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Preface

This book weaves strands of research that date back more than 20 years, to
approximately 1990-1991. Although I worked at a futures commission mer-
chant (that is, a brokerage firm) while in graduate school, that work involved
financial futures exclusively. Deciding to leave that business in mid-October,
1987 (thereby Granger Causing the 1987 Crash), first for a stint in litiga-
tion support consulting and then on to academia at the Michigan Business
School, I worked on research completely unrelated to futures markets. But
in the spring and summer of 1989, the Italian conglomerate Ferruzzi cor-
nered the soybean market in Chicago. The corner, and the Chicago Board
of Trade’s response to it, resulted in sharp criticism of the exchange. To
address this criticism, the CBOT decided to commission an academic study
of the grain market delivery mechanism.

My senior colleague at Michigan who was primarily responsible for bring-
ing me there, the late Roger Kormendi, succeeded in wrangling a grant from
the CBOT to carry out the study. He walked into my office, and said: “I
know nothing about commodity markets. You worked in them. Would you
be part of the team on this study?” I responded: “Well, I know nothing
about commodity futures, but I’m game to learn.”

This nudge completely changed the trajectory of my research, and virtu-
ally everything I have worked on since relates to commodities and derivatives
in one way or another. My formal training is as an industrial organization
economist, and so my research initially focused trying to understand the
causes and effects of market power in commodity markets and commodity
derivatives. Classical manipulations–corners and squeezes, like the Ferruzzi
episode–are exercises of market power, so I examined in detail how vari-
ous economic “frictions” like transportation costs could affect a particular
market’s vulnerability to market power.

I was particularly interested in how to detect manipulations, for the pur-
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pose of improving the ability of the courts and regulators to deter manipula-
tion. It has long been known that market power manipulation distorts price
relationships,notably the relation between forward (or futures) prices on the
same commodity with different maturities. For instance, Ferruzzi’s exercise
of market power raised the price of July, 1989 soybean futures relative to
the price of September, 1989 soybean futures. But to identify distortions, it
is necessary to understand how “normal,” undistorted, prices behave in a
competitive market. Thus began the inquiries that have culminated in this
book.

When I began my research, there were basically two theories on offer, both
somewhat confusingly called the “theory of storage.” One invokes the con-
cept of a “convenience yield” to explain why forward prices in commodity
markets often fail to cover the costs of holding inventories even when in-
ventories are positive. The other uses dynamic programming methods that
explicitly incorporate the real-world constraint that inventories cannot be
negative to derive implications about the behavior of commodity prices in
a competitive market with rational expectations.

The convenience yield concept struck me as an ad hoc way to rationalize
an empirical regularity. The dynamic programming-based approach struck
me as more rigorous, with more well-developed microfoundations. The dy-
namic programming methods were also familiar to me, having been exposed
to them in Robert Lucas’s macro courses at Chicago. Consequently, I con-
centrated my research efforts on these models.

There was a flurry of publications in this area around this time (the
early-to-mid 1990s), including work by Deaton and Laroque and Williams
and Wright These works clearly laid the foundation for my research, and I
gratefully acknowledge having learned a good deal from it. But its focus on
low frequency (e.g., annual) prices, its relative lack of attention to higher
moments of prices, and correlations between forward prices with different
maturities. They also didn’t exploit fully the potentially quite informative
cross-sectional variation in commodity markets: corn and copper are very
different things, with different production and consumption patterns and
drivers, and such differences are potentially quite revealing sources of infor-
mation that can be used to test commodity pricing models.

My background in finance, and in options pricing in particular, made me
quite attuned to the importance and informativeness of higher moments.
Consequently, I focused my attention on this issue, first in empirical work
with my former Michigan colleague Victor Ng, then in more theoretical work
based on the dynamic programming approach. It is that work that is the
basis for most of the material in this book.
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My finance background also exposed me to some computational tech-
niques, notably finite difference methods used in option pricing that are rou-
tine in finance but which have seldom been employed in commodity pricing
models. The book embodies a fusion between the methods commonly em-
ployed in the dynamic programming literature, and the quantitative meth-
ods routinely employed in options pricing.

I hope that the book conveys several important lessons.
First, the structural approach provides valuable insights on the drivers of

commodity prices. One novel insight explored in Chapter 5 is that it is nec-
essary to incorporate stochastic volatility of fundamentals to explain salient
features of commodity price dynamics. This is a finding that points out the
value of looking at higher moments of prices, and the prices of derivatives
other than forwards and futures–notably, options of various types.

Second, the structural approach informs as much through its failures as
its successes. The chapter on seasonal commodities (Chapter 6) demon-
strates that the conventional approach cannot explain salient aspects of
price dynamics–most importantly, price correlations. This should motivate
a search for improvements and extensions of the approach; Chapter 6 offers a
few suggestions along these lines, but much more needs to be done. The cur-
rent binding constraint on progress is computational, but fortunately that
is a constraint that is easing steadily over time.

Third, the structural models make quite plain the value of looking beyond
prices alone and incorporating data on quantities–especially inventories–into
any empirical analysis of commodity markets. After all, the role of prices is
to guide the allocation of resources, so it is natural–but all to uncommon–to
incorporate data on actual resource allocations in any empirical examina-
tion of the theory. Since forward prices guide the allocation of resources over
time, and since inventories are a way of shifting resources through time, it is
particularly revealing to incorporate inventory data into any analysis. This
is also true to the origins of the academic study of commodity markets.
The first major scholar in this area, Holbrook Working, was particularly
interested in the relation between differences in the forward prices for com-
modities with different maturity dates (i.e., futures spreads) and the amount
of commodity in storage.

I envision three audiences for this book.
The first, of course, is scholars engaged in research on commodity markets

and commodity prices, and graduate students looking for a self-contained
and fairly comprehensive treatment of the subject.

The second is practitioners, most notably those in commodity trading and
risk management. I believe that the material in the book provides an intel-
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lectual framework that can help traders understand the fundamental factors
that influence prices, and how. Even the model failures can be helpful: they
help identify potentially important factors omitted from the models, and it is
useful to understand the known unknowns. I also expect that even though it
is presently impractical to utilize the fundamentals-based structural models
for pricing contingent claims as a replacement for Black-type models (except
for, perhaps, electricity), that this will not always be the case. Improvements
in computational power, and improvements in data available to estimate and
calibrate the models, hold out the prospect that structural models may some
day replace reduced form models as the preferred way to price commodity
options of all types.

The third is policymakers. Commodity prices have always been a bone
of political contention, although the intensity of commodity-related contro-
versies have waxed and waned over time. The years since 2005 or so have
been a time of waxing. Commodity price spikes and crashes have sparked
widespread condemnation of the malign effects of speculation in commodi-
ties, and this condemnation has resulted in regulatory and legislative action.
As of the present time (November, 2010), the United States Congress has
directed regulators to impose limits on commodity speculation, and the Eu-
ropean Union has made constraining commodity speculation a policy prior-
ity.

Too often, debates over the effects of commodity speculation have not
been grounded in a scientific understanding of the how commodity prices are
determined, and how these prices behave. The models in the book can help
provide such a grounding. For instance, Chapter 5 on stochastic fundamental
volatility shows that some apparent anomalies are in fact quite consistent
with rational pricing. Moreover, the emphasis on the importance of looking
at quantities as well as prices is invaluable in identifying distortions. For
since prices guide the allocation of resources, if prices are distorted quantities
should be distorted too. The models in the book help characterize how prices
and quantities in undistorted markets should behave, thereby making it
easier to identify distortions that may justify a policy intervention.

As this book represents the work of decades, there are many people to
whom I owe a debt of gratitude for making it possible. Professionally, I have
profited immensely from collaborating with my co-authors Victor Ng and
Martin Jermakyan. They taught me a great deal, and hopefully some of
what they taught me shines through every page. Our work demonstrates
how complementary skills and knowledge can produce something that his
bigger than the sum of its parts. I am also grateful to many practitioners who
have shared their wisdom, experience, and insight with me. Two who had a
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very great impact on my thinking as I was just beginning my explorations
of these matters were Frank Sims, then of Cargill, and Paul Krug, first of
Continental Grain, and subsequently of ADM Investor Services.

I am also very appreciative of the support of the various schools where I
have had the privilege to serve as a faculty member. My current academic
home, the Bauer College of Business of the University of Houston deserves
special notice. I deeply appreciate that Dean Arthur Warga and Finance
Department Chair Praveen Kumar understand the value and relevance of
research on commodity markets in a finance department, and have supported
my research accordingly.

One individual deserves particular thanks. My thesis advisor, and mentor,
Lester Telser is an amazing scholar who has made contributions to myriad
areas of economics, including industrial organization, the theory of the core,
and even macroeconomics. But his first major contribution was in the area
of commodity futures pricing. He has taught me so much about so many
things, including commodities. It is gratifying to be able to make my own
contribution to a subject which he helped pioneer.

Finally, I owe so much to my family for their inspiration, support, coun-
sel, and guidance over the years. My parents, Kay and Glenn, and my wife
and children, Terry, Renee, and Genevieve, are my metaphorical bookends.
My parents instilled in me a love of learning and scholarship, and pro-
vided invaluable educational opportunities that made an academic career
possible. Terry and the girls gave me the support and encouragement and
understanding–and the time–that are so vital to scholarly endeavors.
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Introduction

1.1 Introduction

Not to put too fine a point on it, but the study of commodity prices has long
been something of an academic stepchild. Most work on the subject is in the
domain of specific fields, notably agricultural economics. Only a smattering
of articles on the subject has appeared in broader publications, such as the
Journal of Political Economy or the Journal of Finance.

Especially in finance, this relative obscurity arguably reflects the niche
role of commodities in the broader financial markets, as compared to equity
and fixed income markets. But commodities are in the process of becoming
mainstream. In the 1990s, and especially the 2000s, many major banks and
investment banks have entered into commodities trading. Indeed, commod-
ity trading–especially in energy–has become an important source of profits
for major financial institutions such as Goldman Sachs, Morgan Stanley and
Citibank. Simultaneously, and relatedly, many investors have entered into
the commodities market. In particular, pension funds and other portfolio
managers have increasingly viewed commodities as a separate asset class
that, when combined with traditional stock and bond portfolios, can im-
prove risk-return performance. Furthermore, financial innovation has eased
the access of previously atypical participants into the commodity markets.
Notably, commodity index products (such as the GSCI, now the S&P Com-
modity Index) and exchange traded funds (“ETFs”) have reduced the trans-
actions costs that portfolio managers and individual investors incur to par-
ticipate in the commodity markets. Thus, there has been a confluence of
forces that have dramatically increased the importance of, and interest in,
commodities and commodity prices.

What’s more, this increase in the presense of investors and large finan-
cial intermediaries in commodity markets has combined with extraordinary
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price movements in commodities in the mid-2000s to make commodity prices
an important political issue. Most notably, the unprecedented spike in the
price of oil in 2008 created a political firestorm in the United States (and
elsewhere) that has led to numerous calls to regulate the markets more re-
strictively. Indeed, the coincidence of the entry of new financial players into
the markets and rocketing prices led many market participants, politicians,
and pundits to attribute the latter phenomenon to the former, and hence to
call for limitations on the ability of financial institutions, portfolio investors,
and individual investors, to buy and sell commodities.

Thus, the 2000s have seen commodities achieve an economic and polit-
ical prominence that they had lacked since a much earlier era (the 19th
and early-20th centuries) in which a far larger portion of the population
earned a living producing or processing commodities. Unfortunately, the
modeling of commodity prices has not kept pace. Most practitioners have
adopted reduced form models, such as the model that is the basis for the
Black-Scholes option pricing formula, to analyze commodity prices, and to
price commodity derivatives. Structural models of commodity prices that ex-
plicitly account for the implications of intertemporal optimization through
storage have been around since Gustafson (1958), and have been developed
by Scheinkman and Schectman (1983), Williams and Wright (1991), and
others. These models, however, have been in a state of relative stasis. More-
over, the empirical analysis of these models has been extremely limited, and
little use has been made of them to answer questions related to the effects
of speculation.

I intend this book to push the structural modeling of commodity pricing
forward, to provide a better understanding of the economics of commodity
pricing, for the benefit of both academics and practitioners. It builds on
the rational expectations, dynamic programming-based theory of storage
epitomized by Williams and Wright (1991), but goes beyond the existing
literature in many ways.

First, whereas the received models typically incorporate only a single
source of economic uncertainty (e.g., a single net demand shock), I (a)
demonstrate that such models are incapable of explaining salient features of
commodity price dynamics, and (b) introduce models with multiple shocks
that can capture many of these features.

Second, unlike received work, in this book I exploit important cross sec-
tional differences among commodities to derive empirical implications.1 As
I will discuss in more detail later in this introduction, commodities can dif-
1 See especially Deaton and Laroque (1995) and Deaton and Laroque (1996), which lump

together commodities as disparate as copper and corn in a single empirical framework.
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fer on a wide variety of dimensions. Some, like copper or oil, are produced
continuously, and have relatively non-seasonal demands. Others, like corn
or soybeans, are produced seasonally. These fundamental differences lead to
distinctive price behaviors; the ability of suitably adapted models to explain
these differences sheds a bright light on the strengths and limitations of the
received structural approach.

Third, quite curiously, the empirical literature structural models of com-
modity prices tends to focus on low frequency (e.g., annual) data.2 It also
tends to focus on the spot prices of commodities. It also tends to focus on
price levels and the first moments (means) of prices; it typically ignores
the behavior of higher moments, such as variances and measures of covari-
ation between different prices. It particularly tends to ignore time variation
in these variances and covariances, and the association between these time
variations and fundamentals.

These tendencies have several pernicious effects. For one thing, they ob-
scure the potentially illuminating differences between continuously and pe-
riodically produced commodities. For another, and perhaps more impor-
tantly, they result in a slighting of a tremendously rich source of data; high
frequency (e.g., daily) data on a wide variety of derivatives on a similarly
wide spectrum of commodities. In particular, there are abundant data on
commodity futures prices for a wide variety of commodities. Moreover, data
on other commodity derivatives is becoming increasingly available. Most
notably, commodity options are more widely traded than ever, and hence
option price data are becoming commonplace.

To exploit this data, the book focuses on the implications of structural
commodity price models for the behavior of: commodity spot and forward
prices at high frequency; the variances of these spot and forward prices, and
the correlations between them; the comovements of quantity variables (such
as inventories) and prices; and the prices of other commodity derivatives,
most notably options. Moreover, I continually confront these implications
with the data, to see where the models work–and where they don’t.

The basic approach is to see what data is available to test the models;
derive the implications of the models for the behavior of these observables;
and evaluate the performance of the models when faced with the data.

This presents the models with extreme challenges, and as will be seen,
they quite often fail. But that is part of the plan. After breaking the models
we can learn by examining the pieces.

The transparency of fundamentals in commodity markets (in contrast to

2 See again Deaton and Laroque (1995) and Deaton and Laroque (1996).
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equity or currency markets, for instance) holds out the promise of devising
structural models of commodity price behavior that can illuminate the un-
derlying factors that drive these prices, and which perhaps can be used to
value contingent claims on commodities. There has been much progress on
these models in recent years, but the empirical data show that real world
commodity price behavior is far richer than that predicted by the current
generation of models, and that except for non-storable commodities, struc-
tural models currently cannot be used to price derivatives. The models and
empirical evidence do, however, point out the deficiencies in reduced form
commodity derivative pricing models, and suggest how reduced form models
must be modified to represent commodity price dynamics more realistically.
They also suggest additional factors that may be added to the models (at
substantial computational cost) to improve their realism.

As just noted, the cross-sectional diversity of commodities represents a
potentially valuable source of variation that can be exploited to gain better
understanding of the determinants of commodity prices and their behavior,
and to inform structural models of commodity markets. To understand this
fundamental point more clearly, it is worthwhile to examine this diversity
in more detail, and at the same time, introduce some modeling issues that
this diversity raises and discuss the received modeling literature.

1.2 A Commodity Taxonomy

Although the catchall term “commodity” is widely applied to any relatively
homogeneous good that is not a true asset, it conceals tremendous diversity,
diversity that has material impacts on price behavior and modeling.3

The most basic divide among commodities is between those that are
storable, and those that are not.

The most important non-storable commodity is electricity (although hy-
dro generation does add an element of storability in some electricity mar-

3 The distinction between a commodity and an asset proper is that an asset (such as a stock or
a bond) generates a stream of consumption (a la the “trees” in a Lucas (1978) model) or a
stream of cash flows that can be used to buy consumption goods (e.g., a bond); whereas a
commodity is itself consumed. An asset represents a “stock” that generates a flow of benefits.
There are some potential ambiguities in this distinction, especially inasmuch as this book
discusses repeatedly the role of “stocks” of commodities. However, as will be seen, even
though there are commodity stocks, commodity forward prices behave differently than asset
forward prices. Whereas asset forward prices always reflect full carrying costs (the
opportunity cost of capital net of the asset’s cash flow), commodity forward prices do not.
This distinction between a consumption good, and a true asset, has important implications
for the possibility of bubbles in commodity prices, i.e., self-sustaining price increases not
justified by fundamentals. Williams et al. (2000) and Gjerstad (2007) show that experimental
consumption good markets almost never exhibit bubbles; in contrast, Smith et al. (1988)
show that experimental asset markets are chronically prone to bubbles.
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kets.) Weather is obviously not storable–and it is increasingly becoming an
important underlying in commodity derivatives trading. Shipping services
are another non-storable commodity. Although ships are obviously durable,
the services of a ship are not: space on a ship that is not used today cannot
be stored for use at a later date. Shipping derivatives are also increasingly
common; derivatives on bulk commodities began trading in the early 2000s,
and the first container derivative trade took place in early-2010.

Most other commodities are storable (at some cost), but there is consider-
able heterogeneity among goods in this category. This heterogeneity occurs
on the dimensions of temporal production patterns, temporal demand pat-
terns, and the nature of the capital used to produce them.

Some commodities are continuously produced and consumed, and are not
subject to significant seasonality in demand; industrial metals such as cop-
per or aluminum fall into this category. Some are continuously produced
and consumed, but exhibit substantial seasonality in demand. Heating oil,
natural gas, and gasoline are prime examples of this type of commodity.

Other commodities are produced periodically (e.g., seasonally) rather than
continuously, but there is also variation within the category of seasonally
produced commodities. Grains and oilseeds are produced seasonally, but
their production is relatively flexible because a major input–land–is quite
flexible; there is a possibility of growing corn on a piece of land one year,
and soybeans the next, and an adverse natural event (such as a freeze) may
damage one crop, but does not impair the future productivity of land.4

In contrast, tree crops such as cocoa or coffee or oranges are seasonally
produced, but utilize specialized, durable, and inflexible inputs (the trees)
and damage to these inputs can have consequences for productivity that last
beyond a signle crop year.

In sum, there is considerable diversity among commodities. This presents
challenges and opportunities for the economic modeler. As to challenges,
fundamentals-based theories must take these variations across commodities
into account, so one-size fits all models are inappropriate. As to opportu-
nities, this cross sectional variation has empirical implications that can be
exploited to test fundamental-based structural models.

4 Adverse weather events sometimes can have effects that span crop years. For instance, the
intense drought of 2010 in central Russia devastated the 2010 crop, but also left the ground
very dry. This delayed planting of the 2011 crop, which raises the risk of a smaller than
normal 2011 harvest.
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1.3 Commodity Markets and Data

Fortunately, just as there are many different commodities, there are many
actively traded commodity markets. These markets produce prices that are
of interest and important in their own right, but which also can be used to
test structural commodity models.

In particular, although with a few limited exceptions there are few liquid
and transparent “spot” markets for commodities,5 there are active, liquid,
and transparent futures markets for many commodities. (But not all. Some
important commodities like iron ore have no active futures market.)

A futures contract is a financial instrument obligating the buyer (seller) to
purchase (sell) a specified quantity of a particular commodity of a particular
quality (or qualities) at a particular location (or locations) at a date specified
in the contract. For instance, the July, 2010 corn futures contract traded at
the Chicago Mercantile Exchange requires the buyer (seller) to take (make)
delivery of 5,000 bushels of #2 corn at a location along the Illinois River
chosen by the seller during the month of July, 2010. The buyer and the seller
agree on the price terms, but all of the other contract terms are established
by formal organizations–futures exchanges.6

These futures exchanges operate centralized auction markets where buy-
ers and sellers can negotiate transactions. These exchanges typically host
continuous, double sided auctions. Historically, these auctions were face-to-
face affairs that took place on an exchange floor–“the pit.” In recent years,
most trading has migrated to electronic, computerized exchange systems
(although commodities lagged behind financial futures in this regard). The
prices negotiated during these auctions are broadcast around the world, and
represent the primary barometer for commodities prices. Buyers and sellers
of physical commodities base the prices of their transactions off of these
futures exchange prices.

At present, futures markets exist for many physical commodities, includ-
ing: energy products (especially oil, heating oil, gasoil, natural gas, and
gasoline); grains and oilseeds (including wheat, corn, and soybeans); indus-
trial metals (such as copper, aluminum, lead, and nickel); precious metals
(gold, silver, platinum, palladium); fibers (notably cotton); meats (live hogs,

5 A spot market is a market for immediate delivery. Practically speaking, even a spot
transaction involves a separation in time between the consummation of a transaction and the
delivery of the commodity, so spot trades are properly very short term forward transactions.

6 A futures contract is a particular kind of forward contract. A forward contract is any contract
that specifies performance at a future date. A futures contract is a forward contract traded on
an exchange, where the performance on the contract is guaranteed by an exchange
clearinghouse. The terms “future” and “forward,” and “futures price” and “forward price”
are often used interchangeably.
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live cattle, pork bellies); and non-grain and non-meat food products (such as
coffee, cocoa, and sugar). In some cases, there are futures contracts traded
on different varieties of the same commodity; for instance, Brent crude oil
futures and West Texas Intermediate crude oil futures are both traded.

For most of these commodities, futures contracts with different delivery
dates are traded. In the WTI crude market, for instance, contracts calling for
delivery in every month for the next several years are traded simultaneously.
In the corn market in Chicago, for example, contracts are actively traded
for delivery in March, May, July, September, and December.

Thus, for most active commodity futures, at any time there are multiple
prices, each corresponding to a different delivery date. The locus of forward
prices on the same commodity for different delivery dates is called the “for-
ward curve.”

Forward curves exhibit a variety of shapes. Some slope up (i.e., prices
rise with time to expiration). Such markets are said to be in “contango” or
to exhibit “carry.” Others slope down; these are said to be “inverted” or
in backwardation. Others are humped, rising over some range of delivery
dates, falling over others. Some exhibit seasonality, with highs and lows
corresponding to different seasons.

Any good theory should be able to generate forward curves that exhibit
the observed diversity in these curves in actual markets. Moreover, any good
theory should demonstrate how these curves evolve with changes in funda-
mental conditions.

In sum, there is a vast amount of futures price data for commodities
that exhibit the diverse characteristics discussed the taxonomy. Since the
markets operate continuously, these data are of very high frequency. There
is at least daily data on futures contracts for a variety of delivery dates for
many commodities; for some commodities intra-day data is also available.
This represents a vast repository of information that can be used to test,
challenge, and potentially break, structural commodity models.

But although futures markets provide the most extensive source of price
data, there are other commodity markets and hence other data sources.
Many commodity forwards are traded on a bilateral basis in over-the-counter
(OTC) markets; that is they are traded off-exchange. Moreover, options on
commodities are traded both on exchange and in OTC markets. Some of
these options are vanilla puts and calls. Others are more exotic instruments,
such as spread options that have a payoff dependent on the difference be-
tween futures prices on a particular commodity, with different delivery dates,
or swaptions that are effectively options on the forward curve for a particular
commodity.
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It is well known that the prices of options depend on the characteristics
of the dynamics of the underlying price, most notably, on the volatility (and
perhaps higher moments) of the underlying price. Thus, a copper option’s
price depends on the volatility (and perhaps higher moments) of the forward
price of copper. This means that options prices incorporate information
about commodity price dynamics, and hence these options prices can be
used to test predictions of commodity price models.

As will be seen, structural models for storable commodities also make
predictions about the behavior of commodity inventories, i.e., commodity
stocks. Indeed, the behavior of stocks is of particular interest because it
speaks to longstanding and ongoing battles over whether speculation on fu-
tures markets distorts prices. An important economic role of prices is to
guide the allocation of resources, so distortions in prices will manifest them-
selves in distortions in the allocation of real things–like commodity stocks.

Unfortunately, with a few exceptions, data on commodity stocks is far
less abundant than data on prices. Nonetheless, there are some markets–
notably the London Metal Exchange’s markets for industrial metals–that
produce high quality, high frequency data on stocks. I will use this data
where available.

There is, in brief, a plethora of data that can be used to test commodity
price models. This book develops models tailored to the specific features of
particular commodities; generates predictions from these models; and uses
some of this bounty of data to test these predictions.

1.4 An Overview of the Remainder of the Book

The objective of this book is to develop models customized to capture the
salient features of particular commodities (e.g., storability, production fre-
quency); derive the implications of these models for the behavior of com-
modity prices and stocks; and then examine how well these prediction stack
up against the data.

The term “behavior” is meant to be very encompassing. In this book I will
derive and test the implications of structural models for not just the level
of forward curves, but also for the variances of forward prices of different
maturities; the correlations between forward prices of different maturities;
and the pricing of options. Moreover, I focus on high frequency commodity
price behavior. That is, I derive and test implications about the day-to-day
behavior of commodity prices. This focus allows me to mine the rich seams
of futures data, and should also make the work of particular interest to
commodity market participants who trade every day.
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The rest of the book is organized as follows:

1.4.1 Modeling Storable Commodity Prices

The received theory of storage, based on the stochastic dynamic program-
ming rational expectations modeling framework, is an economically grounded
approach for understanding how commodity prices behave, and how funda-
mentals affect commodity prices. This framework can be adapted to each
particular commodity. In this chapter, I review the basics of the model and
the computational approach to solving it. This chapter also introduces the
partial differential equation (PDE) approach to solving for forward prices
that is an important part of the solution algorithm. It reviews PDE methods,
and shows how these methods can be used to determine the prices of more
complicated contingent claims in the storage economy. These claims include
vanilla options, swaptions, and spread options. Since multiple sources of risk
are necessary to provide a reasonable characterization of commodity price
behavior, the chapter focuses on modern PDE approaches (such as splitting
techniques) for high-dimension problems.

1.4.2 A Two Factor Model of a Continuously Produced

Commodity

The conventional commodity price modeling approach assumes a single
source of uncertainty. This approach cannot explain the imperfect and time
varying correlation between forward prices with different maturities. This
chapter explores the implications of multiple risk sources with different time
series properties, i.e., two demand shocks of differing persistence. The chap-
ter focuses on the implications of this framework for the behavior of forward
curves, the variances of prices, the correlations between different forward
prices, and the dependence of these moments on supply and demand con-
ditions. It also explores the pricing of options in the storage economy with
multiple demand shocks, including an analysis of commodity volatility sur-
faces, and how these volatility surfaces depend on underlying supply and
demand conditions.

1.4.3 The Empirical Performance of the Two Factor Model

Formal econometric testing of rational expectations models is challenging,
so techniques that mix calibration and estimation are common in macroeco-
nomics where rational expectations models are the most widely used theoret-
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ical tool. This chapter adapts those techniques to the study of an important
commodity marketthe copper market. I use the Extended Kalman Filter and
a search over the relevant parameter space to determine the persistences and
volatilities of the demand shocks of the model of Chapter 3 that best capture
the dynamics of copper prices. I show that the extended, multi-shock model
captures salient features of copper price behavior, but that the model can-
not capture well the behavior of long term (e.g., 27 month) forward prices;
moreover, even though the model accurately characterizes the dynamics of
the variance of the spot price (as documented by Ng-Pirrong), it does a poor
job of capturing the behavior of longer-dated variances (e.g., 3 month fu-
tures price variances) and the volatility implied from copper options prices.
This motivates an analysis of what changes to the model are necessary to
capture these dynamics.

1.4.4 Commodity Pricing With Stochastic Fundamental

Volatility

Traditional storage models (and the model of Chapter 3) assume homoskedas-
tic net demand disturbances; that is, the variance of the fundamental shocks
remains constant over time. This chapter explores the implications of stochas-
tic demand variability. Such stochastic variability is plausible. The chapter
shows that a model that incorporates stochastic demand volatility can ex-
plain otherwise anomalous behavior in commodity markets, namely, episodes
where both inventories and prices rise and fall together (whereas the tra-
ditional storage model implies they should typically move in the opposite
direction.) This is an important finding, as some critics of commodity specu-
lation have asserted that such comovements are symptomatic of speculative
price distortions. Moreover, adding stochastic fundamental volatility results
in a more accurate characterization of the behavior of forward price vari-
ances, and option implied volatilities.

1.4.5 The Pricing of Seasonally Produced Commodities

The traditional storage model with independent, identically distributed (i.i.d.
) demand shocks cannot explain the high autocorrelation in commodity
prices. Deaton and Laroque (1996) suggest that high demand persistence
can explain this phenomenon. This chapter explores this issue in the con-
text of a seasonal storage model. The intuition is that it is often optimal to
consume all of a seasonally produced commodity prior to the next harvest.
The absence of carryover between years breaks the connection between prices
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across the harvest, e.g., July and December corn prices. Thus, the storage
model implies that even in the presence of high demand autocorrelation,
“new crop” and “old crop” futures prices should exhibit little correlation.
Moreover, the solved model implies that news about the impending har-
vest should have a large effect on “new crop” futures prices and little effect
on “old crop” prices. I examine empirical evidence on new crop-old crop
correlations and the sensitivity of old crop prices to information about har-
vests for a variety of seasonal commodities, and find that these correlations
and price sensitivities are far higher than predicted by the storage model.
This means that neither storage nor demand autocorrelation can explain the
high persistence in prices. I then explore alternative explanations for these
phenomenon, including intertemporal substitution and general equilibrium
considerations. I conclude that seasonal commodity prices demonstrate the
limitations of partial equilibrium structural models because they do not
fully capture all of the intertemporal choices available to agents. Instead, it
is likely that general equilibrium models with multiple storable commodi-
ties are required to provide a more accurate characterization of commodity
prices.

1.4.6 The Pricing of Pollution Credits

Pollution credits–most notably, CO2 credits–are the newest commodity. In-
deed, CO2 credits are forecast to become the largest commodity market in
the world. This chapter adopts the two-shock seasonal storage model to an-
alyze the pricing of pollution credits. (Under existing and proposed trading
schemes, pollution credits are effectively seasonal commodities because new
credits are issued annually–just as a new corn crop is produced.) It shows
that the variability of the price of these credits should evolve systemati-
cally over time (as the credits approach their expiration), and that their
price behavior depends crucially on the persistence of demand shocks. The
model also implies that options pricing should vary systematically with sup-
ply and demand fundamentals and time to expiration of the credits. It also
notes that whereas physical commodities like corn or copper have certain
immutable physical features (e.g., the seasonality of production), salient fea-
tures of carbon as a commodity can be designed. For instance, the frequency
of production of CO2 credits can be chosen by a legislature enacting a cap-
and-trade system. The chapter compares the behavior of pollution credit
under various alternative designs.
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1.4.7 Non-Storable Commodities Pricing: The Case of

Electricity

Electricity is another large commodity market. Unlike commodities such as
corn and copper, electricity is effectively non-storable. This chapter incorpo-
rates and extends the Pirrong-Jermakyan model of electricity forward and
option pricing. This is a fundamentals-based model in which spot prices,
and hence forward and options prices, depend on electricity demand and
fuel prices. I show how options prices vary systematically with fundamen-
tals. The chapter also shows that the market price of risk is an important
determinant of electricity forward prices.

1.5 Where This Book Fits in the Literature

Serious academic attention to the issue of commodity pricing, and the role
of storage, dates to the work of Holbrook Working. Working was the first
to identify spreads between spot and futures prices as a measure of the
return to storage, and to derive a “supply of storage” curve relating these
spreads to the amount of commodity in store. Working’s research posed
a serious puzzle. simple no-arbitrage analysis implies that futures prices
should exceed spot prices by the cost of carrying inventory (the cost of funds,
plus warehousing fees, plus insurance) to the future’s expiration date. But
Working found that (a) futures prices typically fell short of this “full carry”
level, and (b) the deviation between the observed spread and the full carry
spread varies systematically with inventories.

This puzzle motivated a search for an explanation. Kaldor (1939) ad-
vanced the idea of a “convenience yield”: those holding stocks receive an
implicit stream of benefits from holding inventories (analogous to a divi-
dend), and the marginal value of this stream is declining in stocks. This
theory was intuitively appealing, and has informed much research in com-
modity markets (Pindyck, 1994, e.g), but it is ad hoc. Moreover, as Williams
and Wright (1991) have pointed out, even individual firms receive an im-
plicit benefit from stocks, this does not necessarily imply a supply-of-storage
relationship in market prices.

The convenience yield approach represents one way of analyzing commod-
ity prices and commodity price relations. Although it is quite popular, and
indeed, is the approach taken in most textbooks that discuss commodity
pricing, and is the motivation for one of the most widely used reduced-form
commodity derivatives pricing models (Schwartz, 1997), it is a dead end in
my view. It is ad hoc, and as Williams and Wright point out, it makes as-
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sertions about market-wide phenomena based on constructs that apply to
the individual firm, without examining the market equilibrium implications
of the behavior of these firms.

The other approach, which I follow in this book, is a structural one that
dates from the pathbreaking work of Gustafson (1958).

Gustafson implemented a structural model of the optimal storage of a
commodity. He recognized the fundamentally dynamic nature of the prob-
lem, and utilized dynamic programming techniques, and numerical solutions
to these programs. He used a piecewise function to approximate price as a
function of storage. Subsequently, Newbery and Stiglitz (1982) and Gilbert
(1988) employed this approximation to derive storage rules and prices.

The structural modeling of commodity prices, and the dynamic program-
ming approach, was elegantly formalized by Scheinkman and Schectman
(1983) under the assumption of a single i.i.d. demand shock. This work
demonstrates the existence of an equilibrium. The most comprehensive ap-
plication of this approach is in Williams and Wright (1991), who focus on
numerical solutions to a wide variety of storage-related problems, including
the effects of price controls and public storage. Deaton and Laroque (1995)
and Deaton and Laroque (1996) introduce autocorrelation into the single-
shock model, and prove the existence of an equilibrium in a storage economy
with such a demand shock. Routledge et al. (2000) take a similar approach.

The foregoing analyses all (implicitly) assume the commodity is produced
continuously; there is production and consumption in every decision period
in these models. Chambers and Bailey (1996), Pirrong (1999), and Osborne
(2004) introduce periodic production appropriate for the study of agriculture
commodities.

The theoretical structure and numerical analysis of structural models for
storable commodities is highly refined. In contrast, empirical analyses of
commodity prices based on structural storage models has lagged behind.
Empirical work on the competitive storage model has focused on low fre-
quency (e.g., annual) data (Deaton-Laroque) or relatively simple calibrations
using higher frequency data (Routledge et al., 2000).

Deaton-Laroque fit a one factor storage model to a variety of commodity
price time series. Their maximum likelihood approach exploits an implica-
tion of the simple one factor model; namely, that there is a “cutoff price”
such that inventories fall to zero when the spot price exceeds the cutoff, but
inventories are positive when the price is lower than the cutoff. Deaton and
Laroque (1992) posit that demand shocks are i.i.d. They find that although
theoretically storage can cause prices to exhibit positive autocorrelation even
when demand shocks are independent, the level of autocorrelation implied
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by their fitted model is far below that observed in practice. Deaton and
Laroque (1995) and Deaton and Laroque (1996) allow for autocorrelated de-
mand shocks (again in a one factor model). Based on an analysis of annual
data, they find that virtually all the autocorrelation in commodity prices is
attributable to autocorrelation in the underlying demand disturbances, and
very little is attributable to the smoothing effects of speculative storage.

The Deaton-Laroque empirical analyses are problematic for several rea-
sons. First, they utilize low frequency (annual) data for a wide variety of very
heterogeneous commodities. Since in reality economic agents make decisions
regarding storage daily, if not intraday, the frequency of their data is poorly
aligned with the frequency of the economic decisions they are trying to as-
sess empirically. Moreover, Deaton-Laroque impose a single model on very
different commodities. Their commodities include those that are produced
continuously and have non-seasonal demand (e.g., industrial metals such as
tin and copper), those that are planted and produced seasonally (e.g., corn
and wheat), and others that are produced seasonally from perennial plants
(e.g., coffee and cocoa). As the analysis of this book will demonstrate in
detail, the economics of storage differ substantially between these various
products, but the Deaton-Laroque empirical specification does not reflect
these differences. Finally, their use of annual data forces them to estimate
their model with decades of data encompassing periods of major changes
in income, technology, policy regimes, and trade patterns (not to mention
wars), but they do not allow for structural shifts.

Routledge et al present a one factor model of commodity storage, and
calibrate this model to certain moments of oil futures prices . Specifically,
they choose the parameters of the storage model (the autocorrelation and
variance of the demand shock, and the parameters of the net demand curve)
to minimize the mean squared errors in the means and variances of oil futures
prices with maturities between one and ten months.

They find that the basic one factor model does a poor job at explaining
the variances of longer-tenor futures prices. To mitigate this problem, they
propose a model with an additional, and permanent, demand shock that does
not affect optimal storage decisions and which is not priced in equilibrium.
They calibrate the variance of this parameter so as to match the variance of
the 10 month oil futures price , and then choose the remaining parameters to
minimize mean squared errors in the means and variances of the remaining
futures prices . These scholars do not examine the behavior of correlations
between futures prices of different maturities.

Fama and French (1988), Ng and Pirrong (1994) and Ng and Pirrong
(1996) do not test a specific model of commodity prices, but examine the
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implications of the convenience yield and structural models for the volatility
of commodity prices, and the correlations between futures prices with differ-
ent maturities. Each of these articles finds that commodity prices tend to be
more volatile when markets are in backwardation; that spot prices are more
volatile than futures prices ; that the disparity between spot and futures
volatilities becomes greater when the market is in backwardation; and that
correlations between spot and futures prices are near one when markets are
at full carry, and well below one when markets are in backwardation.

This book builds on the structural models in the Gustafson tradition, as
refined by Scheinkman-Schechtman and their followers; attempts to deter-
mine whether the model can explain the empirical regularities documented
by Fama-French and Ng-Pirrong; and derives and investigates additional
empirical implications. It advances the literature in several ways.

First, it exploits the cross sectional diversity of commodities, derives mod-
els specific to continuously produced and periodically produced commodi-
ties, and tests novel implications of these models. Most notably, I show that
the predictions of the standard storage model for seasonal commodity prices
differ substantially from the observed behavior of these prices. These findings
demonstrate that the Deaton-Laroque conjecture for the cause of high com-
modity autocorrelation is incorrect. This, in turn, motivates suggested lines
of future research to explain this high autocorrelation, and other aspects of
commodity price behavior.

Second, whereas earlier work either ignored issues related to production
and decision frequency, or focused on low frequency data, in this book I focus
almost exclusively on the implications of storage models for high frequency–
daily–prices, and use high frequency data to test these models.

Third, to a much greater degree than in the received literature, in this
book I pay particular attention to the implications of storage models for
higher moments of prices, covariation between prices of different maturities,
the pricing of commodity options (including more exotic options), and the
empirical behavior of stocks.

Fourth, I introduce a new feature into the fundamental shocks in the stor-
age model. Specifically, I examine the implications of stochastic fundamental
volatility.

Fifth, I add some numerical and computational wrinkles. Most notably,
I draw from the derivatives pricer’s toolbox and employ partial differential
equation techniques in ways not done heretofore in the storage literature.
Moreover, in the empirical work, I implement Extended Kalman Filter meth-
ods.

Together, these innovations help shed new light on the behavior of storable
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commodity prices, and on the strength and weaknesses of the structural
modeling approach.

The literature on non-storable commodity prices, notably electricity, is far
less extensive and far more recent in origin than that on storable commod-
ity prices, primarily because the most important non-storable commodity–
electricity–has been traded in spot and forward markets for a veyr short
period of time. Two approaches have dominated this (relatively limited)
literature.

The first is to specify reduced-form characterizations of electricity prices.
That is, as in the standard approach in derivatives pricing a la Black-Scholes,
in this approach researchers posit a stochastic process that characterizes the
evolution of the electricity spot price over time. Given the empirical behavior
of these prices–which exhibit pronounced discontinuities–many of the articles
in this stream of the literature have posited jump diffusion-type processes
for electricity prices. Johnson and Barz (1999) and Geman and Roncoroni
(2006) are examples of this. Another reduced-form approach incorporates
regime shifts, as in Barone-Adesi and Gigli (2002).

The second approach is structural. The main examples of this approach
include Eydeland and Wolyniec (2002), and Pirrong and Jermakyan (2008).
These models specify that the spot price of electricity depends on funda-
mental demand factors (e.g., weather, or “load”) and cost factors (e.g., fuel
prices); specify stochastic processes for these fundamental factors; and then
use standard derivatives pricing methods to solve for the prices of electricity
forward contracts and options.

Not surprisingly, I follow the second approach in this book. I go beyond
Pirrong-Jermakyan to analyze the pricing of electricity options–including
exotic options–in detail.

In sum, this book pushes an established approach for modeling commodity
prices to its limits. In so doing, it demonstrates the strengths and weaknesses
of these models, and hopefully paves the way for future improvements of
our understanding of the behavior of goods that are playing an increasingly
important role in world financial markets. Moreover, I also hope that it
provides a basis for more reasoned analyses of the contentious policy issues
relating to the role of speculation that have dogged commodity markets
since the birth of modern futures markets in the years after the American
Civil War.
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The Basics of Storable Commodity Modeling

2.1 Introduction

Many important commodities are storable. These include grains, many en-
ergy products such as oil and natural gas, and industrial and precious metals.
Due to the ability to store, agents have the ability to influence the alloca-
tion of consumption of these products over time. Moreover, they typically
do so under conditions of uncertainty. Since finance is at root the study of
the allocation of resources over time in risky circumstances, the commodity
storage problem is fundamentally a problem in finance. Indeed, it is the Ur
problem (or pre-Ur problem) of finance, since humans have had to make
decisions about how to allocate consumption of commodities over time since
the dawn of agriculture.

Even a brief consideration of the economics of storage demonstrates that
although the problem is a very old one, it is a very challenging one analyti-
cally. The problem is inherently a dynamic one with complicated intertem-
poral dependencies. Storage involves an opportunity cost. If I own a bushel
of wheat, I can consume it today or store it for consumption tomorrow–or
later. The opportunity cost of consumption today is the value of the com-
modity tomorrow. I must also pay a physical storage cost, and forego any
interest I could earn on the money I spend to buy the economy. But under
conditions of uncertainty (about future supply or demand, say), the value
of the commodity tomorrow is uncertain. What’s more, the price tomorrow
depends on how much I consume then, which depends on how much I store
tomorrow, which depends on my estimate of the value of the commodity the
day after tomorrow, which depends on my estimate of its price the day after
the day after tomorrow, and on and on.

That is, the storage problem is a dynamic programming problem. These
problems are not trivial to solve, but scholars in a variety of disciplines have
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developed a standard machinery for doing so. In this chapter I review that
machinery, discuss the particular method that I will use to solve a variety
of storage problems, and examine some specific numerical techniques that I
will employ repeatedly in this endeavor.

In that regard, it must be emphasized that the solution of storage prob-
lems is inherently a numerical and computational exercise. The closed-form
solutions so near and dear to the hearts of most academics are few and far
between. In my view, this is a feature, not a bug.

It is a feature because numerical methods provide enormous flexibility
that permits the answering of a variety of important questions about com-
modities. These include:

• How do commodity prices behave?
• What does the forward curve for a commodity look like, and how does its

shape change as fundamental economic conditions change?
• How does the amount of a commodity stored change over time in response

to fundamental economic conditions?
• How do the higher moments of commodity prices behave?
• How do commodity forward prices with different maturity dates co-vary?
• How should the prices of more complicated commodity derivatives (e.g.,

options) behave?
• How can we determine whether a particular commodity’s price has been

distorted, i.e., does not reflect fundamental supply and demand conditions
in a competitive market, but instead reflects distortions resulting from
market power, or excessive speculation?

The models that I review in this chapter, and analyze in detail in sub-
sequent ones, are capable of answering these questions when harnessed to
efficient numerical techniques. Indeed, numerical methods are so much more
flexible, and restricting attention to closed forms is so constraining, that it
would be impossible to answer these questions without them.

More generally, I am interested in matching the model to data on prices
and stocks. Numerical methods produce theoretical prices and stocks that
can be compared to actual prices and stocks. Since the ultimate objective is
to get numbers to compare to actual data, numerical methods are essential,
rather than restrictive.

This chapter covers a good deal of ground, and provides a basis for the
analysis of the rest of the book. It covers the basic storage problem, and the
economic implications of optimal storage decisions. It provides an overview
over how to solve the storage problem, and then delves into the numerical
techniques necessary to solve it. This requires an introduction to a variety
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of computational techniques, including interpolation methods, numerical in-
tegration, and partial differential equation solvers. This introduction is only
sufficient to provide the reader a basic idea of the approach, but there are
numerous specialized works (cited in the text) that provide the necessary
details.

The remainder of this chapter is organized as follows. Section 2 provides
an overview of dynamic programming as applied to the commodity storage
problem. Section 3 focuses on a specific, economically intuitive solution ap-
proach. Section 4 discusses some of the numerical techniques necessary to
implement this solution method. Section 5 briefly summarizes the chapter.

2.2 Dynamic Programming and the Storage Problem: An
Overview

2.2.1 Model Overview

This section presents an overview of the basic commodity model that I will
analyze in detail in subsequent chapters. This model focuses on a commod-
ity that is produced and consumed continuously over time. Moreover, as is
the case with most of the received literature, the model is a partial equi-
librium one. This greatly simplifies the analysis, and permits the derivation
of numerous testable implications, but the choice of a partial equilibrium
framework is not an innocuous one; the results for periodically produced
commodities presented in Chapter 6 demonstrate the limits of the partial
equilibrium approach, and suggest that a general equilibrium approach with
multiple storable commodities is necessary to explain certain aspects of com-
modity price behavior. The model also assumes rationality and rational ex-
pectations. These assumptions are often controversial, and throughout his-
tory right up to the very present there have been widespread allegations
that commodity pricing is irrational. However, the proof is in the empirical
pudding: one of the objectives of this modeling approach is to see whether
commodity models grounded in this rationality assumption can explain the
often extreme behavior of commodities prices.

