




Preface

This is a book about Monte Carlo methods from the perspective of financial
engineering. Monte Carlo simulation has become an essential tool in the pric-
ing of derivative securities and in risk management; these applications have,
in turn, stimulated research into new Monte Carlo techniques and renewed
interest in some old techniques. This is also a book about financial engineer-
ing from the perspective of Monte Carlo methods. One of the best ways to
develop an understanding of a model of, say, the term structure of interest
rates is to implement a simulation of the model; and finding ways to improve
the efficiency of a simulation motivates a deeper investigation into properties
of a model.

My intended audience is a mix of graduate students in financial engi-
neering, researchers interested in the application of Monte Carlo methods in
finance, and practitioners implementing models in industry. This book has
grown out of lecture notes I have used over several years at Columbia, for
a semester at Princeton, and for a short course at Aarhus University. These
classes have been attended by masters and doctoral students in engineering,
the mathematical and physical sciences, and finance. The selection of topics
has also been influenced by my experiences in developing and delivering pro-
fessional training courses with Mark Broadie, often in collaboration with Leif
Andersen and Phelim Boyle. The opportunity to discuss the use of Monte
Carlo methods in the derivatives industry with practitioners and colleagues
has helped shaped my thinking about the methods and their application.

Students and practitioners come to the area of financial engineering from
diverse academic fields and with widely ranging levels of training in mathe-
matics, statistics, finance, and computing. This presents a challenge in set-
ting the appropriate level for discourse. The most important prerequisite for
reading this book is familiarity with the mathematical tools routinely used
to specify and analyze continuous-time models in finance. Prior exposure to
the basic principles of option pricing is useful but less essential. The tools
of mathematical finance include Itô calculus, stochastic differential equations,
and martingales. Perhaps the most advanced idea used in many places in
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this book is the concept of a change of measure. This idea is so central both
to derivatives pricing and to Monte Carlo methods that there is simply no
avoiding it. The prerequisites to understanding the statement of the Girsanov
theorem should suffice for reading this book.

Whereas the language of mathematical finance is essential to our topic, its
technical subtleties are less so for purposes of computational work. My use of
mathematical tools is often informal: I may assume that a local martingale
is a martingale or that a stochastic differential equation has a solution, for
example, without calling attention to these assumptions. Where convenient,
I take derivatives without first assuming differentiability and I take expecta-
tions without verifying integrability. My intent is to focus on the issues most
important to Monte Carlo methods and to avoid diverting the discussion to
spell out technical conditions. Where these conditions are not evident and
where they are essential to understanding the scope of a technique, I discuss
them explicitly. In addition, an appendix gives precise statements of the most
important tools from stochastic calculus.

This book divides roughly into three parts. The first part, Chapters 1–3,
develops fundamentals of Monte Carlo methods. Chapter 1 summarizes the
theoretical foundations of derivatives pricing and Monte Carlo. It explains
the principles by which a pricing problem can be formulated as an integra-
tion problem to which Monte Carlo is then applicable. Chapter 2 discusses
random number generation and methods for sampling from nonuniform dis-
tributions, tools fundamental to every application of Monte Carlo. Chapter 3
provides an overview of some of the most important models used in financial
engineering and discusses their implementation by simulation. I have included
more discussion of the models in Chapter 3 and the financial underpinnings
in Chapter 1 than is strictly necessary to run a simulation. Students often
come to a course in Monte Carlo with limited exposure to this material, and
the implementation of a simulation becomes more meaningful if accompanied
by an understanding of a model and its context. Moreover, it is precisely in
model details that many of the most interesting simulation issues arise.

If the first three chapters deal with running a simulation, the next three
deal with ways of running it better. Chapter 4 presents methods for increas-
ing precision by reducing the variance of Monte Carlo estimates. Chapter 5
discusses the application of deterministic quasi-Monte Carlo methods for nu-
merical integration. Chapter 6 addresses the problem of discretization error
that results from simulating discrete-time approximations to continuous-time
models.

The last three chapters address topics specific to the application of Monte
Carlo methods in finance. Chapter 7 covers methods for estimating price sen-
sitivities or “Greeks.” Chapter 8 deals with the pricing of American options,
which entails solving an optimal stopping problem within a simulation. Chap-
ter 9 is an introduction to the use of Monte Carlo methods in risk management.
It discusses the measurement of market risk and credit risk in financial port-
folios. The models and methods of this final chapter are rather different from
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those in the other chapters, which deal primarily with the pricing of derivative
securities.

Several people have influenced this book in various ways and it is my
pleasure to express my thanks to them here. I owe a particular debt to my
frequent collaborators and co-authors Mark Broadie, Phil Heidelberger, and
Perwez Shahabuddin. Working with them has influenced my thinking as well
as the book’s contents. With Mark Broadie I have had several occasions to
collaborate on teaching as well as research, and I have benefited from our many
discussions on most of the topics in this book. Mark, Phil Heidelberger, Steve
Kou, Pierre L’Ecuyer, Barry Nelson, Art Owen, Philip Protter, and Jeremy
Staum each commented on one or more draft chapters; I thank them for
their comments and apologize for the many good suggestions I was unable to
incorporate fully. I have also benefited from working with current and former
Columbia students Jingyi Li, Nicolas Merener, Jeremy Staum, Hui Wang, Bin
Yu, and Xiaoliang Zhao on some of the topics in this book. Several classes
of students helped uncover errors in the lecture notes from which this book
evolved.

Paul Glasserman
New York, 2003
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1

Foundations

This chapter’s two parts develop key ideas from two fields, the intersection of
which is the topic of this book. Section 1.1 develops principles underlying the
use and analysis of Monte Carlo methods. It begins with a general descrip-
tion and simple examples of Monte Carlo, and then develops a framework for
measuring the efficiency of Monte Carlo estimators. Section 1.2 reviews con-
cepts from the theory of derivatives pricing, including pricing by replication,
the absence of arbitrage, risk-neutral probabilities, and market completeness.
The most important idea for our purposes is the representation of derivative
prices as expectations, because this representation underlies the application
of Monte Carlo.

1.1 Principles of Monte Carlo

1.1.1 Introduction

Monte Carlo methods are based on the analogy between probability and vol-
ume. The mathematics of measure formalizes the intuitive notion of probabil-
ity, associating an event with a set of outcomes and defining the probability of
the event to be its volume or measure relative to that of a universe of possible
outcomes. Monte Carlo uses this identity in reverse, calculating the volume
of a set by interpreting the volume as a probability. In the simplest case, this
means sampling randomly from a universe of possible outcomes and taking
the fraction of random draws that fall in a given set as an estimate of the set’s
volume. The law of large numbers ensures that this estimate converges to the
correct value as the number of draws increases. The central limit theorem
provides information about the likely magnitude of the error in the estimate
after a finite number of draws.

A small step takes us from volumes to integrals. Consider, for example,
the problem of estimating the integral of a function f over the unit interval.
We may represent the integral
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α =
∫ 1

0

f(x) dx

as an expectation E[f(U)], with U uniformly distributed between 0 and 1.
Suppose we have a mechanism for drawing points U1, U2, . . . independently
and uniformly from [0, 1]. Evaluating the function f at n of these random
points and averaging the results produces the Monte Carlo estimate

α̂n =
1
n

n∑
i=1

f(Ui).

If f is indeed integrable over [0, 1] then, by the strong law of large numbers,

α̂n → α with probability 1 as n → ∞.

If f is in fact square integrable and we set

σ2
f =

∫ 1

0

(f(x) − α)2 dx,

then the error α̂n −α in the Monte Carlo estimate is approximately normally
distributed with mean 0 and standard deviation σf/

√
n, the quality of this

approximation improving with increasing n. The parameter σf would typically
be unknown in a setting in which α is unknown, but it can be estimated using
the sample standard deviation

sf =

√√√√ 1
n − 1

n∑
i=1

(f(Ui) − α̂n)2.

Thus, from the function values f(U1), . . . , f(Un) we obtain not only an esti-
mate of the integral α but also a measure of the error in this estimate.

The form of the standard error σf/
√

n is a central feature of the Monte
Carlo method. Cutting this error in half requires increasing the number of
points by a factor of four; adding one decimal place of precision requires
100 times as many points. These are tangible expressions of the square-root
convergence rate implied by the

√
n in the denominator of the standard error.

In contrast, the error in the simple trapezoidal rule

α ≈ f(0) + f(1)
2n

+
1
n

n−1∑
i=1

f(i/n)

is O(n−2), at least for twice continuously differentiable f . Monte Carlo is
generally not a competitive method for calculating one-dimensional integrals.

The value of Monte Carlo as a computational tool lies in the fact that its
O(n−1/2) convergence rate is not restricted to integrals over the unit interval.
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Indeed, the steps outlined above extend to estimating an integral over [0, 1]d

(and even �d) for all dimensions d. Of course, when we change dimensions we
change f and when we change f we change σf , but the standard error will still
have the form σf/

√
n for a Monte Carlo estimate based on n draws from the

domain [0, 1]d. In particular, the O(n−1/2) convergence rate holds for all d. In
contrast, the error in a product trapezoidal rule in d dimensions is O(n−2/d) for
twice continuously differentiable integrands; this degradation in convergence
rate with increasing dimension is characteristic of all deterministic integration
methods. Thus, Monte Carlo methods are attractive in evaluating integrals in
high dimensions.

What does this have to do with financial engineering? A fundamental im-
plication of asset pricing theory is that under certain circumstances (reviewed
in Section 1.2.1), the price of a derivative security can be usefully represented
as an expected value. Valuing derivatives thus reduces to computing expecta-
tions. In many cases, if we were to write the relevant expectation as an integral,
we would find that its dimension is large or even infinite. This is precisely the
sort of setting in which Monte Carlo methods become attractive.

Valuing a derivative security by Monte Carlo typically involves simulating
paths of stochastic processes used to describe the evolution of underlying
asset prices, interest rates, model parameters, and other factors relevant to
the security in question. Rather than simply drawing points randomly from
[0, 1] or [0, 1]d, we seek to sample from a space of paths. Depending on how
the problem and model are formulated, the dimension of the relevant space
may be large or even infinite. The dimension will ordinarily be at least as large
as the number of time steps in the simulation, and this could easily be large
enough to make the square-root convergence rate for Monte Carlo competitive
with alternative methods.

For the most part, there is nothing we can do to overcome the rather slow
rate of convergence characteristic of Monte Carlo. (The quasi-Monte Carlo
methods discussed in Chapter 5 are an exception — under appropriate con-
ditions they provide a faster convergence rate.) We can, however, look for
superior sampling methods that reduce the implicit constant in the conver-
gence rate. Much of this book is devoted to examples and general principles
for doing this.

The rest of this section further develops some essential ideas underly-
ing Monte Carlo methods and their application to financial engineering. Sec-
tion 1.1.2 illustrates the use of Monte Carlo with two simple types of option
contracts. Section 1.1.3 develops a framework for evaluating the efficiency of
simulation estimators.

1.1.2 First Examples

In discussing general principles of Monte Carlo, it is useful to have some simple
specific examples to which to refer. As a first illustration of a Monte Carlo
method, we consider the calculation of the expected present value of the payoff
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of a call option on a stock. We do not yet refer to this as the option price; the
connection between a price and an expected discounted payoff is developed in
Section 1.2.1.

Let S(t) denote the price of the stock at time t. Consider a call option
granting the holder the right to buy the stock at a fixed price K at a fixed
time T in the future; the current time is t = 0. If at time T the stock price
S(T ) exceeds the strike price K, the holder exercises the option for a profit
of S(T ) − K; if, on the other hand, S(T ) ≤ K, the option expires worthless.
(This is a European option, meaning that it can be exercised only at the fixed
date T ; an American option allows the holder to choose the time of exercise.)
The payoff to the option holder at time T is thus

(S(T ) − K)+ = max{0, S(T )− K}.

To get the present value of this payoff we multiply by a discount factor e−rT ,
with r a continuously compounded interest rate. We denote the expected
present value by E[e−rT (S(T ) − K)+].

For this expectation to be meaningful, we need to specify the distribution
of the random variable S(T ), the terminal stock price. In fact, rather than
simply specifying the distribution at a fixed time, we introduce a model for the
dynamics of the stock price. The Black-Scholes model describes the evolution
of the stock price through the stochastic differential equation (SDE)

dS(t)
S(t)

= r dt + σ dW (t), (1.1)

with W a standard Brownian motion. (For a brief review of stochastic cal-
culus, see Appendix B.) This equation may be interpreted as modeling the
percentage changes dS/S in the stock price as the increments of a Brownian
motion. The parameter σ is the volatility of the stock price and the coefficient
on dt in (1.1) is the mean rate of return. In taking the rate of return to be
the same as the interest rate r, we are implicitly describing the risk-neutral
dynamics of the stock price, an idea reviewed in Section 1.2.1.

The solution of the stochastic differential equation (1.1) is

S(T ) = S(0) exp
(
[r − 1

2σ2]T + σW (T )
)
. (1.2)

As S(0) is the current price of the stock, we may assume it is known. The
random variable W (T ) is normally distributed with mean 0 and variance T ;
this is also the distribution of

√
TZ if Z is a standard normal random variable

(mean 0, variance 1). We may therefore represent the terminal stock price as

S(T ) = S(0) exp
(
[r − 1

2σ2]T + σ
√

TZ
)

. (1.3)

The logarithm of the stock price is thus normally distributed, and the stock
price itself has a lognormal distribution.
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The expectation E[e−rT (S(T ) − K)+] is an integral with respect to the
lognormal density of S(T ). This integral can be evaluated in terms of the
standard normal cumulative distribution function Φ as BS(S(0), σ, T, r, K)
with

BS(S, σ, T, r, K) =

SΦ
(

log(S/K) + (r + 1
2σ2)T

σ
√

T

)
− e−rT KΦ

(
log(S/K) + (r − 1

2σ2)T

σ
√

T

)
. (1.4)

This is the Black-Scholes [50] formula for a call option.
In light of the availability of this formula, there is no need to use Monte

Carlo to compute E[e−rT (S(T )−K)+]. Moreover, we noted earlier that Monte
Carlo is not a competitive method for computing one-dimensional integrals.
Nevertheless, we now use this example to illustrate the key steps in Monte
Carlo. From (1.3) we see that to draw samples of the terminal stock price S(T )
it suffices to have a mechanism for drawing samples from the standard normal
distribution. Methods for doing this are discussed in Section 2.3; for now we
simply assume the ability to produce a sequence Z1, Z2, . . . of independent
standard normal random variables. Given a mechanism for generating the Zi,
we can estimate E[e−rT (S(T ) − K)+] using the following algorithm:

for i = 1, . . . , n
generate Zi

set Si(T ) = S(0) exp
(
[r − 1

2σ2]T + σ
√

TZi

)
set Ci = e−rT (S(T ) − K)+

set Ĉn = (C1 + · · · + Cn)/n

For any n ≥ 1, the estimator Ĉn is unbiased, in the sense that its expec-
tation is the target quantity:

E[Ĉn] = C ≡ E[e−rT (S(T ) − K)+].

The estimator is strongly consistent , meaning that as n → ∞,

Ĉn → C with probability 1.

For finite but at least moderately large n, we can supplement the point esti-
mate Ĉn with a confidence interval. Let

sC =

√√√√ 1
n − 1

n∑
i=1

(Ci − Ĉn)2 (1.5)

denote the sample standard deviation of C1, . . . , Cn and let zδ denote the 1−δ
quantile of the standard normal distribution (i.e., Φ(zδ) = 1 − δ). Then

Ĉn ± zδ/2
sC√

n
(1.6)
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is an asymptotically (as n → ∞) valid 1 − δ confidence interval for C. (For
a 95% confidence interval, δ = .05 and zδ/2 ≈ 1.96.) Alternatively, because
the standard deviation is estimated rather than known, we may prefer to
replace zδ/2 with the corresponding quantile from the t distribution with n−1
degrees of freedom, which results in a slightly wider interval. In either case,
the probability that the interval covers C approaches 1− δ as n → ∞. (These
ideas are reviewed in Appendix A.)

The problem of estimating E[e−rT (S(T )−K)+] by Monte Carlo is simple
enough to be illustrated in a spreadsheet. Commercial spreadsheet software
typically includes a method for sampling from the normal distribution and
the mathematical functions needed to transform normal samples to terminal
stock prices and then to discounted option payoffs. Figure 1.1 gives a schematic
illustration. The Zi are samples from the normal distribution; the comments
in the spreadsheet illustrate the formulas used to transform these to arrive
at the estimate Ĉn. The spreadsheet layout in Figure 1.1 makes the method
transparent but has the drawback that it requires storing all n replication in
n rows of cells. It is usually possible to use additional spreadsheet commands
to recalculate cell values n times without storing intermediate values.

Replication Normals Stock Price Option Payoff

1 Z_1 S_1 C_1

2 Z_2 S_2 C_2

3 Z_3 S_3 C_3

4 Z_4 S_4 C_4

5 Z_5 S_5 C_5

6 Z_6 S_6 C_6

7 Z_7 S_7 C_7

8 Z_8 S_8 C_8

9 Z_9 S_9 C_9

10   Z_10   S_10   C_10

11   Z_11   S_11   C_11

n Z_n S_n C_n

           AVERAGE(C_1,…,C_n)

s_C = STDEV(C_1,…,C_n)

S_1=S(0)*exp((r-0.5*σ^2)*T+σ*sqrt(T)*Z_1)

C_8=exp(-rT)*max(0,S_8-K)

=nĈ

� � � �

Fig. 1.1. A spreadsheet for estimating the expected present value of the payoff of
a call option.

This simple example illustrates a general feature of Monte Carlo methods
for valuing derivatives, which is that the simulation is built up in layers: each
of the transformations

Zi −→ Si(T ) −→ Ci

exemplifies a typical layer. The first transformation constructs a path of under-
lying assets from random variables with simpler distributions and the second
calculates a discounted payoff from each path. In fact, we often have additional
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layers above and below these. At the lowest level, we typically start from in-
dependent random variables Ui uniformly distributed between 0 and 1, so we
need a transformation taking the Ui to Zi. The transformation taking the Ci

to the sample mean Ĉn and sample standard deviation sC may be viewed as
another layer. We include another still higher level in, for example, valuing a
portfolio of instruments, each of which is valued by Monte Carlo. Randomness
(or apparent randomness) typically enters only at the lowest layer; the sub-
sequent transformations producing asset paths, payoffs, and estimators are
usually deterministic.

Path-Dependent Example

The payoff of a standard European call option is determined by the terminal
stock price S(T ) and does not otherwise depend on the evolution of S(t)
between times 0 and T . In estimating E[e−rT (S(T ) − K)+], we were able to
jump directly from time 0 to time T using (1.3) to sample values of S(T ).
Each simulated “path” of the underlying asset thus consists of just the two
points S(0) and S(T ).

In valuing more complicated derivative securities using more complicated
models of the dynamics of the underlying assets, it is often necessary to sim-
ulate paths over multiple intermediate dates and not just at the initial and
terminal dates. Two considerations may make this necessary:

◦ the payoff of a derivative security may depend explicitly on the values of
underlying assets at multiple dates;

◦ we may not know how to sample transitions of the underlying assets exactly
and thus need to divide a time interval [0, T ] into smaller subintervals to
obtain a more accurate approximation to sampling from the distribution
at time T .

In many cases, both considerations apply.
Before turning to a detailed example of the first case, we briefly illustrate

the second. Consider a generalization of the basic model (1.1) in which the
dynamics of the underlying asset S(t) are given by

dS(t) = rS(t) dt + σ(S(t))S(t) dW (t). (1.7)

In other words, we now let the volatility σ depend on the current level of S.
Except in very special cases, this equation does not admit an explicit solution
of the type in (1.2) and we do not have an exact mechanism for sampling from
the distribution of S(T ). In this setting, we might instead partition [0, T ] into
m subintervals of length ∆t = T/m and over each subinterval [t, t + ∆t]
simulate a transition using a discrete (Euler) approximation to (1.7) of the
form

S(t + ∆t) = S(t) + rS(t)∆t + σ(S(t))S(t)
√

∆tZ,
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with Z a standard normal random variable. This relies on the fact that W (t+
∆t)−W (t) has mean 0 and standard deviation

√
∆t. For each step, we would

use an independent draw from the normal distribution. Repeating this for
m steps produces a value of S(T ) whose distribution approximates the exact
(unknown) distribution of S(T ) implied by (1.7). We expect that as m becomes
larger (so that ∆t becomes smaller) the approximating distribution of S(T )
draws closer to the exact distribution. In this example, intermediate times
are introduced into the simulation to reduce discretization error , the topic of
Chapter 6.

Even if we assume the dynamics in (1.1) of the Black-Scholes model, it
may be necessary to simulate paths of the underlying asset if the payoff of a
derivative security depends on the value of the underlying asset at interme-
diate dates and not just the terminal value. Asian options are arguably the
simplest path-dependent options for which Monte Carlo is a competitive com-
putational tool. These are options with payoffs that depend on the average
level of the underlying asset. This includes, for example, the payoff (S̄ −K)+

with

S̄ =
1
m

m∑
j=1

S(tj) (1.8)

for some fixed set of dates 0 = t0 < t1 < · · · < tm = T , with T the date at
which the payoff is received.

To calculate the expected discounted payoff E[e−rT (S̄ −K)+], we need to
be able to generate samples of the average S̄. The simplest way to do this is
to simulate the path S(t1), . . . , S(tm) and then compute the average along the
path. We saw in (1.3) how to simulate S(T ) given S(0); simulating S(tj+1)
from S(tj) works the same way:

S(tj+1) = S(tj) exp
(
[r − 1

2σ2](tj+1 − tj) + σ
√

tj+1 − tjZj+1

)
(1.9)

where Z1, . . . , Zm are independent standard normal random variables. Given
a path of values, it is a simple matter to calculate S̄ and then the discounted
payoff e−rT (S̄ − K)+.

The following algorithm illustrates the steps in simulating n paths of m
transitions each. To be explicit, we use Zij to denote the jth draw from the
normal distribution along the ith path. The {Zij} are mutually independent.

for i = 1, . . . , n
for j = 1, . . . , m

generate Zij

set Si(tj) = Si(tj−1) exp
(
[r − 1

2σ2](tj − tj−1) + σ
√

(tj − tj−1)Zij

)
set S̄ = (Si(t1) + · · · + Si(tm))/m
set Ci = e−rT (S̄ − K)+

set Ĉn = (C1 + · · · + Cn)/n
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Figure 1.2 gives a schematic illustration of a spreadsheet implementation
of this method. The spreadsheet has n rows of standard normal random vari-
ables Zij with m variables in each row. These are mapped to n paths of the
underlying asset, each path consisting of m steps. From each path, the spread-
sheet calculates a value of the time average S̄i and a value of the discounted
payoff Ci. The Ci are averaged to produce the final estimate Ĉn.

Path \ Step 1 2 3 m

1 Z_11 Z_12 Z_13 Z_1m

2 Z_21 Z_22 Z_23 Z_2m

3 Z_31 Z_32 Z_33 Z_3m

n Z_n 1 Z_n 2 Z_n 3 Z_nm

1 S_11 S_12 S_13 S_1m

2 S_21 S_22 S_23 S_2m

3 S_31 S_32 S_33 S_3m

n S_n 1 S_n 2 S_n 3 S_nm

             AVERAGE(C_1,…,C_n)

1S

2S

3S

nS

1C

2C

3C

nC

=nĈ

S_13=S12*exp((r-0.5*σ^2)*(t_3-t_2)+σ*sqrt(t_3-t_2)*Z_13)

      =AVERAGE(S_31,S_32,…,S_3m)

     =exp(-rT)*max(0,    -K)
2S

�

�

� � �

� � �

�

�

�

�

�

�

�

2C

3S

Fig. 1.2. A spreadsheet for estimating the expected present value of the payoff of
an Asian call option.

1.1.3 Efficiency of Simulation Estimators

Much of this book is devoted to ways of improving Monte Carlo estimators.
To discuss improvements, we first need to explain our criteria for compar-
ing alternative estimators. Three considerations are particularly important:
computing time, bias, and variance.

We begin by considering unbiased estimates. The two cases considered in
Section 1.1.2 (the standard call and the Asian call) produced unbiased esti-
mates in the sense that in both cases E[Ĉn] = C, with Ĉn the corresponding
estimator and C the quantity being estimated. Also, in both cases the esti-
mator Ĉn was the mean of n independent and identically distributed samples.
We proceed by continuing to consider estimators of this form because this
setting is both simple and practically relevant.

Suppose, then, that

Ĉn =
1
n

n∑
i=1

Ci,

with Ci i.i.d., E[Ci] = C and Var[Ci] = σ2
C < ∞. The central limit theorem

asserts that as the number of replications n increases, the standardized esti-
mator (Ĉn − C)/(σC/

√
n) converges in distribution to the standard normal,

a statement often abbreviated as
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Ĉn − C

σC/
√

n
⇒ N(0, 1)

or, equivalently, as √
n[Ĉn − C] ⇒ N(0, σ2

C). (1.10)

Here, ⇒ denotes convergence in distribution and N(a, b2) denotes the normal
distribution with mean a and variance b2. The stated convergence in distrib-
ution means that

lim
n→∞

P

(
Ĉn − C

σC/
√

n
≤ x

)
= Φ(x)

for all x, with Φ the cumulative normal distribution. The same limit holds
if σC is replaced with the sample standard devation sC (as in (1.5)); this is
important because σC is rarely known in practice but sC is easily calculated
from the simulation output. The fact that we can replace σC with sC without
changing the limit in distribution follows from the fact that sC/σC → 1 as
n → ∞ and general results on convergence in distribution (cf. Appendix A).

The central limit theorem justifies the confidence interval (1.6): as n →
∞, the probability that this interval straddles the true value C approaches
1 − δ. Put differently, the central limit theorem tells us something about the
distribution of the error in our simulation estimate:

Ĉn − C ≈ N(0, σ2
C/n),

meaning that the error on the left has approximately the distribution on the
right. This makes precise the intuitively obvious notion that, other things
being equal, in comparing two estimators of the same quantity we should
prefer the one with lower variance.

But what if other things are not equal? In particular, suppose we have a
choice between two unbiased estimators and that the one with smaller vari-
ance takes longer to compute. How should we balance variance reduction and
computational effort? An informal answer was suggested by Hammersley and
Handscomb [169]; Fox and Glynn [128] and Glynn and Whitt [160] develop
a general framework for analyzing this issue and we now review some of its
main conclusions.

Suppose that generating a replication Ci takes a fixed amount of comput-
ing time τ . Our objective is to compare estimators based on relative compu-
tational effort, so the units in which we measure computing time are unim-
portant. Let s denote our computational budget, measured in the same units
as τ . Then the number of replications we can complete given the available
budget is �s/τ�, the integer part of s/τ , and the resulting estimator is Ĉ�s/τ�.
Directly from (1.10), we get√

�s/τ�[Ĉ�s/τ� − C] ⇒ N(0, σ2
C)
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as the computational budget s increases to infinity. Noting that �s/τ�/s →
1/τ , it follows that

√
s[Ĉ�s/τ� −C] is also asymptotically normal but with an

asymptotic variance of σ2
Cτ ; i.e.,
√

s[Ĉ�s/τ� − C] ⇒ N(0, σ2
Cτ) (1.11)

as s → ∞. This limit normalizes the error in the estimator by the computing
time s rather than by the number of replications. It tells us that, given a
budget s, the error in our estimator will be approximately normally distributed
with variance σ2

Cτ/s.
This property provides a criterion for comparing alternative unbiased esti-

mators. Suppose, for example, that we have two unbiased estimators both of
which are averages of independent replications, as above. Suppose the variance
per replication σ2

1 of the first estimator is larger than the variance per repli-
cation σ2

2 of the second estimator, but the computing times per replication τi,
i = 1, 2, of the two estimators satisfy τ1 < τ2. How should we choose between
the faster, more variable estimator and the slower, less variable estimator?
The formulation of the central limit theorem in (1.11) suggests that asymp-
totically (as the computational budget grows), we should prefer the estimator
with the smaller value of σ2

i τi, because this is the one that will produce the
more precise estimate (and narrower confidence interval) from the budget s.

A feature of the product σ2τ (variance per replication times computer time
per replication) as a measure of efficiency is that it is insensitive to bundling
multiple replications into a single replication. Suppose, for example, that we
simply redefine a replication to be the average of two independent copies of
the original replications. This cuts the variance per replication in half but
doubles the computing time per replication and thus leaves the product of
the two unaltered. A purely semantic change in what we call a replication
does not affect our measure of efficiency.

The argument leading to the work-normalized central limit theorem (1.11)
requires that the computing time per replication be constant. This would be
almost exactly the case in, for example, the simulation of the Asian option con-
sidered in Section 1.1.2: all replications require simulating the same number
of transitions, and the time per transition is nearly constant. This feature is
characteristic of many derivative pricing problems in which the time per repli-
cation is determined primarily by the number of time steps simulated. But
there are also cases in which computing time can vary substantially across
replications. In pricing a barrier option, for example (cf. Section 3.2.2), one
might terminate a path the first time a barrier is crossed; the number of tran-
sitions until this happens is typically random. Sampling through acceptance-
rejection (as discussed in Section 2.2.2) also introduces randomness in the
time per replication.

To generalize (1.11) to these cases, we replace the assumption of a fixed
computing time with the condition that (C1, τ1), (C2, τ2), . . . are independent
and identically distributed, with Ci as before and τi now denoting the com-
puter time required for the ith replication. The number of replications that
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can be completed with a computing budget s is

N(s) = sup

{
n ≥ 0 :

n∑
i=1

τi ≤ s

}

and is also random. Our estimator based on a budget s is ĈN(s), the average
of the first N(s) replications. Our assumption of i.i.d. replications ensures
that N(s)/s → 1/E[τ ] with probability one (this is the elementary renewal
theorem) and then that (1.11) generalizes to (cf. Appendix A.1)

√
s[ĈN(s) − C] ⇒ N(0, σ2

CE[τ ]). (1.12)

This limit provides a measure of asymptotic relative efficiency when the com-
puting time per replication is variable. It indicates that in comparing al-
ternative estimators, each of which is the average of unbiased independent
replications, we should prefer the one for which the product

(variance per replication) × (expected computing time per replication)

is smallest. This principle (an early version of which may be found in Hammer-
sley and Handscomb [169], p.51) is a special case of a more general formulation
developed by Glynn and Whitt [160] for comparing the efficiency of simulation
estimators. Their results include a limit of the form in (1.12) that holds in far
greater generality than the case of i.i.d. replications we consider here.

Bias

The efficiency comparisons above, based on the central limit theorems in (1.10)
and (1.12), rely on the fact that the estimators to be compared are aver-
ages of unbiased replications. In the absence of bias, estimator variability and
computational effort are the most important considerations. However, reduc-
ing variability or computing time would be pointless if it merely accelerated
convergence to an incorrect value. While accepting bias in small samples is
sometimes necessary, we are interested only in estimators for which any bias
can be eliminated through increasing computational effort.

Some simulation estimators are biased for all finite sample sizes but be-
come asymptotically unbiased as the number of replications increases. This
is true of ĈN(s), for example. When the τi are random, E[ĈN(s)] = C, but
the central limit theorem (1.12) shows that the bias in this case becomes
negligible as s increases. Glynn and Heidelberger [155] show that it can be en-
tirely eliminated by forcing completion of at least the first replication, because
E[Ĉmax{1,N(s)}] = C.

Another example is provided by the problem of estimating a ratio of ex-
pections E[X ]/E[Y ] from i.i.d. replications (Xi, Yi), i = 1, . . . , n, of the pair
(X, Y ). The ratio of sample means X̄/Ȳ is biased for all n because
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E

[
X̄

Ȳ

]
= E[X̄]

E[Ȳ ]
;

but X̄/Ȳ clearly converges to E[X ]/E[Y ] with probability 1 as n → ∞. More-
over, the normalized error

√
n

(
X̄

Ȳ
− E[X ]

E[Y ]

)
is asymptotically normal, a point we return to in Section 4.3.3. Thus, the bias
becomes negligible as the number of replications increases, and the conver-
gence rate of the estimator is unaffected.

But not all types of bias vanish automatically in large samples — some
require special effort. Three examples should help illustrate typical sources
of non-negligible bias in financial engineering simulations. In each of these
examples the bias persists as the number of replications increases, but the
bias is nevertheless manageable in the sense that it can be made as small as
necessary through additional computational effort.

Example 1.1.1 Model discretization error. In Section 1.1.2 we illustrated the
use of Monte Carlo in estimating the expected present value of the payoff of a
standard call option and an Asian call option under Black-Scholes assumptions
on the dynamics of the underlying stock. We obtained unbiased estimates by
simulating the underlying stock using (1.3) and (1.9). Suppose that instead of
using (1.9) we divide the time horizon into small increments of length h and
approximate changes in the underlying stock using the recursion

S((j + 1)h) = S(jh) + rS(jh)h + σS(jh)
√

hZj+1,

with Z1, Z2, . . . independent standard normal random variables. The joint
distribution of the values of the stock price along a path simulated using
this rule will not be exactly the same as that implied by the Black-Scholes
dynamics in (1.1). As a consequence, the expected present value of an option
payoff estimated using this simulation rule will differ from the exact value —
the simulation estimator is biased. This is an example of discretization bias
because it results from time-discretization of the continuous-time dynamics of
the underlying model.

Of course, in this example, the bias can be eliminated by using the exact
method (1.9) to simulate values of the underlying stock at the relevant dates.
But for many models, exact sampling of the continuous-time dynamics is
infeasible and discretization error is inevitable. This is typically the case if,
for example, the volatility parameter σ is a function of the stock price S,
as in (1.7). The resulting bias can be managed because it typically vanishes
as the time step h decreases. However, taking h smaller entails generating
more transitions per path (assuming a fixed time horizon) and thus a higher
computational burden. �
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Example 1.1.2 Payoff discretization error. Suppose that in the definition of
the Asian option in Section 1.1.2, we replace the discrete average in (1.8) with
a continuous average

S̄ =
1
T

∫ T

0

S(u) du.

In this case, even if we use (1.9) to generate values of S(ti) at a discrete
set of dates ti, we cannot calculate S̄ exactly — we need to use a discrete
approximation to the continuous average. A similar issue arises in estimating,
e.g.,

E[e−rT ( max
0≤t≤T

S(t) − S(T ))],

the expected present value of the payoff of a lookback option. Even if we
simulate a path S(0), S(t1), . . . , S(tm) exactly (i.e., using (1.9)), the estimator

e−rT ( max
0≤j≤m

S(tj) − S(T ))

is biased; in particular, the maximum over the S(tj) can never exceed and will
almost surely underestimate the maximum of S(t) over all t between 0 and T .
In both cases, the bias can be made arbitrarily small by using a sufficiently
small simulation time step, at the expense of increasing the computational
cost per path. Notice that this example differs from Example 1.1.1 in that
the source of discretization error is the form of the option payoff rather than
the underlying model; the S(ti) themselves are sampled without discretization
error. This type of bias is less common in practice than the model discretiza-
tion error in Example 1.1.1 because option contracts are often sensitive to the
value of the underlying asset at only a finite set of dates. �

Example 1.1.3 Nonlinear functions of means. Consider an option expiring
at T1 to buy a call option expiring at T2 > T1; this is an option on an
option, sometimes called a compound option. Let C(2)(x) denote the expected
discounted payoff of the option expiring at T2 conditional on the underlying
stock price equaling x at time T1. More explicitly,

C(2)(x) = E[e−r(T2−T1)(S(T2) − K2)+|S(T1) = x]

with K2 the strike price. If the compound option has a strike of K1, then the
expected present value of its payoff is

C(1) = E[e−rT1(C(2)(S(T1)) − K1)+].

If the dynamics of the underlying stock are described by the Black-Scholes
model (1.1), C(2) and C(1) can be evaluated explicitly. But consider the
problem of estimating C(1) by simulation. To do this, we simulate n values
S1(T1), . . . , Sn(T1) of the stock at T1 and then k values Si1(T2), . . . , Sik(T2)
of the stock at T2 from each Si(T1), as illustrated in Figure 1.3. We estimate
the inner option value at Si(T1) using
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Ĉ
(2)
k (Si(T1)) =

1
k

k∑
j=1

e−r(T2−T1)(Sij(T2) − K2)+

and then estimate C(1) using

Ĉ(1)
n =

1
n

n∑
i=1

e−rT1(Ĉ(2)
k (Si(T1)) − K1)+.

S1(T1)

Si(T1)

Sn(T1)

S (0)

Si1(T2)

Sij(T2)

Sik(T2).
.
.

.

.

.

Fig. 1.3. Nested simulation used to estimate a function of a conditional expectation.

If we replaced the inner estimate Ĉ
(2)
k with its expectation, the result

would be an unbiased estimator of C(1). But because we estimate the inner
expectation, the overall estimator is biased high:

E[Ĉ(1)
n ] = E[e−rT1(Ĉ(2)

k (Si(T1)) − K1)+]

= E[E[e−rT1(Ĉ(2)
k (Si(T1)) − K1)+|Si(T1)]]

≥ E[e−rT1(E[Ĉ(2)
k (Si(T1))|Si(T1)] − K1)+]

= E[e−rT1(C(2)(Si(T1)) − K1)+]
= C(1).

This follows from Jensen’s inequality and the convexity of the function y �→
(y − K1)+. As the number k of samples of S(T2) generated per sample of
S(T1) increases, the bias vanishes because Ĉ

(2)
k (Si(T1)) → C(2)(Si(T1)) with

probability one. The bias can therefore be managed, but once again only at
the expense of increasing the computational cost per replication.

The source of bias in this example is the application of a nonlinear function
(in this case, the option payoff) to an estimate of an expectation. Closely
related biases arise in at least two important applications of Monte Carlo
in financial engineering. In measuring portfolio risk over a fixed horizon, the
value of the portfolio at the end of the horizon is a conditional expectation.
In valuing American options by simulation, the option payoff at each exercise
date must be compared with the conditionally expected discounted payoff
from waiting to exercise. These topics are discussed in Chapters 8 and 9. �
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Examples 1.1.1–1.1.3 share some important features. In each case, the
relevant estimator is an average of independent replications; each replication
is biased but the bias can be made arbitrarily small at the expense of increasing
the computational cost per replication. Given a fixed computing budget, we
therefore face a tradeoff in allocating the budget. Expending more effort per
replication lowers bias, but it also decreases the number of replications that
can be completed and thus tends to increase estimator variance.

We need a measure of estimator performance that balances bias and vari-
ance. A standard measure is mean square error, which equals the sum of bias
squared and variance. More explicitly, if α̂ is an estimator of a quantity α,
then

MSE(α̂) = E[(α̂ − α)2]
= (E[α̂] − α)2 + E[(α̂ − E[α̂])2]
= Bias2(α̂) + Variance(α̂).

While exact calculation of mean square error is generally impractical, it is
often possible to compare estimators through their asymptotic MSE.

For simplicity, we restrict attention to estimators that are sample means
of i.i.d. replications. Extending the notation used in the unbiased case, we
write Ĉ(n, δ) for the average of n independent replications with parameter δ.
This parameter determines the bias: we assume E[Ĉ(n, δ)] = αδ and αδ → α
as δ → 0, with α the quantity to be estimated. In Examples 1.1.1 and 1.1.2,
δ could be the simulation time increment along each path; in Example 1.1.3
we could take δ = 1/k. We investigate the mean square error of Ĉ(n, δ) as the
computational budget grows.

Under reasonable additional conditions (in particular, uniform integra-
bility), the central limit theorem in (1.12) for the asymptotically unbiased
estimator ĈN(s) implies

sVar[ĈN(s)] → σ2
CE[τ ];

equivalently,

s1/2
√

Var[ĈN(s)] → σC

√
E[τ ]. (1.13)

The power of s on the left tells us the rate at which the standard error of
ĈN(s) (the square root of its variance) decreases, and the limit on the right
tells us the constant associated with this asymptotic rate. We proceed to
derive similar information in the biased case, where the asymptotic rate of
decrease of the mean square error depends, in part, on how computational
effort is allocated to reducing bias and variance.

For this analysis, we need to make some assumptions about the estimator.
Let τδ be the computer time per replication at parameter δ, which we assume
to be nonrandom. For the estimator bias and computing time, we assume
there are constants η, β > 0, b, and c > 0 such that, as δ → 0,
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αδ − α = bδβ + o(δβ) (1.14)
τδ = cδ−η + o(δ−η). (1.15)

For Examples 1.1.1–1.1.3, it is reasonable to expect that (1.15) holds with
η = 1 because in all three examples the work per path is roughly linear in
1/δ. The value of β can vary more from one problem to another, but typical
values are 1/2, 1, and 2. We will see in Chapter 6 that the value of β often
depends on how one chooses to approximate a continuous-time process.

Given a computational budget s, we can specify an allocation of this budget
to reducing bias and variance by specifying a rule s �→ δ(s) for selecting the
parameter δ. The resulting number of replications is N(s) = �s/τδ(s)� and the
resulting estimator is Ĉ(s) ≡ Ĉ(N(s), δ(s)); notice that the estimator is now
indexed by the single parameter s whereas it was originally indexed by both
the number of replications n and the bias parameter δ. We consider allocation
rules δ(s) for which

δ(s) = as−γ + o(s−γ) (1.16)

for some constants a, γ > 0. A larger γ corresponds to a smaller δ(s) and
thus greater effort allocated to reducing bias; through (1.15), smaller δ also
implies greater computing time per replication, hence fewer replications and
less effort allocated to reducing variance. Our goal is to relate the choice of γ
to the rate at which the MSE of Ĉ(s) decreases as s increases.

For large s, we have N(s) ≈ s/τδ(s); (1.15) and (1.16) together imply that
τδ(s) is O(sγη) and hence that N(s) is O(s1−γη). A minimal requirement on
the allocation rule δ(s) is that the number of replications N(s) increase with
s. We therefore restrict γ to be less than 1/η so that 1 − γη > 0.

As a step in our analysis of the MSE, we write the squared bias as

(αδ(s) − α)2 = b2δ(s)2β + o(δ(s)2β)

= b2a2βs−2βγ + o(s−2βγ) (1.17)
= O(s−2βγ) (1.18)

using (1.14) and (1.16).
Next we consider variance. Let σ2

δ denote the variance per replication at
parameter δ. Then

Var[Ĉ(s)] =
σ2

δ(s)

�s/τδ(s)�
.

We assume that σ2
δ approaches a finite limit σ2 > 0 as δ → 0. This is a natural

assumption in the examples of this section: in Examples 1.1.1 and 1.1.2, σ2 is
the variance in the continuous-time limit; in Example 1.1.3, it is the variance
that remains from the first simulation step after the variance in the second
step is eliminated by letting k → ∞. Under this assumption we have

Var[Ĉ(s)] =
σ2τδ(s)

s
+ o(τδ(s)/s).



18 1 Foundations

Combining this expression for the variance with (1.15) and (1.16), we get

Var[Ĉ(s)] =
σ2cδ(s)−η

s
+ o(δ(s)−η/s)

= σ2ca−ηsγη−1 + o(sγη−1) (1.19)
= O(sγη−1). (1.20)

The order of magnitude of the MSE is the sum of (1.18) and (1.20).
Consider the effect of different choices of γ. If 2βγ > 1 − γη then the

allocation rule drives the squared bias (1.18) to zero faster than the variance
(1.20), so the MSE is eventually dominated by the variance. Conversely, if
2βγ < 1− γη then for large s the MSE is dominated by the squared bias. An
optimal allocation rule selects γ to balance the two terms. Setting 2βγ = 1−γη
means taking γ = 1/(2β + η). Substituting this back into (1.17) and (1.19)
results in

MSE(Ĉ(s)) = (b2a2β + σ2ca−η)s−2β/(2β+η) + o(s−2β/(2β+η)) (1.21)

and thus for the root mean square error we have

RMSE(Ĉ(s)) ≡
√

MSE(Ĉ(s)) = O(s−β/(2β+η)). (1.22)

The exponent of s in this approximation gives the convergence rate of the
RMSE and should be contrasted with the convergence rate of s−1/2 in (1.13).
By minimizing the coefficient in (1.21) we can also find the optimal parameter
a in the allocation rule (1.16),

a∗ =
(

ησ2c

2βb2

) 1
2β+η

;

but this is of less immediate practical value than the convergence rate in
(1.22).

A large β corresponds to a rapidly vanishing bias; as β → ∞ we have
β/(2β + η) → 1/2, recovering the convergence rate of the standard error in
the unbiased case. Similarly, when η is small it follows from (1.16) that the
computational cost of reducing bias is small; in the limit as η → 0 we again
get β/(2β + η) → 1/2. But for any finite β and positive η, (1.22) shows that
we must expect a slower convergence rate using an estimator that is unbiased
only asymptotically compared with one that is unbiased.

Under an allocation rule satisfying (1.16), taking γ = 1/(2β + η) implies
that the bias parameter δ should decrease rather slowly as the computational
budget increases. Consider, for instance, bias resulting from model discretiza-
tion error as in Example 1.1.1. In this setting, interpreting δ as the simulation
time increment, the values β = η = 1 would often apply, resulting in γ = 1/3.
Through (1.16), this implies that the time increment should be cut in half
with an eight-fold increase in the computational budget.
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In applications of Monte Carlo to financial engineering, estimator vari-
ance is typically larger than (squared) bias. With a few notable exceptions
(including the pricing of American options), it is generally easier to imple-
ment a simulation with a comfortably small bias than with a comfortably
small standard error. (For example, it is often difficult to measure the reduc-
tion in discretization bias achieved using the methods of Chapter 6 because
the bias is overwhelmed by simulation variability.) This is consistent with the
rather slow decrease in δ(s) recommended by the analysis above, but it may
also in part reflect the relative magnitudes of the constants b, c, and σ. These
constants may be difficult to determine; the order of magnitude in (1.21) can
nevertheless provide useful insight, especially when very precise simulation
results are required, for which the limit s → ∞ is particularly relevant.

The argument above leading to (1.21) considers only the convergence of
the mean square error. Glynn and Whitt [160] analyze asymptotic efficiency
through the convergence rate of the limit in distribution of simulation estima-
tors. Under uniform integrability conditions, a convergence rate in distribution
implies a convergence rate for the MSE, but the limiting distribution also pro-
vides additional information, just as the central limit theorem (1.12) provides
information beyond (1.13).

1.2 Principles of Derivatives Pricing

The mathematical theory of derivatives pricing is both elegant and remarkably
practical. A proper development of the theory and of the tools needed even to
state precisely its main results requires a book-length treatment; we therefore
assume familiarity with at least the basic ideas of mathematical finance and
refer the reader to Björk [48], Duffie [98], Hunt and Kennedy [191], Lamberton
and Lapeyre [218], and Musiela and Rutkowski [275] for further background.
We will, however, highlight some principles of the theory, especially those that
bear on the applicability of Monte Carlo to the calculation of prices. Three
ideas are particularly important:

1. If a derivative security can be perfectly replicated (equivalently, hedged)
through trading in other assets, then the price of the derivative security
is the cost of the replicating trading strategy.

2. Discounted (or deflated) asset prices are martingales under a probabil-
ity measure associated with the choice of discount factor (or numeraire).
Prices are expectations of discounted payoffs under such a martingale
measure.

3. In a complete market, any payoff (satisfying modest regularity conditions)
can be synthesized through a trading strategy, and the martingale measure
associated with a numeraire is unique. In an incomplete market there are
derivative securities that cannot be perfectly hedged; the price of such a
derivative is not completely determined by the prices of other assets.
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The rest of this chapter is devoted to explaining these principles and to
developing enough of the underlying theory to indicate why, leaving technical
issues aside, they ought to be true. A reader familiar with or uninterested in
this background may want to skip to the recipe in Figure 1.4, with a warning
that the overly simplified summary given there is at best a starting point for
applying Monte Carlo to pricing.

The first of the principles above is the foundation of an industry. Financial
intermediaries can sell options to their clients and then eliminate the risk from
the resulting short position in the option through trading in other assets.
They need to charge what it costs to implement the trading strategy, and
competition ensures that they cannot charge (much) more. Their clients could
in principle run the replicating trading strategy themselves instead of buying
options, but financial institutions are better equipped to do this and can do
it at lower cost. This role should be contrasted with that of the insurance
industry. Insurers bear risk; derivative dealers transfer it.

The second principle is the main link between pricing and Monte Carlo.
The first principle gives us a way of thinking about what the price of a deriv-
ative security ought to be, but it says little about how this price might be
evaluated — it leaves us with the task of finding a hedging strategy and then
determining the cost of implementing this strategy. But the second principle
gives us a powerful shortcut because it tells us how to represent prices as ex-
pectations. Expectations (and, more generally, integrals) lend themselves to
evaluation through Monte Carlo and other numerical methods. The subtlety
in this approach lies in the fact that we must describe the dynamics of asset
prices not as we observe them but as they would be under a risk-adjusted
probability measure.

The third principle may be viewed as describing conditions under which
the price of a derivative security is determined by the prices of other assets so
that the first and second principles apply. A complete market is one in which
all risks can be perfectly hedged. If all uncertainty in a market is generated
by independent Brownian motions, then completeness roughly corresponds to
the requirement that the number of traded assets be at least as large as the
number of driving Brownian motions. Jumps in asset prices will often render a
model incomplete because it may be impossible to hedge the effect of discon-
tinuous movements. In an incomplete market, prices can still be represented
as expectations in substantial generality, but the risk adjustment necessary
for this representation may not be uniquely determined. In this setting, we
need more economic information — an understanding of investor attitudes
towards risk — to determine prices, so the machinery of derivatives pricing
becomes less useful.

A derivative security introduced into a complete market is a redundant
asset. It does not expand investment opportunities; rather, it packages the
trading strategy (from the first principle above) investors could have used
anyway to synthesize the security. In this setting, pricing a derivative (using
the second principle) may be viewed as a complex form of interpolation: we
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use a model to determine the price of the derivative relative to the prices of
other assets. On this point, mathematical theory and industry practice are
remarkably well aligned. For a financial institution to create a new derivative
security, it must determine how it will hedge (or synthesize) the security by
trading in other, more liquid assets, and it must determine the cost of this
trading strategy from the prices of these other assets.

1.2.1 Pricing and Replication

To further develop these ideas, we consider an economy with d assets whose
prices Si(t), i = 1, . . . , d, are described by a system of SDEs

dSi(t)
Si(t)

= µi(S(t), t) dt + σi(S(t), t)� dW o(t), (1.23)

with W o a k-dimensional Brownian motion, each σi taking values in �k, and
each µi scalar-valued. We assume that the µi and σi are deterministic func-
tions of the current state S(t) = (S1(t), . . . , Sd(t))� and time t, though the
general theory allows these coefficients to depend on past prices as well. (See
Appendix B for a brief review of stochastic differential equations and refer-
ences for further background.) Let

Σij = σ�
i σj , i, j = 1, . . . , d; (1.24)

this may be interpreted as the covariance between the instantaneous returns
on assets i and j.

A portfolio is characterized by a vector θ ∈ �d with θi representing the
number of units held of the ith asset. Since each unit of the ith asset is worth
Si(t) at time t, the value of the portfolio at time t is

θ1S1(t) + · · · + θdSd(t),

which we may write as θ�S(t). A trading strategy is characterized by a sto-
chastic process θ(t) of portfolio vectors. To be consistent with the intuitive
notion of a trading strategy, we need to restrict θ(t) to depend only on infor-
mation available at t; this is made precise through a measurability condition
(for example, that θ be predictable).

