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• The deregulation of the electricity indus-

try has resulted in the development of a

market for electricity.

• Electricity derivatives, including forwards,

“vanilla” options and various exotic options

have been introduced and are currently traded

both OTC and on exchange.

• Pricing electricity derivatives faces acute

difficulties.
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Challenges: The Uniqueness of Power

• Power is non-storable. Moreover, produc-

tion capacity for power is limited. These

factors conspire to create unique price dy-

namics including mean reversion with huge

price “spikes” especially during peak de-

mand periods.

• These features of power prices are not read-

ily captured by standard “reduced form”

models that are the basis for most deriva-

tives pricing models.

• Price diffusion-type models clearly inappro-

priate.
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• Traditional price jump models also clearly

inadequate. Models with only positive jumps

and mean reversion cannot capture the fact

that jumps are very short-lived. Need model

that has: (1) up jumps precede down jumps;

(2) the time between up jumps and down

jumps is very short; (3) high correlation

between the magnitude of up jump and

subsequent down jump; (4) seasonal jump

intensity; (5) jumps correlated with loads.

Even if you can write down such a model,

it is very hard to calibrate it and use it to

price power contingent claims.

• More advanced jump-based models (e.g.,

Geman-Roncoroni) still have problematic

features, and are not readily fit to the data.

• Traditional approaches (e.g., lognormal price

diffusion) implicitly assume storability.



• All of these are incomplete market mod-

els, and hence must change measure to

price contingent claims. What is the right

measure? Complicated calibration problem

given limited data.



A Better Way

• An equilibrium, fundamentals-driven approach
is the best way to address these issues. In
this approach, the spot price of power at
any instant is a function of two state vari-
ables, a demand variable and a cost vari-
able. The demand variable is load or tem-
perature. The cost variable is the price of
fuel.

• A two factor approach is implemented first
because of tractibility. We are aware that
higher-dimension approaches may prove fruit-
ful. For example, loads in multiple regions
or modelling at the generating unit level are
conceptually superior. “Curse of dimen-
sionality” requires prudent choice of state
variables. Improvements in computational
power and experience will facilitate imple-
mentation of richer models.

4



The Intuition Behind this Approach

• The basic idea is that the non-linearities in

prices result because a linear demand pro-

cess is filtered through a non-linear cost

function. Price rises rapidly as demand

nears capacity.

• This approach exploits the transparency of

fundamentals in the power market. You

can’t use this approach in financial markets

because you don’t know or can’t measure

the fundamentals.
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Demand and Fuel Processes

• The load and fuel variables follow diffusion
processes. In contrast to price, load is a
well-behaved process.

• Load is a “controlled process.” The sys-
tem operator can intervene to control load
to ensure that it does not exceed system
generating and transmission capacity.

• Violations of system constraints can im-
pose extreme costs. These include failure
of the entire grid with blackouts as a result.

• Results of Harrison and Taksar (1983) im-
ply that if system controller can “push” on
load hard enough, load will exhibit reflec-
tion at system capacity. That is, if system
capacity is X, the load process has a re-
flecting barrier at X.
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The Reflecting Barrier Characterization

• The conditions assumed by H-T are not lit-

erally applicable to the problem of control-

ling power systems. Nonetheless, the re-

flecting barrier approach is a tractible method

for incorporating the physical constraints in

power systems into the analysis.

• Increasing the realism of the characteri-

zation of load dynamics requires solution

of a complex stochastic control problem

that takes the real constraints of the power

system into account. These constraints

include ramping constraints, transmission

constraints, and so on.
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• The basic framework for solving such con-

trol problems (Pontryagin approach) is well

developed. It is our goal to pursue imple-

mentation of this approach in power.

• Thus, for now the reflecting barrier charac-

terization should be viewed as a preliminary

attempt to incorporate physical constraints

into the analysis of power pricing problems.



Load and Fuel SDEs

• The load reverts to a time varying mean.
Mean load peaks during summer months,
with a smaller peak in the winter. The load
process is:

dqt = αq(qt, t)qtdt + σqqtdut − dLu
t

where

αq(qt, t) = μ(t) + k[θq(t)− ln qt]

dut is a standard Brownian motion, and dLu
t

is the “local time” of the process. μ(t)
is the deterministic drift in the load at t.
Note that dLu

t > 0 iff qt = X, and dLu
t = 0

if qt < X.

• The fuel futures price follows a diffusion
process:

dft

ft
= αfdt + σfdzt
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The Market Price of Risk

• Since load (or temperature) is not traded,

valuation formula must have a market price

of risk. In fact, any power derivatives pric-

ing formula must have a market price of

risk because of the non-storability of power.

• Thus, if the “true” probability measure is

P, we need to find a new measure Q under

which deflated prices of contingent claims

are martingales.

• The true probability measure P and the

new measure Q must share sets of measure

zero. That is, if an event cannot occur un-

der P it cannot occur under Q.
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• Since qt > X is impossible under P, it must

also be impossible under Q. Thus, qt must

reflect at X under Q.