Now the specifics. Consider a commodity that is produced and consumed
continuously under conditions of uncertainty. The market is perfectly com-
petitive, and transactions costs are zero.

The flow demand for the commodity at time t is denoted by P = D(qDt ,Zt)
where qDt is the quantity of the commodity consumed at t, and Zt is a
vector of random variables; these are demand shocks. The flow supply of the
commodity is given by the function P = S(qSt ,Yt), where qSt is the quantity
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of the commodity produced at t, and Yt is a vector of random variables;
these are supply shocks, such as the weather, labor strikes, changes in wages
or other input costs, or political disturbances.

All agents in the economy have the same information about the demand
and supply shocks. At t they agree that the joint probability distribution of
these shocks at some future date t′ > t that is relevant for evaluating risky
flows, is G̃(Zt′ ,Yt′|Zt,Yt); for simplicity, I will sometimes denote this func-
tion as G̃t(Zt′ ,Yt′). Moreover, all agents form their expectations rationally
based on this probability distribution.1

The commodity is storable. For simplicity, I will assume that physical
costs of storage are zero. However, agents have an opportunity cost of funds,
given by the (continuously compounded) interest rate r. Note that storage
is constrained to be non-negative.

Given the assumptions relating to competition and rationality, a com-
petitive equilibrium in this economy solves a social programmer’s problem.
Specifically, the competitive allocation of production and consumption over
time maximizes the expected present value of the stream of consumer sur-
plus minus producer surplus. Formally, for all t, a social planner chooses
{qDt , qSt } to solve the following problem:

V (x0,Z0,Y0) = max
qD
t ,q

S
t

∫ ∞

0
e−rtẼ0[CS(qDt ,Zt) − PS(qSt ,Yt)]dt (2.1)

where:

• Ẽ is the expectation operator associated with G̃(.).
• CS(.) is the consumer surplus function:

CS(q,Z) =
∫ q

0
D(q,Z)dq

• PS(.) is the producer surplus function:

PS(q,Y) =
∫ q

0
S(q,Y)dq

• x0 is the initial inventory of the commodity, and
• the problem is solved subject to the constraints:

xt = lim
Δt→0

[xt−Δt + qSt − qDt ]

1 I defer a detailed discussion of the meaning of the perhaps obscure phrase “relevant for
evaluating risky flows.” For now, it is sufficient to note that if agents are not risk neutral, the
probability measure used to calculate expectations for valuation purposes may differ from the
“physical” probability measure that describes the real-world behavior of the demand and
supply shocks.
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xt ≥ 0

The first constraint says that carry-out at time t (i.e., the amount of inven-
tory at t) is the amount carried in (xt−Δt) plus production minus consump-
tion at t. The second constraint means that inventory cannot be negative.
Carry-out is either positive, or zero. If it is equal to zero, it is said that there
is a “stockout.”

In the maximization problem, the time-zero expectation E0(.) is condi-
tional on Y0 and Z0.

There are a variety of methods for solving problems of this type. These
methods all derive from the Optimality Principle originally introduced by
Bellman (1957). There are numerous extended treatments of the Bellman
approach, so I will not go into detail about it here. The interested reader can
consult Judd (1998) or Fackler and Miranda (2002) for recent and accessible
treatments.2

Instead, I will focus on an economically intuitive way to frame and solve
this problem that was employed by Williams and Wright (1991). This ap-
proach views the problem from the perspective of the individual, atomistic
agents in the economy who use prices to guide their decisions. The analysis
follows the typical steps of partial equilibrium analysis. The optimizing deci-
sions of competitive agents conditional on prices are characterized; equilib-
rium constraints (quantity supplied equals quantity demanded) are imposed;
and equilibrium prices generate individual behavior that is consistent with
these constraints. It is also attractive because it works with the things that
are potentially observable: spot and futures prices.

2.2.2 Competitive Equilibrium

As already noted, under the assumptions made herein, the First and Second
Welfare Theorems imply that a competitive equilibrium is a social optimum
(i.e., solves equation (2.1)), and vice versa. So, consider the choices facing a
competitive agent in this economy.

To advance the analysis, I will assume that there is a frictionless forward
market where market participants can trade contracts for future delivery
on the commodity. Since the empirical research will focus on commodities
with active forward markets, this is a natural assumption. Moreover, I as-
sume that there are forward markets for every possible delivery date. This
assumption is obviously unrealistic, but it greatly facilitates the analysis.

2 Stachurski (2009) provides a more technical, but still accessible introduction. Lucas and
Stokey (1989) give a very thorough, self-contained treatment of the subject.



22 Storables Modeling Basics

One important decisions that agents make is how much of the commodity
to store. When making this decision, price taking agents can compare spot
and forward prices. When the spot price is P , and the forward price for
delivery an instant later is F , there is an arbitrage opportunity available to
market participants if:

e−rdtF > P.

They can buy the spot commodity for P , and sell a forward contract at F .
This locks in a riskless cash flow with present value of e−rdtF − P . Thus, if
the above inequality holds, agents can make a riskless profit.

This is inconsistent with a competitive equilibrium in the forward and spot
markets for the commodity. This strategy is available to everyone, meaning
that all agents would try to purchase the commodity on the spot market at
P and sell on the forward market at F . This would drive up the spot price
and drive down the forward price until the arbitrage opportunity disappears.
Thus, in equilibrium:

e−rdtF ≤ P

Now consider the opposite situation, with:

e−rdtF < P

This may, but may not, represent an arbitrage opportunity. If there are
inventories of the commodity (meaning that there is an agent who does
not want to consume today at current prices, but wants to consume in the
future), this does represent an arbitrage. The would-be storer can sell the
commodity from inventory, at P , and buy the forward contract at F . The
next instant, he has P − e−rdtF dollars and a unit of the commodity (which
is delivered to him under the forward contract). This strategy dominates
just holding the good in storage. By following the latter strategy, the agent
has a unit of the commodity but doesn’t have the P − e−rdtF dollars.

Note that this opportunity is available as long as inventories are positive.
Recall, however, that there is a non-negativity constraint on storage. Hence,
if inventories are zero, but P −e−rdtF > 0 there is no arbitrage opportunity.
Exploiting the arbitrage opportunity would require selling from inventory,
but if inventories are zero (everyone consumes all that is available on the
spot market), it is impossible to implement the strategy. Thus, at t, it is
possible for P > e−rdtF only if xt = 0.

Putting this all together implies the following restrictions on prices in a
competitive market:

xt > 0 ⇒ P = e−rdtF (2.2)
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xt = 0 ⇒ P ≥ e−rdtF (2.3)

This can also be expressed as:

0 = min(xt, P − e−rdtF )

Equations (2.2) and (2.3) provide a characterization of spot-forward price
relations in competitive equilibrium. Moreover, spot prices also determine
equilibrium consumption and production. If the equilibrium price at t is P ,
the equilibrium consumption qDt solves:

P = D(qDt ,Zt)

and the equilibrium consumption qSt solves

P = S(qSt ,Yt)

Moreover, (with a slight abuse of notation) recall that carry-out xt, carry-in
xt−dt, and production and consumption are related:

xt = lim
Δt→0

[xt−Δt + qSt − qDt ]

Equilibrium spot and forward prices must solve all these equations simul-
taneously. These prices thus determine the allocation of the resource over
time, and since the competitive equilibrium is optimal, this allocation also
solves (2.1).

2.2.3 The Next Step: Determining the Forward Price

Before proceeding further, it is worthwhile to step back and remember what
we are really interested in knowing. One of the things we want to know is
how prices vary with the state variables of the problem: the demand shocks,
the supply shocks, and inventory. Looking over the previous subsection, it
might appear that to solve for the equilibrium, we actually have to solve for
two price functions: a spot price function and a forward price function.

In fact, our problem is less difficult, because finance theory implies that
there is a link between spot prices and forward prices. Specifically, as of date
t, the forward price for delivery on some date T > t is the expectation, under
some probability measure, of the spot price at T .3 Thus, if we have a spot
price function, we can apply the expectation operator to it to determine the
forward price.

One phrase that jumps out in the previous paragraph is “under some
3 There are too many useful references to list here. Some representative ones are Shreve (2004),

Duffie (1996), Elliott and Kopp (2004), and Nielsen (1999).
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probability measure.” It is conventional in the storage literature to use the
“natural” or “physical” probability measure in taking expectations.4 The
natural measure is the one that characterizes the actual probability distri-
bution of the supply and demand shocks in the model. I call the probability
distribution associated with the physical measure G(.).

This choice is correct if and only if there are risk neutral agents in the
economy. In this case, if forward prices deviate from the expected spot price,
the risk neutral agents can speculate profitably. They buy (sell) the forward
contract when the forward price is less than (higher than) the expected spot
price. This strategy generates a profit on average, because agents expect to
reverse their forward position at the expected spot price in the future. This
strategy subjects them to risk, but if they are risk neutral they do not care;
the deviation between the forward price generates a positive expected profit,
which is all that matters to them.

Unless all agents in the economy are risk neutral, however, it is inappro-
priate to use the physical measure to take expectations when determining
the forward price. If agents are risk averse, they would not necessarily want
to buy (sell) a forward contract when the forward contract is below (above)
the expectation of the spot price (under the physical measure). By so do-
ing, they would earn a profit on average, but this average profit may be
insufficient to compensate these risk averse for the risk that they incur by
following this strategy.

Finance theory implies the existence of a so-called equivalent martingale
measure (sometimes shortened to “equivalent measure” or called a “pricing
measure”) such that forward prices are the expectation of the future spot
price, where the expectation is calculated using this measure. This is prob-
ability distribution function G̃(Z,Y) introduced before. This distribution
is equivalent to the physical measure G(.), but is appropriate for taking
expectations for the purpose of calculating forward prices (and the prices
of other contingent claims). The word “equivalent” means that events that
are impossible under the physical measure are impossible under the pricing
measure. Using as before the notation Ẽ to indicate expectations under the
equivalent measure,

Ft,T = Ẽt(PT )

where Ft,T means the forward price, quoted at time t for delivery at time T ,
and PT is the spot price at time T .

In essence, the pricing measure incorporates risk aversion into the analysis.
It is important to note that in the storage problem, this measure is not
4 See, for instance, Williams and Wright (1991).
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unique, because the supply and demand shocks are not traded assets. This
means that the pricing measure that prevails in the market depends on the
particular risk preferences of market participants.

With the concept of a pricing measure in hand, we have reduced the
complexity of our problem. We need to solve only for the spot price as a
function of the state variables; we can then determine the forward price as
the expectation under the equivalent measure.

This allows us to recast the problem that must be solved. Specifically, we
are searching for a function P (Z,Y, xt−dt) that solves:

P (Zt,Yt, xt−dt) ≥ e−rdtẼtP (Zt+dt,Yt+dt, xt)

P = D(qDt ,Z)

and the equilibrium output qSt solves

P = S(qSt ,Y)

Moreover, carry-out xt, carry-in xt−dt, and production and consumption are
related:

xt = xt−dt + qSt − qDt

Our way forward is now somewhat clearer. We need to solve for an un-
known function. Specifically, we need to solve for the spot price as a function
of the state variables. The spot price function must satisfy the foregoing
equations and constraints.

Solving for an unknown function is not a trivial task. Doing so typically
requires recursive techniques by which an initial guess is progressively refined
until the function converges (i.e., until additional refinements lead to very
small changes in the function). Previous scholars in this area have mapped
out a specific course for solving this problem:5

1. Make an initial guess for the spot price function.
2. Given the assumed spot price function, and the equivalent measure, solve

for the forward price as a function of the state variables.
3. For each possible value of the state variables, find the production and

consumption, and hence the amount of carry-out, that equates the spot
price to the forward price.

4. If the solution to (3) implies a negative inventory, set inventory to zero,
and solve for the price such that consumption at that price equals pro-
duction at that price plus carry-in.

5 See especially, Williams and Wright (1991).
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5. Given the consumption level determined qD for all possible values of the
state variables, determine the spot price D(qD,Z,Y). Use this as the new
guess for the spot price function.

6. Check to see whether the newly solved-for spot price function differs
from the spot price function originally assumed by more than some pre-
specified amount. If it does not, the analysis is complete. If it does differ
by more than the pre-specified tolerance, use the new spot price function
and return to step (2).

Sounds easy, no?

2.2.4 Specifying Functional Forms and Shock Dynamics

Actually, it’s not that easy. To follow the road map, it is necessary to make
more specific assumptions about functional forms, and perhaps more impor-
tantly, about the behavior of the demand and supply shocks; that is, about
the relevant pricing measure.

In so doing, it is first necessary to acknowledge that we operate under
the curse of dimensionality. Thus, although heretofore I have proceeded as
if there are an arbitrary number of random shocks in the economy, practical
computational considerations–the curse of dimensionality–effectively make
it necessary to limit the analysis to one or two.

Most of the extant literature assumes one shock, but as I will discuss in
more detail next chapter, such a model cannot accurately characterize the
high frequency dynamics of commodity prices; most notably, it cannot gener-
ate imperfect correlations between forward prices with different maturities.
So, since one shock is inadequate, and three is too many due to computa-
tional constraints, I will play Goldilocks and decide that two shocks are just
right. I call the shocks yt and zt.

Given this choice, I specify the following constant elasticity demand func-
tion:

D(q, zt, yt) = Φezt+ytqβ

where Φ is a constant, and the demand elasticity β is also a constant. More-
over, I specify the following supply function:

S(q) = θ +
ν

(Q− q)ψ

where Q is production capacity and ψ and θ are parameters. This specifica-
tion exhibits convex and increasing marginal costs (the competitive supply
curve being the industry marginal cost curve). Marginal cost approaches
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infinity as output approaches capacity. ψ determines how sharply marginal
cost rises as output approaches capacity. As ψ grows arbitrarily large, the
marginal cost curve becomes L-shaped.

Note that these specifications place all of the uncertainty in the demand
function. This is an immaterial choice, made purely for expositional and
programming convenience.

Now for the behavior of the demand shocks. Following the well-established
example of drunks looking for their wallet under the lamppost, most scholars
in the storage literature, and the finance literature more broadly, assume
Gaussian (“normal”) dynamics for random shocks. That is, they assume
that demand disturbances (or the analogous disturbances in the problem of
interest) obey a normal distribution. I will do the same here.

Specifically I assume that under the physical measure the demand shocks
are Ito processes with a specific form:

dzt = −μzztdt+ σzdBt (2.4)

dyt = −μyytdt+ σydCt (2.5)

where Bt and Ct are Brownian motions. The instantaneous correlation be-
tween these Brownian motions is ρdt. The use of Brownian motions as the
sole source of uncertainty in the demand shocks means that increments to
these demand shocks have a normal distribution.

Several comments are in order. First, (2.4) and (2.5) specify that the
demand shocks follow an Orenstein-Uhlenbeck (“OU”) process. This process
“mean reverts.” That is, for instance, when zt is above (below) zero, it tends
to drift down (up). The persistence of the demand shocks depends on the
sizes of μz and μy. The smaller the values of these coefficients, the less
rapidly the shocks tend to revert to their long-run mean of zero, i.e., the
more persistent they are.

Intuitively, persistence should affect storage decisions. Storage is used to
even out the effects of supply and demand fluctuations over time. If these
fluctuations are very rapid, storage is likely to be more useful than if supply
or demand take long excursions above or below their long run means. Put
differently, storage is used to shift resources over time in response to changes
in economic conditions. The objective is to take resources from times they are
relatively abundant to times they are scarce. If demand is highly persistent,
a demand shock affects current and future scarcity almost equally, meaning
that a demand shock of this type should have little effect on the amount
of the commodity stored because there is little to be gained by shifting
the allocation of consumption over time. Conversely, if a demand shock
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is expected to damp out rapidly, such a shock affects the scarcity of the
commodity today relative to its expected future scarcity; adjusting storage
in response to such a demand shock therefore is an economical response.

Second, μy and μz are the values of the OU parameters under the physical
measure. If the shocks follow an OU process under the physical measure, then
the Girsanov Theorem implies that under the pricing measure the shocks
also follow an OU process, but with different drift terms, however; σz, σy,
and ρ are the same under the physical and pricing measures.6 Specifically,
standard arguments imply that under the equivalent (pricing) measure:

dzt = (λz − μzzt)dt+ σzdB̃t (2.6)

dyt = (λy − μyyt)dt+ σydC̃t (2.7)

In these expressions, the shift to the pricing measure results in the addition
of a market price of risk adjustment to the drift terms in the demand shock
Ito processes. These adjustments reflect the risk preferences of the marginal
participants in the market. The B̃t and C̃t are Brownian motions under the
equivalent measure, but not under the physical measure; relatedly, Bt and
Ct are not Brownian motions under the equivalent measure.

Third, it is possible that μz, μy, σz, σy, ρ, λz and λy are functions of zt,
yt, and t. That said, in all of the analysis of this book I will assume that
these are constants.

Fourth, the normality assumption is made for convenience. It is possi-
ble to specify different dynamics for these shock variables. For instance, the
Brownian motion assumption made above means that the state variables are
continuous in time: they do not exhibit discontinuous “jumps.” It is possi-
ble, however, to specify other dynamics, such as a jump-diffusion process, in
which such discontinuities can occur. More generally, it would be possible
to specify that the demand shocks follow Levy processes, which can be de-
composed into a continuous “diffusion” component, and two discontinuous
jump components.7

The normality assumption permits me to draw upon a vast array of exist-
ing numerical tools, most importantly methods for solving partial differential
equations; the reasons for this importance will become clear momentarily.
That said, the effects of more complex demand shock dynamics are a worthy
subject for future research. Storage is a means of responding to uncertainty,

6 See Shreve (2004) for a statement of the Girsanov Theorem.
7 For applications of Levy processes in finance, see Schoutens (2003) and Cont and Takov

(2003).
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so presumably the nature of that uncertainty matters. For instance, presum-
ably agents will make different storage decisions when demand can jump dis-
continuously than when it cannot. Exploration of this possibility will have
to wait for the future, however, as even the simpler Gaussian case presents
enough practical challenges, and can provide enough valuable insights, for
one book.8

2.3 A More Detailed Look at the Numerical Implementation

I have now laid out the basic storage problem, the equations that this storage
problem implies, and an overview of the method for solving these equations.
I have also pared down the problem to a numerically manageable one with
two sources of uncertainty. Given this specification, it is now possible to
delve into the details of the numerical methods for solving this problem.

The objective of the analysis is to determine the spot price function
P (y, z, x̂) and a carry-out function x(y, z, x̂), where here x̂ denotes the carry-
in. The P (.) and x(.) functions, respectively, describe how prices and carry-in
depend on the three state variables.

Since x̂, y and z are real numbers, it is not practical to solve for these
functions exactly for every possible value of these variables as suggested in
the road map in the prior section. Instead, these functions are approximated
on a grid. That is, the analyst discretizes the problem, and evaluates the
functions for Ny values of y, Nz values of z and Nx values of x̂.

A conventional approach is to create evenly spaced grids in all three
variables. For instance, the y grid is: {y0, y0 + δy, . . . , y0 + (Ny − 1)δy};
the z grid is {z0, z0 + δz, . . . , z0 + (Nz − 1)δz} and the carry-in grid is
{x̂0, x̂0 + δx, . . . , x̂0 + (Nx − 1)δx}. The lowest and highest values in each
grid should be chosen so that the grids span the values likely to occur in
practice. For y and z, therefore, these low and high values will depend on
the statistical properties of these variables, namely their mean and standard
deviation. For x̂, the choice for the lower value is easy: it is the lower bound
on storage, zero.9 Determining the upper bound typically requires some trial
and error: solve the problem given a guess for the carry-in grid, simulate the
behavior of this variable, and check to see whether the simulated carry-out
frequently exceeds the maximum value in the carry-in grid. If it is, increase
the maximum value of x̂ and try again.
8 When jumps can occur, the forward price function solves a partial integro-differential

equation (“PIDE”). These present considerable numerical challenges.
9 This is for “natural” commodities, for which there is a non-negativity constraint on storage.

As will be seen for an “artificial” commodity, namely an environmental commodity such as
carbon permits, depending on market design this minimum value could be negative.
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The fineness of the grids (that is, Ny, Nz, and Nx) involves a trade-off.
The greater these values, that is, the finer the grids, the more accurate the
approximation of the functions of interest. At the same time, however, the
greater these values, the more computationally costly and time-consuming
the analysis. In particular, since (a) it is necessary to solve for the equilibrium
at every grid point, and (b) this involves numerical solution of a fixed point
problem, computation costs rise rapidly with the number of grid points.

Given the grids, the analysis can begin in earnest. One starts with a
guess for a spot price function. One then uses this spot price function to
derive forward price function, F (y, z, x).10 Now, a forward price is a price
for delivery of the commodity at some future date, which raises the question:
What date? As specified above, the problem is in continuous time, and agents
can make decisions continuously, so F would be the price of a contract that
expires in an instant. Just as it is impractical to treat the y, z and x0 as
continuous, however, it is also computationally impractical to treat time
as continuous. Instead, it is also necessary to discretize time, and solve for
a forward contract that expires some (finite) time hence, in δt years. Put
differently, although as in many finance problems it is convenient to derive
results in continuous time under the assumption that markets trade claims
for all possible delivery dates continuously, numerical solution must be in
discrete time.

Recall that a primary goal of the analysis is to make predictions about the
high frequency behavior of commodity prices, so as to match the model pre-
dictions with observable, high frequency data. Since daily data is available
for many commodities, this motivates a choice of δt of a day, i.e., δt = 1/365.
For commodities for which time-homogeneity is not reasonable, notably sea-
sonally produced ones, this choice is typically not computationally practical,
as it is necessary to estimate a separate function for every point in the time
grid corresponding to a single production cycle (e.g., a year for corn); esti-
mating 365 such functions is time consuming, and tests computer memory
constraints.

It should also be noted that the choice of the fineness of the time dis-
cretization affects the choice of the carry-in discretization. If the x̂ grid is so
coarse that for δt = 1/365 that carry-out is always positive when carry-in is
x̂0 + δx (i.e., the lowest positive value in the carry-in grid), it is impossible
to estimate with any accuracy the exact value of x̂ for which a stockout will
occur. Since stockouts are critically important for determining the behavior
of prices, this is highly undesirable. Thus, for a choice of δt, it is necessary
10 The methods for using the spot price function to determine a forward price function are

discussed below.
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to check after solving the problem that the x̂ grid is fine enough (i.e., δx
is small enough) that x(y, z, x̂) is zero for combinations of y and z that
are likely to occur with non-trivial frequency. If this is not the case, it is
necessary to make the x̂ grid finer.11

Once the state variable and time grids are in place, and a guess for a
forward price function has been made, the analysis proceeds in several steps:

1. Loop over all of the values of y, z, and x̂ in the grids.
2. For each value of y, z, and x̂, solve for the value of carry-out x such

that P (y, z, x̂, x) = e−rδtF (y, z, x). If this value of x ≥ 0, this is the
equilibrium value of carry-out. If x < 0, indicating a violation of the non-
negativity constraint on storage, set x(y, z, x̂) = 0. Note that since the
forward price function is only known at grid points, when solving this
equation it is necessary to interpolate between x grid points. I discuss
the interpolation issue in more detail below.

3. Check to see whether the spot price function thus determined is suffi-
ciently close to the initially assumed spot price function. If it is, stop. If
not, use the new spot price function as the initial guess, solve for a new
forward price function, and return to step 1.

Steps 2 and 3 require some additional explanation.
First consider step 2. In equilibrium, the spot price equals the marginal

value of the commodity to consumers, and the marginal cost of producing it.
The marginal value depends on the amount consumed, qc, and the marginal
cost depends on the amount produced, qs. Moreover, carry-out is carry-in
plus the difference between the amount produced and the amount consumed.
Thus, if carry-out is x, qc and qs must satisfy the following equations:

x = x̂+ qs − qc

and

D(qc, z) = S(qs, y)

The solution to these equations defines an implicit function P (y, z, x̂, x).
This function is increasing in carry-out x. As x increases, it is necessary to
increase quantity supplied qs and reduce quantity demanded qd. These, in
turn, require a rise in the spot price.
11 It can also be desirable to use an unevenly spaced x̂ grid, with points closer together for small

values of x̂ and more distantly spaced for large values of x̂. As it turns out, when carry-in is
large, carry-out is a nearly linear function of carry-in, so a coarse grid for large values of x̂ is
acceptable (because linear interpolation is quite accurate). The finer grid for small values of
carry-in permits more accurate approximation of the non-linear carry-out function for such
values.
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Given this implicit function P (.) and the guess for the forward price func-
tion (which will be decreasing in x, because a higher carry-out today involves
a higher carry-in tomorrow, and hence a lower price then), it is necessary
to solve a fixed point problem to complete step 2. Since, for a well-behaved
F (.) function, P (x) − e−rδtF (x) will be strictly increasing in x, this prob-
lem can be solved readily using conventional root-finding techniques such as
Newton-Raphson, or the zero finding routines in software such as MATLAB.
Although P (x) can be evaluated to a user-defined level of accuracy for any
value of x (although this also entails a root finding exercise to solve the
set of equations just discussed), F (x) must be determined by interpolation
since the F function is known exactly only for the points on the x̂ grid. This
solution gives both the spot price and carry-out for every value of the shocks
and carry-in in the grid.

There are a variety of interpolation methods. Williams and Wright (1991)
employ a polynomial technique. Specifically, they estimate a regression:

F (x) =
No∑
j=0

αjx
j + ε

using least squares. In this expression, No is the order of the polynomial,
e.g., No = 3 for a cubic fit. The x values used in the regression correspond to
the points in the x grid. Thus, the number of data points in the regression
is the number of points in the carry-in grid.

Given the estimated α parameters, the value of the forward price for an
arbitrary value of x is just:

F (x) =
No∑
j=0

αjx
j

Although the polynomial approach is easily implemented, there are other
interpolation methods that have more desirable properties. These include
spline methods, and colocation methods. Rather then re-inventing the wheel,
I refer the reader to careful discussions of these methods in Fackler and
Miranda (2002). What’s more, high level mathematical software packages,
such as MATLAB, include interpolation routines that permit the user to
choose a variety of interpolation methods, including splines.

Now consider step 3. Once step 2 is solved, one has a spot price defined for
each y, z and x̂ in the valuation grid. Recall that a forward price is the ex-
pectation of the spot price under the equivalent measure. This expectation,
in turn, is given by an integral.
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There are a variety of numerical techniques to estimate this integral.12 In
general, in these methods, the forward price for y0, z0, and x̂0 values in their
respective grids can be determined by:

F (y0, z0, x̂0) =
Ny∑
i=1

Nz∑
j=1

p(yi, zj|y0, z0)P (yi, zj, x(yi, zj, x̂0))

where p(yi, zj|y0, z0) is the probability that tomorrow’s value of y will equal
yi (a value in the grid), and tomorrow’s value of z will equal zj (again, in
the grid), given that the current values of these shocks are y0 and z0 (both
grid values) respectively. These probabilities is derived from the dynamics
of y and z.

Note that estimating this integral involves an estimation of the spot price
for a value of x not necessarily on the x grid. This is because if x(yi, zj, x̂)
is not necessarily (and will almost never be) one of the Nx values in the x
grid.

Although this integral method is widely employed, I prefer another method,
and use it hereafter. Specifically, this method solves a partial differential
equation to determine the forward price.

The Feynman-Kac Theorem implies that the forward price function that
solves the integral must solve a particular partial differential equation (PDE),
and vice versa.13 Specifically, the F function must solve:

0 =
∂Ft,τ
∂t

+μ∗z
∂Ft,τ
∂x

+μ∗y
∂Ft,τ
∂y

+
1
2
σ2
z

∂2Ft,τ
∂z2

+
1
2
σ2
y

∂2Ft,τ
∂y2

+ρσzσy
∂2Ft,τ
∂z∂y

(2.8)

where μ∗z = λz − μzzt and μ∗z = λy − μyyt. The right hand side of (2.8) is
called the infintessimal generator of F .

Therefore, one can determine the forward price function by solving the
valuation PDE (2.8) subject to the initial boundary condition F (y, z, x, 0) =
P (y, z, x), where I have expanded the notation to include a fourth argument
in the forward price function to represent time to expiration. This condition
means that at expiration, the forward price equals the spot price.14

The PDE approach is attractive because there are robust, well-known
methods to solve such equations. Specifically, finite difference methods are
widely employed in finance, engineering and the physical sciences to solve
PDEs. These methods have been the subject of intense study, and as a
12 Common methods include Simpson’s rule and Gaussian quadratures. See Fackler and

Miranda (2002).
13 See Oskendal (2003) for a discussion of the Feynman-Kac Theorem. This is a generalization of

Kolmogorov’s backward equation, which can also be used to produce the PDE. Arbitrage
arguments can also be employed to derive this equation. See Wilmott et al. (1993).

14 Two other boundary conditions are required. I discuss these further below.
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result, it is possible to draw on a vast body of work and greatly refined
and experience-tested techniques. Moreover, the fact that partial derivatives
are estimated along with the values of the contingent claim of interest is
quite useful. These partial derivatives are important determinants of price
dynamics, and the accurate and simultaneous estimation of these partial
derivatives facilitates the analysis of these dynamics.

I will go into the details of these methods momentarily, but before doing
so, I will briefly describe what these methods do and show how to apply
them in the storage problem. In brief, a finite difference method will produce
F (y, z, x) for every point in the {y, z} grid, for a given value of x. Thus, in
the storage problem, one starts with a matrix of values of the spot price,
where the values in the matrix correspond to the values for each y and z

point, for a given value of carry-in x (where, recall, this is the carry-in at
the expiration of the forward contract). The finite difference method then
provides the value of the forward price δt years prior to expiration, again for
each y and z value for this value of carry-in at expiration. It is necessary to
solve this PDE–and hence produce a value matrix–for every possible value
of carry-in in the x grid.

Note, however, that this forward price at δt years prior to expiration is
conditional on carry-in in δt years, not for carry-in at the valuation date,
which is δt years prior to expiration. Since (a) carry-in in δt years is carry-
out at the valuation date, and (b) carry-out and valuation date carry-out
(“current date” carry-out) can differ (and usually do), an additional step is
required to determine the current date forward price for every point in the
y, z, and x grid. Specifically, it is necessary to implement a so-called “jump
condition” to find the forward price.

This involves another interpolation. Recall that in step 2 one has solved
for carry-out x(y, z, x̂) for x̂ values in the grid. By solving the PDE, one
has determined F (y, z, x̂′) for each x̂′ in the grid. To implement the jump
condition, for each x̂ in the grid, (a) find x(y, z, x̂), (b) interpolate to find
F (y, z, x(y, z, x̂)). This is a one-dimensional interpolation, and must be exe-
cuted for each y and z value. Once this jump condition is implemented, step
3 is complete.

This can be illustrated by a figure. Figure 2.1 represents current carry out,
for those same current values of z and y, as a function of current carry-in.
Figure 2.2 represents the forward price in δt years, for given current values
of z and y, as a function of carry-in (depicted on the horizontal axis). The
grid points at which the carry-in values are indicated by hash marks on
the x−axis. Assume that current carry-in takes the value of x̂ = 600. The
current carry-out graph indicates that given a carry-in of x̂, carry-out will
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equal x∗ = 573. Since x∗ falls between grid points in the forward price graph,
to determine the forward price corresponding to current carry-in of x̂, it is
necessary to interpolate using the forward price values corresponding to the
grid points.

2.3.1 Solving a PDE Using Finite Differences: The One

Dimensional Case

As already noted, to make the solution to the storage problem interesting
and realistic, it is necessary to assume at least two sources of uncertainty.
Thus, it is necessary to solve a two dimensional PDE in y and z. Before
discussing the methods for doing this, to get familiar with the method it
is worthwhile to study its implementation in the simpler, one dimensional
case. Here I briefly outline an unconditionally numerically stable solution
technique: the implicit method.15

In the 1D case, one solves a PDE in, say, z:

0 =
∂F

∂t
+ μ∗z

∂F

∂z
+

1
2
σ2
z

∂2F

∂z2

To solve this equation, one needs to determine the partial derivatives. These
are done by finite difference approximations in the time and z grids. Specif-
ically, for the time partial derivative:

∂F

∂t
≈ F 0 − F 1

δt

where F 0 is the forward price at expiration (one time step hence, since when
implementing step 3 above the PDE is always solved for δt years prior to
expiration) and F 1 is the forward price one time step prior to expiration.

For the z partials, it is conventional to employ central finite differences.
Specifically, for point zi, i = {2, . . . , Nz − 1} in the z grid:

∂F

∂z
≈ F 1

i+1 − F 1
i−1

2δz
15 Explicit methods (like the binomial method) are well-known and very easy to implement.

However, they are not unconditionally numerically stable. This means that for particular
choices of the time step δt and the z step δz, the method may give non-sensical, explosive
solutions. Thus, achieving stability requires the imposition of constraints on δz and δt.
Implicit methods do not impose such a constraint. The necessary constraint is even more
costly in 2D problems, so avoiding it is computationally attractive. The Crank-Nicolson
method combines explicit and implicit methods. Although this method is unconditionally
stable, and is more accurate than the implicit method, it exhibits some undesirable
properties. See Duffy (2006). As a result, I avoid it and use the implicit method.
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and
∂2F

∂z2
≈ F 1

i+1 − 2F 1
i + F 1

i−1

δz2

where F 1
i is the value of the forward price at the i’th z grid point, δt years

prior to expiration.
Plugging these approximations back into the PDE equation, and simpli-

fying, produces equations like:

F 0
i = AF 1

i−1 + BF 1
i +CF 1

i+1

for i = 2, . . . , Nz−1. That is, with the approximations for the partial deriva-
tives, the PDE produces a system of linear equations. The values on the left-
hand-side of each equation is known: they are the spot prices at expiration.
The coefficients A, B, and C depend on δt, δz, μz , and σz.16

Note, however, that there are Nz−2 equations, but Nz unknowns, the F 1
i .

Thus, additional information is required to solve the system. This comes in
the form of boundary conditions that specify the behavior of the forward
price for the highest and lowest values of z in the grid. Boundary conditions
for the storage problem require a detailed discussion, which I defer for a bit.
For now, to advance the exposition, I just specify the following lower and
upper conditions:

0 = A1F
1
1 +B1F

1
2 +C1F

1
3 +D1F

1
4

and

0 = ANF
1
Nz

+ BNF
1
Nz−1 + CNF

1
Nz−2 +DNF

1
Nz−3

These are, in the argot of finite difference methods, boundary conditions of
the von Neuman type.

We now have Nz equations in Nz unknowns. Nz−2 of the equations come
from the PDE and the finite difference approximations. The remaining two
come from the boundary conditions. It is straightforward to solve these Nz

equations. Once this is done, one has solved for the forward price as of δt
years prior to expiration for each x̂ in the carry-in grid and each z in its
grid. With these values, it is possible to perform the interpolations in step
2 and solve for optimal carry-out.

2.3.2 Solving the 2D PDE

The interesting and relevant storage 2D storage problem can be solved using
finite difference methods as well, but the move from one dimension to two is
16 If μz and σz depend on z, these coefficients also depend on the grid location, i.e., on the i.
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anything but trivial. The same basic approach of using finite differences to
approximate partial derivatives is applicable, but the number of equations
that must be solved increases by a factor of Ny × Nz, the product of the
number of z points and the number of y points. This increases computational
costs substantially, and requires the development of additional techniques.

The most widely employed method for solving 2D PDEs is called the
alternating direction implicit method, or ADI. Although widely employed,
it has some deficiencies that arise from (a) its reliance on explicit finite
differences as well as implicit ones, and (b) its inability to handle problems
where the y and z variables have a non-zero correlation.

There is another, and in my view highly superior, way to solve 2D PDEs.
This method, called the splitting technique, was developed by Soviet math-
ematicians in the 1960s.17 In a nutshell, as the name suggests, the method
involves splitting the 2D PDE into pieces. For each y, one solves a 1D PDE
in z: this is the “z-split.” Then, given this solution, for each z, one solves
a 1D PDE in y: this is the “y-split.” Finally, if y and z are correlated, one
solves a PDE in z and y: this is the “correlation” split.

In more detail, the method proceeds as follows. As its name suggests, the
splitting method works by splitting the PDE (2.7) into three parts at each
time step. The first PDE “split,” which captures the effect of the purely
z-related terms is:

0 =
∂Ft,τ
∂t

+ μ∗z
∂Ft,τ
∂x

+
1
2
σ2
z

∂2Ft,τ
∂z2

(2.9)

The second split handles the cross derivative term:

0 =
∂Ft,τ
∂t

+ ρσzσy
∂2Ft,τ
∂z∂y

(2.10)

The third PDE split, which handles the purely y-related terms, is:

0 =
∂Ft,τ
∂t

+ μ∗y
∂Ft,τ
∂y

+
1
2
σ2
y

∂2Ft,τ
∂y2

(2.11)

One time step prior to expiry, (2.9) is solved using an implicit method for
each different y value from the lowest to the highest. At each time step, the
solution to (2.9) is used as the initial boundary condition in the solution for
(2.10), which is again solved implicitly. Then, the solution for (10) is used
as the initial condition for (2.11), which is solved implicitly for each z from
highest to lowest. At all time steps but the one immediately preceeding
expiration, the solution to (2.11) from the prior time step is used as the
initial condition for (2.9).
17 This method is described in Yanenko (1971), Ikonen and Toivanen (2009), and Duffy (2006).
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The effect of the curse of dimensionality is evident here. Whereas solving a
1D PDE requires solving one set of linear equations, in the splitting method
the z split requires the solution of Ny sets of linear equations; the y split
requires the solution of Nz sets of linear equations; and the correlation split
requires solution of a set of Nz×Ny linear equations. Despite this additional
computation effort, this method is well worth it. It is stable, efficient, and
facilitates the calculation of sensitivities that are essential to understanding
the dynamics of commodity prices.

2.3.3 Boundary Conditions

In many financial applications of finite difference methods, economic con-
siderations dictate the boundary conditions. For instance, when solving for
the value of a call option on a stock, one knows that as the stock price
goes to zero, the call becomes worthless. This information can be used to
fix the lower boundary condition; a related condition can be used to fix the
boundary condition for high stock prices.

Unfortunately, in the commodity storage problem, there are often no such
obvious, economically-motivated boundary conditions.18 Thus, one must
proceed with caution. Most importantly, one must experiment to ensure that
the solution is not particularly sensitive to the assumed boundary conditions.
If it is, one must be concerned that the (inherently) arbitrary assumptions
about boundary conditions are driving the results.

There are two basic types of boundary conditions: von Neuman and
Dirichlet. Von Neuman conditions fix the shape of the F 1 function at the
boundaries. Dirichlet conditions fix their exact values at the boundaries.

One common type of von Neuman condition is that the function is linear
at the boundary. That is, its second derivative is zero:

0 =
F 1
i+1 − 2F 1

i + F 1
i−1

δz2

This implies, in terms of the notation used above, that A1 = −2, B1 = 1,
C1 = 1, and D1 = 0; similar results obtain for the upper boundary condition.

Given the lack of economic guidance about the likely shape of the F 1

function at the boundary, this condition may be unduly restrictive: that is,
the function may not be linear at the boundary. Therefore, I typically use a
boundary condition that effectively assumes that the third derivative is zero

18 In the stochastic fundamental volatility model of Chapter 5, economic considerations can
inform the choice of the volatility boundary conditions.
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at the boundary:

F 1
3 − 2F 1

2 + F 1
1

δz2
=
F 1

4 − 2F 1
3 + F 1

2

δz2

with a similar condition for the upper boundary. This expression implies, in
terms of the earlier notation: A1 = 1, B1 = −3, C1 = 3, and D1 = −1.19

This approximation is admittedly arbitrary, because there is no economic
motivation for it. However, I have found that it performs well. For the solu-
tion of carry-out and spot price functions, it does not have a big impact on
the solution because there is little time (only δt years) for the information
from the boundaries to diffuse into the interior of the valuation grid. As a
result, the solutions for the spot price and carry-out functions are almost
identical regardless of whether one uses this boundary condition, or the more
restrictive linearity-at-the-boundary condition. As for some applications it is
necessary to solve for forward prices with longer times to expiration, where
there is more time for information from the boundaries to affect–and distort,
if they are unrealistic–values in the interior of the valuation grid, I also check
the behavior of these longer-tenor forward prices at the boundary. Practi-
cally, bad boundary conditions give rise to visible problems in forward price
functions for longer tenors. For instance, a bad boundary condition can re-
sult in a one-year forward price decreasing as the demand shock increases.
This is not economically sensible. But even for fairly long tenors of 3 or more
years, the constant-convexity-at-the-boundary condition does not generate
such perverse behavior. Thus, I rely on it for the bulk of the analysis in the
book.

The alternative is to specify Dirichlet conditions. Unlike the stock option
case, however, there is no economic logic that tells us what those conditions
are. One way to address this is to combine the expectation (integral) and
PDE methods. Specifically, one can set the value of the forward price at the
upper (or lower) boundary as the expectation of the spot price, conditional
on being at that boundary, and use numerical integration to determine this
expectation. Calling this expectation F̂ 1

1 for the lower boundary, one gets a
boundary condition:

F̂ 1
1 = F 1

1

with a similar expression for the upper boundary.
The main issue that must be confronted in this method is that if one

starts at the lower z boundary, for instance (i.e., one is determining the
expected spot price conditional on the current value of z being z1), there
19 Of course, the signs on all of these coefficients can be reversed.
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is a positive probability that in δt years the realized z will fall outside the
z grid. Thus, to calculate the expectation, one has to extrapolate the spot
price function for such out-of-bounds z values. Extrapolation is always more
problematic than interpolation. This effectively requires making assumptions
about the shape of the spot price function outside the grid, and hence is
not so different from the von Neuman conditions that also impose shape
restrictions. Thus, a priori there are no strong reasons to favor one method
over the other. Based on the good behavior of the constant-convexity-at-
the-boundary approach, I let computational considerations prevail: since the
Dirichlet approach requires additional computational steps–the calculations
of the expectations at four boundaries–I typically rely on the von Neuman
approach.20

2.4 Summary

The foundations for the detailed analysis of storage problems are now in
place: the (partial equilibrium) model economy; the no-arbitrage-based equa-
tions relating spot and forward prices that must hold in this model economy;
the basic recursive technique for solving these equations; and the numerical
method for solving for forward price functions given a terminal spot price
function. It should be noted that there is more than one way to skin the stor-
age model cat. At virtually every step of the analysis, I could have chosen
different solution methods. The methods presented here, however, are eco-
nomically intuitive, well-matched with observable quantities that we want
to study, and computationally flexible and sturdy. With the methods out
of the way, I can now turn attention to the presentation of specific mod-
els for specific types of commodities, beginning with continuously produced
ones subject to homoscedastic demand shocks, the subject of the next two
chapters.

20 I have compared the results from the Dirichlet and von Neuman approaches, and find that
they give very similar results.
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High Frequency Price Dynamics for Continuously
Produced Commodities in a Two Factor Storage

Economy:
Implications for Derivatives Pricing

3.1 Introduction

Many important commodities are produced and consumed continuously, and
exhibit little seasonality in demand. These include the industrial metals
(such as copper and lead) and some important energy products (such as
crude oil). These products are important (representing a large fraction of
total traded commodity production, value, and trading volume). Moreover,
it is easiest to analyze the high frequency price behavior of these commodities
in the structural storage model framework because the continuous nature of
product and non-seasonality of demand makes it reasonable to use impose
time homogeneity, which makes numerical solution simpler; it is not rea-
sonable to impose such homogeneity for seasonally produced commodities,
such as corn. Therefore, considerations of importance and tractability make
it desirable to focus initially on continuously produced commodities. These
will be the subject of the next three chapters.

Most received storage models posit a single source of uncertainty. Some-
times this single source is portrayed as a “net demand shock.” Whatever its
interpretation, it is readily evident that a one shock model is inadequate to
describe the rich behavior of actual commodity prices.

This is most evident when one looks at correlations between commodity
futures prices with different times to expiration, or correlations between spot
and futures prices. In a single factor model, all prices on the same commod-
ity, regardless of expiration date, are instantaneously perfectly correlated. If
there is only one source of uncertainty, futures prices with different times to
expiration may exhibit different variances because they have different sen-
sitivities to shocks to these uncertainties. But correlation scales for these
different sensitivities, and if only one factor drives all prices, they will all
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respond only to that factor. Thus completely sharing exposure to a single
factor, all prices must be instantaneously perfectly correlated.

But the data tell a very different story. Empirical work by Fama and
French (1988), Ng and Pirrong (1994), Ng and Pirrong (1996) and Pirrong
(1996) demonstrates that (a) correlations between spot prices and futures
prices, and between futures with different tenors, are frequently far below
one, and (b) these correlations are time varying, and vary systematically
with measures of the tightness of supply and demand conditions, as summa-
rized by the spread between spot and futures prices. These empirical studies
are based on daily data, and although perfect instantaneous correlation can
result in empirical correlations slightly below one in finitely sampled data,
the deviations of correlations from 1 observed in the empirical data are too
large to be caused by finite sampling if the true instantaneous correlations
are 1. Furthermore, if instantaneous correlations are truly equal to 1, fi-
nite sampling cannot explain the substantial time variation in the empirical
correlations, or their co-variation with spot-futures spreads.

This means that to have any chance at describing the data, a model must
involve at least two factors. This chapter analyzes a two factor model. In
the specific two factor model examined here (a subsequent chapter explores
a different two factor model), there are two net demand shocks. Each shock
has different persistence.