If we fix the portfolio holdings at θ(t) over the interval [t, t + h], then the
change in value over this interval of the holdings in the ith asset is given by
θi(t)[Si(t + h) − Si(t)]; the change in the value of the portfolio is given by
θ(t)�[S(t+h)−S(t)]. This suggests that in the continuous-time limit we may
describe the gains from trading over [0, t] through the stochastic integral∫ t

0

θ(u)� dS(u),

subject to regularity conditions on S and θ. Notice that we allow trading of ar-
bitrarily large or small, positive or negative quantities of the underlying assets
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continuously in time; this is a convenient idealization that ignores constraints
on real trading.

A trading strategy is self-financing if it satisfies

θ(t)�S(t) − θ(0)�S(0) =
∫ t

0

θ(u)� dS(u) (1.25)

for all t. The left side of this equation is the change in portfolio value from time
0 to time t and the right side gives the gains from trading over this interval.
Thus, the self-financing condition states that changes in portfolio value equal
gains from trading: no gains are withdrawn from the portfolio and no funds
are added. By rewriting (1.25) as

θ(t)�S(t) = θ(0)�S(0) +
∫ t

0

θ(u)� dS(u),

we can interpret it as stating that from an initial investment of V (0) =
θ(0)�S(0) we can achieve a portfolio value of V (t) = θ(t)�S(t) by follow-
ing the strategy θ over [0, t].

Consider, now, a derivative security with a payoff of f(S(T )) at time T ; this
could be a standard European call or put on one of the d assets, for example,
but the payoff could also depend on several of the underlying assets. Suppose
that the value of this derivative at time t, 0 ≤ t ≤ T , is given by some function
V (S(t), t). The fact that the dynamics in (1.23) depend only on (S(t), t) makes
it at least plausible that the same might be true of the derivative price. If we
further conjecture that V is a sufficiently smooth function of its arguments,
Itô’s formula (see Appendix B) gives

V (S(t), t) = V (S(0), 0) +
d∑

i=1

∫ t

0

∂V (S(u), u)
∂Si

dSi(u) +
∫ t

0

[
∂V (S(u), u)

∂u

+ 1
2

d∑
i,j=1

Si(u)Sj(u)Σij(S(u), u)
∂2V (S(u), u)

∂Si∂Sj

 du, (1.26)

with Σ as in (1.24). If the value V (S(t), t) can be achieved from an initial
wealth of V (S(0), 0) through a self-financing trading strategy θ, then we also
have

V (S(t), t) = V (S(0), 0) +
d∑

i=1

∫ t

0

θi(u) dSi(u). (1.27)

Comparing terms in (1.26) and (1.27), we find that both equations hold if

θi(u) =
∂V (S(u), u)

∂Si
, i = 1, . . . , d, (1.28)

and
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∂V (S, u)
∂u

+ 1
2

d∑
i,j=1

Σij(S, u)SiSj
∂2V (S, u)
∂Si∂Sj

= 0. (1.29)

Since we also have V (S(t), t) = θ�(t)S(t), (1.28) implies

V (S, t) =
d∑

i=1

∂V (S, t)
∂Si

Si. (1.30)

Finally, at t = T we must have

V (S, T ) = f(S) (1.31)

if V is indeed to represent the value of the derivative security.
Equations (1.29) and (1.30), derived here following the approach in Hunt

and Kennedy [191], describe V through a partial differential equation (PDE)
with boundary condition (1.31). Suppose we could find a solution V (S, t). In
what sense would we be justified in calling this the price of the derivative
security?

By construction, V satisfies (1.29) and (1.30), and then (1.26) implies
that the (assumed) self-financing representation (1.27) indeed holds with the
trading strategy defined by (1.28). Thus, we may sell the derivative security for
V (S(0), 0) at time 0, use the proceeds to implement this self-financing trading
strategy, and deliver the promised payoff of f(S(T ), T ) = V (S(T ), T ) at time
T with no risk. If anyone were willing to pay more than V (S(0), 0), we could
sell the derivative and be guaranteed a riskless profit from a net investment of
zero; if anyone were willing to sell the derivative for less than V (S(0), 0), we
could buy it, implement the strategy −θ(t), and again be ensured a riskless
profit without investment. Thus, V (S(0), 0) is the only price that rules out
riskless profits from zero net investment.

From (1.30) we see that the trading strategy that replicates V holds
∂V (S, t)/∂Si shares of the ith underlying asset at time t. This partial deriv-
ative is the delta of V with respect to Si and the trading strategy is called
delta hedging.

Inspection of (1.29) and (1.30) reveals that the drift parameters µi in the
asset price dynamics (1.23) do not appear anywhere in the partial differen-
tial equation characterizing the derivative price V . This feature is sometimes
paraphrased through the statement that the price of a derivative does not
depend on the drifts of the underlying assets; it would be more accurate to
say that the effect of the drifts on the price of a derivative is already reflected
in the underlying asset prices Si themselves, because V depends on the Si

and the Si are clearly affected by the µi.
The drifts of the underlying asset prices reflect investor attitudes toward

risk. In a world of risk-averse investors, we may expect riskier assets to grow at
a higher rate of return, so larger values of σij should be associated with larger
values of µi. In a world of risk-neutral investors, all assets should grow at the
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same rate — investors will not demand higher returns for riskier assets. The
fact that the µi do not appear in the equations for the derivative price V may
therefore be interpreted as indicating that we can price the derivative without
needing to know anything about investor attitudes toward risk. This relies
critically on the existence of a self-financing trading strategy that replicates
V : because we have assumed that V can be replicated by trading in the
underlying assets, risk preferences are irrelevant; the price of the derivative is
simply the minimal initial investment required to implement the replicating
strategy.

Black-Scholes Model

As an illustration of the general formulation in (1.29) and (1.30), we consider
the pricing of European options in the Black-Scholes model. The model con-
tains two assets. The first (often interpreted as a stock price) is risky and its
dynamics are represented through the scalar SDE

dS(t)
S(t)

= µ dt + σ dW o(t)

with W o a one-dimensional Brownian motion. The second asset (often called
a savings account or a money market account) is riskless and grows deter-
ministically at a constant, continuously compounded rate r; its dynamics are
given by

dβ(t)
β(t)

= r dt.

Clearly, β(t) = β(0)ert and we may assume the normalization β(0) = 1. We
are interested in pricing a derivative security with a payoff of f(S(T )) at time
T . For example, a standard call option pays (S(T )−K)+, with K a constant.

If we were to formulate this model in the notation of (1.23), Σ would
be a 2 × 2 matrix with only one nonzero entry, σ2. Making the appropriate
substitutions, (1.29) thus becomes

∂V

∂t
+ 1

2σ2S2 ∂2V

∂S2
= 0. (1.32)

Equation (1.30) becomes

V (S, β, t) =
∂V

∂S
S +

∂V

∂β
β. (1.33)

These equations and the boundary condition V (S, β, T ) = f(S) determine the
price V .

This formulation describes the price V as a function of the three variables
S, β, and t. Because β depends deterministically on t, we are interested in
values of V only at points (S, β, t) with β = ert. This allows us to eliminate
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one variable and write the price as Ṽ (S, t) = V (S, ert, t), as in Hunt and
Kennedy [191]. Making this substitution in (1.32) and (1.33), noting that

∂Ṽ

∂t
=

∂V

∂β
rβ +

∂V

∂t

and simplifying yields

∂Ṽ

∂t
+ rS

∂Ṽ

∂S
+ 1

2σ2S2 ∂2Ṽ

∂S2
− rṼ = 0.

This is the Black-Scholes PDE characterizing the price of a European deriv-
ative security. For the special case of the boundary condition Ṽ (S, T ) =
(S − K)+, the solution is given by Ṽ (S, t) = BS(S, σ, T − t, r, K), the Black-
Scholes formula in (1.4).

1.2.2 Arbitrage and Risk-Neutral Pricing

The previous section outlined an argument showing how the existence of a
self-financing trading strategy that replicates a derivative security determines
the price of the derivative security. Under assumptions on the dynamics of
the underlying assets, this argument leads to a partial differential equation
characterizing the price of the derivative.

Several features may, however, limit the feasibility of calculating derivative
prices by solving PDEs. If the asset price dynamics are sufficiently complex, a
PDE characterizing the derivative price may be difficult to solve or may even
fail to exist. If the payoff of a derivative security depends on the paths of the
underlying assets and not simply their terminal values, the assumption that
the price can be represented as a function V (S, t) generally fails to hold. If
the number of underlying assets required by the replicating strategy is large
(greater than two or three), numerical solution of the PDE may be impractical.
These are precisely the settings in which Monte Carlo simulation is likely to
be most useful. However, to apply Monte Carlo we must first find a more
convenient representation of derivative prices. In particular, we would like
to represent derivative prices as expectations of random objects that we can
simulate. This section develops such representations.

Arbitrage and Stochastic Discount Factors

We return to the general setting described by the asset price dynamics in
(1.23), for emphasis writing Po for the probability measure under which these
dynamics are specified. (In particular, the process W o in (1.23) is a standard
Brownian motion under Po.) The measure Po is intended to describe objective
(“real-world”) probabilities and the system of SDEs in (1.23) thus describes
the empirical dynamics of asset prices.
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Recall the definition of a self-financing trading strategy θ(t) as given in
(1.25). A self-financing trading strategy θ(t) is called an arbitrage if either of
the following conditions holds for some fixed time t:

(i) θ(0)�S(0) < 0 and Po(θ(t)�S(t) ≥ 0) = 1;
(ii) θ(0)�S(0) = 0, Po(θ(t)�S(t) ≥ 0) = 1, and Po(θ(t)�S(t) > 0) > 0.

In (i), θ turns a negative initial investment into nonnegative final wealth with
probability 1. In (ii), θ turns an initial net investment of 0 into nonnegative fi-
nal wealth that is positive with positive probability. Each of these corresponds
to an opportunity to create something from nothing and is incompatible with
economic equilibrium. Precluding arbitrage is a basic consistency requirement
on the dynamics of the underlying assets in (1.23) and on the prices of any
derivative securities that can be synthesized from these assets through self-
financing trading strategies.

Call a process V (t) an attainable price process if V (t) = θ(t)�S(t) for
some self-financing trading strategy θ. Thus, a European derivative security
can be replicated by trading in the underlying assets precisely if its payoff at
expiration T coincides with the value V (T ) of some attainable price process
at time T . Each of the underlying asset prices Si(t) in (1.23) is attainable
through the trivial strategy that sets θi ≡ 1 and θj ≡ 0 for all j = i.

We now introduce an object whose role may at first seem mysterious but
which is central to asset pricing theory. Call a strictly positive process Z(t) a
stochastic discount factor (or a deflator) if the ratio V (t)/Z(t) is a martingale
for every attainable price process V (t); i.e., if

V (t)
Z(t)

= Eo

[
V (T )
Z(T )

|Ft

]
, (1.34)

whenever t < T . Here, Eo denotes expectation under Po and Ft represents
the history of the Brownian motion W o up to time t. We require that Z(t) be
adapted to Ft, meaning that the value of Z(t) is determined by the history of
the Brownian motion up to time t. Rewriting (1.34) as

V (t) = Eo

[
V (T )

Z(t)
Z(T )

|Ft

]
(1.35)

explains the term “stochastic discount factor”: the price V (t) is the expected
discounted value of the price V (T ) if we discount using Z(t)/Z(T ). (It is
more customary to refer to 1/Z(t) rather than Z(t) as the stochastic discount
factor, deflator, or pricing kernel ; our use of the terminology is nonstandard
but leads to greater symmetry when we discuss numeraire assets.) Notice
that any constant multiple of a stochastic discount factor is itself a stochastic
discount factor so we may adopt the normalization Z(0) ≡ 1. Equation (1.35)
then specializes to

V (0) = Eo

[
V (T )
Z(T )

]
. (1.36)
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Suppose, for example, that V (t) represents the price at time t of a call
option on the ith underlying asset with strike price K and expiration T . Then
V (T ) = (Si(T ) − K)+; in particular, V is a known function of Si at time
T . Equation (1.36) states that the terminal value V (T ) determines the initial
value V (0) through stochastic discounting.

We may think of (1.36) as reflecting two ways in which the price V (0)
differs from the expected payoff Eo[V (T )]. The first results from “the time
value of money”: the payoff V (T ) will not be received until T , and other
things being equal we assume investors prefer payoffs received sooner rather
than later. The second results from attitudes toward risk. In a world of risk-
averse investors, risky payoffs should be more heavily discounted in valuing
a security; this could not be accomplished through a deterministic discount
factor.

Most importantly for our purposes, the existence of a stochastic discount
factor rules out arbitrage. If θ is a self-financing trading strategy, then the
process θ(t)�S(t) is an attainable price process and the ratio θ(t)�S(t)/Z(t)
must be a martingale. In particular, then,

θ(0)�S(0) = Eo

[
θ(T )�S(T )

Z(T )

]
,

as in (1.36). Compare this with conditions (i) and (ii) above for an arbitrage,
recalling that Z is nonnegative. If θ(T )�S(T ) is almost surely positive, it is
impossible for θ(0)�S(0) to be negative; if θ(T )�S(T ) is positive with positive
probability and almost surely nonnegative, then θ(0)�S(0) = 0 is impossible.
Thus, there can be no arbitrage if the attainable price processes admit a
stochastic discount factor.

It is less obvious that the converse also holds: under a variety of technical
conditions on asset price dynamics and trading strategies, it has been shown
that the absence of arbitrage implies the existence of a stochastic discount
factor (or the closely related concept of an equivalent martingale measure).
We return to this point in Section 1.2.4. The equivalence of no-arbitrage to
the existence of a stochastic discount factor is often termed the Fundamental
Theorem of Asset Pricing, though it is not a single theorem but rather a
body of results that apply under various sets of conditions. An essential early
reference is Harrison and Kreps [170]; for further background and results, see
Duffie [98] and Musiela and Rutkowski [275].

Risk-Neutral Pricing

Let us suppose that among the d assets described in (1.23) there is one that is
risk-free in the sense that its coefficients σij are identically zero. Let us further
assume that its drift, which may be interpreted as a riskless interest rate, is a
constant r. As in our discussion of the Black-Scholes model in Section 1.2.1,
we denote this asset by β(t) and refer to it as the money market account. Its
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dynamics are given by the equation dβ(t)/β(t) = r dt, with solution β(t) =
β(0) exp(rt); we fix β(0) at 1.

Clearly, β(t) is an attainable price process because it corresponds to the
trading strategy that makes an initial investment of 1 in the money market
account and continuously reinvests all gains in this single asset. Accordingly,
if the market admits a stochastic discount factor Z(t), the process β(t)/Z(t)
is a martingale. This martingale is positive because both β(t) and Z(t) are
positive, and it has an initial value of β(0)/Z(0) = 1.

Any positive martingale with an initial value 1 defines a change of prob-
ability measure. For each fixed interval [0, T ], the process β(t)/Z(t) defines a
new measure Pβ through the Radon-Nikodym derivative (or likelihood ratio
process) (

dPβ

dPo

)
t

=
β(t)
Z(t)

, 0 ≤ t ≤ T. (1.37)

More explicitly, this means (cf. Appendix B.4) that for any event A ∈ Ft,

Pβ(A) = Eo

[
1A ·

(
dPβ

dPo

)
t

]
= Eo

[
1A · β(t)

Z(t)

]
where 1A denotes the indicator of the event A. Similarly, expectation under
the new measure is defined by

Eβ [X ] = Eo

[
X

β(t)
Z(t)

]
(1.38)

for any nonnegative X measurable with respect to Ft. The measure Pβ is
called the risk-neutral measure; it is equivalent to Po in the sense of measures,
meaning that Pβ(A) = 0 if and only if Po(A) = 0. (Equivalent probability
measures agree about which events are impossible.) The risk-neutral measure
is a particular choice of equivalent martingale measure.

Consider, again, the pricing equation (1.36). In light of (1.38), we may
rewrite it as

V (0) = Eβ

[
V (T )
β(T )

]
= e−rT Eβ[V (T )]. (1.39)

This simple transformation is the cornerstone of derivative pricing by Monte
Carlo simulation. Equation (1.39) expresses the current price V (0) as the
expected present value of the terminal value V (T ) discounted at the risk-free
rate r rather than through the stochastic discount factor Z. The expectation in
(1.39) is taken with respect to Pβ rather than Po, so estimating the expectation
by Monte Carlo entails simulating under Pβ rather than Po. These points are
crucial to the applicability of Monte Carlo because

◦ the dynamics of Z(t) are generally unknown and difficult to model (since
they embody time and risk preferences of investors);

◦ the dynamics of the underlying asset prices are more easily described under
the risk-neutral measure than under the objective probability measure.
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The second point requires further explanation. Equation (1.39) generalizes
to

V (t) = Eβ

[
V (T )

β(t)
β(T )

|Ft

]
, t < T, (1.40)

with V (t) an attainable price process. In particular, then, since each Si(t) is
an attainable price process, each ratio Si(t)/β(t) is a martingale under Pβ .
Specifying asset price dynamics under the risk-neutral measure thus entails
specifying dynamics that make the ratios Si(t)/β(t) martingales. If the dy-
namics of the asset prices in (1.23) could be expressed as

dSi(t)
Si(t)

= r dt + σi(S(t), t)� dW (t), (1.41)

with W a standard k-dimensional Brownian motion under Pβ , then

d

(
Si(t)
β(t)

)
=
(

Si(t)
β(t)

)
σi(S(t), t)� dW (t),

so Si(t)/β(t) would indeed be a martingale under Pβ . Specifying a model of the
form (1.41) is simpler than specifying the original equation (1.23) because all
drifts in (1.41) are set equal to the risk-free rate r: the potentially complicated
drifts in (1.23) are irrelevant to the asset price dynamics under the risk-neutral
measure. Indeed, this explains the name “risk-neutral.” In a world of risk-
neutral investors, the rate of return on risky assets would be the same as the
risk-free rate.

Comparison of (1.41) and (1.23) indicates that the two are consistent if

dW (t) = dW o(t) + ν(t) dt

for some ν satisfying µi = r + σ�
i ν, i = 1, . . . , d, (1.42)

because making this substitution in (1.41) yields

dSi(t)
Si(t)

= r dt + σi(S(t), t)� [dW o(t) + ν(t) dt]

= (r + σi(S(t), t)�ν(t)) dt + σi(S(t), t)� dW o(t)
= µi(S(t), t) dt + σi(S(t), t)� dW o(t),

as in (1.23). The condition in (1.42) states that the objective and risk-neutral
measures are related through a change of drift in the driving Brownian motion.
It follows from the Girsanov Theorem (see Appendix B) that any measure
equivalent to Po must be related to Po in this way. In particular, the diffusion
terms σij in (1.41) and (1.23) must be the same. This is important because it
ensures that the coefficients required to describe the dynamics of asset prices
under the risk-neutral measure Pβ can be estimated from data observed under
the real-world measure Po.
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We now briefly summarize the pricing of derivative securities through
the risk-neutral measure with Monte Carlo simulation. Consider a deriva-
tive security with a payoff at time T specified through a function f of the
prices of the underlying assets, as in the case of a standard call or put. To
price the derivative, we model the dynamics of the underlying assets under
the risk-neutral measure, ensuring that discounted asset prices are martin-
gales, typically through choice of the drift. The price of the derivative is then
given by Eβ[e−rT f(S(T ))]. To evaluate this expectation, we simulate paths
of the underlying assets over the time interval [0, T ], simulating according to
their risk-neutral dynamics. On each path we calculate the discounted pay-
off e−rT f(S(T )); the average across paths is our estimate of the derivative’s
price. Figure 1.4 gives a succinct statement of these steps, but it should be
clear that especially the first step in the figure is an oversimplification.

Monte Carlo Recipe for Cookbook Pricing

◦ replace drifts µi in (1.23) with risk-free interest rate and simulate paths;
◦ calculate payoff of derivative security on each path;
◦ discount payoffs at the risk-free rate;
◦ calculate average over paths.

Fig. 1.4. An overly simplified summary of risk-neutral pricing by Monte Carlo.

Black-Scholes Model

To illustrate these ideas, consider the pricing of a call option on a stock.
Suppose the real-world dynamics of the stock are given by

dS(t)
S(t)

= µ(S(t), t) dt + σ dW o(t),

with W o a standard one-dimensional Brownian motion under Po and σ a
constant. Each unit invested in the money market account at time 0 grows to
a value of β(t) = ert at time t. Under the risk-neutral measure Pβ , the stock
price dynamics are given by

dS(t)
S(t)

= r dt + σ dW (t)

with W a standard Brownian motion under Pβ . This implies that

S(T ) = S(0)e(r−1
2σ2)T+σW (T ).

If the call option has strike K and expiration T , its price at time 0 is given by
Eβ[e−rT (S(T )−K)+]. Because W (T ) is normally distributed, this expectation
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can be evaluated explicitly and results in the Black-Scholes formula (1.4).
In particular, pricing through the risk-neutral measure produces the same
result as pricing through the PDE formulation in Section 1.2.1, as it must
since in both cases the price is determined by the absence of arbitrage. This
also explains why we are justified in equating the expected discounted payoff
calculated in Section 1.1.2 with the price of the option.

Dividends

Thus far, we have implicitly assumed that the underlying assets Si do not pay
dividends. This is implicit, for example, in our discussion of the self-financing
trading strategies. In the definition (1.25) of a self-financing strategy θ, we
interpret θi(u) dSi(u) as the trading gains from the ith asset over the time
increment du. This, however, reflects only the capital gains resulting from
the change in price in the ith asset. If each share pays dividends at rate
dDi(u) over du, then the portfolio gains would also include terms of the form
θi(u) dDi(u).

In the presence of dividends, a simple strategy of holding a single share
of a single asset is no longer self-financing, because it entails withdrawal of
the dividends from the portfolio. In contrast, a strategy that continuously
reinvests all dividends from an asset back into that asset is self-financing in
the sense that it involves neither the withdrawal nor addition of funds from the
portfolio. When dividends are reinvested, the number of shares held changes
over time.

These observations suggest that we may accommodate dividends by re-
defining the original assets to include the reinvested dividends. Let S̃i(t) be
the ith asset price process with dividends reinvested, defined through the
requirement

dS̃i(t)
S̃i(t)

=
dSi(t) + dDi(t)

Si(t)
. (1.43)

The expression on the right is the instantaneous return on the ith original
asset, including both capital gains and dividends; the expression on the left
is the instantaneous return on the ith new asset in which all dividends are
reinvested. For S̃i to support this interpretation, the two sides must be equal.

The new assets S̃i pay no dividends so we may apply the ideas developed
above in the absence of dividends to these assets. In particular, we may rein-
terpret the asset price dynamics in (1.23) as applying to the S̃i rather than
to the original Si. One consequence of this is that the S̃i will have continuous
paths, so any discontinuities in the cumulative dividend process Di must be
offset by the original asset price Si. For example, a discrete dividend corre-
sponds to a positive jump in Di and this must be accompanied by an offsetting
negative jump in Si.

For purposes of derivative pricing, the most important point is that the
martingale property under the risk-neutral measure applies to S̃i(t)/β(t)
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rather than Si(t)/β(t). This affects how we model the dynamics of the Si

under Pβ . Consider, for example, an asset paying a continuous dividend yield
at rate δ, meaning that dDi(t) = δSi(t) dt. For e−rtS̃i(t) to be a martingale,
we require that the dt coefficient in dS̃i(t)/S̃i(t) be r. Equating dt terms on
the two sides of (1.43), we conclude that the coefficient on dt in the equation
for dSi(t)/Si(t) must be r − δ. Thus, in modeling asset prices under the risk-
neutral measure, the effect of a continuous dividend yield is to change the
drift. The first step in Figure 1.4 is modified accordingly.

As a specific illustration, consider a version of the Black-Scholes model in
which the underlying asset has dividend yield δ. The risk-neutral dynamics of
the asset are given by

dS(t)
S(t)

= (r − δ) dt + σ dW (t)

with solution
S(t) = S(0)e(r−δ−1

2σ2)t+σW (t).

The price of a call option with strike K and expiration T is given by the
expectation Eβ [e−rT (S(T ) − K)+], which evaluates to

e−δT S(0)Φ(d) − e−rT KΦ(d − σ
√

T ), d =
log(S(0)/K) + (r − δ + 1

2σ2)T

σ
√

T
,

(1.44)
with Φ the cumulative normal distribution.

1.2.3 Change of Numeraire

The risk-neutral pricing formulas (1.39) and (1.40) continue to apply if the
constant risk-free rate r is replaced with a time-varying rate r(t), in which
case the money market account becomes

β(t) = exp
(∫ t

0

r(u) du

)
and the pricing formula becomes

V (t) = Eβ

[
exp

(
−
∫ T

t

r(u) du

)
V (T )|Ft

]
.

The risk-neutral dynamics of the asset prices now take the form

dSi(t)
Si(t)

= r(t) dt + σi(S(t), t)� dW (t),

with W a standard k-dimensional Brownian motion under Pβ . Subject only
to technical conditions, these formulas remain valid if the short rate r(t) is a
stochastic process.
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Indeed, our choice of β(t) as the asset through which to define a new
probability measure in (1.38) was somewhat arbitrary. This choice resulted in
pricing formulas with the appealing feature that they discount payoffs at the
risk-free rate; it also resulted in a simple interpretation of the measure Pβ as
risk-neutral in the sense that all assets grow at the risk-free rate under this
measure. Nevertheless, we could just as well have chosen a different asset as
numeraire, meaning the asset relative to which all others are valued. As we
explain next, all choices of numeraire result in analogous pricing formulas and
the flexibility to change the numeraire is a useful modeling and computational
tool.

Although we could start from the objective measure Po as we did in Sec-
tion 1.2.2, it may be simpler to start from the risk-neutral measure Pβ , espe-
cially if we assume a constant risk-free rate r. Choosing asset Sd as numeraire
means defining a new probability measure PSd

through the likelihood ratio
process (Radon-Nikodym derivative)(

dPSd

dPβ

)
t

=
Sd(t)
β(t)

/
Sd(0)
β(0)

.

Recall that Sd(t)/β(t) is a positive martingale under Pβ ; dividing it by its ini-
tial value produces a unit-mean positive martingale and thus defines a change
of measure. Expectation under PSd

is given by

ESd
[X ] = Eβ

[
X

(
dPSd

dPβ

)
t

]
= Eβ

[
X

Sd(t)β(0)
β(t)Sd(0)

]
for nonnegative X ∈ Ft. The pricing formula (1.39) thus implies (recalling
that β(0) = 1)

V (0) = Eβ

[
V (T )
β(T )

]
= Sd(0)ESd

[
V (T )
Sd(T )

]
. (1.45)

Equation (1.40) similarly implies

V (t) = Sd(t)ESd

[
V (T )
Sd(T )

|Ft

]
. (1.46)

Thus, to price under PSd
, we discount the terminal value V (T ) by dividing

by the terminal value of the numeraire and multiplying by the current value
of the numeraire.

Some examples should help illustrate the potential utility of this trans-
formation. Consider, first, an option to exchange one asset for another, with
payoff (S1(T ) − S2(T ))+ at time T . The price of the option is given by

e−rT Eβ[(S1(T ) − S2(T ))+]

but also by
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S2(0)ES2

[
(S1(T ) − S2(T ))+

S2(T )

]
= S2(0)ES2

[
([S1(T )/S2(T )] − 1)+

]
.

The expression on the right looks like the price of a standard call option on
the ratio of the two assets with a strike of 1; it reveals that the price of the
exchange option is sensitive to the dynamics of the ratio but not otherwise to
the dynamics of the individual assets. In particular, if the ratio has a constant
volatility (a feature invariant under equivalent changes of measure), then the
option can be valued through a variant of the Black-Scholes formula due to
Margrabe [247].

Consider, next, a call option on a foreign stock whose payoff will be con-
verted to the domestic currency at the exchange rate prevailing at the expi-
ration date T . Letting S1 denote the stock price in the foreign currency and
letting S2 denote the exchange rate (expressed as number of domestic units per
foreign unit), the payoff (in domestic currency) becomes S2(T )(S1(T )− K)+

with price
e−rT Eβ [S2(T )(S1(T ) − K)+].

Each unit of foreign currency earns interest at a risk-free rate rf and this acts
like a continuous dividend yield. Choosing S̃2(t) ≡ erf tS2(t) as numeraire, we
may express the price as

e−rf T S2(0)ES̃2
[(S1(T ) − K)+],

noting that S2(0) = S̃2(0). This expression involves the current exchange rate
S2(0) but not the unknown future rate S2(T ).

The flexibility to change numeraire can be particularly valuable in a model
with stochastic interest rates, so our last example applies to this setting.
Consider an interest rate derivative with a payoff of V (T ) at time T . Using
the risk-neutral measure, we can express its price as

V (0) = Eβ

[
exp

(
−
∫ T

0

r(u) du

)
V (T )

]
.

The forward measure for maturity TF is the measure associated with taking
as numeraire a zero-coupon bond maturing at TF with a face value of 1. We
denote the time-t value of the bond by B(t, TF ) (so B(TF , TF ) ≡ 1) and the
associated measure by PTF . Using this measure, we can write the price as

V (0) = B(0, TF )ETF

[
V (T )

B(T, TF )

]
.

With the specific choice TF = T , we get

V (0) = B(0, T )ET [V (T )].

Observe that in this expression the discount factor (the initial bond price)
is deterministic even though the interest rate r(t) may be stochastic. This
feature often leads to useful simplifications in pricing interest rate derivatives.
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To use any of the price representations above derived through a change
of numeraire, we need to know the dynamics of the underlying asset prices
under the corresponding probability measure. For example, if in (1.45) the
terminal value V (T ) is a function of the values Si(T ) of the underlying assets,
then to estimate the rightmost expectation through Monte Carlo we need to
be able to simulate paths of the underlying assets according to their dynamics
under PSd

. We encountered the same issue in Section 1.2.2 in pricing under
the risk-neutral measure Pβ . There we noted that changing from the objective
measure Po to the risk-neutral measure had the effect of changing the drifts
of all prices to the risk-free rate; an analogous change of drift applies more
generally in changing numeraire.

Based on the dynamics in (1.41), we may write the asset price Sd(t) as

Sd(t) = Sd(0) exp
(∫ t

0

[
r(u) − 1

2‖σd(u)‖2
]

du +
∫ t

0

σd(u)� dW (u)
)

, (1.47)

with W a standard Brownian motion under Pβ . Here, we have implicitly
generalized the setting in (1.41) to allow the short rate to be time-varying
and even stochastic; we have also abbreviated σd(S(u), u) as σd(u) to lighten
notation. From this and the definition of PSd

, we therefore have(
dPSd

dPβ

)
t

= exp
(∫ t

0

− 1
2‖σd(u)‖2 du +

∫ t

0

σd(u)� dW (u)
)

.

Through the Girsanov Theorem (see Appendix B), we find that changing
measure from Pβ to PSd

has the effect of adding a drift to W . More precisely,
the process W d defined by

dW d(t) = −σd(t) dt + dW (t) (1.48)

is a standard Brownian motion under PSd
. Making this substitution in (1.41),

we find that

dSi(t)
Si(t)

= r(t) dt + σi(t)� dW (t)

= r(t) dt + σi(t)� [dW d(t) + σd(t) dt]
= [r(t) + σi(t)�σd(t)] dt + σi(t)� dW d(t)
= [r(t) + Σid(t)] dt + σi(t)� dW d(t) (1.49)

with Σid(t) = σi(t)�σd(t). Thus, when we change measures from Pβ to PSd
,

an additional term appears in the drift of Si reflecting the instantaneous
covariance between Si and the numeraire asset Sd.

The distinguishing feature of this change of measure is that it makes the
ratios Si(t)/Sd(t) martingales. This is already implicit in (1.46) because each
Si(t) is an attainable price process and thus a candidate for V (t). To make
the martingale property more explicit, we may use (1.47) for Si and Sd and
then simplify using (1.48) to write the ratio as



36 1 Foundations

Si(t)
Sd(t)

=

Si(0)
Sd(0)

exp
(
− 1

2

∫ t

0

‖σi(u) − σd(u))‖2 du +
∫ t

0

[σi(u) − σd(u)]� dW d(u)
)

.

This reveals that Si(t)/Sd(t) is an exponential martingale (see (B.21) in Ap-
pendix B) under PSd

because W d is a standard Brownian motion under that
measure. This also provides a convenient way of thinking about asset price
dynamics under the measure PSd

: under this measure, the drifts of the asset
prices make the ratios Si(t)/Sd(t) martingales.

1.2.4 The Market Price of Risk

In this section we conclude our overview of the principles underlying deriv-
atives pricing by returning to the idea of a stochastic discount factor intro-
duced in Section 1.2.1 and further developing its connections with the absence
of arbitrage, market completeness, and dynamic hedging. Though not stricly
necessary for the application of Monte Carlo (which is based on the pricing
relations (1.39) and (1.45)), these ideas are important parts of the underlying
theory.

We proceed by considering the dynamics of a stochastic discount factor
Z(t) as defined in Section 1.2.1. Just as the likelihood ratio process (dPβ/dPo)t

defined in (1.37) is a positive martingale under Po, its reciprocal (dPo/dPβ)t

is a positive martingale under Pβ ; this is a general change of measure identity
and is not specific to this context. From (1.37) we find that (dPo/dPβ)t =
Z(t)/β(t) and thus that e−rtZ(t) is a positive martingale under Pβ . (For
simplicity, we assume the short rate r is constant.) This suggests that Z(t)
should evolve according to an SDE of the form

dZ(t)
Z(t)

= r dt + ν(t)� dW (t), (1.50)

for some process ν, with W continuing to be a standard Brownian motion
under Pβ . Indeed, under appropriate conditions, the martingale representation
theorem (Appendix B) ensures that the dynamics of Z must have this form.

Equation (1.50) imposes a restriction on the dynamics of the underlying
assets Si under the objective probability measure Po. The dynamics of the Si

under the risk-neutral measure are given in (1.41). Switching from Pβ back
to Po is formally equivalent to applying a change of numeraire from β(t) to
Z(t). The process Z(t) may not correspond to an asset price, but this has no
effect on the mechanics of the change of measure.

We saw in the previous section that switching from Pβ to PSd
had the

effect of adding a drift to W ; more precisely, the process W d defined in (1.48)
becomes a standard Brownian motion under PSd

. We saw in (1.49) that this
has the effect of adding a term to the drifts of the asset prices as viewed under
PSd

. By following exactly the same steps, we recognize that the likelihood ratio
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dPo

dPβ

)
t

= e−rtZ(t) = exp
(∫ t

0

− 1
2‖ν(u)‖2 du +

∫ t

0

ν(u)� dW (u)
)

implies (through the Girsanov Theorem) that

dW o = −ν(t) dt + dW (t)

defines a standard Brownian motion under Po and that the asset price dy-
namics can be expressed as

dSi(t)
Si(t)

= r dt + σi(t)� dW (t)

= r dt + σi(t)� [dW o(t) + ν(t) dt]
= [r + ν(t)�σi(t)] dt + σi(t)� dW o(t). (1.51)

Comparing this with our original specification in (1.23), we find that the
existence of a stochastic discount factor implies that the drifts must have the
form

µi(t) = r + ν(t)�σi(t). (1.52)

This representation suggests an interpretation of ν as a risk premium. The
components of ν determine the amount by which the drift of a risky asset will
exceed the risk-free rate r. In the case of a scalar W o and ν, from the equation
µi = r + νσi we see that the excess return µi − r generated by a risky asset is
proportional to its volatility σi, with ν the constant of proportionality. In this
sense, ν is the market price of risk; it measures the excess return demanded by
investors per unit of risk. In the vector case, each component νj may similarly
be interpreted as the market price of risk associated with the jth risk factor
— the jth component of W o. It should also be clear that had we assumed
the drifts in (1.23) to have the form in (1.52) (for some ν) from the outset,
we could have defined a stochastic discount factor Z from ν and (1.50). Thus,
the existence of a stochastic discount factor and a market price of risk vector
are essentially equivalent.

An alternative line of argument (which we mention but do not develop)
derives the market price of risk in a more fundamental way as the aggregate
effect of the individual investment and consumption decisions of agents in an
economy. Throughout this section, we have taken the dynamics of the asset
prices to be specified exogenously. In a more general formulation, asset prices
result from balancing supply and demand among agents who trade to optimize
their lifetime investment and consumption; the market price of risk is then
determined through the risk aversion of the agents as reflected in their utility
for wealth and consumption. Thus, in a general equilibrium model of this type,
the market price of risk emerges as a consequence of investor preferences and
not just as a constraint to preclude arbitrage. For more on this approach, see
Chapter 10 of Duffie [98].
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Incomplete Markets

The economic foundation of the market price of risk and the closely related
concept of a stochastic discount factor is particularly important in an in-
complete market. A complete market is one in which all risks that affect asset
prices can be perfectly hedged. Any new asset (such as an option on one of the
existing assets) introduced into a complete market is redundant in the sense
that it can be replicated by trading in the other assets. Derivative prices are
thus determined by the absence of arbitrage. In an incomplete market, some
risks cannot be perfectly hedged and it is therefore possible to introduce gen-
uinely new assets that cannot be replicated by trading in existing assets. In
this case, the absence of arbitrage constrains the price of a derivative security
but may not determine it uniquely.

For example, market incompleteness may arise because there are fewer
traded assets than driving Brownian motions. In this case, there may be infi-
nitely many solutions to (1.52), and thus infinitely many choices of stochastic
discount factor Z(t) for which Si(t)/Z(t) will be martingales, i = 1, . . . , d.
Similarly, there are infinitely many possible risk-neutral measures, meaning
measures equivalent to the original one under which e−rtSi(t) are martin-
gales. As a consequence of these indeterminacies, the price of a new security
introduced into the market may not be uniquely determined by the prices of
existing assets. The machinery of derivatives pricing is largely inapplicable in
an incomplete market.

Market incompleteness can arise in various ways; a few examples should
serve to illustrate this. Some assets are not traded, making them inaccessible
for hedging. How would one eliminate the risk from an option on a privately
held business, a parcel of land, or a work of art? Some sources of risk may not
correspond to asset prices at all — think of hedging a weather derivative with
a payoff tied to rainfall or temperature. Jumps in asset prices and stochastic
volatility can often render a market model incomplete by introducing risks
that cannot be eliminated through trading in other assets. In such cases,
pricing derivatives usually entails making some assumptions, sometimes only
implicitly, about the market price for bearing unhedgeable risks.



2

Generating Random Numbers and Random
Variables

This chapter deals with algorithms at the core of Monte Carlo simulation:
methods for generating uniformly distributed random variables and methods
for transforming those variables to other distributions. These algorithms may
be executed millions of times in the course of a simulation, making efficient
implementation especially important.

Uniform and nonuniform random variate generation have each spawned a
vast research literature; we do not attempt a comprehensive account of either
topic. The books by Bratley, Fox, and Schrage [59], Devroye [95], Fishman
[121], Gentle [136], Niederreiter [281], and others provide more extensive cov-
erage of these areas. We treat the case of the normal distribution in more
detail than is customary in books on simulation because of its importance in
financial engineering.

2.1 Random Number Generation

2.1.1 General Considerations

At the core of nearly all Monte Carlo simulations is a sequence of apparently
random numbers used to drive the simulation. In analyzing Monte Carlo meth-
ods, we will treat this driving sequence as though it were genuinely random.
This is a convenient fiction that allows us to apply tools from probability and
statistics to analyze Monte Carlo computations — convenient because modern
pseudorandom number generators are sufficiently good at mimicking genuine
randomness to make this analysis informative. Nevertheless, we should be
aware that the apparently random numbers at the heart of a simulation are
in fact produced by completely deterministic algorithms.

The objectives of this section are to discuss some of the primary consid-
erations in the design of random number generators, to present a few simple
generators that are good enough for practical use, and to discuss their imple-
mentation. We also provide references to a few more sophisticated (though
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not necessarily better) methods. Elegant theory has been applied to the prob-
lem of random number generation, but it is mostly unrelated to the tools we
use elsewhere in the book (with the exception of Chapter 5), so we do not
treat the topic in depth. The books of Bratley, Fox, and Schrage [59], Fishman
[121], Gentle [136], Knuth [212], and Niederreiter [281], and the survey article
of L’Ecuyer [223] provide detailed treatment and extensive references to the
literature.

Before discussing sequences that appear to be random but are not, we
should specify what we mean by a generator of genuinely random numbers:
we mean a mechanism for producing a sequence of random variables U1, U2, . . .
with the property that

(i) each Ui is uniformly distributed between 0 and 1;
(ii) the Ui are mutually independent.

Property (i) is a convenient but arbitrary normalization; values uniformly
distributed between 0 and 1/2 would be just as useful, as would values from
nearly any other simple distribution. Uniform random variables on the unit
interval can be transformed into samples from essentially any other distribu-
tion using, for example, methods described in Section 2.2 and 2.3. Property
(ii) is the more important one. It implies, in particular, that all pairs of values
should be uncorrelated and, more generally, that the value of Ui should not
be predictable from U1, . . . , Ui−1.

A random number generator (often called a pseudorandom number gener-
ator to emphasize that it only mimics randomness) produces a finite sequence
of numbers u1, u2, . . . , uK in the unit interval. Typically, the values generated
depend in part on input parameters specified by the user. Any such sequence
constitutes a set of possible outcomes of independent uniforms U1, . . . , UK .
A good random number generator is one that satisfies the admittedly vague
requirement that small (relative to K) segments of the sequence u1, . . . , uK

should be difficult to distinguish from a realization of independent uniforms.
An effective generator therefore produces values that appear consistent

with properties (i) and (ii) above. If the number of values K is large, the
fraction of values falling in any subinterval of the unit interval should be
approximately the length of the subinterval — this is uniformity. Independence
suggests that there should be no discernible pattern among the values. To put
this only slightly more precisely, statistical tests for independence should not
easily reject segments of the sequence u1, . . . , uK .

We can make these and other considerations more concrete through ex-
amples. A linear congruential generator is a recurrence of the following form:

xi+1 = axi mod m (2.1)
ui+1 = xi+1/m (2.2)

Here, the multiplier a and the modulus m are integer constants that determine
the values generated, given an initial value (seed) x0. The seed is an integer



2.1 Random Number Generation 41

between 1 and m − 1 and is ordinarily specified by the user. The operation
y mod m returns the remainder of y (an integer) after division by m. In other
words,

y mod m = y − �y/m�m, (2.3)

where �x� denotes the greatest integer less than or equal to x. For example, 7
mod 5 is 2; 10 mod 5 is 0; 43 mod 5 is 3; and 3 mod 5 is 3. Because the result
of the mod m operation is always an integer between 0 and m− 1, the output
values ui produced by (2.1)–(2.2) are always between 0 and (m − 1)/m; in
particular, they lie in the unit interval.

Because of their simplicity and potential for effectiveness, linear congruen-
tial generators are among the most widely used in practice. We discuss them
in detail in Section 2.1.2. At this point, we use them to illustrate some gen-
eral considerations in the design of random number generators. Notice that
the linear congruential generator has the form

xi+1 = f(xi), ui+1 = g(xi+1), (2.4)

for some deterministic functions f and g. If we allow the xi to be vectors,
then virtually all random number generators fit this general form.

Consider the sequence of xi produced in (2.1) by a linear congruential
generator with a = 6 and m = 11. (In practice, m should be large; these
values are solely for illustration.) Starting from x0 = 1, the next value is
6 mod 11 = 6, followed by (6 · 6) mod 11 = 3. The seed x0 = 1 thus produces
the sequence

1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, . . . .

Once a value is repeated, the entire sequence repeats. Indeed, since a computer
can represent only a finite number of values, any recurrence of the form in
(2.4) will eventually return to a previous xi and then repeat all values that
followed that xi. Observe that in this example all ten distinct integers between
1 and m−1 appeared in the sequence before a value was repeated. (If we were
to start the sequence at 0, all subsequent values would be zero, so we do not
allow x0 = 0.) If we keep m = 11 but take a = 3, the seed x0 = 1 yields

1, 3, 9, 5, 4, 1, . . . ,

whereas x0 = 2 yields
2, 6, 7, 10, 8, 2, . . . .

Thus, in this case, the possible values {1, 2, . . . , 10} split into two cycles. This
means that regardless of what x0 is chosen, a multiplier of a = 3 produces just
five distinct numbers before it repeats, whereas a multiplier of a = 6 produces
all ten distinct values before repeating. A linear congruential generator that
produces all m− 1 distinct values before repeating is said to have full period.
In practice we would like to be able to generate (at least) tens of millions
of distinct values before repeating any. Simply choosing m to be very large
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does not ensure this property because of the possibility that a poor choice of
parameters a and m may result in short cycles among the values {1, 2, . . . , m−
1}.

With these examples in mind, we discuss the following general considera-
tions in the construction of a random number generator:

◦ Period length. As already noted, any random number generator of the form
(2.4) will eventually repeat itself. Other things being equal, we prefer gen-
erators with longer periods — i.e., generators that produce more distinct
values before repeating. The longest possible period for a linear congruen-
tial generator with modulus m is m−1. For a linear congruential generator
with full period, the gaps between the values ui produced are of width
1/m; hence, the larger m is the more closely the values can approximate a
uniform distribution.

◦ Reproducibility. One might be tempted to look to physical devices — a
computer’s clock or a specially designed electronic mechanism — to generate
true randomness. One drawback of a genuinely random sequence is that it
cannot be reproduced easily. It is often important to be able to rerun a
simulation using exactly the same inputs used previously, or to use the same
inputs in two or more different simulations. This is easily accomplished with
a linear congruential generator or any other procedure of the general form
(2.4) simply by using the same seed x0.

◦ Speed. Because a random number generator may be called thousands or even
millions of times in a single simulation, it must be fast. It is hard to imagine
an algorithm simpler or faster than the linear congruential generator; most
of the more involved methods to be touched on in Section 2.1.5 remain fast
in absolute terms, though they involve more operations per value generated.
The early literature on random number generation includes strategies for
saving computing time through convenient parameter choices. For example,
by choosing m to be a power of 2, the mod m operation can be implemented
by shifting bits, without explicit division. Given current computing speeds,
this incremental speed-up does not seem to justify choosing a generator
with poor distributional properties.

◦ Portability. An algorithm for generating random numbers should produce
the same sequence of values on all computing platforms. The quest for
speed and long periods occasionally leads to implementations that depend
on machine-specific representations of numbers. Some implementations of
linear congruential generators rely on the way overflow is handled on par-
ticular computers. We return to this issue in the next section.

◦ Randomness. The most important consideration is the hardest to define or
ensure. There are two broad aspects to constructing generators with appar-
ent randomness: theoretical properties and statistical tests. Much is known
about the structure of points produced by the most widely used generators
and this helps narrow the search for good parameter values. Generators with
good theoretical properties can then be subjected to statistical scrutiny to
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test for evident departures from randomness. Fortunately, the field is suffi-
ciently well developed that for most applications one can comfortably use
one of many generators in the literature that have survived rigorous tests
and the test of time.

2.1.2 Linear Congruential Generators

The general linear congruential generator, first proposed by Lehmer [229],
takes the form

xi+1 = (axi + c) mod m

ui+1 = xi+1/m

This is sometimes called a mixed linear congruential generator and the mul-
tiplicative case in the previous section a pure linear congruential generator.
Like a and m, the parameter c must be an integer.

Quite a bit is known about the structure of the sets of values {u1, . . . , uK}
produced by this type of algorithm. In particular, simple conditions are avail-
able ensuring that the generator has full period — i.e., that the number of
distinct values generated from any seed x0 is m − 1. If c = 0, the conditions
are (Knuth [212, p.17])

(a) c and m are relatively prime (their only common divisor is 1);
(b) every prime number that divides m divides a − 1;
(c) a − 1 is divisible by 4 if m is.

As a simple consequence, we observe that if m is a power of 2, the generator
has full period if c is odd and a = 4n + 1 for some integer n.

If c = 0 and m is prime, full period is achieved from any x0 = 0 if

◦ am−1 − 1 is a multiple of m;
◦ aj − 1 is not a multiple of m for j = 1, . . . , m − 2.

A number a satisfying these two properties is called a primitive root of m.
Observe that when c = 0 the sequence {xi} becomes

x0, ax0, a2x0, a3x0, . . . (mod m).

The sequence first returns to x0 at the smallest k for which akx0 mod m = x0.
This is the smallest k for which ak mod m = 1; i.e., the smallest k for which
ak − 1 is a multiple of m. So, the definition of a primitive root corresponds
precisely to the requirement that the sequence not return to x0 until am−1x0.
It can also be verified that when a is a primitive root of m, all xi are nonzero if
x0 is nonzero. This is important because if some xi were 0, then all subsequent
values generated would be too.

Marsaglia [249] demonstrates that little additional generality is achieved
by taking c = 0. Since a generator with a nonzero c is slower than one without,
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it is now customary to take c = 0. In this case, it is convenient to take m to
be prime, since it is then possible to construct full-period generators simply
by finding primitive roots of m.

Table 2.1 displays moduli and multipliers for seven linear congruential
generators that have been recommended in the literature. In each case, the
modulus m is a large prime not exceeding 231 − 1. This is the largest inte-
ger that can be represented in a 32-bit word (assuming one bit is used to
determine the sign) and it also happens to be a prime — a Mersenne prime.
Each multiplier a in the table is a primitive root of the corresponding mod-
ulus, so all generators in the table have full period. The first generator listed
was dubbed the “minimal standard” by Park and Miller [294]; though widely
used, it appears to be inferior to the others listed. Among the remaining gen-
erators, those identified by Fishman and Moore [123] appear to have slightly
better uniformity while those from L’Ecuyer [222] offer a computational ad-
vantage resulting from having comparatively smaller values of a (in particular,
a <

√
m). We discuss this computational advantage and the basis on which

these generators have been compared next.
Generators with far longer periods are discussed in Section 2.1.5. L’Ecuyer,

Simard, and Wegenkittl [228] reject all “small” generators like those in Ta-
ble 2.1 as obsolete. Section 2.1.5 explains how they remain useful as compo-
nents of combined generators.

Modulus m Multiplier a Reference

231 − 1 16807 Lewis, Goodman, and Miller [234],
(= 2147483647) Park and Miller [294]

39373 L’Ecuyer [222]
742938285 Fishman and Moore [123]
950706376 Fishman and Moore [123]

1226874159 Fishman and Moore [123]
2147483399 40692 L’Ecuyer [222]
2147483563 40014 L’Ecuyer [222]

Table 2.1. Parameters for linear congruential generators. The generator in the first
row appears to be inferior to the rest.

2.1.3 Implementation of Linear Congruential Generators

Besides speed, avoiding overflow is the main consideration in implementing a
linear congruential generator. If the product axi can be represented exactly
for every xi in the sequence, then no overflow occurs. If, for example, every
integer from 0 to a(m − 1) can be represented exactly in double precision,
then implementation in double precision is straightforward.

If the multiplier a is large, as in three of the generators of Table 2.1, even
double precision may not suffice for an exact representation of every product
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axi. In this case, the generator may be implemented by first representing the
multiplier as a = 2αa1 + a2, with a1, a2 < 2α, and then using

axi mod m = (a1(2αxi mod m) + a2xi mod m) mod m.

For example, with α = 16 and m = 231−1 this implementation never requires
an intermediate value as large as 247, even though axi could be close to 262.