• Under Q, qt solves the SDE:

dqt = [αq(qt, t)dt−σqλ(qt, t)]qt+σqqtdut−dLu
t

• In this expression, λ(qt, t) is the market price

of load risk.

• Under Q, ft solves:

dft

ft
= σfdzt



The Fundamental Valuation Equation

• Define the discount factor Yt = exp(− ∫ t
0 rsds)

where rs is the (assumed deterministic) in-

terest rate at time s.

• Under Q, the evolution of a deflated power

price contingent claim C is:

YtCt = Y0C0 +
∫ t

0
CsdYs +

∫ t

0
YsdCs
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• Using Ito’s lemma, this can be rewritten

as:

YtCt = C0 +
∫ t

0
Ys(AC +

∂C

∂s
− rsCs)ds

+
∫ t

0
[
∂C

∂q
dus +

∂C

∂f
dzs] −

∫ t

0
Ys

∂C

∂q
dLu

s

where A is an operator such that:

AC =
∂C

∂qt
[αq(qt, t)− σqλ(qt, t)]qt

+ .5
∂2C

∂q2t
σ2

q q2t + .5
∂2C

∂f2
t

σ2
f f2

t

+
∂2C

∂qt∂ft
σfσqρqfqtft.



• For the deflated price of the power contin-
gent claim to be a martingale, it must be
the case that:

E[
∫ t

0
Ys(AC +

∂C

∂s
− rsCs)ds] = 0

and

E[
∫ t

0
Ys

∂C

∂q
dLu

s ] = 0

for all t.

• Since (1) Yt > 0, and (2) dLu
t > 0 only

when qt = X, with a constant interest rate
r, we can rewrite these conditions as:

AC +
∂C

∂t
− rC = 0 (1)

and
∂C

∂q
= 0 when qt = X (2)

• Expressions (1) and (2) are necessary and
sufficient to ensure that C is a martingale
under Q.
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• Expression (1) can be rewritten as the fun-

damental valuation PDE:

rC =
∂C

∂t
+

∂C

∂qt
[αq(qt, t)− σqλ(qt, t)]qt

+ .5
∂2C

∂q2t
σ2

q q2t + .5
∂2C

∂f2
t

σ2
f f2

t

+
∂2C

∂qt∂ft
σfσqρqfqtft (3)
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• For a forward contract, the relevant PDE
is:

−∂Ft,T

∂t
=

∂Ft,T

∂qt
[αq(qt, t)− σqλ(qt, t)]qt

+ .5
∂2Ft,T

∂q2t
q2t σ2

q + .5
∂2Ft,T

∂f2
t

σ2
f f2

t

+
∂2Ft,T

∂qt∂ft
qtftσfσqρqf (4)

where Ft,T is the price at t for delivery of
one unit of power at T > t.

• It is sometimes convenient to change the
time variable to time to expiration τ = T −
t. In this case, the PDE can be rewritten
as:

∂F (τ)

∂τ
=

∂F (τ)

∂qt
[αq(qt, t)− σqλ(qt, t)]qt

+ .5
∂2F (τ)

∂q2t
q2t σ2

q + .5
∂2F (τ)

∂f2
t

σ2
f f2

t

+
∂2F (τ)

∂qt∂ft
qtftσfσqρqf (5)
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Tying the Forward Contract to Market

Conditions

• The PDE must be solved subject to certain

boundary conditions.

• Equation (2) is a boundary condition of the

Neumann type; this is a consequence of the

controlled nature of the load process.

• Many ways to “skin the cat.” In earlier ver-

sions of this paper, we used non-parametric

econometric techniques. In this latest ver-

sion, we use PJM bid data to construct a

“bid stack.”
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• There are several complications that have

to be addressed to implement this approach,

but it does allow us to capture the eco-

nomics of generation (including the impact

of market power) as revealed by market

participant’s actions.
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Estimating the Load Process

• It is also necessary to estimate a drift func-
tion for load in order to implement this ap-
proach.

• This proceeds in two steps: (1) estimating
the mean load function θq(t) and determin-
istic drift function μ(t), and (2) estimating
the speed of mean reversion k.

• We estimate the load function non-parametrically.
This is very flexible. As the attached figure
(from PJM) shows, it captures the salient
features (seasonal and intra-day) variations
in average load.

• To determine k, we estimate the following
regression using ordinary least squares:

Δqt

qt
− μ(t) = k̂[θq(t)− ln qt] + εt
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• We use the standard error from the regres-

sion as our estimate of σq and the k̂ coeffi-

cient from the regression for k (the speed

of mean reversion).

• For the PJM data studied, k is quite large

indicating that load shocks dissipate very

quickly; the half-life of a load shock is ap-

proximately 5 hours. This is important as it

implies that current load shocks shouldn’t

affect forward prices much. Some empir-

ical evidence suggests that market over-

reacts to load shocks.



Estimating the Market Price of Risk

• The fundamental valuation equation is a
conventional (parabolic) PDE that can be
solved using fairly conventional means if
one knows the market price of risk func-
tion.This is not observed. Can one assume
it is equal to zero? If not, how does one
estimate it?