In what follows, I set out the model, and then examine the implications
of the model for the behavior of high frequency commodity prices. Specifi-
cally, I investigate the behavior of: the volatilities of spot and futures prices
of different maturities; how these volatilities relate to fundamental supply
and demand conditions, and to observable variables such as the spread be-
tween spot and futures prices that reflect these fundamental conditions; the
correlation between spot and futures prices; and the relations between these
correlations and fundamental supply and demand conditions and observables
like the spread.

The analysis demonstrates that the two factor model can produce several
stylized behaviors demonstrated empirically by Ng and Pirrong (1994) and
Fama and French (1988). Specifically, the model predicts:

• Spot and futures volatilities are time varying.
• Spot volatilities exceed forward volatilities.
• Volatilities are highest when supply and demand conditions are tight, and

since in the model the spread between spot and futures prices also depend
on the tightness of fundamental conditions, volatilities are high when the
market is in backwardation and are low when the market is in full carry.
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• The difference between spot and future volatilities is very small when the
market is at full carry, and largest when the market is in backwardation
(i.e., when supply and demand conditions are tight).

• Correlations between spot and forward prices are time varying.

• Correlations between spot and forward price are effectively 1 when the
market is in full carry, and decline monotonically as spot-forward spreads
fall progressively below full carry.

All of these features have been documented in empirical data from impor-
tant commodity markets, such as the industrial metals and oil markets.

These implications of a structural model also imply that many reduced
form models commonly used to price commodity contingent claims (such
as commodity options and commodity swaps) are mis-specified, and hence
likely to mis-price these claims. The most common models assume that
volatilities are constant over time. Others permit some time variation in
volatility, and a relation between volatility and the spread, but do not cap-
ture the behavior of correlations. Thus, the structural model casts serious
doubt on the reliability of even the most sophisticated reduced form model
to price contingent claims on continuously produced commodities, especially
those (like swaptions) that are correlation-sensitive.

I explore these issues by examining the implications of the two factor
model for commonly used metrics used to summarize the behavior of option
prices. In particular, I examine the implications of the two factor structural
model for the behavior of the implied volatility smile in commodity options.
I also examine the implications of the model for implied correlations in
correlation sensitive claims, such as swaptions and spread options.

These comparisons are useful as a means of diagnosing the deficiencies of
reduced form models. They also generate hypotheses that can be tested on
options data.

The remainder of this chapter is organized as follows. Section 2 reviews the
basic model described in more detail in Chapter 2. Section 3 describes the
implications of the model for volatilities and correlations. Section 4 studies
the ramifications of the model for the behavior of commodity options prices.
Section 5 provides a brief summary.
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3.2 A Model of the Storage Economy With a Continuously
Produced Commodity

3.2.1 Introduction

This section lays out the basic two factor model. Its details are actually quite
straightforward. There is a constant elasticity flow demand for the commod-
ity. This demand is subject to two stochastic shocks of differing persistence.
One can think of the more persistent shock as reflecting macroeconomic
factors affecting demand (i.e., GDP, which is highly persistent). The more
transitory shock reflects disruptions unique to that market (e.g., an increase
in the demand for oil resulting from a sudden cold snap that drives up the
demand for heating oil). Moreover, the commodity is produced continuously.
Producers are competitive, and the industry supply curve is increasing and
convex, and subject to a capacity constraint.

The commodity can be stored, at some cost. There are competitive agents
who can store the commodity; these agents may be risk averse.

In a competitive market, production, consumption, and storage will imple-
ment a first-best allocation of resources. Moreover, this first best allocation
will result in an equation of the spot price and the discounted forward price
of the commodity if this allocation requires positive storage: the spot price
will exceed the discounted forward price if a stockout occurs under the op-
timum plan.

Solving for the first-best numerically produces optimal storage rules, and
a spot price function that relates the spot price to the state variables in
the problem: inventories, and the demand shocks. Moreover, given these
spot price and inventory functions, it is possible to solve for forward price
functions for arbitrary time to expiration. Given all of these functions, it
is possible to determine how prices behave as state variables change, how
these behaviors depend on the levels of the state variables, and how prices
covary.

3.2.2 Framework and Numerical Solution

In this chapter, I implement the same model discussed in detail in Chapter
2. The numerical solution technique is also that described in Chapter 2. I
make an initial guess for a function that gives the spot price as a function
of the state variables, the demand shocks z and y, and carry-in x̂. I then
use the splitting technique to solve a partial differential equation that (after
implementing a jump condition) gives the forward price as a function of these
state variables. I then solve for the equilibrium production and consumption
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of the commodity (and hence carry-out); this equilibrium equates the spot
price and the discounted forward price if the carry-out that results in this
equation is positive, and is equal to zero if equating the spot and discounted
forward prices would entail a negative carry-out. The equilibrium production
and consumption imply a new spot price function, which is compared to the
assumed spot price function. This process continues until the spot price
function converges.

In what follows, I assume that the market prices of risk λy and λz are zero.
The specific numerical values used for the mean reversion parameters μz and
μy, and for the demand shock volatilities σy and σz are those determined in
the estimation-calibration exercise described in the next chapter.

Given this solution for the spot price, it is possible to use this spot price
function as a boundary condition and then solve the basic valuation equa-
tion (2.8) for the forward price function for an arbitrary maturity forward
contract.

This approach in the two-factor model is computationally burdensome
because it involves solving for the spot price for every value of the demand
shocks in the numerical grids. To mitigate the computational burden, Rout-
ledge et al. (2000) (“RSS”) propose an alternative model in which there is a
permanent demand shock, z, uncorrelated with a transitory shock y, and is
not priced. In essence, the Routledge et al. (2000) z shock causes a parallel
shift in the entire forward price structure. Moreover, in the Routledge et
al. (2000) specification, this permanent demand shock does not affect the
optimal storage decision. This eases the computational burden substantially,
as it effectively reduces the dimensionality of the storer’s decision problem
because it only requires solution of the spot price function for the values
of the y shock and the carry-in x̂ in the grids. In terms of the notation of
Chapter 2, this means that whereas the model solved in this chapter requires
solving for optimal storage at Nz × Ny × Nx values, the Routledge et al.
(2000) model requires solution at only Ny ×Nx values.

Despite its relative numerical simplicity, the RSS setup is problematic. The
RSS permanent shock shifts the supply and demand curves up in parallel.
This could be interpreted as a pure price level shock, which would imply
that deflated commodity prices exhibit relatively little persistence. This is
not consistent with extant evidence. An alternative interpretation is that
a permanent (or highly persistent) shock is related to the business cycle;
note that it is difficult to reject the hypothesis that GDP and aggregate
consumption are integrated processes. However, under the RSS specification
the permanent shock does not affect output. This is inconsistent with the
fact that the output of many continuously produced commodities is strongly
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pro-cyclical. Moreover, a permanent shock risk (presumably related to the
business cycle and hence systematic) should be priced in equilibrium, which
is inconsistent with the RSS assumption that the expected value of the future
shock is its current value. Finally, spot and forward prices simulated from
the solved RSS model calibrated to match the volatilities and correlations of
copper futures prices (see the next sub-section for a more detailed discussion
of calibration) frequently move upwards to very high levels (to a level well
above that necessary to attract additional investment) or downwards to very
low levels (below any reasonable minimum production cost) and stay there
for years. This is unsurprising given the salience of a permanent shock in
determining the levels of prices in the RSS model, but it is an unsatisfactory
characterization of real world commodity price data.

Given these concerns, I focus on a two-shock model that does not adhere
to the RSS assumptions.

3.3 Moments and the State Variables

Once the model is solved for an equilibrium spot price function P ∗(z, y, x̂),
and for forward price functions, it is possible to utilize them to characterize
their high frequency dynamics. Of particular interest are the behaviors of
price variances (for both spot and forward prices), and the correlations be-
tween these prices. These are of such interest because there is some empirical
evidence on the behaviors of these quantities.1

The values of the spot and forward price functions in the valuation grid
can be used, with finite difference methods, to calculate variances and corre-
lations for different values of the state variables. These solutions demonstrate
whether these moments depend on the state variables, and if so, how.

Specifically, consider the variance of the spot price. Using the notation of
Chapter 2, and P ∗(z, y, x̂) to indicate the equilibrium spot price function,
Ito’s Lemma implies:

dP ∗ = μ∗z
∂P ∗

∂z
dz + μ∗y

∂P ∗

∂y
dy + Adt

where
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∂P ∗
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2
∂2P ∗

∂z2
σ2
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1
2
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∂y2
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σzσyρ

1 Notably Fama and French (1988), Ng and Pirrong (1994) Ng and Pirrong (1996), and Pirrong
(1996).
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Squaring dP ∗ implies:
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t

∂y
ρσzσy (3.1)

The relevant partial derivatives can be calculated from the spot prices
determined by the solution of the dynamic program. They are calculated
using central finite differences.

An examination of this instantaneous variance implies that it is state-
dependent. Specifically, Figure 3.1 depicts the relation between the instan-
taneous variance of the spot price and yt and xt, given a zt = 0 (i.e., the
mean value of the more persistent demand shock).

Note that (a) given the short-memory demand shock yt, increasing carry-
in xt (moving into the figure) reduces the variance of the spot price, and (b)
given carry-in xt, increasing demand yt increases spot variance. Moreover,
the sensitivity of spot variance to demand changes is greater, the lower are
stocks. Similarly, the sensitivity of spot variance to stock changes is greater,
the greater the demand. The convexity of the surface is evident in the figure.

This result is intuitive. In response to a surprise increase in demand, either
(a) price adjusts, (b) output adjusts, or (c) stocks adjust. When output is
near capacity (because demand is high) and stocks are low, there is limited
scope for output and stock adjustments, and prices must bear the main
burden of adjustment–hence the high volatility. Conversely when output is
low and stocks are high, agents can adjust these real variables to cushion
the price impact of the demand shock. The convexity of the variance surface
reflects in large part the convexity of the marginal cost function.

Not surprisingly, variance levels increase in the level of the more persistent
demand shock zt, and the effect of a change in zt is greatest for low stock
and high transitory demand yt. Intuitively, when demand is high, output is
closer to capacity, where marginal production costs rise more steeply with
output. A given change in demand will lead to a larger price move under
these circumstances. Moreover, when stocks are low, inventories provide less
of a buffer against demand shocks, and prices bear a greater portion of the
burden of accommodating the demand shocks.

Figure 3.2 depicts the relation between the 3 month forward price instan-
taneous variance and yt and xt for zt = 0 (drawn to the same scale as Figure
3.1); the same approach used to calculate the spot variance is used to calcu-
late the futures price variance, with the sole exception that the (numerically
estimated) 3 month forward price function is used to calculate the relevant
sensitivities. Although the forward price variance surface has the same basic
shape as its spot price variance counterpart, there are some key differences.



48 Continuously Produced Commodity Price Dynamics

Most notably, ceteris paribus the level of the 3 month variance is lower than
that of the spot price. Moreover, this difference in variances is greatest for
low xt and high yt, and very small for high xt and low yt. That is, the forward
variance surface is flatter, and less convex, than the spot variance surface.2

These results are also intuitive. Although the scope for adjustments to
output and stocks is very limited in the very short run (i.e., over the course
of a day), it is greater over a period of weeks and months. Hence, variations
in current conditions have less impact on forward prices than spot prices.
This is especially true when current conditions are extremely tight (sharply
circumscribing the ability to adjust real quantities in the very short run),
but less so when current conditions are very bearish (meaning that there is
plenty of scope to adjust real quantities even in the very short run). Indeed,
the variance surface for the 27 month forward prices (depicted in Figure 3.3)
is almost flat, indicating that (a) the stationarity in demand shocks, and (b)
the greater ability to adjust real quantities over the longer run makes the
dynamics of long tenor forward prices virtually insensitive to current market
conditions.3

The solutions to the dynamic programming problem can also be used
to determine covariances and correlations between different prices. For in-
stance, the covariance between the spot and 3 month forward prices is:

cov(dP ∗, dF3) =
∂P ∗

∂z

∂F3

∂z
σ2
zdt+

∂P ∗

∂y

∂F3

∂y
σ2
ydt+(

∂P ∗

∂z

∂F3

∂y
+
∂P ∗

∂y

∂F3

∂z
)σzσyρdt

Dividing this covariance by the square root of the product of the variances
already calculated produces the instantaneous correlation between the spot
and 3 month forward prices.

Figure 3.4 depicts the relation between the instantaneous correlation be-
tween the spot price and the 3 month price and yt and xt with zt at its
mean value of 0. Note that the correlation is almost exactly 1.00 when xt
is sufficiently large. However, the correlation drops sharply when (a) stocks
fall, and (b) transitory demand becomes very large.

Again, this is a sensible result. Storage connects spot and forward prices.
When stocks are positive, tomorrow’s forward price equals the spot price plus
the cost of carrying inventory, and these two prices move in lockstep. When
stocks are extremely abundant, it is unlikely that stocks will be exhausted
over a 3 month period, and therefore the 3 month price will move almost in
lockstep with the spot price. However, when stocks are low, or when demand
2 Moreover, although the three month variance increases with yt , it also increases with xt.
3 The insensitivity of longer tenor forward prices to shocks indicates that spot prices are

stationary. This stationarity arises from two sources, the stationarity in the demand shocks,
and the equilibrium effects of storage on prices.
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is high, a stockout is more likely over a 3 month horizon. A stockout elim-
inates cash-and-carry arbitrage as a link between spot and forward prices.
Under these circumstances, spot prices respond primarily to current demand
shocks, whereas forward prices change primarily in response to expected fu-
ture demand. Correlations are lower under these circumstances.

3.4 Derivatives Pricing

The analysis in sections 2 and 3 demonstrates that the variances of prices
in the storage commodity change in response to changes in fundamental
market conditions. This suggests that the values of options will also change
systematically with fundamentals. The dependence of correlations on mar-
ket conditions documented above also suggests that the values of correlation
sensitive products, such as commodity swaptions and calendar spread op-
tions, are similarly sensitive.

The price of any option in the storage economy must satisfy the basic
valuation PDE (subject to the appropriate boundary conditions):
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(3.2)

where V is the price of the option. An equilibrium spot price function P ∗

implies a payoff function for any vanilla option on the commodity. Given
this payoff function, the same finite difference technique used to solve for
the forward prices in Chapter 2 can be used solve the option pricing equation.

The most useful way to illustrate the dependence of options prices on
fundamentals is to examine the relation between implied volatilities (from
the canonical Black model, the most widely used commodity futures option
pricing model) and fundamentals. Figure 3.5 illustrates the relation between
the at-the-money implied volatility for a 1 month option and yt and xt, with
zt = 0. The payoff to this option is max[ST − K, 0], where ST is the spot
price at expiration.

To perform this analysis, I first solve the relevant valuation PDE to de-
termine the 1 month forward price for each point in the state variable grid.
This forward price gives the strike price of the ATM option as a function of
the state variables. I then solve the valuation PDE (3.2) to determine the
option price for each point in the state variable grid, plug this option value
into the Black option pricing equation, and solve for the implied volatility.

Unsurprisingly, the ATM implied volatilities vary with the state variables
in much the same way as the instantaneous variances. Implied volatilities
are increasing in yt and decreasing in xt. Moreover, there is a substantial
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difference in the level of the implied volatility between slack times and tight
ones. When demand is high and stocks low the volatility is substantially
larger than when demand is low and stocks high. Though not pictured, ATM
implied volatilities are less sensitive to state variables, the longer the option’s
maturity. This reflects the same fundamental factors discussed above.

It is well known that variations in instantaneous variances can generate a
“smile” or ”skew” in implied volatilities. The smile depicts, in a graphical
form, the relation between the strike price of an option and the option’s
implied volatility. In the Black model with a constant volatility, this rela-
tionship would be flat; volatilities would be the same for every strike price. If,
however, the assumptions of the Black model do not hold, due for instance to
volatility varying with the state variables as in the storage economy, market
participants will negotiate options prices that differ from those generated
by the Black model with a given value for volatility. Hence, if you utilize
the Black model to back out a volatility estimate from options with differ-
ent strike prices, you will estimate different implied volatilities for options
on the same underlying commodity and same expiration date but different
strike prices. The variation in implied volatilities across options of different
strikes is an indication that the market is using a model other than the Black
model to price options. The plot of volatilities against strike prices is often
called a smile or a skew because the resulting curve is often smile-shaped,
or exhibits a skew (higher values for low strike prices than high ones, for
instance).

Given the fundamentals-driven variations in volatilities, one expects to
observe a smile in implied volatilities in the storage economy because these
variations violate the Black model assumptions. Indeed, Figures 3.6 and
3.7 illustrate that storage economy volatilities do smile. Each figure depicts
the relation between volatilities and strike price, with the strike price range
between 95 percent and 105 percent of the current 1 month forward price.

Figure 3.6 depicts the smile for one month options for tight fundamental
conditions with low stocks and high demand. The smile reaches a mini-
mum near the at-the-money strike price; the minimum volatility is about 43
percent. The smile reflects the leptokurtosis that arises from the stochastic
volatility of prices induced by the dependence of instantaneous variances on
the state variables.

There is a slight bias to the “call wing,” with the highest strike price
options (deep out-of-the-money calls) having a higher implied volatility than
call options that are out of the money by an identical percentage.4 This

4 The “call wing” refers to the part of the smile corresponding to high strike prices, as with
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reflects the effect of supply and demand fundamentals on price variability;
a further tightening of supply and demand conditions would both increase
prices and volatility, whereas a relaxation of said conditions would tend to
both reduce prices and variability.

Figure 3.7 depicts the volatility smile when yt, zt, and xt are at their
long run means (with the mean of xt estimated from the simulated sample).
Here the smile is fairly symmetric, and reaches a minimum near the ATM
strike; not surprisingly, the overall level of volatility is much lower with these
moderate demand conditions as compared to their level under tight demand
conditions. The minimum volatility level is only about 18 percent, in contrast
to the 43 percent in Figure 3.6. The smile is again largely symmetric, with
a slight bias to the call wing.

This behavior of implied volatilities is difficult for standard reduced form
options pricing models based on Gaussian state variables to capture. The
widely used Schwartz (1997) two factor model provides a standard of com-
parison.5 This model permits twists in the term structure of commodity
prices by incorporating two state variables, the spot price and the conve-
nience yield. The spot price essentially determines the level of the price
curve, and the convenience yield its slope. The spot price process is:

dSt
St

= (μ− δt)dt+ σ1dW1 (3.3)

The convenience yield process is:

dδt = κ(α− δt)dt+ σ2dW2 (3.4)

and W1 and W2 are Brownian motions. The appropriate volatility to use in
the Black formula to value an option on the spot expiring in τ years in this
model is:√
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I fit the Schwartz model (using the Kalman filtering methodology de-

scribed in Schwartz, 1997 to spot, 3 month, 15 month, and 27 month for-
ward prices simulated from the using the same parameters used to create
the earlier figures. The parameters produced from this estimation imply a
volatility for a 30 day forward price of .33. A comparison of the implied

out-of-the-money calls. The “put wing” refers to the part of the smile corresponding to low
strike prices, e.g., out-of-the-money puts.

5 There are a variety of similar models, including Gibson and Schwartz (1990), Miltersen and
Schwartz (1998), and Hilliard and Reis (1998). For simplicity I focus on Schwartz (1997)
model 2; models from these other papers exhibit similar properties.
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volatilities in Figures 3.6 and 3.7 with this figure for the Schwartz 30 day
forward price volatility implies that this model misprices options systemat-
ically. During average supply and demand conditions (illustrated in Figure
3.7), the Schwartz model substantially overprices options, because the 33
percent Schwartz model volatility is much higher than the implied volatil-
ities from any but the deepest in- or out-of-the-money options. (Given the
volatility smile is lower, the looser are supply-demand conditions, it this
means that the Schwartz model overprices options under these conditions
too.) During the tight supply and demand conditions, the Schwartz model
substantially underprices options; note that the entire smile in Figure 3.6
is well above the .33 percent Schwartz model volatility. The underpricing is
most extreme for deep in- or out-of-the-money options.

It should be noted that these mispricings are most pronounced for short-
dated options. Extending the maturity of the options flattens the smile.
Indeed, for long dated options (e.g., a year), the smile is flat at a level
approximately equal to the volatility implied by the Schwartz model fit
to the calibrated, simulated data. Thus, although a reduced form, multi-
factor Gaussian model may be deficient for pricing and hedging short-dated
options, it is a plausible model for pricing longer dated ones.

There is another way to illustrate the limitations of models that do not
take into account the non-linearities in prices that arise from non-linearities
in marginal cost and the effects of storage. This is to examine the implica-
tions of the “true” storage economy model and the reduced form Gaussian
model for the behavior of very short dated futures prices. In the industrial
metals markets, there is a well-developed overnight borrowing market, so
one day forward contracts are actively traded.

Figure 3.8 presents a simulation of the “true” daily backwardation from
the storage model, and the daily backwardation that the Schwartz model
generates. The daily backwardation is the difference between the one day
forward price (net of interest costs) and the spot price, implied by the equi-
librium price and storage functions, and the simulated series of z and y

shocks. Note that this series is almost always zero, but periodically spikes
down to very low levels; these spikes occur when inventories are zero, or
nearly so.

The other series in Figure 3.8 is the fitted daily backwardation implied by
the Schwartz model. To produce this series, I first implement the Schwartz
(1997) Kalman filter methodology to fit his Model II to the simulated spot,
3 month, 15 month, and 27 month prices. This fitting procedure produces
estimates of the parameters of the Schwartz model, and filtered spot price
and convenience yield series (the state variables in the model). Given the
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parameters and the filtered state variables, for each day in the sample I use
equations 18 and 20 in Schwartz (1997) with τ = 1/365 to determine a series
of one day forward prices.

Note that in the reduced form Schwartz model daily backwardation is al-
most never zero, is sometimes positive, is much smoother, and never reaches
the very low levels achieved by the “true” daily backwardation; it tends to
reach its lowest levels at the same time the true daily backwardation does,
but the Schwartz daily backwardations never reach the depths of the true
daily backwardation. This reflects the linear, diffusive nature of the under-
lying stochastic processes in this model. These are not capable of handing
the sharp twists at the short end of the forward curve that are inherent in
the storage economy due to (a) the possibility of stockouts, and (b) capacity
constraints. In essence, although a change in tenor has a smaller effect on
backwardation for longer tenors than shorter ones in the diffusion model,
the relation between backwardation and tenor is flatter for short tenors in
this model than in the actual storage economy. In contrast, the stationar-
ity attributable to the stationarity of the state variables and the effects of
storage results in nearly diffusive behavior for longer tenor contracts. Hence
the better performance of the Schwartz model in capturing the behavior of
these prices.

Schwartz and Nielsen propose a model with state dependent volatility.
This is essentially a Schwartz two factor model with volatilities of the state
variables that depend on the convenience yield. Although this model can ad-
dress the problems valuing short-dated vanilla options as described above,
conditional correlations between different tenors are constant and not state
dependent. Thus, this model will face difficulties in pricing correlation-
sensitive claims that are dependent on the shape of the term structure,
such as swaptions or spread options.

One common correlation sensitive claim is an option on a spread between
futures prices with different tenors, such as the spread between 1 month
and 2 month futures prices. Figure 3.9 depicts the difference between (a)
the price of an at-the-money option with one month to expiration on the
difference between the 1 month and 2 month futures prices implied by the
solution to the relevant valuation PDE and the calibrated parameters, and
(b) the price of such an option implied by the Schwartz model fit to simulated
data from the calibrated model. Since there is no analytical expression for
spread option value in the Schwartz model setup, this value is determined
by numerical integration. The figure holds zt = 0, and depicts the difference
between the “true” option value and the Schwartz value for different values
of yt and xt. Note that the Schwartz model grossly underprices the spread
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option when yt is large and xt is low, but substantially overprices the spread
option when yt is small and xt is large. That is, the reduced form model’s
pricing error is negative (positive) when market conditions are tight (slack).

This reflects the lack of state dependence in the reduced form diffusion
model. In particular, the insensitivity of the correlation to fundamentals in
the reduced form model contributes to the pricing bias. When market con-
ditions are slack, the market is at full carry and the nearby and deferred
futures prices are almost perfectly correlated. Under these circumstances,
there is very little variability in the spread and consequently spread op-
tions are virtually valueless. The reduced form model exhibits a correlation
between the nearby and deferred prices of approximately .95 regardless of
the shape of the term structure, and hence spread options still have some
value even when conditions are slack. Relatedly, when market conditions
are tight, the reduced form model’s correlation substantially exceeds the
true correlation between nearby and deferred prices. This, combined with
the fact that the reduced form model understates volatilities under these
circumstances (as seen before), implies that this model underestimates the
value of the spread option. Spreads (i.e., the slope of the term structure) are
much more volatile when the market is in backwardation than under normal
circumstances, and hence spread options are more valuable then.6

In sum, options prices and implied volatilities exhibit state dependence in
the storage economy. Option values are higher ceteris paribus when supply-
demand conditions are tight. Moreover, under these circumstances options
implied volatilities exhibit a pronounced smirk towards the call wing. In
more typical market conditions, options volatilities exhibit a symmetric
smile. correlation dependent products also exhibit state dependence. These
effects are most pronounced for short-dated options. Valuation models with
Gaussian state variables do a poor job of pricing short dated claims in the
storage economy. These models cannot capture the huge swings in volatility
at the short end of the forward curve, nor can they handle the extreme twists
in the short end of the curve. Gaussian models characterize the behavior of
longer-dated forward and option prices much more effectively. Given that
many exchange traded and over-the-counter commodity options have rel-
atively short maturities, but many commodity real options have very long
ones, this suggests that Gaussian models have a place in pricing real options,
but not exchange and OTC traded options.

It also should be noted that conventional methods of enriching the dy-
namics of the spot price, such as adding jumps (Hilliard and Reis, 1998)
6 Similarly, the reduced form model does not capture state dependence in swaption implied

volatilities. Swaption values are also correlation sensitive.
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cannot improve the ability of spot price-convenience yield models to cap-
ture the dynamics of the short end of the commodity term structure. In the
jump-diffusion version of the Hilliard-Reis model, spot price jumps cause the
forward price to jump by the same proportion. That is, the term structure
of log prices jumps in parallel. Moreover, in this model neither the proba-
bility (“intensity”) nor the size of the jump depend on the level of prices or
the shape of the term structure. In contrast, in the storage economy large
moves in spot prices typically occur when the market is in backwardation,
and such movements are substantially larger (both absolutely and propor-
tionally) than the movements in forward prices (with the difference increas-
ing with tenor). Although a model in which spot price jump probability and
intensity depend on the shape of the term structure would perhaps generate
more realistic spot price dynamics, even such a model would not accurately
characterize the dynamics of the shape of the term structure, especially at
the short end.7

The dependence of the volatilities and correlations on fundamental factors
suggests that a generalized Ito process may provide a better representation
of price dynamics. One candidate is:

dSt
St

= μ(St) + σ(St)dZt

The idea here is that prices tend to be high when supply and demand con-
ditions are tight, which is when spot volatility is high as well.

There are some problems with this characterization. Figure 3.10 depicts
a scatter plot from simulated data of the instantaneous variance against the
spot price. Note that although variance is generally increasing in price, there
is considerable dispersion of points. This reflects the existence of three state
variables (the demand shocks and inventories), all of which affect both the
prices and instantaneous variances. Hence there is no simple mapping be-
tween price and variance. Figure 3.11 illustrates that there is a much tighter
relation between a measure of the slope of the term structure and instan-
taneous variance.8 Both are based on simulations of the storage economy.
7 Prices in the storage economy as modeled herein are continuous, but can exhibit large

movements in discretely sampled data which look like “jumps” to the naked eye. The storage
model implies that the likelihood in discretely sampled data of these large price movements
are state dependent. Standard jump models do not capture this dependence, and it would be
a substantial challenge to estimate a model in which the characteristics of jumps depend on
measures of the tightness of supplies.

8 Note in the storage model, the variance must be spanned by the forward prices. There are
two shocks in the model, the variations in which induce variations in volatility and prices.
Thus, it is possible to hedge the volatility changes with dynamically adjusted positions in
forward contracts. Note that in the two factor model, at least two futures are required to
achieve this hedge. For this reason, variance cannot be spanned by the spot price (or any
individual forward price alone). This explains the lack of any close relation between volatility
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The horizontal axis depicts the percentage interest adjusted spread between
the spot and 3 month forward prices (ln(P ∗

t /Ft,.25)+ .25r). The vertical axis
depicts the instantaneous variance. Capturing this relation requires a model
in which variance is a function of the slope of the term structure. The two
factor (spot price and convenience yield) model of Schwartz-Nielsen (2003)
incorporates such an effect. Their specification implies a constant correlation
between the spot price and forward prices. As noted earlier, however, in the
storage economy the correlation between the spot price and forward prices
is state dependent, with low correlations when the market is in a strong
backwardation. Thus, although models a la Schwartz-Nielsen may do a bet-
ter job at pricing vanilla options, they are less suited to pricing correlation
sensitive claims including spread options and swaptions.9

3.5 Extension: Storage Capacity Constraints

The model presented herein examines price dynamics and derivatives pricing
in a storage economy in which the non-negativity constraint on inventory
plays an important role. When this constraint binds, or is close to binding,
prices and the shape of the term structure tend to be much more volatile
than when inventories are abundant.

There is evidence that for other commodities, most notably petroleum
and related products, volatilities can be elevated and correlations depressed
when inventories are very large. That is, empirically there is sometimes a V -
shaped relation between the volatility and the spread, with high volatilities
when contango is large as well as when backwardation is large.10 This effect
is readily introduced into the storage model by introducing a physical cost
of storage that is a convex, increasing function of inventory.

and the spot price alone, as illustrated in Figure 3.10, and the much closer relation between a
spot-futures spread and volatility in Figure 3.11. I provide evidence in the next chapter,
however, that empirical volatility is not spanned by the forward curve.

9 Schwartz-Nielsen point out that their model exhibits the same difficulties as the Schwartz
model in capturing the dynamics of very short term prices.

10 Ng and Pirrong (1996) estimate a model for refined petroleum prices similar to the
Backwardation Adjusted GARCH model of Ng and Pirrong (1994) but which includes the
positive and negative components of ln(Pt/Ft,τ ) as separate variables in the variance and
covariance equations. I have estimated this model for Brent and WTI crude oil prices for the
1990-2009 period, and find that volatilities are high and correlations low during both large
contangos and large backwardations. Indeed, oil volatility during 2008-2009 was at
historically high levels at the same time that contango was at all time highs. Kogan et al.
(2009) also document a V -shaped relation between the spread in the market and price
volatilities for oil and refined products. There is no similarly strong relation between contango
and volatilities and correlations for industrial metals.
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For instance, if the cost of storage is:

cs(xt) =
θs

x̄− xt

where x̄ is an upper bound on storage capacity, then (a) the market is in a
large contango when xt is close to x̄, and (b) spot and forward volatilities are
high and correlations between spot and forwards are low when xt nears x̄. In
this model, prices and spreads become more volatile as either as inventories
approach either the non-negativity or storage capacity constraints. Thus,
the model can produce the V -shaped relation between the term structure
slope and volatility found in some energy markets.

The existence of an upper bound on storage has implications for con-
ditional price distributions and volatility smiles. Specifically, prices in the
storage economy exhibit a negative skew when inventories approach storage
capacity. In this circumstance, while the market can respond to a demand
increase by drawing down on stocks (thereby mitigating the price impact of
the demand change) it cannot respond to a demand decrease by adding to
stocks, hence price bears all of the burden of accommodating the negative
demand shock. This produces an asymmetric response to symmetric demand
changes, with large price declines more likely than large price increases. This
left skew also affects the shape of the volatility smile, with low strike op-
tions exhibiting higher implied volatilities than at-the-money options when
the market is in a substantial contango.

An upper bound on storage capacity is plausible, especially in energy mar-
kets. The predictions of the storage model regarding the V−shaped relation
between spreads, volatilities and correlations are consistent with empirical
evidence from these markets.

3.6 Extention: The Effects of speculation on Price Dynamics in
the Storage Economy

The analysis so far has focused on the implications of the storage model
for the behavior of prices, particularly higher moments of prices. But it can
also shed light on policy issues that have long been contentious, and are
even more so at present.

Specifically, the storage model can be used to explore the effects of spec-
ulation on the behavior of prices. In the past decade, and especially in
2008 when commodity prices skyrocketed, speculators have been widely con-
demned for distorting prices. The storage model can be utilized to predict the
effects of speculation. It implies that speculation can indeed affect prices, but
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that the effects of speculation are typically favorable. Moreover, the model
demonstrates that the effects of speculation are typically indirect, namely
through its effect on storage decisions.

This subject is most easily studied in the context of a simpler, one-factor
model: the implications carry through to a more complicated multi-factor
setting. The Martingale framework readily permits studying the effects of
speculation. Speculators willingly take on risk. Innovations that make it
easier for speculators to enter commodity markets, such as commodity index
swaps, exchange traded funds, and so on, affect the market price of risk. This,
in turn, affects the cost of holding and hedging inventories. Changes in the
cost of hedging and holding inventories can affect storage decisions, which
in turn have implications for price dynamics.

The analysis so far, for simplicity, has assumed that the market price of
risk is zero. But as noted in Chapter 2, a non-zero market price of risk is
readily incorporated into the analysis. Recall that in the equivalent mea-
sure that is relevant for pricing purposes, the dynamics of the underlying
fundamental shock are:

dzt = (λz − μzzt)dt+ σzdB̃t (3.6)

where λz is the market price of z risk.
speculation, and in particular the degree of integration between the com-

modity market and the broader financial markets, affects λz.11 Assume that
prior to the entry of new speculators into the market (where the influx
occurs due to, for instance, a financial innovation or the elimination of a
restriction on market participation), the market price of risk λz < 0. This
means that in the equivalent measure, the fundamental demand shock drifts
down, as compared to the drift in the process in the physical measure. This,
in turn, means that the forward price is “downward biased.” The forward
price is less than the expected spot price. This occurs because the expected
spot price is the expectation of the future spot price taken with respect to
the physical measure, but the forward price is the expectation taken with
respect to the equivalent measure. The downward drift in the process under
the equivalent measure means that the distribution used to determine the
forward price is displaced to the left, as compared to the distribution in the
physical measure. This displacement of the mean implies a lower value for
the expectation.12

11 See Hirshleifer (1988) for a formal analysis of how the costs of entry incurred by speculators
affect risk premia, i.e., the market price of risk.

12 In the confusing terminology of Keynes (1930), the forward price exhibits “backwardation,”
which he considered a normal condition in commodity markets. The terminology is confusing
because it is at odds with normal market usage of the term. In market usage, a backwardation
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Assume that the entry of new speculators drives λz to zero. This could
occur, for instance, if the fundamental factor, z, is perfectly diversifiable and
hence should not be priced in equilibrium in an integrated financial market.
In the new equilibrium, the forward price is unbiased. That is, it equals the
expected spot price.

Prior to the entry of the new speculators, those holding inventories pay
the market price of risk. Equivalently, an inventory holder who desires to
hedge risk by selling forward incurs a costs of doing so: he incurs a loss on
average equal to the bias. In contrast, with the influx of speculators, the
market price of risk is zero: equivalently, hedgers pay no cost (incur no loss)
on average. Thus, the influx of speculators affects the costs of holding (or
hedging) inventory. This, in turn, should influence inventory decisions, and
through this channel, prices.

This possibility can be investigated using the storage model. Specifically,
first solve the model under the assumption that λz < 0. Then solve it with
λz = 0. Then simulate the two economies under the same sequence of z
shocks, and compare the evolution of inventories and prices. To make the
difference pronounced, I first assume λz = −.05.

The results of this comparison are readily summarized, and are consistent
with the foregoing intuition.

First, inventories are smaller in the downward biased economy. Indeed,
in long simulations, the average inventory in the λz = −.05 economy is
about sixty percent as large as the average inventory in the λz = 0 economy.
This reflects the rather substantial downward bias in the forward price in
the former (or equivalently, the high risk cost incurred to hold inventory).
Stockouts are more frequent in the downward biased economy.

Second, this change in inventories affects prices. The effects on price levels
are relatively small. The average spot price in the λz = −.05 is about 3 per-
cent lower in long simulations. Thus, speculation can raise prices on average.
But crucially, price volatility is higher in the downward biased economy: in
long simulations the standard deviation of percentage spot price changes is
on the order of 10 percent higher in that economy. Moreover, price spikes are
more frequent in the downward biased, low storage economy: the skewness

refers to a situation where a futures price–a traded price–is below the current spot
price–another traded price. In Keynes’s usage, a backwardation refers to a situation where the
futures price is below the expected future spot price–which is not a traded price. There is no
logical connection between a Keynesian backwardation and a market backwardation. As an
example, the futures market for a true asset, like a stock, will always be at full carry due to
cash-and-carry arbitrage. However, the futures price may be backwardated in a Keynesian
sense. This would occur, for instance, in a CAPM world if the stock has a positive beta.
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of prices in that economy is more than 10 percent greater in long simulations
in that economy.

Thus, the model implies that greater speculation that reduces the market
price of risk (and eliminates Keynesian backwardation) increases invento-
ries, raises prices, but reduces price volatility and the frequency of price
spikes. Since these changes reflect a more efficient allocation of risk, they
are salutary.13

Third, prices are highly correlated across the two economies. Demand
shocks are the main drivers of price movements in both economies, and for
an identical set of demand shocks, price movements are highly correlated.

Fourth, spot-forward spreads are affected somewhat. (I simulate a spot-3
month spread). Backwardations are more pronounced, and more frequent, in
the downward biased economy. This is because stockouts are more likely in
this economy due to the smaller stockholdings. But overall, the differences in
calendar spreads between the two economies are not large (although they are
larger than the price differences); the time series plot of the simulated spread
for the downward biased economy is a slight displacement of the simulated
spread for the risk neutral economy. Backwardations peak at about the
same times in each simulation, and contangos/full carry periods exhibit large
overlaps (though not complete overlaps, because there are times that the
downward biased economy exhibits departures from full carry when the risk
neutral economy does not).

One key result is that almost never in the simulations does a substantial
backwardation exist in the downward biased economy while the risk neutral
economy is at full carry.

Market commentors sometimes attribute the more frequent and persistent
contangos in commodity markets (like oil) since the mid-2000s to increased
speculation. These arguments are frequently dubious because they confuse
Keynesian backwardation with a market backwardation. The simulation re-
sults show that speculation that leads to a reduction in the cost of hedging
can indeed mitigate backwardations (properly defined), but this reflects the

13 Energy economist Philip Verleger claims that this phenomenon has occurred in the heating
oil market. He points out the interesting case of cold snaps in 1989 and 2009. In the earlier
episode, the cold snap led to a dramatic increase in the price of heating oil; in the latter, the
price effect was mild. Verleger notes that inventory levels and speculation levels were higher
in the years leading up to 2009 as compared to 1989. Verleger (2010). This is broadly
consistent with the implications of the model, but it should be noted that heating oil
inventories were also bloated as a result of the precipitous drop in oil demand in the sharp
recession that began in late-2008. Regardless of the reason for the higher inventory holdings,
this episode does illustrate the effects of inventories on price spikes. To the extent that
greater speculation, and closer integration of commodity and financial markets leads to higher
inventory holdings (as the model predicts), price spikes should be smaller and less frequent.
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effect of speculation on the cost of hedging, and the effect of the cost of
hedging on inventory levels.

This has implications for the speculation debate. Changes in market struc-
ture that lead to increased integration between a commodity market and the
broader financial markets can, in theory, have an impact on the behavior of
the commodity market. In general, if you believe that a commodity market
that is, as in the Keynesian treatment, isolated from the broader financial
market exhibits “normal backwardation,” then the entry of diversified spec-
ulators that results in a dissipation of downward bias will have some effect
on prices and spreads, and potentially a big effect on inventories.

Identifying such an effect in practice is likely to be hugely challenging.
The results presented here assume a downward bias that is far larger than
ever documented for any storable commodity; indeed, since Telser (1958),
economists have provided little empirical evidence that Keynesian back-
wardation is at all normal. This reflects, in part, the fact that measuring
differences in mean are difficult to estimate precisely even in relatively large
samples.

The simulation results permit the examination of these effects in a con-
trolled environment. It is possible to create samples of any size while holding
all the structural features of the economy unchanged. It is further possible to
compare exactly the behavior of prices and quantities under the same set of
demand shocks. Even given this, it is hard to distinguish the two economies;
plots of the time series of prices are nearly indistinguishable (although plots
of the spreads are more obviously different). Moreover, it is possible to set
exactly the effect of speculation on the cost of risk.

Real world empirical work would have none of these advantages. It is
difficult–and nigh on impossible–to measure speculation, or its effect on risk
premia. Difficult to control for structural shifts (e.g., production technol-
ogy shocks, taste shocks that affect demand elasticities, regulatory changes)
occur regularly. The most pronounced effect of speculation is on invento-
ries, but stocks data are far less reliable and more difficult to obtain than
price data. These difficulties make any empirical estimation of the effects of
speculation on prices highly problematic.

The model is still valuable, however, because it forcefully makes the point
that the main effect of speculation is on the price of risk. Its effects on the
prices of the commodities themselves flow from this, and these effects are
indirect, via an inventory channel.
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3.7 Summary and Conclusions

The modern competitive rational expectations theory of storage implies that
the prices of continuously produced, storable commodities should exhibit
complex dynamics with considerable state dependence. In particular, prices
are more volatile when demand is high and/or inventory is sufficiently small.
The volatility of the spot price is particularly sensitive to supply and demand
conditions. Moreover, in a two factor model like that studied in this chapter,
the correlation between spot prices and forward prices is lower when supply-
demand conditions are tight.

These rich dynamics have important implications for pricing of commod-
ity options. In particular, the prices of vanilla options should be strongly
state dependent, with higher implied volatilities when market conditions
are tight (due to high demand and/or low inventory). Moreover, options
implied volatilities “smile” in the storage economy, and the shape of the
smile depends on supply and demand conditions. Furthermore, the prices
of correlation sensitive claims depend on the level and shape of the term
structure of prices.

Extant reduced form models of commodity prices cannot capture the rich
dynamics of commodity prices in the storage economy. Although such mod-
els characterize the behavior of longer tenor prices fairly well, they are poor
representations of the behavior of shorter term prices. Even models that
permit some state dependence in volatilities find it difficult to generate the
dynamics of the shape of the short end of the term structure of prices in
the storage economy. Indeed, it is doubtful that any variation on the stan-
dard reduced form commodity price modeling framework will adequately
characterize the dynamics of actual commodity prices.

The two factor model makes many predictions about the behavior of com-
modity spot and forward prices, their volatilities, and their correlations.
These predictions match at least qualitatively findings in some empirical
studies of commodity prices, such as in my work with Victor Ng. But it is
desirable to know how well the model predictions match up with the behav-
ior of actual commodity prices. That is, how good a job does the model do
in fitting actual data on the prices of continuously produced commodities?
The next chapter makes such an evaluation, using data from an important
continuously produced commodity: copper.
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Table 1
Panel A

Empirical and Simulated
Copper Volatilities (annualized)

Tenor Empirical Simulated

Cash .2300 .2316

3 Month .1830 .1812

15 Month .1560 .1000

27 Month .1510 .0520

Table 1
Panel B

Empirical and Simulated
Copper Correlations

Empirical

Tenor Cash 3 Month 15 Month 27 Month

Cash 1.00

3 Month .9529 1.00

15 Month .8459 .9181

27 Month .7863 .8627 .9510 1

Simulated

Tenor Cash 3 Month 15 Month 27 Month

Cash 1.00

3 Month .9467 1.00

15 Month .8805 .9718

27 Month .8094 .9182 .9515 1



4

The Empirical Performance of the Two Factor
Storage Model

4.1 Introduction

The previous chapter showed how continuously produced commodities’ prices,
volatilities, and correlations behave in a competitive market with two ho-
moscedastic net demand shocks of differing persistences. The model studied
there implies that these prices can exhibit rich dynamics, with time varying
correlations and volatilities that depend on the shape of the forward curve,
and hence, with underlying fundamental supply and demand conditions.

Empirically observed commodity prices also exhibit rich dynamics, in-
cluding time varying–and often extreme–volatilities.1 Commodity forward
curves exhibit a variety of shapes, including backwardation, contango, and
“humps,” and correlations between forward prices of different maturities are
time varying Ng and Pirrong (1994). Thus the question: how well do the dy-
namics generated by the model match with the dynamics observed for actual
commodity prices?

Empirical work on the theory has lagged its theoretical development. In
some respects, this is not surprising given the complexity of the problem
and the associated computational costs.

Heretofore, confrontations between the theory and the data have involved
modest calibration exercises based on relatively simple one factor versions
of the model Routledge et al. (2000) (“RSS”), or more ambitious estima-
tions involving low frequency (annual) data Deaton and Laroque (1992),
Deaton and Laroque (1995), or Deaton and Laroque (1996). These empir-
ical investigations have not been particularly kind to the theory. RSS find
that the theory has difficulty explaining the dynamics of longer term for-
ward prices. Deaton-Laroque claim that storage apparently has little role in

1 Mandelbrot’s early work on non-linearities in price dynamics, since extended to financial
markets, was motivated by the study of cotton futures prices Mandelbrot (1963).
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explaining commodity price dynamics; instead, autocorrelation in the un-
derlying net demand process, rather than speculative storage, seems to be
the main source of autocorrelation in commodity prices.

In this chapter I attempt to extend this modest empirical literature in
several ways. First, I explore the ability of the model to fit dynamics of the
entire term structure of a commodity’s price (the commodity studied being
copper) in high frequency (daily) data. Moreover, unlike in previous studies,
I utilize inventory data as well as spot and forward price data. Second, I
implement the two factor model analyzed in the previous chapter, in order
to allow the potential for richer price dynamics (and hence avoid a potential
specification error that may result using a one factor model). Third, I utilize
an empirical technique (extended Kalman filtering) that is well suited to the
study of a market where (a) there are readily observable time series of various
quantities (prices and stocks), but (b) the underlying driving variables are
latent.

The basic results of this exercise are:

• For copper, the storage model does a good job at explaining the dynamics
of spot prices, short tenor (e.g., 3 month) forward prices, and inventories.
The model can match the unconditional volatilities of these prices, and the
unconditional correlations between them. Moreover, the spot and 3 month
prices and inventories fitted by the Kalman filter match the observed
prices quite closely.