Integer arithmetic is sometimes faster than floating point arithmetic, in
which case an implementation in integer variables is more appealing than
one using double precision. Moreover, if variables y and m are represented as
integers in a computer, the integer operation y/m produces �y/m�, so y mod m
can be implemented as y− (y/m) ∗m (see (2.3)). However, working in integer
variables restricts the magnitude of numbers that can be represented far more
than does working in double precision. To avoid overflow, a straightforward
implementation of a linear congruential generator in integer variables must
be restricted to an unacceptably small modulus — e.g., 215 − 1. If a is not
too large (say a ≤ √

m, as in the first two and last two entries of Table 2.1),
Bratley, Fox, and Schrage [59] show that a faster implementation is possible
using only integer arithmetic, while still avoiding overflow.

Their method is based on the following observations. Let

q = �m/a�, r = m mod a

so that the modulus can be represented as m = aq + r. The calculation to be
carried out by the generator is

axi mod m = axi −
⌊axi

m

⌋
m

=
(

axi −
⌊

xi

q

⌋
m

)
+
(⌊

xi

q

⌋
−
⌊axi

m

⌋)
m. (2.5)

The first term on the right in (2.5) satisfies

axi −
⌊

xi

q

⌋
m = axi −

⌊
xi

q

⌋
(aq + r)

= a

(
xi −

⌊
xi

q

⌋
q

)
−
⌊

xi

q

⌋
r

= a(xi mod q) −
⌊

xi

q

⌋
r.

Making this substitution in (2.5) yields

axi mod m = a(xi mod q) −
⌊

xi

q

⌋
r +
(⌊

xi

q

⌋
−
⌊axi

m

⌋)
m. (2.6)

To prevent overflow, we need to avoid calculation of the potentially large term
axi on the right side of (2.6). In fact, we can entirely avoid calculation of
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xi

q

⌋
−
⌊axi

m

⌋)
(2.7)

if we can show that this expression takes only the values 0 and 1. For in this
case, the last term in (2.6) is either 0 or m, and since the final calculation
must result in a value in {0, 1, . . . , m−1}, the last term in (2.6) is m precisely
when

a(xi mod q) −
⌊

xi

q

⌋
r < 0.

Thus, the last term in (2.6) adds m to the first two terms precisely when not
doing so would result in a value outside of {0, 1, . . . , m − 1}.

It remains to verify that (2.7) takes only the values 0 and 1. This holds if

xi

q
− axi

m
≤ 1. (2.8)

But xi never exceeds m − 1, and

m − 1
q

− a(m − 1)
m

=
r(m − 1)

qm
.

Thus, (2.8) holds if r ≤ q; a simple sufficient condition ensuring this is a ≤√
m.

The result of this argument is that (2.6) can be implemented so that every
intermediate calculation results in an integer between −(m − 1) and m − 1,
allowing calculation of axi mod m without overflow. In particular, explicit
calculation of (2.7) is avoided by checking indirectly whether the result of this
calculation would be 0 or 1. L’Ecuyer [222] gives a simple implementation of
this idea, which we illustrate in Figure 2.1.

(m,a integer constants
q, r precomputed integer constants,
with q = �m/a�, r = m mod a
x integer variable holding the current xi)

k ← x/q
x ← a ∗ (x − k ∗ q) − k ∗ r
if (x < 0) x ← x + m

Fig. 2.1. Implementation of ax mod m in integer arithmetic without overflow,
assuming r ≤ q (e.g., a ≤ √

m).

The final step in using a congruential generator — converting the xi ∈
{0, 1, . . . , m−1} to a value in the unit interval — is not displayed in Figure 2.1.
This can be implemented by setting u ← x ∗ h where h is a precomputed
constant equal to 1/m.
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Of the generators in Table 2.1, the first two and the last two satisfy a ≤ √
m

and thus may be implemented using Figure 2.1. L’Ecuyer [222] finds that
the second, sixth, and seventh generators listed in the table have the best
distributional properties among all choices of multiplier a that are primitive
roots of m and satisfy a ≤ √

m, m ≤ 231 − 1. Fishman [121] recommends
working in double precision in order to get the somewhat superior uniformity
of the large multipliers in Table 2.1. We will see in Section 2.1.5 that by
combining generators it is possible to maintain the computational advantage
of having a ≤ √

m without sacrificing uniformity.

Skipping Ahead

It is occasionally useful to be able to split a random number stream into ap-
parently unrelated subsequences. This can be implemented by initializing the
same random number to two or more distinct seeds. Choosing the seeds arbi-
trarily leaves open the possibility that the ostensibly unrelated subsequences
will have substantial overlap. This can be avoided by choosing the seeds far
apart along the sequence produced by a random number generator.

With a linear congruential generator, it is easy to skip ahead along the
sequence without generating intermediate values. If xi+1 = axi mod m, then

xi+k = akxi mod m.

This in turn is equivalent to

xi+k = ((ak mod m)xi) mod m.

Thus, one could compute the constant ak mod m just once and then easily
produce a sequence of values spaced k apart along the generator’s output. See
L’Ecuyer, Simard, Chen, and Kelton [227] for an implementation.

Splitting a random number stream carefully is essential if the subsequences
are to be assigned to parallel processors running simulations intended to be
independent of each other. Splitting a stream can also be useful when simu-
lation is used to compare results from a model at different parameter values.
In comparing results, it is generally preferable to use the same random num-
bers for both sets of simulations, and to use them for the same purpose in
both to the extent possible. For example, if the model involves simulating d
asset prices, one would ordinarily want to arrange matters so that the ran-
dom numbers used to simulate the ith asset at one parameter value are used
to simulate the same asset at other parameter values. Dedicating a separate
subsequence of the generator to each asset ensures this arrangement.

2.1.4 Lattice Structure

In discussing the generators of Table 2.1, we alluded to comparisons of their
distributional properties. We now provide a bit more detail on how these
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comparisons are made. See Knuth [212] and Neiderreiter [281] for far more
thorough treatments of the topic.

If the random variables U1, U2, . . . are independent and uniformly distrib-
uted over the unit interval, then (U1, U2) is uniformly distributed over the
unit square, (U1, U2, U3) is uniformly distributed over the unit cube, and so
on. Hence, one way to evaluate a random number generator is to form points
in [0, 1]d from consecutive output values and measure how uniformly these
points fill the space.

The left panel of Figure 2.2 plots consecutive overlapping pairs (u1, u2),
(u2, u3), . . . , (u10, u11) produced by a linear congruential generator. The pa-
rameters of the generator are a = 6 and m = 11, a case considered in Sec-
tion 2.1.1. The graph immediately reveals a regular pattern: the ten distinct
points obtained from the full period of the generator lie on just two parallel
lines through the unit square.

This phenomenon is characteristic of all linear congruential generators
(and some other generators as well), though it is of course particularly pro-
nounced in this simple example. Marsaglia [248] showed that overlapping d-
tuples formed from consecutive outputs of a linear congruential generator with
modulus m lie on at most (d!m)1/d hyperplanes in the d-dimensional unit
cube. For m = 231 − 1, this is approximately 108 with d = 3 and drops below
39 at d = 10. Thus, particularly in high dimensions, the lattice structure of
even the best possible linear congruential generators distinguishes them from
genuinely random numbers.

The right panel of Figure 2.2, based on a similar figure in L’Ecuyer [222],
shows the positions of points produced by the first generator in Table 2.1.
The figure magnifies the strip {(u1, u2) : u1 < .001} and plots the first 10,005
points that fall in this strip starting from a seed of x0 = 8835. (These are all
the points that fall in the strip out of the first ten million points generated
by the sequence starting from that seed.) At this magnification, the lattice
structure becomes evident, even in this widely used method.

The lattice structure of linear congruential generators is often used to
compare their outputs and select parameters. There are many ways one might
try to quantify the degree of equidistribution of points on a lattice. The most
widely used in the analysis of random number generators is the spectral test ,
originally proposed by Coveyou and Macpherson [88]. For each dimension
d and each set of parallel hyperplanes containing all points in the lattice,
consider the distance between adjacent hyperplanes. The spectral test takes
the maximum of these distances over all such sets of parallel hyperplanes.

To see why taking the maximum is appropriate, consider again the left
panel of Figure 2.2. The ten points in the graph lie on two positively sloped
lines. They also lie on five negatively sloped lines and ten vertical lines. De-
pending on which set of lines we choose, we get a different measure of distance
between adjacent lines. The maximum distance is achieved by the two posi-
tively sloped lines passing through the points, and this measure is clearly the
one that best captures the wide diagonal swath left empty by the generator.
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Fig. 2.2. Lattice structure of linear congruential generators.

Although the spectral test is an informative measure of uniformity, it does
not provide a strict ranking of generators because it produces a separate value
for each dimension d. It is possible for each of two generators to outperform
the other at some values of d. Fishman and Moore [123] and L’Ecuyer [222]
base their recommendations of the values in Table 2.1 on spectral tests up to
dimension d = 6; computing the spectral test becomes increasingly difficult in
higher dimensions. L’Ecuyer [222] combines results for d =2–6 into a worst-
case figure of merit in order to rank generators.

Niederreiter [281] analyzes the uniformity of point sets in the unit hy-
percube (including those produced by various random number generators)
through discrepancy measures, which have some appealing theoretical fea-
tures not shared by the spectral test. Discrepancy measures are particularly
important in the analysis of quasi-Monte Carlo methods.

It is also customary to subject random number generators to various statis-
tical tests of uniformity and independence. See, e.g., Bratley, Fox, and Schrage
[59] or Knuth [212] for a discussion of some of the tests often used.

Given the inevitable shortcomings of any practical random number gener-
ator, it is advisable to use only a small fraction of the period of a generator.
This again points to the advantage of generators with long periods — much
longer than 231.

2.1.5 Combined Generators and Other Methods

We now turn to a discussion of a few other methods for random number gener-
ation. Methods that combine linear congruential generators appear to be par-
ticularly promising because they preserve attractive computational features of
these generators while extending their period and, in some cases, attenuating
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their lattice structure. A combined generator proposed by L’Ecuyer [224] and
discussed below appears to meet the requirements for speed, uniformity, and
a long period of most current applications. We also note a few other directions
of work in the area.

Combining Generators

One way to move beyond the basic linear congruential generator combines
two or more of these generators through summation. Wichmann and Hill
[355] propose summing values in the unit interval (i.e., after dividing by the
modulus); L’Ecuyer [222] sums first and then divides.

To make this more explicit, consider J generators, the jth having parame-
ters aj , mj :

xj,i+1 = ajxj,i mod mj , uj,i+1 = xj,i+1/mj, j = 1, . . . , J.

The Wichmann-Hill combination sets ui+1 equal to the fractional part of
u1,i+1 + u2,i+1 + · · · + uJ,i+1. L’Ecuyer’s combination takes the form

xi+1 =
J∑

j=1

(−1)(j−1)xj,i+1 mod (m1 − 1) (2.9)

and

ui+1 =
{

xi+1/m1, xi+1 > 0;
(m1 − 1)/m1, xi+1 = 0.

(2.10)

This assumes that m1 is the largest of the mj .
A combination of generators can have a much longer period than any

of its components. A long period can also be achieved in a single generator
by using a larger modulus, but a larger modulus complicates the problem
of avoiding overflow. In combining generators, it is possible to choose each
multiplier aj smaller than √

mj in order to use the integer implementation of
Figure 2.1 for each. The sum in (2.9) can then also be implemented in integer
arithmetic, whereas the Wichmann-Hill summation of uj,i is a floating point
operation. L’Ecuyer [222] gives a portable implementation of (2.9)–(2.10). He
also examines a combination of the first and sixth generators of Table 2.1 and
finds that the combination has no apparent lattice structure at a magnification
at which each component generator has a very evident lattice structure. This
suggests that combined generators can have superior uniformity properties as
well as long periods and computational convenience.

Another way of extending the basic linear congruential generator uses a
higher-order recursion of the form

xi = (a1xi−1 + a2xi−2 + · · ·akxi−k) mod m, (2.11)

followed by ui = xi/m; this is called a multiple recursive generator, or MRG.
A seed for this generator consists of initial values xk−1, xk−2, . . . , x0.
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Each of the lagged values xi−j in (2.11) can take up to m distinct values,
so the vector (xi−1, . . . , xi−k) can take up to mk distinct values. The sequence
xi repeats once this vector returns to a previously visited value, and if the
vector ever reaches (0, . . . , 0) all subsequent xi are identically 0. Thus, the
longest possible period for (2.11) is mk − 1. Knuth [212] gives conditions on
m and a1, . . . , ak under which this bound is achieved.

L’Ecuyer [224] combines MRGs using essentially the mechanism in (2.9)–
(2.10). He shows that the combined generator is, in a precise sense, a close
approximation to a single MRG with a modulus equal to the product of the
moduli of the component MRGs. Thus, the combined generator has the advan-
tages associated with a larger modulus while permitting an implementation
using smaller values. L’Ecuyer’s investigation further suggests that a combined
MRG has a less evident lattice structure than the large-modulus MRG it ap-
proximates, indicating a distributional advantage to the method in addition
to its computational advantages.

L’Ecuyer [224] analyzes and recommends a specific combination of two
MRGs: the first has modulus m = 231 − 1 = 2147483647 and coefficients
a1 = 0, a2 = 63308, a3 = −183326; the second has m = 2145483479 and
a1 = 86098, a2 = 0, a3 = −539608. The combined generator has a period
close to 2185. Results of the spectral tests in L’Ecuyer [224] in dimensions 4–
20 indicate far superior uniformity for the combined generator than for either
of its components. Because none of the coefficients ai used in this method is
very large, an implementation in integer arithmetic is possible. L’Ecuyer [224]
gives an implementation in the C programming language which we reproduce
in Figure 2.3. We have modified the introduction of the constants for the gen-
erator, using #define statements rather than variable declarations for greater
speed, as recommended by L’Ecuyer [225]. The variables x10,...,x22 must
be initialized to an arbitrary seed before the first call to the routine.

Figure 2.4 reproduces an implementation from L’Ecuyer [225]. L’Ecuyer
[225] reports that this combined generator has a period of approximately 2319

and good uniformity properties at least up to dimension 32. The variables
s10,...,s24 must be initialized to an arbitrary seed before the first call to
the routine. The multipliers in this generator are too large to permit a 32-bit
integer implementation using the method in Figure 2.3, so Figure 2.4 uses
floating point arithmetic. L’Ecuyer [225] finds that the relative speeds of the
two methods vary with the computing platform.

Other Methods

An alternative strategy for random number generation produces a stream of
bits that are concatenated to produce integers and then normalized to produce
points in the unit interval. Bits can be produced by linear recursions mod 2;
e.g.,

bi = (a1bi−1 + a2bi−2 + · · · akbi−k) mod 2,
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#define m1 2147483647
#define m2 2145483479
#define a12 63308
#define a13 −183326
#define a21 86098
#define a23 −539608
#define q12 33921
#define q13 11714
#define q21 24919
#define q23 3976
#define r12 12979
#define r13 2883
#define r21 7417
#define r23 2071
#define Invmp1 4.656612873077393e−10;
int x10, x11, x12, x20, x21, x22;

int Random()
{
int h, p12, p13, p21, p23;
/∗ Component 1 ∗/
h = x10/q13; p13 = −a13∗(x10−h∗q13)−h∗r13;
h = x11/q12; p12 = a12∗(x11−h∗q12)−h∗r12;
if(p13<0) p13 = p13+m1; if(p12<0) p12 = p12+m1;
x10 = x11; x11 = x12; x12 = p12−p13; if(x12<0) x12 = x12+m1;
/∗ Component 2 ∗/
h = x20/q23; p23 = −a23∗(x20−h∗q23)−h∗r23;
h = x22/q21; p21 = a21∗(x22−h∗q21)−h∗r21;
if(p23<0) p23 = p23+m2; if(p21<0) p21 = p21+m2;
/∗ Combination ∗/
if (x12<x22) return (x12−x22+m1); else return (x12−x22);
}

double Uniform01()
{
int Z;
Z=Random(); if(Z==0) Z=m1; return (Z∗Invmp1);
}

Fig. 2.3. Implementation in C of a combined multiple recursive generator using
integer arithmetic. The generator and the implementation are from L’Ecuyer [224].

with all ai equal to 0 or 1. This method was proposed by Tausworthe [346]. It
can be implemented through a mechanism known as a feedback shift register.
The implementation and theoretical properties of these generators (and also
of generalized feedback shift register methods) have been studied extensively.
Matsumoto and Nishimura [258] develop a generator of this type with a period
of 219937 − 1 and apparently excellent uniformity properties. They provide C
code for its implementation.

Inversive congruential generators use recursions of the form

xi+1 = (ax−
i + c) mod m,

where the (mod m)-inverse x− of x is an integer in {1, . . . , m − 1} (unique
if it exists) satisfying xx− = 1 mod m. This is an example of a nonlinear
congruential generator. Inversive generators are free of the lattice structure



2.2 General Sampling Methods 53

double s10, s11, s12, s13, s14, s20, s21, s22, s23, s24;

#define norm 2.3283163396834613e-10
#define m1 4294949027.0
#define m2 4294934327.0
#define a12 1154721.0
#define a14 1739991.0
#define a15n 1108499.0
#define a21 1776413.0
#define a23 865203.0
#define a25n 1641052.0

double MRG32k5a ()
{
long k;
double p1, p2;
/∗ Component 1 ∗/
p1 = a12 ∗ s13 − a15n ∗ s10;
if (p1 > 0.0) p1 −= a14 ∗ m1;
p1 += a14 ∗ s11; k = p1 / m1; p1 −= k ∗ m1;
if (p1 < 0.0) p1 += m1;
s10 = s11; s11 = s12; s12 = s13; s13 = s14; s14 = p1;
/∗ Component 2 ∗/
p2 = a21 ∗ s24 − a25n ∗ s20;
if (p2 > 0.0) p2 −= a23 ∗ m2;
p2 += a23 ∗ s22; k = p2 / m2; p2 −= k ∗ m2;
if (p2 < 0.0) p2 += m2;
s20 = s21; s21 = s22; s22 = s23; s23 = s24; s24 = p2;
/∗ Combination ∗/
if (p1 <= p2) return ((p1 − p2 + m1) ∗ norm);
else return ((p1 − p2) ∗ norm);
}

Fig. 2.4. Implementation in C of a combined multiple recursive generator using
floating point arithmetic. The generator and implementation are from L’Ecuyer
[225].

characteristic of linear congruential generators but they are much more com-
putationally demanding. They may be useful for comparing results in cases
where the deficiencies of a random number generator are cause for concern.
See Eichenauer-Herrmann, Herrmann, and Wegenkittl [110] for a survey of
this approach and additional references.

2.2 General Sampling Methods

With an introduction to random number generation behind us, we hence-
forth assume the availability of an ideal sequence of random numbers. More
precisely, we assume the availability of a sequence U1, U2, . . . of independent
random variables, each satisfying

P (Ui ≤ u) =

0, u < 0
u, 0 ≤ u ≤ 1
1, u > 1

(2.12)
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i.e., each uniformly distributed between 0 and 1. A simulation algorithm trans-
forms these independent uniforms into sample paths of stochastic processes.

Most simulations entail sampling random variables or random vectors from
distributions other than the uniform. A typical simulation uses methods for
transforming samples from the uniform distribution to samples from other
distributions. There is a large literature on both general purpose methods
and specialized algorithms for specific cases. In this section, we present two of
the most widely used general techniques: the inverse transform method and
the acceptance-rejection method.

2.2.1 Inverse Transform Method

Suppose we want to sample from a cumulative distribution function F ; i.e.,
we want to generate a random variable X with the property that P (X ≤ x) =
F (x) for all x. The inverse transform method sets

X = F−1(U), U ∼ Unif[0, 1], (2.13)

where F−1 is the inverse of F and Unif[0,1] denotes the uniform distribution
on [0, 1].

0

1

u1

1x

2u

2x

Fig. 2.5. Inverse transform method.

This transformation is illustrated in Figure 2.5 for a hypothetical cumula-
tive distribution F . In the figure, values of u between 0 and F (0) are mapped
to negative values of x whereas values between F (0) and 1 are mapped to
positive values. The left panel of Figure 2.6 depicts a cumulative distribution
function with a jump at x0; i.e.,

lim
x↑x0

F (x) ≡ F (x−) < F (x+) ≡ lim
x↓x0

F (x).

Under the distribution F , the outcome x0 has probability F (x+)−F (x−). As
indicated in the figure, all values of u between u1 = F (x−) and u2 = F (x+)
are mapped to x0.
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The inverse of F is well-defined if F is strictly increasing; otherwise, we
need a rule to break ties. For example, we may set

F−1(u) = inf{x : F (x) ≥ u}; (2.14)

if there are many values of x for which F (x) = u, this rule chooses the smallest.
We need a rule like (2.14) in cases where the cumulative distribution F

has flat sections, because the inverse of F is not well-defined at such points;
see, e.g., the right panel of Figure 2.6. Observe, however, that if F is constant
over an interval [a, b] and if X has distribution F , then

P (a < X ≤ b) = F (b) − F (a) = 0,

so flat sections of F correspond to intervals of zero probability for the random
variable. If F has a continuous density, then F is strictly increasing (and its
inverse is well-defined) anywhere the density is nonzero.

0
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u 1

u 2

0

0

1
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u

b

Fig. 2.6. Inverse transform for distributions with jumps (left) or flat sections (right).

To verify that the inverse transform (2.13) generates samples from F , we
check the distribution of the X it produces:

P (X ≤ x) = P (F−1(U) ≤ x)
= P (U ≤ F (x))
= F (x).

The second equality follows from the fact that, with F−1 as we have defined
it, the events {F−1(u) ≤ x} and {u ≤ F (x)} coincide for all u and x. The last
equality follows from (2.12).

One may interpret the input U to the inverse transform method as a
random percentile. If F is continuous and X ∼ F , then X is just as likely to
fall between, say, the 20th and 30th percentiles of F as it is to fall between the
85th and 95th. In other words, the percentile at which X falls (namely F (X))
is uniformly distributed. The inverse transform method chooses a percentile
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level uniformly and then maps it to a corresponding value of the random
variable.

We illustrate the method with examples. These examples also show that
a direct implementation of the inverse transform method can sometimes be
made more efficient through minor modifications.

Example 2.2.1 Exponential distribution. The exponential distribution with
mean θ has distribution

F (x) = 1 − e−x/θ, x ≥ 0.

This is, for example, the distribution of the times between jumps of a Pois-
son process with rate 1/θ. Inverting the exponential distribution yields the
algorithm X = −θ log(1 − U). This can also be implemented as

X = −θ log(U) (2.15)

because U and 1 − U have the same distribution. �

Example 2.2.2 Arcsine law. The time at which a standard Brownian motion
attains its maximum over the time interval [0, 1] has distribution

F (x) =
2
π

arcsin(
√

x), 0 ≤ x ≤ 1.

The inverse transform method for sampling from this distribution is X =
sin2(Uπ/2), U ∼ Unif[0,1]. Using the identity 2 sin2(t) = 1 − cos(2t) for 0 ≤
t ≤ π/2, we can simplify the transformation to

X = 1
2 − 1

2 cos(Uπ), U ∼ Unif[0, 1].

�

Example 2.2.3 Rayleigh distribution. If we condition a standard Brownian
motion starting at the origin to be at b at time 1, then its maximum over [0, 1]
has the Rayleigh distribution

F (x) = 1 − e−2x(x−b), x ≥ b.

Solving the equation F (x) = u, u ∈ (0, 1), results in a quadratic with roots

x =
b

2
±
√

b2 − 2 log(1 − u)
2

.

The inverse of F is given by the larger of the two roots — in particular, we
must have x ≥ b since the maximum of the Brownian path must be at least
as large as the terminal value. Thus, replacing 1 − U with U as we did in
Example 2.2.1, we arrive at

X =
b

2
+

√
b2 − 2 log(U)

2
.

�
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Even if the inverse of F is not known explicitly, the inverse transform
method is still applicable through numerical evaluation of F−1. Computing
F−1(u) is equivalent to finding a root x of the equation F (x) − u = 0. For a
distribution F with density f , Newton’s method for finding roots produces a
sequence of iterates

xn+1 = xn − F (xn) − u

f(xn)
,

given a starting point x0. In the next example, root finding takes a special
form.

Example 2.2.4 Discrete distributions. In the case of a discrete distribution,
evaluation of F−1 reduces to a table lookup. Consider, for example, a dis-
crete random variable whose possible values are c1 < · · · < cn. Let pi be the
probability attached to ci, i = 1, . . . , n, and set q0 = 0,

qi =
i∑

j=1

pj , i = 1, . . . , n.

These are the cumulative probabilities associated with the ci; that is, qi =
F (ci), i = 1, . . . , n. To sample from this distribution,

(i) generate a uniform U ;
(ii) find K ∈ {1, . . . , n} such that qK−1 < U ≤ qK ;
(iii) set X = cK .

The second step can be implemented through binary search. Bratley, Fox, and
Schrage [59], and Fishman [121] discuss potentially faster methods. �

Our final example illustrates a general feature of the inverse transform
method rather than a specific case.

Example 2.2.5 Conditional distributions. Suppose X has distribution F
and consider the problem of sampling X conditional on a < X ≤ b, with
F (a) < F (b). Using the inverse transform method, this is no more difficult
than generating X unconditionally. If U ∼ Unif[0,1], then the random variable
V defined by

V = F (a) + [F (b) − F (a)]U

is uniformly distributed between F (a) and F (b), and F−1(V ) has the desired
conditional distribution. To see this, observe that

P (F−1(V ) ≤ x) = P (F (a) + [F (b) − F (a)]U ≤ F (x))
= P (U ≤ [F (x) − F (a)]/[F (b) − F (a)])
= [F (x) − F (a)]/[F (b) − F (a)],

and this is precisely the distribution of X given a < X ≤ b. Either of the
endpoints a, b could be infinite in this example. �



58 2 Generating Random Numbers and Random Variables

The inverse transform method is seldom the fastest method for sampling
from a distribution, but it has important features that make it attractive
nevertheless. One is its use in sampling from conditional distributions just il-
lustrated; we point out two others. First, the inverse transform method maps
the input U monotonically and — if F is strictly increasing — continuously
to the output X . This can be useful in the implementation of variance re-
duction techniques and in sensitivity estimation, as we will see in Chapters 4
and 7. Second, the inverse transform method requires just one uniform ran-
dom variable for each sample generated. This is particularly important in
using quasi-Monte Carlo methods where the dimension of a problem is often
equal to the number of uniforms needed to generate one “path.” Methods that
require multiple uniforms per variable generated result in higher-dimensional
representations for which quasi-Monte Carlo may be much less effective.

2.2.2 Acceptance-Rejection Method

The acceptance-rejection method, introduced by Von Neumann [353], is
among the most widely applicable mechanisms for generating random samples.
This method generates samples from a target distribution by first generating
candidates from a more convenient distribution and then rejecting a random
subset of the generated candidates. The rejection mechanism is designed so
that the accepted samples are indeed distributed according to the target dis-
tribution. The technique is by no means restricted to univariate distributions.

Suppose, then, that we wish to generate samples from a density f defined
on some set X . This could be a subset of the real line, of �d, or a more general
set. Let g be a density on X from which we know how to generate samples
and with the property that

f(x) ≤ cg(x), for all x ∈ X
for some constant c. In the acceptance-rejection method, we generate a sample
X from g and accept the sample with probability f(X)/cg(X); this can be
implemented by sampling U uniformly over (0, 1) and accepting X if U ≤
f(X)/cg(X). If X is rejected, a new candidate is sampled from g and the
acceptance test applied again. The process repeats until the acceptance test is
passed; the accepted value is returned as a sample from f . Figure 2.7 illustrates
a generic implementation.

To verify the validity of the acceptance-rejection method, let Y be a sam-
ple returned by the algorithm and observe that Y has the distribution of X
conditional on U ≤ f(X)/cg(X). Thus, for any A ⊆ X ,

P (Y ∈ A) = P (X ∈ A|U ≤ f(X)/cg(X))

=
P (X ∈ A, U ≤ f(X)/cg(X))

P (U ≤ f(X)/cg(X))
. (2.16)

Given X , the probability that U ≤ f(X)/cg(X) is simply f(X)/cg(X) be-
cause U is uniform; hence, the denominator in (2.16) is given by
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1. generate X from distribution g
2. generate U from Unif[0,1]
3. if U ≤ f(X)/cg(X)

return X
otherwise

go to Step 1.

Fig. 2.7. The acceptance-rejection method for sampling from density f using can-
didates from density g.

P (U ≤ f(X)/cg(X)) =
∫
X

f(x)
cg(x)

g(x) dx = 1/c (2.17)

(taking 0/0 = 1 if g(x) = 0 somewhere on X ). Making this substitution in
(2.16), we find that

P (Y ∈ A) = cP (X ∈ A, U ≤ f(X)/cg(X)) = c

∫
A

f(x)
cg(x)

g(x) dx =
∫

A

f(x) dx.

Since A is arbitrary, this verifies that Y has density f .
In fact, this argument shows more: Equation (2.17) shows that the proba-

bility of acceptance on each attempt is 1/c. Because the attempts are mutually
independent, the number of candidates generated until one is accepted is geo-
metrically distributed with mean c. It is therefore preferable to have c close to
1 (it can never be less than 1 if f and g both integrate to 1). Tighter bounds
on the target density f result in fewer wasted samples from g. Of course, a
prerequisite for the method is the ability to sample from g; the speed of the
method depends on both c and the effort involved in sampling from g.

We illustrate the method with examples.

Example 2.2.6 Beta distribution. The beta density on [0, 1] with parameters
α1, α2 > 0 is given by

f(x) =
1

B(α1, α2)
xα1−1(1 − x)α2−1, 0 ≤ x ≤ 1,

with

B(α1, α2) =
∫ 1

0

xα1−1(1 − x)α2−1 dx =
Γ(α1)Γ(α2)
Γ(α1 + α2)

and Γ the gamma function. Varying the parameters α1, α2 results in a variety
of shapes, making this a versatile family of distributions with bounded sup-
port. Among many other applications, beta distributions are used to model
the random recovery rate (somewhere between 0 and 100%) upon default of a
bond subject to credit risk. The case α1 = α2 = 1/2 is the arcsine distribution
considered in Example 2.2.2.
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If α1, α2 ≥ 1 and at least one of the parameters exceeds 1, the beta density
is unimodal and achieves its maximum at (α1 − 1)/(α1 +α2− 2). Let c be the
value of the density f at this point. Then f(x) ≤ c for all x, so we may choose
g to be the uniform density (g(x) = 1, 0 ≤ x ≤ 1), which is in fact the beta
density with parameters α1 = α2 = 1. In this case, the acceptance-rejection
method becomes

Generate U1, U2 from Unif[0,1] until cU2 ≤ f(U1)
Return U1

This is illustrated in Figure 2.8 for parameters α1 = 3, α2 = 2.
As is clear from Figure 2.8, generating candidates from the uniform dis-

tribution results in many rejected samples and thus many evaluations of f .
(The expected number of candidates generated for each accepted sample is
c ≈ 1.778 for the density in the figure.) Faster methods for sampling from
beta distributions — combining more carefully designed acceptance-rejection
schemes with the inverse transform and other methods — are detailed in De-
vroye [95], Fishman [121], Gentle [136], and Johnson, Kotz, and Balakrishnan
[202]. �

 f (U 1)

Accept U 1 if cU 2 in
this range

c

U 10 1

Fig. 2.8. Illustration of the acceptance-rejection method using uniformly distributed
candidates.

Example 2.2.7 Normal from double exponential. Fishman [121, p.173] illus-
trates the use of the acceptance-rejection method by generating half-normal
samples from the exponential distribution. (A half-normal random variable
has the distribution of the absolute value of a normal random variable.) Fish-
man also notes that the method can be used to generate normal random
variables and we present the example in this form. Because of its importance
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in financial applications, we devote all of Section 2.3 to the normal distribu-
tion; we include this example here primarily to further illustrate acceptance-
rejection.

The double exponential density on (−∞,∞) is g(x) = exp(−|x|)/2 and
the normal density is f(x) = exp(−x2/2)/

√
2π. The ratio is

f(x)
g(x)

=

√
2
π

e−
1
2x2+|x| ≤

√
2e

π
≈ 1.3155 ≡ c.

Thus, the normal density is dominated by the scaled double exponential den-
sity cg(x), as illustrated in Figure 2.9. A sample from the double exponential
density can be generated using (2.15) to draw a standard exponential random
variable and then randomizing the sign. The rejection test u > f(x)/cg(x)
can be implemented as

u > exp(− 1
2x2 + |x| − 1

2 ) = exp(− 1
2 (|x| − 1)2).

In light of the symmetry of both f and g, it suffices to generate positive
samples and determine the sign only if the sample is accepted; in this case,
the absolute value is unnecessary in the rejection test. The combined steps
are as follows:

1. generate U1, U2, U3 from Unif[0,1]
2. X ← − log(U1)
3. if U2 > exp(−0.5(X − 1)2)

go to Step 1
4. if U3 ≤ 0.5

X ← −X
5. return X

�

Example 2.2.8 Conditional distributions. Consider the problem of generat-
ing a random variable or vector X conditional on X ∈ A, for some set A. In
the scalar case, this can be accomplished using the inverse transform method
if A is an interval; see Example 2.2.5. In more general settings it may be dif-
ficult to sample directly from the conditional distribution. However, so long
as it is possible to generate unconditional samples, one may always resort to
the following crude procedure:

Generate X until X ∈ A
return X

This may be viewed as a degenerate form of acceptance-rejection. Let f
denote the conditional density and let g denote the unconditional density;
then

f(x)/g(x) =
{

1/P (X ∈ A), x ∈ A
0, x ∈ A.
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Fig. 2.9. Normal density and scaled double exponential.

Thus, c = 1/P (X ∈ A) is an upper bound on the ratio. Moreover, since the
ratio f(x)/cg(x) is either 0 or 1 at every x, it is unnecessary to randomize the
rejection decision: a candidate X is accepted precisely if X ∈ A. �

Acceptance-rejection can often be accelerated through the squeeze method,
in which simpler tests are applied before the exact acceptance threshold
f(x)/cg(x) is evaluated. The simpler tests are based on functions that bound
f(x)/cg(x) from above and below. The effectiveness of this method depends
on the quality of the bounding functions and the speed with which they can
be evaluated. See Fishman [121] for a detailed discussion.

Although we have restricted attention to sampling from densities, it should
be clear that the acceptance-rejection method also applies when f and g are
replaced with the mass functions of discrete distributions.

The best methods for sampling from a specific distribution invariably rely
on special features of the distribution. Acceptance-rejection is frequently com-
bined with other techniques to exploit special features — it is perhaps more
a principle than a method.

At the end of Section 2.2.1 we noted that one attractive feature of the
inverse transform method is that it uses exactly one uniform random vari-
able per nonuniform random variable generated. When simulation problems
are formulated as numerical integration problems, the dimension of the in-
tegrand is typically the maximum number of uniform variables needed to
generate a simulation “path.” The effectiveness of quasi-Monte Carlo and re-
lated integration methods generally deteriorates as the dimension increases,
so in using those methods, we prefer representations that keep the dimen-
sion as small as possible. With an acceptance-rejection method, there is or-
dinarily no upper bound on the number of uniforms required to generate
even a single nonuniform variable; simulations that use acceptance-rejection
therefore correspond to infinite-dimensional integration problems. For this
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reason, acceptance-rejection methods are generally inapplicable with quasi-
Monte Carlo methods. A further potential drawback of acceptance-rejection
methods, compared with the inverse transform method, is that their outputs
are generally neither continuous nor monotone functions of the input uni-
forms. This can diminish the effectiveness of the antithetic variates method,
for example.

2.3 Normal Random Variables and Vectors

Normal random variables are the building blocks of many financial simula-
tion models, so we discuss methods for sampling from normal distributions in
detail. We begin with a brief review of basic properties of normal distributions.

2.3.1 Basic Properties

The standard univariate normal distribution has density

φ(x) =
1√
2π

e−x2/2, −∞ < x < ∞ (2.18)

and cumulative distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du. (2.19)

Standard indicates mean 0 and variance 1. More generally, the normal distri-
bution with mean µ and variance σ2, σ > 0, has density

φµ,σ(x) =
1√
2πσ

e−
(x−µ)2

2σ2

and cumulative distribution

Φµ,σ(x) = Φ
(

x − µ

σ

)
.

The notation X ∼ N(µ, σ2) abbreviates the statement that the random vari-
able X is normally distributed with mean µ and σ2.

If Z ∼ N(0, 1) (i.e., Z has the standard normal distribution), then

µ + σZ ∼ N(µ, σ2).

Thus, given a method for generating samples Z1, Z2, . . . from the standard
normal distribution, we can generate samples X1, X2, . . . from N(µ, σ2) by
setting Xi = µ + σZi. It therefore suffices to consider methods for sampling
from N(0, 1).
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A d-dimensional normal distribution is characterized by a d-vector µ and
a d × d covariance matrix Σ; we abbreviate it as N(µ, Σ). To qualify as a
covariance matrix, Σ must be symmetric (i.e., Σ and its transpose Σ� are
equal) and positive semidefinite, meaning that

x�Σx ≥ 0 (2.20)

for all x ∈ �d. This is equivalent to the requirement that all eigenvalues of Σ be
nonnegative. (As a symmetric matrix, Σ automatically has real eigenvalues.)
If Σ is positive definite (meaning that strict inequality holds in (2.20) for all
nonzero x ∈ �d or, equivalently, that all eigenvalues of Σ are positive), then
the normal distribution N(µ, Σ) has density

φµ,Σ(x) =
1

(2π)d/2|Σ|1/2
exp
(
− 1

2 (x − µ)�Σ−1(x − µ)
)
, x ∈ �d, (2.21)

with |Σ| the determinant of Σ. The standard d-dimensional normal N(0, Id),
with Id the d × d identity matrix, is the special case

1
(2π)d/2

exp
(
− 1

2x�x
)
.

If X ∼ N(µ, Σ) (i.e., the random vector X has a multivariate normal
distribution), then its ith component Xi has distribution N(µi, σ

2
i ), with σ2

i =
Σii. The ith and jth components have covariance

Cov[Xi, Xj ] = E[(Xi − µi)(Xj − µj)] = Σij ,

which justifies calling Σ the covariance matrix. The correlation between Xi

and Xj is given by

ρij =
Σij

σiσj
.

In specifying a multivariate distribution, it is sometimes convenient to use this
definition in the opposite direction: specify the marginal standard deviations
σi, i = 1, . . . , d, and the correlations ρij from which the covariance matrix

Σij = σiσjρij (2.22)

is then determined.
If the d × d symmetric matrix Σ is positive semidefinite but not positive

definite then the rank of Σ is less than d, Σ fails to be invertible, and there
is no normal density with covariance matrix Σ. In this case, we can define
the normal distribution N(µ, Σ) as the distribution of X = µ + AZ with
Z ∼ N(0, Id) for any d × d matrix A satisfying AA� = Σ. The resulting
distribution is independent of which such A is chosen. The random vector
X does not have a density in �d, but if Σ has rank k then one can find k
components of X with a multivariate normal density in �k.
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Three further properties of the multivariate normal distribution merit spe-
cial mention:

Linear Transformation Property: Any linear transformation of a normal
vector is again normal:

X ∼ N(µ, Σ) ⇒ AX ∼ N(Aµ, AΣA�), (2.23)

for any d-vector µ, and d × d matrix Σ, and any k × d matrix A, for any k.

Conditioning Formula: Suppose the partitioned vector (X[1], X[2]) (where
each X[i] may itself be a vector) is multivariate normal with(

X[1]

X[2]

)
∼ N

((
µ[1]

µ[2]

)
,

(
Σ[11] Σ[12]

Σ[21] Σ[22]

))
, (2.24)

and suppose Σ[22] has full rank. Then

(X[1]|X[2] = x) ∼ N(µ[1] + Σ[12]Σ−1
[22](x−µ[2]), Σ[11] −Σ[12]Σ−1

[22]Σ[21]). (2.25)

In (2.24), the dimensions of the µ[i] and Σ[ij] are consistent with those of
the X[i]. Equation (2.25) then gives the distribution of X[1] conditional on
X[2] = x.

Moment Generating Function: If X ∼ N(µ, Σ) with X d-dimensional,
then

E[exp(θ�X)] = exp
(
µ�θ + 1

2θ�Σθ
)

(2.26)

for all θ ∈ �d.

2.3.2 Generating Univariate Normals

We now discuss algorithms for generating samples from univariate normal
distributions. As noted in the previous section, it suffices to consider sam-
pling from N(0, 1). We assume the availability of a sequence U1, U2, . . . of
independent random variables uniformly distributed on the unit interval [0, 1]
and consider methods for transforming these uniform random variables to
normally distributed random variables.

Box-Muller Method

Perhaps the simplest method to implement (though not the fastest or neces-
sarily the most convenient) is the Box-Muller [51] algorithm. This algorithm
generates a sample from the bivariate standard normal, each component of
which is thus a univariate standard normal. The algorithm is based on the
following two properties of the bivariate normal: if Z ∼ N(0, I2), then
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(i) R = Z2
1 + Z2

2 is exponentially distributed with mean 2, i.e.,

P (R ≤ x) = 1 − e−x/2;

(ii) given R, the point (Z1, Z2) is uniformly distributed on the circle of radius√
R centered at the origin.

Thus, to generate (Z1, Z2), we may first generate R and then choose a point
uniformly from the circle of radius

√
R. To sample from the exponential dis-

tribution we may set R = −2 log(U1), with U1 ∼ Unif[0,1], as in (2.15). To
generate a random point on a circle, we may generate a random angle uni-
formly between 0 and 2π and then map the angle to a point on the circle.
The random angle may be generated as V = 2πU2, U2 ∼ Unif[0,1]; the cor-
responding point on the circle has coordinates (

√
R cos(V ),

√
R sin(V )). The

complete algorithm is given in Figure 2.10.

generate U1, U2 independent Unif[0,1]
R ← −2 log(U1)
V ← 2πU2

Z1 ← √
R cos(V ), Z2 ← √

R sin(V )
return Z1, Z2.

Fig. 2.10. Box-Muller algorithm for generating normal random variables.

Marsaglia and Bray [250] developed a modification of the Box-Muller
method that reduces computing time by avoiding evaluation of the sine and co-
sine functions. The Marsaglia-Bray method instead uses acceptance-rejection
to sample points uniformly in the unit disc and then transforms these points
to normal variables.

The algorithm is illustrated in Figure 2.11. The transformation Ui ← 2Ui−
1, i = 1, 2, makes (U1, U2) uniformly distributed over the square [−1, 1] ×
[−1, 1]. Accepting only those pairs for which X = U2

1 + U2
2 is less than or

equal to 1 produces points uniformly distributed over the disc of radius 1
centered at the origin. Conditional on acceptance, X is uniformly distributed
between 0 and 1, so the log X in Figure 2.11 has the same effect as the log U1

in Figure 2.10. Dividing each accepted (U1, U2) by
√

X projects it from the
unit disc to the unit circle, on which it is uniformly distributed. Moreover,
(U1/

√
X, U2/

√
X) is independent of X conditional on X ≤ 1. Hence, the

justification for the last step in Figure 2.11 is the same as that for the Box-
Muller method.

As is the case with most acceptance-rejection methods, there is no upper
bound on the number of uniforms the Marsaglia-Bray algorithm may use
to generate a single normal variable (or pair of variables). This renders the
method inapplicable with quasi-Monte Carlo simulation.
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while (X > 1)
generate U1, U2 ∼ Unif[0,1]
U1 ← 2 ∗ U1 − 1, U2 ← 2 ∗ U2 − 1
X ← U2

1 + U2
2

end

Y ←
√

−2 log X/X
Z1 ← U1Y , Z2 ← U2Y
return Z1, Z2.

Fig. 2.11. Marsaglia-Bray algorithm for generating normal random variables.

Approximating the Inverse Normal

Applying the inverse transform method to the normal distribution entails
evaluation of Φ−1. At first sight, this may seem infeasible. However, there is
really no reason to consider Φ−1 any less tractable than, e.g., a logarithm.
Neither can be computed exactly in general, but both can be approximated
with sufficient accuracy for applications. We discuss some specific methods
for evaluating Φ−1.

Because of the symmetry of the normal distribution,

Φ−1(1 − u) = −Φ−1(u), 0 < u < 1;

it therefore suffices to approximate Φ−1 on the interval [0.5, 1) (or the interval
(0, 0.5]) and then to use the symmetry property to extend the approximation
to the rest of the unit interval. Beasley and Springer [43] provide a rational
approximation

Φ−1(u) ≈
∑3

n=0 an(u − 1
2 )2n+1

1 +
∑3

n=0 bn(u − 1
2 )2n

, (2.27)

for 0.5 ≤ u ≤ 0.92, with constants an, bn given in Figure 2.12; for u > 0.92 they
use a rational function of

√
log(1 − u). Moro [271] reports greater accuracy in

the tails by replacing the second part of the Beasley-Springer approximation
with a Chebyshev approximation

Φ−1(u) ≈ g(u) =
8∑

n=0

cn[log(− log(1 − u))]n, 0.92 ≤ u < 1, (2.28)

with constants cn again given in Figure 2.12. Using the symmetry rule, this
gives

Φ−1(u) ≈ −g(1 − u) 0 < u ≤ .08.

With this modification, Moro [271] finds a maximum absolute error of 3×10−9

out to seven standard deviations (i.e., over the range Φ(−7) ≤ u ≤ Φ(7)). The
combined algorithm from Moro [271] is given in Figure 2.13.
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a0 = 2.50662823884 b0 = -8.47351093090
a1 = -18.61500062529 b1 = 23.08336743743
a2 = 41.39119773534 b2 = -21.06224101826
a3 = -25.44106049637 b3 = 3.13082909833

c0 = 0.3374754822726147 c5 = 0.0003951896511919
c1 = 0.9761690190917186 c6 = 0.0000321767881768
c2 = 0.1607979714918209 c7 = 0.0000002888167364
c3 = 0.0276438810333863 c8 = 0.0000003960315187
c4 = 0.0038405729373609

Fig. 2.12. Constants for approximations to inverse normal.

Input: u between 0 and 1
Output: x, approximation to Φ−1(u).
y ← u − 0.5
if |y| < 0.42

r ← y ∗ y
x ← y ∗ (((a3 ∗ r + a2) ∗ r + a1) ∗ r + a0)/

((((b3 ∗ r + b2) ∗ r + b1) ∗ r + b0) ∗ r + 1)
else

r ← u;
if (y > 0) r ← 1 − u
r ← log(− log(r))
x ← c0 + r ∗ (c1 + r ∗ (c2 + r ∗ (c3 + r ∗ (c4+

r ∗ (c5 + r ∗ (c6 + r ∗ (c7 + r ∗ c8)))))))
if (y < 0) x ← −x

return x

Fig. 2.13. Beasley-Springer-Moro algorithm for approximating the inverse normal.

The problem of computing Φ−1(u) can be posed as one of finding the root
x of the equation Φ(x) = u and in principle addressed through any general
root-finding algorithm. Newton’s method, for example, produces the iterates

xn+1 = xn − Φ(xn) − u

φ(xn)
,

or, more explicitly,

xn+1 = xn + (u − Φ(xn)) exp(−0.5xn · xn + c), c ≡ log(
√

2π).

Marsaglia, Zaman, and Marsaglia [251] recommend the starting point

x0 = ±
√
| − 1.6 log(1.0004− (1 − 2u)2)|,

the sign depending on whether u ≥ 0 or u < 0. This starting point gives a
surprisingly good approximation to Φ−1(u). A root-finding procedure is use-
ful when extreme precision is more important than speed — for example, in
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tabulating “exact” values or evaluating approximations. Also, a small num-
ber of Newton steps can be appended to an approximation like the one in
Figure 2.13 to further improve accuracy. Adding just a single step to Moro’s
[271] algorithm appears to reduce the maximum error to the order of 10−15.

Approximating the Cumulative Normal

Of course, the application of Newton’s method presupposes the ability to
evaluate Φ itself quickly and accurately. Evaluation of the cumulative normal
is necessary for many financial applications (including evaluation of the Black-
Scholes formula), so we include methods for approximating this function. We
present two methods; the first is faster and the second is more accurate, but
both are probably fast enough and accurate enough for most applications.

The first method, based on work of Hastings [171], is one of several included
in Abramowitz and Stegun [3]. For x ≥ 0, it takes the form

Φ(x) ≈ 1 − φ(x)(b1t + b2t
2 + b3t

3 + b4t
4 + b5t

5), t =
1

1 + px
,

for constants bi and p. The approximation extends to negative arguments
through the identity Φ(−x) = 1 − Φ(x). The necessary constants and an
explicit algorithm for this approximation are given in Figure 2.14. According
to Hastings [171, p.169], this method has a maximum absolute error less than
7.5 × 10−8.

b1 = 0.319381530 p = 0.2316419

b2 = −0.356563782 c = log(
√

2π) = 0.918938533204672
b3 = 1.781477937
b4 = −1.821255978
b5 = 1.330274429

Input: x
Output: y, approximation to Φ(x)
a ← |x|
t ← 1/(1 + a ∗ p)
s ← ((((b5 ∗ t + b4) ∗ t + b3) ∗ t + b2) ∗ t + b1) ∗ t
y ← s ∗ exp(−0.5 ∗ x ∗ x − c)
if (x > 0) y ← 1 − y
return y;

Fig. 2.14. Hastings’ [171] approximation to the cumulative normal distribution as
modified in Abramowitz and Stegun [3].

The second method we include is from Marsaglia et al. [251]. Like the
Hastings approximation above, this method is based on approximating the
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ratio (1−Φ(x))/φ(x). According to Marsaglia et al. [251], as an approximation
to the tail probability 1 − Φ(x) this method has a maximum relative error of
10−15 for 0 ≤ x ≤ 6.23025 and 10−12 for larger x. (Relative error is much more
stringent than absolute error in this setting; a small absolute error is easily
achieved for large x using the approximation 1−Φ(x) ≈ 0.) This method takes
about three times as long as the Hastings approximation, but both methods
are very fast. The complete algorithm appears in Figure 2.15.

v1 = 1.253314137315500 v9 = 0.1231319632579329
v2 = 0.6556795424187985 v10 = 0.1097872825783083
v3 = 0.4213692292880545 v11 = 0.09902859647173193
v4 = 0.3045902987101033 v12 = 0.09017567550106468
v5 = 0.2366523829135607 v13 = 0.08276628650136917
v6 = 0.1928081047153158 v14 = 0.0764757610162485
v7 = 0.1623776608968675 v15 = 0.07106958053885211
v8 = 0.1401041834530502

c = log(
√

2π) = 0.918938533204672

Input: x between -15 and 15
Output: y, approximation to Φ(x).
j ← �min(|x| + 0.5, 14)�
z ← j, h ← |x| − z, a ← vj+1

b ← z ∗ a − 1, q ← 1, s ← a + h ∗ b
for i = 2, 4, 6, . . . , 24 − j

a ← (a + z ∗ b)/i
b ← (b + z ∗ a)/(i + 1)
q ← q ∗ h ∗ h
s ← s + q ∗ (a + h ∗ b)

end
y = s ∗ exp(−0.5 ∗ x ∗ x − c)
if (x > 0) y ← 1 − y
return y

Fig. 2.15. Algorithm of Marsaglia et al. [251] to approximate the cumulative normal
distribution.

