period on non-manipulation days

to determine whether this price movement is of the correct sign (e.g., the

price rises during the period of a buy) and is statistically significant. In the

case of multiple alleged manipulative episodes, the average trade-direction

adjusted price movement during a window of time encompassing the manip-

ulator’s trading can be calculated, and the variability of this average can be

determined from price movements on non-manipulation days.

The Optiver case indicates that there is potential manipulative spillover

across different contract months, or across related commodities, or both.

Thus, event studies can be undertaken for other contract months and related

commodities.

Given data on the alleged manipulator’s trades, it is also possible to

estimate regressions like those presented in Section 5 to determine whether

the alleged manipulator’s trades were associated with price changes during

the trading window, and whether the relation is statistically significant.

Since manipulative trades would not have taken place but for the ma-

nipulation, any price impact resulting from these trades injects artificiality

into prices. In essence, market participants assign some probability to the

possibility that an order that is manipulative, and hence is not informative,

13Trading before the settlement window could, as in Optiver, be the means by which
the trader realized a profit. Furthermore, in the presence of adverse selection, trading
before the window would have a persistent impact on prices, and therefore could impact
the settlement price.
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was submitted by an informed trader. Thus, the price impact of the accused

manipulator’s trades is a measure of price artificiality.

If a trader engages in manipulative trading on multiple occasions, the

power of the event studies will be higher, and the evidence of price artificiality

more robust.

Insofar as ability to cause is concerned, trades are likely to impact prices

in any anonymous market. Temporary price impacts almost certainly exist

(due to market maker risk aversion and trade processing costs): adverse

selection costs are also likely to exist due to privately informed trading. The

existence of price impacts in the market in question in comparable periods

(e.g., around the settlement window) on non-manipulation days is sufficient

to show the existence of such price effects, and hence the ability to cause.

Conventional methods employed in microstructure research can be used to

document these price impacts.

With respect to causation, the event study analysis described above is

highly probative. Given well-known principles of market microstructure the-

ory and empirics, a finding that an alleged manipulator’s trades bear a sta-

tistically significant association with price moves (based on the event study,

a regression of price movements on trades, or both) provides strong evidence

that the trading caused the observed price movements.

Intent is often considered the most difficult element to prove in a manip-

ulation case. In the Optiver case, the Respondents helpfully described their

trading strategy and motivations to one another in various communications

that were obtained by the CFTC. However, such damning communications

may not always be available, and even if they exist, communications can
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often be ambiguous. The formal analysis provides some indicators that can

be used to prove intent.

Specifically, in a derived pricing manipulation, the manipulator trades in

opposite directions in the market for the derived pricing instrument (e.g.,

TAS or the CN) and in the underlying market that is used to establish the

price for the derived pricing contract.14 Moreover, the manipulator’s trading

in the underlying market is concentrated during the settlement period.

A trader (e.g., a discretionary liquidity trader) uses a derived pricing mar-

ket to establish a position in the underlying in lieu of using the underlying

market itself in order to minimize liquidity costs. Therefore, a discretionary

liquidity trader would be less likely than a manipulator to trade in the oppo-

site direction, especially during the settlement period. Indeed, to the extent

that the trader cannot execute her entire desired quantity in the derived pric-

ing mechanism (as often happens in a CN, for instance), she is likely to trade

in the same direction in the derived pricing mechanism and the exchange

market. In contrast, a manipulator always engages in a trade opposite to the

derived pricing instrument trade.

A manipulator could argue that he is attempting to provide liquidity to

the derived pricing market. However, manipulative trading strategies differ

from typical market making. For example, a trader scalping a TAS contract

could be expected to buy the TAS at the bid and sell it at the offer, rather

than systematically establishing a TAS position, and then offsetting it in

the underlying market: that is, a market maker would absorb temporary

14This is in contrast to manipulation of a cash-settled derivatives contract, a la Kumar-
Seppi: in that case, the manipulator trades in the same direction in the derivative and
underlying markets.
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supply and demand imbalances in the TAS market, and then reverse his

position when those imbalances reverse. Moreover, and crucially, the formal

model demonstrates that the manipulator takes an offsetting position in the

underlying market during the settlement period on only a fraction of his

derived pricing instrument position. In the Optiver case, for example, the

firm repeatedly and intentionally traded volumes representing only about

75 percent of its maximum TAS position during the settlement period. A

market making strategy would more reasonably involve liquidating the entire

remaining derived pricing position during the settlement period.

Furthermore, a market maker would prefer to trade by limit order to cap-

ture the half-spread in the underlying market, rather than by market order

(and therefore pay the half-spread). For instance, liquidating a TAS position

through market orders in the underlying market during the settlement period

would be expected at best to be a scratch trade: the trader would receive the

TAS market half-spread to initiate the position, and pay the half-spread in

the underlying market to cover the TAS position by market order. A trading

strategy (like Optiver’s) which seldom (if ever) involved capturing the spread

in the TAS market, and which involved crossing the spread in the underlying

market, is highly atypical for a market maker. This is especially true given

that the spread in the underlying market is likely to be greater due to the

greater adverse selection risk in that market. It is, however, exactly what a

manipulator would do (as the model demonstrates).
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7 Summary and Conclusions

Derived pricing–conditioning the price of a transaction on a price from an-

other market–can facilitate the screening of traders with private information,

and thereby reduce the vulnerability of some uninformed liquidity traders to

adverse selection. Mechanisms like Trade at Settlement contracts, or crossing

networks with delayed pricing, can function as such a screening mechanism.

This is especially true when private information is short-lived because it will

be disclosed publicly soon after a trader obtains it, or when there is intense

competition between informed traders.

These mechanisms fragment markets: only a fraction of transactions are

executed on exchanges. This tends to reduce liquidity on exchanges, and

increase the adverse selection costs incurred by the liquidity traders who

must trade there because it is too costly for them to utilize the trading

mechanism that screens out the informed. However, I demonstrate herein

that it is possible that adverse selection costs are lower overall because the

gains to those who can trade on the off-exchange market that screens exceed

the losses to those who cannot. Thus, this fragmentation can be efficiency

enhancing.

This gain does not come without cost: the very features that make

off-exchange trading venues attractive to liquidity traders create opportuni-

ties for profitable manipulation. To be profitable, trade-based manipulative

strategies require that purchases and sales have different impact on prices:

the screening of informed traders via derived pricing makes price impact of

trades on mechanisms that employ derived pricing lower than the price im-
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pact of trades in a market (like an exchange) that does not screen. This

differential impact makes possible manipulative trading strategies.

Given the incentive of liquidity traders to avoid adverse selection, there

is an incentive to create screening mechanisms that facilitate such avoid-

ance, and indeed. This article demonstrates that Trade at Settle contracts

and crossing networks, and derived pricing more generally, can do so. Thus,

the theory predicts that derived pricing should be ubiquitous. But the the-

ory predicts that this fragmentation of markets based on screening of in-

formed traders will inevitably make trade-based manipulation possible and

profitable. These phenomena are inextricably linked.
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