• For this commodity, the model does a poorer job of explaining the dynam-
ics of longer dated forward prices, especially 27 month prices. Observed
27 month forward prices are far more volatile than implied by the fitted
model. Moreover, the 27 month prices fitted in the extended Kalman filter
differ noticeably from actual 27 month forward prices.

• The two factor storage model can capture salient features of the dynamics
of copper inventories. In the model, copper inventories are very insensitive
to the long term shock, but are highly sensitive to the dynamics of the
short term shock. Small changes in the persistence and volatility of the
short-term shock can produce large changes in the behavior of the inven-
tory variable, and the ability of the model to fit the observed inventory
data.

• The estimated parameters that describe the dynamics of the net demand
shocks imply the existence of one highly persistent demand shock (with a
half-life of around 6 years) and another much less persistent shock (with
a half life of around 40 days). Thus, most of the autocorrelation in copper
prices results from the fact that demand is highly persistent. Contrary
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to the conclusions of Deaton-Laroque, however, this does not imply that
storage is unimportant. Storage greatly affects the higher moments of
prices and the correlations between spot and forward prices. That is, even
though demand autocorrelation predominates in determining commod-
ity price levels, storage is salient in determining commodity price risks.
Moreover, a model that incorporates only a single highly persistent shock
cannot explain the dynamics of inventories; it is necessary to incorporate
a high frequency shock in order to do so.2

• The model cannot generate option implied volatilities as large as those
observed in the data. Moreover, the filtered demand shocks are not ho-
moscedastic. These findings suggest that it is necessary to incorporate
stochastic demand volatility into the model.

The remainder of this chapter is organized as follows. Section 2 discusses
the empirical literature on commodity storage. Section 3 outlines the empir-
ical approach adopted herein, and Section 4 discusses the results generated
by that approach. Section 5 summarizes the article.

4.2 Empirical Tests of the Theory of Storage: A Brief Literature
Review

Empirical work on the competitive storage model has focused on low fre-
quency (e.g., annual) data or relatively simple calibrations using higher fre-
quency data.

Deaton-Laroque fit a one factor storage model to a variety of commodity
price time series. Their maximum likelihood approach exploits an implica-
tion of the simple one factor model; namely, that there is a “cutoff price”
such that inventories fall to zero when the spot price exceeds the cutoff, but
inventories are positive when the price is lower than the cutoff. Deaton and
Laroque (1992) posit that demand shocks are i.i.d. They find that although
theoretically storage can cause prices to exhibit positive autocorrelation even
when demand shocks are independent, the level of autocorrelation implied
by their fitted model is far below that observed in practice. Deaton and
Laroque (1995) and Deaton and Laroque (1996) allow for autocorrelated
demand shocks (again in a one factor model). They find that virtually all
the autocorrelation in commodity prices is attributable to autocorrelation
in the underlying demand disturbances, and very little is attributable to the
smoothing effects of speculative storage.
2 Chapter 6, which analyzes seasonal commodities, provides compelling evidence that high

demand persistence is not sufficient to explain the high autocorrelations observed in the
prices of commodities like corn or soybeans.
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The Deaton-Laroque empirical analyses are problematic for several rea-
sons. First, they utilize low frequency (annual) data for a wide variety of very
heterogeneous commodities. Since in reality economic agents make decisions
regarding storage daily, if not intraday, the frequency of their data is poorly
aligned with the frequency of the economic decisions they are trying to as-
sess empirically. Moreover, Deaton-Laroque impose a single model on very
different commodities. Their commodities include those that are produced
continuously and have non-seasonal demand (e.g., industrial metals such
as tin and copper), those that are planted and produced seasonally (e.g.,
corn and wheat), and others that are produced seasonally from perennial
plants (e.g., coffee and cocoa). The economics of storage differ substantially
between these various products, but the Deaton-Laroque empirical specifica-
tion does not reflect these differences. Finally, their use of annual data forces
them to estimate their model with decades of data encompassing periods of
major changes in income, technology, policy regimes, and trade patterns
(not to mention wars), but they do not allow for structural shifts.

RSS present a one factor model of commodity storage, and calibrate this
model to certain moments of oil futures prices. Specifically, they choose the
parameters of the storage model (the autocorrelation and variance of the
demand shock, and the parameters of the net demand curve) to minimize
the mean squared errors in the means and variances of oil futures prices with
maturities between one and ten months.

RSS find that the basic one factor model does a poor job at explaining
the variances of longer-tenor futures prices. To mitigate this problem, they
propose a model with an additional, and permanent, demand shock that does
not affect optimal storage decisions and which is not priced in equilibrium.
They calibrate the variance of this parameter so as to match the variance of
the 10 month oil futures price, and then choose the remaining parameters to
minimize mean squared errors in the means and variances of the remaining
futures prices.

RSS do not examine correlations between different futures prices. The
models they examine do not generate the dynamics of correlations docu-
mented Ng and Pirrong (1994). Specifically, their models cannot explain the
fact that correlations between spot and forward prices can decline substan-
tially when stocks are low and the market is in backwardation. Moreover, as
noted in Chapter 3, the permanent shock has undesirable characteristics.

Specifically, this shock shifts the supply and demand curves up in parallel.
This could be interpreted as a pure price level shock, which would imply
that deflated commodity prices exhibit relatively little persistence. This is
not consistent with extant evidence. An alternative interpretation is that
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a permanent (or highly persistent) shock is related to the business cycle;
note that it is difficult to reject the hypothesis that GDP and aggregate
consumption are integrated processes. However, under the RSS specification
the permanent shock does not affect output. This is inconsistent with the fact
that the outputs of many continuously produced commodities are strongly
pro-cyclical. Moreover, a permanent shock risk (presumably related to the
business cycle and hence systematic) should be priced in equilibrium, which
is inconsistent with the RSS assumption that the expected value of the
future shock is its current value (as is necessary to ensure that does not
affect storage decisions).

4.3 An Alternative Empirical Approach

4.3.1 Overview

I propose and implement an alternative empirical approach to studying the
continuously produced commodity storage economy analyzed in Chapter
3. This approach utilizes high frequency–daily–data to reflect the fact that
economic agents can and do make intertemporal resource allocation decisions
almost continuously; an empirical study in which the assumed frequency of
decision making matches the actual frequency is better specified than one
in which it does not. Moreover, rather just trying to match only a selected
subset of moments of prices, I attempt to fit a daily time series of spot prices,
forward prices and–importantly–inventories. Finally, I fit a full-blown two
factor model (rather than the more restrictive RSS two-factor model) that
can generate richer price and inventory dynamics.

The requisite data is available only for a small number of commodities–
industrial metals traded on the London Metal Exchange. Industrial metals
are continuously produced and not subject to seasonal supply or demand.
The LME trades very short dated contracts–one day forwards, effectively
a true spot contract–and very long dated ones–as much as 27 months for-
ward.3 Data on these instruments is available daily going back to the 1980s.
These prices are also unique in that they are for a constant maturity (e.g.,
15 months) rather than for a particular delivery date (e.g., July, 2011) with
maturities that change as time passes. This eliminates another empirical
challenge. Moreover, since 1997 the LME has reported daily inventories of
its commodities held in exchange warehouses; these warehouses contain vir-
tually all of the speculative stocks of metal.4 No other commodities have

3 Indeed, the LME recently introduced a 63 month forward contract.
4 RSS refer to speculative stocks as “discretionary” stocks, to be distinguished from stocks
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equivalent, comprehensive inventory figures at frequencies that match those
of available price data.

The LME data have been studied extensively by Ng and Pirrong (1994),
and hence it is possible to compare the implications of the models fitted here
with the empirical regularities they document. I therefore implement the
empirical analysis using copper (the most heavily traded industrial metal).
This sample period for this metal presents a serious challenge to the theory.
During the early part of the sample period, copper prices were very low–
historic lows, when adjusting for inflation. During the latter part of the
sample period, copper reached all time highs–even adjusting for inflation.
Then, as the financial crisis kicked in late-2008, copper prices plunged before
making a sharp recovery in mid-2009. In other words, this is a commodity
that exhibited sharp and substantial variations over a considerable period
of time. It thus poses a tough challenge to any model.

The copper market is also one which was widely alleged to have been un-
duly affected by excessive speculation, especially in 2005-2008. That is, much
of the price action in these years was attributed to speculative distortion,
rather than changes in fundamentals. Thus, the ability of a fundamentals-
based model to accurately reproduce the observed price behavior, especially
during this period, is relevant to the debate over the influence of speculation.
And as I show below, it is possible to see how well measures of speculative
activity relate to the filtered demand estimates that the empirical analysis
produces to determine whether the demand that moved prices was specula-
tive, or fundamental.

The basic empirical approach involves a mixture of estimation and cali-
bration techniques; a full blown estimation of all the parameters necessary
for a realistic model is not computationally practical. In essence, I fix various
parameters (e.g., demand elasticity, production capacity, the shape of the
supply curve, storage costs) and estimate others (notably, those describing
the dynamics of latent net demand shocks). I then test the robustness of the
results by varying the fixed parameters.

The method involves several steps:

1. Establish a grid of parameters. The parameters characterize the dynam-
ics of net demand shocks, specifically their persistence, volatility, and
correlation.

2. Choosing a set of parameters from the grid, solve a stochastic dynamic
program for a storage economy. Given that this is the same model as that

committed to production or consumption further down the value chain, such as natural gas in
a pipeline near an industrial consumer.
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studied in Chapter 3, please refer to that chapter for a detailed discussion
of the model and its numerical solution. This program has three state
variables–inventories and two net demand shocks with difference degrees
of persistence. The solution to the program gives spot prices, 3 month,
15 month, and 27 month forward prices, and inventories as functions of
these state variables.

3. Given the solution to the storage problem, run an Extended Kalman
Filter (“EKF”).5 In the EKF analysis, the observables are LME cash,
3 month, 15 month, and 27 month prices, and LME inventories from 7
April, 1997 to 1 July, 2009. The EKF provides filtered estimates of the
latent net demand shocks. Determine the log-likelihood from the EKF.

4. Choose another set of parameters from the grid, and then repeat steps
2-4 for all points in the parameter grid.

5. Choose the set of parameters that generates the highest log-likelihood.

This is a very computationally expensive process. Due to the curse of di-
mensionality, solution of the two dimensional dynamic programming prob-
lem can take as long as 6 hours on a 1.2 Ghz computer for each set of pa-
rameters. Moreover, each iteration of the EKF takes several minutes (due to
the need to interpolate in three dimensions the four price and one inventory
functions for each of the 3709 observations). These computational burdens
make a full-blown estimation of all parameters (including the parameters
that describe the instantaneous demand curve and the supply curve) im-
practical.

Given the final demand process parameters, I simulate multiple sets of
time series (each with the same number of observations as the empirical data
available) of spot, 3 month, 15 month, and 27 month prices, and inventories,
and for each set estimate the variances of these series, and the correlations
between them. I then compare the means of these simulated variances and
correlations to the corresponding empirical variances and correlations for
copper estimated using data from April, 1997-July, 2009; the starting date
is dictated by the fact that marks when daily inventory data are available
from the LME. Finally, I estimate a backwardation augmented GARCH
model like that employed by Ng and Pirrong (1994) using the simulated
cash and 3 month prices to see whether the simulated conditional variances
and covariances exhibit the features documented by Ng-Pirrong.

The solution of the dynamic programming model is at the heart of the
process. The model is the same as studied in the previous chapter, with two

5 An Extended Kalman Filter is necessary because the observables are non-linear functions of
the state variables, and one state variable is a non-linear function of the other state variables.
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net demand shocks, z and y, with the former more persistent than the latter.
The cost and demand functions are the same as in Chapter 3. Individual,
risk neutral agents are presumed to make storage decisions on a daily basis.
The model is solved recursively and numerically, using the PDE approach
to determine the relevant forward prices, and the splitting method to solve
the PDEs.

The solution to the model for a given set of parameters is then combined
with the an Extended Kalman Filter to extract estimates of the net demand
shocks, and prices and inventories.

4.3.2 The Extended Kalman Filter

The solution to the dynamic programming problem relates potentially ob-
servable quantities (prices and inventories) to state variables, parameters
describing the dynamics of those state variables, and parameters that de-
scribe supply and demand conditions. Using this solution, I utilize a Kalman
Filter to extract estimates of latent economic processes (the demand shocks)
from observable data on prices and inventories. This method is well suited
for the present application. The underlying demand processes are latent,
but observable prices (and inventories) are related to these processes via the
solution of the dynamic program. Given a choice of parameters, the Kalman
Filter permits calculation of a log likelihood that quantifies how well the
model fits the data. By choosing the parameters that maximize the log like-
lihood, it is possible to find the model that best explains the time series
behavior of the price and inventory data.

The state-space representation of the problem is as follows. The state
variables are zt, yt, “true” speculative stocks xt, and lagged true speculative
stocks xt−1. Thus, there is a vector of state variables, Xt = [zt yt xt xt−1]′.
There is also a vector of observables, Zt. The observables are daily obser-
vations of cash, 3 month, 15 month, and 27 month prices, LME invento-
ries, and one-day lagged LME inventories. Denote these as Pt, F3,t, F15,t,
F27,t, It and It−1, respectively, so Zt = [Pt F3,t F15,t F27,t It It−1]′. Since
the observables are non-linear functions of the state variables, as is xt, the
standard Kalman filter (which assumes a linear relation between state vari-
ables and observables) is not applicable. It is therefore necessary to utilize
a filtering technique that can handle non-linearity. I therefore employ the
Extended Kalman Filter to solve this problem. The EKF modifies the stan-
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dard Kalman machinery to handle non-linearities in relations between state
variables and observables.6

The data are observed with daily frequency, so it is necessary to discretize
in time the processes for zt and yt. This is achieved by setting:

zt = ρzzt−1 + εzt

and

yt = ρyyt−1 + ε
y
t

where ρz = exp(−μz/365), ρy = exp(−μy/365), εzt is Gaussian with variance
σ2
zδt, and εyt is Gaussian with variance σ2

yδt. Moreover, μz and μy are coef-
ficients on the drift terms on the zt and yt Ornstein-Uhlenbeck processes.7

Q denotes the variance-covariance matrix for εt.
Given this time discretization, the EKF linearizes the state and measure-

ment functions around the current estimate of the state variables based on
the partial derivatives of the state and measurement functions. Specifically,
Xt = f(Xt−1, ε

z
t , ε

y
t ), where f(.) is a non-linear function determined by the

dynamics of zt and yt, and the solution of the dynamic programming prob-
lem for xt. Similarly, Zt = h(Xt) + νt where h(.) is a non-linear function
determined by the solution to the dynamic programming problem and νt
is a vector of Gaussian measurement errors. R is the variance-covariance
matrix for νt. Since I assume that observed prices and inventories differ
from the true competitive prices and inventories, this matrix has positive
elements along the diagonal. Moreover, I assume that measurement errors
are uncorrelated across observables, so all off-diagonal elements of R are
zero.

To implement the EKF, at a given observation t one first sets:

X̃t = f(X̂t−1, 0, 0)

where X̂t−1 is an a posteriori estimate of the state vector derived from time
t − 1 (i.e., it is the filtered estimate of the state vector conditional on all
information through t− 1), and

Z̃t = h(X̃t).

In essence, the EKF sets the errors in the state and measurement equations
equal to zero and then expands these non-linear equations around the lagged,

6 An alternative approach is to utilize the unscented Kalman filter. It generates similar results
to those presented here.

7 See Chapter 3.
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filtered estimate of the state vector as follows:

Xt ≈ X̃t + At(Xt − X̂t−1) + Wtεt

where εt = [εzt ε
y
t ]

′, and

Zt = Z̃t + Ht(Xt −Xt−1) + νt.

In these expressions, At is the Jacobian matrix of partial derivatives of
f(.) with respect to Xt, Wt is the Jacobian of the partial derivatives of f(.)
with respect to ε, and Ht is the Jacobian of h(.) with respect to Xt. The
various partial derivatives are determined using X̂t−1 and the solutions to
the dynamic program.8 In this specific application:

At =

⎛
⎜⎜⎝

ρz 0 0 0
0 ρy 0 0

∂xt
∂zt
ρz

∂xt
∂yt
ρy

∂xt
∂xt−1

0
0 0 1 0

⎞
⎟⎟⎠

Wt =

⎛
⎜⎜⎝

1 0
0 1
∂xt
∂zt

∂xt
∂yt

0 0

⎞
⎟⎟⎠

and

Ht =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂P
∂zt

∂P
∂yt

0 ∂P
∂xt−1

∂F3
∂zt

∂F3
∂yt

0 ∂F3
∂xt−1

∂F15
∂zt

∂F15
∂yt

0 ∂F15
∂xt−1

∂F27
∂zt

∂F27
∂yt

0 ∂F27
∂xt−1

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

All of the relevant partial derivatives are estimated using central finite dif-
ferences from the functions that solve the dynamic programming problem.

Welch and Bishop show that the filtering process works as follows:

Pt = APt−1A′ + WQW′

Kt = PtH′(HPt−1H′ + VV′)−1

X̂t = X̃t + Kt(Zt − h(X̃t))

8 The H, W, and A matrices are time varying since the relevant partial derivatives depend on
the state variables. These partials are calculated using central difference approximations on
the solution grid used in the storage problem.
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Pt+1 = (I −KtH)Pt.

In these expressions, Pt is the conditional variance matrix for the measure-
ment equations, and Kt is the Kalman gain. The filter starts by setting the
initial state vector equal to its unconditional expectation, and sets P0 to
the unconditional variance-covariance matrix for the state vector.

4.3.3 Parameter Choices and Data

The main focus of this exercise is to find parameters for the state variable
processes (μz, μy, and Q) that generate solutions to the dynamic program
that mimic the behavior of actual commodity prices. I therefore fix the other
parameters (relating primarily to the supply and demand functions), and
then experiment to determine whether changes in these other parameters
have a large impact on the parameters for the state variable processes that
maximize the log likelihood.

The production capacity, Qt, for copper is chosen to match the annual
daily production capacity for copper in 2004; this figure (of 40,000 metric
tons) was obtained from the International Copper Study Group. To reflect
capacity growth during the 1998-2009 period, similar capacity figures were
obtained for each year. Then, LME copper stocks data were adjusted to
reflect capacity growth. First, for each day of data, stocks were divided by
daily production capacity for the relevant year to determine the number of
days of capacity that the stocks represent. This figure is then multiplied by
the 40,000 ton 2004 daily capacity. This effectively makes the stocks variable
equal to the number of days of production capacity held in inventory.
θ is chosen to ensure that (given the state variable process parameters) the

minimum and maximum observed cash, 3 month, 15 month, and 27 month
prices fall within the minimum and maximum prices implied by the solution
to the dynamic programming problem on the z − y grid. ν and ψ are set
equal to 1.00. The demand elasticity is set equal to 1.00 as well.

The one-day simple interest rate r is set equal to the average one-month
LIBOR rate observed over the 1997-2009 period divided by 365 plus the
average of the ratio of the LME copper storage charge ($.25 per day) to the
cash price of copper. Thus, r captures both the time value of money and
warehousing fees.

The variances of the price measurement errors are chosen to reflect differ-
ences in liquidity across different maturities, with the near maturities being
more liquid than the more distant ones. That is, microstructure effects can
cause observed prices to deviate from “true” prices. Since the prices of more
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actively traded contracts are more likely to reflect accurately true supply
and demand conditions, measurement errors are plausibly smaller for more
liquid instruments. The bid-ask spread is a measure of market liquidity, and
reflects (in the same units in which prices are measured) the precision of the
price discovery process. The “true” price for a contract with a wide bid-ask
spread can differ substantially from the reported price. Consequently, I set
the standard deviation of each measurement error equal to the half-spread
for the corresponding maturity obtained from the LME. As a result, the
variance for the measurement errors on the very liquid cash contract is set
equal to .25, while for the slightly less liquid 3 month tenor it is set equal
to 1. The variances for the errors on the much less liquid 15 and 27 month
tenors is set equal to 25.

Some results are sensitive to the choice of the variance of the stock mea-
surement error. Whereas market bid-ask spreads provide a measure of the
closeness of the relation between observed prices and “true” prices, there
are few a priori considerations to guide the choice of the stock measure-
ment error variance. I therefore experiment with a variety of choices for this
parameter.

Data on LME prices and stocks was obtained from the LME. The prices
are the official settlement prices for LME copper from 7 April, 1997 to 10
July, 2009. Stocks are daily LME stocks.

4.4 Results

Given the fixed parameters, the state variable process parameters that max-
imize the log likelihood that results from the iteration between the solution
of the dynamic program and the EKF procedure are ρz = .9997, ρy = .986,
σz = .55, σy = .165, and ρ = −.02. These imply that the more persistent z
shock has a half-life of approximately 5.75 years, and the less persistent y
shock has a half-life of about 52 days. Thus, the copper data are consistent
with the results of Deaton-Laroque, who find that a highly autocorrelated
demand disturbance is necessary to explain the high persistence of commod-
ity prices.

Figures 4.1-4.4 illustrate the degree of fit between observed and fitted
prices; the fitted prices are in green, the actual in blue. The fitted prices are
based on the implementation of the EKF for the parameters from the grid
search that maximized the likelihood criterion. To determine these prices,
I plug the filtered value of the z and y shocks into the price and inventory
functions implied by the solution to the dynamic programming problem.
The correspondence between the fitted and observed prices is very close
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for the spot and 3 month time series. The correspondence between the 15
month observed and filtered prices is moderately close. However, there are
more marked differences between the filtered and observed prices for the
27 month tenor. The fitted 27 month price, and to a lesser extent the 15
month price, is above the observed price when that price is low, and below
the observed price when it is high. Thus, the two-shock model has difficulty
in capturing the variability of the 27 month price.

Figure 4.5 depicts the fit between observed and fitted stocks. As with the
prices, the fitted stocks are derived from (a) the solution to the dynamic
programming problem, and (b) the filtered values of the shocks derived
from the model and copper data by the EKF. The fitted stocks are close to
observed stocks when observed stocks are large.

The behavior of the stocks variable, and the ability of the model to fit
the evolution of stocks, provides some interesting insights on what drives
the behavior of the observables. The stocks function is highly sensitive to
the persistence and volatility of the less persistent y shock; slight changes
in these parameters lead to substantial divergences between observed and
filtered stock values. Conversely, stocks are largely insensitive to the per-
sistence and volatility of the longer-lived z shock. Moreover, the fits of the
price variables are much more sensitive to the z shock parameters than to
the y shock ones.

Changes in the parameters characterizing the demand curve, the supply
curve, and inventory costs have little impact on the log likelihood. Moreover,
changes in the measurement error variances impact the value of the log
likelihood, but do not have an impact on the ranking of the log likelihood
across different choices of demand process parameters.

Altogether, these results suggest that the storage model does a good job
of capturing the dynamics of the short end of the copper forward curve, an
adequate job of characterizing the dynamics of stocks and medium tenor
(15 month) forward prices, and a poorer job of describing the evolution
of the long end of the term structure. The simulation results confirm this
impression. Table 4.1 reports (a) the unconditional annualized volatilities
of the actual copper cash and 3, 15, and 27 month daily percentage price
changes from 7 April, 1997 to 10 July, 2009, (b) the annualized volatilities
of the actual prices from 7 April, 1997 to 31 July, 2008, and (c) the averages
of the annualized volatilities of percentage changes in simulated time series
of cash and 3, 15, and 27 month forward prices. The first empirical sample
includes the period of the financial crisis, whereas the second excludes it.
Each simulation run has the same number of simulated observations for each
of these prices (3709) as the actual copper price time series. The table reports
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the average of each of the four volatilities from 250 simulation runs.9 The
simulated data assume that observed prices equal the “true” price given by
the solution to the dynamic programming problem for the parameters that
maximize the likelihood criterion. The variance of the measurement error
variances are those used in the EKF.

Note that the simulated volatilities match their empirical counterparts
quite closely, although the simulated cash volatility is somewhat higher,
and the simulated 27 month volatility somewhat lower, than their empirical
counterparts from the sample that excludes the Crisis period; the simulated
variances are uniformly lower than the empirical estimates from the sample
period that includes the crisis. Experimentation suggests that the volatility
of the persistent z shock is the primary determinant of the 27 month volatil-
ity, and that the relations between the shorter tenor volatilities are driven
by the persistence and volatility of the transient y shock.

Table 4.2 reports a comparison of correlations between simulated returns
for forward prices of different tenors, and correlations between actual returns
for the same tenors. Again, the simulated correlations are based on simulated
prices that equal the “true” price derived from the solution to the dynamic
program. The reported simulated correlations are the averages taken from
250 simulations of 3079 observations each. As with the volatilities, I calculate
the empirical correlations on samples including and excluding the period of
the 2008-2009 financial crisis.

The simulated correlations match up closely with the empirical correla-
tions. Thus, the storage model can capture some of the dynamics in the shape
of the forward curve. The simulated cash correlations are slightly lower than
the corresponding actual correlations, and the 27 month simulated correla-
tion is slightly higher than its empirical counterpart. The primary deficiency
is that the simulated correlation between the 15 and 27 month prices is al-
most exactly 1.00, which is considerably higher than the empirical value.
One can reduce this correlation by introducing measurement error into the
simulation, but this also depresses substantially the correlations between the
15 and 27 month prices on the one hand, and the shorter tenor prices on
the other.

In sum, for copper the empirical performance of the storage model is
quite good at the short end of the forward curve. Despite the fact that
the estimation/calibration technique fixes certain parameters arbitrarily to
reduce the computational burden, the solution to the dynamic programming

9 The actual data incorporate weekends, so the daily volatilities are annualized by multiplying
them by the square root of 252. The simulated data assume trading takes place every day, so
they are annualized by multiplying by the square root of 365.
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storage problem based on net demand shock parameters that maximize the
likelihood criteria matches cash and 3 month prices quite closely. Similarly,
in simulations it generates volatilities and correlations for these tenors that
are quite close to those observed empirically. The performance for the longer
tenor prices, especially the very long 27 month price, is less satisfactory. In
particular, it is difficult to match the correlation of the 15 and 27 month
prices. Moreover, the path of shocks that creates a close correspondence
between the observed and filtered model generated prices leads to noticeable
disparities between the fitted and observed 27 month prices.

The results strongly suggest the importance of a very persistent demand
shock in explaining the dynamics of copper prices. Log likelihood falls sub-
stantially when one restricts the more highly autocorrelated demand shock
to have a persistence of much less than 5 years.

This can be seen visually. Figure 4.6 depicts the filtered value of the
persistent demand shock zt (derived from the EKF). Compare the path
followed by this demand shock to the paths of the prices depicted in Figures
4.1-4.4–they are almost identical (except for scaling/units). It is evident that
the persistent shock is a major price driver.

For some, interest in the theory of storage derives from the ability of
storage to transform temporally uncorrelated demand shocks into more per-
sistent price shocks (Deaton and Laroque, 1992). Earlier empirical results,
and those presented here, suggest that storage is not the primary driver
of the persistence of commodity prices; instead, autocorrelation in demand
plays the leading role.

This is not to say that storage is unimportant. Instead, as argued by ?,
and demonstrated in Chapter 3, storage can also affect the higher moments
in prices (particularly variances and correlations among forward prices of
differing maturities). Ng-Pirrong show that empirically, volatilities tend to
be high when the market is in backwardation, and that the correlation be-
tween the spot and futures prices tends to be near one when the market is
at full carry and inventories are high, but falls well below one as the market
goes into backwardation.

As documented in Chapter 3, the two factor storage model generates sim-
ilar dynamics. Thus, at least qualitatively, the model generates predictions
about the behavior of volatilities and correlation that correspond with the
empirical findings of Ng-Pirrong. This raises the question of how well the
behavior of the second moments from model generated prices matches with
their empirical counterparts.

Ng and Pirrong (1994) investigate the joint dynamics of copper cash and
3 month prices in a bivariate GARCH framework that utilizes the amount
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of backwardation in the market as a measure of the level of stocks (as their
work was done before daily stocks data were available). This “backwarda-
tion adjusted GARCH” (“BAG”) framework allows the variance of the cash
and 3 month prices, and the correlation between them, to depend on the de-
gree of backwardation. As illustrated in Figure 4.7, there is a strong relation
between backwardation and the level of stocks in the storage model. This
figure graphs the backwardation (adjusted for carrying costs) between the
cash and three month generated by the storage model in a simulated time se-
ries of 5000 observations against the simulated time series of carry-in stocks.
Note the classic “supply of storage” relation first documented by Working
in the 1930s, with large (small or non-existent) backwardations associated
with low (high) stocks.

To determine whether the storage model can generate similar dynamics,
I estimate the Ng-Pirrong model on both simulated data, and data from
1997-2009. Formally, the model is:

hc,t = ωc + αcε
2
c,t + βchc,t−1 + φcB2

t−1 (4.1)

h3,t = ω3 + α3ε
2
3,t + β3h3,t−1 + φ3B2

t−1 (4.2)

σc,3,t = ρ
√
hc,th3,t + θB2

t−1 (4.3)

where hc,t is the variance of the daily unexpected percentage change in the
cash price on date t, h3,t is the variance of the daily unexpected percentage
change in the 3 month price on date t, εc,t is the unexpected cash price
percentage change on date t, ε3,t is the unexpected 3 month price percentage
change on date t, σc,3,t is the covariance between the cash and 3 month
unexpected percentage price changes at t, and:

Bt = lnPt − ln(Ft,.25 − ct)

where Pt is the cash price, Ft,.25 is the 3 month price, and ct is the cost of
carrying inventory for three months. That is, Bt is the carrying-cost adjusted
backwardation between the cash and 3 month prices. This should be non-
negative (as spreads should not exceed full carry) and is larger, the greater
the backwardation in the forward curve.

Table 4.3 presents the BAG model parameters estimated from LME cop-
per cash and 3 month data for the 1997-2009 period and the parameters
estimated from simulated price data (using the same structural parameters
from the calibration); all coefficients are highly significant, so only the point
estimates of the parameters are presented. The results from the estimations
on the simulated and actual data exhibit some important similarities. First,
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each exhibits both ARCH and GARCH effects, and the magnitudes of the
ARCH and GARCH parameters are similar, although the persistence of
volatility shocks is somewhat lower and the ARCH effects somewhat larger
in the simulated data.10 Second, in both actual and simulated data, the coef-
ficients on the backwardation variable are positive and significant, indicating
that prices are more volatile when the market is in backwardation than when
it is not. The coefficient on the squared spread in the cash price variance
equation is substantially larger in the simulated data. Third, cash price vari-
ances are more sensitive to the backwardation measure than 3 month prices
for both real and simulated data, but the disparity between these coefficients
is much more pronounced in the simulated data.11 Fourth, when the market
is at full carry (i.e., the backwardation variable is zero) spot-3 month cor-
relations are effectively 1.00 for both the real and simulated data, and for
both series increasing backwardation reduces the covariance between cash
and forward prices. Together the results for the variances and covariance im-
ply that correlations decline as backwardation increases in both the actual
and simulated data.

There are some differences between the estimates gained from the actual
and simulated data. One difference is that when the BAG model is estimated
under the assumption that the unexpected cash and 3 month percentage
price changes are drawn from a t-distribution is that in the actual data,
the estimated number of degrees of freedom is 3.36, whereas in the simu-
lated data, the estimated degrees of freedom is near 10. Thus, whereas in
the simulated data leptokurtosis results mainly from heteroscedasticity at-
tributable to changing supply and demand conditions, there is an additional
source of leptokurtosis in the actual data (the larger degrees of freedom in
the simulated data correspond to a less leptokurtotic conditional price dis-
tribution). Another difference is that although in the simulated data both
the cash and 3 month volatilities increase when stocks fall and backwarda-
tion, the effect is much larger for the cash price, whereas in the actual data,
the backwardation change has an almost equal effect on the cash and three
month variances. This finding is robust to changes in the net demand process
parameters; regardless of the choice of these parameters, the spot volatility
function implied by the solution to the dynamic programming problem is
highly sensitive to inventories, but the 3 month volatility is not as responsive
as in the empirical data. Thus, the storage model does a very good job at
10 When estimated on a longer time period of data (1982-2009) the GARCH and ARCH

coefficients based on actual data are somewhat smaller than those for the simulated data.
11 In the longer 1982-2009 sample period, backwardation has a more pronounced effect on the

spot volatility than the 3 month volatility than is the case in the shorter period, where the
coefficients on the backwardation variable in the spot and forward equations are almost equal.
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capturing salient features of the conditional variance of the spot price, but a
poorer job at capturing the behavior of the conditional variance of forward
prices. Furthermore, the impact of backwardation on correlation is negative
in both the actual and simulated data sets, but the magnitude of the effect
is substantially larger in the simulated data.

Another metric points out some deficiencies in the ability of the storage
model to capture fully the dynamics of the higher order moments of copper
returns. Specifically, the storage model cannot generate implied volatilities
for copper options similar to those observed during the 1997-2009 time pe-
riod.

To make this comparison, I first determine Black Model implied volatilities
using the solution to the dynamic programming model. Given the parameters
for the y and z processes that maximize log likelihood, and the spot price
function generated by the solution of the dynamic programming problem for
these parameter values, I solve the following PDE to determine the value of
an at the money call option with 45 days to maturity for each value of z, y,
and x in the valuation grid:12

rC =
∂Ft,τ
∂t

+ μz
∂Ft,τ
∂x

+ μy
∂Ft,τ
∂y

+ .5σ2
z

∂2Ft,τ
∂z2

+ .5σ2
y

∂2Ft,τ
∂y2

+ ρσzσy
∂2Ft,τ
∂z∂y
(4.4)

where C is the price of the call being valued. Given the C that solves this
equation (for each point on the valuation grid), I determine the correspond-
ing implied volatility from the Black Model at each point in the grid. I then
collect the implied volatilities from at-the-money copper options traded on
COMEX. The available data include volatilities for options with between
zero and three months to expiry; I interpolate between the volatilities of
options with maturities spanning 45 days to determine an estimate of the
implied volatility on an option with a 45 day maturity. Based on the avail-
ability of the implied volatility data, I perform this exercise for each day
between 2 January, 1998 and 17 June, 2009.

I then use the COMEX implied volatility as another observable variable
in the Extended Kalman Filter setup. That is, I expand the state space to
include implied volatility, and re-estimate the EKF to determine how well
the model can fit not just the observed prices and stocks, but the observed
implied volatilities.

The answer is, not very well. Figure 4.8 depicts the time series of the actual
45 day implied at-the-money copper volatility (the more jagged and variable
12 Since the 45 day forward price differs at each point in the valuation grid, there is a different

strike price for each point in this grid, each corresponding to the 45 day forward price at that
grid.
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series) and the filtered value of the 45 day at-the-money option implied
volatility. Note that the series do not covary even remotely closely. The
disparity is particularly pronounced during the period of the financial crisis,
beginning in September, 2008. At that time, implied volatilities skyrocketed,
but the implied volatility generated by the model and the filtered shocks
actually declined. This decline was due to the fact that demand declined and
stocks ballooned during this period; in the model, both of these developments
tend to reduce price variances; but during this period, in the COMEX data,
the implied volatility ranges between 50 and 70 percent. It reaches levels of
over 60 percent at times prior to the crisis. In contrast, the largest implied
volatility generated by the storage model is approximately 35 percent. The
model continues to fit the prices and inventories well when implied volatility
is included as an observable, but it cannot fit volatilities. That is, although
the model can generate time variation in price volatilities, it cannot generate
variations as large as those observed in the data.

Thus, although the storage model can produce time variation in instanta-
neous and implied volatilities, empirically the model-predicted variations do
not match observed variations. This means that volatility is not spanned by
the forward prices–or indeed, by the forward prices and inventories.13 Put
differently, if the two risk factors (and inventories) were the only determi-
nants of copper prices, a two factor model that fit the copper prices would
also explain the evolution of copper implied volatilities, and one could hedge
the implied volatilities with a portfolio consisting of two different forward
contracts (e.g., the 3 and 15 month prices).14 The model fits prices well, but
fails miserably in fitting the implied volatility, indicating that something
other than variations in zt and yt drive variations in volatility. That is,
volatility variations are not subsumed by–explained by or spanned by–these
underlying demand variables.

These various results suggest that the model analyzed herein is missing a
factor salient for the pricing of options–and for explaining the variances of
copper prices. One obvious possibility is stochastic volatility in the underly-
ing net demand shocks. The filtered values of the shocks from the solution to
the EKF provide some evidence of this. Figure 4.9 depicts the time series of
(Δẑt)2 where ẑt is the filtered value of zt. Note that this series exhibits pro-
nounced “waves” of the type characteristic of GARCH processes, or stochas-
tic volatility processes. Indeed, fitting a GARCH(1,1) model to this series

13 See Trolle and Schwartz (2009) for a discussion of unspanned volatility, and an empirical
analysis that demonstrates that oil futures prices do not span oil futures volatilities.

14 The weights in this portfolio would be determined based on the sensitivities of the 3 and 15
month prices, and the implied volatility, to the two demand shocks.
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produces large and statistically significant coefficients on the lagged variance
and the lagged squared shock. Similar results hold for the y process. Thus,
the data are not consistent with the assumption (maintained in the model
studied herein) that the demand shock processes are homoscedastic. Given
the salience of volatility for options prices, and the possible dependence of
storage decisions on fundamental volatility (because storage is an economic
response to risk), this suggests the necessity of extending the model to in-
corporate stochastic volatility in the demand shock. I explore such a model
in the next chapter.

Since it takes a model to beat a model, in addition to comparing the two
factor storage model’s performance to the actual data, it is also worthwhile
to compare its performance to an alternative model. The main competitors
to structural models like those studied here are reduced form models, like
those used in derivatives pricing applications. In commodities, a well-known
reduced form model is the two factor Schwartz Model, which is closely related
to the Schwartz-Smith and Gibson-Schwartz models.

The Schwartz two factor model posits a spot price process:

dSt
St

= (μ− δt)dt+ σ1dz1t

and a convenience yield process:

dδt = κ(α− δt)dt+ σ2dz2t

Given these SDEs, the solution to partial differential equations with the
appropriate boundary conditions gives the forward price for any tenor.

Schwartz (1997) uses Kalman filtering to determine the parameters for
the SDEs, and to produce filtered estimates of the state variables (the spot
price and convenience yield) and forward prices. I use the same methodol-
ogy on the 1997-2009 copper price data used in my analysis of the structural
storage model. The resulting filtered cash, 3 month, 15, and 27 month prices
are depicted in figures 4.10-4.13 (green lines); these figures also present the
actual price data (blue lines). (Stocks are not part of the Schwartz model,
and hence there is no filtered stock series.) A comparison of these figures
with Figures 4.1-4.4, which present similar data from the structural stor-
age model, reveals that the structural model fits the short tenor (cash and
three month) prices slightly better than the Schwartz model, whereas the
latter does somewhat better at longer tenors. Furthermore, all returns in the
Schwartz model are homoscedastic, meaning that this model cannot gener-
ate any time variation in the second moments. Although the storage model
cannot generate second moments that match closely the observed behavior
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of these moments in the actual data, the structural model variances and
covariances exhibit some time variation. Thus, the structural model does
a better job at capturing the time series dynamics of copper prices than
the Schwartz model, but it is still deficient in some respects. The Schwartz
model, of course, cannot capture the dynamics of inventories because it does
not include this variable.

In sum, the calibrated storage model can capture key features of the empir-
ical behavior of copper prices. The model does a very good job at capturing
the behavior of the spot price–the model can match the level, unconditional
variance, and the behavior of the conditional variance of the spot price. The
model’s performance is less satisfactory at the longer end of the forward
curve–the model’s pricing errors for 27 month copper forward prices are
large, and it somewhat underestimates the unconditional variance of this
price. The model can match the unconditional variances of shorter term for-
ward prices, and the unconditional correlations between the various forward
prices. It does a poorer job at capturing the behavior of the conditional
variance of forward prices, even for tenors as short as 3 months; the model
predicts smaller fluctuations in the variance of the forward price in response
to changes in the slope of the forward curve than are observed in practice.
The model also suggests the existence of a highly persistent net demand
shock for copper.

4.5 The Implications of the Model for the speculation Debate

As was the case with many other commodity markets in the mid-2000s, there
were numerous allegations that copper prices were driven not by fundamen-
tals, but by speculative excess. For instance, in mid-2006, the International
Wrought Copper Council claimed that the price “had been driven up by
a ‘feeding frenzy’ by hedge funds. ‘It may be great for the producers but
we feel that a market built on speculation leaves tremendous problems out
for our side of the industry.”15 Barclays Capital opined that a “new class
of investors [such as pension funds], who didn’t exist three years ago, are
a dramatic influence in these markets.”16 Warren Buffet claimed that “like
most trends, at the beginning it’s driven by fundamentals but at some point
speculation takes over.”17 The Financial Times stated that

15 Philip Thornton, “Fresh surge in commodity prices raises fears of unsustainable speculative
bubble,” The Independent, 3 May, 2006.

16 Saijel Kishan, “Pension Funds Rise Copper Bets: LME Pressed to Cut speculation,”
Bloomberg News, 1 May, 2006.

17 Kevin Morrison, “‘Ever higher’: why commodity bulls are upbeat,” Financial Times, 22 May,
2006.
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the near-vertical take-off of the copper price this year has created an unstable mix
of greed, speculation, and conspiracy theory. . . . Momentum investors who pile into
any rapidly rising market, and have been riding the general boom in commodity
prices, have almost certainly played a big role in the massive increase.18

The model casts some doubts on these claims. Specifically, it shows that
there is a set of demand shocks that can account for virtually the exact
course of copper prices during the period when claims of speculative excess
were rife. That is, the price movements over the period in question were
perfectly consistent with a purely fundamental-driven model.

But, it might be argued in opposition that the demand estimate–the zt–
that the model filters from the data is not “real” demand, but instead re-
flects speculative demand; the impact of new monies flowing into the copper
market from pension funds, hedge funds, and others.

The model, along with other considerations casts doubts on this claim
as well. To understand why, consider how speculation could affect the spot
price of copper. If speculators are truly determining price at the margin,
they must be those willing to pay the highest price–and hence, must end up
owning the commodity. That is, if they are determining the spot price, they
must own the spot commodity.

There is little reason to believe that speculators were indeed accumulating
inventories during the period when prices spiked. Note that most of the “new
investors” blamed for the price spike do not–and in some cases, cannot–take
delivery of physical metal. They either sell their expiring futures and for-
ward contracts prior to taking delivery, or use cash-settled over-the-counter
contracts that do not permit the buyer (seller) to take (make) delivery.

In response to this objection, supporters of the speculation explanation for
the rapid rise in copper prices frequently argue that speculators distorted the
market by buying futures and forwards, thereby raising their prices, which
made it profitable for others to hold inventory of physical metal and hedge
it by selling the futures and forwards at the prices inflated by speculators.

Under either interpretation, however, the speculative distortion story re-
quires that inventories rise along with spot prices. The data are inconsistent
with this implication of the speculation hypothesis. During the period of
price rises, inventories fell to very low levels. This is what the fundamentals-
based model studied in this chapter and the one previous would predict.

Indeed, the set of demand shocks filtered from the price and inventory
data result in a very close match between the spot and three month prices
and inventories during the period when prices skyrocketed. That is, given

18 Alan Beattie, “Fear and greed turn copper price red hot,” Financial Times, 23 May, 2006.
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these demand shocks, the fundamentals-based model predicts movements in
prices and stocks that closely mirror the actual data.

In contrast, if speculation were really distorting prices, it should have
distorted stocks too. Remember that the importance of prices is that they
provide signals that guide the allocation of resources. If prices are distorted,
by speculation for instance, the distorted price signals will cause distortions
in quantities. In the case of copper in the mid-2000s, if speculation were
driving prices to levels in excess of that justified by fundamentals, one would
not expect to observe inventories to fall.19

Put differently, if speculation was distorting prices in the mid-2000s, a
fundamentals-based model that is able to fit the path of prices, it should
not fit the path of stocks. And if it is able to fit the path of inventories, it
should not fit the path of prices. In the fundamentals-based model studied
here, fundamental demand shocks that lead to price rises should also re-
sult in declines in inventories. In a speculation-based story, the speculative
“demand” that drives up prices should also drive up stocks.

But the fundamentals-driven model can capture the evolution of prices
and stocks, and quite closely too. This consistency of inventory and price
behavior with the predictions of the basic storage model, and the incon-
sistency of this behavior with the speculative distortion story supports the
former, and casts serious doubts on the latter.

This illustrates a more general point about the value of incorporating
physical data into any analysis of an alleged price distortion. Since prices
guide quantity movements, distortions in prices should be associated with
distortions in quantities. Anomalous quantity-price co-movements are a more
reliable indicator of distortion than price movements alone. In copper in the
2006-2008 period, prices and quantities co-varied exactly as a fundamentals-
based storage model predicts that they should, and quite differently than
the speculation story implies. Score one for fundamentals.

The ability to extract demand shocks also suggests a method for determin-
ing whether these shocks reflect “real” demand from consumers of copper, or
speculative demand. The Commitment of Traders reports published by the
United States’ regulator of futures markets, the Commodity Futures Trad-
ing Commission, is widely used as a barometer of speculative demand for

19 The following chapter presents a model that incorporates stochastic fundamentals that shows
that there can be periods in a competitive, rational expectations, undistorted market where
inventories and prices can increase simultaneously. In the model of this chapter, that seldom
happens. Thus, foreshadowing the results of the next chapter, a positive co-movement
between inventories and prices does not necessarily imply that the market has been distorted,
but a negative co-movement is inconsistent (in either model) with the assertion that
speculation has distorted prices.
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commodities. Now, there are problems with these reports, including the fact
that the “commercial” and “non-commercial” categories to which traders
are assigned do not correspond exactly to “hedger” and “speculator”: some
commercials speculate, for instance. Moreover, in copper in particular, much
of the speculative activity takes place on markets (such as the LME) that the
reports do not include. Despite these deficiencies, these reports are widely
used to measure speculative participation, and have formed the basis of
various analyses concluding that speculation has indeed distorted prices.