Marsaglia et al. [251] present a faster approximation achieving similar
accuracy but requiring 121 tabulated constants. Marsaglia et al. also detail
the use of accurate approximations to Φ in constructing approximations to
Φ−1 by tabulating “exact” values at a large number of strategically chosen
points. Their method entails the use of more than 2000 tabulated constants,
but the constants can be computed rather than tabulated, given an accurate
approximation to Φ.

Other methods for approximating Φ and Φ−1 found in the literature are
often based on the error function
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Erf(x) =
2√
π

∫ x

0

e−t2 dt

and its inverse. Observe that for x ≥ 0,

Erf(x) = 2Φ(x
√

2) − 1, Φ(x) = 1
2 [Erf(x/

√
2) + 1]

and
Erf−1(u) =

1√
2
Φ−1(

u + 1
2

), Φ−1(u) =
√

2Erf−1(2u − 1),

so approximations to Erf and its inverse are easily converted into approxima-
tions to Φ and its inverse. Hastings [171], in fact, approximates Erf, so the
constants in Figure 2.14 (as modified in [3]) differ from his, with p smaller
and the bi larger by a factor of

√
2.

Devroye [95] discusses several other methods for sampling from the nor-
mal distribution, including some that may be substantially faster than evalu-
ation of Φ−1. Nevertheless, as discussed in Section 2.2.1, the inverse transform
method has some advantages — particularly in the application of variance re-
duction techniques and low-discrepancy methods — that will often justify the
additional computational effort. One advantage is that the inverse transform
method requires just one uniform input per normal output: a relevant notion
of the dimension of a Monte Carlo problem is often the maximum number
of uniforms required to generate one sample path, so methods requiring more
uniforms per normal sample implicitly result in higher dimensional represen-
tations. Another useful property of the inverse transform method is that the
mapping u �→ Φ−1(u) is both continuous and monotone. These properties can
sometimes enhance the effectiveness of variance reduction techniques, as we
will see in later sections.

2.3.3 Generating Multivariate Normals

A multivariate normal distribution N(µ, Σ) is specified by its mean vector µ
and covariance matrix Σ. The covariance matrix may be specified implicitly
through its diagonal entries σ2

i and correlations ρij using (2.22); in matrix
form,

Σ =


σ1

σ2

. . .
σd




ρ11 ρ12 · · · ρ1d

ρ12 ρ22 ρ2d

...
. . .

...
ρ1d ρ2d · · · ρdd




σ1

σ2

. . .
σd

 .

From the Linear Transformation Property (2.23), we know that if Z ∼
N(0, I) and X = µ + AZ, then X ∼ N(µ, AA�). Using any of the methods
discussed in Section 2.3.2, we can generate independent standard normal ran-
dom variables Z1, . . . , Zd and assemble them into a vector Z ∼ N(0, I). Thus,
the problem of sampling X from the multivariate normal N(µ, Σ) reduces to
finding a matrix A for which AA� = Σ.
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Cholesky Factorization

Among all such A, a lower triangular one is particularly convenient because
it reduces the calculation of µ + AZ to the following:

X1 = µ1 + A11Z1

X2 = µ2 + A21Z1 + A22Z2

...
Xd = µd + Ad1Z1 + Ad2Z2 + · · · + AddZd.

A full multiplication of the vector Z by the matrix A would require approx-
imately twice as many multiplications and additions. A representation of Σ
as AA� with A lower triangular is a Cholesky factorization of Σ. If Σ is pos-
itive definite (as opposed to merely positive semidefinite), it has a Cholesky
factorization and the matrix A is unique up to changes in sign.

Consider a 2 × 2 covariance matrix Σ, represented as

Σ =
(

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)
.

Assuming σ1 > 0 and σ2 > 0, the Cholesky factor is

A =
(

σ1 0
ρσ2

√
1 − ρ2σ2

)
,

as is easily verified by evaluating AA�. Thus, we can sample from a bivariate
normal distribution N(µ, Σ) by setting

X1 = µ1 + σ1Z1

X2 = µ2 + σ2ρZ1 + σ2

√
1 − ρ2Z2,

with Z1, Z2 independent standard normals.
For the case of a d × d covariance matrix Σ, we need to solve

A11

A21 A22

...
...

. . .
Ad1 Ad2 · · · Add




A11 A21 · · · Ad1

A22 · · · Ad2

. . .
...

Add

 = Σ.

Traversing the Σij by looping over j = 1, . . . , d and then i = j, . . . , d produces
the equations

A2
11 = Σ11

A21A11 = Σ21

...
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Ad1A11 = Σd1 (2.29)
A2

21 + A2
22 = Σ22

...
A2

d1 + · · · + A2
dd = Σdd.

Exactly one new entry of the A matrix appears in each equation, making it
possible to solve for the individual entries sequentially.

More compactly, from the basic identity

Σij =
j∑

k=1

AikAjk, j ≤ i,

we get

Aij =

(
Σij −

j−1∑
k=1

AikAjk

)
/Ajj , j < i, (2.30)

and

Aii =

√√√√Σii −
i−1∑
k=1

A2
ik. (2.31)

These expressions make possible a simple recursion to find the Cholesky factor.
Figure 2.16 displays an algorithm based on one in Golub and Van Loan [162].
Golub and Van Loan [162] give several other versions of the algorithm and
also discuss numerical stability.

Input: Symmetric positive definite matrix d × d matrix Σ

Output: Lower triangular A with AA� = Σ

A ← 0 (d × d zero matrix)
for j = 1, . . . , d

for i = j, . . . , d
vi ← Σij

for k = 1, . . . , j − 1
vi ← vi − AjkAik

Aij ← vi/
√

vj

return A

Fig. 2.16. Cholesky factorization.
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The Semidefinite Case

If Σ is positive definite, an induction argument verifies that the quantity
inside the square root in (2.31) is strictly positive so the Aii are nonzero. This
ensures that (2.30) does not entail division by zero and that the algorithm in
Figure 2.16 runs to completion.

If, however, Σ is merely positive semidefinite, then it is rank deficient. It
follows that any matrix A satisfying AA� = Σ must also be rank deficient; for
if A had full rank, then Σ would too. If A is lower triangular and rank deficient,
at least one element of the diagonal of A must be zero. (The determinant of a
triangular matrix is the product of its diagonal elements, and the determinant
of A is zero if A is singular.) Thus, for semidefinite Σ, any attempt at Cholesky
factorization must produce some Ajj = 0 and thus an error in (2.31) and the
algorithm in Figure 2.16.

From a purely mathematical perspective, the problem is easily solved by
making the jth column of A identically zero if Ajj = 0. This can be deduced
from the system of equations (2.29): the first element of the jth column of A
encountered in this sequence of equations is the diagonal entry; if Ajj = 0, all
subsequent equations for the jth column of Σ may be solved with Aij = 0. In
the factorization algorithm of Figure 2.16, this is accomplished by inserting
“if vj > 0” before the statement “Aij ← vi/

√
vj .” Thus, if vj = 0, the entry

Aij is left at its initial value of zero.
In practice, this solution may be problematic because it involves checking

whether an intermediate calculation (vj) is exactly zero, making the modified
algorithm extremely sensitive to round-off error.

Rather than blindly subjecting a singular covariance matrix to Cholesky
factorization, it is therefore preferable to use the structure of the covariance
matrix to reduce the problem to one of full rank. If X ∼ N(0, Σ) and the d×d
matrix Σ has rank k < d, it is possible to express all d components of X as
linear combinations of just k of the components, these k components having a
covariance matrix of rank k. In other words, it is possible to find a subvector
X̃ = (Xi1 , . . . , Xik

) and a d × k matrix D such that DX̃ ∼ N(0, Σ) and for
which the covariance matrix Σ̃ of X̃ has full rank k. Cholesky factorization
can then be applied to Σ̃ to find Ã satisfying ÃÃ� = Σ̃. The full vector X
can be sampled by setting X = DÃZ, Z ∼ N(0, I).

Singular covariance matrices often arise from factor models in which a
vector of length d is determined by k < d sources of uncertainty (factors).
In this case, the prescription above reduces to using knowledge of the factor
structure to generate X .

Eigenvector Factorization and Principal Components

The equation AA� = Σ can also be solved by diagonalizing Σ. As a symmetric
d × d matrix, Σ has d real eigenvalues λ1, . . . , λd, and because Σ must be
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positive definite or semidefinite the λi are nonnegative. Furthermore, Σ has an
associated orthonormal set of eigenvectors {v1, . . . , vd}; i.e., vectors satisfying

v�i vi = 1, v�i vj = 0, j = i, i, j = 1, . . . , d,

and
Σvi = λivi.

It follows that Σ = V ΛV �, where V is the orthogonal matrix (V V � = I)
with columns v1, . . . , vd and Λ is the diagonal matrix with diagonal entries
λ1, . . . , λd. Hence, if we choose

A = V Λ1/2 = V


√

λ1 √
λ2

. . . √
λd

 , (2.32)

then
AA� = V ΛV � = Σ.

Methods for calculating V and Λ are included in many mathematical software
libraries and discussed in detail in Golub and Van Loan [162].

Unlike the Cholesky factor, the matrix A in (2.32) has no particular struc-
ture providing a computational advantage in evaluating AZ, nor is this matrix
faster to compute than the Cholesky factorization. The eigenvectors and eigen-
values of a covariance matrix do however have a statistical interpretation that
is occasionally useful. We discuss this interpretation next.

If X ∼ N(0, Σ) and Z ∼ N(0, I), then generating X as AZ for any choice
of A means setting

X = a1Z1 + a2Z2 + · · · + adZd

where aj is the jth column of A. We may interpret the Zj as independent
factors driving the components of X , with Aij the “factor loading” of Zj on
Xi. If Σ has rank 1, then X may be represented as a1Z1 for some vector a1,
and in this case a single factor suffices to represent X . If Σ has rank k, then
k factors Z1, . . . , Zk suffice.

If Σ has full rank and AA� = Σ, then A must have full rank and X = AZ
implies Z = BX with B = A−1. Thus, the factors Zj are themselves linear
combinations of the Xi. In the special case of A given in (2.32), we have

A−1 = Λ−1/2V � (2.33)

because V �V = I (V is orthogonal). It follows that Zj is proportional to
v�j X , where vj is the jth column of V and thus an eigenvector of Σ.

The factors Zj constructed proportional to the v�j X are optimal in a
precise sense. Suppose we want to find the best single-factor approximation
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to X ; i.e., the linear combination w�X that best captures the variability of
the components of X . A standard notion of optimality chooses w to maximize
the variance of w�X , which is given by w�Σw. Since this variance can be
made arbitrarily large by multiplying any w by a constant, it makes sense to
impose a normalization through a constraint of the form w�w = 1. We are
thus led to the problem

max
w:w�w=1

w�Σw.

If the eigenvalues of Σ are ordered so that

λ1 ≥ λ2 ≥ · · · ≥ λd,

then this optimization problem is solved by v1, as is easily verified by ap-
pending the constraint with a Lagrange multiplier and differentiating. (This
optimality property of eigenvectors is sometimes called Rayleigh’s principle.)
The problem of finding the next best factor orthogonal to the first reduces to
solving

max
w:w�w=1,w�v1=0

w�Σw.

This optimization problem is solved by v2. More generally, the best k-factor
approximation chooses factors proportional to v�1 X , v�2 X, . . . , v�k X . Since

v�
j Σvj = λj ,

normalizing the v�j X to construct unit-variance factors yields

Zj =
1√
λj

v�j X,

which coincides with (2.33). The transformation X = AZ recovering X from
the Zj is precisely the A in (2.32).

The optimality of this representation can be recast in the following way.
Suppose that we are given X and that we want to find vectors a1, . . . , ak in
�d and unit-variance random variables Z1, . . . , Zk in order to approximate X
by a1Z1 + · · · + akZk. For any k = 1, . . . , d, the mean square approximation
error

E

[
‖X −

k∑
i=1

aiZi‖2

]
, (‖x‖2 = x�x)

is minimized by taking the ai to be the columns of A in (2.32) and setting
Zi = v�i X/

√
λi.

In the statistical literature, the linear combinations v�
j X are called the

principal components of X (see, e.g., Seber [325]). We may thus say that the
principal components provide an optimal lower-dimensional approximation to
a random vector. The variance explained by the first k principal components
is the ratio
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λ1 + · · · + λk

λ1 + · · · + λk + · · · + λd
; (2.34)

in particular, the first principal component is chosen to explain as much vari-
ance as possible. In simulation applications, generating X from its principal
components (i.e., using (2.32)) is sometimes useful in designing variance re-
duction techniques. In some cases, the principal components interpretation
suggests that variance reduction should focus first on Z1, then on Z2, and so
on. We will see examples of this in Chapter 4 and related ideas in Section 5.5.



3

Generating Sample Paths

This chapter develops methods for simulating paths of a variety of stochastic
processes important in financial engineering. The emphasis in this chapter is
on methods for exact simulation of continuous-time processes at a discrete
set of dates. The methods are exact in the sense that the joint distribution of
the simulated values coincides with the joint distribution of the continuous-
time process on the simulation time grid. Exact methods rely on special fea-
tures of a model and are generally available only for models that offer some
tractability. More complex models must ordinarily be simulated through, e.g.,
discretization of stochastic differential equations, as discussed in Chapter 6.

The examples covered in this chapter are arranged roughly in increasing or-
der of complexity. We begin with methods for simulating Brownian motion in
one dimension or multiple dimensions and extend these to geometric Brownian
motion. We then consider Gaussian interest rate models. Our first real break
from Gaussian processes comes in Section 3.4, where we treat square-root dif-
fusions. Section 3.5 considers processes with jumps as models of asset prices.
Sections 3.6 and 3.7 treat substantially more complex models than the rest of
the chapter; these are interest rate models that describe the term structure
through a curve or vector of forward rates. Exact simulation of these models is
generally infeasible; we have included them here because of their importance
in financial engineering and because they illustrate some of the complexities
of the use of simulation for derivatives pricing.

3.1 Brownian Motion

3.1.1 One Dimension

By a standard one-dimensional Brownian motion on [0, T ], we a mean a sto-
chastic process {W (t), 0 ≤ t ≤ T } with the following properties:

(i) W (0) = 0;
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(ii) the mapping t �→ W (t) is, with probability 1, a continuous function on
[0, T ];

(iii) the increments {W (t1) − W (t0), W (t2) − W (t1), . . . , W (tk) − W (tk−1)}
are independent for any k and any 0 ≤ t0 < t1 < · · · < tk ≤ T ;

(iv) W (t) − W (s) ∼ N(0, t − s) for any 0 ≤ s < t ≤ T .

In (iv) it would suffice to require that W (t)−W (s) have mean 0 and variance
t − s; that its distribution is in fact normal follows from the continuity of
sample paths in (ii) and the independent increments property (iii). We include
the condition of normality in (iv) because it is central to our discussion. A
consequence of (i) and (iv) is that

W (t) ∼ N(0, t), (3.1)

for 0 < t ≤ T .
For constants µ and σ > 0, we call a process X(t) a Brownian motion with

drift µ and diffusion coefficient σ2 (abbreviated X ∼ BM(µ, σ2)) if

X(t) − µt

σ

is a standard Brownian motion. Thus, we may construct X from a standard
Brownian motion W by setting

X(t) = µt + σW (t).

It follows that X(t) ∼ N(µt, σ2t). Moreover, X solves the stochastic differen-
tial equation (SDE)

dX(t) = µ dt + σ dW (t).

The assumption that X(0) = 0 is a natural normalization, but we may con-
struct a Brownian motion with parameters µ and σ2 and initial value x by
simply adding x to each X(t).

For deterministic but time-varying µ(t) and σ(t) > 0, we may define a
Brownian motion with drift µ and diffusion coefficient σ2 through the SDE

dX(t) = µ(t) dt + σ(t) dW (t);

i.e., through

X(t) = X(0) +
∫ t

0

µ(s) ds +
∫ t

0

σ(s) dW (s),

with X(0) an arbitrary constant. The process X has continuous sample paths
and independent increments. Each increment X(t)−X(s) is normally distrib-
uted with mean

E[X(t) − X(s)] =
∫ t

s

µ(u) du

and variance

Var[X(t) − X(s)] = Var

[∫ t

s

σ(u) dW (u)
]

=
∫ t

s

σ2(u) du.
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Random Walk Construction

In discussing the simulation of Brownian motion, we mostly focus on simulat-
ing values (W (t1), . . . , W (tn)) or (X(t1), . . . , X(tn)) at a fixed set of points
0 < t1 < · · · < tn. Because Brownian motion has independent normally dis-
tributed increments, simulating the W (ti) or X(ti) from their increments is
straightforward. Let Z1, . . . , Zn be independent standard normal random vari-
ables, generated using any of the methods in Section 2.3.2, for example. For
a standard Brownian motion set t0 = 0 and W (0) = 0. Subsequent values can
be generated as follows:

W (ti+1) = W (ti) +
√

ti+1 − tiZi+1, i = 0, . . . , n − 1. (3.2)

For X ∼ BM(µ, σ2) with constant µ and σ and given X(0), set

X(ti+1) = X(ti) + µ(ti+1 − ti) + σ
√

ti+1 − tiZi+1, i = 0, . . . , n − 1. (3.3)

With time-dependent coefficients, the recursion becomes

X(ti+1) = X(ti) +
∫ ti+1

ti

µ(s) ds +

√∫ ti+1

ti

σ2(u) duZi+1, i = 0, . . . , n − 1.

(3.4)
The methods in (3.2)–(3.4) are exact in the sense that the joint distri-

bution of the simulated values (W (t1), . . . , W (tn)) or (X(t1), . . . , X(tn)) co-
incides with the joint distribution of the corresponding Brownian motion at
t1, . . . , tn. Of course, this says nothing about what happens between the ti.
One may extend the simulated values to other time points through, e.g., piece-
wise linear interpolation; but no deterministic interpolation method will give
the extended vector the correct joint distribution. The methods in (3.2)–(3.4)
are exact at the time points t1, . . . , tn but subject to discretization error, com-
pared to a true Brownian motion, if deterministically interpolated to other
time points. Replacing (3.4) with the Euler approximation

X(ti+1) = X(ti) + µ(ti)(ti+1 − ti) + σ(ti)
√

ti+1 − tiZi+1, i = 0, . . . , n − 1,

will in general introduce discretization error even at t1, . . . , tn, because the
increments will no longer have exactly the right mean and variance. We return
to the topic of discretization error in Chapter 6.

The vector (W (t1), . . . , W (tn)) is a linear transformation of the the vec-
tor of increments (W (t1), W (t2) −W (t1), . . . , W (tn) −W (tn−1)). Since these
increments are independent and normally distributed, it follows from the Lin-
ear Transformation Property (2.23) that (W (t1), . . . , W (tn)) has a multivari-
ate normal distribution. Simulating (W (t1), . . . , W (tn)) is thus a special case
of the general problem, treated in Section 2.3.3, of generating multivariate
normal vectors. While the random walk construction suffices for most appli-
cations, it is interesting and sometimes useful to consider alternative sampling
methods.
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To apply any of the methods considered in Section 2.3.3, we first need
to find the mean vector and covariance matrix of (W (t1), . . . , W (tn)). For a
standard Brownian motion, we know from (3.1) that E[W (ti)] = 0, so the
mean vector is identically 0. For the covariance matrix, consider first any
0 < s < t < T ; using the independence of the increments we find that

Cov[W (s), W (t)] = Cov[W (s), W (s) + (W (t) − W (s))]
= Cov[W (s), W (s)] + Cov[W (s), W (t) − W (s)]
= s + 0 = s. (3.5)

Letting C denote the covariance matrix of (W (t1), . . . , W (tn)), we thus have

Cij = min(ti, tj). (3.6)

Cholesky Factorization

Having noted that the vector (W (t1), . . . , W (tn)) has the distribution N(0, C),
with C as in (3.6), we may simulate this vector as AZ, where Z =(Z1, . . . , Zn)�

∼ N(0, I) and A satisfies AA� = C. The Cholesky method discussed in Sec-
tion 2.3.3 takes A to be lower triangular. For C in (3.6), the Cholesky factor
is given by

A =


√

t1 0 · · · 0√
t1

√
t2 − t1 · · · 0

...
...

. . .
...√

t1
√

t2 − t1 · · · √tn − tn−1

 ,

as can be verified through calculation of AA�. In this case, generating
(W (t1), . . . , W (tn)) as AZ is simply a matrix-vector representation of the
recursion in (3.2). Put differently, the random walk construction (3.2) may be
viewed as an efficient implementation of the product AZ. Even exploiting the
lower triangularity of A, evaluation of AZ is an O(n2) operation; the random
walk construction reduces this to O(n) by implicitly exploiting the fact that
the nonzero entries of each column of A are identical.

For a BM(µ, σ2) process X , the mean vector of (X(t1), . . . , X(tn)) has
ith component µti and the covariance matrix is σ2C. The Cholesky factor
is σA and we once again find that the Cholesky method coincides with the
increment recursion (3.3).

Brownian Bridge Construction

The recursion (3.2) generates the vector (W (t1), . . . , W (tn)) from left to right.
We may however generate the W (ti) in any order we choose, provided that
at each step we sample from the correct conditional distribution given the
values already generated. For example, we may first generate the final value
W (tn), then sample W (t�n/2�) conditional on the value of W (tn), and proceed
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by progressively filling in intermediate values. This flexibility can be useful in
implementing variance reduction techniques and low-discrepancy methods. It
follows from the Conditioning Formula (2.24) that the conditional distribu-
tion needed at each step is itself normal and this makes conditional sampling
feasible.

Conditioning a Brownian motion on its endpoints produces a Brownian
bridge. Once we determine W (tn), filling in intermediate values amounts to
simulating a Brownian bridge from 0 = W (0) to W (tn). If we next sample
W (t�n/2�), then filling in values between times t�n/2� and tn amounts to sim-
ulating a Brownian bridge from W (t�n/2�) to W (tn). This approach is thus
referred to as a Brownian bridge construction.

As a first step in developing this construction, suppose 0 < u < s < t
and consider the problem of generating W (s) conditional on W (u) = x and
W (t) = y. We use the Conditioning Formula (2.24) to find the conditional
distribution of W (s). We know from (3.5) that the unconditional distribution
is given by W (u)

W (s)
W (t)

 ∼ N

0,

u u u
u s s
u s t

 .

The Conditioning Formula (2.24) gives the distribution of the second compo-
nent of a partitioned vector conditional on a value of the first component. We
want to apply this formula to find the distribution of W (s) conditional on the
value of (W (u), W (t)). We therefore first permute the entries of the vector to
get W (s)

W (u)
W (t)

 ∼ N

0,

 s u s
u u u
s u t

 .

We now find from the Conditioning Formula that, given (W (u) = x, W (t) =
y), W (s) is normally distributed with mean

E[W (s)|W (u) = x, W (t) = y] =

0 −
(
u s
)(u u

u t

)−1(
x
y

)
=

(t − s)x + (s − u)y
(t − u)

, (3.7)

and variance

s −
(
u s
)(u u

u t

)−1(
u
s

)
=

(s − u)(t − s)
(t − u)

, (3.8)

since (
u u
u t

)−1

=
1

t − u

(
t/u −1
−1 1

)
.

In particular, the conditional mean (3.7) is obtained by linearly interpolating
between (u, x) and (t, y).
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Suppose, more generally, that the values W (s1) = x1, W (s2) = x2, . . . ,
W (sk) = xk of the Brownian path have been determined at the times s1 <
s2 < · · · < sk and that we wish to sample W (s) conditional on these values.
Suppose that si < s < si+1. Then

(W (s)|W (sj) = xj , j = 1, . . . , k) = (W (s)|W (si) = xi, W (si+1) = xi+1),

in the sense that the two conditional distributions are the same. This can again
be derived from the Conditioning Formula (2.24) but is more immediate from
the Markov property of Brownian motion (a consequence of the independent
increments property): given W (si), W (s) is independent of all W (t) with
t < si, and given W (si+1) it is independent of all W (t) with t > si+1. Thus,
conditioning on all W (sj) is equivalent to conditioning on the values of the
Brownian path at the two times si and si+1 closest to s. Combining these
observations with (3.7) and (3.8), we find that

(W (s)|W (s1) = x1, W (s2) = x2, . . . , W (sk) = xk) =

N

(
(si+1 − s)xi + (s − si)xi+1

(si+1 − si)
,
(si+1 − s)(s − si)

(si+1 − si)

)
.

This is illustrated in Figure 3.1. The conditional mean of W (s) lies on the
line segment connecting (si, xi) and (si+1, xi+1); the actual value of W (s) is
normally distributed about this mean with a variance that depends on (s−si)
and (si+1 − s). To sample from this conditional distribution, we may set

W (s) =
(si+1 − s)xi + (s − si)xi+1

(si+1 − si)
+

√
(si+1 − s)(s − si)

(si+1 − si)
Z,

with Z ∼ N(0, 1) independent of all W (s1), . . . , W (sk).
By repeatedly using these observations, we may indeed sample the com-

ponents of the vector (W (t1), . . . , W (tn)) in any order. In particular, we may
start by sampling W (tn) from N(0, tn) and proceed by conditionally sampling
intermediate values, at each step conditioning on the two closest time points
already sampled (possibly including W (0) = 0).

If n is a power of 2, the construction can be arranged so that each W (ti),
i < n, is generated conditional on the values W (t	) and W (tr) with the
property that i is midway between � and r. Figure 3.2 details this case. If, for
example, n = 16, the algorithm starts by sampling W (t16); the first loop over
j samples W (t8); the second samples W (t4) and W (t12); the third samples
W (t2), W (t6), W (t10), and W (t14); and the final loop fills in all W (ti) with
odd i. If n is not a power of 2, the algorithm could still be applied to a subset
of 2m < n of the ti, with the remaining points filled in at the end.

Our discussion of the Brownian bridge construction (and Figure 3.2 in
particular) has considered only the case of a standard Brownian motion. How
would the construction be modified for a Brownian motion with drift µ? Only
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Fig. 3.1. Brownian bridge construction of Brownian path. Conditional on W (si) =
xi and W (si+1) = xi+1, the value at s is normally distributed. The conditional mean
is obtained by linear interpolation between xi and xi+1; the conditional variance is
obtained from (3.8).

Input: Time indices (t1, . . . , t2m)
Output: Path (w1, . . . , w2m ) with distribution of (W (t1), . . . , W (t2m))

Generate (Z1, . . . , Z2m ) ∼ N(0, I)
h ← 2m, jmax ← 1
wh ← √

thZh

t0 ← 0, w0 ← 0
for k = 1, . . . , m

imin ← h/2, i ← imin

� ← 0, r ← h
for j = 1, . . . , jmax

a ← ((tr − ti)w� + (ti − t�)wr)/(tr − t�)

b ←
√

(ti − t�)(tr − ti)/(tr − t�)
wi ← a + bZi

i ← i + h; � ← � + h, r ← r + h
end
jmax ← 2 ∗ jmax;
h ← imin;

end
return (w1, . . . , w2m )

Fig. 3.2. Implementation of Brownian bridge construction when the number of
time indices is a power of 2. The conditional standard deviations assigned to b could
be precomputed and stored in an array (b1, . . . , b2m ) if multiple paths are to be
generated. The interpolation weights used in calculating the conditional mean a
could also be precomputed.
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the first step — sampling of the rightmost point — would change. Instead
of sampling W (tm) from N(0, tm), we would sample it from N(µtm, tm). The
conditional distribution of W (t1), . . . , W (tn−1) given W (tm) is the same for
all values of µ. Put slightly differently, a Brownian bridge constructed from
a Brownian motion with drift has the same law as one constructed from a
standard Brownian motion. (For any finite set of points t1, . . . , tn−1 this can
be established from the Conditioning Formula (2.24).) Hence, to include a
drift µ in the algorithm of Figure 3.2, it suffices to change just the third
line, adding µth to wh. For a Brownian motion with diffusion coefficient σ2,
the conditional mean (3.7) is unchanged but the conditional variance (3.8)
is multiplied by σ2. This could be implemented in Figure 3.2 by multiplying
each b by σ (and setting wh ← µth + σ

√
thZh in the third line); alternatively,

the final vector (w1, . . . , w2m) could simply be multiplied by σ.
Why use a Brownian bridge construction? The algorithm in Figure 3.2 has

no computational advantage over the simple random walk recursion (3.2). Nor
does the output of the algorithm have any statistical feature not shared by
the output of (3.2); indeed, the Brownian bridge construction is valid precisely
because the distribution of the (W (t1), . . . , W (tm)) it produces coincides with
that resulting from (3.2). The potential advantage of the Brownian bridge
construction arises when it is used with certain variance reduction techniques
and low-discrepancy methods. We will return to this point in Section 4.3 and
Chapter 5. Briefly, the Brownian bridge construction gives us greater control
over the coarse structure of the simulated Brownian path. For example, it
uses a single normal random variable to determine the endpoint of a path,
which may be the most important feature of the path; in contrast, the end-
point obtained from (3.2) is the combined result of n independent normal
random variables. The standard recursion (3.2) proceeds by evolving the path
forward through time; in contrast, the Brownian bridge construction proceeds
by adding increasingly fine detail to the path at each step, as illustrated in
Figure 3.3. This can be useful in focusing variance reduction techniques on
“important” features of Brownian paths.

Principal Components Construction

As just noted, under the Brownian bridge construction a single normal random
variable (say Z1) determines the endpoint of the path; conditional on the
endpoint, a second normal random variable (say Z2) determines the midpoint
of the path, and so on. Thus, under this construction, much of the ultimate
shape of the Brownian path is determined (or explained) by the values of just
the first few Zi. Is there a construction under which even more of the path
is determined by the first few Zi? Is there a construction that maximizes the
variability of the path explained by Z1, . . . , Zk for all k = 1, . . . , n?

This optimality objective is achieved for any normal random vector by the
principal components construction discussed in Section 2.3.3. We now discuss
its application to a discrete Brownian path W (t1), . . . , W (tn). It is useful to
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Fig. 3.3. Brownian bridge construction after 1, 2, 4, and 8 points have been sampled.
Each step refines the previous path.

visualize the construction in vector form as
W (t1)
W (t2)

...
W (tn)

 =


a11

a21

...
an1

Z1 +


a12

a22

...
an2

Z2 + · · · +


a1n

a2n

...
ann

Zn. (3.9)

Let ai = (a1i, . . . , ani)� and let A be the n × n matrix with columns
a1, . . . , an. We know from Section 2.3.3 that this is a valid construction of
the discrete Brownian path if AA� is the covariance matrix C of W =
(W (t1), . . . , W (tn))�, given in (3.6). We also know from the discussion of
principal components in Section 2.3.3 that the approximation error

E

[
‖W −

k∑
i=1

aiZi‖2

]
(‖x‖2 = x�x)

from using just the first k terms in (3.9) is minimized for all k = 1, . . . , n
by using principal components. Specifically, ai =

√
λivi, i = 1, . . . , n, where

λ1 > λ2 > · · · > λn > 0 are the eigenvalues of C and the vi are eigenvectors,

Cvi = λivi, i = 1, . . . , n,

normalized to have length ‖vi‖ = 1.
Consider, for example, a 32-step discrete Brownian path with equal time

increments ti+1 − ti = 1/32. The corresponding covariance matrix has entries
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Cij = min(i, j)/32, i, j = 1, . . . , 32. The magnitudes of the eigenvalues of this
matrix drop off rapidly — the five largest are 13.380, 1.489, 0.538, 0.276, and
0.168. The variability explained by Z1, . . . , Zk (in the sense of (2.34)) is 81%,
90%, 93%, 95%, and 96%, for k = 1, . . . , 5; it exceeds 99% at k = 16. This
indicates that although full construction of the 32-step path requires 32 normal
random variables, most of the variability of the path can be determined using
far fewer Zi.

Figure 3.4 plots the normalized eigenvectors v1, v2, v3, and v4 associated
with the four largest eigenvalues. (Each of these is a vector with 32 entries;
they are plotted against the j∆t, j = 1, . . . , 32, with ∆t = 1/32.) The vi

appear to be nearly sinusoidal, with frequencies that increase with i. Indeed,
Åkesson and Lehoczky [8] show that for an n-step path with equal spacing
ti+1 − ti = ∆t,

vi(j) =
2√

2n + 1
sin
(

2i − 1
2n + 1

jπ

)
, j = 1, . . . , n,

and

λi =
∆t

4
sin−2

(
2i − 1
2n + 1

π

2

)
,

for i = 1, . . . , n. To contrast this with the Brownian bridge construction in
Figure 3.3, note that in the principal components construction the vi are
multiplied by

√
λiZi and then summed; thus, the discrete Brownian path

may be viewed as a random linear combination of the vectors vi, with random
coefficients

√
λiZi. The coefficient on vi has variance λi and we have seen that

the λi drop off quickly. Thus, the first few vi (and
√

λiZi) determine most of
the shape of the Brownian path and the later vi add high-frequency detail to
the path. As in the Brownian bridge construction, these features can be useful
in implementing variance reduction techniques by making it possible to focus
on the most important Zi. We return to this point in Sections 4.3.2 and 5.5.2.

Although the principal components construction is optimal with respect
to explained variability, it has two drawbacks compared to the random walk
and Brownian bridge constructions. The first is that it requires O(n2) oper-
ations to construct W (t1), . . . , W (tn) from Z1, . . . , Zn, whereas the previous
constructions require O(n) operations. The second (potential) drawback is
that with principal components none of the W (ti) is fully determined until
all Z1, . . . , Zn have been processed — i.e., until all terms in (3.9) have been
summed. In contrast, using either the random walk or Brownian bridge con-
struction, exactly k of the W (t1), . . . , W (tn) are fixed by the first k normal
random variables, for all k = 1, . . . , n.

We conclude this discussion of the principal components construction with
a brief digression into simulation of a continuous path {W (t), 0 ≤ t ≤ 1}. In
the discrete case, the eigenvalue-eigenvector condition Cv = λv is (recall (3.6))∑

j

min(ti, tj)v(j) = λv(i).
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Fig. 3.4. First four eigenvectors of the covariance matrix of a 32-step Brownian
path, ordered according to the magnitude of the corresponding eigenvalue.

In the continuous limit, the analogous property for an eigenfunction ψ on
[0, 1] is ∫ 1

0

min(s, t)ψ(s) ds = λψ(t).

The solutions to this equation and the corresponding eigenvalues are

ψi(t) =
√

2 sin
(

(2i + 1)πt

2

)
, λi =

(
2

(2i + 1)π

)2

, i = 0, 1, 2, . . . .

Note in particular that the ψi are periodic with increasing frequencies and
that the λi decrease with i. The Karhounen-Loève expansion of Brownian
motion is

W (t) =
∞∑

i=0

√
λiψi(t)Zi, 0 ≤ t ≤ 1, (3.10)

with Z0, Z1, . . . independent N(0, 1) random variables; see, e.g., Adler [5].
This infinite series is an exact representation of the continuous Brownian
path. It may be viewed as a continuous counterpart to (3.9). By taking just
the first k terms in this series, we arrive at an approximation to the contin-
uous path {W (t), 0 ≤ t ≤ 1} that is optimal (among all approximations that
use just k standard normals) in the sense of explained variability. This ap-
proximation does not however yield the exact joint distribution for any subset
{W (t1), . . . , W (tn)} except the trivial case {W (0)}.

The Brownian bridge construction also admits a continuous counterpart
through a series expansion using Schauder functions in place of the

√
λiψi
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in (3.10). Lévy [233, pp.17–20] used the limit of the Brownian bridge con-
struction to construct Brownian motion; the formulation as a series expan-
sion is discussed in Section 1.2 of McKean [260]. Truncating the series after
2m terms produces the piecewise linear interpolation of a discrete Brownian
bridge construction of W (0), W (2−m), . . . , W (1). See Acworth et al. [4] for
further discussion with applications to Monte Carlo.

3.1.2 Multiple Dimensions

We call a process W (t) = (W1(t), . . . , Wd(t))�, 0 ≤ t ≤ T , a standard Brown-
ian motion on �d if it has W (0) = 0, continuous sample paths, independent
increments, and

W (t) − W (s) ∼ N(0, (t − s)I),

for all 0 ≤ s < t ≤ T , with I the d × d identity matrix. It follows that each
of the coordinate processes Wi(t), i = 1, . . . , d, is a standard one-dimensional
Brownian motion and that Wi and Wj are independent for i = j.

Suppose µ is a vector in �d and Σ is a d × d matrix, positive definite
or semidefinite. We call a process X a Brownian motion with drift µ and
covariance Σ (abbreviated X ∼ BM(µ, Σ)) if X has continuous sample paths
and independent increments with

X(t) − X(s) ∼ N((t − s)µ, (t − s)Σ).

The initial value X(0) is an arbitrary constant assumed to be 0 unless oth-
erwise specified. If B is a d × k matrix satisfying BB� = Σ and if W is a
standard Brownian motion on �k, then the process defined by

X(t) = µt + BW (t) (3.11)

is a BM(µ, Σ). In particular, the law of X depends on B only through BB�.
The process in (3.11) solves the SDE

dX(t) = µ dt + B dW (t).

We may extend the definition of a multidimensional Brownian motion to de-
terministic, time-varying µ(t) and Σ(t) through the solution to

dX(t) = µ(t) dt + B(t) dW (t),

where B(t)B�(t) = Σ(t). This process has continuous sample paths, indepen-
dent increments, and

X(t) − X(s) ∼ N

(∫ t

s

µ(u) du,

∫ t

s

Σ(u) du

)
.

A calculation similar to the one leading to (3.5) shows that if X ∼
BM(µ, Σ), then
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Cov[Xi(s), Xj(t)] = min(s, t)Σij . (3.12)

In particular, given a set of times 0 < t1 < t2 < · · · < tn, we can easily find
the covariance matrix of

(X1(t1), . . . , Xd(t1), X1(t2), . . . , Xd(t2), . . . , X1(tn), . . . , Xd(tn)) (3.13)

along with its mean and reduce the problem of generating a discrete path of
X to one of sampling this nd-dimensional normal vector. While there could
be cases in which this is advantageous, it will usually be more convenient to
use the fact that this nd-vector is the concatenation of d-vectors representing
the state of the process at n distinct times.

Random Walk Construction

Let Z1, Z2, . . . be independent N(0, I) random vectors in �d. We can construct
a standard d-dimensional Brownian motion at times 0 = t0 < t1 < · · · < tn
by setting W (0) = 0 and

W (ti+1) = W (ti) +
√

ti+1 − tiZi+1, i = 0, . . . , n − 1. (3.14)

This is equivalent to applying the one-dimensional random walk construction
(3.2) separately to each coordinate of W .

To simulate X ∼ BM(µ, Σ), we first find a matrix B for which BB� = Σ
(see Section 2.3.3). If B is d×k, let Z1, Z2, . . . be independent standard normal
random vectors in �k. Set X(0) = 0 and

X(ti+1) = X(ti) + µ(ti+1 − ti) +
√

ti+1 − tiBZi, i = 0, . . . , n − 1. (3.15)

Thus, simulation of BM(µ, Σ) is straightforward once Σ has been factored.
For the case of time-dependent coefficients, we may set

X(ti+1) = X(ti) +
∫ ti+1

ti

µ(s) ds + B(ti, ti+1)Zi, i = 0, . . . , n − 1,

with

B(ti, ti+1)B(ti, ti+1)� =
∫ ti+1

ti

Σ(u) du,

thus requiring n factorizations.

Brownian Bridge Construction

Application of a Brownian bridge construction to a standard d-dimensional
Brownian motion is straightforward: we may simply apply independent one-
dimensional constructions to each of the coordinates. To include a drift vector
(i.e., for BM(µ, I) process), it suffices to add µitn to Wi(tn) at the first step
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of the construction of the ith coordinate, as explained in Section 3.1.1. The
rest of the construction is unaffected.

To construct X ∼ BM(µ, Σ), we may use the fact that X can be rep-
resented as X(t) = µt + BW (t) with B a d × k matrix, k ≤ d, satisfy-
ing BB� = Σ, and W a standard k-dimensional Brownian motion. We may
then apply a Brownian bridge construction to W (t1), . . . , W (tn) and recover
X(t1), . . . , X(tn) through a linear transformation.

Principal Components Construction

As with the Brownian bridge construction, one could apply a one-dimensional
principal components construction to each coordinate of a multidimensional
Brownian motion. Through a linear transformation this then extends to the
construction of BM(µ, Σ). However, the optimality of principal components is
lost in this reduction; to recover it, we must work directly with the covariance
matrix of (3.13).

It follows from (3.12) that the covariance matrix of (3.13) can be repre-
sented as (C ⊗ Σ), where ⊗ denotes the Kronecker product producing

(C ⊗ Σ) =


C11Σ C12Σ · · · C1nΣ
C21Σ C22Σ · · · C2nΣ

...
...

. . .
...

Cn1Σ Cn2Σ · · · CnnΣ

 .

If C has eigenvectors v1, . . . , vn and eigenvalues λ1 ≥ · · · ≥ λn, and if Σ
has eigenvectors w1, . . . , wd and eigenvalues η1 ≥ · · · ≥ ηd, then (C ⊗ Σ)
has eigenvectors (vi ⊗wj) and eigenvalues λiηj , i = 1, . . . , n, j = 1,×, d. This
special structure of the covariance matrix of (3.12) makes it possible to reduce
the computational effort required to find all eigenvalues and eigenvectors from
the O((nd)3) typically required for an (nd × nd) matrix to O(n3 + d3).

If we rank the products of eigenvalues as

(λiηj)(1) ≥ (λiηj)(2) ≥ · · · (λiηj)(nd),

then for any k = 1, . . . , n,∑k
r=1(λiηj)(r)∑nd
r=1(λiηj)(r)

≤
∑k

i=1 λi∑n
i=1 λi

.

In other words, the variability explained by the first k factors is always smaller
for a d-dimensional Brownian motion than it would be for a scalar Brown-
ian motion over the same time points. This is to be expected since the d-
dimensional process has greater total variability.
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3.2 Geometric Brownian Motion

A stochastic process S(t) is a geometric Brownian motion if log S(t) is a
Brownian motion with initial value logS(0); in other words, a geometric
Brownian motion is simply an exponentiated Brownian motion. Accordingly,
all methods for simulating Brownian motion become methods for simulating
geometric Brownian motion through exponentiation. This section therefore
focuses more on modeling than on algorithmic issues.

Geometric Brownian motion is the most fundamental model of the value
of a financial asset. In his pioneering thesis of 1900, Louis Bachelier developed
a model of stock prices that in retrospect we describe as ordinary Brownian
motion, though the mathematics of Brownian motion had not yet been de-
veloped. The use of geometric Brownian motion as a model in finance is due
primarily to work of Paul Samuelson in the 1960s. Whereas ordinary Brown-
ian motion can take negative values — an undesirable feature in a model of
the price of a stock or any other limited liability asset — geometric Brownian
motion is always positive because the exponential function takes only positive
values. More fundamentally, for geometric Brownian motion the percentage
changes

S(t2) − S(t1)
S(t1)

,
S(t3) − S(t2)

S(t2)
, . . . ,

S(tn) − S(tn−1)
S(tn−1)

(3.16)

are independent for t1 < t2 < · · · < tn, rather than the absolute changes
S(ti+1) − S(ti). These properties explain the centrality of geometric rather
than ordinary Brownian motion in modeling asset prices.

3.2.1 Basic Properties

Suppose W is a standard Brownian motion and X satisfies

dX(t) = µ dt + σ dW (t),

so that X ∼ BM(µ, σ2). If we set S(t) = S(0) exp(X(t)) ≡ f(X(t)), then an
application of Itô’s formula shows that

dS(t) = f ′(X(t)) dX(t) + 1
2σ2f ′′(X(t)) dt

= S(0) exp(X(t))[µ dt + σ dW (t)] + 1
2σ2S(0) exp(X(t)) dt

= S(t)(µ + 1
2σ2) dt + S(t)σ dW (t). (3.17)

In contrast, a geometric Brownian motion process is often specified through
an SDE of the form

dS(t)
S(t)

= µ dt + σ dW (t), (3.18)

an expression suggesting a Brownian model of the “instantaneous returns”
dS(t)/S(t). Comparison of (3.17) and (3.18) indicates that the models are
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inconsistent and reveals an ambiguity in the role of “µ.” In (3.17), µ is the
drift of the Brownian motion we exponentiated to define S(t) — the drift of
log S(t). In (3.18), S(t) has drift µS(t) and (3.18) implies

d log S(t) = (µ − 1
2σ2) dt + σ dW (t), (3.19)

as can be verified through Itô’s formula or comparison with (3.17).
We will use the notation S ∼ GBM(µ, σ2) to indicate that S is a process of

the type in (3.18). We will refer to µ in (3.18) as the drift parameter though
it is not the drift of either S(t) or log S(t). We refer to σ in (3.18) as the
volatility parameter of S(t); the diffusion coefficient of S(t) is σ2S2(t).

From (3.19) we see that if S ∼ GBM(µ, σ2) and if S has initial value S(0),
then

S(t) = S(0) exp
(
[µ − 1

2σ2]t + σW (t)
)
. (3.20)

A bit more generally, if u < t then

S(t) = S(u) exp
(
[µ − 1

2σ2](t − u) + σ(W (t) − W (u))
)
, (3.21)

from which the claimed independence of the returns in (3.16) becomes ev-
ident. Moreover, since the increments of W are independent and normally
distributed, this provides a simple recursive procedure for simulating values
of S at 0 = t0 < t1 < · · · < tn:

S(ti+1) = S(ti) exp
(
[µ − 1

2σ2](ti+1 − ti) + σ
√

ti+1 − tiZi+1

)
, (3.22)

i = 0, 1, . . . , n − 1,

with Z1, Z2, . . . , Zn independent standard normals. In fact, (3.22) is equivalent
to exponentiating both sides of (3.3) with µ replaced by µ− 1

2σ2. This method
is exact in the sense that the (S(t1), . . . , S(tn)) it produces has the joint dis-
tribution of the process S ∼ GBM(µ, σ2) at t1, . . . , tn — the method involves
no discretization error. Time-dependent parameters can be incorporated by
exponentiating both sides of (3.4).

Lognormal Distribution

From (3.20) we see that if S ∼ GBM(µ, σ2), then the marginal distribution
of S(t) is that of the exponential of a normal random variable, which is called
a lognormal distribution. We write Y ∼ LN(µ, σ2) if the random variable Y
has the distribution of exp(µ + σZ), Z ∼ N(0, 1). This distribution is thus
given by

P (Y ≤ y) = P (Z ≤ [log(y) − µ]/σ)

= Φ
(

log(y) − µ

σ

)
and its density by
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1
yσ

φ

(
log(y) − µ

σ

)
. (3.23)

Moments of a lognormal random variable can be calculated using the basic
identity

E[eaZ ] = e
1
2a2

for the moment generating function of a standard normal. From this it follows
that Y ∼ LN(µ, σ2) has

E[Y ] = eµ+
1
2σ2

, Var[Y ] = e2µ+σ2
(
eσ2 − 1

)
;

in particular, the notation Y ∼ LN(µ, σ2) does not imply that µ and σ2 are
the mean and variance of Y . From

P (Y ≤ eµ) = P (Z ≤ 0) = 1
2

we see that eµ is the median of Y . The mean of Y is thus larger than the
median, reflecting the positive skew of the lognormal distribution.

Applying these observations to (3.20), we find that if S ∼ GBM(µ, σ2)
then (S(t)/S(0)) ∼ LN([µ − 1

2σ2]t, σ2t) and

E[S(t)] = eµtS(0), Var[S(t)] = e2µtS2(0)
(
eσ2t − 1

)
.

In fact, we have

E[S(t)|S(τ), 0 ≤ τ ≤ u] = E[S(t)|S(u)] = eµ(t−u)S(u), u < t, (3.24)

and an analogous expression for the conditional variance. The first equality
in (3.24) is the Markov property (which follows from the fact that S is a one-
to-one transformation of a Brownian motion, itself a Markov process) and the
second follows from (3.21).

Equation (3.24) indicates that µ acts as an average growth rate for S, a
sort of average continuously compounded rate of return. Along a single sample
path of S the picture is different. For a standard Brownian motion W , we have
t−1W (t) → 0 with probability 1. For S ∼ GBM(µ, σ2), we therefore find that

1
t

log S(t) → µ − 1
2σ2,

with probability 1, so µ− 1
2σ2 serves as the growth rate along each path. If this

expression is positive, S(t) → ∞ as t → ∞; if it is negative, then S(t) → 0.
In a model with µ > 0 > µ − 1

2σ2, we find from (3.24) that E[S(t)] grows
exponentially although S(t) converges to 0. This seemingly pathological be-
havior is explained by the increasing skew in the distribution of S(t): although
S(t) → 0, rare but very large values of S(t) are sufficiently likely to produce
an increasing mean.
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3.2.2 Path-Dependent Options

Our interest in simulating paths of geometric Brownian motion lies primarily
in pricing options, particularly those whose payoffs depend on the path of an
underlying asset S and not simply its value S(T ) at a fixed exercise date T .
Through the principles of option pricing developed in Chapter 1, the price of
an option may be represented as an expected discounted payoff. This price
is estimated through simulation by generating paths of the underlying asset,
evaluating the discounted payoff on each path, and averaging over paths.

Risk-Neutral Dynamics

The one subtlety in this framework is the probability measure with respect to
which the expectation is taken and the nearly equivalent question of how the
payoff should be discounted. This bears on how the paths of the underlying
asset ought to be generated and more specifically in the case of geometric
Brownian motion, how the drift parameter µ should be chosen.

We start by assuming the existence of a constant continuously compounded
interest rate r for riskless borrowing and lending. A dollar invested at this rate
at time 0 grows to a value of

β(t) = ert

at time t. Similarly, a contract paying one dollar at a future time t (a zero-
coupon bond) has a value at time 0 of e−rt. In pricing under the risk-neutral
measure, we discount a payoff to be received at time t back to time 0 by
dividing by β(t); i.e., β is the numeraire asset.

Suppose the asset S pays no dividends; then, under the risk-neutral mea-
sure, the discounted price process S(t)/β(t) is a martingale:

S(u)
β(u)

= E

[
S(t)
β(t)

|{S(τ), 0 ≤ τ ≤ u}
]

. (3.25)

Comparison with (3.24) shows that if S is a geometric Brownian motion under
the risk-neutral measure, then it must have µ = r; i.e.,

dS(t)
S(t)

= r dt + σ dW (t). (3.26)

As discussed in Section 1.2.2, this equation helps explain the name “risk-
neutral.” In a world of risk-neutral investors, all assets would have the same
average rate of return — investors would not demand a higher rate of return
for holding risky assets. In a risk-neutral world, the drift parameter for S(t)
would therefore equal the risk-free rate r.

In the case of an asset that pays dividends, we know from Section 1.2.2 that
the martingale property (3.25) continues to hold but with S replaced by the
sum of S, any dividends paid by S, and any interest earned from investing the
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dividends at the risk-free rate r. Thus, let D(t) be the value of any dividends
paid over [0, t] and interest earned on those dividends. Suppose the asset pays
a continuous dividend yield of δ, meaning that it pays dividends at rate δS(t)
at time t. Then D grows at rate

dD(t)
dt

= δS(t) + rD(t),

the first term on the right reflecting the influx of new dividends and the
second term reflecting interest earned on dividends already accumulated. If
S ∼ GBM(µ, σ2), then the drift in (S(t) + D(t)) is

µS(t) + δS(t) + rD(t).