• An analysis of data from the Pennsylvania-
New Jersey-Maryland (PJM) market illus-
trates that an assumption of a zero mar-
ket price of risk is not plausible. The av-
erage difference between the one day for-
ward price and the realized spot price one
day later is $.92 per MWh. The median
difference is $1.36.

• The forward price of power (for day ahead)
exceeds the realized spot price far more
than would be expected by chance.
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The Importance of the Market Price of Risk

• The importance of the market price of risk

(“MPR”) cannot be overstated. As will

become apparent momentarily, it is a major

component of power prices.

• Moreover, comparisons of implied market

prices of risk across products and across

markets can provide valuable trading sig-

nals.

• Therefore, any valuation and risk manage-

ment methodology must take MPR into

account.

• It is not a trivial problem to estimate the

MPR.
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Inverse Techniques and the MPR

• How does one therefore determine the mar-

ket price of risk? We utilize inverse prob-

lem techniques to do so. We find a func-

tion λ(qt, t) that matches the forward prices

generated by the model to the forward prices

quoted in the market.

• An arbitrary number of functions can fit

the limited number of forward prices quoted

in the market. Therefore, this problem

is “ill-posed.” We use regularization tech-

niques to address this difficulty.
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Some Illustrative Results

• Solution of the inverse problem given for-

ward prices and loads for PJM for June

2005.

• The results of this solution provide striking

results. The results imply that the risk pre-

mium is substantially positive for delivery

at the peak load dates in July and August.

• This premium observed throughout 1998-

2006 period.
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• These results are sensible. Spot power
price for PJM highly right skewed (espe-
cially in the summer). Therefore, short
seller of power faces possibility of extreme
loss due to a spike in demand. Market price
of risk/risk premium compensates them for
this risk.

• Negative MPR for shoulder months con-
sistent with economic analysis of hedging
pressure in power markets (Bessembinder-
Lemmon, 2000).

• Other evidence suggests that market price
of risk is important. Power prices for dis-
tant delivery dates exhibit substantial vari-
ation even though stationarity of main price
driver–load–suggests that forward prices for
delivery dates months into the future should
vary little. This could be due to substantial
variation in the risk premium as hedging in-
terest varies.
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Extensions of the Approach

• It is possible to incorporate outages into

the analysis through the boundary condi-

tions using unit-specific information on out-

age frequencies and durations; simulate the

bid stack, and exploit (1) the lack of cor-

relation between outages, load, and fuel

price, and (2) the stationarity of outages.

At present, assume outage risk is unpriced.

• The model also allows integrated risk mea-

surement and management.

• The solution to the PDEs generates load

and fuel “Greeks” (Δ, Γ, and Θ) for each

instrument in a portfolio.
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• Since many market participants face quan-

tity as well as price risk, the explicit incor-

poration of load into the model facilitates

integrated risk measurement and manage-

ment, as well as the pricing of load sensitive

claims.

• Given load and fuel correlation structures

across markets, can construct an integrated,

multi-market risk measurement.



• This model can be extended to price op-

tions on power. These include highly path

dependent options such as “swings” which

are frequently embedded in power supply

contracts.

• Pirrong (2006a and 2006b) values power

options using splitting methods for solving

PDEs.

• This model can also be used to price and

hedge volume sensitive claims. This is im-

portant for utilities because their revenues

depend on both price and load. It is also

useful in valuing generation assets. This is

another big issue because of industry re-

structuring.
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• Finally, the model can be adapted to price

and hedge power and weather derivatives in

a single, unified framework. This involves

using some weather variable (e.g., temper-

ature) as the main state variable.
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Introduction

• The PDE for solving options is the same

as for forwards.

• The problem is that the dimensionality re-

duction is not feasible for futures.

• Need to grasp the nettle and implement a

2D numerical PDE solver.
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Doing the Splits

• ADI is not suitable for this problem.

• I’ve looked at integration-based approaches,
but they are clunky.

• Splitting is the way to go.

rC

3
=

∂C

∂t
+

∂C

∂qt
[αq(qt, t)− σqλ(qt, t)] + .5σ2

q
∂2C

∂q2t
(1)

The second split handles the cross deriva-
tive term:

rC

3
=

∂C

∂t
+ .5σfσqρqfft,T

∂2C

∂qt∂ft,T
(2)

The third PDE split, which handles the
purely f-related terms, is:

rC

3
=

∂C

∂t
+ .5σ2

f f2
t,T

∂2C

∂f2
t,T

(3)
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Results

• Load mean reversion rules!

• Short maturity daily strikes convex in load;
long dated daily strikes, monthly strikes are
not.

• This reflects strong mean reversion in load.

• Longer dated daily strikes, monthly strikes
like options on fuel.

• Little time decay due to load dynamics un-
til very close to maturity–another reflection
of mean reversion.

• Implied vols increase dramatically as one
nears expiration–mean reversion strikes again.
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