If the CFTC reports are indeed reasonable proxies for speculative activity,
and if speculative rather than “real” demand was the main cause of price
movements in recent years, then one would expect that the demand shocks
the model extracts from the data using the EKF would co-vary closely with
the CFTC report-based measure of speculation. Figure 4.14 plots scaled
versions of the zt series and the series of non-commercial net positions as
disclosed in the CFTC report for the copper market. There is clearly little
visual correspondence between the two series. Speculators were net short at
the time that the demand shock reached its peak; but they switched to net
long precisely when the filtered demand shock estimate reached a low ebb
in early-2009. Moreover, speculator positions exhibit many more oscillations
during periods of time when the demand shock was rising or falling steadily.

Eyeballs are not a serious diagnostic tool, however, so more rigorous tests
are necessary.

One such test is to examine whether these two highly persistent series
(each of which has a unit root, based on standard statistics like the Aug-
mented Dickey-Fuller test) are cointegrated. One interpretation of co-integration
between two series is that they are in a long-run equilibrium relation. If it
is believed that speculation exerts an influence over copper demand, one
would expect the demand measure and a measure of speculative activity to
be cointegrated.

In fact, they are not. All major cointegration tests indicate that the zt
and large speculator trading commitments are not cointegrated. Moreover,
commercial trader net positions (which are minus one times the sum of net
non-commercial and net non-reporting positions) are not cointegrated with
the filtered demand shock. This lack of cointegration means that regressions
of prices on speculative positions, which are sometimes used to “demon-
strate” the effect of speculation on prices are spurious regressions.

Testing for Granger Causality is another way to determine whether specu-
lative activity affects demand. I have estimated bivariate Granger Causality
regressions for zt and speculative trader commitments, and cannot reject
the null hypothesis that non-commercial net open interest does not cause,
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in a Granger sense, zt.20 It should be noted, though, that this result may
not be all that informative. In an efficient market, information contained in
the CFTC reports in one week should be reflected in prices immediately,
meaning that there should be no lagged response of the demand shock esti-
mate extracted from prices of the type that Granger Causation regressions
are designed to detect.

A final straightforward test of the relation between speculation (as mea-
sured by the CFTC reports) and demand is to regress changes in one series
on contemporaneous changes in the other. Here the results suggest some
relation between non-commercial trading and the filtered demand measure.
Changes in one are positively related, in a statistically significant way, to
changes in the other. The correlation between the two series is approximately
50 percent.

This provides tenuous evidence of a speculation-demand link. It is only
tenuous, however, because a contemporaneous correlation does not permit
unambiguous causal inferences. One interpretation of the results is that
hedgers are more desirous to sell (buy) when prices rise (fall) (e.g., pro-
ducers are more likely to sell to lock in prices when prices are high and
rising than when they are low and falling), and this necessitates specula-
tors to buy. In this story, speculators would not be distorting prices, just
accommodating the demands of hedgers who are responding to price (and
demand) movements.

Moreover, even if prices are responding to changes in speculative trading,
and these price changes result in changes in the filtered demand shock, this
does not mean that speculators are necessarily distorting prices. If specula-
tors have information about underlying demand, or anticipated changes in
demand, their speculative trades would tend to move prices towards their
full-information values, and speculative demand would just be reflecting in-
formation about real demand.

Moreover, although there is a statistically significant short-term asso-
ciation between the filtered demand shock estimate and changes in non-
commercial open interest, the latter cannot explain some dramatic move-
ments in copper prices. For instance, copper prices–and the filtered demand
estimate–rose dramatically in the year-long period 31 May, 2005-30 May,
2006. The demand shock rose from .36 to 1.37 during this period. To deter-
mine how much of this rise could be explained by the short-term association
between demand movements, and speculative trading over this period, I
have conducted the following “event study.” For each week in this period, I
20 See Hamilton (1994) for a clear discussion of the need for caution in interpreting Granger

Causality as actual economic causation.
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calculate the change in the demand shock predicted by the coefficients in a
regression of the change in the demand shock on changes in non-commercial
net positions, and the changes in non-commercial net positions during that
week. Then, I add these predicted changes across the 52 weeks over the 31
May, 2005-30 May, 2006 period to determine a cumulative predicted change
in the demand shock; this cumulative predicted change is a measure of how
the change in non-commercial open interest, by itself, affected demand dur-
ing this period.

Since non-commercial positions went from 9492 contracts long to 6372
contracts short during this period, the short term association-based analysis
(that finds a positive correlation between non-commercial position changes
and changes in zt) predicts that zt should have fallen by .0982, rather than
rising by 1.01 during May, 2005-May, 2006, as it did.

Similarly, during the financial crisis from 8 July, 2008-30 December, 2008,
the estimated value of zt fell by 1.15, but the change predicted condi-
tional on (a) the estimated short-term association between changes in zt
and changes in non-commercial net positions, and (b)the observed changes
in non-commercial net positions during this period, was only -.16, or about
12 percent of the observed decline.

Finally, during the period in early 2009 (30 December, 2008-14 July, 2009)
when the estimated zt rose by .62, the predicted rise (conditional on changes
in non-commercial positions during this period) was -.004.

In brief, although there is a statistically significant short-term association
between a measure of speculation and changes in the estimated demand
shock, this short term association cannot explain changes in the estimated
demand shock. Indeed, during periods of steep price rises which spurred the
most vocal claims of speculative excess, based on this short term associa-
tion, estimated demand for copper (and hence prices) should have fallen, if
speculation were really driving this demand.

In sum, the data do not support the view that speculation was driving
copper prices during its roller-coaster run in the 2005-2009 period. There
is no evidence of a long run, cointegrating-type relationship between the
demand shock zt and a measure of speculation in copper markets. More-
over, current innovations to speculative positions (as measured from CFTC
data) do not help forecast future changes in estimated demand. Finally,
although there is a contemporaneous positive (and significant) correlation
between measured speculation and measured demand changes, this short
term association cannot explain the booms and busts in copper prices in the
mid-to-late-2000s. Indeed, estimated demand and the forecast of the change



90 Empirical Performance of the Two Factor Model

in that estimated demand arising from changes in speculative activity moved
in opposite directions.

Thus, the fundamentals-based, two factor storage model can explain the
movements in both prices and inventories, whereas an important implica-
tion of the speculation-based story (namely that inventories should have
risen together) is decisively rejected by the data. Moreover, there is little as-
sociation between the demand shock extracted by the model from the price
and inventory data and a commonly employed measure of speculation.

Given that (a) copper was one of many commodities that experienced a
price boom in the 2005-2008 time period, and (b) it was widely alleged that
speculation drove all of these commodities’ prices upwards, the data’s re-
jection of the speculative story, and its support for the fundamentals-based
theory of storage casts doubt on the veracity of these allegations for other
commodities as well. This is especially true inasmuch as many of the funda-
mental factors that plausibly drove copper prices, such as booming Chinese
demand, similarly affected the demand for other industrial commodities,
including other industrial metals and energy products.

4.6 Summary and Conclusions

The theory of storage is the accepted model of commodity price term struc-
tures and price dynamics. Heretofore, the theory has been subjected to lim-
ited empirical scrutiny. The extant empirical work has provided only modest
support for the theory, but this likely reflects the use of relatively restrictive
versions of the model as dictated by the problem’s complexity and associ-
ated computational costs. This chapter attempts to extend the empirical
envelope by examining the performance of the multi-factor model analyzed
in Chapter 3 using an Extended Kalman Filtering methodology and high
frequency data.

For the copper market, the model does an adequate job explaining the be-
havior of short-to-medium tenor prices, i.e., spot prices and forward prices
with tenors of 15 months or less. The model does less well on longer tenor
prices (i.e., 27 month forward prices). The calibrated model can generate
unconditional variances and correlations for tenors of less than 15 months
that mimic those observed in LME copper price data, but simulated uncon-
ditional variances and correlations for the 27 month forward are somewhat
smaller than those observed in the data. Moreover, the calibrated model gen-
erates behaviors in some conditional moments (specifically, the conditional
variances of the cash and three month prices and the conditional correlation
between them) that are broadly similar to those observed empirically; the
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signs of the coefficients that impact the conditional moments are the same
in the simulated and empirical data, but I have not been able to match
their magnitudes closely. More specifically, the calibrated model can mimic
quite closely the behavior of the conditional variance of the spot price, but
it matches the behavior of the 3 month price’s conditional variance far less
closely. Moreover, even though it does imply that volatility is time vary-
ing, the model cannot generate option implied volatilities as large as those
observed in the data during the 1997-2009 period.

The ability of the model to match closely the movements in both spot
prices and inventories speaks to the debate that has raged over the role of
speculation in the copper market, and other commodity markets as well. In
particular, the results provide evidence that is consistent with the view that
fundamentals were driving prices during the period of alleged speculative
excess, but which is inconsistent with the assertion that speculation distorted
prices.

This chapter extends the existing empirical evidence relating to the the-
ory of storage, but more work remains to be done. In particular, this effort
still entails a considerable degree of calibration, rather than estimation, es-
pecially of the structural supply and demand parameters. Further advances
are constrained by computational considerations and the curse of dimen-
sionality, but Moore’s Law will continuously relax these constraints. This
chapter also suggests that as this proceeds, the methods set out herein–
notably the combination of dynamic programming methods and Kalman
filtering techniques–are a fruitful way to explore the empirical performance
of the theory of storage. On a theoretical level, the results also suggest the
need to incorporate stochastic fundamental volatility, as I do in the following
chapter.
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Table 4.1
Empirical and Simulated

Copper Volatilities (annualized)

Tenor Empirical Inc. Crisis Ex. Crisis Simulated

Cash .2725 .2378 .2579

3 Month .2500 .2157 .2350

15 Month .2418 .2097 .2054

27 Month .2418 .2097 .1850
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Table 4.2
Empirical and Simulated

Copper Correlations

Empirical-Including Crisis

Tenor Cash 3 Month 15 Month 27 Month

Cash 1.00

3 Month .9800 1.00

15 Month .9544 .9478

27 Month .9130 .9366 .9820 1

Empirical-Excluduing Crisis

Tenor Cash 3 Month 15 Month 27 Month

Cash 1.00

3 Month .9757 1.00

15 Month .9416 .9648

27 Month .8857 .9127 .9752 1

Simulated

Tenor Cash 3 Month 15 Month 27 Month

Cash 1.00

3 Month .9531 1.00

15 Month .8733 .9578

27 Month .8779 .9485 .9900 1
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Table 3
Coefficient Actual Data Simulated Data

ωc 5.71E-6 2.93E-5

αc .0437 .1719

βc .9479 .8198

φc .001534 .0107

ω3 5.26-6 2.74E-5

α3 .0437 .1684

β3 .9481 .8257

φ3 .001316 .00177

ρ .9972 .9981

θ -.00655 -.0315



5

Stochastic Fundamental Volatility, Speculation, and
Commodity Storage

5.1 Introduction

The previous chapter showed that the traditional commodity storage model
cannot capture some features of the behavior of continuously produced com-
modity prices, in particular, the behavior of price volatility. Although the
standard model can generate time variation in spot and forward volatility
that matches some features documented in empirical data, it cannot gener-
ate volatility levels that reach those observed in actual prices. Moreover, it
cannot generate in forward price implied volatilities similar to those observed
in the data.

In the model studied in the earlier chapters, variations in price volatil-
ities resulted from variations in the degree of supply-demand tightness in
the market. volatility peaks in these models when stocks are low and/or
demand is high. That is, volatility is a consequence of supply and demand
fundamentals in this model. These results suggest that to generate richer
volatility behavior, it is necessary to introduce another factor related to
volatility that is not driven completely by the y and z shocks.

An obvious way to do this is to make the variability of the fundamental
net demand shocks stochastic. That is, to introduce stochastic fundamental
volatility.

This introduction is not ad hoc, as there is considerable independent basis
to believe that the supply and demand for commodities exhibits stochastic
volatility. For instance, for industrial commodities such as copper, demand
is affected by macroeconomic factors. Moreover, (a) stock prices also re-
flect macroeconomic fundamentals, and (b) stock prices exhibit stochastic
volatility. This last point is illustrated in Figure 5.1, which depicts the VIX
volatility index, a measure of the volatility of the S&P 500 stock index. Note
that the VIX exhibits considerable variability over time. This is consistent



96 Stochastic Volatility

with variability in the volatility of fundamental macroeconomic volatility
that reasonably contributes to variations in the volatility for the demand.
Figure 5.2 presents additional suggestive evidence. It depicts the variance
of the daily percentage changes in the Baltic Freight Index, by month, for
1985-2009. This index is widely used by practitioners as a measure of fun-
damental commodity demand, the idea being that high commodity demand
translates into high demand for shipping and high shipping prices.1 Note
that the variability of the index exhibits variability over time.

Commodity supply also plausibly exhibits stochastic volatility. For in-
stance, hurricanes disrupt oil production in the Gulf of Mexico, and there
can be considerable uncertainty about the frequency and severity of hurri-
canes, and the path that any particular hurricane can take. Moreover, this
uncertainty can vary over time; there is more such uncertainty during hurri-
cane seasons, than at other times. In addition, some hurricane seasons (such
as 2005) can be more intense than others (such as 2009). Similarly, wars in oil
producing regions can affect supply, meaning that there is more uncertainty
about supply fundamentals in times of tension in the Middle East, for exam-
ple, than when this region is (relatively) quiescent. Finally, the evidence from
Chapter 4, namely (a) the heteroscedasticity of the filtered demand shocks,
and (b) the inability of the model with homoscedastic shocks to generate
filtered implied volatilities that approximate observed ones, suggests that
stochastic fundamental volatility is present in the commodity markets.

Thus, there are reasons to believe to that the demand and supply for
commodities vary, and the amplitude of these variations can change unpre-
dictably over time. This motivates the introduction of stochastic volatility
into the standard model.

There is another reason to explore this extension of the model. The re-
cent boom in commodity prices has triggered an avalanche of allegations
that sharp increases in the prices of oil, industrial metals, and agricultural
products have been driven by excessive speculation. Such claims are not
new. Indeed, they are hardy perennials, appearing whenever commodity
prices spike or plummet. Indeed, to get a sense of the enduring nature of
these complaints, consider that Adam Smith devoted a considerable portion
of Chapter V of The Wealth of Nations to an analysis of assertions made
over the centuries before 1776 that “forestalling” (i.e., speculation) distorted
prices. Smith compared fears of speculation to “popular terrors and suspi-
cions of witchcraft.” Literal witch hunts are now a historical relic, but the
same cannot be said of anti-speculative fervor.

1 Killian (2009) uses this variable as a measure of world industrial demand for oil.
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It is difficult to evaluate these assertions regarding the destabilizing effects
of speculation because they are almost never framed as refutable hypothe-
ses that lead to empirically testable implications that distinguish the effects
of excessive speculation from the effects of the normal operation of ratio-
nal, competitive markets. In recent years, however, various commentators
have identified one anomaly that allegedly distinguishes a market driven by
irrational speculation from one that responds efficiently to supply and de-
mand shocks. Specifically, during the 2005-2006 period, rising prices for oil
were accompanied by increases in the amount of oil inventories. In contrast,
historically inventories and prices have varied inversely, with price rises be-
ing associated with drawdowns of inventory, and price declines with stock
builds. During this period, prices were high given the level of inventories,
and the historical relationship between prices and inventories. Moreover, this
was a period of increasing levels of speculative activity in the oil markets.
Critics of commodity speculation have asserted that this provides convinc-
ing evidence that speculation has broken the normal relationship between
price and fundamentals.

A static simple supply-demand framework suggests that this conjecture
is at least plausible. If speculators are driving prices above the competitive
level, this would tend to encourage production and discourage consumption,
thereby leading to accumulation of inventories–in the hands of the specula-
tors, it should be added.

There are some plausible historical examples of this phenomenon. Begin-
ning in the 1950s, the International Tin Council attempted to prop up the
price of the metal by purchasing and holding large quantities of it. Eventu-
ally the cost of accumulating the supplies necessary to maintain the price
became unsustainable, and the ITC abandoned its operation, causing the
tin price to collapse (Baldwin, 1983; Anderson and Gilbert, 1988) As an-
other example, the Hunt brothers bought and held huge quantities of silver,
either as part of a manipulative scheme, or because they believed the price
of silver was too low. Regardless of their motivation, the duo took delivery
of, and held, massive quantities of the metal. They too were unable to bear
the expense of this for long, and prices collapsed when their inventories were
dumped onto the market Williams (1996). As a final example, governments
around the world have supported prices of agricultural products by purchas-
ing and holding massive quantities of grain and cheese. Thus, attempts to
drive prices above the competitive level can lead to both high prices and
high inventories.

However, since the commodity storage problem is inherently dynamic,
claims that positive comovements between inventories and prices necessarily
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indicate speculative distortion should be evaluated in a dynamic rational
expectations model like that studied in this book. Moreover, it should be
noted that “relationships” between endogenous variables such as inventories
and prices can shift in response to structural shocks. Failure to condition on
such structural shocks can lead one to attribute mistakenly such a shift to
market irrationality, when in fact a rational market response to a structural
shock caused it.

Indeed, during the purportedly anomalous period in the oil market men-
tioned above, there were a variety of events that plausibly affected both
prices and inventory decisions. In particular, this was a period of increased
supply uncertainty. The alleged anomalies began in the aftermath of the
devastating Gulf hurricanes of 2005, and predictions of increasing hurri-
cane activity in a major oil producing region. Moreover, during this period,
American difficulties in Iraq mounted; there was increasing concern about
American and Israeli response to the Iranian nuclear program; there was a
war in Lebanon that posed the risk of spreading to elsewhere in the Middle
East; production disruptions occurred with increasing frequency in Nigeria;
political uncertainty increased in Russia in the aftermath of the Khodor-
kovsky/Yukos affair; and increased conflict between the Chavez government
in Venezuela and international oil companies. In brief, the 2005-2006 period
was one of pronounced uncertainty about supply and demand during a time
of already tight supply and demand; a volatility spike, if you will.

An increase in uncertainty plausibly affects incentives to hold inventory,
and through the inventory channel, prices. The primary reason to hold inven-
tory is to smooth the price impact of supply and demand shocks. Inventory
can be accumulated during periods of relatively abundant supply, and stocks
can be drawn down in response to bullish supply or demand shocks. An in-
crease in the volatility of fundamental shocks therefore plausibly induces
agents to increase the desired level of inventory. Given current supply and
demand shocks, the only way to accumulate additional stocks is to bid up
prices to encourage production and discourage consumption.

This chapter investigates this possibility, and the implications of stochas-
tic fundamental volatility more generally, making stochastic the volatility
of the fundamental net demand shock. Due to the curse of dimensionality,
this comes at a cost; it is only practical to have one net demand shock,
rather than two. Nonetheless, the exercise is rewarding because it demon-
strates that (a) stochastic fundamental volatility can indeed, affect storage
behavior, prices, and the variability of prices, and (b) the augmented model
generates outcomes like those conjectured above. A positive shock to the
variance of the fundamental shock leads rational, forward looking agents
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to increase inventory holdings by bidding up prices. Particularly if variance
shocks are persistent, a positive variance shock leads to a shift in the rela-
tionship between prices and inventories. Indeed, if variance shocks are suf-
ficiently volatile, the price-inventory relationship is very unstable, meaning
that it is not even reasonable to characterize it as a relationship, let alone
one that is a reliable metric for evaluating the efficiency of a commodity
market.

The remainder of this chapter is organized as follows. Section 2 presents
the evidence on price and inventory comovements during 2005-2006 that led
numerous analysts and policymakers to conclude that the oil market had
become unmoored from fundamentals. Section 3 outlines the model of the
storage economy. Section 4 describes the solution of the model. Section 5
examines the implications of the model for price and inventory behavior,
and the behavior of forward curves. Section 6 analyzes whether the addition
of stochastic fundamental variability can address some of the empirical de-
ficiencies of the storage model studied in chapters 3 and 4. Section 7 uses
the theoretical results to motivate an extension of Killian’s (2009) study of
oil price dynamics. Section 8 summarizes.

5.2 Speculation and Oil Prices

In the 2005-2008 period, the intensity of criticism of speculation in oil mar-
kets rose with the commodity’s price. In 2006, Citigroup opined that “We
believe the hike in speculative positions has been a key driver for the lat-
est surge in commodity prices.” This view was echoed by Goldman Sachs:
“Unlike natural gas we estimate that the impact of speculators on oil prices
is roughly equivalent in magnitude to the impact of shifts in supply and
demand fundamentals (as reflected in stocks).” In 2007, OPEC’s chairman
Al Badri (hardly an unbiased source), chimed in as well: “inventory data
continues to demonstrate that crude stocks are ample. US crude stocks are
now at nine-year highs. Inadequate refinery capacity, ongoing glitches in US
refinery operations, geopolitical tensions and increased speculation in the
futures market are, however, driving high oil prices.”

The gravamen of these views is that controlling for inventories oil prices
were high in 2005-2007. This view was fleshed out in greatest detail by a
study by the Senate Permanent Subcommittee on Investigations in 2006.
The report stated:

[Figure 5.3] shows the relationship between U.S. crude oil inventories and prices
over the past 8 years, and how the relationship between physical supply and price
has fundamentally changed since 2004. For the period from 1998 through 2003,



100 Stochastic Volatility

the chart shows that the price-inventory relationship generally centered around a
line sloping from the middle-left of the chart down to the lower right, meaning
that low inventories were accompanied by high prices, and high inventories were
accompanied by low prices. For 2004, 2005, and through May 2006, which is the
most recently available data, the inventory-price relationships fall nowhere near this
downward sloping line; if anything, the points seem to go in the opposite direction,
such that higher inventories seem to be correlated with higher prices. [Figure 5.3]
clearly indicates that there has been a fundamental change in the oil industry, such
that the previous relationship between price and inventory no longer applies. (US
Senate, 2006)

The Report continues:

[O]ne reason underlying this change is the influx of billions of dollars of speculative
investment in the crude oil and natural gas futures markets. As energy prices have
not only increased but become more volatile, energy commodities have become an
attractive investment for financial institutions, hedge funds, pension funds, com-
modity pools, and other large investors. One oil economist has calculated that
over the past few years more than $60 billion has been spent on oil futures in the
NYMEX market alone. . . . this frenzy of speculative buying has created additional
demand for oil futures, thereby pushing up the price of those futures. The increases
in the price of oil futures have provided financial incentives for companies to buy
even more oil and put it into storage for future use, resulting in high prices despite
ample inventories. (US Senate, 2006)

In brief, it is a widely held view in the oil markets that speculation has
caused prices to be artificially high, and that the main evidence for this
opinion is that by historical standards, prices are high after controlling for
the abundant stocks in the market. Relatedly, the contango in price rela-
tionships observed at the time was historically anomalous. The oil market
is typically in backwardation (about 80 percent of the time since the advent
of oil futures trading in the early-80s), and the few periods of contango have
occurred when prices were very low (e.g., the late-1990s, post the Asian fi-
nancial crisis.) The 2005-2007 period was unusual in that contango occurred
when prices were historically high (in nominal terms).

Are these anomalies sufficient to conclude that speculation distorted prices?
The crucial issue is whether (a) shifts in price-inventory relationships, and
(b) contango price structure when prices are high are consistent with the
operation of a competitive, efficient, and undistorted market. That is, can
a rational expectations equilibrium model of the endogenous determination
of inventories and prices reproduce the price-inventory and price-contango
relations observed in 2005-2008?

To explore this question, the next section presents a modification of the
standard rational expectations dynamic storage model studied in previous
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chapters. The model expands on the traditional one by permitting the vari-
ability of the random demand shock to vary stochastically. The basic idea
is that agents hold inventory to smooth consumption and production in the
face of demand shocks. When these demand shocks become more volatile,
agents will plausibly hold more inventory, as a bigger inventory cushion is
required to smooth output and consumption in the face of more variable
shocks. Adding inventory requires an increase in prices to stimulate produc-
tion and discourage consumption. Therefore, a volatility shock that induces
an increase in inventories also induces an increase in price. That is, a shock
to demand variability should cause a shift in the relationship between in-
ventories and prices.

5.3 The Storage Economy

To understand how stochastic volatility affects storage behavior and prices,
consider a commodity, such as oil or copper, that is produced and consumed
continuously, and which is not subject to pronounced seasonality in supply
or demand. The flow demand for the commodity is a one-shock version of
the standard model employed throughout this book:

P (qt) = Φeztqβt

where Pt is the spot price of the commodity at time t, qt is the consumption
of the commodity at t, zt is a stochastic demand shock, and Φ and β are
parameters.

The innovation of this chapter is to make the variance of the demand
shock stochastic. The demand shock zt is characterized by the following
mean-reverting stochastic process:

dzt = −μzztdt+ V .5
t dWt

where Vt is a (stochastic) variance process, Wt is a Brownian motion, and
μz is a parameter. In particular, μz gives the speed with which zt reverts
to its mean of 0. Note the time subscript on the demand variance Vt; this
means that this variance can change randomly.

The variance process is:

dVt = μv(θ − Vt)dt+ σV V
γ
t dBt

where Bt is a Brownian motion, and μv, θ, σV , and γ are parameters. Specif-
ically, μv is the speed of variance mean reversion; θ is the level to which
variance reverts; and σV is the volatility of the variance. Bt and Wt may be
correlated, with correlation coefficient ρ.
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In brief, in this economy demand is stochastic, and the variability of the
demand shock is itself stochastic.

Producers of the commodity are competitive. The commodity is produced
subject to strict decreasing returns and a binding capacity constraint. Specif-
ically, the flow supply of the commodity is our familiar:

MCt = A+
ν

(q̄ − qt)ψ

In this expression, MCt is the marginal cost of producing qt units of the
commodity. q̄ <∞ is the flow capacity constraint.

The commodity is storable. Storers forego the possibility of earning an
interest rate r on the funds they use to purchase the commodity.2

There is a competitive, frictionless forward market for the commodity.
This market trades forward contracts for delivery one day hence, as well as
for maturities in excess of one day. There is also a frictionless spot market for
the commodity where buyers and sellers can contract for immediate delivery
of the commodity.

In addition to producers and consumers, there is a population of price
taking agents who can engage in speculative storage. For simplicity, I assume
that the speculators are risk neutral. Hence, the market prices of zt and Vt
risk are zero in equilibrium. The problem is readily modified to incorporate
risk averse speculators by incorporating non-zero market prices of risk into
the drifts of the processes for the demand and variance shocks. In this case,
for the purposes of pricing forwards on the commodity, these market prices
of risk would be used to derive an equivalent probability measure.

5.4 Equilibrium Competitive Storage

As in previous chapters I assume that production, consumption, and storage
decisions are made daily. Competitive storers buy the spot commodity, store
it, and sell forwards if the one-day forward price of the commodity exceeds
the spot price of the commodity, plus the cost of storing it for one day.
Conversely, they sell the spot commodity out of inventory (to the extent
possible implied by the existing level of stocks) and buy forwards if the one
day forward price is less than the spot price plus the cost of holding inven-
tory. Thus, in equilibrium, if inventories are positive, the one day forward
price equals the spot price plus the cost of holding inventory for a day.

Moreover, as always, it is possible for there to be a stockout in equilibrium.

2 It is straightforward to extend the analysis to include proportional and per-unit storage
charges.
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In this case, inventories are drawn to zero, and the spot price plus storage
costs exceeds the one day forward price of the commodity.

Optimal storage decisions maximize the expected present value of the
economy’s net surplus, subject to the constraint that inventories are non-
negative. Formally, define net surplus at t, the difference between consumer
and producer surplus, as:

S(qst , q
d
t , z) =

∫ qd
t

0
P (qdt , z)dq

d
t −

∫ qs
t

0
MC(qst )dq

s
t

where qst is the quantity produced at t, and qdt is the quantity consumed at
t.

Then, given initial inventories X0, total value is:

V (X0, z0, V0) = sup
{qs

t ,q
d
t }
E0

∞∑
t=0

S(qst , q
d
t , z)

(1 + r)t
(5.1)

subject to:

Xt = Xt−1 + qst − qdt

and

Xt ≥ 0 ∀t ≥ 0.

The expectation in (5.1) is taken conditional on z0 and V0. For any t ≥ 0,
this problem can be re-expressed as:

Λ(Xt, zt, Vt) = sup
qs
t ,q

d
t

[S(qst , q
d
t ) +Et

Λ(Xt+1, zt+1, Vt+1)
1 + r

]

subject to:

Xt+1 = Xt + qst − qdt

and

Xt ≥ 0 t ≥ 0.

The expectation Et is taken conditional on zt and Vt.
Since the economy is perfectly competitive, and there are no externali-

ties, the Second Welfare Theorem ensures that the competitive equilibrium
maximizes Λ(Xt, zt, Vt). Thus, defining the one day forward price at t as
F (Xt+1, zt, Vt) and denoting the spot price at t as P(Xt, zt, Vt), if Xt+1 is
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the optimal carry-out at t, in equilibrium:3

P(Xt, zt, Vt) =
F (Xt+1, zt, Vt)

1 + r
(5.2)

if Xt+1 > 0, and

P(Xt, zt, Vt) >
F (0, zt, Vt)

1 + r
(5.3)

otherwise.
Finally, given the risk neutrality of the speculators, the one day forward

price is the expectation of the next day’s spot price:4

F (Xt+1, zt, Vt) = EtP(Xt+1, zt+1, Vt+1)

5.5 Solution of the Storage Problem

The solution strategy should by now be familiar. I initially posit a spot price
function P(X, z, V ). I then solve for the forward price function F (.) using
the partial differential equations approach. Given the forward price function,
carry-in Xt, and the current demand and variance shocks zt and Vt, it is
possible to solve for equilibrium (and optimal) carryout using the forward
price function and the demand and supply curves for the commodity. This
optimal carry-out (if positive) sets the spot price equal to the present value
of the forward price; if equation of the spot and the discounted forward price
implies a negative carry-out, agents consume the entire inventory, carry-out
is zero and the equilibrium spot price exceeds the discounted forward price.
This problem is repeated recursively, until the spot price function converges.

5.6 Results: Storage, Prices, and Spreads

Given that the model is solved numerically, its properties are best under-
stood through figures and simulations. Figure 5.4 depicts the relation be-
tween the spot price (on the vertical axis), carry in, and the volatility shock,
when the demand shock is at its long run mean of zero. Note that prices
are strongly increasing in the variance shock. Figure 5.5 illustrates the chan-
nel through which this price effect occurs. It depicts the relation between
inventory and the volatility shock, given that demand is at its mean of
zero and carry-in is at its long run average (derived from long simulations
3 At t, carry-out, and hence the carry-in t + 1 are known. That is, the forward price is a

function of time t carry-out, or equivalently time t + 1 carry-in.
4 If speculators are risk averse, the demand shock and variance shock risks are priced, and this

expectation is taken with respect to the equivalent measure.
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discussed below). Note that, given carry-in, carry-out is increasing in the
variance shock. Thus, as variance increases, speculative (or precautionary)
stocks increase. Increasing stocks requires stimulation of production and a
reduction in consumption; this requires, in turn, an increase in price. Thus,
the model generates the comparative statics conjectured in the introduction
to the chapter.

These forces also affect the relation between spot-futures spreads and
variance. This is illustrated in Figure 5.6, which depicts the relation between
the difference between the three month forward price (discounted back to
the present) and the spot price (on the vertical axis); the variance shock;
and the demand shock. The figure has a plateau at zero, due to the fact
that the discounted forward price can never exceed the spot price. Most
importantly, the figure illustrates that spreads do vary with volatility away
from the plateau.

Figure 5.7 presents a simulation of the behavior of this model over a
period of 5000 days–approximately 20 years of trading days. The simulation
is carried out as follows. The SDEs for zt and Vt are used to simulate 5000
daily observations for these variables, starting from z0 = 0 and V0 = θ. The
initial inventory is set at one month’s productive capacity. Given X0, z0,
and V0, the optimal carry-out X1 and the resulting equilibrium spot price
P1 is determined. Given this X1, and the simulated z1 and V1, X2 and P2

are solved for, and so on, for the 5000 simulated days.

Figure 5.7 is a scatter plot of simulated values of inventories and prices
and is comparable to the scatter plot based on real data in Figure 5.3. The
horizontal axis measures inventories, and the vertical axis measures the spot
price. This graph (which is for one simulation, but which is representative
of the many I ran) demonstrates that in this model there is no stable rela-
tion between inventories and prices. There are periods of time during which
there is a negative relation between these variables (low prices being asso-
ciated with high inventories), but this relation can shift over time, with a
given level of inventory being associated with very different price levels at
different points in time. Moreover, there are extended periods during which
inventories and prices increase together. These episodes are associated with
increases in the variance Vt.

Regression analysis demonstrates a similar point. I regress the simulated
price changes against changes in the simulated values of zt, Vt, and Xt.
Similarly, I regress changes in inventory against the changes in the demand
and variance state variables. The coefficient on the change in the variance
is positive in each of these regressions, meaning that conditioning on the
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demand shock, higher variance is associated with higher prices and higher
inventories.

In sum, the stochastic dynamic programming model in which net demand
variance is stochastic implies that there is no stable relation between inven-
tory levels and prices. As conjectured above, competitive storers respond to
increases (decreases) in the variance of demand (holding demand constant)
by increasing (decreasing) inventory. The only way to increase inventory
holdings is to discourage consumption and encourage production. These,
in turn, require an increase in price. Thus, when net demand variance is
stochastic, precautionary inventory holdings vary positively with demand
variance. This, in turn, implies that the relations between (a) inventory and
the level of demand, and (b) inventory and prices, shifts randomly in re-
sponse to variance shocks. Consequently, increases in inventories in response
to higher prices are not necessarily symptomatic of speculative distortion of
the market. Instead, they can reflect the salutary effect of speculative storage
on resource allocation. By adjusting stocks in response to changes in risk,
speculative storers optimize the time path of production and consumption.

5.7 Results: The Time Series Behavior of Prices, Stocks, and
Volatility

Recall some of the empirical deficiencies of the homoscedastic-shock stor-
age model. Specifically, it cannot generate volatilities as high as observed in
practice for copper, and forward volatilities tend to exhibit little time varia-
tion, and do not spike to anywhere near the same degree as spot volatilities.
Can the stochastic fundamental volatility model address these deficiencies,
while maintaining other desirable features of the storage model, namely, the
tendency of volatilities to peak when the market goes into backwardation?

The answer is a qualified yes. Figure 5.8 depicts the simulated behavior
of key variables in a model with a half-life of a z shock of 2 years, a long
run mean level of fundamental variance of .0625, a volatility of variance of
20 percent, and crucially, a correlation between the demand shock and the
variance shock of .8 (i.e., ρ = .8).

The upper lines in the graph are the volatilities of the spot and three
month forward prices, calculated as follows. Ito’s Lemma implies that:

(dPt)2 = (
∂P
∂z

)2Vtdt + (
∂P
∂V

)2σ2
V V

2γ
t dt+ 2

∂P
∂z

∂P
∂V

ρσV V
.5+γ
t dt

Dividing this quantity by P 2
t , taking the square root and annualizing is

the instantaneous spot volatility. The same methodology can be used to
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determine the instantaneous forward volatility. The two lines on the upper
part of Figure 5.8 depicts spot and three month forward price volatilities
calculated thus.

The line in the lower part of the figure is a scaled measure of the deviation
of the spot-three month spread and its full carry value. Specifically, it is:

Bt := K̂ ln
F3,t

Pte.25r

where K̂ is a constant that makes the scale of Bt comparable to that of
the volatility numbers. Thus Bt is a measure of the slope of the forward
curve, taking a value of 0 when the market is at full carry, and negative
values that are large in absolute value when the market is in a substantial
backwardation.

Several features stand out. First, volatilities tend to peak when backwar-
dation peaks. This is characteristic of data from a variety of commodity
markets, as documented by Ng and Pirrong (1994), Ng and Pirrong (1996)
and Pirrong (1996).

Second, there are periods when the market is nearly at full carry but
volatility experiences an upsurge. There are episodes of this, some of which
were discussed above, such as the high level of volatility in 2006 at a time
the market was in contango. An even more extreme example is the financial
crisis of 2008-2009. During this period, commodity volatilities reached ex-
traordinarily high levels at the same time that markets moved into full carry
and inventories skyrocketed (to record levels in the futures delivery point in
Cushing, Oklahoma). Indeed, in the oil market, volatility was greater than
at any time since the commencement of oil futures trading (exceeding the
volatility of the Gulf War period, even), and the difference between the
prices of the first deferred and expiring oil futures prices was the largest
observed (in both levels and logs) over the same period. This was indeed a
period of substantial fundamental volatility (as illustrated in figures 5.1 and
5.2). Thus, both the simulated commodity market and real world commodity
markets exhibit periods in which volatility can spike even when fundamental
conditions are anything but tight.

Third, although spot volatilities are greater than forward volatilities, for-
ward volatilities tend to rise appreciably when spot volatilities do. The gap
between spot volatilities and forward volatilities is greatest when volatilities
are at their highest levels, and are effectively zero when volatility levels are
low.

Fourth, volatilities even for three month horizons approach the high levels
(e.g., close to 50 percent) observed for copper.
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All of these features generated by the model are broadly consistent with
the high frequency empirical behavior of commodity prices, and address
some of the most marked deficiencies of the homoscedastic-shock model of
chapters 3 and 4. Nonetheless, the support for the model is qualified at
present. To generate more realistic inventory behavior in the model, it is
necessary to choose a relatively small half-life for the demand shock. This,
however, means that the ability of the model to match the behavior of longer-
tenor forward prices (such as 15 month and 27 month prices) is worse than
the two homoscedastic demand shock model where one of the shocks has a
much longer half-life. This suggests that a model with two demand shocks
that exhibit stochastic variance, where one of the shocks has a very long
half-life and another has much less persistence may be able to capture the
salient dynamics: the highly persistent shock to fit the behavior of the longer-
tenor prices; the less persistent shock to capture inventory dynamics; and
the stochastic variances to generate more realistic volatility dynamics and
volatility term structures. Such a model, alas, is cursed by dimensionality.

Nonetheless, the results of this chapter, combined with those of the earlier
chapters, are promising, and suggest that it is possible to specify a storage
model of suitable dimension that can accurately describe the high frequency
behavior of continuously produced commodity prices. The results of this
chapter in particular demonstrate that stochastic fundamental volatility is
likely to be an important component of such a model. Moreover, as discussed
above, stochastic fundamental volatility is (a) theoretically plausible, (b) has
empirical support, and (c) can help explain seeming anomalies that have led
some to conclude that speculation has distorted prices.

The main conceptual issue that remains is to justify a high correlation
between variance shocks and fundamental shocks. Such a high correlation is
necessary to generate in the model the covariation between the slope of the
forward curve (i.e., the amount of backwardation) and price volatility. The
fundamental economic considerations that could produce such a correlation
are not immediately obvious, however. I am aware of no model that suggests
that fundamental uncertainty should be greatest when demand is high.

5.8 Some Other Empirical Evidence

The model in this chapter provides a rigorous justification for a conjecture
to explain important empirical results about the behavior of oil prices. Kil-
lian (2009) demonstrates that in a vector autoregression framework, an “oil
specific” shock is necessary to explain the dynamics of oil prices; supply
shocks and demand shocks are insufficient to do so. Killian asserts that this
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oil specific shock is due to changes in the demand for precautionary inven-
tories. Prices rise when the demand for such inventories increases. But this
raises the question: What drives variations in the demand for precautionary
inventories if supply and demand shocks do not? The model of this chapter
provides an answer: variations in fundamental risk.

Killian’s identification of the oil specific shock with variations in the de-
mand for precautionary inventories therefore has a firm theoretical founda-
tion. But this is not the same as evidence. The model does suggest a route for
a rigorous test, however. Namely, to incorporate a measure of fundamental
uncertainty into Killian’s VAR framework.

I have attempted just that. First, using a slightly different measure of fun-
damental demand, I have replicated Killian’s main results over a somewhat
different time period.5 Second, I create a measure of fundamental demand
variability. Specifically, since in the model ocean shipping rates are a proxy
for the level of demand, I use the variance of ocean shipping rates as a
proxy for the variability in demand. Inclusion of this variable means that
any “oil specific shock” is attributable to something other than changes in
precautionary inventories resulting from changes in the volatility of demand.

I modify Killian’s identification assumptions to reflect the inclusion of the
new variable. I assume that oil supply does not respond in the same month
to demand shocks, demand variance shocks, or oil specific shocks; demand
shocks do not respond to demand variance shocks or oil specific shocks in
the same month; and that demand variance shocks do not respond to oil
specific shocks intra-month.

The empirical results do not provide support for demand variability (with
the associated effect on precautionary inventory holdings) as the source of
the oil specific shock. In the estimates over the 1985-2009 period, shocks to
demand variance do not appreciably affect oil prices; indeed, the relevant
impulse response functions imply that an increase in demand variance leads
to a price decline, rather than a price decrease. Moreover, despite the inclu-
sion of demand variance, an oil specific shock still exerts a large influence
on oil price changes.

These results do not support the Killian conjecture, or the model in this
chapter that provides a rigorous justification for it. It is my sense, however,
that this is likely a problem of measurement. shipping rates are a crude proxy
for oil demand, and the second moment of shipping rates is an even cruder
5 Killian’s sample is from 1975 to 2006. Mine is from 1985 to 2009. Killian uses a hand

collected data set on shipping prices as his proxy for commodity demand. I use the Baltic
Freight Index instead. Nonetheless, Killian’s main results hold. Supply shocks have little
effect on prices; demand shocks have a greater effect; and an oil specific shock has a large
effect on price movements.
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proxy for demand uncertainty. Moreover, the model includes no measure
of supply uncertainty. What’s more, it is difficult to conceive of a cardinal
measure that captures all of the sources of supply uncertainty that impact
oil prices. These include inter alia war risks, political risks (e.g., political
struggles over Venezuela’s national oil company that could result in a dras-
tic decline in output, or attacks on oil facilities in Nigeria), and weather
risks (e.g., hurricanes). Thus, the absence of a plausible measure for fun-
damental uncertainty, and its arguable unmeasurability, preclude a rigorous
test of the importance of precautionary inventories on oil prices. Nonethe-
less, the tantalizing empirical result that some “oil specific” factor drives oil
prices; the theory presented in this chapter that demonstrates that stochas-
tic fundamental variability can lead to precautionary inventory changes and
price changes; and the ability of such a model to capture salient features
of commodity price dynamics combine to suggest that random variations in
fundamental uncertainty may be important drivers of commodity prices.

This factor has largely been ignored in the heated controversies over com-
modity prices that have raged in recent years, meaning that these debates
are seriously incomplete and therefore provide a very dubious basis for major
policy changes such as Draconian limits on speculative activity in commodity
markets, especially energy markets. These policy changes are in the offing
as I write this book. Most notably, the recently enacted Dodd-Frank bill
mandates the imposition of speculative position limits on energy exchange
traded and OTC derivatives.

5.9 Conclusions

The amount of uncertainty in real economies is itself uncertain. The financial
crisis of 2008-2009 forcefully illustrates that fact.

This chapter explores the implications of stochastic fundamental uncer-
tainty. It demonstrates that incorporating such a feature into the standard
storage model can redress many of the empirical deficiencies noted in chap-
ter 4. In particular, this feature results in forward volatilities that vary more
extensively than in the homoscedastic demand models of chapters 3 and 4. It
can also result in higher levels of volatility than the homoscedastic demand
model, while retaining the strong covariation between backwardation and
volatility that is such a salient feature of actual commodity prices.

Moreover, the model can generate price and inventory co-movements that
the homoscedastic model seldom does: simultaneous increases in prices and
inventories. Simultaneous increases in “supply” and price have been seized
upon as evidence of the distorting effects of speculation, and have served
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as the empirical basis for calls to constrain speculation in commodity mar-
kets. All else equal, speculation that causes the spot price of a commodity
to rise above its competitive level should be associated with the accumula-
tion of stocks in the hands of speculators. Speculators willing to pay more
than a commodity is worth bid it away from producers and consumers, and
therefore end up holding large and increasing stocks. Thus–again all else
equal–simultaneous increases in prices and inventories are indicia of specu-
lative distortion.

But all is not equal. Storage in a rational expectations economy where
speculators stabilize rather than distort is an efficient response to the risk
of demand fluctuations. Speculative storers accumulate inventories when
demand–and prices–are low, and draw down on these stocks when demand–
and prices–are high. The optimal pattern of inventory buildup and draw-
down depend on the amount of uncertainty. When there is considerable
demand volatility, it is desirable to store more than is optimal in low uncer-
tainty environments.

When demand variability is itself stochastic, shocks to this variability
influence optimal storage decisions given the level of demand. The model
examined in this chapter implies that a positive shock to demand variance
optimally induces competitive storers to increase inventory holdings. Since
enhancing storage requires speculators to bid the commodity away from
producers and consumers, increasing inventory in response to a variance
shock requires an increase in price to encourage production and discourage
consumption. In equilibrium, in this economy one observes periods of time
when inventories and prices are both increasing. One also observes periods
when these variables are moving in opposite directions; holding demand
variance constant, for instance, an increase in demand leads to an increase
in price and a reduction in inventory.

Thus, disparate comovements in inventories and prices–including posi-
tive covariation between these variables–is completely consistent with an
efficient, rational expectations equilibrium. Those searching for evidence of
speculative excess need look elsewhere than the price-inventory relation.
Moreover, in addition to shedding light on the contentious debate over spec-
ulation, the results of this chapter demonstrate that incorporating stochastic
fundamental variance into the standard rational expectations theory of stor-
age framework can improve the theory’s ability to capture the high frequency
dynamics of storable commodity prices.
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The Pricing of Seasonal Commodities

6.1 Introduction

The previous chapters have explored various structural models of continu-
ously produced commodities. This chapter examines a different, important
category of commodities: seasonally produced ones, such as corn or soybeans.

These commodities are important in their own right. But as the results of
this chapter demonstrate, an examination of seasonal commodities, and the
ability of structural models to explain the high frequency behavior of their
spot and forward prices, points out some serious deficiencies in the storage
model.