The martingale property (3.25), now applied to the combined process (S(t)+
D(t)), requires that this drift equal r(S(t) + D(t)). We must therefore have
µ + δ = r; i.e., µ = r − δ. The net effect of a dividend yield is to reduce the
growth rate by δ.

We discuss some specific settings in which this formulation is commonly
used:

◦ Equity Indices. In pricing index options, the level of the index is often
modeled as geometric Brownian motion. An index is not an asset and it
does not pay dividends, but the individual stocks that make up an index
may pay dividends and this affects the level of the index. Because an index
may contain many stocks paying a wide range of dividends on different
dates, the combined effect is often approximated by a continuous dividend
yield δ.

◦ Exchange Rates. In pricing currency options, the relevant underlying vari-
able is an exchange rate. We may think of an exchange rate S (quoted as
the number of units of domestic currency per unit of foreign currency) as
the price of the foreign currency. A unit of foreign currency earns interest at
some risk-free rate rf , and this interest may be viewed as a dividend stream.
Thus, in modeling an exchange rate using geometric Brownian motion, we
set µ = r − rf .

◦ Commodities. A physical commodity like gold or oil may in some cases
behave like an asset that pays negative dividends because of the cost of
storing the commodity. This is easily accommodated in the setting above
by taking δ < 0. There may, however, be some value in holding a physical
commodity; for example, a party storing oil implicitly holds an option to sell
or consume the oil in case of a shortage. This type of benefit is sometimes
approximated through a hypothetical convenience yield that accrues from
physical storage. The net dividend yield in this case is the difference between
the convenience yield and the cost rate for storage.

◦ Futures Contracts. A futures contract commits the holder to buying an
underlying asset or commodity at a fixed price at a fixed date in the future.
The futures price is the price specifed in a futures contract at which both
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the buyer and the seller would willingly enter into the contract without
either party paying the other. A futures price is thus not the price of an
asset but rather a price agreed upon for a transaction in the future.
Let S(t) denote the price of the underlying asset (the spot price) and let
F (t, T ) denote the futures prices at time t for a contract to be settled at a
fixed time T in the future. Entering into a futures contract at time t to buy
the underlying asset at time T > t is equivalent to committing to exchange
a known amount F (t, T ) for an uncertain amount S(T ). For this contract
to have zero value at the inception time t entails

0 = e−r(T−t)E[(S(T ) − F (t, T ))|Ft], (3.27)

where Ft is the history of market prices up to time t. At t = T the spot
and futures prices must agree, so S(T ) = F (T, T ) and we may rewrite this
condition as

F (t, T ) = E[F (T, T )|Ft].

Thus, the futures price is a martingale (in its first argument) under the
risk-neutral measure. It follows that if we choose to model a futures price
(for fixed maturity T ) using geometric Brownian motion, we should set its
drift parameter to zero:

dF (t, T )
F (t, T )

= σ dW (t).

Comparison of (3.27) and (3.25) reveals that

F (t, T ) = e(r−δ)(T−t)S(t),

with δ the net dividend yield for S. If either process is a geometric Brownian
motion under the risk-neutral measure then the other is as well and they
have the same volatility σ.
This discussion blurs the distinction between futures and forward contracts.
The argument leading to (3.27) applies more specifically to a forward price
because a forward contract involves no intermediate cashflows. The holder
of a futures contract typically makes or receives payments each day through
a margin account; the discussion above ignores these cashflows. In a world
with deterministic interest rates, futures and forward prices must be equal
to preclude arbitrage so the conclusion in (3.27) is valid for both. With
stochastic interest rates, it turns out that futures prices continue to be
martingales under the risk-neutral measure but forward prices do not. The
theoretical relation between futures and forward prices is investigated in
Cox, Ingersoll, and Ross [90]; it is also discussed in many texts on derivative
securities (e.g., Hull [189]).
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Path-Dependent Payoffs

We turn now to some examples of path-dependent payoffs frequently encoun-
tered in option pricing. We focus primarily on cases in which the payoff de-
pends on the values S(t1), . . . , S(tn) at a fixed set of dates t1, . . . , tn; for these
it is usually possible to produce an unbiased simulation estimate of the op-
tion price. An option payoff could in principle depend on the complete path
{S(t), 0 ≤ t ≤ T } over an interval [0, T ]; pricing such an option by simula-
tion will often entail some discretization bias. In the examples that follow,
we distinguish between discrete and continuous monitoring of the underlying
asset.

◦ Asian option: discrete monitoring. An Asian option is an option on a time
average of the underlying asset. Asian calls and puts have payoffs (S̄−K)+

and (K − S̄)+ respectively, where the strike price K is a constant and

S̄ =
1
n

n∑
i=1

S(ti) (3.28)

is the average price of the underlying asset over the discrete set of mon-
itoring dates t1, . . . , tn. Other examples have payoffs (S(T ) − S̄)+ and
(S̄ − S(T ))+. There are no exact formulas for the prices of these options,
largely because the distribution of S̄ is intractable.

◦ Asian option: continuous monitoring. The continuous counterparts of the
discrete Asian options replace the discrete average above with the continu-
ous average

S̄ =
1

t − u

∫ t

u

S(τ) dτ

over an interval [u, t]. Though more difficult to simulate, some instances
of continuous-average Asian options allow pricing through the transform
analysis of Geman and Yor [135] and the eigenfunction expansion of Linet-
sky [237].

◦ Geometric average option. Replacing the arithmetic average S̄ in (3.28)
with (

n∏
i=1

S(ti)

)1/n

produces an option on the geometric average of the underlying asset price.
Such options are seldom if ever found in practice, but they are useful as
test cases for computational procedures and as a basis for approximating
ordinary Asian options. They are mathematically convenient to work with
because the geometric average of (jointly) lognormal random variables is
itself lognormal. From (3.20) we find (with µ replaced by r) that(

n∏
i=1

S(ti)

)1/n

= S(0) exp

(
[r − 1

2σ2]
1
n

n∑
i=1

ti +
σ

n

n∑
i=1

W (ti)

)
.
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From the Linear Transformation Property (2.23) and the covariance matrix
(3.6), we find that

n∑
i=1

W (ti) ∼ N

(
0,

n∑
i=1

(2i − 1)tn+1−i

)
.

It follows that the geometric average of S(t1), . . . , S(tn) has the same dis-
tribution as the value at time T of a process GBM(r − δ, σ̄2) with

T =
1
n

n∑
i=1

ti, σ̄2 =
σ2

n2T

n∑
i=1

(2i − 1)tn+1−i, δ = 1
2σ2 − 1

2 σ̄2.

An option on the geometric average may thus be valued using the Black-
Scholes formula (1.44) for an asset paying a continuous dividend yield. The
expression

exp
(∫ t

u

log S(τ) dτ

)
is a continuously monitored version of the geometric average and is also
lognormally distributed. Options on a continuous geometric average can
similarly be priced in closed form.

◦ Barrier options. A typical example of a barrier option is one that gets
“knocked out” if the underlying asset crosses a prespecified level. For in-
stance, a down-and-out call with barrier b, strike K, and expiration T has
payoff

1{τ(b) > T }(S(T )− K)+,

where
τ(b) = inf{ti : S(ti) < b}

is the first time in {t1, . . . , tn} the price of the underlying asset drops below
b (understood to be ∞ if S(ti) > b for all i) and 1{ } denotes the indicator of
the event in braces. A down-and-in call has payoff 1{τ(b) ≤ T }(S(T )−K)+:
it gets “knocked in” only when the underlying asset crosses the barrier. Up-
and-out and up-and-in calls and puts are defined analogously. Some knock-
out options pay a rebate if the underlying asset crosses the barrier, with
the rebate possibly paid either at the time of the barrier crossing or at the
expiration of the option.
These examples of discretely monitored barrier options are easily priced
by simulation through sampling of S(t1), . . . , S(tn), S(T ). A continuously
monitored barrier option is knocked in or out the instant the underlying
asset crosses the barrier; in other words, it replaces τ(b) as defined above
with

τ̃(b) = inf{t ≥ 0 : S(t) ≤ b}.
Both discretely monitored and continuously monitored barrier options are
found in practice. Many continuously monitored barrier options can be
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priced in closed form; Merton [261] provides what is probably the first such
formula and many other cases can be found in, e.g., Briys et al. [62]. Dis-
cretely monitored barrier options generally do not admit pricing formulas
and hence require computational procedures.

◦ Lookback options. Like barrier options, lookback options depend on extremal
values of the underlying asset price. Lookback puts and calls expiring at tn
have payoffs

( max
i=1,...,n

S(ti) − S(tn)) and (S(tn) − min
i=1,...,n

S(ti))

respectively. A lookback call, for example, may be viewed as the profit from
buying at the lowest price over t1, . . . , tn and selling at the final price S(tn).
Continuously monitored versions of these options are defined by taking the
maximum or minimum over an interval rather than a finite set of points.

Incorporating a Term Structure

Thus far, we have assumed that the risk-free interest rate r is constant. This
implies that the time-t price of a zero-coupon bond maturing (and paying 1)
at time T > t is

B(t, T ) = e−r(T−t). (3.29)

Suppose however that at time 0 we observe a collection of bond prices B(0, T ),
indexed by maturity T , incompatible with (3.29). To price an option on an
underlying asset price S consistent with the observed term structure of bond
prices, we can introduce a deterministic but time-varying risk-free rate r(u)
by setting

r(u) = − ∂

∂T
log B(0, T )

∣∣∣∣
T=u

.

Clearly, then,

B(0, T ) = exp

(
−
∫ T

0

r(u) du

)
.

With a deterministic, time-varying risk-free rate r(u), the dynamics of an
asset price S(t) under the risk-neutral measure (assuming no dividends) are
described by the SDE

dS(t)
S(t)

= r(t) dt + σ dW (t)

with solution

S(t) = S(0) exp
(∫ t

0

r(u) du − 1
2σ2t + σW (t)

)
.

This process can be simulated over 0 = t0 < t1 < · · · < tn by setting
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S(ti+1) = S(ti) exp
(∫ ti+1

ti

r(u) du − 1
2σ2(ti+1 − ti) + σ

√
ti+1 − tiZi+1

)
,

with Z1, . . . , Zn independent N(0, 1) random variables.
If in fact we are interested only in values of S(t) at t1, . . . , tn, the simulation

can be simplified, making it unnecessary to introduce a short rate r(u) at all.
If we observe bond prices B(0, t1), . . . , B(0, tn) (either directly or through
interpolation from other observed prices), then since

B(0, ti)
B(0, ti+1)

= exp
(∫ ti+1

ti

r(u) du

)
,

we may simulate S(t) using

S(ti+1) = S(ti)
B(0, ti)

B(0, ti+1)
exp
(
− 1

2σ2(ti+1 − ti) + σ
√

ti+1 − tiZi+1

)
. (3.30)

Simulating Off a Forward Curve

For some types of underlying assets, particularly commodities, we may observe
not just a spot price S(0) but also a collection of forward prices F (0, T ). Here,
F (0, T ) denotes the price specified in a contract at time 0 to be paid at time T
for the underlying asset. Under the risk-neutral measure, F (0, T ) = E[S(T )];
in particular, the forward prices reflect the risk-free interest rate and any div-
idend yield (positive or negative) on the underlying asset. In pricing options,
we clearly want to simulate price paths of the underlying asset consistent with
the forward prices observed in the market.

The equality F (0, T ) = E[S(T )] implies

S(T ) = F (0, T ) exp
(
− 1

2σ2T + σW (T )
)
.

Given forward prices F (0, t1), . . . , F (0, tn), we can simulate using

S(ti+1) = S(ti)
F (0, ti+1)
F (0, ti)

exp
(
− 1

2σ2(ti+1 − ti) + σ
√

ti+1 − tiZi+1

)
.

This generalizes (3.30) because in the absence of dividends we have F (0, T ) =
S(0)/B(0, T ). Alternatively, we may define M(0) = 1,

M(ti+1) = M(ti) exp
(
− 1

2σ2(ti+1 − ti) + σ
√

ti+1 − tiZi+1

)
, i = 0, . . . , n−1,

and set S(ti) = F (0, ti)M(ti), i = 1, . . . , n.

Deterministic Volatility Functions

Although geometric Brownian motion remains an important benchmark, it has
been widely observed across many markets that option prices are incompatible



3.2 Geometric Brownian Motion 103

with a GBM model for the underlying asset. This has fueled research into
alternative specifications of the dynamics of asset prices.

Consider a market in which several options with various strikes and ma-
turities are traded simultaneously on the same underlying asset. Suppose the
market is sufficiently liquid that we may effectively observe prices of the op-
tions without error. If the assumptions underlying the Black-Scholes formula
held exactly, all of these option prices would result from using the same volatil-
ity parameter σ in the formula. In practice, one usually finds that this implied
volatility actually varies with strike and maturity. It is therefore natural to
seek a minimal modification of the Black-Scholes model capable of reproduc-
ing market prices.

Consider the extreme case in which we observe the prices C(K, T ) of call
options on a single underlying asset for a continuum of strikes K and matu-
rities T . Dupire [107] shows that, subject only to smoothness conditions on
C as a function of K and T , it is possible to find a function σ(S, t) such that
the model

dS(t)
S(t)

= r dt + σ(S(t), t) dW (t)

reproduces the given option prices, in the sense that

e−rT E[(S(T ) − K)+] = C(K, T )

for all K and T . This is sometimes called a deterministic volatility function to
emphasize that it extends geometric Brownian motion by allowing σ to be a
deterministic function of the current level of the underlying asset. This feature
is important because it ensures that options can still be hedged through a
position in the underlying asset, which would not be the case in a stochastic
volatility model.

In practice, we observe only a finite set of option prices and this leaves a
great deal of flexibility in specifying σ(S, t) while reproducing market prices.
We may, for example, impose smoothness constraints on the choice of volatility
function. This function will typically be the result of a numerical optimization
procedure and may never be given explicitly.

Once σ(S, t) has been chosen to match a set of actively traded options,
simulation may still be necessary to compute the prices of less liquid path-
dependent options. In general, there is no exact simulation procedure for these
models and it is necessary to use an Euler scheme of the form

S(ti+1) = S(ti)
(
1 + r(ti+1 − ti) + σ(S(ti), ti)

√
ti+1 − tiZi+1

)
,

with Z1, Z2, . . . independent standard normals, or

S(ti+1) =

S(ti) exp
(
[r − 1

2σ2(S(ti), ti)](ti+1 − ti) + σ(S(ti), ti)
√

ti+1 − tiZi+1

)
,

which is equivalent to an Euler scheme for log S(t).
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3.2.3 Multiple Dimensions

A multidimensional geometric Brownian motion can be specified through a
system of SDEs of the form

dSi(t)
Si(t)

= µi dt + σi dXi(t), i = 1, . . . , d, (3.31)

where each Xi is a standard one-dimensional Brownian motion and Xi(t)
and Xj(t) have correlation ρij . If we define a d × d matrix Σ by setting
Σij = σiσjρij , then (σ1X1, . . . , σdXd) ∼ BM(0, Σ). In this case we abbreviate
the process S = (S1, . . . , Sd) as GBM(µ, Σ) with µ = (µ1, . . . , µd). In a con-
venient abuse of terminology, we refer to µ as the drift vector of S, to Σ as its
covariance matrix and to the matrix with entries ρij as its correlation matrix;
the actual drift vector is (µ1S1(t), . . . , µdSd(t)) and the covariances are given
by

Cov[Si(t), Sj(t)] = Si(0)Sj(0)e(µi+µj)t (eρijσiσj − 1) .

This follows from the representation

Si(t) = Si(0)e(µi− 1
2σ2

i )t+σiXi(t), i = 1, . . . , d.

Recall that a Brownian motion BM(0, Σ) can be represented as AW (t)
with W a standard Brownian motion BM(0, I) and A any matrix for which
AA� = Σ. We may apply this to (σ1X1, . . . , σdXd) and rewrite (3.31) as

dSi(t)
Si(t)

= µi dt + ai dW (t), i = 1, . . . , d, (3.32)

with ai the ith row of A. A bit more explicitly, this is

dSi(t)
Si(t)

= µi dt +
d∑

j=1

Aij dWj(t), i = 1, . . . , d.

This representation leads to a simple algorithm for simulating GBM(µ, Σ)
at times 0 = t0 < t1 < · · · < tn:

Si(tk+1) = Si(tk)e(µi−1
2 σ2

i )(tk+1−tk)+
√

tk+1−tk

∑d

j=1
AijZk+1,j , i = 1, . . . , d,

(3.33)
k = 0, . . . , n − 1, where Zk = (Zk1, . . . , Zkd) ∼ N(0, I) and Z1, Z2, . . . , Zn

are independent. As usual, choosing A to be the Cholesky factor of Σ can
reduce the number of multiplications and additions required at each step.
Notice that (3.33) is essentially equivalent to exponentiating both sides of the
recursion (3.15); indeed, all methods for simulating BM(µ, Σ) provide methods
for simulating GBM(µ, Σ) (after replacement of µi by µi − 1

2σ2
i ).

The discussion of the choice of the drift parameter µ in Section 3.2.2 applies
equally well to each µi in pricing options on multiple underlying assets. Often,
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µi = r − δi where r is the risk-free interest rate and δi is the dividend yield
on the ith asset Si.

We list a few examples of option payoffs depending on multiple assets:

◦ Spread option. A call option on the spread between two assets S1, S2 has
payoff

([S1(T ) − S2(T )] − K)+

with K a strike price. For example, crack spread options traded on the New
York Mercantile Exchange are options on the spread between heating oil
and crude oil futures.

◦ Basket option. A basket option is an option on a portfolio of underlying
assets and has a payoff of, e.g.,

([c1S1(T ) + c2S2(T ) + · · · + cdSd(T )] − K)+.

Typical examples would be options on a portfolio of related assets — bank
stocks or Asian currencies, for instance.

◦ Outperformance option. These are options on the maximum or minimum of
multiple assets and have payoffs of, e.g., the form

(max{c1S1(T ), c2S2(T ), · · · , cdSd(T )} − K)+.

◦ Barrier options. A two-asset barrier option may have a payoff of the form

1{ min
i=1,...,n

S2(ti) < b}(K − S1(T ))+;

This is a down-and-in put on S1 that knocks in when S2 drops below a
barrier at b. Many variations on this basic structure are possible. In this
example, one may think of S1 as an individual stock and S2 as the level
of an equity index: the put on the stock is knocked in only if the market
drops.

◦ Quantos. Quantos are options sensitive both to a stock price and an ex-
change rate. For example, consider an option to buy a stock denominated
in a foreign currency with the strike price fixed in the foreign currency but
the payoff of the option to be made in the domestic currency. Let S1 de-
note the stock price and S2 the exchange rate, expressed as the quantity of
domestic currency required per unit of foreign currency. Then the payoff of
the option in the domestic currency is given by

S2(T )(S1(T ) − K)+. (3.34)

The payoff (
S1(T ) − K

S2(T )

)+

corresponds to a quanto in which the level of the strike is fixed in the do-
mestic currency and the payoff of the option is made in the foreign currency.
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Change of Numeraire

The pricing of an option on two or more underlying assets can sometimes
be transformed to a problem with one less underlying asset (and thus to a
lower-dimensional problem) by choosing one of the assets to be the numeraire.
Consider, for example, an option to exchange a basket of assets for another
asset with payoff (

d−1∑
i=1

ciSi(T ) − cdSd(T )

)+

,

for some constants ci. The price of the option is given by

e−rT E

(d−1∑
i=1

ciSi(T ) − cdSd(T )

)+
 , (3.35)

the expectation taken under the risk-neutral measure. Recall that this is the
measure associated with the numeraire asset β(t) = ert and is characterized
by the property that the processes Si(t)/β(t), i = 1, . . . , d, are martingales
under this measure.

As explained in Section 1.2.3, choosing a different asset as numeraire —
say Sd — means switching to a probability measure under which the processes
Si(t)/Sd(t), i = 1, . . . , d − 1, and β(t)/Sd(t) are martingales. More precisely,
if we let Pβ denote the risk-neutral measure, the new measure PSd

is defined
by the likelihood ratio process (cf. Appendix B.4)(

dPSd

dPβ

)
t

=
Sd(t)
β(t)

β(0)
Sd(0)

. (3.36)

Through this change of measure , the option price (3.35) can be expressed
as

e−rT ESd

(d−1∑
i=1

ciSi(T ) − cdSd(T )

)+(
dPβ

dPSd

)
T


= e−rT ESd

(d−1∑
i=1

ciSi(T ) − cdSd(T )

)+(
β(T )Sd(0)
Sd(T )β(0)

)
= Sd(0)ESd

(d−1∑
i=1

ci
Si(T )
Sd(T )

− cd

)+
 ,

with ESd
denoting expectation under PSd

. From this representation it becomes
clear that only the d − 1 ratios Si(T )/Sd(T ) (and the constant Sd(0)) are
needed to price this option under the new measure. We thus need to determine
the dynamics of these ratios under the new measure.
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Using (3.32) and (3.36), we find that(
dPSd

dPβ

)
t

= exp
(
− 1

2σ2
d + adW (t)

)
.

Girsanov’s Theorem (see Appendix B.4) now implies that the process

W d(t) = W (t) − a�
d t

is a standard Brownian motion under PSd
. Thus, the effect of changing nu-

meraire is to add a drift a� to W . The ratio Si(t)/Sd(t) is given by

Si(t)
Sd(t)

=
Si(0)
Sd(0)

exp
(
− 1

2σ2
i t + 1

2σ2
dt + (ai − ad)W (t)

)
=

Si(0)
Sd(0)

exp
(
− 1

2σ2
i t + 1

2σ2
dt + (ai − ad)(W d(t) + a�

d )
)

=
Si(0)
Sd(0)

exp
(
− 1

2 (ai − ad)(ai − ad)� + (ai − ad)W d(t)
)
,

using the identities aja
�
j = σ2

j , j = 1, . . . , d, from the definition of the aj in
(3.32). Under PSd

, the scalar process (ai − ad)W d(t) is a Brownian motion
with drift 0 and diffusion coefficient (ai − ad)(ai − ad)�. This verifies that the
ratios Si/Sd are martingales under PSd

and also that (S1/Sd, . . . , Sd−1/Sd)
remains a multivariate geometric Brownian motion under the new measure. It
is thus possible to price the option by simulating just this (d−1)-dimensional
process of ratios rather than the original d-dimensional process of asset prices.

This device would not have been effective in the example above if the
payoff in (3.35) had instead been(

d∑
i=1

ciSi(T ) − K

)+

with K a constant. In this case, dividing through by Sd(T ) would have pro-
duced a term K/Sd(T ) and would thus have required simulating this ratio as
well as Si/Sd, i = 1, . . . , d − 1. What, then, is the scope of this method? If
the payoff of an option is given by g(S1(T ), . . . , Sd(T )), then the property we
need is that g be homogeneous of degree 1, meaning that

g(αx1, . . . , αxd) = αg(x1, . . . , xd)

for all scalars α and all x1, . . . , xd. For in this case we have

g(S1(T ), . . . , Sd(T ))
Sd(T )

= g(S1(T )/Sd(T ), . . . , Sd−1(T )/Sd(T ), 1)

and taking one of the underlying assets as numeraire does indeed reduce by
one the relevant number of underlying stochastic variables. See Jamshidian
[197] for a more general development of this observation.
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3.3 Gaussian Short Rate Models

This section and the next develop methods for simulating some simple but
important stochastic interest rate models. These models posit the dynamics
of an instantaneous continuously compounded short rate r(t). An investment
in a money market account earning interest at rate r(u) at time u grows from
a value of 1 at time 0 to a value of

β(t) = exp
(∫ t

0

r(u) du

)
at time t. Though this is now a stochastic quantity, it remains the numeraire
for risk-neutral pricing. The price at time 0 of a derivative security that pays
X at time T is the expectation of X/β(T ), i.e.,

E

[
exp

(
−
∫ T

0

r(u) du

)
X

]
, (3.37)

the expectation taken with respect to the risk-neutral measure. In particular,
the time-0 price of a bond paying 1 at T is given by

B(0, T ) = E

[
exp

(
−
∫ T

0

r(u) du

)]
. (3.38)

We focus primarily on the dynamics of the short rate under the risk-neutral
measure.

The Gaussian models treated in this section offer a high degree of tractabil-
ity. Many simple instruments can be priced in closed form in these models or
using deterministic numerical methods. Some extensions of the basic models
and some pricing applications do, however, require simulation for the calcu-
lation of expressions of the form (3.37). The tractability of the models offers
opportunities for increasing the accuracy of simulation.

3.3.1 Basic Models and Simulation

The classical model of Vasicek [352] describes the short rate through an
Ornstein-Uhlenbeck process (cf. Karatzas and Shreve [207], p.358)

dr(t) = α(b − r(t)) dt + σ dW (t). (3.39)

Here, W is a standard Brownian motion and α, b, and σ are positive constants.
Notice that the drift in (3.39) is positive if r(t) < b and negative if r(t) > b;
thus, r(t) is pulled toward level b, a property generally referred to as mean
reversion. We may interpret b as a long-run interest rate level and α as the
speed at which r(t) is pulled toward b. The mean-reverting form of the drift is
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an essential feature of the Ornstein-Uhlenbeck process and thus of the Vasicek
model.

The continuous-time Ho-Lee model [185] has

dr(t) = g(t) dt + σ dW (t) (3.40)

with g a deterministic function of time. Both (3.39) and (3.40) define Gaussian
processes, meaning that the joint distribution of r(t1), . . . , r(tn) is multivariate
normal for any t1, . . . , tn. Both define Markov processes and are special cases
of the general Gaussian Markov process specified by

dr(t) = [g(t) + h(t)r(t)] dt + σ(t) dW (t), (3.41)

with g, h, and σ all deterministic functions of time. Natural extensions of
(3.39) and (3.40) thus allow σ, b, and α to vary with time. Modeling with the
Vasicek model when b in particular is time-varying is discussed in Hull and
White [190].

The SDE (3.41) has solution

r(t) = eH(t)r(0) +
∫ t

0

eH(t)−H(s)g(s) ds +
∫ t

0

eH(t)−H(s)σ(s) dW (s),

with

H(t) =
∫ t

0

h(s) ds,

as can be verified through an application of Itô’s formula. Because this pro-
duces a Gaussian process, simulation of r(t1), . . . , r(tn) is a special case of the
general problem of sampling from a multivariate normal distribution, treated
in Section 2.3. But it is a sufficiently interesting special case to merit consid-
eration. To balance tractability with generality, we will focus on the Vasicek
model (3.39) with time-varying b and on the Ho-Lee model (3.40). Similar
ideas apply to the general case (3.41).

Simulation

For the Vasicek model with time-varying b, the general solution above spe-
cializes to

r(t) = e−αtr(0) + α

∫ t

0

e−α(t−s)b(s) ds + σ

∫ t

0

e−α(t−s) dW (s). (3.42)

Similarly, for any 0 < u < t,

r(t) = e−α(t−u)r(u) + α

∫ t

u

e−α(t−s)b(s) ds + σ

∫ t

u

e−α(t−s) dW (s).

From this it follows that, given r(u), the value r(t) is normally distributed
with mean
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e−α(t−u)r(u) + µ(u, t), µ(u, t) ≡ α

∫ t

u

e−α(t−s)b(s) ds (3.43)

and variance

σ2
r (u, t) ≡ σ2

∫ t

u

e−2α(t−s) ds =
σ2

2α

(
1 − e−2α(t−u)

)
. (3.44)

To simulate r at times 0 = t0 < t1 < · · · < tn, we may therefore set

r(ti+1) = e−α(ti+1−ti)r(ti) + µ(ti, ti+1) + σr(ti, ti+1)Zi+1, (3.45)

with Z1, . . . , Zn independent draws from N(0, 1).
This algorithm is an exact simulation in the sense that the distribution

of the r(t1), . . . , r(tn) it produces is precisely that of the Vasicek process at
times t1, . . . , tn for the same value of r(0). In contrast, the slightly simpler
Euler scheme

r(ti+1) = r(ti) + α(b(ti) − r(ti))(ti+1 − ti) + σ
√

ti+1 − tiZi+1

entails some discretization error. Exact simulation of the Ho-Lee process (3.40)
is a special case of the method in (3.4) for simulating a Brownian motion with
time-varying drift.

In the special case that b(t) ≡ b, the algorithm in (3.45) simplifies to

r(ti+1) = e−α(ti+1−ti)r(ti)+b(1−e−α(ti+1−ti))+σ

√
1
2α

(
1 − e−2α(ti+1−ti)

)
Zi+1.

(3.46)
The Euler scheme is then equivalent to making the approximation ex ≈ 1 + x
for the exponentials in this recursion.

Evaluation of the integral defining µ(ti, ti+1) and required in (3.45) may
seem burdensome. The effort involved in evaluating this integral clearly de-
pends on the form of the function b(t) so it is worth discussing how this
function is likely to be specified in practice. Typically, the flexibility to make
b vary with time is used to make the dynamics of the short rate consistent
with an observed term structure of bond prices. The same is true of the func-
tion g in the Ho-Lee model (3.40). We return to this point in Section 3.3.2,
where we discuss bond prices in Gaussian models.

Stationary Version

Suppose b(t) ≡ b and α > 0. Then from (3.43) we see that

E[r(t)] = e−αtr(0) + (1 − e−αt)b → b as t → ∞,

so the process r(t) has a limiting mean. It also has a limiting variance given
(via (3.44)) by
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lim
t→∞

Var[r(t)] = lim
t→∞

σ2

2α

(
1 − e−2αt

)
=

σ2

2α
.

In fact, r(t) converges in distribution to a normal distribution with this mean
and variance, in the sense that for any x ∈ �

P (r(t) ≤ x) → Φ
(

x − b

σ/
√

2α

)
,

with Φ the standard normal distribution. The fact that r(t) has a limiting
distribution is a reflection of the stabilizing effect of mean reversion in the drift
and contrasts with the long-run behavior of, for example, geometric Brownian
motion.

The limiting distribution of r(t) is also a stationary distribution in the
sense that if r(0) is given this distribution then every r(t), t > 0, has this
distribution as well. Because (3.46) provides an exact discretization of the
process, the N(b, σ2/2α) distribution is also stationary for the discretized
process. To simulate a stationary version of the process, it therefore suffices
to draw r(0) from this normal distribution and then proceed as in (3.46).

3.3.2 Bond Prices

As already noted, time-dependent drift parameters are typically used to make
a short rate model consistent with an observed set of bond prices. Implemen-
tation of the simulation algorithm (3.45) is thus linked to the calibration of the
model through the choice of the function b(t). The same applies to the func-
tion g(t) in the Ho-Lee model and as this case is slightly simpler we consider
it first.

Our starting point is the bond-pricing formula (3.38). The integral of r(u)
from 0 to T appearing in that formula is normally distributed because r(u)
is a Gaussian process. It follows that the bond price is the expectation of
the exponential of a normal random variable. For a normal random variable
X ∼ N(m, v2), we have E[exp(X)] = exp(m + (v2/2)), so

E

[
exp

(
−
∫ T

0

r(t) dt

)]
= exp

(
−E

[∫ T

0

r(t) dt

]
+ 1

2Var

[∫ T

0

r(t) dt

])
.

(3.47)
To find the price of the bond we therefore need to find the mean and variance
of the integral of the short rate.

In the Ho-Lee model, the short rate is given by

r(t) = r(0) +
∫ t

0

g(s) ds + σW (t)

and its integral by
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0

r(u) du = r(0)T +
∫ T

0

∫ u

0

g(s) ds du + σ

∫ T

0

W (u) du.

This integral has mean

r(0)T +
∫ T

0

∫ u

0

g(s) ds du

and variance

Var

[
σ

∫ T

0

W (u) du

]
= 2σ2

∫ T

0

∫ t

0

Cov[W (u), W (t)] du dt

= 2σ2

∫ T

0

∫ t

0

u du dt

=
1
3
σ2T 3. (3.48)

Substituting these expressions in (3.47), we get

B(0, T ) = E

[
exp

(
−
∫ T

0

r(u) du

)]

= exp

(
−r(0)T −

∫ T

0

∫ u

0

g(s) ds du +
σ2T 3

6

)
.

If we are given a set of bond prices B(0, T ) at time 0, our objective is to
choose the function g so that this equation holds.

To carry this out we can write

B(0, T ) = exp

(
−
∫ T

0

f(0, t) dt

)
,

with f(0, t) the instantaneous forward rate for time t as of time 0 (cf. Appen-
dix C). The initial forward curve f(0, T ) captures the same information as
the initial bond prices. Equating the two expressions for B(0, T ) and taking
logarithms, we find that

r(0)T +
∫ T

0

∫ u

0

g(s) ds du − σ2T 3

6
=
∫ T

0

f(0, t) dt.

Differentiating twice with respect to the maturity argument T , we find that

g(t) =
∂

∂T
f(0, T )

∣∣∣∣
T=t

+ σ2t. (3.49)

Thus, bond prices produced by the Ho-Lee model will match a given set of
bond prices B(0, T ) if the function g is tied to the initial forward curve f(0, T )
in this way; i.e., if we specify
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dr(t) =
(

∂

∂T
f(0, T )

∣∣∣∣
T=t

+ σ2t

)
dt + σ dW (t). (3.50)

A generic simulation of the Ho-Lee model with drift function g can be
written as

r(ti+1) = r(ti) +
∫ ti+1

ti

g(s) ds + σ
√

ti+1 − tiZi+1,

with Z1, Z2, . . . independent N(0, 1) random variables. With g chosen as in
(3.49), this simplifies to

r(ti+1) = r(ti) + [f(0, ti+1) − f(0, ti)] +
σ2

2
[t2i+1 − t2i ] + σ

√
ti+1 − tiZi+1.

Thus, no integration of the drift function g is necessary; to put it another
way, whatever integration is necessary must already have been dealt with in
choosing the forward curve f(0, t) to match a set of bond prices.

The situation is even simpler if we require that our simulated short rate
be consistent only with bonds maturing at the simulation times t1, . . . , tn. To
satisfy this requirement we can weaken (3.49) to the condition that∫ ti+1

ti

g(s) ds = f(0, ti+1) − f(0, ti) +
σ2

2
[t2i+1 − t2i ].

Except for this constraint, the choice of g is immaterial — we could take it to
be continuous and piecewise linear, for example. In fact, we never even need
to specify g because only its integral over the intervals (ti, ti+1) influence the
values of r on the time grid t1, . . . , tn.

Bonds in the Vasicek Model

A similar if less explicit solution applies to the Vasicek model. The integral
of the short rate is again normally distributed; we need to find the mean and
variance of this integral to find the price of a bond using (3.47). Using (3.42),
for the mean we get

E

[∫ T

0

r(t) dt

]
=
∫ T

0

E[r(t)] dt

=
1
α

(1 − e−αT )r(0) + α

∫ T

0

∫ t

0

e−α(t−s)b(s) ds dt. (3.51)

For the variance we have

Var

[∫ T

0

r(t) dt

]
= 2
∫ T

0

∫ t

0

Cov[r(t), r(u)] du dt. (3.52)
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From (3.42) we get, for u ≤ t,

Cov[r(t), r(u)] = σ2

∫ u

0

e−α(t−s)e−α(u−s) ds

=
σ2

2α

(
eα(u−t) − e−α(u+t)

)
. (3.53)

Integrating two more times as required for (3.52) gives

Var

[∫ T

0

r(t) dt

]
=

σ2

α2

[
T +

1
2α

(
1 − e−2αT

)
+

2
α

(
e−αT − 1

)]
. (3.54)

By combining (3.51) and (3.54) as in (3.47), we arrive at an expression for the
bond price B(0, T ).

Observe that (3.54) does not depend on r(0) and (3.51) is a linear trans-
formation of r(0). If we set

A(t, T ) =
1
α

(
1 − e−α(T−t)

)
and

C(t, T ) = −α

∫ T

t

∫ u

t

e−α(u−s)b(s) ds du

+
σ2

2α2

[
(T − t) +

1
2α

(
1 − e−2α(T−t)

)
+

2
α

(
e−α(T−t) − 1

)]
,

then substituting (3.51) and (3.54) in (3.47) produces

B(0, T ) = exp(−A(0, T )r(0) + C(0, T )).

In fact, the same calculations show that

B(t, T ) = exp(−A(t, T )r(t) + C(t, T )). (3.55)

In particular, log B(t, T ) is a linear transformation of r(t). This feature has
been generalized by Brown and Schaefer [71] and Duffie and Kan [101] to what
is generally referred to as the affine class of interest rate models.

As in our discussion of the Ho-Lee model, the function b(s) can be chosen
to match a set of prices B(0, T ) indexed by T . If we are concerned only with
matching a finite set of bond prices B(0, t1), . . . , B(0, tn), then only the values
of the integrals ∫ ti+1

ti

e−α(ti+1−s)b(s) ds

need to be specified. These are precisely the terms µ(ti, ti+1) needed in the
simulation algorithm (3.45). Thus, these integrals are by-products of fitting
the model to a term structure and not additional computations required solely
for the simulation.
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Joint Simulation with the Discount Factor

Most applications that call for simulation of a short rate process r(t) also
require values of the discount factor

1
β(t)

= exp
(
−
∫ t

0

r(u) du

)
or, equivalently, of

Y (t) =
∫ t

0

r(u) du.

Given values r(0), r(t1), . . . , r(tn) of the short rate, one can of course generate
approximate values of Y (ti) using

i∑
j=1

r(tj−1)[tj − tj−1], t0 = 0,

or some other approximation to the time integral. But in a Gaussian model,
the pair (r(t), Y (t)) are jointly Gaussian and it is often possible to simulate
paths of the pair without discretization error. To carry this out we simply
need to find the means, variances, and covariance of the increments of r(t)
and Y (t).

We have already determined (see (3.45)) that, given r(ti),

r(ti+1) ∼ N
(
e−α(ti+1−ti)r(ti) + µ(ti, ti+1), σ2

r (ti, ti+1)
)

.

From the same calculations used in (3.51) and (3.54), we find that, given r(ti)
and Y (ti),

Y (ti+1) ∼ N(Y (ti) + µY (ti, ti+1), σ2
Y (ti, ti+1)),

with

µY (ti, ti+1) =
1
α

(
1 − e−α(ti+1−ti)

)
r(ti) + α

∫ ti+1

ti

∫ u

ti

e−α(u−s)b(s) ds du

and

σ2
Y (ti, ti+1) =
σ2

α2

(
(ti+1 − ti) +

1
2α

(
1 − e−2α(ti+1−ti)

)
+

2
α

(
e−α(ti+1−ti) − 1

))
.

It only remains to determine the conditional covariance between r(ti+1)
and Y (ti+1) given (r(ti), Y (ti)). For this we proceed as follows:
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Cov [r(t), Y (t)] =
∫ t

0

Cov[r(t), r(u)] du

=
σ2

2α

∫ t

0

eα(u−t) − e−α(u+t) du

=
σ2

2α2

[
1 + e−2αt − 2e−αt

]
.

The required covariance is thus given by

σrY (ti, ti+1) =
σ2

2α

[
1 + e−2α(ti+1−ti) − 2e−α(ti+1−ti)

]
.

The corresponding correlation is

ρrY (ti, ti+1) =
σrY (ti, ti+1)

σr(ti, ti+1)σY (ti, ti+1)
.

With this notation, the pair (r, Y ) can be simulated at times t1, . . . , tn without
discretization error using the following algorithm:

r(ti+1) = e−α(ti+1−ti)r(ti) + µ(ti, ti+1) + σr(ti, ti+1)Z1(i + 1)
Y (ti+1) = Y (ti) + µY (ti, ti+1) + σY (ti, ti+1)[ρrY (ti, ti+1)Z1(i + 1)

+
√

1 − ρ2
rY (ti, ti+1)Z2(i + 1)],

where (Z1(i), Z2(i)), i = 1, . . . , n, are independent standard bivariate normal
random vectors.

Change of Numeraire

Thus far, we have considered the dynamics of the short rate r(t) only under
the risk-neutral measure. Recall that the numeraire asset associated with the
risk-neutral measure is β(t) = exp(

∫ t

0 r(u) du) and the defining feature of this
probability measure is that it makes the discounted bond prices B(t, T )/β(t)
martingales. In fact, the dynamics of the bond prices under the Gaussian
models we have considered are of the form (for fixed T )

dB(t, T )
B(t, T )

= r(t) dt − A(t, T )σ dW (t) (3.56)

with A(t, T ) deterministic; this follows from (3.55). The solution of this equa-
tion is

B(t, T ) = B(0, T ) exp
(∫ t

0

[r(u) − 1
2σ2A2(u, T )] du − σ

∫ t

0

A(u, T ) dW (u)
)

,

from which it is evident that
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B(t, T )
β(t)

= B(0, T ) exp
(
− 1

2σ2

∫ t

0

A2(u, T ) du − σ

∫ t

0

A(u, T ) dW (u)
)
(3.57)

is an exponential martingale.
As discussed in Section 1.2.3, the forward measure for any date TF is the

measure associated with taking the TF -maturity bond B(t, TF ) as numeraire
asset. The defining feature of the forward measure is that it makes the ratios
B(t, T )/B(t, TF ) martingales for T < TF . It is defined by the likelihood ratio
process (

dPTF

dPβ

)
t

=
B(t, TF )β(0)
β(t)B(0, TF )

,

and this is given in (3.57) up to a factor of 1/B(0, TF ). From Girsanov’s
Theorem, it follows that the process WTF defined by

dWTF (t) = dW (t) + σA(t, TF ) dt

is a standard Brownian motion under PTF . Accordingly, the dynamics of the
Vasicek model become

dr(t) = α(b(t) − r(t)) dt + σ dW (t)
= α(b(t) − r(t)) dt + σ (dWTF (t) − σA(t, TF ) dt)
= α(b(t) − σ2A(t, TF ) − r(t)) dt + σ dW TF (t). (3.58)

Thus, under the forward measure, the short rate process remains a Vasicek
process but the reversion level b(t) becomes b(t) − σ2A(t, TF ).

The process in (3.58) can be simulated using (3.45) with b(t) replaced by
b(t) − σ2A(t, TF ). In particular, we simulate WTF the way we would simu-
late any other standard Brownian motion. The simulation algorithm does not
“know” that it is simulating a Brownian motion under the forward measure
rather than under the risk-neutral measure.

Suppose we want to price a derivative security making a payoff of g(r(TF ))
at time TF . Under the risk-neutral measure, we would price the security by
computing

E

[
e
−
∫ TF

0
r(u) du

g(r(TF ))
]

.

In fact, g could be a function of the path of r(t) rather than just its terminal
value. Switching to the forward measure, this becomes

ETF

[
e
−
∫ TF

0
r(u) du

g(r(TF ))
(

dPβ

dPTF

)
TF

]

= ETF

[
e
−
∫ TF

0
r(u) du

g(r(TF ))
(

β(TF )B(0, TF )
B(TF , TF )β(0)

)]
= B(0, TF )ETF [g(r(TF ))] ,
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where ETF denotes expectation under the forward measure. Thus, we may
price the derivative security by simulating r(t) under the forward measure
PTF , estimating the expectation of g(r(TF )) and multiplying by B(0, TF ).
Notice that discounting in this case is deterministic — we do not need to
simulate a discount factor. This apparent simplification results from inclusion
of the additional term −σ2A(t, TF ) in the drift of r(t).

A consequence of working under the forward measure is that the simulation
prices the bond maturing at TF exactly: pricing this bond corresponds to tak-
ing g(r(TF )) ≡ 1. Again, this apparent simplification is really a consequence
of the form of the drift of r(t) under the forward measure.

3.3.3 Multifactor Models

A general class of Gaussian Markov processes in �d have the form

dX(t) = C(b − X(t)) dt + D dW (t) (3.59)

where C and D are d × d matrices, b and X(t) are in �d, W is a standard
d-dimensional Brownian motion, and X(0) is Gaussian or constant. Such a
process remains Gaussian and Markovian if the coefficients C, b, and D are
made time-varying but deterministic. The solution of (3.59) is

X(t) = e−CtX(0) +
∫ t

0

e−C(t−s)b ds +
∫ t

0

e−C(t−s)D dW (s),

from which it is possible to define an exact time-discretization similar to (3.45).
A model of the short rate process can be specified by setting r(t) = a�X(t)

with a ∈ �d (or with a deterministically time-varying). The elements of X(t)
are then interpreted as “factors” driving the evolution of the short rate. Be-
cause each X(t) is normally distributed, r(t) is normally distributed. However,
r(t) is not in general a Markov process: to make the future evolution of r in-
dependent of the past, we need to condition on the full state information X(t)
and not merely r(t).

Recall from (3.55) that in the Vasicek model (with constant or time-varying
coefficients), bond prices are exponentials of affine functions of the short rate.
A similar representation applies if the short rate has the form r(t) = a�X(t)
and X(t) is as in (3.59); in particular, we have

B(t, T ) = exp(−A(t, T )�X(t) + C(t, T ))

for some �d-valued function A(t, T ) and some scalar function C(t, T ). In the
single-factor setting, differentiating (3.55) and then simplifying leads to

dB(t, T )
B(t, T )

= r(t) dt − A(t, T )σ dW (t),

with σ the diffusion parameter of r(t). The instantaneous correlation between
the returns on bonds with maturities T1 and T2 is therefore
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A(t, T1)σ · A(t, T2)σ√
A2(t, T1)σ2

√
A2(t, T2)σ2

= 1.

In other words, all bonds are instantaneously perfectly correlated. In the mul-
tifactor setting, the bond price dynamics are given by

dB(t, T )
B(t, T )

= r(t) dt − A(t, T )�D dW (t).

The instantaneous correlation for maturities T1 and T2 is

A(t, T1)�DD�A(t, T2)
‖A(t, T1)�D‖‖A(t, T2)�D‖ ,

which can certainly take values other than 1. The flexibility to capture less
than perfect instantaneous correlation between bond returns is the primary
motivation for considering multifactor models.

Returning to the general formulation in (3.59), suppose that C can be
diagonalized in the sense that V CV −1 = Λ for some matrix V and diagonal
matrix Λ with diagonal entries λ1, . . . , λd. Suppose further that C is nonsin-
gular and define Y (t) = V X(t). Then

dY (t) = V dX(t)
= V [C(b − X(t) dt + D dW (t)]
= (V Cb − ΛY (t)) dt + V D dW (t)
= Λ(Λ−1V Cb − Y (t)) dt + V D dW (t)
= Λ(V b − Y (t)) dt + V D dW (t)
≡ Λ(b̃ − Y (t)) dt + dW̃ (t)

with W̃ a BM(0, Σ) process, Σ = V DD�V �. It follows that the components
of (Y1, . . . , Yd) satisfy

dYj(t) = λj(b̃j − Yj(t)) dt + dW̃j(t), j = 1, . . . , d. (3.60)

In particular, each Yj is itself a Markov process. The Yj remain coupled,
however, through the correlation across the components of W̃ . They can be
simulated as in (3.46) by setting

Yj(ti+1) =

eλj(ti+1−ti)Yj(ti) + (eλj(ti+1−ti) − 1)b̃j +

√
1

2λj

(
1 − e−2λj(ti+1−ti)

)
ξj(i + 1),

where ξ(1), ξ(2), . . . are independent N(0, Σ) random vectors, ξ(i) = (ξ1(i),
. . . , ξd(i)). Thus, when C is nonsingular and diagonalizable, simulation of
(3.59) can be reduced to a system of scalar simulations.
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As noted by Andersen and Andreasen [14], a similar reduction is possible
even if C is not diagonalizable, but at the expense of making all coefficients
time-dependent. If V (t) is a deterministic d×d matrix-valued function of time
and we set Y (t) = V (t)X(t), then

dY (t) = V̇ (t)X(t) dt + V (t)dX(t)
= [V̇ (t)X(t) + V (t)C(b − X(t))] dt + V (t)D dW (t),

where V̇ (t) denotes the time derivative of V (t). If we choose V (t) = exp([C −
I]t), then

V̇ (t) = V (t)C − V (t)

and thus

dY (t) = [V (t)Cb − V (t)X(t)] dt + V (t)D dW (t)
= (b̃(t) − Y (t)) dt + D̃(t) dW (t), (3.61)

with b̃(t) = V (t)Cb and D̃(t) = V (t)D. Notice that the drift of each com-
ponent Yi(t) depends only on that Yi(t). This transformation therefore de-
couples the drifts of the components of the state vector, making each Yi a
Markov process, though the components remain linked through the diffusion
term. We can recover the original state vector by setting X(t) = V (t)−1Y (t)
because V (t) is always invertible. The seemingly special form of the dynamics
in (3.61) is thus no less general than the dynamics in (3.59) with time-varying
coefficients.

3.4 Square-Root Diffusions

Feller [118] studied a class of processes that includes the square-root diffusion

dr(t) = α(b − r(t)) dt + σ
√

r(t) dW (t), (3.62)

with W a standard one-dimensional Brownian motion. We consider the case
in which α and b are positive. If r(0) > 0, then r(t) will never be negative; if
2αb ≥ σ2, then r(t) remains strictly positive for all t, almost surely.

This process was proposed by Cox, Ingersoll, and Ross [91] as a model
of the short rate, generally referred to as the CIR model. They developed a
general equilibrium framework in which if the change in production opportu-
nities is assumed to follow a process of this form, then the short rate does as
well. As with the Vasicek model, the form of the drift in (3.62) suggests that
r(t) is pulled towards b at a speed controlled by α. In contrast to the Vasicek
model, in the CIR model the diffusion term σ

√
r(t) decreases to zero as r(t)

approaches the origin and this prevents r(t) from taking negative values. This
feature of (3.62) is attractive in modeling interest rates.
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All of the coefficients in (3.62) could in principle be made time-dependent.
In practice, it can be particularly useful to replace the constant b with a
function of time and thus consider

dr(t) = α(b(t) − r(t)) dt + σ
√

r(t) dW (t). (3.63)

As with the Vasicek model, this extension is frequently used to make the bond
price function

T �→ E

[
exp

(
−
∫ T

0

r(u) du

)]
match a set of observed bond prices B(0, T ).

Although we stress the application of (3.63) to interest rate modeling, it
should be noted that this process has other financial applications. For example,
Heston [179] proposed a stochastic volatility model in which the price of an
asset S(t) is governed by

dS(t)
S(t)

= µ dt +
√

V (t) dW1(t) (3.64)

dV (t) = α(b − V (t)) dt + σ
√

V (t) dW2(t), (3.65)

where (W1, W2) is a two-dimensional Brownian motion. Thus, in Heston’s
model, the squared volatility V (t) follows a square-root diffusion. In addition,
the process in (3.63) is sometimes used to model a stochastic intensity for a
jump process in, for example, modeling default.

A simple Euler discretization of (3.62) suggests simulating r(t) at times
t1, . . . , tn by setting

r(ti+1) = r(ti) + α(b − r(ti))[ti+1 − ti] + σ
√

r(ti)+
√

ti+1 − tiZi+1, (3.66)

with Z1, . . . , Zn independent N(0, 1) random variables. Notice that we have
taken the positive part of r(ti) inside the square root; some modification of
this form is necessary because the values of r(ti) produced by Euler discretiza-
tion may become negative. We will see, however, that this issue can be avoided
(along with any other discretization error) by sampling from the exact tran-
sition law of the process.