Specifically, I analyze a two-factor model of a commodity that is produced
seasonally. One of the risk factors is the by now familiar highly persistent
demand shock. The other is an output shock. The commodity is produced
once a year, and the size of the harvest is random due to factors such as
weather, insect infestations, etc. Moreover, information about the size of
the next harvest accumulates throughout the year. I solve the model using
the techniques employed throughout the book, and then examine particular
implications of the model. These implications include the sensitivities of
spot prices and futures prices with different expiration dates to demand and
harvest shocks, and the correlations between spot and futures prices. I then
compare these predictions to the empirical behavior of the spot and futures
prices for several important seasonally produced commodities.

The analysis focuses on what are commonly referred to as “old crop” and
“new crop” prices. An old crop price is the price on any contract calling for
delivery before the next harvest. A new crop price is the price on any contract
calling for delivery after the next harvest. For instance, in the United States,
in June, 2009, the July, 2009 corn futures price is an old crop price. In
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contrast, in June, 2009, the corn futures price for delivery in December,
2009 is a new crop price.

The solution of the seasonal storage model has several strong implications
regarding the relations between new crop and old crop prices. Specifically,
the model implies that late in the crop year, frequently old crop prices
should respond far less strongly than the new crop price to revelation of
new information about the size of the impending harvest (a “harvest shock”);
only when carryover is very large (as may occur when demand is low, and the
previous harvest was large), and/or when the impending harvest is expected
to be very small do old crop and new crop prices move by similar amounts in
response to the arrival of news about the size of the next harvest. Moreover,
the model implies that late in the crop there should often be a very low
correlation (on the order of .3 in simulations) between old crop and new
crop prices, and that correlations typically should decline through the crop
year, with values close to 1 right after the harvest, and values well below 1
right before the next harvest.

The intuition behind these results is readily understood. Due to the sea-
sonal nature of production, supply increases discontinuously at harvest time.
It is not always optimal to hold inventory from the period immediately be-
fore the harvest to the harvest period, because the additional supply tends
to depress prices. As a result, prices exhibit a sawtooth pattern, rising (on
average) at the rate of interest from the time of the harvest until the time of
the next harvest, and then falling as the new crop arrives. But the frequent
absence of storage across crop years means that storage does not connect
new crop and old crop prices. In turn, this means that although news about
the size of the next harvest definitely affects the new crop price, since stor-
age does not connect the new crop and old crop prices, it has little affect on
the old crop price.

Put differently, harvest shocks do not affect the consumption in the old
crop year because (a) the amount available depends only on the past harvest
and past storage decisions, and (b) frequently, that entire amount available
will be consumed before the next harvest. Since harvest shocks do not affect
consumption in the old crop year, they do not affect old crop prices. Fur-
thermore, the fact that harvest shocks have an important effect on new crop
prices, but not on old crop prices, tends to reduce the correlation between
these prices. Although persistent demand shocks affect both new crop and
old crop prices, this is not sufficient to generate high correlations between
them when harvest shocks are sufficiently large.

These predictions, as it turns out, are at odds with the behavior of ac-
tual seasonal commodity prices. The empirical evidence shows that both
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old crop and new crop prices move about the same amount on days when
the US government releases crop forecasts. Moreover, both new crop and
old crop prices are exceptionally volatile on these days, indicating that the
government crop forecasts embody new information not previously available
to the market. Furthermore, late in the crop year, old crop and new crop
prices routinely exhibit high correlations; these correlations typically vary
between .8 and .95.

The explicit incorporation of seasonality in production into the analysis
serves several valuable purposes. First, the empirical shortcomings highlight
deficiencies in the received theory of storage that motivate refinements and
extensions of the theory. Second, the focus on the high frequency dynamics
of old crop and new crop prices proves decisively that highly autocorrelated
demand is not sufficient to explain the high autocorrelation in low frequency
commodity price series, as conjectured by Deaton and Laroque (1995) and
Deaton and Laroque (1996).

In a nutshell, the stark contrast between the implications of the seasonal
storage model for high frequency price behavior and the actual behavior
of prices demonstrates that there must be something other than storage or
demand autocorrelation to link prices over time. This recognition spurs an
inquiry into just what that connection might be.

One plausible source of intertemporal connection is intertemporal substi-
tution. I show that incorporating such an effect in a fairly ad hoc way can
dramatically raise the sensitivity of old crop prices to harvest shocks, and
thus raise the correlation between old crop and new crop prices.

This approach is less than satisfying, however. A more fully structural
explanation would be preferable. Here, the curse of dimensionality precludes
a definitive answer, but I discuss some promising possibilities. In particular,
a multi-storable commodity general equilibrium approach (contrasting to the
partial equilibrium framework of the standard storage model) with multiple
storable commodities seems most profitable. A harvest shock affects the
anticipated future demand for other storable commodities, and hence the
futures prices for those commodities. The storage channel for these other
commodities means that the future demand shocks for them affects the
current demand for these goods, and importantly, the current demand for
the seasonally produced commodity. Thus, the main lesson of the empirical
shortcomings of the seasonal storage model is that to understand more fully
commodity price dynamics, it is necessary to go beyond partial equilibrium
approaches and embrace a general equilibrium framework that captures more
fully the intertemporal connections in the economy.

The remainder of this chapter is organized as follows. Section 2 presents
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the seasonal storage model and describes the solution methodology. Section
3 discusses the implications of the model, including implications based on
simulations. Section 4 presents some empirical evidence on high frequency
seasonal futures prices. Section 5 discusses briefly an extension of the model
which incorporates intertemporal substitution, and describes the implica-
tions of that model. Section 6 discusses alternative structural approaches
that could improve the empirical performance of the storage model to ex-
plain seasonal commodity price behaviors, paying special attention to gen-
eral equilibrium approaches. Section 7 briefly summarizes.

6.2 The Model

In this section I explore a dynamic, rational expectations model with peri-
odic production. Chambers and Bailey (1996) prove that there is a unique
solution to the model studied here. Pirrong (1999) and Osborne (2004) an-
alyze analogs of this model in some detail, and both use the model to study
old crop-new crop price relations.

Consider a commodity with flow demand:

D(qt, zt) = Φeztqβt

where zt is a demand shock that evolves according to the now familiar:

dzt = −κzzt + σzdWzt

where Wzt is a Brownian motion, and κz and σz are constants.
The commodity is produced periodically, at times t = {τ, 2τ, . . . , Kτ, . . .},

where K is any integer. Output (“the harvest”) at timeKτ–HKτ–is stochas-
tic, with:

HKτ = H̄eyKτ,Kτ

where yt,Kτ is a supply shock that has the following characteristics:

yt,Kτ = 0 t ≤ (K − 1)τ (6.1)

dyt,Kτ
yt,Kτ

= σydWyt (6.2)

where σy is a constant, and Wyt is a Brownian motion with Wyt′ = 0 for
t′ = (K − 1)τ .

The y variable can be interpreted (as in Pirrong, 1999 and Osborne, 2004)
as “news” about the size of the impending harvest. Expression (1) means
that at the time of the current harvest (and before), agents have no in-
formation about the size of the next harvest. Expression (2) means that
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information about the size of the next harvest arrives diffusively; the in-
formation variable y follows a geometric Brownian motion. This means that
information is persistent and Markovian: these are properties “news” should
possess.

This specification assumes that the rate of information flow (parameter-
ized by σ) is constant throughout the production period (which I will assume
is a year in length). It is straightforward to modify the model to permit the
rate of information flow to vary with the time of year by specifying σy to be
a function of time σy(t). In actual commodities, for instance, there are pe-
riods of the year, such as pollination time, that are particularly important
in determining the size of the final harvest, and hence information about
weather during these periods has a bigger impact on output forecasts than
during other periods. Together, (6.1) and (6.2) imply that at the time of
this year’s harvest, the expected harvest next year is:

E(HKτ ) = H̄e.5σ
2
yτ

The assumption that there is no information about next year’s harvest
at the time of this year’s is unrealistic, but not extremely so, for crops
like corn and soybeans where factors that affect output in one year (e.g.,
a drought) are unlikely to persist into the following one. This assumption
would not be appropriate for tree crops, where a shock that reduces output,
such as a freeze, damages the trees and impairs future productivity. In this
case, information about this year’s harvest has ramifications for harvests in
subsequent years. This can be incorporated in the model by positing that
the y shock corresponding to the next harvest is not zero at the time of the
current harvest, but instead at (K− 1)τ , the value of the Kτ harvest shock
depends on the (K − 1)τ harvest shock value.1

Finally, I assume that the demand and harvest shocks are uncorrelated.
This is plausible, as in a modern economy agricultural output represents a
small fraction of income, and hence shocks to the harvest have little impact
on demand. Moreover, demand changes (within the harvest year) have little
or no impact on output.

As should now be familiar, I posit that the spot price is a function of the

1 The results reported herein do not change materially if Ht,Kτ is drawn from some
distribution at t = (K − 1)τ , and then evolves according to (6.1) and (6.2). The availability of
information about the harvest at Kτ prior to (K − 1)τ that is not subsumed in the
information about the size of the harvest at (K − 1)τ increases the dimensionality of the
problem. It is reasonable to abstract from this consideration for non-tree crops. For one thing,
as noted in the text, at the time of the harvest, information about the size of the next harvest
is very diffuse. For another, due to the fact that it is often not optimal to carry-over inventory
across crop years, information about the crop after next is likely to have little effect on
optimal storage decisions today.
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demand and harvest shocks. Importantly, since the problem is no longer time
homogeneous in the way that the continuous-production storage problem is,
the spot price is also a function of the time of year. That is, the spot price
function is P (zt, yt,Kτ , t). Moreover, the forward price for delivery at some
t′, t ≤ t′ ≤ Kτ , Ft′(zt, yt,Kτ , t) must satisfy a second order parabolic partial
differential equation:

0 =
∂Ft′

∂t
− κz

∂Ft′

∂z
+

1
2
∂2Ft′

∂z2
σ2
z +

1
2
∂2Ft′

∂y2
σ2
yy

2
t,Kτ (6.3)

The solution technique should be familiar as well. I first discretize the
problem in t, y, z, and the carry-in x. The time discretization deserves some
discussion. As just noted, the problem is not homogeneous. For given z, y,
and x, optimal decisions will depend on the time of the year. Given the
values of the shocks and inventory, agents will make different consumption
decisions depending on whether the next harvest is imminent, or will not
occur for some time. Thus, it is necessary to solve for a different spot price
function (and storage function) for each different time of year. This effec-
tively increases the dimensionality of the problem in a way that influences
the choice of fineness of the time grid.

I assume that agents can make storage decisions on a weekly basis. There-
fore, in the time discretization, I choose δt = 1/52. Moreover, the harvest
occurs in “week one” of the time grid. Week fifty-two is the week immedi-
ately preceeding the harvest.

The non-homogeneity also affects the choice of the carry-in grid. It is not
efficient to choose the same carry-in grid for every week of the year: carry-
ins will be larger soon after the harvest than right before the next one. I
therefore choose a different carry-in grid for every week of the year, with a
wider range of values between the minimum and maximum of the grid for
weeks early in the year than for later in the year.

Given these choices, the algorithm proceeds as follows:

• Make an initial guess for the price function at some “week” of the year.
I choose week 52, and make the simple assumption that agents consume
all of the carry-in.

• Proceed to week 51. For each value of x, y, and z in the respective grids,
solve the partial differential equation (6.3), subject to the terminal bound-
ary condition that the forward price in week 52 is the spot price in that
week. This produces a function F52(z, y, x1, 51).

• Given carry-in x̂, find the value of consumption q that equates the spot
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price Φezqβ to the discounted value of the forward price

e−r/52F52(z, y, x̂− q, 51)

where r is an (annualized, continuously compounded) interest rate. This
determines the spot price function for week 51 for each point in the grid.
If q > x̂, set q = x̂ to ensure that carry-out is non-negative.

• Using the week 51 spot price function as the terminal boundary condition,
solve (6.3) to determine the week 51 forward price, as of week 50. Given
this forward price function, for each shock value and carry-in value, de-
termine the consumption that sets the spot price equal to the discounted
forward price. Calculate the spot price function.

• Proceed in this fashion until week 52 is reached again. Check to see
whether the week 52 spot price function has converged. If so, stop. If
not, continue the recursion for another “year.”

Once convergence is achieved, this process creates an array of spot price
functions, and carry-out functions. The array is of dimensionNz×Ny×Nx×
52 where Nz, Ny, and Nx represent the number of points in the demand
shock, harvest shock, and carry-in grids, respectively.

Once the spot price array is complete, it can be used to determine for-
ward prices. For instance, one can solve (6.3) to determine the forward price
function, as of week 45, for delivery at the time of the next harvest (i.e.,
week 1 of the following crop year) by using the week one spot price function
as the terminal boundary condition. This is a new crop futures price.

6.3 Results

In this section, I explore the implications of the storage model for the re-
lations between old crop and new crop futures prices. Making predictions
about these relations is very useful because there are many futures markets
for seasonally produced commodities, and the data from these markets can
be used to test these predictions. Moreover, although much of the storage
literature (especially the articles by Deaton and Laroque) focuses on auto-
correlations of spot prices averaged over some time intervals (e.g., a year),
the results can be sensitive to the (inherently arbitrary) averaging period
(Osborne, 2004). Therefore, examining the implications of the model for new
crop-old crop price relations permits a more thorough test of the model that
exploits an abundant source of high quality data.

Several results deserve special attention.
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First, given the spot price functions, and the new crop forward price func-
tions, for some (K−1)τ < t < Kτ it is possible to determine the sensitivity
of the spot price (an old crop price) to a harvest shock:

∂P (z, y, x, t)
∂y

and the sensitivity of the new crop futures price to a harvest shock:

∂FKτ (z, y, x, t)
∂y

Of particular interest is the ratio between these partial derivatives: this
ratio quantifies the relative sensitivity of the old crop price and new crop
price to a harvest shock. Figure 6.1 depicts this ratio for week 45. One axis
represents z, the other represents y. The graph assumes that carry-in is at
the average value observed in simulations (which are described below).

Note that this ratio is typically quite small, meaning that a shock to the
expected harvest has a much bigger impact on the new crop price than
the old crop price. The ratio is decreasing in y and usually increasing in z.
When the anticipated harvest is small, it is likely that it will prove optimal to
carry inventory from the old crop to the new crop year. In this case, storage
connects the new crop and old crop prices, which means that both prices
respond similarly to information about the size of the harvest. However,
when the anticipated harvest is large, carryover is not optimal; storage does
not link prices; and old crop prices do not respond to harvest shocks.

The lack of carry-over across crop years means that storage, and the re-
sulting cash-and-carry arbitrage link, often does not connect old crop and
new crop prices. Thus, a shock to the expected harvest does not affect the
derived demand for the old crop supplies; the same amount will be con-
sumed, regardless of the value of the harvest shock. Only if a harvest shock
affects the optimal storage decision, can it affect the old crop price.

When carry-in is very large, and/or the expected harvest is very small,
it may be optimal to store across the crop year. Under these conditions,
current supplies are abundant and future supplies are scarce, and it makes
sense to store. Therefore, under these conditions storage links old crop and
new crop prices, leading them to respond similarly to supply shocks.

Second, it is possible to calculate the sensitivities of old and new crop
prices to demand shocks, and to use the demand shock and harvest shock
sensitivities to calculate the instantaneous correlation between old crop and
new crop price changes. Specifically, using Ito’s Lemma to calculate dP and



120 Seasonal Commodities

dFKτ , and multiplying, produces:

cov(dP, dFKτ) =
∂P

∂y

∂FKτ
∂y

σ2
yy

2dt+
∂P

∂z

∂FKτ
∂z

σ2
zdt

where cov(dP, dFKτ) is the instantaneous covariance between the old crop
and new crop price changes. variance functions can be similarly derived, and
dividing the covariance function by the square root of the product of the
variance functions produces an instantaneous correlation function.

Figure 6.2 illustrates the old crop-new crop correlation for week 45, again
as a function of the harvest shock and z, for the average level of week 45
carry-in obtained from long simulations.

The correlation exhibits an interesting, backwards-S shaped pattern. The
correlation is near 1.0 for very low values of y. As y increases, the correlation
changes little, and then for intermediate values of y, it plunges to quite
low levels of around .3, and then remains at this level a y increases. This
transition from high to low correlation occurs at values of z and y such
that for slightly larger values of y (i.e., a bigger expected harvest) or slightly
higher values of z (i.e., slightly higher values of demand) it would be optimal
to carry-out nothing, but for slightly smaller values of these variables, it
would be optimal to carry-out a positive amount.2

The reasons for this behavior are as follows. When the harvest is expected
to be small, it is almost certain that it will be optimal to carry-over some
inventory. Thus, storage serves to link old crop and new crop prices, and
the correlation is very high. As the size of the expected crop increases,
the likelihood of carry-out declines, making it less likely that storage will
link new and old crop prices, this reduces correlation. As the size of the
anticipated harvest rises to very large levels, the probability of carryover
declines to zero.

Figures 6.1 and 6.2 demonstrate that the relative sensitivities and corre-
lations are dependent on the state variables, and that they can be close to
one, or far below it. In order to compare the results of the model to the
data, it is necessary to run simulations that make it possible to determine
the relative frequency of combinations of state variables that produce high
and low values.

For the simulations I generate 100 years worth (5200 values) of the z and
y shocks. Using the old crop price, new crop price, and carry-out arrays
already solved for, given these shocks I then simulate the paths of old crop
and new crop prices, and inventories.

2 Osborne (2004) also shows that correlations between a pre-harvest and post-harvest price are
small in her seasonal storage model.
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Figures 6.3 through 6.6 depict some salient simulation results. Figure 6.3
shows the spot prices for the last 20 simulated years. Each point in the figure
is a spot price for a different week. Note that the prices exhibit a saw-tooth
pattern. They tend to rise through the crop year, and then fall as the new
crop is harvested in week 1 of each simulated year.

This price behavior explains the inventory (carry-out) behavior depicted
in Figure 6.4. Note that carry-out also exhibits a saw-tooth pattern. Inven-
tories are largest right after the harvest, and then decline through the year
as the good is consumed. Significantly, for most years carry-out reaches zero
in week 52. In less than half of the simulated years is there carry-over across
crop years. Since there is no carry-over in most years, the non-negativity
constraint on storage binds, meaning that the spot price right before the
harvest is above the discounted new crop futures price. This results in the
spot price at the harvest also exceeding the spot price during the harvest
week in those years when there is no carry-over.

Figure 6.5 is a histogram of the values of:

∂P/∂y

∂F/∂y

across the 100 simulated years. This ratio is calculated as of week 45 of each
year, using the futures price for delivery on week one of the following year.
For corn in the US, for instance, this would correspond roughly to a spot
price in August and an October forward price. Note that the distribution
is bimodal, and that the leftmost modal value is less than .05. That is, the
single most likely outcome is for the sensitivity of the old crop price to the
harvest shock is between 0 and .05. The second most common value for the
sensitivity ratio is 1.

To facilitate comparison of the results to the empirical analysis to follow,
I estimate a coefficient of the regression of the percentage change in the
old crop price against a constant and the percentage change in the new
crop price. The observations in the regression are weeks 40-52 from all the
simulations. This corresponds to the three months prior to the harvest, and
hence is analogous to the July-September period for corn.

The slope coefficient in this regression is .4, meaning that across the sam-
ple, a one percent change in the new crop price on a date during these
weeks when information about the harvest is released is associated with a
.4 percent change in the old crop price.

Figure 6.6 is a histogram of the values of the instantaneous correlation
between the spot price and the new crop futures price (for delivery in the fol-
lowing week 1), as of week 45 of each simulated year. Again, the distribution
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of correlations is bimodal. The largest number of observations are between
.95 and 1.00, but a large number of values (about a third) fall below .4.

Again to facilitate comparison with the empirical analysis, I also calcu-
late, by simulated year, the correlation between the new crop and old crop
prices in weeks 40-52. Figure 6.7 is a histogram of these 100 correlations. In
this particular simulation, 16 of the correlations are negative, the median
correlation is .42, and the mean correlation is .46.

There is also a distinctive pattern in the correlations. New crop-old crop
correlations decline systematically through the year. In weeks 14-26 (which
would correspond to the spring months for corn or soybeans), the median
correlation across the 100 simulations is .99, and the mean correlation is .93.
Thus, the correlation in the spring is roughly double the correlation in the
weeks immediately preceeding the harvest.

Figure 6.8 graphs the weekly values of the instantaneous correlations for
10 randomly selected years. The horizontal axis is the week of the year
(between 1 and 52), and the horizontal axis measures the instantaneous
correlation for that week. Note that for most of the years, the correlations
start near one, and then decline throughout the year.

In sum, the solution to the storage model has distinctive implications for
the behavior of old crop and new crop prices. New crop prices are typically
far more sensitive to information about the size of the next harvest old crop
prices. Quite frequently, old crop prices do not respond at all to harvest
shocks late in the crop year. Moreover, the correlations between old crop
and new crop prices are often far below one late in the crop year, but close
to one early in the crop year. The next section examines futures prices to
see whether these patterns are found in practice.

6.4 Empirical Evidence

To test the foregoing implications, I examine the behavior of the prices of
new crop and old crop prices for corn, soybeans, oats, cotton, and three
varieties of wheat (soft red winter, hard red winter, and spring wheat).

I first examine correlations between new crop and old crop futures prices
in the second quarter of the crop year (e.g., January-March for corn), and in
the fourth quarter of the crop year (e.g., July-September for corn). For each
commodity, each year, and each of these two quarters of the crop year, I
estimate the correlation between the daily percentage change in a new crop
price and the percentage change in an old crop price. Table 6.1 lists the new
crop and old crop futures used in the analysis.

Note that the correlations, which are reported in Table 6.2 are typically
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quite high. In particular, in the fourth quarter, correlations are almost al-
ways above .9, never fall to levels routinely observed in the simulations, and
are never negative. Moreover, there is no pronounced difference between the
correlations between the two quarters studied, and for two of the commodi-
ties (oats and canola) the average correlation is actually slightly higher in
the fourth quarter than the first quarter; for the other three commodities,
the decline in correlation between the first and fourth quarters averaged
less than .025. These empirical results are quite different than the simulated
ones.

cotton represents a partial exception to the above generalization. There
are a few years in which the new crop-old crop correlations for this commod-
ity are quite low, and one year (1999) in which the fourth quarter correlation
is negative. But even though the differences between fourth quarter and first
quarter correlations is more likely to be negative for cotton than other crops,
even this commodity does not exhibit the pronounced tendency for correla-
tion declines found in the simulations.

I next examine the relative responsiveness of the new crop and old crop
prices to release of information about the size of the harvest. To do this, I
focus on price movements for corn, soybeans, oats, and spring wheat on days
in June-September when the USDA releases its crop reports, as it does once
each month during this period. For each commodity, I use the September
futures price as the old crop price. For corn and oats, December is the new
crop price; for soybeans, it is November. The sample period begins in 1981,
and ends in 2008.3

First, to verify that these crop reports are indeed informative, I compare
the variance of percentage price changes on the release days to the variance
on non-release days in the same months, and carry out a Brown-Forsythe test
to determine whether price dispersion is higher on release days than on days
when no releases are made. The relevant results are reported in Table 6.3.
For each commodity and for both new crop and old crop prices, the variances
are substantially higher on USDA report dates than on other days in the
same months. Moreover, for each commodity, for both new crop and old
crop prices, the dispersions on announcement dates are statistically different
from variances on non-announcement dates at a high level of confidence.4

3 Prior to 1996, the USDA released its reports after the market close. In 1996 and the following
years, the USDA released its reports during the trading day. Therefore, prior to 1996, I use
the price change from the close on the announcement day to the open on the following day to
measure the price response to the report. After 1996, I use the price change from the close on
the day prior to the report to the close to measure the price impact.

4 The Brown-Forsythe test statistic has a t−distribution, with the number of degrees of
freedom equal to the total number of observations minus two. The p−values on all of the test
statistics in Table 6.3 are essentially zero. I have also conducted F−tests to test the null
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Thus, the data support the hypothesis that the USDA reports are highly
informative, and since these reports are about the size of the harvest, they
further support the use of price movements on these days as responses to
harvest shocks.

I then regress the percentage change in the old crop price on USDA report
dates against the percentage change in the new crop price on these dates
(and a constant). Table 6.4 reports the regression results. Note that the
coefficients are very close to one. Indeed, for corn and oats, one cannot
reject (at the 5 percent level) that the coefficient is one. For spring wheat
and soybeans, one can reject the null that the coefficient is one, but the
coefficients for these commodities are still well above .9, and more than
double the values derived from the simulations.

In sum, actual new crop and old crop futures prices behave quite differ-
ently from the prices produced by solution of a storage model for a seasonally
produced commodity. Generally, actual new crop and old crop futures prices
co-move much more closely than their simulated model counterparts. More-
over, actual old crop and new crop prices move much more closely together
in response to the release of information about the size of the harvest than
do the model prices.

This really isn’t news. Referring to work he published in 1933, Holbrook
Working wrote:

[I]t was regard as clear that, in the presence of a current relative scarcity of wheat,
prospects for an abundant harvest in the following summer would have no significant
bearing on the prices paid for existing supplies.

Statistical studies published in 1933, supplemented by further evidence later,
showed this belief to be untrue. What happens in fact is that any change in price of
a distant, new-crop, wheat future tends to be accompanied by an equal change in
prices paid for wheat from currently available supplies. . . . In effect, then, the spot
price is determined as the sum of the [new-crop] futures price determined primarily
on expectations, plus a premium dependent on the shortage of currently available
supplies.

Although Working’s conjecture in the last quoted sentence is a realis-
tic characterization of an empirical regularity, it is not based in a rigorous
theory. The theoretical analysis shows that the structural storage model–a
rigorous, internally consistent theory–cannot produce this same regularity.

These empirical results showing that prices are highly correlated across
crop years are also consistent with the findings of Deaton-Laroque, who
show that annual average spot prices are highly autocorrelated for all the

hypothesis of equal variances. These tests also reject the null with very low p−values for each
of the four commodities. The Brown-Forsythe test is preferable because it is less sensitive to
deviations from normality.
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commodities they study, including seasonally produced commodities. Both
the strong covariation between new crop and old crop prices, and the high
annual autocorrelation in prices mean that there is something that connects
prices over time.

One advantage of looking at seasonally produced commodities is that this
permits the untangling of supply and demand shocks. This makes it possible
to determine more precisely what can–or, as it turns out cannot–explain the
high intertemporal correlations in commodity prices.

In the seasonal model, storage cannot explain the high degree of correla-
tion over time. This is true because in the model, storage frequently does not
occur across crop years, and as a result, new crop and old crop prices can
exhibit very low correlations in that model. The correlations are low because
in the absence of storage, there is no mechanism to communicate shocks to
the size of the coming harvest to old crop prices. When agents perceive that
it is highly unlikely that it will be optimal to carry-over inventory into the
new crop year, shocks to the size of the new harvest have no implications for
consumption throughout the remainder of the old crop year. Since shocks to
the harvest have a large impact on new crop prices, this makes correlations
low.

The seasonal commodity model also shows that the Deaton-Laroque ex-
planation for high correlations cannot be right either. They find that in a
model with independent net demand shocks, storage can generate some au-
tocorrelation in prices, but not the high correlation observed in the actual
time series. To generate such high autocorrelations, they have to assume that
the net demand shock is highly persistent; in their view, this high net de-
mand autocorrelation, rather than storage is what ties prices together over
time. Moreover, since for agricultural products there is little autocorrela-
tion in output, Deaton and Laroque conclude that highly persistent demand
shocks cause the high autocorrelation observed in commodity prices.

But the seasonal storage model throws cold water on that explanation.
The numerical results are based on very persistent demand shocks, but new
crop-old crop correlations are often very low. This is because in the model
for seasonally produced commodities, stockouts occur quite regularly, and
these stockouts prevent information about the size of the impending harvest
from affecting old crop prices. Since for such commodities it is undeniable
that information about the size of the harvest has a large impact on prices
(as the extreme high variability of prices on the days of USDA crop reports
attests), demand persistence alone is inadequate to explain co-movements
between prices across crop years. Only when supply shocks are an unimpor-
tant source of price variability, can demand persistence generate high price
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persistence across crop years. In this case, we have essentially a one shock
model, and commensurately high correlations. This is not plausible for agri-
cultural commodities such as wheat or corn. Therefore, the Deaton-Laroque
conjecture founders too.

So what might explain the high correlations between new crop and old
crop prices, and the very high sensitivity of old crop prices to information
about the harvest? The next section explores some possibilities.

6.5 Alternative Explanations for the Empirical Regularities

Since storage and persistent demand cannot explain the high frequency be-
havior of seasonal commodity prices, explanations must lie elsewhere. Here I
consider three preferences, inventories as a factor of production, and general
equilibrium effects.

6.5.1 Preferences

First consider preferences. One potential source of connection between cur-
rent and future prices that future prices affect the current willingness to
pay for the commodity. One potential mechanism that could create such a
linkage is intertemporal substitution. If current and future consumption are
substitutes, an increase in expected future availability will induce individu-
als to want to substitute future consumption for current consumption. This
will reduce the demand for the spot commodity, and could depress prices.

This possibility can be incorporated into the standard storage model in a
straightforward, but admittedly ad hoc way. For instance, the spot demand
function could be changed as follows:

D(qt, zt) = Φ∗F νt+δte
ztqβt

where Ft+δt is a forward price, as of time t, for delivery at t+ δt and ν > 0
is a parameter that reflects the substitutability of current and future con-
sumption.

This model is straightforward to implement using the standard machin-
ery, and indeed generates closer connections between old crop and new crop
prices, but its arbitrary nature is not wholly satisfactory; it comes danger-
ously close to assuming the result.

It is preferable instead to start from a specification of preferences di-
rectly. One natural approach would be recursive preferences along the lines
of Kreps and Porteus (1978) or Epstein and Zin (1989). Kreps-Porteus and
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Epstein-Zin preferences allow separation of risk aversion and intertemporal
substitution effects.

A little formal analysis demonstrates, however, that these preferences can-
not resolve the puzzle. Consider a generalization of an Epstein-Zin model
with multiple commodities. There is a representative consumer who has
preferences over two goods, a continuously produced good C and a season-
ally produced good S. There are assets (“trees”) that produce a stochastic
amount of this good. At time t, output of the continuously produced good
is Qt = C0e

zt where:

dzt = −μzdt+ σzdWtz

The production of S is described by the same model as analyzed earlier in
this chapter.
S is storable, but crucially, C is not. The importance of this assumption

will be evident shortly. It is made here to ensure that intertemporal linkages
are due solely to preferences and the storability of S, and not the storability
of C.

A la Epstein-Zin, preferences are recursive:

Ut = lim
Δt→0

W (V (Ct, St), EUt+Δt(xt))

where St and Ct are the consumptions of the seasonal and continuously
produced goods at t, and x′t is the amount of the seasonal good carried out as
inventory at t, and where W (., .) is an aggregator function that incorporates
intertemporal consumption and risk preference effects. The flow utility at t
is:

V (C, S) = A[Sρ + Cρ]
1
ρ

In a decentralized economy in which the continuous good is the numeraire,
a consumer who owns xt units of the seasonal good, and as a result of
ownership of an asset that produces the continuous good, receives a dividend
of qct units of that good, chooses Ct and St to maximize:

W (V (Ct, St), EUt+dt(xt)) + λ(Pxt + qct − PSt − e−rdtFx′t − Ct)

where P is the spot price of the seasonal good (in terms of the numeraire), F
is the forward price of the seasonal good, and λ is the Lagrangian multiplier
on the agent’s budget constraint.

The first order conditions for a maximum imply that:

P =
W1VS
W1VC

=
VS
VC

Now consider the effect of a shock to the expected future harvest on the
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spot price. Inspection of the expression for price makes it plain that this
shock can only affect the spot price through its effect on the consumption
of S or C. Since the continuously produced good is not storable, the har-
vest shock cannot affect how much of it is consumed. Therefore, the only
way a harvest shock can affect the spot price is through its effect on the
consumption of S.

But this means that just as in the standard storage model, here harvest
shocks will not affect the spot price with some regularity. Quite frequently,
it will be optimal to consume all inventories of the seasonal commodity prior
to the next harvest. For instance, if the next harvest is expected to be large,
it is not optimal to carry inventory across crop years.5 In this situation, a
positive harvest shock will not affect current consumption of the seasonal
good, meaning that the price of the seasonal good will not change in response
to the harvest shock.

In brief, the explicit incorporation of intertemporal substitution into pref-
erences does not overturn the counterfactual implication of the standard
storage model: namely, the prediction that spot prices should not respond
to harvest shocks when there is a high probability that there will be no
carryover across crop years. This occurs because in both this model and the
standard one there is only one margin along which consumers may adjust:
their consumption of the seasonal good (or, equivalently, their choice of in-
ventory of that commodity.) Due to the fundamental nature of the economy
with the seasonal good, with some regularity carry-out across crop years will
be zero, meaning that it is not optimal to adjust consumption in response to
news about the size of the next harvest. Since prices in a competitive econ-
omy induce agents to undertake the optimal decision, this means that prices
need not adjust in response to news about the next harvest, intertemporal
substitution or no.

Numerical solution of this model validates this reasoning. Optimal stor-
age decisions do vary with the degree of intertemporal substitution, but
spot prices generally exhibit substantially less sensitivity to harvest shocks
than do new crop futures prices, and these sensitivities vary through the
(simulated) crop year in ways not observed in the actual data. In brief, the
numerical results for correlations and the relatively sensitivities of old crop
prices to harvest shocks are nearly the same in this model as in the standard
storage model analyzed earlier in the chapter.

5 Any model of a seasonal commodity does not have this feature would be objectionable and
empirically falsified because it would not exhibit the backwardation across crop years
regularly observed in seasonal commodity markets. As it turns out, numerical solution of the
Epstein-Zin model exhibits this regularity.
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Altering preferences, in sum, is not a promising way to correct the defi-
ciencies of the standard storage model.

6.5.2 Inventories as a Factor of Production

Ramey (1989) posits that inventories can be viewed as a factor of production.
Drawing on this insight, Carter and Revoredo (2005) and Revoredo (2000)
derive a storage model in which the demand for a commodity by processors
depends not just on the current spot price, but on the expected future price.
This linkage between current quantity demanded and the future price is the
kind of linkage that could communicate information about future harvests
(that affect future prices) into current consumption decisions, and hence
pre-harvest spot prices. Although this seems promising, as will soon be seen
this approach is ad hoc and unrealistic in the extreme.

Formally, drawing upon Ramey, Carter and Revoredo posit that produc-
tion of a finished (processed good), Qt, depends on inventories of the raw
commodity, It:

Qt = min{It
λ
, f(Kt)}

where Kt is another productive input (e.g., capital or labor) and λ is a
parameter. Carter-Revoredo assume that f−1(Q) = Q(lnQ− 1). Given this
technology, they show that in a discrete time competitive industry,

Qt = exp{Pt − λ(1 + r)[(pt + k) −E(pt+1)]
w

}

and

It = λQt

where Pt is the price of the processed good at t, pt is the price of the raw
commodity at t, and w is the price of the other productive input.

Note the presence of the expected future spot price of the raw commodity
in the inventory expression. If the price of the raw material in the future is
expected to be low (due, for instance, to the anticipation of a large impending
harvest), processors hold low inventories. This reduces the demand for the
raw commodity, and correspondingly reduces the spot price. This basically
reflects the nature of the Ramey model from which this model is derived.
The difference between the spot and expected future prices is a rental rate
on inventory, which is a form of capital in these models. If the future price is
expected to be low, the rental rate is high, leading processors to economize
on the use of this form of capital. In this way, the model rationalizes a link
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between future prices and spot prices by which news about the harvest can
affect current demand, and hence spot prices.

Mystery solved? Alas, no. This model does not provide a satisfactory
resolution of the issue because of the magical role of inventories in the model,
a role that corresponds not at all to their function in reality.

I say “magical” quite deliberately. In this model, larger inventories result
in larger production but they are never actually consumed. In the model, just
having more raw material inventory sitting around improves productivity. A
processor with 2000 units of the raw commodity on hand is more productive
than one with 1000 units. But if he starts out with 2000 units, he ends up
with 2000 units. In this sense, the inventory is literally rented, but never
consumed. Commodity processors never actually process the commodity. In
the model, a soybean processor buys soybeans, and at the end has soybean
oil and soybean meal–and the same quantity of soybeans he started with.
Magical indeed.

In reality, of course, the raw commodity is used up in processing. A soy-
bean crusher who buys 500,000 bushels of soybeans and processes them ends
up with soybean oil and meal, but no soybeans.

Thus, the inventories as a factor of production approach is not a reason-
able way to forge a link between future prices and current ones. Since, as
Carter-Revoredo demonstrate, “convenience yield” models like those of Mi-
randa and Rui (1996) are special cases of their model, the convenience yield
approach is not reasonable either.

A more realistic interpretation of raw material inventories held by pro-
cessors would reflect rigidities in processing. For instance, due to the time
involved in transporting a commodity and preparing it for processing, pro-
cessors may have to purchase raw material inputs prior to the realization of
demand for the final product.

Incorporating this type of friction into the storage model necessarily in-
creases the dimensionality of the storage problem, for now there are two
stock variables that need to be accounted for: the amount of the raw com-
modity that processors have purchased in the past for processing today and
in the future, and the amount of the commodity held by “speculators” and
not yet committed to processors.6 Moreover, since processed output (e.g.,

6 Processor inventories and speculative inventories are not fungible. Most processor facilities
have the ability to load in raw materials, but not load them out again. As an illustration of
this, a grain trader told me of a story that during a soybean manipulation during the
late-1970s, his company’s mills blasted holes in their storage bins so their beans could be
loaded onto trucks for shipment to the futures delivery point to take advantage of the
distorted price. They had to do this because the bins were designed only to load-in soybeans,
not load them out. Moreover, shipping inventories from a processor to another consumer
entails another transportation cost.
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soybean meal and oil) is itself storable, a realistic model would incorporate
processed inventories as well.

Unfortunately, this expansion in the number of state variables makes the
problem numerically intractable. But this is unlikely to be a serious loss
because the “time to process” rigidity that gives rise to holding inventories
does not fundamentally transform the storage problem in a way that is
likely to resolve the old crop-new crop puzzle. This rigidity can indeed result
in inventories being carried over between the old and new crop years: for
instance, if inventory must be ordered two weeks before it is processed, to
be able to have the final good available for sale in the first week of the
new crop year it is necessary to hold inventory from the week before the
harvest to the week after. But this very rigidity means that the new crop
is not a substitute for the in-process inventories held over the crop year. A
processor cannot increase output in the early part of the new crop year by
avoiding purchases of old crop supplies and using new crop supplies instead.
Not purchasing the old crop supplies means that he is unable to produce
anything early in the new crop year due to the time-to-process constraint.
The fact that new crop supplies are not substitutes for old crop supplies in
processing means that the inventories of the old crop carried over the crop
year cannot provide a linkage between new crop prices and old, and hence
cannot be a channel by which news about the harvest affects old crop prices.
So this too is a dead end.

6.5.3 Multiple Storable Commodities

The third alternative avenue to explore is a general equilibrium model with
multiple storable commodities. The basic idea is that there are two commodi-
ties that are substitutes in consumption, both storable, with one produced
seasonally and the other produced continuously. Storage of the continuously
produced commodity provides another intertemporal connection that can
cause future harvest shocks to affect old crop prices.

For instance, consider the effect of a favorable y shock that occurs late in
the crop year. This increase in the size of the expected harvest effectively
leads to an increase in the future demand for the continuously produced
good: there will be more of the seasonal good to trade for it. This provides
an incentive to store additional units of the continuously produced good.
Given the stocks of this good, this requires a reduction in consumption. This
in turn requires its spot price to rise relative to the price of the seasonally
produced good. If the continuously produced good is the numeraire, this is
equivalent to a fall in the price of the seasonally produced good.
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To consider these ideas more formally, consider the following model, which
is analogous to the one discussed in the context of the Epstein-Zin model
above, with one crucial difference. There is a representative consumer who
has preferences over two goods, a continuously produced good C and a
seasonally produced good S. The consumer’s preferences are given by a
constant elasticity of substitution form:

U(C, S) = A[Sρ + Cρ]
1
ρ

Production of C takes place continuously; there is an asset that produces
a stochastic amount of this good. At time t, output of the continuously
produced good is Qt = C0e

zt where:

dzt = −μzdt+ σzdWtz

The production of S is described by the same model as analyzed earlier in
this chapter.

In this model, both S and C are storable. Call inventories of the continu-
ously produced good at t xct and the inventories of the seasonally produced
good xst. The (annual) discount rate is r.

Use the continuously produced good as the numeraire, and define the spot
price of the seasonal good in terms of this numeraire as P . In a competitive
market, this spot price equals the ratio of marginal utilities:

P =
US(Ct, St)
UC(Ct, St)

where Ct and St are consumptions of the continuously and seasonally pro-
duced goods, respectively, at t.

Given the availability of both goods, agents choose their consumptions Ct
and St to maximize their expected discounted utility:

V = max
Ct,St

E

∫ ∞

0
e−rtU(Ct, St)dt

The availability of the continuously produced good is carry-in plus produc-
tion, xct +Qt. The availability of the seasonal good is xst +Ht.

Optimal allocation of the goods over time (as will occur in a competitive
market) equates expected marginal utilities over time:

UC(Qt + xct −Ct, Ht + xst − St) ≥ e−rdtEUC(Ct+dt, St+dt)

US(Qt + xct −Ct, Ht + xst − St) ≥ e−rdtEUS(Ct+dt, St+dt)

where a relation holds as an equality if the corresponding non-negativity
constraint on inventory for the corresponding good is not binding at t, and
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where it holds as a strict inequality if the constraint is binding. For instance,
if carry-out of the continuously produced good is zero, the marginal utility
of that good at t will exceed its discounted expected value at time t+dt, but
if its carry-out is positive the marginal utility of C will equal its discounted
expected value.

The crucial feature of this model is the response of the marginal util-
ity of one good–notably, the continuously produced one–to an increase in
consumption of the other. Note that:

UC = A[Cρ + Sρ]
1−ρ

ρ C1−ρ

and

UCS = A(1− ρ)[Cρ + Sρ]
1−2ρ

ρ Cρ−1Sρ−1

For ρ < 1, UCS > 0, meaning that an increase in consumption of the seasonal
commodity causes an increase in the marginal utility of the continuously
produced one.

Consider the implications of this for the effect of a favorable harvest shock
(i.e., a favorable y shock) immediately before the harvest, when prior to the
shock, (a) the Euler equation for the continuous good holds as an equality,
but (b) the Euler equation for the seasonal good is an inequality, as current
availability is low relative to the availability expected after the harvest.7

In response to the shock, the marginal utility of the continuously produced
good is expected to be higher immediately after the harvest because (a) a
bigger harvest results in an increase in the consumption of the seasonal good
then, and (b) the marginal utility of C is increasing in the consumption of
the seasonal good. But since prior to the shock, the marginal utility of the
continuously produced good was (by assumption) equal to its discounted ex-
pected post-harvest value when evaluated at the consumptions optimal prior
to the shock, after the shock this equality cannot hold. The current marginal
utility is less than the expected future utility. To restore the equality, it is
necessary to reduce current consumption and increase future consumption.
This requires agents to increase the amount of the continuously produced
commodity that they hold in inventory. This tends to drive up the current
marginal utility of that good. But, since (a) consumption of the seasonal
good, and hence its marginal utility, does not respond to the harvest shock,
because if it was not optimal to carry-over before the revelation of favor-
able information, it is not optimal to do so afterwards, and (b) the price

7 The equality in the continuous good Euler equation means that inventories of this good are
positive.
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of the seasonal good (in terms of the continuous good numeraire) is the ra-
tio of marginal utilities, this rise in the continuous good’s marginal utility
causes the price of the seasonal good to fall. In this way, a harvest shock is
communicated to the old crop price even though none of this good is stored.

Conceptually, the standard machinery can be employed to solve this prob-
lem with some modifications. First, make a grid in the four state variables,
zt, yt, xct, and xst, and time; as with the other seasonal problems, I divide
time into weekly increments. Next, make a guess for Ct(zt, yt, xct, xst, t) and
St(zt, yt, xct, xst, t) for some point in the time cycle: as before, I choose the
week immediately prior to the harvest. Then, given this guess, solve the two
Euler equations to get consumptions–and hence marginal utilities–at the
previous time step. As before, by invoking the Feynman-Kac Theorem it is
possible to show that each expected marginal utility (which is equivalent
to the forward price in the earlier models) must solve a parabolic, second
order PDE. Given the solution of the consumptions at this date, proceed to
the preceding date, solve for the consumptions, and continue stepping back-
wards in time to the date right before the harvest. Check to see whether
the marginal utility functions have converged. If so, stop; if not, repeat the
process.

Although the recipe for solving the problem is conceptually identical to
that employed throughout the book, practically this is a much more difficult
and challenging problem. This is due to the fact that allowing for a second
storable commodity increases the dimensionality of the problem. Specifi-
cally, there is an additional state variable: the inventory of the continuously
produced good. This raises computational costs. Moreover, whereas in the
standard storage model for each state variable it is necessary to solve one
equation in one unknown subject to one constraint, in this problem it is
necessary to solve simultaneously a set of two equations subject to two con-
straints. This is substantially numerically trickier than the solution of one
equation, and requires the use of linear complementarity methods like those
described in Chapter 3.8 of Fackler and Miranda (2002).

As it turns out, these additional complexities have precluded solution of
the problem; I have been unable to surmount the curse of dimensionality.
Specifically, the algorithm has not achieved convergence even after running
20 days on a fast desktop computer.

Although the numerical solution to the problem has as of yet proved im-
practical, this approach is appealing, and represents a promising conceptual
extension of the storage model. The seasonal model points out quite clearly
some deficiencies in the received, partial equilibrium approach. In that ap-
proach, storage is crucial in linking prices over time. The seasonal model
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makes it abundantly clear that highly autocorrelated demand cannot explain
the high degree of linkage observed over time. Nor, as discussed above, can
preferences or in-process inventories perform this function. Inventories are
necessary to communicate the supply shocks that are an important source of
uncertainty for seasonal commodities from post-harvest prices to pre-harvest
prices. But due to the seasonality of production, it is often optimal to ex-
haust inventories immediately before the harvest, meaning that it is often
the case that inventories cannot link new crop and old crop prices, and that
the model implies that these prices should often become disconnected.