3.4.1 Transition Density

The SDE (3.62) is not explicitly solvable the way those considered in Sec-
tions 3.2 and 3.3 are; nevertheless, the transition density for the process is
known. Based on results of Feller [118], Cox et al. [91] noted that the distri-
bution of r(t) given r(u) for some u < t is, up to a scale factor, a noncentral
chi-square distribution. This property can be used to simulate the process
(3.62). We follow the approach suggested by Scott [324].
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A noncentral chi-square random variable χ′2
ν (λ) with ν degrees of freedom

and noncentrality parameter λ has distribution

P (χ′2
ν (λ) ≤ y) = Fχ′2

ν (λ)(y)

≡ e−λ/2
∞∑

j=0

(1
2λ)j/j!

2(ν/2)+jΓ(ν
2 + j)

∫ y

0

z(ν/2)+j−1e−z/2 dz, (3.67)

for y > 0. The transition law of r(t) in (3.62) can be expressed as

r(t) =
σ2(1 − e−α(t−u))

4α
χ′2

d

(
4αe−α(t−u)

σ2(1 − e−α(t−u))
r(u)

)
, t > u, (3.68)

where
d =

4bα

σ2
. (3.69)

This says that, given r(u), r(t) is distributed as σ2(1 − e−α(t−u))/(4α) times
a noncentral chi-square random variable with d degrees of freedom and non-
centrality parameter

λ =
4αe−α(t−u)

σ2(1 − e−α(t−u))
r(u); (3.70)

equivalently,

P (r(t) ≤ y|r(u)) = Fχ′2
d

(λ)

(
4αy

σ2(1 − e−α(t−u))

)
,

with d as in (3.69), λ as in (3.70), and Fχ′2
d

(λ) as in (3.67). Thus, we can
simulate the process (3.62) exactly on a discrete time grid provided we can
sample from the noncentral chi-square distribution.

Like the Vasicek model, the square-root diffusion (3.62) has a limiting
stationary distribution. If we let t → ∞ in (3.68), we find that r(t) converges
in distribution to σ2/4α times a noncentral chi-square random variable with
d degrees of freedom and noncentrality parameter 0 (making it an ordinary
chi-square random variable). This is a stationary distribution in the sense that
if r(0) is drawn from this distribution, then r(t) has the same distribution for
all t.

Chi-Square and Noncentral Chi-Square

If ν is a positive integer and Z1, . . . , Zν are independent N(0, 1) random vari-
ables, then the distribution of

Z2
1 + Z2

2 + · · · + Z2
ν

is called the chi-square distribution with ν degrees of freedom. The symbol χ2
ν

denotes a random variable with this distribution; the prime in χ′2
ν (λ) empha-

sizes that this symbol refers to the noncentral case. The chi-square distribution
is given by
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P (χ2
ν ≤ y) =

1
2ν/2Γ(ν/2)

∫ y

0

e−z/2z(ν/2)−1 dz, (3.71)

where Γ(·) denotes the gamma function and Γ(n) = (n− 1)! if n is a positive
integer. This expression defines a valid probability distribution for all ν > 0
and thus extends the definition of χ2

ν to non-integer ν.
For integer ν and constants a1, . . . , aν , the distribution of

ν∑
i=1

(Zi + ai)2 (3.72)

is noncentral chi-square with ν degrees of freedom and noncentrality para-
meter λ =

∑ν
i=1 a2

i . This representation explains the term “noncentral.” The
distribution in (3.67) extends the definition to non-integer ν.

It follows from the representation in (3.72) that if ν > 1 is an integer, then

χ′2
ν (λ) = χ′2

1 (λ) + χ2
ν−1,

meaning that the two sides have the same distribution when the random
variables on the right are independent of each other. As discussed in Johnson
et al. [202, p.436], this representation is valid even for non-integer ν > 1. Thus,
to generate χ′2

ν (λ), ν > 1, it suffices to generate χ2
ν−1 and an independent

N(0, 1) random variable Z and to set

χ′2
ν (λ) = (Z +

√
λ)2 + χ2

ν−1. (3.73)

This reduces sampling of a noncentral chi-square to sampling of an ordinary
chi-square (and an independent normal) when ν > 1.

For any ν > 0, (3.67) indicates that a noncentral chi-square random vari-
able can be represented as an ordinary chi-square random variable with a
random degrees-of-freedom parameter. In more detail, if N is a Poisson ran-
dom variable with mean λ/2, then

P (N = j) = e−λ/2 (λ/2)j

j!
, j = 0, 1, 2, . . . .

Consider now a random variable χ2
ν+2N with N having this Poisson distribu-

tion. Conditional on N = j, the random variable has an ordinary chi-square
distribution with ν + 2j degrees of freedom:

P (χ2
ν+2N ≤ y|N = j) =

1
2(ν/2)+jΓ((ν/2) + j)

∫ y

0

e−z/2z(ν/2)+j−1 dz.

The unconditional distribution is thus given by

∞∑
j=0

P (N = j)P (χ2
ν+2N ≤ y|N = j) =

∞∑
j=0

e−λ/2 (λ/2)j

j!
P (χ2

ν+2j ≤ y),
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which is precisely the noncentral chi-square distribution in (3.67). We may
therefore sample χ′2

ν (λ) by first generating a Poisson random variable N and
then, conditional on N , sampling a chi-square random variable with ν + 2N
degrees of freedom. This reduces sampling of a noncentral chi-square to sam-
pling of an ordinary chi-square and a Poisson random variable. We discuss
methods for sampling from these distributions below. Figure 3.5 summarizes
their use in simulating the square-root diffusion (3.62).

Simulation of dr(t) = α(b − r(t)) dt + σ
√

r(t) dW (t)
on time grid 0 = t0 < t1 < · · · < tn with d = 4bα/σ2

Case 1: d > 1
for i = 0, . . . , n − 1

c ← σ2(1 − e−α(ti+1−ti))/(4α)

λ ← r(ti)(e
−α(ti+1−ti))/c

generate Z ∼ N(0, 1)
generate X ∼ χ2

d−1

r(ti+1) ← c[(Z +
√

λ)2 + X]
end

Case 2: d ≤ 1
for i = 0, . . . , n − 1

c ← σ2(1 − e−α(ti+1−ti))/(4α)

λ ← r(ti)(e
−α(ti+1−ti))/c

generate N ∼ Poisson(λ/2)
generate X ∼ χ2

d+2N

r(ti+1) ← cX
end

Fig. 3.5. Simulation of square-root diffusion (3.62) by sampling from the transition
density.

Figure 3.6 compares the exact distribution of r(t) with the distribution
produced by the Euler discretization (3.66) after a single time step. The com-
parison is based on α = 0.2, σ = 0.1, b = 5%, and r(0) = 4%; the left panel
takes t = 0.25 and the right panel takes t = 1. These values for the model
parameters are sensible for an interest rate model if time is measured in years,
so the values of t should be interpreted as a quarter of a year and a full year,
respectively. The figures suggest that the Euler discretization produces too
many values close to or below 0 and a mode to the right of the true mode.
The effect if particularly pronounced over the rather large time step t = 1.
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Fig. 3.6. Comparison of exact distribution (solid) and one-step Euler approximation
(dashed) for a square-root diffusion with α = 0.2, σ = 0.1, b = 5%, and r(0) = 4%.
The left panel compares distributions at t = 0.25, the right panel at t = 1.

3.4.2 Sampling Gamma and Poisson

The discussion leading to Figure 3.5 reduces the problem of simulating the
square-root diffusion (3.62) to one of sampling from a chi-square distribution
and possibly also the normal and Poisson distributions. We discussed sampling
from the normal distribution in Section 2.3; we now consider methods for
sampling from the chi-square and Poisson distributions.

Gamma Distribution

The gamma distribution with shape parameter a and scale parameter β has
density

f(y) = fa,β(y) =
1

Γ(a)βa
ya−1e−y/β , y ≥ 0. (3.74)

It has mean aβ and variance aβ2. Comparison with (3.71) reveals that the
chi-square distribution is the special case of scale parameter β = 2 and shape
parameter a = ν/2. We therefore consider the more general problem of gen-
erating samples from gamma distributions.

Methods for sampling from the gamma distribution typically distinguish
the cases a ≤ 1 and a > 1. For the application to the square-root diffusion
(3.62), the shape parameter a is given by d/2 with d as in (3.69). At least in
the case of an interest rate model, d would typically be larger than 2 so the
case a > 1 is most relevant. We include the case a ≤ 1 for completeness and
other potential applications. There is no loss of generality in fixing the scale
parameter β at 1: if X has the gamma distribution with parameters (a, 1),
then βX has the gamma distribution with parameters (a, β).

Cheng and Feast [83] develop a method based on a general approach to
random variate generation known as the ratio-of-uniforms method. The ratio-
of-uniforms method is closely related to the acceptance-rejection method dis-
cussed in Section 2.2.2. It exploits the following property. Suppose f is a
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nonnegative, integrable function on [0,∞); if (X, Y ) is uniformly distributed
over the set A = {(x, y) : x ≤

√
f(y/x)}, then the density of Y/X is propor-

tional to f . (See p.180 of Fishman [121] or p.59 of Gentle [136].) Suppose A
is contained in a bounded rectangle. Then to sample uniformly from A, we
can repeatedly sample pairs (X, Y ) uniformly over the rectangle and keep the
first one that satisfies X ≤

√
f(Y/X). The ratio-of-uniforms method delivers

Y/X as a sample from the density proportional to f .
To sample from the gamma density with a > 1, define

A =
{

(x, y) : 0 ≤ x ≤
√

[(y/x)a−1e−y/x]
}

.

This set is contained in the rectangle [0, x̄]× [0, ȳ] with x̄ = [(a− 1)/e](a−1)/2

and ȳ = [(a + 1)/e](a+1)/2. Sampling uniformly over this rectangle, the ex-
pected number of samples needed until one lands in A is given by the ratio of
the area of A to that of the rectangle. As shown in Fishman [121], this ratio
is O(

√
a), so the time required to generate a sample using this method grows

with the shape parameter. Cheng and Feast [83] and Fishman [121] develop
modifications of this basic approach that accelerate sampling. In Figure 3.7,
which is Fishman’s Algorithm GKM1, the first acceptance test is a fast check
that reduces the number of logarithmic evaluations. When many samples are
to be generated using the same shape parameter (as would be the case in the
application to the square-root diffusion), the constants in the setup step in
Figure 3.8 should be computed just once and then passed as arguments to
the sampling routine. For large values of the shape parameter a, Algorithm
GKM2 in Fishman [121] is faster than the method in Figure 3.7.

Setup: ā ← a − 1, b ← (a − (1/(6a)))/ā, m ← 2/ā, d ← m + 2
repeat

generate U1, U2 ∼ Unif[0,1]
V ← bU2/U1

if mU1 − d + V + (1/V ) ≤ 0, accept
elseif m log U1 − log V + V − 1 ≤ 0, accept

until accept
return Z ← āV

Fig. 3.7. Algorithm GKM1 from Fishman [121], based on Cheng and Feast [83], for
sampling from the gamma distribution with parameters (a, 1), a > 1.

Ahrens and Dieter [6] provide a fast acceptance-rejection algorithm for
the case a ≤ 1. Their method generates candidates by sampling from distri-
butions concentrated on [0, 1] and (1,∞) with appropriate probabilities. In
more detail, let p = e/(a + e) (e = exp(1)) and define
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g(z) =
{

paza−1, 0 ≤ z ≤ 1
(1 − p)e−z+1, z > 1.

This is a probability density; it is a mixture of the densities aza−1 on [0, 1] and
e−z+1 on (1,∞), with weights p and (1−p), respectively. We can sample from
g by sampling from each of these densities with the corresponding probabili-
ties. Each of these two densities is easily sampled using the inverse transform
method : for the density aza−1 on [0, 1] we can use U1/a, U ∼ Unif[0,1]; for the
density e−z+1 on (1,∞) we can use 1 − log(U). Samples from g are suitable
candidates for acceptance-rejection because the ratio fa,1(z)/g(z) with fa,1 a
gamma density as in (3.74) is bounded. Inspection of this ratio indicates that
a candidate Z in [0, 1] is accepted with probability e−Z and a candidate in
(1,∞) is accepted with probability Za−1. A global bound on the ratio is given
by

fa,1(z)/g(z) ≤ a + e

aeΓ(a)
≤ 1.39;

recall from Section 2.2.2 that the upper bound on this ratio determines the
expected number of candidates generated per accepted sample.

Figure 3.8 displays the method of Ahrens and Dieter [6]. The figure is based
on Algorithm GS* in Fishman [121] but it makes the acceptance tests more
explicit, if perhaps slightly slower. Notice that if the condition Y ≤ 1 fails to
hold, then Y is uniformly distributed over [1, b]; this means that (b − Y )/a
has the distribution of U/e, U ∼ Unif[0,1] and thus − log((b − Y )/a) has the
distribution of 1 − log(U).

Setup: b ← (a + e)/e
repeat

generate U1, U2 ∼ Unif[0,1]; Y ← bU1

if Y ≤ 1

Z ← Y 1/a

if U2 < exp(−Z), accept
otherwise Z ← − log((b − Y )/a)

if U2 ≤ Za−1, accept
until accept
return Z

Fig. 3.8. Ahrens-Dieter method for sampling from the gamma distribution with
parameters (a, 1), a ≤ 1.

Poisson Distribution

The Poisson distribution with mean θ > 0 is given by
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P (N = k) = e−θ θk

k!
, k = 0, 1, 2, . . . . (3.75)

We abbreviate this by writing N ∼ Poisson(θ). This is the distribution of
the number of events in [0, 1] when the times between consecutive events are
independent and exponentially distributed with mean 1/θ. Thus, a simple
method for generating Poisson samples is to generate exponential random
variables Xi = − log(Ui)/θ from independent uniforms Ui and then take N to
be the largest integer for which X1+· · ·+XN ≤ 1. This method is rather slow,
especially if θ is large. In the intended application in Figure 3.5, the mean of
the Poisson random variable — equal to half the noncentrality parameter in
the transition density of the square-root diffusion — could be quite large for
plausible parameter values.

An alternative is to use the inverse transform method. For discrete dis-
tributions, this amounts to a sequential search for the smallest n at which
F (n) ≤ U , where F denotes the cumulative distribution function and U
is Unif[0,1]. In the case of a Poisson distribution, F (n) is calculated as
P (N = 0) + · · · + P (N = n); rather than calculate each term in this sum
using (3.75), we can use the relation P (N = k + 1) = P (N = k)θ/(k + 1).
Figure 3.9 illustrates the method.

p ← exp(−θ), F ← p
N ← 0
generate U ∼ Unif[0,1]
while U > F

N ← N + 1
p ← pθ/N
F ← F + p

return N

Fig. 3.9. Inverse transform method for sampling from Poisson(θ), the Poisson dis-
tribution with mean θ.

3.4.3 Bond Prices

Cox, Ingersoll, and Ross [91] derived an expression for the price of a bond

B(t, T ) = E

[
exp

(
−
∫ T

t

r(u) du

)
|r(t)

]

when the short rate evolves according to (3.62). The bond price has the ex-
ponential affine form
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B(t, T ) = e−A(t,T )r(t)+C(t,T )

as in a Gaussian short rate model, but with

A(t, T ) =
2(eγ(T−t) − 1)

(γ + α)(eγ(T−t) − 1) + 2γ

and

C(t, T ) =
2αb

σ2
log
(

2γe(α+γ)(T−t)/2

(γ + α)(eγ(T−t) − 1) + 2γ

)
,

and γ =
√

α2 + 2σ2.
This expression for the bond price is a special case of a more general

result, given as Proposition 6.2.5 in Lamberton and Lapeyre [218]. This result
gives the bivariate Laplace transform of the short rate and its integral: for
nonnegative λ, θ,

E

[
exp

(
−λr(T ) − θ

∫ T

t

r(u) du

)
|r(t)

]
= exp(−αbψ1(T − t)− r(t)ψ2(T − t))

(3.76)
with

ψ1(s) = − 2
σ2

log
(

2γ(θ)e(α+γ(θ))s/2

σ2λ(eγ(θ)s − 1) + γ(θ) − α + eγ(θ)s(γ(θ) + α)

)
,

and

ψ2(s) =
λ(γ(θ) + α + eγ(θ)s(γ(θ) − α)) + 2θ(eγ(θ)s − 1)
σ2λ(eγ(θ)s − 1) + γ(θ) − α + eγ(θ)s(γ(θ) + α)

and γ(θ) =
√

α2 + 2σ2θ. The bond pricing formula is the special case λ = 0,
θ = 1.

The bivariate Laplace transform in (3.76) characterizes the joint distri-
bution of the short rate and its integral. This makes it possible, at least
in principle, to sample from the joint distribution of (r(ti+1), Y (ti+1) given
(r(ti), Y (ti)) with

Y (t) =
∫ t

0

r(u) du.

As explained in Section 3.3.2, this would allow exact simulation of the short
rate and the discount factor on a discrete time grid. In the Gaussian setting,
the joint distribution of r(t) and Y (t) is normal and therefore easy to sample;
in contrast, the joint distribution determined by (3.76) is not explicitly avail-
able. Scott [324] derives the Laplace transform of the conditional distribution
of Y (ti+1)− Y (ti) given r(ti) and r(ti+1), and explains how to use numerical
transform inversion to sample from the conditional distribution. Through this
method, he is able to simulate (r(ti), Y (ti)) without discretization error.
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Time-Dependent Coefficients

As noted earlier, the parameter b is often replaced with a deterministic func-
tion of time b(t) in order to calibrate the model to an initial term structure,
resulting in the dynamics specified in (3.63). In this more general setting, a
result of the form in (3.76) continues to hold but with functions ψ1 and ψ2 de-
pending on both t and T rather than merely on T−t. Moreover, these functions
will not in general be available in closed form, but are instead characterized by
a system of ordinary differential equations. By solving these differential equa-
tions numerically, it then becomes possible to compute bond prices. Indeed,
bond prices continue to have the exponential affine form, though the functions
A(t, T ) and C(t, T ) in the exponent are no longer available explicitly but are
also determined through ordinary differential equations (see Duffie, Pan, Sin-
gleton [105] and Jamshidian [195]). This makes it possible to use a numerical
procedure to choose the function b(t) to match an initial set of bond prices
B(0, T ).

Once the constant b is replaced with a function of time, the transition
density of the short rate process ceases to admit the relatively tractable form
discussed in Section 3.4.1. One can of course simulate using an Euler scheme
of the form

r(ti+1) = r(ti) + α(b(ti) − r(ti))[ti+1 − ti] + σ
√

r(ti)+
√

ti+1 − tiZi+1,

with independent Zi ∼ N(0, 1). However, it seems preferable (at least from a
distributional perspective) to replace this normal approximation to the tran-
sition law with a noncentral chi-square approximation. For example, if we
let

b̄(ti) =
1

ti+1 − ti

∫ ti+1

ti

b(s) ds

denote the average level of b(t) over [ti, ti+1] (assumed positive), then (3.68)
suggests simulating by setting

r(ti+1) =
σ2(1 − e−α(ti+1−ti))

4α
χ′2

d

(
4αe−α(ti+1−ti)

σ2(1 − e−α(ti+1−ti))
r(ti)

)
, (3.77)

with d = 4b̄α/σ2. We can sample from the indicated noncentral chi-square
distribution using the methods discussed in Section 3.4.1. However, it must be
stressed that whereas (3.68) is an exact representation in the case of constant
coefficients, (3.77) is only an approximate procedure. If it suffices to choose
the function b(t) to match only bonds maturing at the simulation grid dates
t1, . . . , tn, then it may be possible to choose b to be constant over each interval
[ti, ti+1], in which case (3.77) becomes exact.

Jamshidian [195] shows that if α, b, and σ are all deterministic functions
of time, the transition density of r(t) can be represented through a noncen-
tral chi-square distribution provided α(t)b(t)/σ2(t) is independent of t. From
(3.69) we see that this is equivalent to requiring that the degrees-of-freedom
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parameter d = 4bα/σ2 be constant. However, in this setting, the other para-
meters of the transition density are not given explicitly but rather as solutions
to ordinary differential equations.

Change of Numeraire

Recall from Sections 1.2.3 and 3.3.2 that the forward measure for any date TF

is the measure associated with taking as numeraire asset the bond B(t, TF )
maturing at TF . We saw in Section 3.3.2 that if the short rate follows an
Ornstein-Uhlenbeck process under the risk-neutral measure, then it continues
to follow an OU process under a forward measure. An analogous property
holds if the short rate follows a square-root diffusion.

Most of the development leading to (3.58) results from the exponential
affine formula for bond prices and thus extends to the square-root model. In
this setting, the bond price dynamics become

dB(t, T )
B(t, T )

= r(t) dt − A(t, T )σ
√

r(t) dW (t);

in particular, the coefficient σ
√

r(t) replaces the σ of the Gaussian case. Pro-
ceeding as in (3.56)–(3.58) but with this substitution, we observe that Gir-
sanov’s Theorem implies that the process WTF defined by

dWTF (t) = dW (t) + σ
√

r(t)A(t, TF ) dt

is a standard Brownian motion under the forward measure PTF . The dynamics
of the short rate thus become

dr(t) = α(b(t) − r(t)) dt + σ
√

r(t) dW (t)

= α(b(t) − r(t)) dt + σ
√

r(t)[dWTF (t) − σ
√

r(t)A(t, TF )dt]

= α(b(t) − (1 + σ2A(t, TF ))r(t)] dt + σ
√

r(t) dWTF (t).

This can be written as

dr(t) = α(1 + σ2A(t, TF ))
(

b(t)
1 + σ2A(t, TF )

− r(t)
)

dt + σ
√

r(t) dWTF (t),

which shows that under the forward measure the short rate is again a square-
root diffusion but one in which both the level to which the process reverts and
the speed with which it reverts are functions of time. The pricing of derivative
securities through simulation in the forward measure works the same way here
as in the Vasicek model.

3.4.4 Extensions

In this section we consider further properties and extensions of the square-root
diffusion. We discuss multifactor models, a connection with squared Gaussian
processes, and a connection with CEV (constant elasticity of variance) models.
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Multifactor Models

The simplest multifactor extension of the CIR interest rate model defines
independent processes

dXi(t) = αi(bi − Xi(t)) dt + σi

√
Xi(t) dWi(t), i = 1, . . . , d,

and takes the short rate to be r(t) = X1(t) + · · · + Xd(t). Much as in the
discussion of Section 3.3.3, this extension allows imperfect instantaneous cor-
relation among bonds of different maturities. Each Xi can be simulated using
the method developed in the previous sections for a single-factor model.

It is possible to consider more general models in which the underlying
processes X1, . . . , Xd are correlated. However, once one goes beyond the case
of independent square-root factors, it seems more natural to move directly to
the full generality of the affine models characterized by Duffie and Kan [101].
This class of models has a fair amount of tractability and computationally
attractive features, but we will not consider it further here.

Squared Gaussian Models

We next point out a connection between the (single-factor) square-root diffu-
sion and a Gaussian model of the type considered in Section 3.3. This connec-
tion is of intrinsic interest, it sheds further light on the simulation procedure
of Section 3.4.1, and it suggests a wider class of interest rate models. The
link between the CIR model and squared Gaussian models is noted in Rogers
[307]; related connections are developed in depth by Revuz and Yor [306] in
their discussion of Bessel processes.

Let X1(t), . . . , Xd(t) be independent Ornstein-Uhlenbeck processes of the
form

dXi(t) = −α

2
Xi(t) dt +

σ

2
dWi(t), i = 1, . . . , d,

for some constants α, σ, and independent Brownian motions W1, . . . , Wd. Let
Y (t) = X2

1 (t) + · · · + X2
d(t); then Itô’s formula gives

dY (t) =
d∑

i=1

(2Xi(t) dXi(t) +
σ2

4
dt)

=
d∑

i=1

(−αX2
i (t) +

σ2

4
) dt + σ

d∑
i=1

Xi(t) dWi(t)

= α

(
σ2d

4α
− Y (t)

)
dt + σ

d∑
i=1

Xi(t) dWi(t).

If we now define

dW̃ (t) =
d∑

i=1

Xi(t)√
Y (t)

dWi(t),
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then W̃ (t) is a standard Brownian motion because the vector (X1(t), . . .,
Xd(t))/

√
Y (t) multiplying (dW1(t), . . . , dWd(t))� has norm 1 for all t. Hence,

dY (t) = α

(
σ2d

4α
− Y (t)

)
dt + σ

√
Y (t) dW̃ (t),

which has the form of (3.62) with b = σ2d/4α.
Starting from (3.62) and reversing these steps, we find that we can con-

struct a square-root diffusion as a sum of squared independent Ornstein-
Uhlenbeck processes provided d = 4bα/σ2 is an integer. Observe that this is
precisely the degrees-of-freedom parameter in (3.69). In short, a square-root
diffusion with an integer degrees-of-freedom parameter is a sum of squared
Gaussian processes.

We can use this construction from Gaussian processes to simulate r(t) in
(3.62) if d is an integer. Writing r(ti+1) as

∑d
j=1 X2

j (ti+1) and using (3.45)
for the one-step evolution of the Xj , we arrive at

r(ti+1) =
d∑

j=1

(
e−

1
2α(ti+1−ti)

√
r(ti)/d +

σ

2

√
1
α

(1 − e−α(ti+1−ti))Z(j)
i+1

)2

,

where (Z(1)
i , . . . , Z

(d)
i ) are standard normal d-vectors, independent for different

values of i. Comparison with (3.72) reveals that the expression on the right is a
scalar multiple of a noncentral chi-square random variable, so this construction
is really just a special case of the method in Section 3.4.1. It sheds some light
on the appearance of the noncentral chi-square distribution in the law of r(t).

This construction also points to another strategy for constructing inter-
est rate models: rather than restricting ourselves to a sum of independent,
identical squared OU processes, we can consider other quadratic functions
of multivariate Gaussian processes. This idea has been developed in Beagle-
hole and Tenney [42] and Jamshidian [196]. The resulting models are closely
related to the affine family.

CEV Process

We conclude this section with a digression away from interest rate models
to consider a class of asset price processes closely related to the square-root
diffusion.

Among the important alternatives to the lognormal model for an asset
price considered in Section 3.2 is the constant elasticity of variance (CEV)
process (see Cox and Ross [89], Schroder [322] and references there)

dS(t) = µS(t) dt + σS(t)β/2 dW (t). (3.78)

This includes geometric Brownian motion as the special case β = 2; some
empirical studies have found that β < 2 gives a better fit to stock price data.
If we write the model as
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dS(t)
S(t)

= µ dt + σS(t)(β−2)/2 dW (t),

we see that the instantaneous volatility σS(t)(β−2)/2 depends on the current
level of the asset, and β < 2 implies a negative relation between the price level
and volatility.

If we set X(t) = S(t)2−β and apply Itô’s formula, we find that

dX(t) =
[
σ2

2
(2 − β)(1 − β) + µ(2 − β)X(t)

]
dt + σ(2 − β)

√
X(t) dW (t),

revealing that X(t) is a square-root diffusion. For µ > 0 and 1 < β < 2, we can
use the method of the Section 3.4.1 to simulate X(t) on a discrete time grid
and then invert the transformation from S to X to get S(t) = X(t)1/(2−β).
The case β < 1 presents special complications because of the behavior of S
near 0; simulation of this case is investigated in Andersen and Andreasen [13].

3.5 Processes with Jumps

Although the vast majority of models used in derivatives pricing assume that
the underlying assets have continuous sample paths, many studies have found
evidence of the importance of jumps in prices and have advocated the inclu-
sion of jumps in pricing models. Compared with a normal distribution, the
logarithm of a price process with jumps is often leptokurtotic, meaning that it
has a high peak and heavy tails, features typical of market data. In this sec-
tion we discuss a few relatively simple models with jumps, highlighting issues
that affect the implementation of Monte Carlo.

3.5.1 A Jump-Diffusion Model

Merton [263] introduced and analyzed one of the first models with both jump
and diffusion terms for the pricing of derivative securities. Merton applied this
model to options on stocks and interpreted the jumps as idiosyncratic shocks
affecting an individual company but not the market as a whole. Similar models
have subsequently been applied to indices, exchange rates, commodity prices,
and interest rates.

Merton’s jump-diffusion model can be specified through the SDE

dS(t)
S(t−)

= µ dt + σ dW (t) + dJ(t) (3.79)

where µ and σ are constants, W is a standard one-dimensional Brownian
motion, and J is a process independent of W with piecewise constant sample
paths. In particular, J is given by
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J(t) =
N(t)∑
j=1

(Yj − 1) (3.80)

where Y1, Y2, . . . are random variables and N(t) is a counting process. This
means that there are random arrival times

0 < τ1 < τ2 < · · ·

and
N(t) = sup{n : τn ≤ t}

counts the number of arrivals in [0, t]. The symbol dJ(t) in (3.79) stands for
the jump in J at time t. The size of this jump is Yj − 1 if t = τj and 0 if t
does not coincide with any of the τj .

In the presence of jumps, a symbol like S(t) is potentially ambiguous: if
it is possible for S to jump at t, we need to specify whether S(t) means the
value of S just before or just after the jump. We follow the usual convention
of assuming that our processes are continuous from the right, so

S(t) = lim
u↓t

S(u)

includes the effect of any jump at t. To specify the value just before a potential
jump we write S(t−), which is the limit

S(t−) = lim
u↑t

S(u)

from the left.
If we write (3.79) as

dS(t) = µS(t−) dt + σS(t−) dW (t) + S(t−) dJ(t),

we see that the increment dS(t) in S at t depends on the value of S just before
a potential jump at t and not on the value just after the jump. This is as it
should be. The jump in S at time t is S(t)− S(t−). This is 0 unless J jumps
at t, which is to say unless t = τj for some j. The jump in S at τj is

S(τj) − S(τj−) = S(τj−)[J(τj) − J(τj−)] = S(τj−)(Yj − 1),

hence
S(τj) = S(τj−)Yj .

This reveals that the Yj are the ratios of the asset price before and after a
jump — the jumps are multiplicative. This also explains why we wrote Yj − 1
rather than simply Yj in (3.80).

By restricting the Yj to be positive random variables, we ensure that S(t)
can never become negative. In this case, we see that
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log S(τj) = log S(τj−) + log Yj ,

so the jumps are additive in the logarithm of the price. Additive jumps are a
natural extension of Brownian motion and multiplicative jumps (as in (3.79))
provide a more natural extension of geometric Brownian motion; see the dis-
cussion at the beginning of Section 3.2. The solution of (3.79) is given by

S(t) = S(0)e(µ−1
2σ2)t+σW (t)

N(t)∏
j=1

Yj , (3.81)

which evidently generalizes the corresponding solution for geometric Brownian
motion.

Thus far, we have not imposed any distributional assumptions on the jump
process J(t). We now consider the simplest model — the one studied by
Merton [263] — which takes N(t) to be a Poisson process with rate λ. This
makes the interarrival times τj+1−τj independent with a common exponential
distribution,

P (τj+1 − τj ≤ t) = 1 − e−λt, t ≥ 0.

We further assume that the Yj are i.i.d. and independent of N (as well as W ).
Under these assumptions, J is called a compound Poisson process.

As noted by Merton [263], the model is particularly tractable when the Yj

are lognormally distributed, because a product of lognormal random variables
is itself lognormal. In more detail, if Yj ∼ LN(a, b2) (so that log Yj ∼ N(a, b2))
then for any fixed n,

n∏
j=1

Yj ∼ LN(an, b2n).

It follows that, conditional on N(t) = n, S(t) has the distribution of

S(0)e(µ− 1
2σ2)t+σW (t)

n∏
j=1

Yj ∼ S(0) · LN((µ − 1
2σ2)t, σ2t) · LN(an, b2n)

= LN(log S(0) + (µ − 1
2σ2)t + an, σ2t + b2n),

using the independence of the Yj and W . If we let Fn,t denote this lognormal
distribution (cf. Section 3.2.1) and recall that N(t) has a Poisson distribution
with mean λt, then from the Poisson probabilities (3.75) we find that the
unconditional distribution of S(t) is

P (S(t) ≤ x) =
∞∑

n=0

e−λt (λt)n

n!
Fn,t(x),

a Poisson mixture of lognormal distributions. Merton [263] used this property
to express the price of an option on S as an infinite series, each term of which
is the product of a Poisson probability and a Black-Scholes formula.
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Recall that in the absence of jumps the drift µ in (3.79) would be the
risk-free rate, assuming the asset pays no dividends and assuming the model
represents the dynamics under the risk-neutral measure. Suppose, for simplic-
ity, that the risk-free rate is a constant r; then the drift is determined by the
condition that S(t)e−rt be a martingale. Merton [263] extends this principle
to his jump-diffusion model under the assumption that jumps are specific to
a single stock and can be diversified away; that is, by assuming that the mar-
ket does not compensate investors for bearing the risk of jumps. We briefly
describe how this assumption determines the drift parameter µ in (3.79).

A standard property of the Poisson process is that N(t)−λt is a martingale.
A generalization of this property is that

N(t)∑
i=1

h(Yj) − λE[h(Y )]t

is a martingale for i.i.d. Y, Y1, Y2 and any function h for which E[h(Y )] is finite.
Accordingly, the process

J(t) − λmt

is a martingale if m = E[Yj] − 1. The choice of drift parameter in (3.79) that
makes S(t)e−rt a martingale is therefore µ = r−λm. In this case, if we rewrite
(3.79) as

dS(t)
S(t−)

= r dt + σ dW (t) + [dJ(t) − λm dt],

the last two terms on the right are martingales and the net growth rate in
S(t) is indeed r.

With this notation and with logYj ∼ N(a, b2), Merton’s [263] option pric-
ing formula becomes

e−rT E[(S(T ) − K)+] =
∞∑

n=0

e−λt (λt)n

n!
e−rT E[(S(T )− K)+|N(T ) = n]

=
∞∑

n=0

e−λ′t (λ
′t)n

n!
BS(S(0), σn, T, rn, K),

where λ′ = λ(1 + m), σ2
n = σ2 + b2n/T , rn = r − λm + n log(1 + m)/T , and

BS(·) denotes the Black-Scholes call option formula (1.4).

Simulating at Fixed Dates

We consider two approaches to simulating the jump-diffusion model (3.79),
each of which is an instance of a more general strategy for simulating a broader
class of jump-diffusion models. In the first method, we simulate the process
at a fixed set of dates 0 = t0 < t1 < · · · < tn without explicitly distinguishing
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the effects of the jump and diffusion terms. In the second method, we simulate
the jump times τ1, τ2, . . . explicitly.

We continue to assume that N is a Poisson process, that Y1, Y2, . . . are
i.i.d., and that N , W , and {Y1, Y2, . . .} are mutually independent. We do not
assume the Yj are lognormally distributed, though that will constitute an
interesting special case.

To simulate S(t) at time t1, . . . , tn, we generalize (3.81) to

S(ti+1) = S(ti)e(µ− 1
2σ2)(ti+1−ti)+σ[W (ti+1)−W (ti)]

N(ti+1)∏
j=N(ti)+1

Yj ,

with the usual convention that the product over j is equal to 1 if N(ti+1) =
N(ti). We can simulate directly from this representation or else set X(t) =
log S(t) and

X(ti+1) = X(ti)+(µ− 1
2σ2)(ti+1− ti)+σ[W (ti+1)−W (ti)]+

N(ti+1)∑
j=N(ti)+1

log Yj ;

(3.82)
this recursion replaces products with sums and is preferable, at least if sam-
pling log Yj is no slower than sampling Yj . We can exponentiate simulated
values of the X(ti) to produce samples of the S(ti).

A general method for simulating (3.82) from ti to ti+1 consists of the
following steps:

1. generate Z ∼ N(0, 1)
2. generate N ∼ Poisson(λ(ti+1 − ti)) (see Figure 3.9); if N = 0, set M = 0

and go to Step 4
3. generate log Y1, . . . , log YN from their common distribution and set M =

log Y1 + . . . + log YN

4. set

X(ti+1) = X(ti) + (µ − 1
2σ2)(ti+1 − ti) + σ

√
ti+1 − tiZ + M.

This method relies on two properties of the Poisson process: the increment
N(ti+1) − N(ti) has a Poisson distribution with mean λ(ti+1 − ti), and it is
independent of increments of N over [0, ti].

Under further assumptions on the distribution of the Yj , this method can
sometimes be simplified. If the Yj have the lognormal distribution LN(a, b2),
then log Yj ∼ N(a, b2) and

n∑
j=1

log Yj ∼ N(an, b2n) = an + b
√

nN(0, 1).

In this case, we may therefore replace Step 3 with the following:
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3′. generate Z2 ∼ N(0, 1); set M = aN + b
√

NZ2

If the log Yj have a gamma distribution with shape parameter a and scale
parameter β (see (3.74)), then

log Y1 + log Y2 + · · · + log Yn

has the gamma distribution with shape parameter an and scale parameter
β. Consequently, in Step 3 above we may sample M directly from a gamma
distribution, conditional on the value of N .

Kou [215] proposes and analyzes a model in which | log Yj | has a gamma
distribution (in fact exponential) and the sign of logYj is positive with proba-
bility q, negative with probability 1−q. In this case, conditional on the Poisson
random variable N taking the value n, the number of log Yj with positive sign
has a binomial distribution with parameters n and q. Step 3 can therefore be
replaced with the following:

3a′′. generate K ∼ Binomial(N ,q)
3b′′. generate R1 ∼ Gamma(Ka,β) and R2 ∼ Gamma((N − K)a,β) and set

M = R1 − R2

In 3b′′, interpret a gamma random variable with shape parameter zero as
the constant 0 in case K = 0 or K = N . In 3a′′, conditional on N = n, the
binomial distribution of K is given by

P (K = k) =
n!

k!(n − k)!
qk(1 − q)n−k, k = 0, 1, . . . , n.

Samples from this distribution can be generated using essentially the same
method used for the Poisson distribution in Figure 3.9 by changing just the
first and sixth lines of that algorithm. In the first line, replace the mass at the
origin exp(−θ) for the Poisson distribution with the corresponding value (1−
q)n for the binomial distribution. Observe that the ratio P (K = k)/P (K =
k − 1) is given by q(n + 1 − k)/k(1 − q), so the sixth line of the algorithm
becomes p ← pq(n + 1 − N)/N(1 − q) (where N now refers to the binomial
random variable produced by the algorithm).

Simulating Jump Times

Simulation methods based on (3.82) produce values S(ti) = exp(X(ti)),
i = 1, . . . , n, with the exact joint distribution of the target process (3.79)
at dates t1, . . . , tn. Notice, however, that this approach does not identify the
times at which S(t) jumps; rather, it generates the total number of jumps in
each interval (ti, ti+1], using the fact that the number of jumps has a Poisson
distribution.

An alternative approach to simulating (3.79) simulates the jump times
τ1, τ2, . . . explicitly. From one jump time to the next, S(t) evolves like an
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ordinary geometric Brownian motion because we have assumed that W and
J in (3.79) are independent of each other. It follows that, conditional on the
times τ1, τ2, . . . of the jumps,

S(τj+1−) = S(τj)e(µ− 1
2σ2)(τj+1−τj)+σ[W (τj+1)−W (τj)]

and
S(τj+1) = S(τj+1−)Yj+1.

Taking logarithms and combining these steps, we get

X(τj+1) = X(τj) + (µ − 1
2σ2)(τj+1 − τj) + σ[W (τj+1) − W (τj)] + log Yj+1.

A general scheme for simulating one step of this recursion now takes the
following form:

1. generate Rj+1 from the exponential distribution with mean 1/λ
2. generate Zj+1 ∼ N(0, 1)
3. generate log Yj+1

4. set τj+1 = τj + Rj+1 and

X(τj+1) = X(τj) + (µ − 1
2σ2)Rj+1 + σ

√
Rj+1Zj+1 + log Yj+1.

Recall from Section 2.2.1 that the exponential random variable Rj+1 can be
generated by setting Rj+1 = − log(U)/λ with U ∼ Unif[0,1].

The two approaches to simulating S(t) can be combined. For example,
suppose we fix a date t in advance that we would like to include among the
simulated dates. Suppose it happens that τj < t < τj+1 (i.e., N(t) = N(t−) =
j). Then

S(t) = S(τj)e(µ− 1
2σ2)(t−τj)+σ[W (t)−W (τj)]

and
S(τj+1) = S(t)e(µ− 1

2σ2)(τj+1−t)+σ[W (τj+1)−W (t)]Yj+1.

Both approaches to simulating the basic jump-diffusion process (3.79) —
simulating the number of jumps in fixed subintervals and simulating the times
at which jumps occur — can be useful at least as approximations in simulating
more general jump-diffusion models. Exact simulation becomes difficult when
the times of the jumps and the evolution of the process between jumps are no
longer independent of each other.

Inhomogeneous Poisson Process

A simple extension of the jump-diffusion model (3.79) replaces the constant
jump intensity λ of the Poisson process with a deterministic (nonnegative)
function of time λ(t). This means that

P (N(t + h) − N(t) = 1|N(t)) = λ(t)h + o(h)
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and N(t) is called an inhomogeneous Poisson process. Like an ordinary Pois-
son process it has independent increments and these increments are Poisson
distributed, but increments over different intervals of equal length can have
different means. In particular, the number of jumps in an interval (ti, ti+1]
has a Poisson distribution with mean Λ(ti+1) − Λ(ti), where

Λ(t) =
∫ t

0

λ(u) du.

Provided this function can be evaluated, simulation based on (3.82) general-
izes easily to the inhomogeneous case: where we previously sampled from the
Poisson distribution with mean λ(ti+1 − ti), we now sample from the Poisson
distribution with mean Λ(ti+1) − Λ(ti).

It is also possible to simulate the interarrival times of the jumps. The key
property is

P (τj+1 − τj ≤ t|τ1, . . . , τj) = 1 − exp(−[Λ(τj + t) − Λ(τj)]), t ≥ 0,

provided Λ(∞) = ∞. We can (at least in principle) sample from this distri-
bution using the inverse transform method discussed in Section 2.2.1. Given
τj , let

X = inf

{
t ≥ 0 : 1 − exp

(
−
∫ t

τj

λ(u) du

)
= U

}
, U ∼ Unif[0,1]

then X has the required interarrival time distribution and we may set τj+1 =
τj + X . This is equivalent to setting

X = inf

{
t ≥ 0 :

∫ t

τj

λ(u) du = ξ

}
(3.83)

where ξ is exponentially distributed with mean 1. We may therefore inter-
pret the time between jumps as the time required to consume an exponential
random variable if it is consumed at rate λ(u) at time u.

If the time-varying intensity λ(t) is bounded by a constant λ̄, the jumps of
the inhomogeneous Poisson process can be generated by thinning an ordinary
Poisson process N̄ with rate λ̄, as in Lewis and Shedler [235]. In this procedure,
the jump times of N̄ become potential jump times of N ; a potential jump at
time t is accepted as an actual jump with probability λ(t)/λ̄. A bit more
explicitly, we have the following steps:

1. generate jump times τ̄j of N̄ (the interarrival times τ̄j+1 − τ̄j are indepen-
dent and exponentially distributed with mean 1/λ̄)

2. for each j generate Uj ∼ Unif[0,1]; if Uj λ̄ < λ(τ̄j) then accept τ̄j as a
jump time of N .

Figure 3.10 illustrates this construction.
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λ(t)

λ
_

Fig. 3.10. Construction of an inhomogeneous Poisson process from an ordinary
Poisson process by thinning. The horizontal coordinates of the open circles are the
jump times of a Poisson process with rate λ̄; each circle is raised to a height uniformly
distributed between 0 and λ̄. Circles below the curve λ(t) are accepted as jumps of
the inhomogeneous Poisson process. The times of the accepted jumps are indicated
by the filled circles.

3.5.2 Pure-Jump Processes

If S(t) is the jump-diffusion process in (3.79) with J(t) a compound Poisson
process, then X(t) = log S(t) is a process with independent increments. This
is evident from (3.82) and the fact that both W and J have independent
increments. Geometric Brownian motion also has the property that its loga-
rithm has independent increments. It is therefore natural to ask what other
potentially fruitful models of asset prices might arise from the representation

S(t) = S(0) exp(X(t)) (3.84)

with X having independent increments. Notice that we have adopted the
normalization X(0) = 0.

The process X is a Lévy process if it has stationary, independent incre-
ments and satisfies the technical requirement that X(t) converges in dis-
tribution to X(s) as t → s. Stationarity of the increments means that
X(t + s) − X(s) has the distribution of X(t). Every Lévy process can be
represented as the sum of a deterministic drift, a Brownian motion, and a
pure-jump process independent of the Brownian motion (see, e.g., Chapter 4
of Sato [317]). If the number of jumps in every finite interval is almost surely
finite, then the pure-jump component is a compound Poisson process. Hence,
in constructing processes of the form (3.84) with X a Lévy process, the only
way to move beyond the jump-diffusion process (3.79) is to consider processes
with an infinite number of jumps in finite intervals. We will in fact focus on
pure-jump processes of this type — that is, Lévy processes with no Brown-
ian component. Several processes of this type have been proposed as models
of asset prices, and we consider some of these examples. A more extensive
discussion of the simulation of Lévy process can be found in Asmussen [21].
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It should be evident that in considering processes with an infinite number
of jumps in finite intervals, only the first of the two approaches developed in
Section 3.5.1 is viable: we may be able to simulate the increments of such a
process, but we cannot hope to simulate from one jump to the next. To sim-
ulate a pure-jump Lévy process we should therefore consider the distribution
of its increments over a fixed time grid.

A random variable Y (more precisely, its distribution) is said to be in-
finitely divisible if for each n = 2, 3, . . ., there are i.i.d. random variables
Y

(n)
1 , . . . , Y

(n)
n such that Y

(n)
1 + · · · + Y

(n)
n has the distribution of Y . If X is

a Lévy process (X(0) = 0), then

X(t) = X(t/n) + [X(2t/n)− X(t/n)] + · · · + [X(t) − X((n − 1)t/n)]

decomposes X(t) as the sum of n i.i.d. random variables and shows that X(t)
has an infinitely divisible distribution. Conversely, for each infinitely divisible
distribution there is a Lévy process for which X(1) has that distribution.
Simulating a Lévy process on a fixed time grid is thus equivalent to sampling
from infinitely divisible distributions.

A Lévy process with nondecreasing sample paths is called a subordinator .
A large class of Lévy processes (sometimes called processes of type G) can
be represented as W (G(t)) with W Brownian motion and G a subordinator
independent of W . Several of the examples we consider belong to this class.

Gamma Processes

If Y1, . . . , Yn are independent with distribution Gamma(a/n, β), then Y1 +
· · ·+Yn has distribution Gamma(a, β); thus, gamma distributions are infinitely
divisible. For each choice of the parameters a and β there is a Lévy process
(called a gamma process) such that X(1) has distribution Gamma(a, β). We
can simulate this process on a time grid t1, . . . , tn by sampling the increments

X(ti+1) − X(ti) ∼ Gamma(a · (ti+1 − ti), β)

independently, using the methods of Sections 3.4.2.
A gamma random variable takes only positive values so a gamma process

is nondecreasing. This makes it unsuitable as a model of (the logarithm of) a
risky asset price. Madan and Seneta [243] propose a model based on (3.84) and
X(t) = U(t)−D(t), with U and D independent gamma processes representing
the up and down moves of X . They call this the variance gamma process.
Increments of X can be simulated through the increments of U and D.

If U(1) and D(1) have the same shape and scale parameters, then X admits
an alternative representation as W (G(t)) where W is a standard Brownian
motion and G is a gamma process. In other words, X can be viewed as the
result of applying a random time-change to an ordinary Brownian motion: the
deterministic time argument t has been replaced by the random time G(t),
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which becomes the conditional variance of W (G(t)) given G(t). This explains
the name “variance gamma.”

Madan et al. [242] consider the more general case W (G(t)) where W now
has drift parameter µ and variance parameter σ2. They restrict the shape
parameter of G(1) to be the reciprocal of its scale parameter β (so that
E[G(t)] = t) and show that this more general variance gamma process can
still be represented as the difference U(t) − D(t) of two independent gamma
processes. The shape and scale parameters of U(1) and D(1) should be chosen
to satisfy aU = aD = 1/β and

βUβD =
σ2β

2
, βU − βD = µβ.

The general variance gamma process can therefore still be simulated as
the difference between two independent gamma processes. Alternatively, we
can use the representation X(t) = W (G(t)) for simulation. Conditional on the
increment G(ti+1)−G(ti), the increment W (G(ti+1))−W (G(ti)) has a normal
distribution with mean µ[G(ti+1) − G(ti)] and variance σ2[G(ti+1) − G(ti)].
Hence, we can simulate X as follows:

1. generate Y ∼ Gamma((ti+1 − ti)/β, β) (this is the increment in G)
2. generate Z ∼ N(0, 1)
3. set X(ti+1) = X(ti) + µY + σ

√
Y Z.

The relative merits of this method and simulation through the difference of U
and D depend on the implementation details of the methods used for sampling
from the gamma and normal distributions.

Figure 3.11 compares two variance gamma densities with a normal density;
all three have mean 0 and standard deviation 0.4. The figure illustrates the
much higher kurtosis that can be achieved within the variance gamma family.
Although the examples in the figure are symmetric, positive and negative
skewness can be introduced through the parameter µ.

Normal Inverse Gaussian Processes

This class of processes, described in Barndorff-Nielsen [36], has some similari-
ties to the variance gamma model. It is a Lévy process whose increments have
a normal inverse Gaussian distribution; it can also be represented through a
random time-change of Brownian motion.

The inverse Gaussian distribution with parameters δ, γ > 0 has density

fIG(x) =
δeδγ

√
2π

x−3/2 exp
(
− 1

2 (δ2x−1 + γ2x)
)
, x > 0. (3.85)

This is the density of the first passage time to level δ of a Brownian motion
with drift γ. It has mean δ/γ and variance δ/γ3. The inverse Gaussian distrib-
ution is infinitely divisible: if X1 and X2 are independent and have this density
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Fig. 3.11. Examples of variance gamma densities. The most peaked curve has µ = 0,
σ = 0.4, and β = 1 (and is in fact a double exponential density). The next most
peaked curve has µ = 0, σ = 0.4, and β = 0.5. The dashed line is the normal density
with mean 0 and standard deviation 0.4.

with parameters (δ1, γ) and (δ2, γ), then it is clear from the first passage time
interpretation that X1 + X2 has this density with parameters (δ1 + δ2, γ). It
follows that there is a Lévy process Y (t) for which Y (1) has density (3.85).

The normal inverse Gaussian distribution NIG(α, β, µ, δ) with parameters
α, β, µ, δ can be described as the distribution of

µ + βY (1) +
√

Y (1)Z, Z ∼ N(0, 1), (3.86)

with Y (1) having density (3.85), α =
√

β2 + γ2, and Z independent of Y (1).
The mean and variance of this distribution are

µ +
δβ

α
√

1 − (β/α)2
and

δ

α(1 − (β/α)2)3/2
,

respectively. The density is given in Barndorff-Nielsen [36] in terms of a mod-
ified Bessel function. Three examples are graphed in Figure 3.12; these illus-
trate the possibility of positive and negative skew and high kurtosis within
this family of distributions.

Independent normal inverse Gaussian random variables add in the follow-
ing way:

NIG(α, β, µ1, δ1) + NIG(α, β, µ2, δ2) = NIG(α, β, µ1 + µ2, δ1 + δ2).