But the data show that these prices are closely connected. This means
that in practice, there must be some other decision margin to allocate goods
over time that can affect intertemporal price relations: one storable good
is not sufficient to produced the observed intertemporal price connections
for that good. An obvious alternative is other storable goods. Agents can
alter their consumption–and storage–of other goods in response to a shock
that affects the expected production of the seasonal good. If the goods are
substitutes, a favorable shock to the expected future supply of the seasonal
good tends to induce agents to want to shift their consumption of other
goods to the future. Even in situations where carryover of the seasonal good
is not optimal, this shift of consumption of other goods from the present to
the future tends to depress the current price of the seasonal good relative
to the prices of these other goods.

There is another way to see this. If the impending harvest is expected to
be large, agents would like to move the seasonal good from the future to the
present, but lacking time machines, this is impossible. So they do the next
best thing. They shift the consumption of other goods from the present to
the future. The big harvest essentially represents a big future demand for
the other goods, and agents respond by storing more of these other goods
to meet this large anticipated future demand. This effectively reduces the
current demand for the seasonal good, depressing its price.

Although the full solution of the multi-good, general equilibrium prob-
lem has as yet proved computationally impractical, this is perhaps not so
disappointing. Even a two good model possesses far fewer intertemporal
allocation decision margins than the real economy. As a result, it is highly
likely that although the expanded model would exhibit stronger intertempo-
ral price connections than the standard model, it would be unable to match
the high intertemporal (e.g., new crop-old crop) price covariation observed
in practice. The real world presents far more potential to move consumption
through time in a way that links prices than would any model remotely capa-
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ble of being solved computationally even after many years of the continued
operation of Moore’s Law.

6.6 Summary and Conclusions

The seasonal storage model fails rather spectacularly in characterizing the
high frequency behavior of periodically produced commodities such as corn
or soybeans. Actual seasonal commodity new crop and old crop prices move
together much more closely, and respond much more similarly to news about
the harvest, than do prices from the model. It would be nice to have a model
that accurately captures the observed behavior, but this failure is highly
instructive.

For one thing, the failure makes it possible to discard some explanations
for the high degree of intertemporal covariation of prices. Specifically, the
failure of the seasonal model makes it clear that highly autocorrelated de-
mand absolutely cannot explain the observed autocorrelations, and the high
degree of association between new crop and old crop prices. Moreover, and
relatedly, the failure demonstrates the essential role of storage in connect-
ing prices over time in the standard model: no storage, no connection. In
particular, with no storage across the harvest (as occurs frequently in the
model), there is no connection between old crop prices and the expected size
of the new harvest. The contrast between the routine high responsiveness
of old crop prices to harvest-related information in the actual data, and the
frequent absence of such responsiveness in the model demonstrates strik-
ingly the essential role of storage in connecting prices in the partial equilib-
rium model. Furthermore, the seasonal model’s ability to generate different
testable implications for supply and demand shocks makes it possible to rule
out definitively the possibility that highly autocorrelated demand accounts
for price behavior. This further emphasizes the critical role of storage in
linking prices.

For another, the failure shows that it is necessary to search for other
things that connect prices over time. Since storage of seasonal commodities
or autocorrelated demand are not sufficient to explain the close covariation
of new crop and old crop prices, there must be something else.

The most promising possibility is to recognize that there are myriad in-
tertemporal decision margins, because there are myriad storable goods in
the economy. Even if agents’ ability to move one good through time is con-
strained, they can often circumvent that constraint by moving other goods
intertemporally. Such intertemporal movements affect relative prices. This
tends to connect prices in ways impossible in the simple storage model,
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and provides a mechanism whereby a shock to the future availability of a
commodity that will experience a stockout affects its current price.

Thus, through its failure, the storage model for periodically produced
goods points the way to improving our understanding of the ways that com-
modity markets work, and commodity prices behave. Following this direc-
tion, alas, requires the relaxation of another constraint: computational costs.
Given the secular improvements in computational power, however, our un-
derstanding is sure to improve over time.
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Table 6.1
Commodities Included In Correlation Analysis

Commodity Symbol Old Crop Month New Crop Month

corn CN September December

Oats OA September December

soybeans SY September November

Hard Spring wheat MW September December

Canola WC September November

cotton CT July October
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Table 6.2
Panel A

New Crop-Old Crop Correlations in 1st Quarter of Crop Year

Year CN OA SY MW WC CT

1981 0.969 0.942 0.985 0.862 0.959 0.890
1982 0.969 0.955 0.976 0.935 0.937 0.931
1983 0.933 0.974 0.987 0.937 0.937 0.838
1984 0.885 0.943 0.900 0.905 0.731 0.862
1985 0.934 0.865 0.976 0.617 0.837 0.755
1986 0.938 0.983 0.990 0.968 0.987 0.032
1987 0.936 0.979 0.987 0.898 0.991 0.936
1988 0.963 0.980 0.986 0.838 0.976 0.752
1989 0.930 0.987 0.971 0.911 0.989 0.845
1990 0.958 0.987 0.982 0.836 0.957 0.731
1991 0.974 0.988 0.985 0.975 0.937 0.819
1992 0.977 0.988 0.988 0.962 0.975 0.935
1993 0.973 0.984 0.979 0.906 0.859 0.934
1994 0.969 0.987 0.993 0.953 0.897 0.779
1995 0.978 0.954 0.988 0.949 0.948 0.702
1996 0.862 0.993 0.979 0.978 0.953 0.789
1997 0.982 0.940 0.906 0.982 0.909 0.918
1998 0.985 0.973 0.984 0.940 0.875 0.968
1999 0.979 0.942 0.985 0.943 0.906 0.868
2000 0.992 0.948 0.995 0.969 0.949 0.939
2001 0.995 0.934 0.990 0.976 0.816 0.892
2002 0.990 0.837 0.979 0.969 0.777 0.986
2003 0.978 0.774 0.952 0.979 0.844 0.949
2004 0.988 0.951 0.965 0.982 0.825 0.919
2005 0.965 0.733 0.964 0.984 0.969 0.957
2006 0.990 0.701 0.976 0.983 0.915 0.950
2007 0.977 0.777 0.992 0.962 0.943 0.929
2008 0.990 0.982 0.979 0.986 0.992 0.990
2009 0.998 0.995 0.987 0.993 0.935 0.992
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Table 6.2
Panel B

New Crop-Old Crop Correlations in 4th Quarter of Crop Year

Year CN OA SY MW WC CT

1981 0.952 0.873 0.970 0.912 0.968 0.706
1982 0.868 0.894 0.957 0.914 0.986 0.985
1983 0.898 0.980 0.996 0.915 0.992 0.933
1984 0.794 0.906 0.978 0.910 0.934 0.878
1985 0.832 0.939 0.981 0.919 0.820 0.829
1986 0.859 0.876 0.915 0.887 0.991 0.453
1987 0.910 0.937 0.958 0.893 0.959 0.716
1988 0.992 0.976 0.993 0.970 0.992 0.575
1989 0.966 0.977 0.972 0.916 0.993 0.612
1990 0.929 0.978 0.987 0.943 0.986 0.825
1991 0.988 0.965 0.992 0.961 0.983 0.737
1992 0.910 0.943 0.966 0.954 0.926 0.314
1993 0.951 0.964 0.991 0.825 0.957 0.488
1994 0.848 0.871 0.956 0.902 0.782 0.890
1995 0.942 0.969 0.993 0.892 0.938 0.001
1996 0.855 0.949 0.954 0.896 0.944 0.872
1997 0.972 0.926 0.844 0.910 0.946 0.883
1998 0.985 0.942 0.955 0.902 0.888 0.797
1999 0.976 0.915 0.995 0.931 0.967 -0.281
2000 0.993 0.949 0.994 0.883 0.872 0.994
2001 0.996 0.932 0.987 0.928 0.815 0.895
2002 0.994 0.910 0.969 0.926 0.694 0.966
2003 0.959 0.924 0.949 0.921 0.886 0.949
2004 0.976 0.875 0.965 0.894 0.656 0.461
2005 0.992 0.896 0.995 0.810 0.961 0.802
2006 0.996 0.840 0.989 0.972 0.966 0.945
2007 0.993 0.900 0.996 0.952 0.934 0.569
2008 0.998 0.991 0.756 0.970 0.870 0.966
2009 0.993 0.996 0.963 0.990 0.974 0.993
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Table 6.3
Price Variances on USDA Announcement Days and Non-Announcement Days

Commodity Announcement Day Non-Announcement Day Brown-Forsythe
Variance Variance Statistic

New Crop SY 1235.1 136.3 16.1
Old Crop SY 1335.0 22.1 16.9
New Crop CN 230.4 21.5 19.6
Old Crop CN 219.3 21.8 18.4

New Crop MW 330.7 70.3 9.7
Old Crop MW 334.8 67.8 9.9
New Crop OA 138.6 11.8 18.4
Old Crop OA 132.1 10.8 18.7
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Table 6.4
Regression of Old Crop Price Change vs. New Crop Price Change

On USDA Announcement Days
ΔFO,t = α + βΔFN,t + εt

Commodity β t−statistic t−statistic p−value
β = 0 β = 1 β = 1

SY 0.94 79.91 4.69 1.00
CN 0.98 49.95 1.04 0.85
MW 0.97 74.91 2.04 0.98
OA 1.00 66.34 0.16 0.56



7

The Dynamics of Carbon Markets

7.1 Introduction

carbon permits issued as part of cap and trade systems around the world,
and derivatives thereon, are likely to become one of the world’s largest com-
modity markets in the coming years. Virtually every economic activity in-
volving the production or consumption of energy will be affected by cap and
trade, and this system for controlling greenhouse gases will therefore entail
the purchase and sale of large quantities of carbon permits and derivatives.

This raises the question: How will carbon prices behave? The answer to
that question depends on the design of the carbon market, which points to
one of the distinctive things about this commodity: its market will be one of
our own design. Throughout this book, I’ve noted that storage decisions, and
hence commodity prices, depend on characteristics of the commodity, such
as the nature of production (is it seasonally produced or not?) and spatial
factors (how easy is it to trade across space?). With most of the commodities
we are familiar with, say wheat or copper, some of these factors are outside
of human control. Fundamental natural factors make wheat a periodically
produced commodity, and nothing man can do will change that.

Things are quite different with carbon. It is possible to choose–to design–
virtually all of the salient features of this commodity. For instance, the fre-
quency of production can be determined by legislative fiat. The author of the
laws establishing cap and trade can specify that the permits will be issued
yearly, or monthly, or weekly, or whatever. Similarly, the ability to trade
across space is subject to legislative choice: legislators can limit the amount
of carbon that can be traded across certain jurisdictions, or not. Perhaps
most remarkably, for carbon it is possible to circumvent the constraint that
has played such an important role in the analysis of “natural” commodities:
the constraint that storage is non-negative. Whereas it is impossible to bor-
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row copper produced in the future to consume today, it is possible to design
the carbon market so that agents borrow carbon permits to be issued in
the future in order to emit the gas today. Thus, the “inventory” of permits
can go negative as obligations to deliver carbon in the future can exceed the
currently available supply of permits.

This chapter examines the effects of carbon market design on the behavior
of carbon prices. Specifically, I examine the implications of three key design
choices: the frequency of issuance of carbon permits; whether or not these
permits expire, or can be stored indefinitely; and whether it is possible to
borrow permits to be issued in the future to allow agents to emit today.

The results should be quite understandable to someone who has read the
book to this point. First consider the effects of the expiration of permits,
i.e., what happens when permits are issued annually, say, and can only be
utilized in a given calendar year. Here storage is precluded across “permit
years” or “vintages.” As the expiration date nears, agents will have a good
idea of the likely demand for the expiring permits over their remaining life.
Any permits left over at the end of the year will be worthless because they
cannot be held for use in future years, and hence if the supply of permits is
close to the quantity that would be demanded if the price is close to zero,
the price will be very low. Conversely, if the supply is relatively low, prices
will have to be very high in order to ration the remaining amount. Thus, one
expects substantial volatility in prices of permits near expiration, as prices
will plummet to nearly zero (if it is likely that supply is sufficient to satisfy
the maximum amount that can be utilized in the remainder of the year) or
skyrocket (if supplies are small).

Next, consider the effects of allowing storage of permits across years, but
varying the frequency of issue. If certificates are issued annually, say, carbon
will resemble an agricultural commodity, and the price patterns will resem-
ble those of corn or wheat. That is, they will exhibit a saw-tooth pattern,
rising from the time immediately after issuance until the time of a new is-
suance, when under most circumstances prices will fall. As with a seasonally
produced agricultural commodity, sometimes it will be optimal to carry-over
old permits for use after new permits are issued, but usually the prospect
of a predictable influx of supply will make it optimal to consume the entire
outstanding stock immediately before the new issuance. Conversely, if per-
mits are issued more frequently, say weekly or monthly, the commodity will
resemble more closely a continuously produced commodity like copper, and
hence will exhibit less of a saw tooth pattern, and the timing of stockouts
will become less periodic.

Finally, consider borrowing. Borrowing relaxes the non-negativity con-
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straint on storage, but most proposals that permit borrowing impose a con-
straint nonetheless. For instance, the ACES bill in the United States (more
commonly known as the Waxman-Markey bill) limits the amount of the
commodity that can be borrowed to fifteen percent of the allocation. Thus,
there is still a constraint, and the market does not perform that much dif-
ferently from one in which borrowing is not allowed (holding the frequency
of issue constant).

The remainder of this chapter is organized as follows. Section 2 sets out
the model, and briefly recaps the solution method. Section 3 presents simu-
lation results that compare and contrast the behavior of carbon prices under
alternative market designs. Section 4 summarizes.

7.2 The Model

In the model, there is a single industry that produces carbon as a byprod-
uct. Each unit of output that the industry produces generates one unit of
carbon. The commodity is produced and consumed continuously, and which
is not subject to pronounced seasonality in supply or demand. Moreover,
the commodity itself is not storable.1

The flow demand for the commodity is our standard:

D(qt, zt) = Φeztqβt

where D(qt, zt) is the spot price of the commodity at time t, qt is the con-
sumption of the commodity at t, zt is a stochastic demand shock, and Φ and
β are parameters.

Producers of the commodity are competitive. The commodity is produced
subject to strict decreasing returns and a binding capacity constraint. Specif-
ically, the flow supply of the commodity is:

MCt = A+
ν

(q̄ − qt)ψ

In this expression, MCt is the marginal cost of producing qt units of the
commodity. q̄ <∞ is the flow capacity constraint.

The government limits the total amount of carbon that can be emitted,
and requires each producer to obtain one permit per unit of output of the
commodity (equivalently, of carbon). The permits are issued every τ years,
and the amount of permits issued is a fraction of the industry’s expected
output in the absence of a cap and trade system. Specifically, assume that
1 Allowing storability of the commodity would introduce an additional state variable, and

inflict the curse of dimensionality. Note that the output of one of the main producers of CO2,
electricity generation, is effectively non-storable.
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the unconditional expectation of industry output at time t is q̂t. The amount
of permits issued at t′ is:

K = α

∫ t′+τ

t′
q̂tdt

where α < 1.
The demand for carbon permits is a derived demand. The value of being

able to produce an additional unit of output in a competitive market is
the difference between the marginal value of the commodity at that output,
and the marginal cost of producing that output. Competitive suppliers (or
equivalently, competitive buyers) would be willing to pay that difference in
order to obtain the right to produce (or consume) the marginal unit. Thus,
if industry output is q, and the realization of the demand shock is z, the
competitive price of a carbon permit is:2

P (q) = max[Φezqβ − (A+
ν

(q̄ − q)ψ
), 0]

The demand shock dynamics are somewhat different than those considered
elsewhere in the book. There are two shocks of differing persistence. There
is a permanent demand shock yt that follows a Brownian motion with drift:

dyt = μdt+ σydWyt

where Wyt is a Brownian motion, and μ and σy are constants. The actual
demand shock is an Ornstein-Uhlenbeck process that reverts to the value of
the permanent demand shock:

dzt = κz[zt − yt] + σzdWzt

where Wzt is a Brownian motion, κz < 0 is a constant speed of mean rever-
sion, and σz is a constant.

The basic motivation for this specification is that demand for the good
is driven in part by overall economic activity, which is highly persistent:
the y shock essentially represents the contribution of overall economic ac-
tivity to the demand for the commodity.3 In addition, there is a transitory
component to demand. This specification captures salient aspects of some
industries that are major carbon producers, such as electricity generation.
Aggregate economic activity affects the demand for electricity, but other
highly transitory factors, such as weather, also affect demand.4

2 Since carbon permits are freely disposable, their price can never fall below zero.
3 There is a long running debate about whether GDP has a unit root, i.e., if GDP shocks are

permanent.
4 The transitory factor in the demand for electricity have a seasonal component to them. This
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The market for carbon permits is perfectly competitive, and there are risk
neutral agents who can engage in speculative storage of these permits.

I consider a variety of different policies relating to expiration, the fre-
quency of issue, and the storability of permits:

• Permits are issued annually, and expire at the end of a calendar year.
• Permits are issued annually, but can be stored indefinitely. No borrowing

of permits to be issued in the future is permitted.
• Permits are issued annually, can be stored indefinitely, and can be bor-

rowed. Moreover, the quantity of certificates that can be borrowed is lim-
ited to kK, and borrowers must pay interest in the form of certificates on
each certificate borrowed. An agent who borrows a certificate for t′ years
must return 1 + t′R of them.

• Permits are issued weekly, and can be stored indefinitely. No borrowing is
permitted.

• Permits are issued weekly, can be stored indefinitely and borrowed, with
borrowing limited to a maximum of kK permits and an interest rate on
borrowings of R annualized.

Solution of the model varies slightly depending on the market rules. As
always, the problem is discretized in the state variables (z, y, the amount
of permits X) and time.5 In the numerical solutions reported below, I use a
weekly time step.

With permits that expire annually, and no carry-over, solution is straight-
forward. If agents hold Q permits at expiration, the price of the permit is
equal to:

P (q) = max[Φezqβ − (A+
ν

(q̄ −Q)ψ
), 0].

This expression holds because agents either consume the entire amount of
permits available (since they cannot carry them over for use in the future),
or consume enough to drive the price of a permit to zero, and dispose of the
rest.

Given the prices at expiration, it is possible to determine the forward
price for delivery for each value of carry-in at the expiration of the permits
at the time step prior to that expiration date. As usual, for carry-in X0,
the competitive amount of permits carried out X1 equates the spot price
of the permits P (X0 − X1) to the present value of the forward price for

could be incorporated in the analysis along the lines of the seasonal model of Chapter 4, but
in the interest of simplicity I abstract from it here.

5 If permits are issued at intervals greater than the time step, it is desirable to have different
discretizations in X for each time step, as in the seasonal commodity model.
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carry-in X1, if that carry-out is positive.6 Given this spot price function for
one period prior to permit expiration, solve for the forward price function
for two steps prior to permit expiration; determine optimal carry-out and
the spot price function; and continue this backward induction process until
the most recent permit issue date. No recursion is required here.

When the interval between issuance of permits exceeds the size of the
time step (e.g., permits are issued annually and the time step is a week),
recursive methods like those used in the seasonal model of chapter 4 are
appropriate. Begin with a guess for the spot price function (and hence con-
sumption and carry-out) at some date, such as the period immediately prior
to issuance. Due to the fact that some periods involve increases in supply,
and some do not, each period has a distinct spot price function. Determine
the forward price (for delivery at that initial date) as of the previous time
step. For each possible combination of state variables in the grid, find the
consumption (equivalently, the carry-out) that equates the present value of
the forward price to the spot price. Given this spot price function, proceed
to the preceeding time step and repeat the process. Continue this until the
time step prior to the most recent permit issuance is reached. Check to see
whether the new spot price function has converged. If it has, stop; if not,
continue the process again.

The ability to borrow affects the solution of this problem. If no borrowing
is allowed, if the consumption that equates the discounted forward price to
the spot price requires a negative carry-out, the optimal solution involves
a stock-out. If borrowing is permitted, if the consumption that equates the
discounted forward price to the spot price requires a carry-out of less than
X̂1 = kK/(1 + δtR), optimal carry-out is X̂1.7 This is the equivalent to a
stock-out in the conventional model.

When the interval between permit issuance is the same as the time step,
the problem is no longer analogous to the seasonal commodity one, but is
instead similar to the continuous production problem. Here, every period is
effectively identical, and the algorithm involves making an initial guess of
a (single) spot price function; solving the forward price function for every
state variable combination in the grid; solving for the optimal carry-out by
equating the discounted forward price to the spot price, and setting carry-
out to the minimum possible level if this solution entails a violation of the
relevant lower bound on carry-out; checking for convergence of the spot

6 Given the assumed demand function, where price goes to infinity if consumption is zero,
carry-out will always be positive.

7 Due to the in-kind interest on permit borrowings, if carry-out is less than X̂ , the borrowing
constraint would be violated on the next time step.
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price function; continuing this process until convergence. The relevant lower
bound for carry-out depends on whether borrowing is allowed. If it is not,
this lower bound is zero. If it is, the lower bound is X̂.

7.3 Results

The effects of market design are best illustrated using simulations. For each
design, I simulate 100 years of weekly z and y shocks, and then simulate
prices and stocks given these shocks. So that the figures and statistics cal-
culated are directly comparable, for each market design I utilize the same
set of shocks.

The behavior of prices and inventories in the various market designs is
illustrated in several figures. To ease interpretation, the graphs illustrate
simulated prices for only a fraction of the simulations.

Figure 7.1 shows the behavior of prices when there is no ability to “store”
emissions permits across years. Unlike the charts that follow, this chart
depicts several lines, each corresponding to the evolution of simulated prices
over a different year (for a total of 20 years). Moreover, to ease interpretation,
depicts the ratio for the price in a given week to the price on the first week of
the respective year. This adjusts for the fact that the week 1 price depends on
the level of the demand shock, which differs across years. The most noticeable
feature of the price behavior is that prices are relatively stable early in the
year, and then as the end of the year approaches, and thus as the permits
near expiration, prices either spike to very high levels, or plunge to levels
substantially lower than observed at the beginning of the year.

Moreover, examination of the figure suggests that the volatility of prices
increases as the year progresses, and the permits approach their expiration.
This is indeed the case, as illustrated in Figure 7.2, which depicts the stan-
dard deviation of the percentage change in the emissions spot price by week
of the year. This is calculated by calculating the price changes observed in a
given week (e.g., week 25) of each year, and then taking the standard devi-
ation of the 100 price changes. This is done for weeks 2 through 52 because
in week 1 prices jump due to the combined effect of the expiration of the
old vintage of permits, and the issue of new ones. These standard deviations
are annualized by multiplying by

√
52. Note that, as figure 7.1 suggests,

volatility indeed rises continuously, and at an increasing rate, as the year
progresses and expiration nears.

Though not depicted, inventories of permits exhibit a sawtooth pattern,
declining relatively smoothly throughout the year.

Figure 7.3 depicts the evolution of prices over 1000 simulated weeks when
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carryover is allowed, but permits cannot be borrowed. Note that prices ex-
hibit a sawtooth pattern, very similar to spot prices of agricultural prices,
and for the same reason. Prices must rise on average throughout the year
in order to provide an incentive to store permits to allow production until
more permits are issued.

As with agricultural commodities, the periodic “production” of permits
also affects volatility. This is illustrated in Figure 7.4, which like Figure
7.2 depicts the standard deviation of percentage price changes, by week of
the year, across the 100 simulated years. Note that the volatility tends to
increase, and at an increasing rate, as the year progresses, and the time off
issuance of new certificates nears.

This reflects rational storage behavior under this market design. Agents
draw down on inventories of permits as the year progresses. Moreover, under
most circumstances, it is rational to exhaust inventories immediately before
the new permits are issued. Thus, as the year ends, supplies of permits tend
to fall to low levels, meaning that prices rather than inventory adjustments,
must bear the bulk of the burden of response to demand shocks. This makes
prices more volatile at the end of the year.

Similar behaviors are manifest when borrowing is allowed, as illustrated
in Figures 7.5 and 7.6. There are the same seasonal patterns in price lev-
els and price volatilities, and for the same reasons. Borrowing does affect
prices over time, and inventory behavior. In the simulations certificates are
typically borrowed. In the simulations, agents are net borrowers of permits
immediately before the new issue date in over 80 percent of the years. Only
when demand is very low do agents not borrow, and in those circumstances,
typically carry over positive amounts to the following period.

The reason for borrowing is straightforward: it facilitates the smoothing
of consumption over time. Agents desire to smooth production and con-
sumption over time, but the periodic “production” of permits impedes that
smoothing. Put differently, in the absence of borrowing, the non-negativity
constraint on storage is costly, and as the model without borrowing demon-
strates, this constraint usually binds except when demand is very low. Thus,
agents derive benefits from the ability to relax this constraint, and do so un-
der most circumstances.

Finally, consider price and inventory behavior when permits are issued
weekly. Figure 7.7 depicts the 100 years of simulated weekly prices when
borrowing is precluded. Note that the sawtooth pattern apparent in prices
when permits are issued annually is absent. Prices behave nearly like a ran-
dom walk, with very slight evidence of mean reversion. A regression of the
change in the log spot price on a constant and the lagged level of the log
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spot price produces a coefficient on the lagged log price of -.0032, indicating
that the half-life of a price shock is 216 weeks–or, over four years.

Figure 7.8 depicts 100 years of simulated weekly inventories of permits.
Note that like prices, and like inventories of continuously produced com-
modities like copper, these inventories also exhibit substantial persistence.
Moreover, they do not exhibit the saw-tooth, periodic pattern as is the case
when permits are issued annually.

Figure 7.9 depicts the simulated prices when borrowing is permitted.
Again, they exhibit no seasonality, and are very persistent; the half-life of a
price shock is again about 216 weeks.

The volatilities of permit prices is virtually identical when borrowing is
allowed and when it is not. In each instance, the annualized standard devi-
ation of percentage price changes is 14.64 percent.

Figure 7.10 displays the simulated inventories when borrowing is allowed.
The timing of the peaks and troughs in the inventory series when borrowing
is allowed match those observed in Figure 7.8 when it is not, but note that
agents frequently exercise their option to borrow.

The numerical simulation also allows welfare comparisons. Specifically,
along the simulated path I calculate output of the commodity qt

8, which
implies a total surplus (consumer surplus net of cost) of:

St =
∫ qt

0
[Φeztqβ −A− ν

(q̄ − q)ψ
]dq

I then discount St back to the commencement of the simulation and sum
these discounted surpluses in order to obtain the present value of the surplus.

There is an ordering of the surplus amounts. The no-carryover market de-
sign delivers the lowest surplus. Weekly creation of permits generates higher
surplus than with annual issue and no-carryover; with this frequency of is-
sue, surplus is slightly higher when borrowing is permitted than when it
is not. Surplus is highest with annual issue and carryover; with this basic
design, surplus is greatest when borrowing is allowed. Borrowing generates
a larger increase in surplus when permits are issued annually, than when
they are issued weekly.

Some of these results are readily explained. The no-carryover market de-
sign imposes the most restrictive constraint, and generates the lowest sur-
plus. The difference between surplus when borrowing is allowed and when
it is not, when permits are issued more frequently than annually, is small
because the more frequent issuance of permits reduces the discontinuities in

8 Given the price of a permit, output is such that the marginal willingness to pay given that
output minus the marginal cost of producing it.
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availability that make borrowing valuable. In contrast, the markedly greater
benefit from borrowing when permits are issued annually arises from the
pronounced discontinuities in availability under this market design.

The difference in surplus between annual issuance and weekly issuance
is more subtle. It arises from the fact that the variability of output in the
simulations is greater with weekly issuance, than with annual issuance. This,
combined with the fact that the surplus function is concave, produces the
result. Specifically, the standard deviation of simulated output in the weekly
issue simulations is about .5, whereas it is about 10 percent less, or .45 in
the annual issue case.

7.4 Summary

Certificates granting the right to emit a given amount of greenhouse gases
could well become the largest commodity traded in the world in coming
decades. Unlike other, more traditional commodities, these certificates are
human creations, and their characteristics can be established by legislation
or regulation. In particular, the salient characteristics that have been the
focus of analysis in this book, such as the frequency of production and
storability, are design choices.

This chapter has explored the pricing of CO2 certificates using the stan-
dard storage machinery, focusing on the implications of certificate design for
price behavior and economic welfare. The analysis demonstrates that price
behavior is very sensitive to the frequency of issuance in particular, and to
constraints on the inventorying and borrowing of certificates as well. When
certificates are issued relatively infrequently (e.g., annually) and expire after
a new vintage is issued, prices tend to rise dramatically or fall to zero as
expiration approaches. When certificates are issued relatively infrequently,
but can be stored, their prices tend to behave like those of seasonal com-
modities like corn. They exhibit saw-tooth patterns, typically rising as the
next issuance date approaches, then falling at the time of the next issuance.
Frequently it is efficient to utilize the last of the outstanding certificates
immediately before new ones are issued, but sometimes it is optimal to
carry-over inventories certificates across an issuance date. When certificates
are issued frequently (e.g., weekly), their prices behave like those of continu-
ously produced commodities (like copper). The ability to borrow certificates
from the future (something that is impossible in physical commodity mar-
kets) affects prices, but generally prices behave similarly when borrowing is
or is not allowed.

As international efforts to control CO2 emissions evolve, different nations
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will receive different allocations of certificates. Differences in these endow-
ments, and differences in economic conditions across nations, will create
opportunities to trade certificates between nations. Some proposed green-
house gas regulation regimes contemplate restrictions on such trade (e.g., a
given nation will only be able to cover a given percentage of its carbon emis-
sions with certificates purchased from other nations). These restrictions will
result in differential pricing across jurisdictions. Conceptually the storage
model is capable of characterizing the behavior of prices in different mar-
kets, and the relations between prices in different markets, and how these
prices depend on demand conditions and endowments across jurisdictions.
However, incorporating such features into the storage model necessarily in-
creases the dimensionality of the problem (e.g., with N jurisdictions it is
necessary to have N state variables corresponding to the inventories of each
country’s certificates). Moreover, the constraints on trade that motivate the
problem pose acute challenges to the determination of the optimal allocation
of certificates. Thus, at present, computational constraints preclude using
the storage model to study the implications of trade and constraints on trade
for the pricing of carbon certificates.

Nonetheless, the results of this chapter provide numerous insights on how
carbon prices are likely to behave, and how these behaviors depend on key
carbon market design parameters.
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The Structural Modeling of Non-Storables:
Electricity

8.1 Introduction

I now turn attention from storable commodities to non-storable ones. There
are many important non-storable commodities, including electricity, weather,
and shipping, that are actively traded on both spot, forward and derivatives
markets.1

By their very nature, non-storable commodities present fewer modeling
challenges than storable ones. The very fact that they are not storable breaks
the intertemporal linkages that necessitate the use of computationally-intensive
recursive techniques like those utilized in the previous chapters. Storability
means that every decision today must be made with an eye on tomorrow,
and the tomorrow after that, and ad infinitum. In contrast, non-storable
commodities can be modeled myopically, instant by instant, because in the
absence of storage, current decisions do not affect tomorrow’s economic op-
portunities. This lack of the need to look forward, and consider the im-
plications of current decisions on decision makers’ future opportunity sets,
dramatically reduces the complexity of the modeler’s task.

Structural models are eminently feasible for some commodities, and in-
deed, not only can these models be used to derive testable implications
about the behavior of the prices of such commodities, they can also be
used to price derivatives. In particular, two commodities with very transpar-
ent fundamentals–electricity and weather–are very well-suited to structural

1 Some may object to calling weather or shipping commodities. They are widely considered
such in industry, and are traded on commodity desks. They are also closely related to things
that are without dispute commodities. For instance, there is a close relationship between
weather variables like temperature, and electricity or natural gas prices. Similarly, shipping is
an important part of the commodity value chain connecting, say, the producers of oil and the
consumers thereof. The modeling tools discussed in this chapter can also be used to value
contingent claims with payoffs tied to weather or shipping prices, so at the very least they are
metaphorically commodities, and exploiting the metaphor can facilitate their pricing.
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models. Other non-storable commodities, notably shipping, can be modeled
structurally, but the inputs necessary to calibrate these models and to use
them for real-world derivatives pricing, are not readily observable as is the
case for weather and power.

Consider electricity. The main drivers of electricity prices are demand
(measured by load, i.e., the amount of electricity consumed in any instant),
and fuel prices (?Eydeland and Wolyniec, 2002) Particularly in modern,
centrally-dispatched electricity markets (such as the PJM or NYISO markets
in the United States), load is observable on a near real-time basis, and there
is extensive historical data on load that makes it possible to understand
how it behaves over time. Moreover, important fuels, such as natural gas
and coal, are traded in transparent markets, so their prices are observable.
Finally, electricity price data is available, and in many markets (e.g., PJM
again) data on supply curves that indicate the price at which generators will
produce a given quantity of electricity are available. This information can
be used to create a structural model of electricity prices that can be used
to characterize the behavior of spot prices, and price electricity derivatives.
The modeler essentially knows demand at every instant of time; the time
series properties of demand; and the supply curve at any instant of time.
Intersection of demand and supply in a textbook fashion instant-by-instant
determines prices; given this, the dynamics of supply and demand determine
the dynamics of price. This information can be used to price electricity
derivatives.

Similar considerations hold for weather. weather derivatives (e.g., deriva-
tives on temperature in a particular city) have payoffs that are given by a
function of observable weather variables. Moreover, vast amounts of histor-
ical weather data can be used to estimate models of the dynamic behavior
of the payoff-relevant weather variables. Using standard derivatives pricing
tools, this information can be combined to determine the prices of weather
derivatives.

The remainder of this chapter presents a structural model of electricity
prices, and shows how it can be used to price electricity derivatives. I then
proceed to explore the implications of this model for the pricing of electricity
derivatives. Specifically, Section 2 provides a brief overview of modern elec-
tricity markets. Section 3 shows how reduced form models cannot capture
the behavior of power prices, and uses this to motivate a structural mod-
eling approach. Section 4 discusses some implementation details. Section 5
describes the basic electricity options traded in the marketplace. Section 6
shows how the model can be used to price these options, while Section 7
presents results showing how the prices of these instruments depend on fun-
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damentals. Section 8 shows how to handle additional structural features of
a market, such as random outages of physical generating capacity. Section 9
summarizes, and discusses extensions–including the integration of structural
models for storable and non-storable commodities to characterize electricity
price behavior in markets where hydropower is important.

8.2 Electricity Markets

In the US and most other developed economies, electricity was traditionally
supplied by vertically integrated utilities subject to price or rate-of-return
regulation, or by state monopolies. These entities generated power, transmit-
ted it over distances via high voltage lines, and distributed it to customers
in monopoly geographic service territories. Starting in the 1980s, and pro-
gressing rapidly in the 1990s, electricity production, transmission, and dis-
tribution have been restructured. Although the details of this restructuring
vary by country, and among regions in the United States, several salient fea-
tures are found in most restructuring regimes. First, vertical integration has
been scaled back sharply, and in some instances vertically integrated firms
have been replaced by separate generating, transmission, and distribution
firms. Service territory monopolies have been eroded. Second, and relatedly,
whereas wholesale and retail markets were unnecessary in vertically inte-
grated electricity sectors, they are essential in restructured settings. Thus,
most restructured electricity sectors have wholesale markets in which in-
dependent generators of electricity compete to supply load serving entities
and industrial and large commercial consumers of power. Moreover, some
jurisdictions (such as Texas in the United States) have implemented compe-
tition at the retail level. In these cases, retail consumers have some choice
over their household electricity supplier.

There are many variations in the designs of competitive wholesale power
markets. Some markets are largely bilateral, over-the-counter (“OTC”) mar-
kets. In these markets, owners of generation independently decide how to
operate their assets, and enter into bilateral contracts with electricity users.
Others markets are more formal and centralized. For instance, the PJM
market in the United States operates centralized day ahead and real time
markets for electricity. Owners of generation submit offers specifying the
prices at which they are willing to generate various quantities of electric-
ity, and load servers similarly specify bids at which they are willing to buy
varying quantities. The market operator assembles the offers into supply
curves and the bids into demand curves; determines the intersection of these
curves to establish the market clearing price; and uses the generators’ offers
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to dispatch the generation so as to minimize the cost of serving the realized
(stochastic) load.

Restructuring has never been a smooth process anywhere–with Califor-
nia being the poster child for what can go wrong. These difficulties are at-
tributable to the nature of electricity as a commodity. For practical purposes,
electricity is not storable in large quantities.2 Moreover, lack of electricity
supply in real time leads to blackouts, which can cause massive economic
losses. Since supplies of electricity cannot be stored for use when demand
surges or generating units go offline, markets must be designed to ensure ad-
equate generation supply at every instant of time. electricity is also a highly
localized commodity; constraints in transmission mean that power prices in
proximate locations can differ substantially, and that these price differences
can change dramatically over short periods of time.

Non-storability also means that inventories cannot be utilized to soften the
impact of supply and demand shocks, as is the case for other commodities–
including other energy commodities such as oil and natural gas. Since power
demand can fluctuate substantially with variations in weather, and since
power supply can also fluctuate due to mechanical failures at generating
or transmission assets, the inability to use inventories as a shock absorber
means that power prices can fluctuate wildly in response to random supply
and demand changes.

The extreme movements in power prices (illustrated and discussed in
more detail in the next section) creates substantial risks for market partici-
pants. Moreover, many market players–including generators and load serving
entities–are subject to quantity risks. These risks create a need for hedging
tools, and such tools have evolved in the wake of restructuring. Hedging
tools include standard forward contracts and a variety of options. Some for-
ward contracts are for very short delivery periods and are entered into very
shortly before the delivery period–for instance, there are many day ahead
and even hour ahead contracts in power markets. Other forward contracts
are for blocks of power delivered over longer periods of time and entered into
well in advance of the delivery period. For example, contracts calling for de-
livery of power rateably over the peak hours of an entire month are quite
common. There are also a variety of options contracts in power markets;
I defer discussion of these instruments until section 7. Most power deriva-
tives are traded OTC, although there are some exchange traded instruments
available.

Although the derivative contracts traded in power are superficially quite

2 Hydro generation incorporates an element of storability into power markets.
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similar to those traded in other energy derivatives markets, power’s dis-
tinctive characteristics and price behaviors mean that valuation methods
that work well for other commodities are problematic in the extreme for
electricity. The next section explores electricity price behavior in more de-
tail, and discusses the challenges inherent in applying traditional valuation
approaches to pricing power forwards and options.

8.3 A Structural Model for Pricing Electricity Derivatives

The traditional approach in derivatives pricing is to write down a stochastic
process for the price of the asset or commodity underlying the contingent
claim. This approach poses difficulties in the power market because of the
extreme non-linearities and seasonalities in the price of power. These features
make it impractical to write down a “reduced form” power price process that
is tractable and which captures the salient features of power price dynamics.

Figure 8.1 depicts hourly power prices for the PJM market for 2001-2003.
An examination of this figure illustrates the characteristics that any power
price dynamics model must solve. Linear diffusion models of the type under-
lying the Black-Scholes model clearly cannot capture the behavior depicted
in the Figure; there is no tendency of prices to wander as a traditional ran-
dom walk model implies. Prices tend to vibrate around a particular level
(approximately $20 per megawatt hour) but sometimes jump upwards, at
times reaching levels of $1000/MWh.

To address the inherent non-linearities in power prices illustrated in Figure
8.1, some researchers have proposed models that include a jump component
in power prices. This presents other difficulties. For example, a simple jump
model like that proposed by Merton (1973) is inadequate because in that
model the effect of a jump is permanent, whereas Figure 8.1 shows that
jumps in electricity prices reverse themselves rapidly.

Moreover, the traditional jump model implies that prices can either jump
up or down, whereas in electricity markets prices jump up and then de-
cline soon after. Johnson and Barz (1999) incorporate mean reversion and
exponentially distributed (and hence positive) jumps to address these diffi-
culties. However, this model presumes that big shocks to power prices damp
out at the same rate as small price moves. This is implausible in some power
markets. Geman and Roncoroni (2006) present a model that eases this con-
straint, but in which, conditional on the price spiking upward beyond a
threshold level, (a) the magnitude of the succeeding down jump is indepen-
dent of the magnitude of the preceding up jump, and (b) the next jump is
necessarily a down jump (i.e., successive up jumps are precluded once the
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price breaches the threshold). Moreover, in this model the intensity of the
jump process does not depend on whether a jump has recently occurred.
These are all problematic features.

Barone-Adesi and Gigli (2002) attempt to capture power spot price be-
havior using a regime shifting model. However, this model does not permit
successive up jumps, and constraining down jumps to follow up jumps makes
the model non-Markovian. Villiplana (2004) eases the constraint by speci-
fying a price process that is the sum of two processes, one continuous, the
other with jumps, that exhibit different speeds of mean reversion. The re-
sulting price process is non-Markovian, which makes it difficult to use for
contingent claim valuation.

Estimation of jump-type models also poses difficulties. In particular, a
reasonable jump model should allow for seasonality in prices and a jump
intensity and magnitude that are also seasonal with large jumps more likely
when demand is high than when demand is low. Given the nature of demand
in the US, for instance, this implies that large jumps are most likely to occur
during the summer months. Estimating such a model on the limited time se-
ries data available presents extreme challenges. Geman and Roncoroni (2006)
allow such a feature, but most other models do not; furthermore, due to the
computational intensity of the problem, even Geman-RoncoroniRoncoroni,
A. must specify the parameters of the non-homogeneous jump intensity func-
tion based on a priori considerations instead of estimating it from the data.
Fitting regime shifting models is also problematic, especially if they are non-
Markovian as is necessary to make them a realistic characterization of power
prices (Geman, 2005). Moreover, changes in capacity and demand growth
will affect the jump intensity and magnitude. None of the extant models
take this into account.

Even if jump models can accurately characterize the behavior of electric-
ity prices under the physical measure,3 they pose acute difficulties as the
basis for the valuation of power contingent claims. Jump risk is not hedge-
able, and hence the power market is incomplete.4 A realistic jump model
that allows for multiple jump magnitudes (and preferably a continuum of
jump sizes) requires multiple market risk prices for valuation purposes; a
continuum of jump sizes necessitates a continuum of risk price functions to
determine the equivalent measure that is relevant for valuation purposes.
Moreover, these functions may be time varying. The high dimensionality of
3 Recall the discussion of the distinction between the physical measure and equivalent measures

in Chapter 2.
4 The market would be incomplete even if power prices were continuous (as is possible in the

model presented below) because power is non-storable. Non-storability makes it impossible to
hold a hedging “position” in spot power.
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the resulting valuation problem vastly complicates the pricing of power con-
tingent claims. Indeed, the more sophisticated the spot price model (with
Geman-RoncoroniRoncoroni, A. being the richest), the more complicated
the task of determining the market price of risk functions.

The traditional valuation approach is also very difficult to apply to some
important power valuation problems, notably those where quantity as well
as price affect the payoff. Although most financial power contracts do not
possess this feature, many physical contracts (such as load serving trans-
actions) do. Pricing volume sensitive claims in the traditional framework
requires grafting a quantity process to an already complicated price process;
such a Frankenstein’s Monster-like model is complex, and cannot realistically
capture the state-dependence of the load-price relation.

Given these difficulties, it is desirable to take an alternative approach
to valuing power derivatives. Fortunately, such an alternative exists. This
approach exploits the fact that the fundamentals that drive power prices are
very transparent–a situation that contrasts starkly with that which prevails
in currency, equity, or fixed income markets.

Specifically, a structural model based on the fundamentals of electric-
ity production and consumption can capture the salient features of power
prices, and the relations between fundamental variables (such as demand)
and prices. The model assumes that prices are determined by the intersection
of a supply curve (that fluctuates randomly due to changes in fuel prices)
and a (randomly fluctuating) demand curve.

In this approach, power prices in the physical measure are a function of
two state variables. These two state variables capture the major drivers of
electricity prices, are readily observed due to the transparency of fundamen-
tals in the power market, and result in a model of sufficiently low dimension
to be tractable.

The first state variable is a demand variable, load. load is the amount of
electricity consumed. Since load depends heavily on temperature, it is also
possible to use temperature as a state variable.

Analysis of the dynamics of load from many markets reveals that this
variable is very well behaved. load is seasonal, with peaks in the summer
and winter for most US power markets. Moreover, load for each of the various
regions is nearly homoscedastic and there is little evidence of jumps in load.
Finally, load exhibits strong mean reversion; random deviations of load from
its seasonally-varying mean tend to reverse fairly rapidly.

I treat load as a controlled process. The concept of a controlled process is
a technical one, but it has a natural application in this power pricing prob-
lem. Every electricity system has some sort of central control; in modern,
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centralized markets independent system operators perform this function.
Knowing that the power system becomes unstable if the amount gener-
ated or consumed violates the capacity and transmission constraints in the
system, these controllers can intervene to ensure stability. For instance, if
consumption becomes dangerously high, the controllers can “shed load”; in
essence, they can shut off the power of certain consumers.

The idea that system operators can control load to ensure that system
constraints are not violated can be expressed mathematically. Defining load
as qt, note that qt ≤ X , where X is physical capacity of the generating and
transmission system.5 If load exceeds this system capacity, the system may
fail, imposing substantial costs on power users. The operators of electric
power systems monitor load and intervene to reduce power usage when load
approaches levels that threaten the reliability of the system. Under certain
technical conditions (assumed to hold herein), the arguments of Harrison
and Taksar (1983.) imply that under these circumstances the controlled load
process is a reflected Brownian motion. Formally in the physical measure
P , the load solves the following stochastic differential equation (Skorokhod
Equation):

dqt = αq(qt, t)qtdt+ σqqtdBt − dLut (8.1)

where Bt is a standard Brownian motion, and Lut is the so-called “local
time” of the load on the capacity boundary. The process Lut is increasing
(i.e., dLut > 0) if and only if qt = X , with dLt = 0 otherwise. That is, qt is
reflected at X .