In particular, these distributions are infinitely divisible. Barndorff-Nielsen [36]
studies Lévy processes with NIG increments. Such a process X(t) can be
represented as W (Y (t)) with Y (t) the Lévy process defined from (3.85) and
W a Brownian motion with drift β, unit variance, and initial value W (0) = µ.
At t = 1, this representation reduces to (3.86).
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Fig. 3.12. Examples of normal inverse Gaussian densities. The parameters
(α, β, µ, δ) are as follows: (1,−0.75, 2, 1) for A, (1, 0, 0, 1) for B, and (1, 2,−0.75, 1)
for C. The dashed line is the standard normal density and is included for comparison
with case B, which also has mean 0 and standard deviation 1.

Eberlein [109] discusses the use of the NIG Lévy processes (in fact, a more
general family called generalized hyperbolic Lévy processes) in modeling log
returns. Barndorff-Nielsen [36] proposes several mechanisms for constructing
models of price processes using NIG Lévy processes as a building block.

As with the variance gamma process of Madan and Seneta [243], there
are in principle two strategies for simulating X on a discrete time grid. We
can simulate the increments by sampling from the NIG distribution directly
or we can use the representation as a time-changed Brownian motion (as in
(3.86)). However, direct sampling from the NIG distribution does not appear
to be particularly convenient, so we consider only the second of these two
alternatives.

To simulate X(t) as W (Y (t)) we need to be able to generate the incre-
ments of Y by sampling from the (ordinary) inverse Gaussian distribution. An
interesting method for doing this was developed by Michael, Schucany, and
Haas [264]. Their method uses the fact that if Y has the density in (3.85),
then

(γY − δ)2

Y
∼ χ2

1;

we may therefore sample Y by first generating V ∼ χ2
1. Given a value of V ,

the resulting equation for Y has two roots,

y1 =
δ

γ
+

V

2γ2
− 1

2δγ

√
4δ3V/γ + δ2V 2/γ

and
y2 = δ2/γ2y1.
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Michael et al. [264] show that the smaller root y1 should be chosen with prob-
ability δ/(δ+γy1) and the larger root y2 with the complementary probability.
Figure 3.13 illustrates the implementation of the method. The χ2

1 random vari-
able required for this algorithm can be generated as either a Gamma(1/2, 2)
or as the square of a standard normal.

Setup: a ← 1/γ, b ← a ∗ δ, b ← b ∗ b

generate V ∼ χ2
1

ξ ← a ∗ V

Y ← a ∗ (δ + (ξ/2) +
√

ξ ∗ (δ + (ξ/4))
p ← δ/(δ + γ ∗ Y )
generate U ∼ Unif[0,1]
if U > p then Y ← b/Y
return Y

Fig. 3.13. Algorithm for sampling from the inverse Gaussian distribution (3.85),
based on Michael et al. [264].

To simulate an increment of the NIG process X(t) = W (Y (t)) from ti to
ti+1, we use the algorithm in Figure 3.13 to generate a sample Y from the
inverse Gaussian distribution with parameters δ(ti+1 − ti) and γ; we then set

X(ti+1) = X(ti) + βY +
√

Y Z

with Z ∼ N(0, 1). (Recall that β is the drift of W in the NIG parameteriza-
tion.)

Despite the evident similarity between this construction and the one used
for the variance gamma process, a result of Asmussen and Rosiński [25] points
to an important distinction between the two processes: the cumulative effect of
small jumps can be well-approximated by Brownian motion in a NIG process
but not in a variance gamma process. Loosely speaking, even the small jumps
of the variance gamma process are too large or too infrequent to look like
Brownian motion. Asmussen and Rosiński [25] discuss the use and applicabil-
ity of a Brownian approximation to small jumps in simulating Lévy processes.

Stable Paretian Processes

A distribution is called stable if for each n ≥ 2 there are constants an > 0 and
bn such that

X1 + X2 + · · · + Xn =d anX + bn,
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where X, X1, . . . , Xn are independent random variables with that distribution.
(The symbol “=d” indicates equality in distribution.) If bn = 0 for all n, the
distribution is strictly stable. The best known example is the standard normal
distribution for which

X1 + X2 + · · · + Xn =d n1/2X.

In fact, an must be of the form n1/α for some 0 < α ≤ 2 called the index
of the stable distribution. This is Theorem VI.1.1 of Feller [119]; for broader
coverage of the topic see Samorodnitsky and Taqqu [316].

Stable random variables are infinitely divisible and thus define Lévy
processes. Like the other examples in this section, these Lévy processes have
no Brownian component (except in the case of Brownian motion itself) and
are thus pure-jump processes. They can often be constructed by applying a
random time change to an ordinary Brownian motion, the time change itself
having stable increments.

Only the normal distribution has stable index α = 2. Non-normal stable
distributions (those with α < 2) are often called stable Paretian. These are
heavy-tailed distributions: if X has stable index α < 2, then E[|X |p] is infinite
for p ≥ α. In particular, all stable Paretian distributions have infinite variance
and those with α ≤ 1 have E[|X |] = ∞. Mandelbrot [246] proposed using sta-
ble Paretian distributions to model the high peaks and heavy tails (relative to
the normal distribution) of market returns. Infinite variance suggests that the
tails of these distributions may be too heavy for market data, but see Rachev
and Mittnik [302] for a comprehensive account of applications in finance.

Stable random variables have probability densities but these are rarely
available explicitly; stable distributions are usually described through their
characteristic functions. The density is known for the normal case α = 2; the
Cauchy (or t1) distribution, corresponding to α = 1 and density

f(x) =
1
π

1
1 + x2

, −∞ < x < ∞;

and the case α = 1/2 with density

f(x) =
1√
2π

x−3/2 exp(−1/(2x)), x > 0.

This last example may be viewed as a limiting case of the inverse Gaussian
distribution with γ = 0. Through a first passage time interpretation (see Feller
[119], Example VI.2(f)), the Cauchy distribution may be viewed as a limiting
case of the NIG distribution α = β = µ = 0. Both densities given above can be
generalized by introducing scale and location parameters (as in [316], p.10).
This follows from the simple observation that if X has a stable distribution
then so does µ + σX , for any constants µ, σ.

As noted in Example 2.1.2, samples from the Cauchy distribution can be
generated using the inverse transform method. If Z ∼ N(0, 1) then 1/Z2 has
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the stable density above with α = 1/2, so this case is also straightforward.
Perhaps surprisingly, it is also fairly easy to sample from other stable distribu-
tions even though their densities are unknown. An important tool in sampling
from stable distributions is the following representation: if V is uniformly dis-
tributed over [−π/2, π/2] and W is exponentially distributed with mean 1,
then

sin(αV )
(cos(V ))1/α

(
cos((1 − α)V )

W

)(1−α)/α

has a symmetric α-stable distribution; see p.42 of Samorodnitsky and Taqqu
[316] for a proof. As noted there, this reduces to the Box-Muller method
(see Section 2.3.2) when α = 2. Chambers, Mallows, and Stuck [79] develop
simulation procedures based on this representation and additional transfor-
mations. Samorodnitsky and Taqqu [316], pp.46-49, provide computer code
for sampling from an arbitrary stable distribution, based on Chambers et al.
[79].

Feller [119], p.336, notes that the Lévy process generated by a symmet-
ric stable distribution can be constructed through a random time change of
Brownian motion. This also follows from the observation in Samorodnitsky
and Taqqu [316], p.21, that a symmetric stable random variable can be gener-
ated as the product of a normal random variable and a positive stable random
variable, a construction similar to (3.86).

3.6 Forward Rate Models: Continuous Rates

The distinguishing feature of the models considered in this section and the
next is that they explicitly describe the evolution of the full term structure of
interest rates. This contrasts with the approach in Sections 3.3 and 3.4 based
on modeling the dynamics of just the short rate r(t). In a setting like the
Vasicek model or the Cox-Ingersoll-Ross model, the current value of the short
rate determines the current value of all other term structure quantities —
forward rates, bond prices, etc. In these models, the state of the world is com-
pletely summarized by the value of the short rate. In multifactor extensions,
like those described in Section 3.3.3, the state of the world is summarized by
the current values of a finite number (usually small) of underlying factors;
from the values of these factors all term structure quantities are determined,
at least in principle.

In the framework developed by Heath, Jarrow, and Morton [174] (HJM),
the state of the world is described by the full term structure and not necessarily
by a finite number of rates or factors. The key contribution of HJM lies in
identifying the restriction imposed by the absence of arbitrage on the evolution
of the term structure.

At any point in time the term structure of interest rates can be described
in various equivalent ways — through the prices or yields of zero-coupon
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bonds or par bonds, through forward rates, and through swap rates, to name
just a few examples. The HJM framework models the evolution of the term
structure through the dynamics of the forward rate curve. It could be argued
that forward rates provide the most primitive description of the term structure
(and thus the appropriate starting point for a model) because bond prices and
yields reflect averages of forward rates across maturities, but it seems difficult
to press this point too far.

From the perspective of simulation, this section represents a departure
from the previous topics of this chapter. Thus far, we have focused on models
that can be simulated exactly, at least at a finite set of dates. In the gener-
ality of the HJM setting, some discretization error is usually inevitable. HJM
simulation might therefore be viewed more properly as a topic for Chapter 6;
we include it here because of its importance and because of special simulation
issues it raises.

3.6.1 The HJM Framework

The HJM framework describes the dynamics of the forward rate curve
{f(t, T ), 0 ≤ t ≤ T ≤ T ∗} for some ultimate maturity T ∗ (e.g., 20 or 30
years from today). Think of this as a curve in the maturity argument T for
each value of the time argument t; the length of the curve shrinks as time ad-
vances because t ≤ T ≤ T ∗. Recall that the forward rate f(t, T ) represents the
instantaneous continuously compounded rate contracted at time t for riskless
borrowing or lending at time T ≥ t. This is made precise by the relation

B(t, T ) = exp

(
−
∫ T

t

f(t, u) du

)

between bond prices and forward rates, which implies

f(t, T ) = − ∂

∂T
log B(t, T ). (3.87)

The short rate is r(t) = f(t, t). Figure 3.14 illustrates this notation and the
evolution of the forward curve.

In the HJM setting, the evolution of the forward curve is modeled through
an SDE of the form

df(t, T ) = µ(t, T ) dt + σ(t, T )� dW (t). (3.88)

In this equation and throughout, the differential df is with respect to time t
and not maturity T . The process W is a standard d-dimensional Brownian
motion; d is the number of factors , usually equal to 1, 2, or 3. Thus, while the
forward rate curve is in principle an infinite-dimensional object, it is driven by
a low-dimensional Brownian motion. The coefficients µ and σ in (3.88) (scalar
and �d-valued, respectively) could be stochastic or could depend on current
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Fig. 3.14. Evolution of forward curve. At time 0, the forward curve f(0, ·) is defined
for maturities in [0, T ∗] and the short rate is r(0) = f(0, 0). At t > 0, the forward
curve f(t, ·) is defined for maturities in [t, T ∗] and the short rate is r(t) = f(t, t).

and past levels of forward rates. We restrict attention to the case in which µ
and σ are deterministic functions of t, T ≥ t, and the current forward curve
{f(t, u), t ≤ u ≤ T ∗}. Subject to technical conditions, this makes the evolution
of the curve Markovian. We could make this more explicit by writing, e.g.,
σ(f, t, T ), but to lighten notation we omit the argument f . See Heath, Jarrow,
and Morton [174] for the precise conditions needed for (3.88).

We interpret (3.88) as modeling the evolution of forward rates under the
risk-neutral measure (meaning, more precisely, that W is a standard Brownian
motion under that measure). We know that the absence of arbitrage imposes a
condition on the risk-neutral dynamics of asset prices: the price of a (dividend-
free) asset must be a martingale when divided by the numeraire

β(t) = exp
(∫ t

0

r(u) du

)
.

Forward rates are not, however, asset prices, so it is not immediately clear
what restriction the absence of arbitrage imposes on the dynamics in (3.88).
To find this restriction we must start from the dynamics of asset prices, in
particular bonds. Our account is informal; see Heath, Jarrow, and Morton
[174] for a rigorous development.

To make the discounted bond prices B(t, T )/β(t) positive martingales, we
posit dynamics of the form

dB(t, T )
B(t, T )

= r(t) dt + ν(t, T )�dW (t), 0 ≤ t ≤ T ≤ T ∗. (3.89)

The bond volatilities ν(t, T ) may be functions of current bond prices (equiva-
lently, of current forward rates since (3.87) makes a one-to-one correspondence
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between the two). Through (3.87), the dynamics in (3.89) constrain the evo-
lution of forward rates. By Itô’s formula,

d log B(t, T ) = [r(t) − 1
2ν(t, T )�ν(t, T )] dt + ν(t, T )�dW (t).

If we now differentiate with respect to T and then interchange the order of
differentiation with respect to t and T , from (3.87) we get

df(t, T ) = − ∂

∂T
d log B(t, T )

= − ∂

∂T
[r(t) − 1

2ν(t, T )�ν(t, T )] dt − ∂

∂T
ν(t, T )�dW (t).

Comparing this with (3.88), we find that we must have

σ(t, T ) = − ∂

∂T
ν(t, T )

and

µ(t, T ) = − ∂

∂T
[r(t) − 1

2ν(t, T )�ν(t, T )] =
(

∂

∂T
ν(t, T )

)�
ν(t, T ).

To eliminate ν(t, T ) entirely, notice that

ν(t, T ) = −
∫ T

t

σ(t, u) du + constant.

But because B(t, T ) becomes identically 1 as t approaches T (i.e., as the bond
matures), we must have ν(T, T ) = 0 and thus the constant in this equation is
0. We can therefore rewrite the expression for µ as

µ(t, T ) = σ(t, T )�
∫ T

t

σ(t, u) du; (3.90)

this is the risk-neutral drift imposed by the absence of arbitrage. Substituting
in (3.88), we get

df(t, T ) =

(
σ(t, T )�

∫ T

t

σ(t, u) du

)
dt + σ(t, T )� dW (t). (3.91)

This equation characterizes the arbitrage-free dynamics of the forward curve
under the risk-neutral measure; it is the centerpiece of the HJM framework.

Using a subscript j = 1, . . . , d to indicate vector components, we can write
(3.91) as

df(t, T ) =
d∑

j=1

(
σj(t, T )

∫ T

t

σj(t, u) du

)
dt +

d∑
j=1

σj(t, T ) dWj(t). (3.92)
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This makes it evident that each factor contributes a term to the drift and that
the combined drift is the sum of the contributions of the individual factors.

In (3.91), the drift is determined once σ is specified. This contrasts with the
dynamics of the short rate models in Sections 3.3 and 3.4 where parameters
of the drift could be specified independent of the diffusion coefficient without
introducing arbitrage. Indeed, choosing parameters of the drift is essential in
calibrating short rate models to an observed set of bond prices. In contrast,
an HJM model is automatically calibrated to an initial set of bond prices
B(0, T ) if the initial forward curve f(0, T ) is simply chosen consistent with
these bond prices through (3.87). Put slightly differently, calibrating an HJM
model to an observed set of bond prices is a matter of choosing an appropriate
initial condition rather than choosing a parameter of the model dynamics. The
effort in calibrating an HJM model lies in choosing σ to match market prices
of interest rate derivatives in addition to matching bond prices.

We illustrate the HJM framework with some simple examples.

Example 3.6.1 Constant σ. Consider a single-factor (d = 1) model in which
σ(t, T ) ≡ σ for some constant σ. The interpretation of such a model is that
each increment dW (t) moves all points on the forward curve {f(t, u), t ≤ u ≤
T ∗} by an equal amount σ dW (t); the diffusion term thus introduces only
parallel shifts in the forward curve. But a model in which the forward curve
makes only parallel shifts admits arbitrage opportunities: one can construct
a costless portfolio of bonds that will have positive value under every parallel
shift. From (3.90) we find that an HJM model with constant σ has drift

µ(t, T ) = σ

∫ T

t

σ du = σ2(T − t).

In particular, the drift will vary (slightly, because σ2 is small) across maturi-
ties, keeping the forward curve from making exactly parallel movements. This
small adjustment to the dynamics of the forward curve is just enough to keep
the model arbitrage-free. In this case, we can solve (3.91) to find

f(t, T ) = f(0, T ) +
∫ t

0

σ2(T − u) du + σW (t)

= f(0, T ) + 1
2σ2[T 2 − (T − t)2] + σW (t).

In essentially any model, the identity r(t) = f(t, t) implies

dr(t) = df(t, T )

∣∣∣∣∣
T=t

+
∂

∂T
f(t, T )

∣∣∣∣
T=t

dt.

In the case of constant σ, we can write this explicitly as

dr(t) = σ dW (t) +
(

∂

∂T
f(0, T )

∣∣∣∣
T=t

+ σ2t

)
dt.
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Comparing this with (3.50), we find that an HJM model with constant σ
coincides with a Ho-Lee model with calibrated drift. �

Example 3.6.2 Exponential σ. Another convenient parameterization takes
σ(t, T ) = σ exp(−α(T − t)) for some constants σ, α > 0. In this case, the
diffusion term σ(t, T ) dW (t) moves forward rates for short maturities more
than forward rates for long maturities. The drift is given by

µ(t, T ) = σ2e−α(T−t)

∫ T

t

e−α(T−u) du =
σ2

α

(
e−2α(T−t) − e−α(T−t)

)
.

An argument similar to the one used in Example 3.6.1 shows that the short
rate in this case is described by the Vasicek model with time-varying drift
parameters.

This example and the one that precedes it may be misleading. It would be
incorrect to assume that the short rate process in an HJM setting will always
have a convenient description. Indeed, such examples are exceptional. �

Example 3.6.3 Proportional σ. It is tempting to consider a specification of
the form σ(t, T ) = σ̃(t, T )f(t, T ) for some deterministic σ̃ depending only on
t and T . This would make σ̃(t, T ) the volatility of the forward rate f(t, T )
and would suggest that the distribution of f(t, T ) is approximately lognor-
mal. However, Heath et al. [174] note that this choice of σ is inadmissible: it
produces forward rates that grow to infinity in finite time with positive prob-
ability. The difficulty, speaking loosely, is that if σ is proportional to the level
of rates, then the drift is proportional to the rates squared. This violates the
linear growth condition ordinarily required for the existence and uniqueness of
solutions to SDEs (see Appendix B.2). Market conventions often presuppose
the existence of a (proportional) volatility for forward rates, so the failure
of this example could be viewed as a shortcoming of the HJM framework.
We will see in Section 3.7 that the difficulty can be avoided by working with
simple rather than continuously compounded forward rates. �

Forward Measure

Although the HJM framework is usually applied under the risk-neutral mea-
sure, only a minor modification is necessary to work in a forward measure. Fix
a maturity TF and recall that the forward measure associated with TF corre-
sponds to taking the bond B(t, TF ) as numeraire asset. The forward measure
PTF can be defined relative to the risk-neutral measure Pβ through(

dPTF

dPβ

)
t

=
B(t, TF )β(0)
β(t)B(0, TF )

.

From the bond dynamics in (3.89), we find that this ratio is given by

exp
(
− 1

2

∫ t

0

ν(u, TF )�ν(u, TF ) du +
∫ t

0

ν(u, TF )� dW (u)
)

.
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By the Girsanov Theorem, the process WTF defined by

dWTF (t) = −ν(t, TF )� dt + dW (t)

is therefore a standard Brownian motion under PTF . Recalling that ν(t, T ) is
the integral of −σ(t, u) from u = t to u = T , we find that the forward rate
dynamics (3.91) become

df(t, T ) = −σ(t, T )�ν(t, T ) dt + σ(t, T )�[ν(t, TF )� dt + dWTF (t)]
= −σ(t, T )�[ν(t, T ) − ν(t, TF )] dt + σ(t, T )� dWTF (t)

= −σ(t, T )�
(∫ TF

T

σ(t, u) du

)
dt + σ(t, T )� dWTF (t), (3.93)

for t ≤ T ≤ TF . Thus, the HJM dynamics under the forward measure are
similar to the dynamics under the risk-neutral measure, but where we previ-
ously integrated σ(t, u) from t to T , we now integrate −σ(t, u) from T to TF .
Notice that f(t, TF ) is a martingale under PTF , though none of the forward
rates is a martingale under the risk-neutral measure.

3.6.2 The Discrete Drift

Except under very special choices of σ, exact simulation of (3.91) is infeasible.
Simulation of the general HJM forward rate dynamics requires introducing a
discrete approximation. In fact, each of the two arguments of f(t, T ) requires
discretization. For the first argument, fix a time grid 0 = t0 < t1 < · · · <
tM . Even at a fixed time ti, it is generally not possible to represent the full
forward curve f(ti, T ), ti ≤ T ≤ T ∗, so instead we fix a grid of maturities
and approximate the forward curve by its value for just these maturities. In
principle, the time grid and the maturity grid could be different; however,
assuming that the two sets of dates are the same greatly simplifies notation
with little loss of generality.

We use hats to distinguish discretized variables from their exact continuous-
time counterparts. Thus, f̂(ti, tj) denotes the discretized forward rate for ma-
turity tj as of time ti, j ≥ i, and B̂(ti, tj) denotes the corresponding bond
price,

B̂(ti, tj) = exp

(
−

j−1∑
	=i

f̂(ti, t	)[t	+1 − t	]

)
. (3.94)

To avoid introducing any more discretization error than necessary, we
would like the initial values of the discretized bonds B̂(0, tj) to coincide with
the exact values B(0, tj) for all maturities tj on the discrete grid. Comparing
(3.94) with the equation that precedes (3.87), we see that this holds if

j−1∑
	=0

f̂(0, t	)[t	+1 − t	] =
∫ tj

0

f(0, u) du;
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i.e., if

f̂(0, t	) =
1

t	+1 − t	

∫ t�+1

t�

f(0, u) du, (3.95)

for all � = 0, 1, . . . , M −1. This indicates that we should initialize each f̂(0, t	)
to the average level of the forward curve f(0, T ) over the interval [t	, t	+1]
rather than, for example, initializing it to the value f(0, t	) at the left endpoint
of this interval. The discretization (3.95) is illustrated in Figure 3.15.

Fig. 3.15. Discretization of initial forward curve. Each discretized forward rate is
the average of the underlying forward curve over the discretization interval.

Once the initial curve has been specified, a generic simulation of a single-
factor model evolves like this: for i = 1, . . . , M ,

f̂(ti, tj) = f̂(ti−1, tj)+

µ̂(ti−1, tj)[ti − ti−1] + σ̂(ti−1, tj)
√

ti − ti−1Zi, j = i, . . . , M, (3.96)

where Z1, . . . , ZM are independent N(0, 1) random variables and µ̂ and σ̂
denote discrete counterparts of the continuous-time coefficients in (3.91). We
allow σ̂ to depend on the current vector f̂ as well as on time and maturity,
though to lighten notation we do not include f̂ as an explicit argument of σ̂.

In practice, σ̂ would typically be specified through a calibration procedure
designed to make the simulated model consistent with market prices of actively
traded derivative securities. (We discuss calibration of a closely related class
of models in Section 3.7.4.) In fact, the continuous-time limit σ(t, T ) may
never be specified explicitly because only the discrete version σ̂ is used in the
simulation. But the situation for the drift is different. Recall that in deriving
(3.91) we chose the drift to make the model arbitrage-free; more precisely,
we chose it to make the discounted bond prices martingales. There are many
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ways one might consider choosing the discrete drift µ̂ in (3.96) to approximate
the continuous-time limit (3.90). From the many possible approximations, we
choose the one that preserves the martingale property for the discounted bond
prices.

Recalling that f(s, s) is the short rate at time s, we can express the
continuous-time condition as the requirement that

B(t, T ) exp
(
−
∫ t

0

f(s, s) ds

)
be a martingale in t for each T . Similarly, in the discretized model we would
like

B̂(ti, tj) exp

(
−

i−1∑
k=0

f̂(tk, tk)[tk+1 − tk]

)
to be a martingale in i for each j. Our objective is to find a µ̂ for which this
holds. For simplicity, we start by assuming a single-factor model.

The martingale condition can be expressed as

E
[
B̂(ti, tj)e

−
∑

i−1

k=0
f̂(tk,tk)[tk+1−tk]|Z1, . . . , Zi−1

]
= B̂(ti−1, tj)e

−
∑

i−2

k=0
f̂(tk,tk)[tk+1−tk].

Using (3.94) and canceling terms that appear on both sides, this reduces to

E
[
e−
∑

j−1

�=i
f̂(ti,t�)[t�+1−t�]|Z1, . . . , Zi−1

]
= e−

∑
j−1

�=i
f̂(ti−1,t�)[t�+1−t�].

Now we introduce µ̂: on the left side of this equation we substitute for each
f̂(ti, t	) according to (3.96). This yields the condition

E
[
e−
∑

j−1

�=i
(f̂(ti−1,t�)+µ̂(ti−1,t�)[ti−ti−1]+σ̂(ti−1,t�)

√
ti−ti−1Zi)[t�+1−t�]|Z1, . . . , Zi−1

]
= e−

∑j−1

�=i
f̂(ti−1,t�)[t�+1−t�].

Canceling terms that appear on both sides and rearranging the remaining
terms brings this into the form

E
[
e−
∑

j−1

�=i
σ̂(ti−1,t�)

√
ti−ti−1[t�+1−t�]Zi |Z1, . . . , Zi−1

]
= e
∑j−1

�=i
µ̂(ti−1,t�)[ti−ti−1][t�+1−t�].

The conditional expectation on the left evaluates to

e
1
2

(∑
j−1

�=i
σ̂(ti−1,t�)[t�+1−t�]

)2
[ti−ti−1],

so equality holds if
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1
2

(
j−1∑
	=i

σ̂(ti−1, t	)[t	+1 − t	]

)2

=
j−1∑
	=i

µ̂(ti−1, t	)[t	+1 − t	];

i.e., if

µ̂(ti−1, tj)[tj+1 − tj ] =

1
2

(
j∑

	=i

σ̂(ti−1, t	)[t	+1 − t	]

)2

− 1
2

(
j−1∑
	=i

σ̂(ti−1, t	)[t	+1 − t	]

)2

.(3.97)

This is the discrete version of the HJM drift; it ensures that the discretized
discounted bond prices are martingales.

To see the connection between this expression and the continuous-time
drift (3.90), consider the case of an equally spaced grid, ti = ih for some
increment h > 0. Fix a date t and maturity T and let i, j → ∞ and h → 0
in such a way that jh = T and ih = t; each of the sums in (3.97) is then
approximated by an integral. Dividing both sides of (3.97) by tj+1 − tj = h,
we find that for small h the discrete drift is approximately

1
2h

(∫ T

t

σ(t, u) du

)2

−
(∫ T−h

t

σ(t, u) du

)2
 ≈ 1

2

∂

∂T

(∫ T

t

σ(t, u) du

)2

,

which is

σ(t, T )
∫ T

t

σ(t, u) du.

This suggests that the discrete drift in (3.97) is indeed consistent with the
continuous-time limit in (3.90).

In the derivation leading to (3.97) we assumed a single-factor model. A
similar result holds with d factors. Let σ̂k denote the kth entry of the d-vector
σ̂ and

µ̂k(ti−1, tj)[tj+1 − tj ] =

1
2

(
j∑

	=i

σ̂k(ti−1, t	)[t	+1 − t	]

)2

− 1
2

(
j−1∑
	=i

σ̂k(ti−1, t	)[t	+1 − t	]

)2

,

for k = 1, . . . , d. The combined drift is given by the sum

µ̂(ti−1, tj) =
d∑

k=1

µ̂k(ti−1, tj).

A generic multifactor simulation takes the form

f̂(ti, tj) = f̂(ti−1, tj) + µ̂(ti−1, tj)[ti − ti−1]

+
d∑

k=1

σ̂k(ti−1, tj)
√

ti − ti−1Zik, j = i, . . . , M, (3.98)
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where the Zi = (Zi1, . . . , Zid), i = 1, . . . , M , are independent N(0, I) random
vectors.

We derived (3.97) by starting from the principle that the discretized dis-
counted bond prices should be martingales. But what are the practical impli-
cations of using some other approximation to the continuous drift instead of
this one? To appreciate the consequences, consider the following experiment.
Imagine simulating paths of f̂ as in (3.96) or (3.98). From a path of f̂ we may
extract a path

r̂(t0) = f̂(t0, t0), r̂(t1) = f̂(t1, t1), . . . r̂(tM ) = f̂(tM , tM ),

of the discretized short rate r̂. From this we can calculate a discount factor

D̂(tj) = exp

(
−

j−1∑
i=0

r̂(ti)[ti+1 − ti]

)
(3.99)

for each maturity tj . Imagine repeating this over n independent paths and let
D̂(1)(tj), . . . , D̂(n)(tj) denote discount factors calculated over these n paths.
A consequence of the strong law of large numbers, the martingale property,
and the initialization in (3.95) is that, almost surely,

1
n

n∑
i=1

D̂(i)(tj) → E[D̂(tj)] = B̂(0, tj) = B(0, tj).

This means that if we simulate using (3.97) and then use the simulation to
price a bond, the simulation price converges to the value to which the model
was ostensibly calibrated. With some other choice of discrete drift, the simu-
lation price would in general converge to something that differs from B(0, tj),
even if only slightly. Thus, the martingale condition is not simply a theoretical
feature — it is a prerequisite for internal consistency of the simulated model.
Indeed, failure of this condition can create the illusion of arbitrage opportu-
nities. If E[D̂(1)(tj)] = B(0, tj), the simulation would be telling us that the
market has mispriced the bond.

The errors (or apparent arbitrage opportunities) that may arise from using
a different approximation to the continuous-time drift may admittedly be
quite small. But given that we have a simple way of avoiding such errors and
given that the form of the drift is the central feature of the HJM framework,
we may as well restrict ourselves to (3.97). This form of the discrete drift
appears to be in widespread use in the industry; it is explicit in Andersen
[11].

Forward Measure

Through an argument similar to the one leading to (3.97), we can find the ap-
propriate form of the discrete drift under the forward measure. In continuous
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time, the forward measure for maturity TF is characterized by the require-
ment that B(t, T )/B(t, TF ) be a martingale, because the bond maturing at
TF is the numeraire asset associated with this measure. In the discrete ap-
proximation, if we take tM = TF , then we require that B̂(ti, tj)/B̂(ti, tM ) be
a martingale in i for each j. This ratio is given by

B̂(ti, tj)
B̂(ti, tM )

= exp

M−1∑
	=j

f̂(ti, t	)[t	+1 − t	]

 .

The martingale condition leads to a discrete drift µ̂ with

µ̂(ti−1, tj)[tj+1 − tj ] =

1
2

 M−1∑
	=j+1

σ̂(ti−1, t	)[t	+1 − t	]

2

− 1
2

M−1∑
	=j

σ̂(ti−1, t	)[t	+1 − t	]

2

. (3.100)

The relation between this and the risk-neutral discrete drift (3.97) is, not sur-
prisingly, similar to the relation between their continuous-time counterparts
in (3.91) and (3.93).

3.6.3 Implementation

Once we have identified the discrete form of the drift, the main consideration
in implementing an HJM simulation is keeping track of indices. The notation
f̂(ti, tj) is convenient in describing the discretized model — the first argument
shows the current time, the second argument shows the maturity to which
this forward rate applies. But in implementing the simulation we are not
interested in keeping track of an M × M matrix of rates as the notation
f̂(ti, tj) might suggest. At each time step, we need only the vector of current
rates. To implement an HJM simulation we need to adopt some conventions
regarding the indexing of this vector.

Recall that our time and maturity grid consists of a set of dates 0 =
t0 < t1 < · · · < tM . If we identify tM with the ultimate maturity T ∗ in
the continuous-time model, then tM is the maturity of the longest-maturity
bond represented in the model. In light of (3.94), this means that the last
forward rate relevant to the model applies to the interval [tM−1, tM ]; this is
the forward rate with maturity argument tM−1. Thus, our initial vector of
forward rates consists of the M components f̂(0, 0), f̂(0, t1), . . . , f̂(0, tM−1),
which is consistent with the initialization (3.95). At the start of the simulation
we will represent this vector as (f1, . . . , fM ). Thus, our first convention is to
use 1 rather than 0 as the lowest index value.

As the simulation evolves, the number of relevant rates decreases. At time
ti, only the rates f̂(ti, ti), . . . , f̂(ti, tM−1) are meaningful. We need to specify
how these M − i rates should be indexed, given that initially we had a vector
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of M rates: we can either pad the initial portion of the vector with irrelevant
data or we can shorten the length of the vector. We choose the latter and
represent the M − i rates remaining at ti as the vector (f1, . . . , fM−i). Thus,
our second convention is to index forward rates by relative maturity rather
than absolute maturity. At time ti, fj refers to the forward rate f̂(ti, ti+j−1).
Under this convention f1 always refers to the current level of the short rate
because r̂(ti) = f̂(ti, ti).

Similar considerations apply to µ̂(ti, tj) and σ̂k(ti, tj), k = 1, . . . , d, and
we adopt similar conventions for the variables representing these terms. For
values of µ̂ we use variables mj and for values of σ̂k we use variables sj(k);
in both cases the subscript indicates a relative maturity and in the case of
sj(k) the argument k = 1, . . . , d refers the factor index in a d-factor model.
We design the indexing so that the simulation step from ti−1 to ti indicated
in (3.98) becomes

fj ← fj+1 + mj [ti − ti−1] +
d∑

k=1

sj(k)
√

ti − ti−1Zik, j = 1, . . . , M − i.

Thus, in advancing from ti−1 to ti we want

mj = µ̂(ti−1, ti+j−1), sj(k) = σ̂k(ti−1, ti+j−1). (3.101)

In particular, recall that σ̂ may depend on the current vector of forward rates;
as implied by (3.101), the values of all sj(k) should be determined before the
forward rates are updated.

To avoid repeated calculation of the intervals between dates ti, we intro-
duce the notation

hi = ti − ti−1, , i = 1, . . . , M.

These values do not change in the course of a simulation so we use the vector
(h1, . . . , hM ) to represent these same values at all steps of the simulation.

We now proceed to detail the steps in an HJM simulation. We separate
the algorithm into two parts, one calculating the discrete drift parameter at
a fixed time step, the other looping over time steps and updating the forward
curve at each step. Figure 3.16 illustrates the calculation of

µ̂k(ti−1, tj) =

1
2hj

 d∑
k=1

(
j∑

	=i

σ̂k(ti−1, t	)h	+1

)2

−
d∑

k=1

(
j−1∑
	=i

σ̂k(ti−1, t	)h	+1

)2


in a way that avoids duplicate computation. In the notation of the algorithm,
this drift parameter is evaluated as

1
2(tj+1 − tj)

[Bnext − Bprev],
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and each Anext(k) records a quantity of the form

j∑
	=i

σ̂k(ti−1, t	)h	+1.

Inputs: sj(k), j = 1, . . . , M − i, k = 1, . . . , d as in (3.101)
and h1, . . . , hM (h� = t� − t�−1)

Aprev(k) ← 0, k = 1, . . . , d
for j = 1, . . . , M − i

Bnext ← 0
for k = 1, . . . , d

Anext(k) ← Aprev(k) + sj(k) ∗ hi+j

Bnext ← Bnext + Anext(k) ∗ Anext(k)
Aprev(k) ← Anext(k)

end
mj ← (Bnext − Bprev)/(2hi+j)
Bprev ← Bnext

end
return m1, . . . , mM−i.

Fig. 3.16. Calculation of discrete drift parameters mj = µ̂(ti−1, ti+j−1) needed to
simulate transition from ti−1 to ti.

Figure 3.17 shows an algorithm for a single replication in an HJM simu-
lation; the steps in the figure would naturally be repeated over many inde-
pendent replications. This algorithm calls the one in Figure 3.16 to calculate
the discrete drift for all remaining maturities at each time step. The two algo-
rithms could obviously be combined, but keeping them separate should help
clarify the various steps. In addition, it helps stress the point that in propa-
gating the forward curve from ti−1 to ti, we first evaluate the sj(k) and mj

using the forward rates at step i − 1 and then update the rates to get their
values at step i.

To make this point a bit more concrete, suppose we specified a single-factor
model with σ̂(ti, tj) = σ̃(i, j)f̂(ti, tj) for some fixed values σ̃(i, j). This makes
each σ̂(ti, tj) proportional to the corresponding forward rate. We noted in Ex-
ample 3.6.3 that this type of diffusion term is inadmissible in the continuous-
time limit, but it can be (and often is) used in practice so long as the incre-
ments hi are kept bounded away from zero. In this model it should be clear
that in updating f̂(ti−1, tj) to f̂(ti, tj) we need to evaluate σ̃(i−1, j)f̂(ti−1, tj)
before we update the forward rate.

Since an HJM simulation is typically used to value interest rate derivatives,
we have included in Figure 3.17 a few additional generic steps illustrating how
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Inputs: initial curve (f1, . . . , fM ) and intervals (h1, . . . , hM )

D ← 1, P ← 0, C ← 0.
for i = 1, . . . , M − 1

D ← D ∗ exp(−f1 ∗ hi)
evaluate sj(k), j = 1, . . . , M − i, k = 1, . . . , d

(recall that sj(k) = σ̂k(ti−1, ti+j−1))
evaluate m1, . . . , mM−i using Figure 3.16
generate Z1, . . . , Zd ∼ N(0, 1)
for j = 1, . . . , M − i

S ← 0
for k = 1, . . . , d S ← S + sj(k) ∗ Zk

fj ← fj+1 + mj ∗ hi + S ∗ √hi

end
P ← cashflow at ti (depending on instrument)
C ← C + D ∗ P

end
return C.

Fig. 3.17. Algorithm to simulate evolution of forward curve over t0, t1, . . . , tM−1

and calculate cumulative discounted cashflows from an interest rate derivative.

a path of the forward curve is used both to compute and to discount the pay-
off of a derivative. The details of a particular instrument are subsumed in
the placeholder “cashflow at ti.” This cashflow is discounted through mul-
tiplication by D, which is easily seen to contain the simulated value of the
discount factor D̂(ti) as defined in (3.99). (When D is updated in Figure 3.17,
before the forward rates are updated, f1 records the short rate for the interval
[ti−1, ti].) To make the pricing application more explicit, we consider a few
examples.

Example 3.6.4 Bonds. There is no reason to use an HJM simulation to price
bonds — if properly implemented, the simulation will simply return prices
that could have been computed from the initial forward curve. Nevertheless,
we consider this example to help fix ideas. We discussed the pricing of a zero-
coupon bond following (3.99); in Figure 3.17 this corresponds to setting P ← 1
at the maturity of the bond and P ← 0 at all other dates. For a coupon paying
bond with a face value of 100 and a coupon of c, we would set P ← c at the
coupon dates and P ← 100 + c at maturity. This assumes, of course, that the
coupon dates are among the t1, . . . , tM . �

Example 3.6.5 Caps. A caplet is an interest rate derivative providing pro-
tection against an increase in an interest rate for a single period; a cap is
a portfolio of caplets covering multiple periods. A caplet functions almost
like a call option on the short rate, which would have a payoff of the form
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(r(T ) − K)+ for some strike K and maturity T . In practice, a caplet differs
from this in some small but important ways. (For further background, see
Appendix C.)

In contrast to the instantaneous short rate r(t), the underlying rate in a
caplet typically applies over an interval and is based on discrete compound-
ing. For simplicity, suppose the interval is of the form [ti, ti+1]. At ti, the
continuously compounded rate for this interval is f̂(ti, ti); the corresponding
discretely compounded rate F̂ satisfies

1
1 + F̂ (ti)[ti+1 − ti]

= e−f̂(ti,ti)[ti+1−ti];

i.e.,

F̂ (ti) =
1

ti+1 − ti

(
ef̂(ti,ti)[ti+1−ti] − 1

)
.

The payoff of the caplet would then be (F̂ (ti) − K)+ (or a constant multiple
of this). Moreover, this payment is ordinarily made at the end of the interval,
ti+1. To discount it properly we should therefore simulate to ti and set

P ← 1
1 + F̂ (ti)[ti+1 − ti]

(F̂ (ti) − K)+; (3.102)

in the notation of Figure 3.17, this is

P ← e−f1hi+1

(
1

hi+1

(
ef1hi+1 − 1

)
− K

)+

.

Similar ideas apply if the caplet covers an interval longer than a single
simulation interval. Suppose the caplet applies to an interval [ti, ti+n]. Then
(3.102) still applies at ti, but with ti+1 replaced by ti+n and F̂ (ti) redefined
to be

F̂ (ti) =
1

tn+i − ti

(
exp

(
n−1∑
	=0

f̂(ti, ti+	)[ti+	+1 − ti+	]

)
− 1

)
.

In the case of a cap consisting of caplets for, say, the periods [ti1 , ti2 ], [ti2 , ti3 ],
. . . , [tik

, tik+1 ], for some i1 < i2 < · · · < ik+1, this calculation would be
repeated and a cashflow recorded at each tij , j = 1, . . . , k. �

Example 3.6.6 Swaptions. Consider, next, an option to swap fixed-rate pay-
ments for floating-rate payments. (See Appendix C for background on swaps
and swaptions.) Suppose the underlying swap begins at tj0 with payments to
be exchanged at dates tj1 , . . . , tjn . If we denote the fixed rate in the swap by
R, then the fixed-rate payment at tjk

is 100R[tjk
−tjk−1 ], assuming a principal

or notional amount of 100. As explained in Section C.2 of Appendix C, the
value of the swap at tj0 is
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V̂ (tj0 ) = 100

(
R

n∑
	=1

B̂(tj0 , tj�
)[tj�

− tj�−1 ] + B̂(tj0 , tjn) − 1

)
.

The bond prices B̂(tj0 , tj�
) can be computed from the forward rates at tj0

using (3.94).
The holder of an option to enter this swap will exercise the option if

V̂ (tj0) > 0 and let it expire otherwise. (For simplicity, we are assuming
that the option expires at tj0 though similar calculations apply for an op-
tion to enter into a forward swap, in which case the option expiration date
would be prior to tj0 .) Thus, we may view the swaption as having a payoff of
max{0, V̂ (tj0 )} at tj0 . In a simulation, we would therefore simulate the for-
ward curve to the option expiration date tj0 ; at that date, calculate the prices
of the bonds B̂(tj0 , tj�

) maturing at the payment dates of the swaps; from
the bond prices calculate the value of the swap V̂ (tj0 ) and thus the swap-
tion payoff max{0, V̂ (tj0)}; record this as the cashflow P in the algorithm of
Figure 3.17 and discount it as in the algorithm.

This example illustrates a general feature of the HJM framework that
contrasts with models based on the short rate as in Sections 3.3 and 3.4.
Consider valuing a 5-year option on a 20-year swap. This instrument involves
maturities as long as 25 years, so valuing it in a model of the short rate could
involve simulating paths over a 25-year horizon. In the HJM framework, if the
initial forward curve extends for 25 years, then we need to simulate only for
5 years; at the expiration of the option, the remaining forward rates contain
all the information necessary to value the underlying swap. Thus, although
the HJM setting involves updating many more variables at each time step, it
may also require far fewer time steps. �

3.7 Forward Rate Models: Simple Rates

The models considered in this section are closely related to the HJM frame-
work of the previous section in that they describe the arbitrage-free dynamics
of the term structure of interest rates through the evolution of forward rates.
But the models we turn to now are based on simple rather than continu-
ously compounded forward rates. This seemingly minor shift in focus has
surprisingly far-reaching practical and theoretical implications. This model-
ing approach has developed primarily through the work of Miltersen, Sand-
mann, and Sondermann [268], Brace, Gatarek, and Musiela [56], Musiela and
Rutkowski [274], and Jamshidian [197]; it has gained rapid acceptance in the
financial industry and stimulated a growing stream of research into what are
often called LIBOR market models.
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3.7.1 LIBOR Market Model Dynamics

The basic object of study in the HJM framework is the forward rate curve
{f(t, T ), t ≤ T ≤ T ∗}. But the instantaneous, continuously compounded for-
ward rates f(t, T ) might well be considered mathematical idealizations —
they are not directly observable in the marketplace. Most market interest
rates are based on simple compounding over intervals of, e.g., three months
or six months. Even the instantaneous short rate r(t) treated in the models
of Sections 3.3 and 3.4 is a bit of a mathematical fiction because short-term
rates used for pricing are typically based on periods of one to three months.
The term “market model” is often used to describe an approach to interest
rate modeling based on observable market rates, and this entails a departure
from instantaneous rates.

Among the most important benchmark interest rates are the London Inter-
Bank Offered Rates or LIBOR. LIBOR is calculated daily through an average
of rates offered by banks in London. Separate rates are quoted for different
maturities (e.g., three months and six months) and different currencies. Thus,
each day new values are calculated for three-month Yen LIBOR, six-month
US dollar LIBOR, and so on.

LIBOR rates are based on simple interest. If L denotes the rate for an
accrual period of length δ (think of δ as 1/4 or 1/2 for three months and six
months respectively, with time measured in years), then the interest earned
on one unit of currency over the accrual period is δL. For example, if three-
month LIBOR is 6%, the interest earned at the end of three months on a
principal of 100 is 0.25 · 0.06 · 100 = 1.50.

A forward LIBOR rate works similarly. Fix δ and consider a maturity T .
The forward rate L(0, T ) is the rate set at time 0 for the interval [T, T + δ].
If we enter into a contract at time 0 to borrow 1 at time T and repay it
with interest at time T + δ, the interest due will be δL(0, T ). As shown in
Appendix C (specifically equation (C.5)), a simple replication argument leads
to the following identity between forward LIBOR rates and bond prices:

L(0, T ) =
B(0, T )− B(0, T + δ)

δB(0, T + δ)
. (3.103)

This further implies the relation

L(0, T ) =
1
δ

(
exp

(∫ T+δ

T

f(0, u) du

)
− 1

)
(3.104)

between continuous and simple forwards, though it is not necessary to intro-
duce the continuous rates to build a model based on simple rates.

It should be noted that, as is customary in this literature, we treat the
forward LIBOR rates as though they were risk-free rates. LIBOR rates are
based on quotes by banks which could potentially default and this risk is pre-
sumably reflected in the rates. US Treasury bonds, in contrast, are generally
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considered to have a negligible chance of default. The argument leading to
(3.103) may not hold exactly if the bonds on one side and the forward rate
on the other reflect different levels of creditworthiness. We will not, however,
attempt to take account of these considerations.

Although (3.103) and (3.104) apply in principle to a continuum of matu-
rities T , we consider a class of models in which a finite set of maturities or
tenor dates

0 = T0 < T1 < · · · < TM < TM+1

are fixed in advance. As argued in Jamshidian [197], many derivative securities
tied to LIBOR and swap rates are sensitive only to a finite set of maturities
and it should not be necessary to introduce a continuum to price and hedge
these securities. Let

δi = Ti+1 − Ti, i = 0, . . . , M,

denote the lengths of the intervals between tenor dates. Often, these would
all be equal to a nominally fixed interval of a quarter or half year; but even
in this case, day-count conventions would produce slightly different values for
the fractions δi.

For each date Tn we let Bn(t) denote the time-t price of a bond maturing
at Tn, 0 ≤ t ≤ Tn. In our usual notation this would be B(t, Tn), but writing
Bn(t) and restricting n to {1, 2, . . . , M + 1} emphasizes that we are working
with a finite set of bonds. Similarly, we write Ln(t) for the forward rate as of
time t for the accrual period [Tn, Tn+1]; see Figure 3.18. This is given in terms
of the bond prices by

Ln(t) =
Bn(t) − Bn+1(t)

δnBn+1(t)
, 0 ≤ t ≤ Tn, n = 0, 1, . . . , M. (3.105)

After Tn, the forward rate Ln becomes meaningless; it sometimes simplifies
notation to extend the definition of Ln(t) beyond Tn by setting Ln(t) =
Ln(Tn) for all t ≥ Tn.

From (3.105) we know that bond prices determine the forward rates. At a
tenor date Ti, the relation can be inverted to produce

Bn(Ti) =
n−1∏
j=i

1
1 + δjLj(Ti)

, n = i + 1, . . . , M + 1. (3.106)

However, at an arbitrary date t, the forward LIBOR rates do not determine
the bond prices because they do not determine the discount factor for intervals
shorter than the accrual periods. Suppose for example that Ti < t < Ti+1 and
we want to find the price Bn(t) for some n > i + 1. The factor

n−1∏
j=i+1

1
1 + δjLj(t)
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Fig. 3.18. Evolution of vector of forward rates. Each Ln(t) is the forward rate for
the interval [Tn, Tn+1] as of time t ≤ Tn.

discounts the bond’s payment at Tn back to time Ti+1, but the LIBOR rates
do not specify the discount factor from Ti+1 to t.

Define a function η : [0, TM+1) → {1, . . . , M + 1} by taking η(t) to be the
unique integer satisfying

Tη(t)−1 ≤ t < Tη(t);

thus, η(t) gives the index of the next tenor date at time t. With this notation,
we have

Bn(t) = Bη(t)(t)
n−1∏

j=η(t)

1
1 + δjLj(t)

, 0 ≤ t < Tn; (3.107)

the factor Bη(t)(t) (the current price of the shortest maturity bond) is the
missing piece required to express the bond prices in terms of the forward
LIBOR rates.

Spot Measure

We seek a model in which the evolution of the forward LIBOR rates is de-
scribed by a system of SDEs of the form

dLn(t)
Ln(t)

= µn(t) dt + σn(t)� dW (t), 0 ≤ t ≤ Tn, n = 1, . . . , M, (3.108)

with W a d-dimensional standard Brownian motion. The coefficients µn and
σn may depend on the current vector of rates (L1(t), . . . , LM (t)) as well as the
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current time t. Notice that in (3.108) σn is the (proportional) volatility because
we have divided by Ln on the left, whereas in the HJM setting (3.91) we took
σ(t, T ) to be the absolute level of volatility. At this point, the distinction is
purely one of notation rather than scope because we allow σn(t) to depend
on the current level of rates.

Recall that in the HJM setting we derived the form of the drift of the
forward rates from the absence of arbitrage. More specifically, we derived the
drift from the condition that bond prices be martingales when divided by
the numeraire asset. The numeraire we used is the usual one associated with
the risk-neutral measure, β(t) = exp(

∫ t

0 r(u) du). But introducing a short-rate
process r(t) would undermine our objective of developing a model based on
the simple (and thus more realistic) rates Ln(t). We therefore avoid the usual
risk-neutral measure and instead use a numeraire asset better suited to the
tenor dates Ti.

A simply compounded counterpart of β(t) works as follows. Start with 1
unit of account at time 0 and buy 1/B1(0) bonds maturing at T1. At time T1,
reinvest the funds in bonds maturing at time T2 and proceed this way, at each
Ti putting all funds in bonds maturing at time Ti+1. This trading strategy
earns (simple) interest at rate Li(Ti) over each interval [Ti, Ti+1], just as in
the continuously compounded case a savings account earns interest at rate
r(t) at time t. The initial investment of 1 at time 0 grows to a value of

B∗(t) = Bη(t)(t)
η(t)−1∏

j=0

[1 + δjLj(Tj)]

at time t. Following Jamshidian [197], we take this as numeraire asset and call
the associated measure the spot measure.