The dependence of the drift term αq(qt, t) on calendar time t reflects the
fact that output drift varies systematically both seasonally and within the
day. Moreover, the dependence of the drift on qt allows for mean reversion.
One specification that captures these features is:

αq(qt, t) = μ(t) + k[ln qt − θq(t)] (8.2)

In this expression, ln qt reverts to a time-varying mean θq(t). The parameter
k ≤ 0 measures the speed of mean reversion; the larger |k|, the more rapid

5 This characterization implicitly assumes that physical capacity is constant. Investment in new
capacity, planned maintenance, and random generation and transmission outages cause
variations in capacity. This framework is readily adapted to address this issue by interpreting
qt as capacity utilization and setting X = 1. Capacity utilization can vary in response to
changes in load and changes in capacity. This approach incorporates the effect of outages,
demand changes, and secular capacity growth on prices. The only obstacle to implementation
of this approach is that data on capacity availability is not readily accessible. One approach
that Pirrong has implemented is to apply Bayesian econometric techniques to extract
information about the capacity process from observed real time prices and load. Below I
sketch an approach using readily available data on generation outage probabilities that can be
incorporated into the PDE-based framework explored here.
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the reversal of load shocks. The function μ(t) = dθq(t)/dt represents the
portion of load drift that depends only on time (particularly time of day).
For instance, given ln qt−θq(t), load tends to rise from around 3AM to 5PM
and then fall from 5PM to 3AM on summer days. The load volatility σq in
(1) is represented as a constant, but it can depend on qt and t. There is some
empirical evidence of slight seasonality in the variance of qt.

The second state variable is a fuel price. For some regions of the country,
natural gas is the marginal fuel. In other regions, coal is the marginal fuel.
In some regions, natural gas is the marginal fuel sometimes and coal is the
marginal fuel at others. We abstract from these complications and specify
the following P process for the marginal fuel price:

dft,T
ft,T

= αf (ft,T , t) + σf (ft,T , t)dzt (8.3)

where ft,T is the price of fuel for delivery on date T as of t and zt is a
Brownian motion. Note that fT,T is the spot price of fuel on date T .

The processes {qt, ft,T , t ≥ 0} solve (8.1) and (8.3) under the physical
probability measure P . To price power contingent claims, we need to find
an equivalent measure Q under which deflated prices for claims with payoffs
that depend on qt and ft,T are martingales. Since P and Q must share sets
of measure 0, qt must reflect at X under Q as it does under P . Therefore,
under Q, qt solves the SDE:

dqt = [αq(qt, t) − σqλ(qt, t)]qtdt+ σqqtdB̂t − dL̂ut

In this expression λ(qt, t) is the market price of risk function, B̂t is a Q
martingale, and L̂ut is the local time process under Q.6 Since fuel is a traded
asset, under the equivalent measure dft,T /ft,T = σfdẑt, where ẑt is a Q
martingale.

Define the discount factor Yt = exp(− ∫ t
0 rsds) where rs is the (assumed

deterministic) interest rate at time s. (Later we assume that the interest rate
is a constant r.) Under Q, the evolution of a deflated power price contingent

6 The local time process changes with the measure. Intuitively, if the qt process drifts up more
rapidly under the equivalent measure than under the physical measure, it will hit the upper
boundary more frequently under the equivalent measure. Since the local time measures the
amount that the controller “pushes” on the process to keep it within the boundary, more
pushing is required under the equivalent measure than under the physical measure, so the
local times will be different under the two processes. However, the SDE for the process under
the equivalent measure must include a local time term if the physical measure process does,
and both processes must reflect at the same boundaries. This is true because the physical and
equivalent measures must share sets of measure zero. Under the physical measure, the
probability that load exceeds capacity is zero, so this probability must also be zero under the
equivalent measure. Thus, both processes must reflect at the same boundary.
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claim C is:

YtCt = Y0C0 +
∫ t

0
CsdYs +

∫ t

0
YsdCs

In this expression, Cs indicates the value of the derivative at time s and Ys
denotes the value of one dollar received at time s as of time 0. Using Ito’s
lemma, this can be rewritten as:

YtCt = C0+
∫ t

0
Ys(AC+

∂C

∂s
−rsCs)ds+

∫ t

0
[
∂C

∂q
dB̂t+

∂C

∂f
dẑs]−

∫ t

0
Ys
∂C

∂q
dL̂us

where A is an operator such that:

AC =
∂C

∂qt
[αq(qt, t) − σqλ(qt, t)]qt

+
1
2
∂2C

∂q2t
σ2
qq

2
t +

1
2
∂2C

∂f2
t,T

σ2
ff

2
t,T +

∂2C

∂qt∂ft,T
σfσqρqfqtft,T . (8.4)

For the deflated price of the power contingent claim to be a Q martingale,
it must be the case that:

EQ[
∫ t

0
Ys(AC +

∂C

∂s
− rsCs)ds] = 0

and

EQ[
∫ t

0
Ys
∂C

∂q
dL̂us ] = 0

for all t. Since Yt > 0, and dL̂ut > 0 only when qt = X , with a constant
interest rate r, we can rewrite these conditions as:

AC +
∂C

∂t
− rC = 0 (8.5)

and
∂C

∂q
= 0 when qt = X (8.6)

Expression (8.5) can be rewritten as the fundamental valuation PDE:7

rC =
∂C

∂t
+
∂C

∂qt
[αq(qt, t) − σqλ(qt, t)]qt

+
1
2
∂2C

∂q2t
σ2
qq

2
t +

1
2
∂2C

∂f2
t,T

σ2
ff

2
t,T +

∂2C

∂qt∂ft,T
σfσqρqfqtft,T (8.7)

7 Through a change of variables (to natural logarithms of the state variables) this equation can
be transformed to one with constant coefficients on the second-order terms, if the volatility
parameters are constant.
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For a forward contract, after changing the time variable to τ = T − t, the
relevant PDE is:

∂Ft,T
∂τ

=
∂Ft,T
∂qt

[αq(qt, t) − σqλ(qt, t)]qt

+
1
2
∂2
t,T

∂q2t
q2t σ

2
q +

1
2
∂2
t,T

∂f2
t,T

σ2
ff

2
t,T +

∂2
t,T

∂qt∂ft,T
qtft,Tσfσqρqf (8.8)

where Ft,T is the price at t for delivery of one unit of power at T > t.
Expression (8.6) is a Neumann boundary condition. It arises from the re-

flecting barrier that is inherent in the physical capacity constraints in the
power market, and has an intuitive interpretation.8 If load is at the upper
boundary, it will fall almost surely. If the derivative of the contingent claim
with respect to load is non-zero at the boundary, arbitrage is possible. For
instance, if the partial derivative is positive, when load is at the bound-
ary selling the contingent claim cannot generate a loss and almost surely
generates a profit.

In (8.7)-(8.8), there is a market price of risk function λ(qt, t). The valuation
PDE must contain a market price of risk because load is not a traded claim
and hence load risk is not hedgeable. Accurate valuation of a power contin-
gent claim (“PCC”) therefore depends on accurate specification and esti-
mation of the λ(qt, t) function. This function is an adjustment that changes
from the physical measure to the equivalent, pricing measure. Recall from
Chapter 2 that the equivalent measure incorporates information about in-
vestor risk preferences, as well as information about the dynamics of the
state variable in the physical measure.

The pricing of a PCC also requires specification of initial boundary con-
ditions that link the state variables (load and the fuel price) and power
prices at its expiration. Unlike the storage model (see Chapter 2), there
are economically-motivated, natural, boundary conditions in the electricity
market structural model.

In most cases, the buyer of a PCC obtains the obligation to purchase a
fixed amount of power (e.g., 25 megawatts) over some period, such as every
peak hour of a particular business day or every peak hour during a particular
month. Similarly, the seller of a PCC is obligated to deliver a fixed amount
of power over some time period. Therefore, the realize payoff to a forward
contract at expiration is:∫ t′′

t′
δ(s)[P ∗(q(s), f(s), s)− F (0)]ds (8.9)

8 If there is a lower bound on load (a minimum load constraint) there exists another local time
process and another Neumann-type boundary condition.
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where F (0) is the forward price, q(s) is load at time s, f(s) is the fuel
spot price at s, δ(s) is a function that equals 1 if the forward contract
requires delivery of power at s and 0 otherwise, P ∗(.) is a function that
gives the instantaneous price of power as a function of load and fuel price,
t′ is the beginning of the delivery period under the forward contract, and
t′′ is the end of the delivery period. In words (8.9) states that the payoff
to the forward equals the value of the power, measured by the spot price,
net of the agreed-upon forward price, received over the delivery period. For
instance, if the forward is a monthly forward contract for the delivery of 1
megawatt of power during each peak hour in the month, δ(s) will equal 1 if
s falls between 6 AM and 10 PM on a weekday during that month, and will
equal 0 otherwise.

In this equation, P ∗(q(s), f(s), s) is the instantaneous electricity supply
curve. When depicted in a two-dimensional load-price space, economic con-
siderations suggest that the supply function P ∗(.) is increasing and convex
in q. As load increases, producers must employ progressively less efficient
generating units to service it. Moreover, the curve should shift up as fuel
prices rise, because it is more costly to generate when fuel prices are high.

This pricing function determines the dynamics of the instantaneous power
price. As in previous chapters, it is possible to combine information about
the sensitivities of prices to the state variables and the dynamics of these
variables, and use Ito’s lemma, to show how the power price evolves under
P

dP ∗ = Φ(qt, ft,f , t)dt+ P ∗
q σqqtdBt + P ∗

f σfft,fdzt (8.10)

with

Φ(qt, ft,f , t) = P ∗
q αq(qt, t)qt + P ∗

f αf (ft,t, t)ft,t

+
1
2
P ∗
qqσ

2
qq

2
t +

1
2
P ∗
ffσ

2
ff

2
t,f + P ∗

qfqtft,fσqσfρqf

where ρqf is the correlation between qt and ft,T ; this correlation may depend
on qt, ft,T , and t. Given this equation, as in previous chapters it is possible
to evaluate the behavior of higher moments, like variance. The variance of
the instantaneous price in this setup is time varying because P ∗ is a convex,
increasing function of q:

σ2
P (qt, ft,t, t) = P ∗2

q σ2
qq

2
t + P ∗2

f f2
t,tσ

2
f + 2P ∗

f P
∗
q qtft,tρqfσqσf . (8.11)

Since P ∗
q is increasing with q, demand shocks have a bigger impact on the

instantaneous price when load is high (i.e., demand is near capacity) than
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when it is low. In particular, since the price function becomes nearly verti-
cal when demand approaches capacity, small movements in load can cause
extreme movements in the instantaneous price. Moreover, given the speed
of load mean reversion, the convexity of P ∗ implies that the speed of price
mean reversion is state dependent; prices revert more rapidly when load
(and prices) are high than when they are low. These are fundamental fea-
tures of electricity price dynamics, and explain many salient and well-known
features of power prices, most notably the “spikes” in prices when demand
approaches capacity and the variability of power price volatility.

The model also implies that the correlation between the fuel price and the
power price varies. Assuming that ρqf = 0 (which is approximately correct
in most markets), then

corr(dP ∗, df) =
P ∗
f σfft,T√

P ∗2
q q2t σ

2
q + P ∗2

f f2
t,Tσ

2
f

Note that when load is small, P ∗
q ≈ 0, in which case corr(dP ∗, df) = 1.

Moreover, when load is large, P ∗
q ≈ ∞, in which case corr(dP ∗, df) = 0. It

is also straightforward to show that the correlation declines monotonically
with qt because P ∗

q increases monotonically with qt.9 Thus, the model can
generate rich patterns of correlation between power and fuel prices, and
commensurately rich patterns of spark spread behavior.

Thus, as with storable commodities, the structural model of electricity
prices can be used to characterize the time-varying dynamics of power prices.

The following sections discuss implementation of this model and describe
some of its implications.

8.4 Model Implementation

This model has many moving parts, the operation of which I will only sketch
out here. Readers interested in the details can refer to Pirrong and Jer-
makyan (2008), or Pirrong (2007). One step is to estimate the function that
relates the price of power at any instant to the state variables, that is, to
specify the supply curve P ∗(q(s), f(s), s). One approach is to collect data
on prices, loads, and fuel prices, and estimate this function econometrically.
Since this function is likely to be non-linear, relatively flat for low loads and
rising steeply as load reaches capacity, flexible non-parametric techniques
are appropriate here (Pirrong and Jermakyan, 2008, See).

Another approach can be employed in some markets. Specifically, where an
9 This result can be generalized to ρqf �= 0.
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independent system operator implements markets where generators submit
bids indicating the prices at which they are willing to supply a given amount
of power, it is possible to combine these bids to construct a supply curve.
Pirrong and Jermakyan (2008) provide the details of constructing this supply
curve. Figure 8.2 depicts a real-world PJM supply curve derived in this way.

Another step in the analysis is to derive the dynamics of load. This involves
two-substeps.

The first sub-step is to estimate the θq(t) function, i.e., the average (log)
load as a function of the day of the year and the time of day. Pirrong-
Jermakyan do this using non-parametric techniques (see their article for
details); Figure 8.3 illustrates the fitted (log) load surface for PJM.

The second sub-step is to estimate the dynamics of the deviations between
load and its (time-varying) mean. This essentially involves estimating the
speed of mean reversion of load shocks, and the volatility of these shocks.
These can be estimated by applying standard time series econometric tech-
niques to the deviation between load and the mean load function.

Once these steps are complete, it is possible to use PDE techniques to
price PCCs–if one knows the market price of risk function, λ(q). I will discuss
the application of PDE methods to the solution of the “direct” problem of
estimating a PCC value given an estimate of the market price of risk. The
same PDE solution techniques can be applied to the problem of extracting an
estimate of the market price of risk function from some observed derivatives
prices.

In brief, the earlier equations imply that every derivative on power prices
from a particular market should embed the same market price of risk func-
tion. Intuitively, therefore, one can “invert” derivatives prices to determine
the market price of risk. This is a delicate task, however. First, since there
is no closed form solution for the price of a power derivative, it is neces-
sary to perform this inversion numerically. Second, and more importantly,
these “inverse problems” are ill-posed. Put roughly, since one can specify
a functional form for λ(q) with an arbitrary number of degrees of freedom,
and since one has only a limited number of derivatives prices to use in the
estimation, it is possible to choose a λ(q) function that fits these prices ex-
actly. But an exact fit is a bad fit: more precisely, it is an overfit, and a very
slight change in the prices used for the fitting (e.g., using bid prices instead
of ask prices) could lead to a radically different estimate of the market price
of risk function. Therefore, these inverse problems must be “regularized” to
penalize overfitting to get reasonable results. Pirrong and Jermakyan (2008)
and Pirrong (2007) provide the details of the application of the regulariza-
tion methods to the power pricing problem. Figure 8.4 presents a graph of
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a market price of risk function derived from actual market data using this
process.

Once all these steps are in place, it is possible to use the structural model
to solve for the value of any power contingent claim. The next section dis-
cusses some power derivatives that are commonly traded, and the subsequent
ones show how to solve for the theoretical prices of these derivatives using
the PDE approach and the structural model.

8.5 Commonly Traded Power Options

There are a variety of electricity options traded (primarily on the OTC
market.) Among the most common are daily strike options, monthly strike
options, and spark spread options. I consider each in turn.

8.5.1 Daily Strike options

A daily strike option has a payoff that depends on the price of power on a
given day. Typically, these options have a payoff that depends on the price
of power for delivery during peak hours of a given day.

Daily strike options can by physically settled or cash settled. For a phys-
ically settled daily strike call option, upon exercise the owner effectively
receives a long position in a daily forward contract that entitles him to re-
ceive delivery of a fixed amount of power during the peak hours on that
day. Upon exercise, the owner of a put establishes a short position in a daily
forward contract. The option owner must decide to exercise prior to the
beginning of the delivery period (e.g., the day before delivery.)

A cash settled daily strike option can be constructed in many ways. For
instance, one can have a cash settled daily strike call in which the owner
is paid an amount equal to the maximum of zero or the difference between
the relevant daily forward as of the some date prior to the delivery period
and the strike price. As an example, the call owner’s payoff (determined on
Tuesday) may depend on Tuesday’s forward price for delivery on Wednesday.
Alternatively, a daily strike call can pay the difference between the average
spot price observed on the pricing date and the strike. For instance, the
daily strike call can pay the maximum of zero or the difference between the
average spot price observed on Wednesday and the strike price. In a market
with a centralized real time market (such as PJM) it is eminently feasible
to construct options with such a payoff structure.

The option payoff may depend appreciably on how the contract is written.
Specifically, as detailed in section 6, variations in realized spot prices driven
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by highly transitory factors (other than load and fuel prices) would tend to
cause the expected payoff to the option that is based on realized spot prices
to exceed that for the option that is based on the forward price measured
some time prior to the delivery period, which is assumed to depend only
on load and the fuel price. That section details some potential solutions to
this difficulty, but until then I focus on daily strike options with payoffs that
depend on a forward price. For such an option, the call payoff at exercise is
(Ft′,T (qt′ , ft′,T ) −K)+ and the put payoff is (K − Ft′,T (qt′ , ft′,T ))+.

8.5.2 Monthly Strike Options

Upon exercise, the holder of a monthly strike call receives a long position
in a monthly forward contract. For instance, upon exercise at the end of
June, the holder of a July monthly strike call receives a forward contract
for delivery of a fixed amount of power during the peak hours of the coming
July. Denoting the forward price as of exercise date t′ for delivery of peak
power on day j in the option month as Ft′,j, the payoff to the monthly strike
call is:

(
∑
j∈M Ft′,j∑
j∈M δj

−K)+

where M is the set of delivery dates in the contract month and δj is an
indicator variable taking a value of 1 when j ∈ M and zero otherwise.

8.5.3 Spark Spread Options

A spark spread call option has a payoff equal to the maximum of zero or
the difference between a forward price and the price of fuel multiplied by
a contractually specified heat rate. The heat rate is measured in terms of
megawatts (MW) per million British Thermal Units (mmBTU). The heat
rate measures the efficiency of a generating plant. The marginal cost of gen-
erating power from that plant equals its heat rate multiplied by its fuel price.
Therefore, a spark spread option can be viewed as an option to burn fuel to
produce power because its payoff is based on the difference between the price
of power and the cost of generating it at a given heat rate. For this reason,
power plants are often viewed as bundles of spark spread options, although
spark spread options are also traded as stand-alone financial products.

Spark spread options raise some of the same issues relating to the timing of
exercise and physical settlement and cash settlement as daily strike options.
Specifically, if the spark spread option must be exercised at some time t′ prior
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to the power delivery date T , the call payoff is (Ft′,T−ft′,TH∗)+ where H∗ is
the contractually specified heat rate, which effectively determines the strike.
If the payoff to a cash-settled option is based on realized spot prices over the
delivery period, the valuation approach applied herein may underestimate
its value because it ignores short-term price fluctuations driven by variables
other than load and fuel prices. Again, this issue is discussed in more detail
in section 6.

8.6 Valuation Methodology

8.6.1 Daily Strike and Monthly Strike Options

I value daily strike and monthly strike options by solving the PDE (8.7)
using the splitting finite difference method already described in Chapter 2,
and applied to all of the 2D PDEs studied in earlier chapters.

As should now be familiar, the technique first involves creating a grid
in time, the fuel price, and log load. The time increment is δt; given the
seasonality in load, it is convenient to use δt = 1/365. The fuel increment is
δf , and the log load increment is δq.

As before, I split the PDE (8.7) into three parts at each time step. The
first PDE “split,” which captures the effect of the purely q-related terms is:

rC
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=
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∂C
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(8.12)

The second split handles the cross derivative term:
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The third PDE split, which handles the purely f -related terms, is:
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(8.14)

One time step prior to expiry, (8.8) is solved using an implicit method
for each different fuel price from the second lowest to the second highest.
At each time step, the solution to (8.8) is used as the initial condition in
the solution for (8.9), which is again solved implicitly at each load level.
Then, the solution for (8.9) is used as the initial condition for (8.10), which
is solved implicitly for each log load from highest to lowest. At all time steps
but the one immediately preceeding expiration, the solution to (8.10) from
the prior time step is used as the initial condition for (8.8).

At each step I use Dirichlet conditions for the fuel boundary and the von
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Neumann conditions discussed before for the load boundary. For one time
step prior to expiration, the option payoff is used as the initial condition.
Given the typical high speed of mean reversion, the coefficient on the first
order term in (8.8) is usually large in absolute value. Therefore, although
(8.7) is a convection-diffusion equation, the convection effect is more impor-
tant than is typically the case in parabolic PDEs found in finance settings,
and so it is desirable to utilize discretization approaches commonly employed
for convection problems. Specifically, I use forward differencing to estimate
∂C/∂q when the coefficient is negative, and backward differencing when the
reverse is true.

For daily strike options, the payoff is determined as follows. It is assumed
that the option holder must decide to exercise the option the day prior to the
power delivery date, i.e., t′ = T − δt.10 Upon exercise, for a (log) load q and
fuel price f the holder of the call receives a payment equal to the maximum
of zero, or the difference (a) between the day-ahead forward price Ft′,T (q, f)
implied by the solution to the Pirrong-Jermakyan model calibrated to the
observed curve, and (b) the strike price.11

For monthly strike options, the delivery days in the month are first deter-
mined. For simplicity, I assume that delivery occurs during the peak hours
of each business day of the month. The option is assumed to be exercisable
on the business day prior to the first day of the delivery month. On this
date, the Pirrong-Jermakyan model forward price for each day of the deliv-
ery month is determined for each f and q in the grid.12 For instance, the
prices of forwards expiring on business days falling between 1 July and 31
July are determined as of the expiry date of 30 June. The proceeds to the
exercise of the call equal the maximum of zero, or the difference between
the average of these forward prices and the option strike price.

8.6.2 Spark Spread Options

In the model the forward price is a multiplicatively separable function of
the fuel forward price and a function of load. In this case, the payoff to the
spark spread call can be re-expressed as:

(Ft′,T−ft′,TH∗)+ = (ft′,TV (qt′ , t′, T )−ft′,TH∗)+ = ft′,T (V (qt′ , t′, T )−H∗)+.

Therefore, the payoff to the spark spread option is multiplicatively separable
in load and fuel. Consequently, it is possible to utilize the Pirrong and Jer-
10 This assumption can be readily modified.
11 The daily strike put payoff is defined analogously.
12 The forward is calculated using the market price of risk function calibrated to the forward

curve observed on the valuation date.
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makyan (2008) decomposition to write the value of the spark spread option
as another multiplicatively separable function of the current fuel forward
price and current load. Specifically, denoting the spark spread option value
as H(.):

H(qt, ft,T , t, T, H∗) = ft,TΦ(qt, t, T, H∗).

The Φ(.) function can be determined using a standard implicit solver with
(V (qt′ , t′, T )−H∗)+ as an initial condition.13

8.7 Results

The behavior of power options prices implied by this model is best under-
stood through the use of various figures and focus on a few salient results.
The behavior of the “Greeks” in particular sheds light on the economic fac-
tors driving the option values. The Greeks, notably Delta and Gamma, are
related to the shape of the option price function. Delta measures the slope
of the function; Gamma its curvature (i.e., its convexity/concavity). Greeks
are of particular interest and importance to options traders.

In this regard, it bears noting that due to the two-dimensional nature of
the problem, there are a set of Greeks for each of the state variables. For
instance, there is a “load Delta” (∂C/∂q) and a “load Gamma” (∂2C/∂q2),
a “fuel Delta” (∂C/∂f), a “fuel Gamma” (∂2C/∂f2) and a cross-Gamma
(∂2C/∂f∂q). The behavior of the Gammas is of particular interest.

All option values in the figures are based on a calibrated PJ model. The
model is calibrated using estimates of load volatility σq, mean reversion pa-
rameter k, load-fuel correlation ρ, and average log load θq(t) estimated from
PJM data for 1 January, 2000-31 May, 2005; see Pirrong and Jermakyan
(2008) for a description of the estimation methodology. The model is cali-
brated to PJM power forward prices (from the NYMEX ClearPort system)
and natural gas forward prices for Texas Eastern Pipeline Zone M-3 ob-
served on 7 June, 2005 using the method of Pirrong-Jermakyan. The fuel
volatility is the implied volatility from the at-the-money NYMEX natural
gas futures options with delivery months corresponding to the maturity of
the option being analyzed, as observed on 7 June, 2005.

The valuation grid has 100 points in the load and fuel dimensions. The
minimum fuel price is $1.00, and the maximum is $25.00. The minimum
load is the smallest PJM load observed in 1999-2005, and the maximum
load is the total amount of generation bid into PJM on 15 July, 2004 (the
13 Due to the multiplicative separability, using the transformation presented in Pirrong and

Jermakyan (2008) it is possible to solve for Φ(.) even when ρ �= 0.
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date used to determine the payoff function for July forwards in the model
calibration–PJM bid data are available only with a six month lag.)

Figure 8.5 depicts the value of a daily strike call option expiring on 15
July, 2005, measured two days prior to expiration, as a function of fuel price
and load. The strike of this option is $85, which was the at-the-money strike
on 7 June, 2005. The horizontal plane dimensions are the fuel price f and
the load q (running into the chart from front to back). The option value
is increasing in fuel price and load, as would be expected. Thus, load and
fuel Deltas are both positive. Note too that there is noticeable convexity of
the option value in both f and q. That is, both load and fuel gammas are
positive. The load Gamma is noticeably large and positive for high levels
of load, and for high fuel prices. This reflects (a) the convexity of the load-
power price relation when time to expiry is short, and (b) the convexity of
the option payoff function.

Figure 8.6 depicts the value of the same option on 7 June, 2005, or ap-
proximately 38 days prior to expiry. In the figure, the positive fuel Delta
and Gamma are readily apparent; the convexity in fuel price is especially
evident for intermediate fuel prices (where the option is near-the-money).

However, the option value exhibits little dependence on load. In fact, the
load Delta and load Gamma are effectively zero. (When one plots the option
value as a function of load for a given fuel price in Matlab, the change in the
option value across the range of load values is smaller than the minimum
increment that can be depicted by the Matlab plotting function.) Indeed,
the zeroing out of the load Delta and Gamma occurs as time maturity falls
to as little as 7 or 8 days. Thus, despite the strong dependence of spot power
prices on load, daily strike options with maturities of more than a few days
exhibit virtually no dependence on load.

This phenomenon reflects the strong mean reversion in load.14 Due to this
strong mean reversion, the distribution of load for future dates conditional on
current load converges quite quickly to the unconditional load distribution.
Thus, for maturities beyond a few days, variations in current load convey
very little information about the distribution of load at expiry, and thus
such variations have little impact on the daily strike option value.

This analysis implies that for a week or more prior to daily strike op-
tion expiration, such options are effectively options on fuel. Until expiration

14 It is important to remember that this refers to mean reversion in load, not prices. Prices can
mean revert due to mean reversion in load, but also because price spikes tend to reverse
quickly. In the PJ model, prices spike periodically when load approaches the
rapidly-increasing portion of the bid stack; this happens with positive probability even when
the load process is a diffusive one with no spikes. As an empirical matter, I have analyzed
load data from several markets, and there is little evidence of spikes in load.
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nears, these options can be hedged using fuel forwards (to hedge fuel Delta)
and fuel options (to hedge fuel Gamma). In the last few days before expiry,
however, the option value exhibits progressively stronger dependence on load
(especially when load is high), and hedging requires the use of load-sensitive
claims (e.g., a power forward to hedge load Delta, or another load-sensitive
option to hedge load Gamma).

The effects of load mean reversion on power option value are especially
evident when one examines monthly strike options. Figure 8.7 depicts the
value of a July, 2005 monthly strike call option one day prior to expiry. Even
given this short maturity, there is only a slight load Delta, and virtually no
load Gamma. However, the non-zero fuel Delta and Gamma are evident. The
lack of load dependence reflects the fact that the payoff to the monthly strike
option depends on forward prices for delivery dates that are half-a-month
on average after option expiry. For all but the forward contracts maturing
a few days after the monthly strike option’s expiry, load has little impact
on the forward price. Hence, variations in load at expiry have little effect on
most of the daily forwards included in the monthly bundle.

Mean reversion also impacts option time decay. This is most evident for
a spark spread option. Note that due to their multiplicative separability in
load and fuel (and the separability of the forward price in these variables in
the PJ framework), conditional on q spark spread option values are linear
in the fuel price and hence have a fuel Gamma of zero. Thus, in contrast
to what is observed for monthly and daily strike options, this implies that
there is no time decay attributable to the fuel factor for a spark spread
option. Since any time decay for this type of option is attributable to the
impact of load, an examination of spark spread options allows isolation of
the contribution of load dynamics on time decay.

With this in mind, consider figure 8.8, which depicts the value of Φ(qt, t, T )
for a spark spread call option with H∗ = 10 as a function of time to expi-
ration and load (with the load dimension running into the chart).15 The
maximum time to expiration on the chart is 60 days, and hence corresponds
to a mid-August 2005 expiration date. Note that the option value is virtually
constant until a few days short of expiration. Thus, there is very little time
decay until very close to expiration. As the option nears expiry, however, for
low loads the option value declines precipitously. Conversely, for high loads
(especially very high loads) the value of the option increases dramatically.

15 The spark spread option value is extremely high when load is high close to expiration.
Therefore, to highlight the lack of time decay and avoid the impact of option values for very
high loads on the scaling of the figure, spark spread option values are presented only for loads
that are no more than 15 percent above the mean load.
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These characteristics again reflect mean reversion in load. Well before ex-
piry, due to mean reversion the conditional distribution of load (the only
payoff relevant variable for the spark spread claim) changes virtually not at
all as time passes. This contrasts with the value of an option with a payoff
determined by a geometric Brownian motion (GBM), where the dispersion
in the conditional distribution of the payoff-relevant variable declines mono-
tonically as time passes. The stationarity of load translates into little time
decay.

Similar influences affect time decay for daily and monthly strike options.
These options exhibit time decay, but this reflects the dependence of payoffs
on a GBM–the fuel price. The dispersion in payoffs declines as time passes
for monthly and daily strikes due to the fall in the dispersion of fuel prices
at expiry. Holding fuel price at expiry constant, the passage of time does not
affect the variability in payoffs attributable to load. That is, ∂u/∂t is very
close to zero when a daily strike option has more than a few days prior to
expiry (regardless of the level of load), and is very close to zero immediately
prior to expiry even when a monthly strike option is at-the-money.

The strong mean reversion in load also impacts the behavior of implied
volatility for power options. Although the Black model is not well-suited
for pricing power options, practitioners still employ it for that purpose, and
option values are often quoted in terms of implied volatilities.

One impact of load mean reversion is to cause implied volatilities for daily
strike options to rise systematically as expiration nears. This is depicted in
figures 8.9 and 8.10. Figure 8.9 depicts implied volatility as a function of q
and f when a daily strike option (struck at $85) has a month to expiration.
Figure 8.10 presents the implied volatility surface for the same option with
only 2 days to expiration. The implied volatilities set the Black formula for
an option value with strike $85 and a forward price given by the model for
the appropriate q and f equal to the daily strike option value implied by
the solution to (8.7) for that q and f .

Note that the implied volatility surface is markedly higher with shorter
time to expiration, especially for large values of the fuel price. This again re-
flects mean reversion. volatility measures the rate of information flow (Ross,
1989). The constant volatility in a geometric Brownian motion process (that
underlies the Black model) means that the rate of information flow is con-
stant over time. This is wildly misleading for electricity. Strong mean rever-
sion in load means that a load shock today confers very little information
about the distribution of load even a few days hence. That is, one learns
little new about the distribution in load in a month based on an observation
of current load. Virtually all of the load-related information flow occurs in
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the last few days prior to expiration (and variations in load explain upwards
of 65 percent of PJM spot power price fluctuations). The Black implied
volatility effectively calculates an average rate of information flow. For a
power option, the average rate of information flow over a long time prior to
expiry is small, whereas the average rate of information flow over a short
time leading up to expiry of a daily strike option is large, because virtually
all of the information flow occurs in these last few days.

Note that the shape of the implied volatility surface also changes dramat-
ically as one nears expiry. A month prior to expiration, the implied volatility
depends on the level of the fuel price (with high fuel prices associated with
higher implieds in an S-shaped form), but does not vary with load. With
the short-dated option, however, the volatility surface exhibits a strong de-
pendence on load, especially for high fuel prices.

Not surprisingly, the shift in the volatility surface over time is much less
pronounced for monthly strike options. As noted earlier, much of the payoff
for a monthly strike option is determined by forward prices for forward con-
tracts with more than a few days to maturity. Thus, load shocks that occur
even in the days immediately prior to maturity of the monthly strike option
confer very little payoff-relevant information. The rate of information flow
days before the monthly strike’s expiry is therefore not markedly different
than the rate weeks before maturity. Indeed, the information flow is almost
entirely related to the price of fuel. Under the assumption that the fuel fu-
tures price is a GBM, this implies that the implied volatility is effectively
the same regardless of time to expiry of the monthly strike option.

Mean reversion also affects the nature of volatility “smiles” and “smirks”
in power options. Long-maturity daily strike options exhibit no smile or
smirk–the implied volatility does not vary with strike.16 However, figure
8.11 demonstrates that (a) implied volatilities smirk for short dated daily
strike options, and (b) the smirk depends on load when time to expiry is
small. The figure depicts 3 smiles for a daily strike option expiring on 15
July with 2 days to expiry. The highest curve is for a load that is 5 percent
below the mean value (given by θq(t)) on this date. The curve with the next
lowest values of implied volatility at the low strike is for a load that is at
the mean value on this date. Each of these curves slopes downwards from
16 These options should exhibit smiles if fuel options do, as would be the case when fuel prices

exhibit stochastic volatility or jumps. In this case, the power option smile will be related to
the smile in fuel options. To see this, rewrite the option value as

C =
∫ ∞
0
v(ft′,T , t, T,K|qt′)h(qt′ |qt)dqt′ where h(.) is the distribution of qt′ conditional on qt

and v(.) is the value of a contingent claim with initial condition given by its payoff. For
instance, for a call this payoff is (ft′,T V (qt′ , t′, T ) −K)+ which is the value of a call on V (.)
units of fuel and strike K. In the presence of stochastic volatility or jumps, the v(.) function
will exhibit a volatility skew, which will impact the skew of the power claim C.
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left to right, i.e., they smirk. The curve that cuts across the other two, and
which is U-shaped is for a load that is 5 percent above the mean. Each smirk
is centered on the at-the-money strike; since the relevant forward price is
different for different load levels this close to expiry, the at-the-money strike
differs across options. The figure is centered at the at-the-money strike, with
$1 increments between strikes. The smile is calculated assuming a fuel price
of $7, and a time to expiration of 2 days. Note that the smirk is towards
the put wing with loads at or below the mean (i.e., higher volatilities are
associated with higher strikes) but that it smiles more symmetrically the
load is well above the mean. It should be noted, however, that the behavior
of the smile is also dependent on fuel prices. For some values of fuel price
and load, implied volatility can smirk towards the put wing, for instance.

Due to the general lack of load dependence for monthly strike options,
even when time to expiration is low, there is no pronounced smile or smirk
for these options.

The model implies power options exhibit other features that deserve com-
ment, but are which quite intuitive. These include:

• Daily and monthly strike option values are increasing in the volatility of
the fuel price σf . Since spark spread option prices are linear functions of
fuel forward prices, their values do not vary with fuel price volatility.

• Daily and monthly strike and spark spread call option values are increas-
ing in the volatility of load σq. The increase is due to two factors. First,
an increase in load volatility increases the power forward price due to the
effect of Jensen’s inequality because the forward payoff is a convex func-
tion of load. Second, holding the moneyness of the option constant (by
increasing the call strike to off-set the impact of the higher volatility on
the forward price), the payoff to the option is a convex function of load,
so again a Jensen’s inequality effect implies that the higher volatility is
associated with a higher option value. For puts, the effect of higher load
volatility is ambiguous a priori because these two effects work in oppo-
site directions. However, a strike-compensated increase in load volatility
increases the put value.

8.8 Complications

As noted earlier, although fuel prices and load are crucial determinants of
power prices, electricity spot prices depend on other factors as well. For
instance, outages of transmission or generation assets can influence power
prices. Such events can have a large impact on option valuations in particular
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due to the effect of Jensen’s inequality. For instance, outages can cause spikes
in prices that can appreciably increase the likelihood of positive payoffs for
deep-out-of-the-money calls. Since such outages are typically of relatively
short duration, they will have the biggest impact on the payoffs to options
based on very short dated forwards or spot electricity prices.

Fortunately, the structural framework outlined here can be augmented to
capture the impact of outages (and other structural sources of power price
fluctuations unrelated to load and fuel prices). I characterize “forced” out-
ages by a Markov process and a transition probability matrix.17 Generator
i’s state is “on” (“state 1”) or “off” (“state 2”), and it can transition from on-
to-on, on-to-off, off-to-on, and off-to-off, with associated probabilities given
by the matrix:

Πi =
(
pi11 pi12

pi21 pi22

)

Data collected by NERC and reported in the GADS database can be used
to determine these probabilities. Theoretically, each individual generator has
a distinctive Πi, but in practice it is conventional to assume that generation
units of a particular type, e.g., coal units, share a particular Π matrix that
differs from that for other types of unit, e.g., a gas or nuclear plants.18

Consider a market with N generating units, possibly of different types
and hence with different Πi matrices. Define Ωt as the N -vector describing
the state of the market’s generating units at time t. I refer to this as the
“generation state.” Element i of Ωt equals 1 if that unit is available at t,
and equals 0 if it is unavailable due to an outage.

At time t, the generation state is Ωt. Conditional on this, it is possible to
calculate the probability of each possible generation state at T > t. If T is
only modestly greater than t, these conditional probabilities are very close
to the unconditional probabilities.

The probabilities of the generating states in the physical measure are
relevant for determining expected prices in this measure, but for the purpose
of valuing a power forward contract or option, it is necessary to utilize
probabilities produced by an equivalent measure. Since outages represent a
non-hedgeable risk, the market is incomplete, and these equivalent measure
generation state probabilities are not unique.
17 Planned seasonal outages can also be incorporated into the analysis.
18 There is likely some weak relation between outages and the state variables in the PJ model,

most notably load. Breakdowns are somewhat more likely to occur when units are operating
intensively, as during high load periods. Moreover, there may be some path dependence in
outages–breakdowns are more likely after extended periods of intensive operation.
Nonetheless, the relation between load and outages is sufficiently weak that it is conventional
to assume that outage probabilities are independent of fuel prices, load (and temperature).
Assuming such independence has great computational benefits.
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Spot power prices depend on fuel prices and load, as in the PJ model, but
also depend on outages. Specifically, I assume that:

Pt = ft,tφ(qt,Ωt) (8.15)

where Pt is the spot price of power at t. In (8.15), φ(.) is the market heat
rate function.

All else equal, increases in outages at t are associated with higher spot
power prices.

Consider valuation of a derivative with a payoff contingent upon PT . As-
suming the independence of the generation outage state on the one hand,
and load and fuel prices on the other, the time t value of this derivative is
the expectation under the equivalent measure of the present value of the
payoff:

V (qt, ft,T ,Ωt) = e−r(T−t)Ẽq,f ẼΩG(fT,Tφ(qT ,ΩT)) (8.16)

where G(.) is the payoff function, Ẽq,f indicates the expectation over q and f
under the equivalent measure, and ẼΩ is the expectation over the generation
state under this measure. The former expectation is conditional on ft,T ,
the T -expiry fuel forward price as of t, and qt, the time-t load. The latter
expectation is conditional on the time-t generation state.

With regards to the payoff function, for a forward contract

G(.) = fT,Tφ(qT ,ΩT)

whereas for a call option with strike K it is

G(.) = (fT,Tφ(qt,ΩT)−K)+.

Define Ĉ(qT , fT,T ) = ẼΩG(fT,Tφ(qT ,ΩT)); Ĉ(.) is a function of qT and
fT,T alone because outages are integrated out when taking the expectation.
This function can serve as the initial condition in the PDE (8.7).

Thus, incorporating outages into the PJ framework requires only the de-
termination of the relevant ẼΩ expectation. This, in turn, requires determi-
nation of (a) the φ(.) function and (b) the relevant probabilities under the
equivalent measure. Moreover, the expectation must be calculated. These
matters are beyond the scope of this paper, but are discussed in some detail
in Pirrong (2006a).

Similar modifications can be employed to capture other sources of power
price variations besides load, fuel prices, and outages. Due to Jensen’s in-
equality, the option holder benefits from these fluctuations, and ignoring
them would lead to underestimates of option value. This is of particular
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importance for power options with payoffs dependent on spot prices or very
short-dated forward prices.

Other complications are not so readily handled. For instance, the model
valuations depend on the market price of risk function λ(qt). Given a λ(qt)
function calibrated to observable derivative price information (e.g., visible
forward prices), the solution to the PDE (8.7) solved subject to the appro-
priate initial condition will give an option value that is consistent with con-
temporaneous forward prices used for calibration. However, as Joshi (2003)
notes, the market chooses λ(qt), and the market can change its mind. For
instance, changes in hedging pressure, driven perhaps by financial shocks
to market participants, can affect risk premia in the forward market. That
is, such shocks may affect λ(qt). As an example, the collapse of Enron and
the subsequent deterioration in the financial condition of merchant energy
firms plausibly affected the market price of risk. Similarly, Bessembinder
and Lemmon (2002) and Pirrong and Jermakyan (2008) note that changes
in available generating capacity and the changes supply of risk bearing ca-
pacity by financial intermediaries can also affect the market price of risk
function.

Variations in the market price of risk imply changes in the value of power
contingent claims. Although it is not difficult to calculate the sensitivity in
power claim values to changes in λ(.), this is not sufficient to quantify fully
the risk of a power option or forward position, as this risk depends on both
this sensitivity and the dynamics of λ(.). These dynamics are quite difficult
to model and estimate because (a) the process for estimating this function is
computationally expensive, (b) the function is typically non-linear, and (c)
the function is estimated statistically, and is hence subject to sampling error.
Thus, although the methodology set out here and in Pirrong and Jermakyan
(2008) can give consistent valuations of many power contingent claims at a
point in time, it cannot readily quantify all of the risks of power forwards
and options. The market chooses the measure, and the market can change
its mind; this source of variability is not readily captured in the standard
derivatives valuation framework.

8.9 Summary and Conclusions

A structural model, which posits that power prices are a function of load and
fuel prices, can be used to price a variety of options on electricity. This chap-
ter demonstrates that the behavior of one of these state variables–notably
load–exerts a decisive impact on the pricing of these options. Specifically,
load is strongly mean reverting. As a consequence, the conditional distri-
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bution of load at option expiration does not vary substantially with con-
temporaneous load with more than a few days to expiration even though
variations in load are the single most important cause of variations in power
spot prices. This causes the prices of daily strike options (i.e., options on
the delivery of power on a single day that are exercised shortly before the
delivery date) to vary little with load more than a few days to expiration.
Monthly strike options (i.e., options on the delivery of power during a month
that are exercised shortly before the delivery month) exhibit almost no load
dependence even as expiry nears. Mean reversion also impacts option time
decay; an option with a payoff that is proportional to the fuel price (e.g.,
a spark spread option) exhibits virtually no time decay until right before
expiry.

The model assumes that variations in load and fuel prices explain all
variations in power prices. In reality, although these factors are the most
important determinants of power price movements, other variables impact
power prices as well. Fluctuations in these variables are likely to be highly
transitory, so they can be ignored when determining forward prices a few
days before contract maturity, or when valuing options with payoffs that
depend on the prices of forwards maturing more than a day or two after
option expiry. This is not reasonable when valuing options with payoffs that
depend on very short term forward prices (e.g., a hour ahead forward), or on
spot prices. Under certain simplifying assumptions, however, it is possible
to modify the initial conditions to the valuation PDE to take into account
transitory fluctuations in power prices attributable to factors other than
load and fuel prices, such as outages or out-of-merit dispatch driven by
transmission constraints and fluctuations in the spatial pattern of load.

The structural model studied in this chapter assumes that electricity is
truly non-storable. This means that the dynamic programming problems
that required such careful handling in Chapters 2-8 are absent here. As a
result, price in every instant depends only on current conditions, and not on
anticipations about future supply and demand conditions. Even in markets
where all generation is fossil fueled, this is not exactly right; non-convexities
in electricity generation, arising from startup and shutdown costs, for in-
stance, mean that current decisions (e.g., whether to startup a plant) affect
future opportunity sets. Nonetheless, from a practical perspective, this is a
second order consideration, as even some centrally-dispatched markets ig-
nore these considerations for many decisions.

There are circumstances, however, where the non-storability assumption is
problematic. In particular, hydrogeneration introduces an element of stora-
bility; although the electricity cannot be (economically) stored, water used
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to generate it by spilling it over a dam can be. This connects current deci-
sions and future opportunities: spilling water over a dam to generate power
today means that water is not available to generate tomorrow. Thus, as with
storable commodities, the problem of the optimal (and competitive) opera-
tion of a hydropower system is inherently a dynamic programming problem.

This is a first-order issue in some markets, such as the Pacific Northwest of
the United States and Canada, and Scandinavia.19 Fortunately, the methods
of this chapter can be combined with the methods of the rest of the book
to address this problem. Specifically, a combination of the seasonal storage
model of Chapters 6 and 7 with the load dynamics and fossil-fuel supply
curve modeling of this chapter can be used to construct a structural model
of a hydro market. The “stock” of water behind dams represents the analog
to inventories in the storage model. Natural changes of this stock occur
seasonally, due to snowfall for example. Moreover, these changes are random,
and information about future changes flows continuously. Thus, a model with
a random load process, and a process describing the flow of information
about water availability, represents a reasonable way of characterizing a
market with an important hydro component.

But I’ve done enough for now. That is left as an exercise for the reader,
giving you an opportunity to put all the tools of this book to work. Good
luck!

19 It is not important in other markets, such as Texas in the US, where virtually all power is
generated by non-hyrdo sources.
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