Suppose, then, that (3.108) holds under the spot measure, meaning that W
is a standard Brownian motion under that measure. The absence of arbitrage
restricts the dynamics of the forward LIBOR rates through the condition that
bond prices be martingales when deflated by the numeraire asset. (We use the
term “deflated” rather than “discounted” to emphasize that we are dividing
by the numeraire asset and not discounting at a continuously compounded
rate.) From (3.107) and the expression for B∗, we find that the deflated bond
price Dn(t) = Bn(t)/B∗(t) is given by

Dn(t) =

η(t)−1∏
j=0

1
1 + δjLj(Tj)

 n−1∏
j=η(t)

1
1 + δjLj(t)

, 0 ≤ t ≤ Tn. (3.109)

Notice that the spot measure numeraire B∗ cancels the factor Bη(t)(t) used in
(3.107) to discount between tenor dates. We are thus left in (3.109) with an
expression defined purely in terms of the LIBOR rates. This would not have
been the case had we divided by the risk-neutral numeraire asset β(t).

We require that the deflated bond prices Dn be positive martingales
and proceed to derive the restrictions this imposes on the LIBOR dynam-
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ics (3.108). If the deflated bonds are indeed positive martingales, we may
write

dDn+1(t)
Dn+1(t)

= νn+1(t)� dW (t), n = 1, . . . , M,

for some �d-valued processes νn+1 which may depend on the current level of
(D2, . . . , DM+1) (equivalently, of (L1, . . . , LM )). By Itô’s formula,

d log Dn+1(t) = − 1
2‖νn+1(t)‖ dt + ν�

n+1(t) dW (t).

We may therefore express νn+1 by finding the coefficient of dW in

d log Dn+1(t) = −
n∑

j=η(t)

d log(1 + δjLj(t));

notice that the first factor in (3.109) is constant between maturities Ti. Ap-
plying Itô’s formula and (3.108), we find that

νn+1(t) = −
n∑

j=η(t)

δjLj(t)
1 + δjLj(t)

σj(t). (3.110)

We now proceed by induction to find the µn in (3.108). Setting D1(t) ≡
B1(0), we make D1 constant and hence a martingale without restrictions on
any of the LIBOR rates. Suppose now that µ1, . . . , µn−1 have been chosen
consistent with the martingale condition on Dn. From the identity Dn(t) =
Dn+1(1+ δnLn(t)), we find that δnLn(t)Dn+1(t) = Dn(t)−Dn+1(t), so Dn+1

is a martingale if and only if LnDn+1 is a martingale. Applying Itô’s formula,
we get

d(LnDn+1)
= Dn+1 dLn + Ln dDn+1 + LnDn+1ν

�
n+1σn dt

=
(
Dn+1µnLn + LnDn+1ν

�
n+1σn

)
dt + LnDn+1σ

�
n dW + Ln dDn+1.

(We have suppressed the time argument to lighten the notation.) To be con-
sistent with the martingale restriction on Dn+1 and LnDn+1, the dt coefficient
must be zero, and thus

µn = −σ�
n νn+1;

notice the similarity to the HJM drift (3.90). Combining this with (3.110), we
arrive at

µn(t) =
n∑

j=η(t)

δjLj(t)σn(t)�σj(t)
1 + δjLj(t)

(3.111)

as the required drift parameter in (3.108), so

dLn(t)
Ln(t)

=
n∑

j=η(t)

δjLj(t)σn(t)�σj(t)
1 + δjLj(t)

dt+σn(t)� dW (t), 0 ≤ t ≤ Tn, (3.112)
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n = 1, . . . , M , describes the arbitrage-free dynamics of forward LIBOR rates
under the spot measure. This formulation is from Jamshidian [197], which
should be consulted for a rigorous and more general development.

Forward Measure

As in Musiela and Rutkowski [274], we may alternatively formulate a LIBOR
market model under the forward measure PM+1 for maturity TM+1 and take
the bond BM+1 as numeraire asset. In this case, we redefine the deflated bond
prices to be the ratios Dn(t) = Bn(t)/BM+1(t), which simplify to

Dn(t) =
M∏

j=n+1

(1 + δjLj(t)). (3.113)

Notice that the numeraire asset has once again canceled the factor Bη(t)(t),
leaving an expression that depends solely on the forward LIBOR rates.

We could derive the dynamics of the forward LIBOR rates under the for-
ward measure through the Girsanov Theorem and (3.112), much as we did
in the HJM setting to arrive at (3.93). Alternatively, we could start from the
requirement that the Dn in (3.113) be martingales and proceed by induction
(backwards from n = M) to derive restrictions on the evolution of the Ln.
Either way, we find that the arbitrage-free dynamics of the Ln, n = 1, . . . , M ,
under the forward measure PM+1 are given by

dLn(t)
Ln(t)

= −
M∑

j=n+1

δjLj(t)σn(t)�σj(t)
1 + δjLj(t)

dt + σn(t)� dWM+1(t), 0 ≤ t ≤ Tn,

(3.114)
with WM+1 a standard d-dimensional Brownian motion under PM+1. The
relation between the drift in (3.114) and the drift in (3.112) is analogous to
the relation between the risk-neutral and forward-measure drifts in the HJM
setting; compare (3.90) and (3.93).

If we take n = M in (3.114), we find that

dLM (t)
LM (t)

= σM (t)� dWM+1(t),

so that, subject only to regularity conditions on its volatility, LM is a mar-
tingale under the forward measure for maturity TM+1. Moreover, if σM is
deterministic then LM (t) has lognormal distribution LN(−σ̄2

M (t)/2, σ̄2
M (t))

with

σ̄M (t) =

√
1
t

∫ t

0

‖σM (u)‖2 du. (3.115)

In fact, the choice of M is arbitrary: each Ln is a martingale (lognormal if σn

is deterministic) under the forward measure Pn+1 associated with Tn+1.
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These observations raise the question of whether we may in fact take the
coefficients σn to be deterministic in (3.112) and (3.114). Recall from Exam-
ple 3.6.3 that this choice (deterministic proportional volatility) is inadmissible
in the HJM setting, essentially because it makes the HJM drift quadratic in
the current level of rates. To see what happens with simple compounding,
rewrite (3.112) as

dLn(t) =
n∑

j=η(t)

δjLj(t)Ln(t)σn(t)�σj(t)
1 + δjLj(t)

dt + Ln(t)σn(t)� dW (t) (3.116)

and consider the case of deterministic σi. The numerators in the drift are
quadratic in the forward LIBOR rates, but they are stabilized by the terms
1 + δjLj(t) in the denominators; indeed, because Lj(t) ≥ 0 implies∣∣∣∣ δjLj(t)

1 + δjLj(t)

∣∣∣∣ ≤ 1,

the drift is linearly bounded in Ln(t), making deterministic σi admissible.
This feature is lost in the limit as the compounding period δj decreases to
zero. Thus, the distinction between continuous and simple forward rates turns
out to have important mathematical as well as practical implications.

3.7.2 Pricing Derivatives

We have noted two important features of LIBOR market models: they are
based on observable market rates, and (in contrast to the HJM framework)
they admit deterministic volatilities σj . A third important and closely related
feature arises in the pricing of interest rate caps.

Recall from Example 3.6.5 (or Appendix C.2) that a cap is a collection
of caplets and that each caplet may be viewed as a call option on a simple
forward rate. Consider, then, a caplet for the accrual period [Tn, Tn+1]. The
underlying rate is Ln and the value Ln(Tn) is fixed at Tn. With a strike of K,
the caplet’s payoff is δn(Ln(Tn) − K)+; think of the caplet as refunding the
amount by which interest paid at rate Ln(Tn) exceeds interest paid at rate
K. This payoff is made at Tn+1.

Let Cn(t) denote the price of this caplet at time t; we know the terminal
value Cn(Tn+1) = δn(Ln(Tn) − K)+ and we want to find the initial value
Cn(0). Under the spot measure, the deflated price Cn(t)/B∗(t) must be a
martingale, so

Cn(0) = B∗(0)E∗
[
δn(Ln(Tn) − K)+

B∗(Tn+1)

]
,

where we have written E∗ for expectation under the spot measure. Through
B∗(Tn+1), this expectation involves the joint distribution of L1(T1), . . . ,
Ln(Tn), making its value difficult to discern. In contrast, under the forward
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measure Pn+1 associated with maturity Tn+1, the martingale property applies
to Cn(t)/Bn+1(t). We may therefore also write

Cn(0) = Bn+1(0)En+1

[
δn(Ln(Tn) − K)+

Bn+1(Tn+1)

]
,

with En+1 denoting expectation under Pn+1. Conveniently, Bn+1(Tn+1) ≡ 1,
so this expectation depends only on the marginal distribution of Ln(Tn). If
we take σn to be deterministic, then Ln(Tn) has the lognormal distribution
LN(−σ̄2

n(Tn)/2, σ̄2
n(Tn)), using the notation in (3.115). In this case, the caplet

price is given by the Black formula (after Black [49]),

Cn(0) = BC(Ln(0), σ̄n(Tn), Tn, K, δnBn+1(0)),

with

BC(F, σ, T, K, b) =

b

(
FΦ
(

log(F/K) + σ2T/2
σ
√

T

)
− KΦ

(
log(F/K) − σ2T/2

σ
√

T

))
(3.117)

and Φ the cumulative normal distribution. Thus, under the assumption of de-
terministic volatilities, caplets are priced in closed form by the Black formula.

This formula is frequently used in the reverse direction. Given the market
price of a caplet, one can solve for the “implied volatility” that makes the
formula match the market price. This is useful in calibrating a model to market
data, a point we return to in Section 3.7.4.

Consider, more generally, a derivative security making a payoff of g(L(Tn))
at Tk, with L(Tn) = (L1(T1), . . . , Ln−1(Tn−1), Ln(Tn), . . . , LM (Tn)) and k ≥
n. The price of the derivative at time 0 is given by

E∗
[
g(L(Tn))
B∗(Tk)

]
(using the fact that B∗(0) = 1), and also by

Bm(0)Em

[
g(L(Tn))
Bm(Tk)

]
for every m ≥ k. Which measure and numeraire are most convenient depends
on the payoff function g. However, in most cases, the expectation cannot be
evaluated explicitly and simulation is required.

As a further illustration, we consider the pricing of a swaption as described
in Example 3.6.6 and Appendix C.2. Suppose the underlying swap begins at
Tn with fixed- and floating-rate payments exchanged at Tn+1, . . . , TM+1. From
equation (C.7) in Appendix C, we find that the forward swap rate at time t
is given by

Sn(t) =
Bn(t) − BM+1(t)∑M+1

j=n+1 δjBj(t)
. (3.118)
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Using (3.107) and noting that Bη(t)(t) cancels from the numerator and de-
nominator, this swap rate can be expressed purely in terms of forward LIBOR
rates.

Consider, now, an option expiring at time Tk ≤ Tn to enter into the swap
over [Tn, TM+1] with fixed rate T . The value of the option at expiration can
be expressed as (cf. equation (C.11))

M+1∑
j=n+1

δjBj(Tk)(R − Sn(Tk))+.

This can be written as a function g(L(Tk)) of the LIBOR rates. The price
at time zero can therefore be expressed as an expectation using the general
expressions above.

By applying Itô’s formula to the swap rate (3.118), it is not difficult to
conclude that if the forward LIBOR rates have deterministic volatilities, then
the forward swap rate cannot also have a deterministic volatility. In particu-
lar, then, the forward swap rate cannot be geometric Brownian motion under
any equivalent measure. Brace et al. [56] nevertheless use a lognormal ap-
proximation to the swap rate to develop a method for pricing swaptions; their
approximation appears to give excellent results. An alternative approach has
been developed by Jamshidian [197]. He develops a model in which the term
structure is described through a vector (S0(t), . . . , SM (t)) of forward swap
rates. He shows that one may choose the volatilities of the forward swap rates
to be deterministic, and that in this case swaption prices are given by a variant
of the Black formula. However, in this model, the LIBOR rates cannot also
have deterministic volatilities, so caplets are no longer priced by the Black
formula. One must therefore choose between the two pricing formulas.

3.7.3 Simulation

Pricing derivative securities in LIBOR market models typically requires sim-
ulation. As in the HJM setting, exact simulation is generally infeasible and
some discretization error is inevitable. Because the models of this section deal
with a finite set of maturities from the outset, we need only discretize the
time argument, whereas in the HJM setting both time and maturity required
discretization.

We fix a time grid 0 = t0 < t1 < · · · < tm < tm+1 over which to simulate. It
is sensible to include the tenor dates T1, . . . , TM+1 among the simulation dates.
In practice, one would often even take ti = Ti so that the simulation evolves
directly from one tenor date to the next. We do not impose any restrictions
on the volatilities σn, though the deterministic case is the most widely used.
The only other specific case that has received much attention takes σn(t) to
be the product of a deterministic function of time and a function of Ln(t) as
proposed in Andersen and Andreasen [13]. For example, one may take σn(t)
proportional to a power of Ln(t), resulting in a CEV-type of volatility. In either
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this extension or in the case of deterministic volatilities, it often suffices to
restrict the dependence on time to piecewise constant functions that change
values only at the Ti. We return to this point in Section 3.7.4.

Simulation of forward LIBOR rates is a special case of the general prob-
lem of simulating a system of SDEs. One could apply an Euler scheme or a
higher-order method of the type discussed in Chapter 6. However, even if we
restrict ourselves to Euler schemes (as we do here), there are countless alter-
natives. We have many choices of variables to discretize and many choices of
probability measure under which to simulate. Several strategies are compared
both theoretically and numerically in Glasserman and Zhao [151], and the
discussion here draws on that investigation.

The most immediate application of the Euler scheme under the spot mea-
sure discretizes the SDE (3.116), producing

L̂n(ti+1) = L̂n(ti) + µn(L̂(ti), ti)L̂n(ti)[ti+1 − ti]
+ L̂n(ti)

√
ti+1 − tiσn(ti)�Zi+1 (3.119)

with

µn(L̂(ti), ti) =
n∑

j=η(ti)

δjL̂j(ti)σn(ti)�σj(ti)
1 + δjL̂j(ti)

and Z1, Z2, . . . independent N(0, I) random vectors in �d. Here, as in Sec-
tion 3.6.2, we use hats to identify discretized variables. We assume that we
are given an initial set of bond prices B1(0), . . . , BM+1(0) and initialize the
simulation by setting

L̂n(0) =
Bn(0) − Bn+1(0)

δnBn+1(0)
, n = 1, . . . , M,

in accordance with (3.105).
An alternative to (3.119) approximates the LIBOR rates under the spot

measure using

L̂n(ti+1) = L̂n(ti)×
exp
([

µn(L̂(ti), ti) − 1
2‖σn(ti)‖2

]
[ti+1 − ti] +

√
ti+1 − tiσn(ti)�Zi+1

)
.

(3.120)

This is equivalent to applying an Euler scheme to log Ln; it may also be viewed
as approximating Ln by geometric Brownian motion over [ti, ti+1], with drift
and volatility parameters fixed at ti. This method seems particularly attractive
in the case of deterministic σn, since then Ln is close to lognormal. A further
property of (3.120) is that it keeps all L̂n positive, whereas (3.119) can produce
negative rates.

For both of these algorithms it is important to note that our definition
of η makes η right-continuous. For the original continuous-time processes we
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could just as well have taken η to be left-continuous, but the distinction is
important in the discrete approximation. If ti = Tk, then η(ti) = k+1 and the
sum in each µn(L̂(ti), ti) starts at k+1. Had we taken η to be left-continuous,
we would have η(Ti) = k and thus an additional term in each µn. It seems
intuitively more natural to omit this term as time advances beyond Tk since
Lk ceases to be meaningful after Tk. Glasserman and Zhao [151] and Sidenius
[330] both find that omitting it (i.e., taking η right-continuous) results in
smaller discretization error.

Both (3.119) and (3.120) have obvious counterparts for simulation under
the forward measure PM+1. The only modification necessary is to replace
µn(L̂(ti), ti) with

µn(L̂(ti), ti) = −
M∑

j=n+1

δjL̂j(ti)σn(ti)�σj(ti)
1 + δjL̂j(ti)

.

Notice that µM ≡ 0. It follows that if the σM is deterministic and constant
between the ti (for example, constant between tenor dates), then the log Euler
scheme (3.120) with µM = 0 simulates LM without discretization error under
the forward measure PM+1. None of the Ln is simulated without discretiza-
tion error under the spot measure, but we will see that the spot measure is
nevertheless generally preferable for simulation.

Martingale Discretization

In our discussion of simulation in the HJM setting, we devoted substantial at-
tention to the issue of choosing the discrete drift to keep the model arbitrage-
free even after discretization. It is therefore natural to examine whether an
analogous choice of drift can be made in the LIBOR rate dynamics. In the
HJM setting, we derived the discrete drift from the condition that the dis-
cretized discounted bond prices must be martingales. In the LIBOR market
model, the corresponding requirement is that

D̂n(ti) =
n−1∏
j=0

1
1 + δjL̂j(ti ∧ Tj)

(3.121)

be a martingale (in i) for each n under the spot measure; see (3.109). Under
the forward measure, the martingale condition applies to

D̂n(ti) =
M∏

j=n

(
1 + δjL̂j(ti)

)
; (3.122)

see (3.113).
Consider the spot measure first. We would like, as a special case of (3.121),

for 1/(1 + δ1L̂1) to be a martingale. Using the Euler scheme (3.119), this
requires
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E

[
1

1 + δ1(L̂1(0)[1 + µ1t1 +
√

t1σ�
1 Z1)]

]
=

1
1 + δ1L̂1(0)

,

the expectation taken with respect to Z1 ∼ N(0, I). However, because the
denominator inside the expectation has a normal distribution, the expecta-
tion is infinite no matter how we choose µ1. There is no discrete drift that
preserves the martingale property. If, instead, we use the method in (3.120),
the condition becomes

E

[
1

1 + δ1(L̂1(0) exp([µ1 − ‖σ1‖2/2]t1 +
√

t1σ�
1 Z1))

]
=

1
1 + δ1L̂1(0)

.

In this case, there is a value of µ1 for which this equation holds, but there
is no explicit expression for it. The root of the difficulty lies in evaluating an
expression of the form

E

[
1

1 + exp(a + bZ)

]
, Z ∼ N(0, 1),

which is effectively intractable. In the HJM setting, calculation of the discrete
drift relies on evaluating far more convenient expressions of the form E[exp(a+
bZ)]; see the steps leading to (3.97).

Under the forward measure, it is feasible to choose µ1 so that D̂2 in (3.122)
is a martingale using an Euler scheme for either L1 or log L1. However, this
quickly becomes cumbersome for D̂n with larger values of n. As a practical
matter, it does not seem feasible under any of these methods to adjust the
drift to make the deflated bond prices martingales. A consequence of this is
that if we price bonds in the simulation by averaging replications of (3.121)
or (3.122), the simulation price will not converge to the corresponding Bn(0)
as the number of replications increases.

An alternative strategy is to discretize and simulate the deflated bond
prices themselves, rather than the forward LIBOR rates. For example, under
the spot measure, the deflated bond prices satisfy

dDn+1(t)
Dn+1(t)

= −
n∑

j=η(t)

(
δjLj(t)

1 + δjLj(t)

)
σ�

j (t) dW (t)

=
n∑

j=η(t)

(
Dj+1(t)
Dj(t)

− 1
)

σ�
j (t) dW (t). (3.123)

An Euler scheme for log Dn+1 therefore evolves according to

D̂n+1(ti+1) =

D̂n+1(ti) exp
(
− 1

2‖ν̂n+1(ti)‖2[ti+1 − ti] +
√

ti+1 − tiν̂n+1(ti)�Zi+1

)
(3.124)

with
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ν̂n+1(ti) =
n∑

j=η(ti)

(
D̂j+1(ti)
D̂j(ti)

− 1

)
σj(ti). (3.125)

In either case, the discretized deflated bond prices are automatically mar-
tingales; in (3.124) they are positive martingales and in this sense the dis-
cretization is arbitrage-free. From the simulated D̂n(ti) we can then define
the discretized forward LIBOR rates by setting

L̂n(ti) =
1
δn

(
D̂n(ti) − D̂n+1(ti)

D̂n+1(ti)

)
,

for n = 1, . . . , M . Any other term structure variables (e.g., swap rates) re-
quired in the simulation can then be defined from the L̂n.

Glasserman and Zhao [151] recommend replacing(
D̂j+1(ti)
D̂j(ti)

− 1

)
with min


(

D̂j+1(ti)
D̂j(ti)

)+

− 1, 0

 . (3.126)

This modification has no effect in the continuous-time limit because 0 ≤
Dj+1(t) ≤ Dj(t) (if Lj(t) ≥ 0). But in the discretized process the ratio
D̂j+1/D̂j could potentially exceed 1.

Under the forward measure PM+1, the deflated bond prices (3.113) satisfy

dDn+1(t)
Dn+1(t)

=
M∑

j=n+1

δjLj(t)
1 + δjLj(t)

σj(t)� dWM+1(t)

=
M∑

j=n+1

(
1 − Dj+1(t)

Dj(t)

)
σ�

j (t) dWM+1(t). (3.127)

We can again apply an Euler discretization to the logarithm of these variables
to get (3.124), except that now

ν̂n+1(ti) =
M∑

j=n+1

(
1 − D̂j+1(ti)

D̂j(ti)

)
σj(ti),

possibly modified as in (3.126).
Glasserman and Zhao [151] consider several other choices of variables for

discretization, including (under the spot measure) the normalized differences

Vn(t) =
Dn(t) − Dn+1(t)

B1(0)
, n = 1, . . . , M ;

these are martingales because the deflated bond prices are martingales. They
satisfy
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dVn

Vn
=(Vn + Vn−1 + · · · + V1 − 1

Vn−1 + · · · + V1 − 1

)
σ�

n +
n−1∑
j=η

(
Vj

Vj−1 + · · · + V1 − 1

)
σ�

j

 dW,

with the convention σM+1 ≡ 0. Forward rates are recovered using

δnLn(t) =
Vn(t)

Vn+1(t) + · · · + VM+1(t)
.

Similarly, the variables

δnXn(t) = δnLn(t)
M∏

j=n+1

(1 + δjLj(t))

are differences of deflated bond prices under the forward measure PM+1 and
thus martingales under that measure. The Xn satisfy

dXn

Xn
=

σ�
n +

M∑
j=n+1

δjXjσ
�
j

1 + δjXj + · · · + δMXM

 dWM+1.

Forward rates are recovered using

Ln =
Xn

1 + δn+1Xn+1 + · · · + δMXM
.

Euler discretizations of log Vn and log Xn preserve the martingale property
and thus keep the discretized model arbitrage-free.

Pricing Derivatives

The pricing of a derivative security in a simulation proceeds as follows. Using
any of the methods considered above, we simulate paths of the discretized
variables L̂1, . . . , L̂M . Suppose we want to price a derivative with a payoff of
g(L(Tn)) at time Tn. Under the spot measure, we simulate to time Tn and
then calculate the deflated payoff

g(L̂(Tn)) ·
n−1∏
j=0

1
1 + δjL̂j(Tj)

.

Averaging over independent replications produces an estimate of the deriva-
tive’s price at time 0. If we simulate under the forward measure, the estimate
consists of independent replications of
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g(L̂(Tn)) · BM+1(0)
n−1∏
j=1

(1 + δjL̂j(Tj)).

Glasserman and Zhao [151] compare various simulation methods based, in
part, on their discretization error in pricing caplets. For the case of a caplet
over [Tn−1, Tn], take g(x) = δn−1(x−K)+ in the expressions above. If the σj

are deterministic, the caplet price is given by the Black formula, as explained
in Section 3.7.2. However, because of the discretization error, the simulation
price will not in general converge exactly to the Black price as the number
of replications increase. The bias in pricing caplets serves as a convenient
indication of the magnitude of the discretization error.

Figure 3.19, reproduced from Glasserman and Zhao [151], graphs biases
in caplet pricing as a function of caplet maturity for various simulation meth-
ods. The horizontal line through the center of each panel corresponds to zero
bias. The error bars around each curve have halfwidths of one standard error,
indicating that the apparent biases are statistically significant. Details of the
parameters used for these experiments are reported in Glasserman and Zhao
[151] along with several other examples.

These and other experiments suggest the following observations. The
smallest biases are achieved by simulating the differences of deflated bond
prices (the Vn in the spot measure and the Xn in the forward measure) using
an Euler scheme for the logarithms of these variables. (See Glasserman and
Zhao [151] for an explanation of the modified Vn method.) An Euler scheme
for log Dn is nearly indistinguishable from an Euler scheme for Ln. Under the
forward measure PM+1, the final caplet is priced without discretization error
by the Euler schemes for log Xn and log Ln; these share the feature that they
make the discretized rate L̂M lognormal.

The graphs in Figure 3.19 compare discretization biases but say noth-
ing about the relative variances of the methods. Glasserman and Zhao [151]
find that simulating under the spot measure usually results in smaller vari-
ance than simulating under the forward measure, especially at high levels of
volatility. An explanation for this is suggested by the expressions (3.109) and
(3.113) for the deflated bond prices under the two measures: whereas (3.109)
always lies between 0 and 1, (3.113) can take arbitrarily large values. This
affects derivatives pricing through the discounting of payoffs.

3.7.4 Volatility Structure and Calibration

In our discussion of LIBOR market models we have taken the volatility factors
σn(t) as inputs without indicating how they might be specified. In practice,
these coefficients are chosen to calibrate a model to market prices of actively
traded derivatives, especially caps and swaptions. (The model is automatically
calibrated to bond prices through the relations (3.105) and (3.106).) Once the
model has been calibrated to the market, it can be used to price less liquid
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Fig. 3.19. Comparison of biases in caplet pricing for various simulation methods.
Top panel uses spot measure; method A is an Euler scheme for Ln and methods
B–E are Euler schemes for log variables. Bottom panel uses the forward measure
PM+1; method A is an Euler scheme for Ln and methods B–D are Euler schemes
for log variables.

instruments for which market prices may not be readily available. Accurate
and efficient calibration is a major topic in its own right and we can only touch
on the key issues. For a more extensive treatment, see James and Webber [194]
and Rebonato [303]. Similar considerations apply in both the HJM framework
and in LIBOR market models; we discuss calibration in the LIBOR setting
because it is somewhat simpler. Indeed, convenience in calibration is one of
the main advantages of this class of models.

The variables σn(t) are the primary determinants of both the level of
volatility in forward rates and the correlations between forward rate. It is
often useful to distinguish these two aspects and we will consider the overall
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level of volatility first. Suppose we are given the market price of a caplet for
the interval [Tn, Tn+1] and from this price we calculate an implied volatility
vn by inverting the Black formula (3.117). (We can assume that the other
parameters of the formula are known.) If we choose σn to be any deterministic
�d-valued function satisfying

1
Tn

∫ Tn

0

‖σn(t)‖2 dt = v2
n,

then we know from the discussion in Section 3.7.2 that the model is calibrated
to the market price of this caplet, because the model’s caplet price is given
by the Black formula with implied volatility equal to the square root of the
expression on the left. By imposing this constraint on all of the σj , we ensure
that the model is calibrated to all caplet prices. (As a practical matter, it
may be necessary to infer the prices of individual caplets from the prices of
caps, which are portfolios of caplets. For simplicity, we assume caplet prices
are available.)

Because LIBOR market models do not specify interest rates over accrual
periods shorter than the intervals [Ti, Ti+1], it is natural and customary to
restrict attention to functions σn(t) that are constant between tenor dates.
We take each σn to be right-continuous and thus denote by σn(Ti) its value
over the interval [Ti, Ti+1). Suppose, for a moment, that the model is driven
by a scalar Brownian motion, so d = 1 and each σn is scalar valued. In this
case, it is convenient to think of the volatility structure as specifed through a
lower-triangular matrix of the following form:

σ1(T0)
σ2(T0) σ2(T1)

...
...

. . .
σM (T0) σM (T1) · · · σM (TM−1)

 .

The upper half of the matrix is empty (or irrelevant) because each Ln(t) ceases
to be meaningful for t > Tn. In this setting, we have∫ Tn

0

σ2
n(t) dt = σ2

n(T0)δ0 + σ2
n(T1)δ1 + · · · + σ2

n(Tn−1)δn−1,

so caplet prices impose a constraint on the sums of squares along each row of
the matrix.

The volatility structure is stationary if σn(t) depends on n and t only
through the difference Tn−t. For a stationary, single-factor, piecewise constant
volatility structure, the matrix above takes the form

σ(1)
σ(2) σ(1)

...
...

. . .
σ(M) σ(M − 1) · · · σ(1)
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for some values σ(1), . . . , σ(M). (Think of σ(i) as the volatility of a forward
rate i periods away from maturity.) In this case, the number of variables just
equals the number of caplet maturities to which the model may be calibrated.
Calibrating to additional instruments requires introducing nonstationarity or
additional factors.

In a multifactor model (i.e., d ≥ 2) we can think of replacing the entries
σn(Ti) in the volatility matrix with the norms ‖σn(Ti)‖, since the σn(Ti) are
now vectors. With piecewise constant values, this gives∫ Tn

0

‖σn(t)‖2 dt = ‖σn(T0)‖2δ0 + ‖σn(T1)‖2δ1 + · · · + ‖σn(Tn−1)‖2δn−1,

so caplet implied volatilities continue to constrain the sums of squares along
each row. This also indicates that taking d ≥ 2 does not provide additional
flexibility in matching these implied volatilities.

The potential value of a multifactor model lies in capturing correlations
between forward rates of different maturities. For example, from the Euler
approximation in (3.120), we see that over a short time interval the correlation
between the increments of log Lj(t) and log Lk(t) is approximately

σk(t)�σj(t)
‖σk(t)‖ ‖σj(t)‖

.

These correlations are often chosen to match market prices of swaptions
(which, unlike caps, are sensitive to rate correlations) or to match histori-
cal correlations.

In the stationary case, we can visualize the volatility factors by graphing
them as functions of time to maturity. This can be useful in interpreting the
correlations they induce. Figure 3.20 illustrates three hypothetical factors in
a model with M = 15. Because the volatility is assumed stationary, we may
write σn(Ti) = σ(n − i) for some vectors σ(1), . . . , σ(M). In a three-factor
model, each σ(i) has three components. The three curves in Figure 3.20 are
graphs of the three components as functions of time to maturity. If we fix a
time to maturity on the horizontal axis, the total volatility at that point is
given by the sums of squares of the three components; the inner products of
these three-dimensional vectors at different times determine the correlations
between the forward rates.

Notice that the first factor in Figure 3.20 has the same sign for all matu-
rities; regardless of the sign of the increment of the driving Brownian motion,
this factor moves all forward rates in the same direction and functions approx-
imately as a parallel shift. The second factor has values of opposite signs at
short and long maturities and will thus have the effect of tilting the forward
curve (up if the increment in the second component of the driving Brownian
motion is positive and down if it is negative). The third factor bends the for-
ward curve by moving intermediate maturities in the opposite direction of long
and short maturities, the direction depending on the sign of the increment of
the third component of the driving Brownian motion.
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Fig. 3.20. Hypothetical volatility factors.

The hypothetical factors in Figure 3.20 are the first three principal com-
ponents of the matrix

0.122 exp((−0.8
√
|i − j|)), i, j = 1, . . . , 15.

More precisely, they are the first three eigenvectors of this matrix as ranked by
their eigenvalues, scaled to have length equal to their eigenvalues. It is common
in practice to use the principal components of either the covariance matrix
or the correlation matrix of changes in forward rates in choosing a factor
structure. Principal components analysis typically produces the qualitative
features of the hypothetical example in Figure 3.20; see, e.g., the examples in
James and Webber [194] or Rebonato [304].

An important feature of LIBOR market models is that a good deal of
calibration can be accomplished through closed form expressions or effective
approximations for the prices of caps and swaptions. This makes calibration
fast. In the absence of formulas or approximations, calibration is an iterative
procedure requiring repeated simulation at various parameter values until the
model price matches the market. Because each simulation can be quite time
consuming, calibration through simulation can be onerous.
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Variance Reduction Techniques

This chapter develops methods for increasing the efficiency of Monte Carlo
simulation by reducing the variance of simulation estimates. These meth-
ods draw on two broad strategies for reducing variance: taking advantage of
tractable features of a model to adjust or correct simulation outputs, and
reducing the variability in simulation inputs. We discuss control variates,
antithetic variates, stratified sampling, Latin hypercube sampling, moment
matching methods, and importance sampling, and we illustrate these meth-
ods through examples. Two themes run through this chapter:

◦ The greatest gains in efficiency from variance reduction techniques result
from exploiting specific features of a problem, rather than from generic
applications of generic methods.

◦ Reducing simulation error is often at odds with convenient estimation of the
simulation error itself; in order to supplement a reduced-variance estimator
with a valid confidence interval, we sometimes need to sacrifice some of the
potential variance reduction.

The second point applies, in particular, to methods that introduce dependence
across replications in the course of reducing variance.

4.1 Control Variates

4.1.1 Method and Examples

The method of control variates is among the most effective and broadly ap-
plicable techniques for improving the efficiency of Monte Carlo simulation.
It exploits information about the errors in estimates of known quantities to
reduce the error in an estimate of an unknown quantity.

To describe the method, we let Y1, . . . , Yn be outputs from n replications
of a simulation. For example, Yi could be the discounted payoff of a derivative
security on the ith simulated path. Suppose that the Yi are independent and
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identically distributed and that our objective is to estimate E[Yi]. The usual
estimator is the sample mean Ȳ = (Y1+· · ·+Yn)/n. This estimator is unbiased
and converges with probability 1 as n → ∞.

Suppose, now, that on each replication we calculate another output Xi

along with Yi. Suppose that the pairs (Xi, Yi), i = 1, . . . , n, are i.i.d. and that
the expectation E[X ] of the Xi is known. (We use (X, Y ) to denote a generic
pair of random variables with the same distribution as each (Xi, Yi).) Then
for any fixed b we can calculate

Yi(b) = Yi − b(Xi − E[X ])

from the ith replication and then compute the sample mean

Ȳ (b) = Ȳ − b(X̄ − E[X ]) =
1
n

n∑
i=1

(Yi − b(Xi − E[X ])). (4.1)

This is a control variate estimator; the observed error X̄ − E[X ] serves as a
control in estimating E[Y ].

As an estimator of E[Y ], the control variate estimator (4.1) is unbiased
because

E[Ȳ (b)] = E
[
Ȳ − b(X̄ − E[X ])

]
= E[Ȳ ] = E[Y ]

and it is consistent because, with probability 1,

lim
n→∞

1
n

n∑
i=1

Yi(b) = lim
n→∞

1
n

n∑
i=1

(Yi − b(Xi − E[X ]))

= E [Y − b(X − E[X ])]
= E[Y ].

Each Yi(b) has variance

Var[Yi(b)] = Var [Yi − b(Xi − E[X ])]
= σ2

Y − 2bσXσY ρXY + b2σ2
X ≡ σ2(b), (4.2)

where σ2
X = Var[X ], σ2

Y = Var[Y ], and ρXY is the correlation between X and
Y . The control variate estimator Ȳ (b) has variance σ2(b)/n and the ordinary
sample mean Ȳ (which corresponds to b = 0) has variance σ2

Y /n. Hence, the
control variate estimator has smaller variance than the standard estimator if
b2σX < 2bσY ρXY .

The optimal coefficient b∗ minimizes the variance (4.2) and is given by

b∗ =
σY

σX
ρXY =

Cov[X, Y ]
Var[X ]

. (4.3)

Substituting this value in (4.2) and simplifying, we find that the ratio of
the variance of the optimally controlled estimator to that of the uncontrolled
estimator is
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Var[Ȳ − b∗(X̄ − E[X ])]
Var[Ȳ ]

= 1 − ρ2
XY . (4.4)

A few observations follow from this expression:

◦ With the optimal coefficient b∗, the effectiveness of a control variate, as mea-
sured by the variance reduction ratio (4.4), is determined by the strength of
the correlation between the quantity of interest Y and the control X . The
sign of the correlation is irrelevant because it is absorbed in b∗.

◦ If the computational effort per replication is roughly the same with and
without a control variate, then (4.4) measures the computational speed-up
resulting from the use of a control. More precisely, the number of replications
of the Yi required to achieve the same variance as n replications of the
control variate estimator is n/(1 − ρ2

XY ).
◦ The variance reduction factor 1/(1− ρ2

XY ) increases very sharply as |ρXY |
approaches 1 and, accordingly, it drops off quickly as |ρXY | decreases away
from 1. For example, whereas a correlation of 0.95 produces a ten-fold speed-
up, a correlation of 0.90 yields only a five-fold speed-up; at |ρXY | = 0.70
the speed-up drops to about a factor of two. This suggests that a rather
high degree of correlation is needed for a control variate to yield substantial
benefits.

These remarks and equation (4.4) apply if the optimal coefficient b∗ is
known. In practice, if E[Y ] is unknown it is unlikely that σY or ρXY would
be known. However, we may still get most of the benefit of a control variate
using an estimate of b∗. For example, replacing the population parameters in
(4.3) with their sample counterparts yields the estimate

b̂n =
∑n

i=1(Xi − X̄)(Yi − Ȳ )∑n
i=1(Xi − X̄)2

. (4.5)

Dividing numerator and denominator by n and applying the strong law of
large numbers shows that b̂n → b∗ with probability 1. This suggests using
the estimator Ȳ (b̂n), the sample mean of Yi(b̂n) = Yi − b̂n(Xi − E[X ]), i =
1, . . . , n. Replacing b∗ with b̂n introduces some bias; we return to this point
in Section 4.1.3.

The expression in (4.5) is the slope of the least-squares regression line
through the points (Xi, Yi), i = 1, . . . , n. The link between control variates
and regression is useful in the statistical analysis of control variate estimators
and also permits a graphical interpretation of the method. Figure 4.1 shows
a hypothetical scatter plot of simulation outputs (Xi, Yi) and the estimated
regression line for these points, which passes through the point (X̄, Ȳ ). In the
figure, X̄ < E[X ], indicating that the n replications have underestimated E[X ].
If the Xi and Yi are positively correlated, this suggests that the simulation
estimate Ȳ likely underestimates E[Y ]. This further suggests that we should
adjust the estimator upward. The regression line determines the magnitude of
the adjustment; in particular, Ȳ (b̂n) is the value fitted by the regression line
at the point E[X ].



188 4 Variance Reduction Techniques
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Fig. 4.1. Regression interpretation of control variate method. The regression line
through the points (Xi, Yi) has slope b̂n and passes through (X̄, Ȳ ). The control
variate estimator Ȳ (b̂n) is the value fitted by the line at E[X]. In the figure, the
sample mean X̄ underestimates E[X] and Ȳ is adjusted upward accordingly.

Examples

To make the method of control variates more tangible, we now illustrate it
with several examples.

Example 4.1.1 Underlying assets. In derivative pricing simulations, under-
lying assets provide a virtually universal source of control variates. We know
from Section 1.2.1 that the absence of arbitrage is essentially equivalent to
the requirement that appropriately discounted asset prices be martingales.
Any martingale with a known initial value provides a potential control vari-
ate precisely because its expectation at any future time is its initial value. To
be concrete, suppose we are working in the risk-neutral measure and suppose
the interest rate is a constant r. If S(t) is an asset price, then exp(−rt)S(t) is
a martingale and E[exp(−rT )S(T )] = S(0). Suppose we are pricing an option
on S with discounted payoff Y , some function of {S(t), 0 ≤ t ≤ T }. From
independent replications Si, i = 1, . . . , n, each a path of S over [0, T ], we can
form the control variate estimator

1
n

n∑
i=1

(Yi − b[Si(T ) − erT S(0)]),

or the corresponding estimator with b replaced by b̂n. If Y = e−rT (S(T )−K)+,
so that we are pricing a standard call option, the correlation between Y and
S(T ) and thus the effectiveness of the control variate depends on the strike
K. At K = 0 we would have perfect correlation; for an option that is deep
out-of-the-money (i.e., with large K), the correlation could be quite low. This
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is illustrated in Table 4.1 for the case of S ∼ GBM(r, σ2) with parameters
r = 5%, σ = 30%, S(0) = 50, and T = 0.25. This example shows that the
effectiveness of a control variate can vary widely with the parameters of a
problem. �

K 40 45 50 55 60 65 70
ρ̂ 0.995 0.968 0.895 0.768 0.604 0.433 0.286
ρ̂2 0.99 0.94 0.80 0.59 0.36 0.19 0.08

Table 4.1. Estimated correlation ρ̂ between S(T ) and (S(T ) − K)+ for various
values of K, with S(0) = 50, σ = 30%, r = 5%, and T = 0.25. The third row
measures the fraction of variance in the call option payoff eliminated by using the
underlying asset as a control variate.

Example 4.1.2 Tractable options. Simulation is sometimes used to price
complex options in a model in which simpler options can be priced in
closed form. For example, even under Black-Scholes assumptions, some path-
dependent options require simulation for pricing even though formulas are
available for simpler options. A tractable option can sometimes provide a
more effective control than the underlying asset.

A particularly effective example of this idea was suggested by Kemna and
Vorst [209] for the pricing of Asian options. Accurate pricing of an option on
the arithmetic average

S̄A =
1
n

n∑
i=1

S(ti)

requires simulation, even if S is geometric Brownian motion. In contrast, calls
and puts on the geometric average

S̄G =

(
n∏

i=1

S(ti)

)1/n

can be priced in closed form, as explained in Section 3.2.2. Thus, options on
S̄G can be used as control variates in pricing options on S̄A.

Figure 4.2 shows scatter plots of simulated values of (S̄A − K)+ against
the terminal value of the underlying asset S(T ), a standard call payoff
(S(T )−K)+, and the geometric call payoff (S̄G −K)+. The figures are based
on K = 50 and thirteen equally spaced averaging dates; all other parameters
are as in Example 4.1.1. The leftmost panel shows that the weak correlation
between S̄A and S(T ) is further weakened by applying the call option payoff
to S̄A, which projects negative values of S̄A − K to zero; the resulting corre-
lation is approximately 0.79. The middle panel shows the effect of applying
the call option payoff to S(T ) as well; in this case the correlation increases
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to approximately 0.85. The rightmost panel illustrates the extremely strong
relation between the payoffs on the arithmetic and geometric average call op-
tions. The correlation in this case is greater then 0.99. A similar comparison
is made in Broadie and Glasserman [67]. �
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Fig. 4.2. Scatter plots of payoff of call option on arithmetic average against the
underlying asset, the payoff of a standard call, and the payoff of a call on the
geometric average.

Example 4.1.3 Bond prices. In a model with stochastic interest rates, bond
prices often provide a convenient source of control variates. As emphasized in
Sections 3.3–3.4 and Sections 3.6–3.7, an important consideration in imple-
menting an interest rate simulation is ensuring that the simulation correctly
prices bonds. While this is primarily important for consistent pricing, as a by-
product it makes bonds available as control variates. Bonds may be viewed as
the underlying assets of an interest rate model, so in a sense this example is
a special case of Example 4.1.1.

In a model of the short rate r(t), a bond maturing at time T has initial
price
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B(0, T ) = E

[
exp

(
−
∫ T

0

r(u) du

)]
,

the expectation taken with respect to the risk-neutral measure. Since we may
assume that B(0, T ) is known, the quantity inside the expectation provides
a potential control variate. But even if r is simulated without discretization
error at dates t1, . . . , tn = T , the difference

exp

(
− 1

n

n∑
i=1

r(ti)

)
− B(0, T )

will not ordinarily have mean 0 because of the error in approximating the
integral. Using this difference in a control variate estimator could therefore
introduce some bias, though the bias can be made as small as necessary by
taking a sufficiently fine partition of [0, T ]. In our discussion of the Vasicek
model in Section 3.3, we detailed the exact joint simulation of r(ti) and its
time integral

Y (ti) =
∫ ti

0

r(u) du.

This provides a bias-free control variate because

E [exp(−Y (T ))] = B(0, T ).

Similar considerations apply to the forward rate models of Sections 3.6
and 3.7. In our discussion of the Heath-Jarrow-Morton framework, we devoted
considerable attention to deriving the appropriate discrete drift condition.
Using this drift in a simulation produces unbiased bond price estimates and
thus makes bonds available as control variates. In our discussion of LIBOR
market models, we noted that discretizing the system of SDEs for the LIBOR
rates Ln would not produce unbiased bond estimates; in contrast, the methods
in Section 3.7 based on discretizing deflated bonds or their differences do
produce unbiased estimates and thus allow the use of bonds as control variates.

Comparison of this discussion with the one in Section 3.7.3 should make
clear that the question of whether or not asset prices can be used as control
variates is closely related to the question of whether a simulated model is
arbitrage-free. �

Example 4.1.4 Tractable dynamics. The examples discussed thus far are all
based on using one set of prices in a model as control variates for some other
price in the same model. Another strategy for developing effective control
variates uses prices in a simpler model. We give two illustrations of this idea.

Consider, first, the pricing of an option on an asset whose dynamics are
modeled by

dS(t)
S(t)

= r dt + σ(t) dW (t),
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where σ(t) may be function of S(t) or may be stochastic and described by a
second SDE. We might simulate S at dates t1, . . . , tn using an approximation
of the form

S(ti+1) = S(ti) exp
(
[r − 1

2σ(ti)2](ti+1 − ti) + σ(ti)
√

ti+1 − tiZi+1

)
,

where the Zi are independent N(0, 1) variables. In a stochastic volatility
model, a second recursion would determine the evolution of σ(ti). Suppose
the option we want to price would be tractable if the underlying asset were
geometric Brownian motion. Then along with S we could simulate

S̃(ti+1) = S̃(ti) exp
(
[r − 1

2 σ̃2](ti+1 − ti) + σ̃
√

ti+1 − tiZi+1

)
for some constant σ̃, the same sequence Zi, and with initial condition S̃(0) =
S(0). If, for example, the option is a standard call with strike K and expiration
tn, we could form a controlled estimator using independent replications of

(S(tn) − K)+ − b
(
(S̃(tn) − K)+ − E

[
(S̃(tn) − K)+

])
.

Except for a discount factor, the expectation on the right is given by the
Black-Scholes formula. For effective variance reduction, the constant σ̃ should
be chosen close to a typical value of σ.

As a second illustration of this idea, recall that the dynamics of forward
LIBOR under the spot measure in Section 3.7 are given by

dLn(t)
Ln(t)

=
n∑

j=η(t)

σj(t)�σn(t)δjLj(t)
1 + δjLj(t)

dt+σn(t)� dW (t), n = 1, . . . , M. (4.6)

Suppose the σn are deterministic functions of time. Along with the forward
LIBOR rates, we could simulate auxiliary processes

dSn(t)
Sn(t)

= σ�
n (t) dW (t), n = 1, . . . , M. (4.7)

These form a multivariate geometric Brownian motion and lend themselves
to tractable pricing and thus to control variates. Alternatively, we could use

dL̃n(t)
L̃n(t)

=
n∑

j=η(t)

σj(t)�σn(t)δjLj(0)
1 + δjLj(0)

dt + σn(t)� dW (t). (4.8)

Notice that the drift in this expression is a function of the constants Lj(0)
rather than the stochastic processes Lj(t) appearing in the drift in (4.6).
Hence, L̃n is also a geometric Brownian motion though with time-varying
drift. Even if an option on the Sn or L̃n cannot be valued in closed form, if
it can be valued quickly using a numerical procedure it may yield an effective
control variate.



4.1 Control Variates 193

The evolution of Ln, Sn, and L̃n is illustrated in Figure 4.3. This example
initializes all rates at 6%, takes δj ≡ 0.5 (corresponding to semi-annual rates),
and assumes a stationary specification of the volatility functions in which
σn(t) ≡ σ(n−η(t)+1) with σ increasing linearly from 0.15 to 0.25. The figure
plots the evolution of L40, S40, and L̃40 using a log-Euler approximation of
the type in (3.120). The figure indicates that L̃40 tracks L40 quite closely and
that even S40 is highly correlated with L40.

0 10 20 30 40
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
  True
  GBM with drift
  GBM zero drift

Fig. 4.3. A sample path of L40 using the true dynamics in (4.6), the geometric
Brownian motion approximation L̃40 with time-varying drift, and the driftless geo-
metric Brownian motion S40.

It should be noted that simulating an auxiliary process as suggested here
may substantially increase the time required per replication — perhaps even
doubling it. As with any variance reduction technique, the benefit must be
weighed against the additional computing time required, using the principles
in Section 1.1.3. �

Example 4.1.5 Hedges as controls. There is a close link between the se-
lection of control variates and the selection of hedging instruments. If Y is
a discounted payoff and we are estimating E[Y ], then any instrument that
serves as an effective hedge for Y also serves as an effective control variate if
it can be easily priced. Indeed, the calculation of the optimal coefficient b∗ is
identical to the calculation of the optimal hedge ratio in minimum-variance
hedging (see, e.g., Section 2.9 of Hull [189]).

Whereas a static hedge (a fixed position in another asset) may provide
significant variance reduction, a dynamic hedge can, in principle, remove all
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variance — at least under the assumptions of a complete market and continu-
ous trading as discussed in Section 1.2.1. Using the notation of Section 1.2.1,
let V (t) denote the value at time t of a price process that can be replicated
through a self-financing trading strategy applied to a set of underlying assets
Sj , j = 1, . . . , d. As in Section 1.2.1, under appropriate conditions we have

V (T ) = V (0) +
∫ T

0

d∑
j=1

∂V (t)
∂Sj

dSj(t).

In other words, V is replicated through a delta-hedging strategy that holds
∂V/∂Sj shares of asset Sj at each instant. This suggests that V (T ) should be
highly correlated with

m∑
i=1

d∑
j=1

∂V (ti−1)
∂Sj

[Sj(ti) − Sj(ti−1)] (4.9)

where 0 = t0 < t1 < · · · < tm ≡ T ; this is a discrete-time approximation
to the dynamic hedging strategy. Of course, in practice if V (t) is unknown
then its derivatives are likely to be unknown. One may still obtain an effective
control variate by using a rough approximation to the ∂V/∂Sj ; for example,
one might calculate these deltas as though the underlying asset prices followed
geometric Brownian motions, even if their actual dynamics are more complex.
See Clewlow and Carverhill [87] for examples of this.

Using an expression like (4.9) as a control variate is somewhat similar to
using all the increments Sj(ti) − Sj(ti−1) as controls or, more conveniently,
the increments of the discounted asset prices since these have mean zero. The
main difference is that the coefficients ∂V/∂Sj in (4.9) will not in general be
constants but will depend on the Sj themselves. We may therefore interpret
(4.9) as using the Sj(ti) − Sj(ti−1) as nonlinear control variates. We discuss
nonlinear controls more generally in Section 4.1.4. �

Example 4.1.6 Primitive controls. In the examples above, we have stressed
the use of special features of derivative pricing models in identifying potential
control variates. Indeed, significant variance reduction is usually achieved only
by taking advantage of special properties of a model. It is nevertheless worth
mentioning that many generic (and thus typically not very effective) control
variates are almost always available in a simulation. For example, most of
the models discussed in Chapter 3 are simulated from a sequence Z1, Z2, . . .
of independent standard normal random variables. We know that E[Zi] = 0
and Var[Zi] = 1, so the sample mean and sample variance of the Zi are
available control variates. At a still more primitive level, most simulations
start from a sequence U1, U2, . . . of independent Unif[0,1] random variables.
Sample moments of the Ui can also be used as controls. �

Later in this chapter we discuss other techniques for reducing variance. In
a sense, all of these can be viewed as strategies for selecting control variates.
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For suppose we want to estimate E[Y ] and in addition to the usual sample
mean Ȳ we have available an alternative unbiased estimator Ỹ . The difference
(Ȳ − Ỹ ) has (known) expectation zero and can thus be used to form a control
variate estimate of the form

Ȳ − b(Ȳ − Ỹ ).

The special cases b = 0 and b = 1 correspond to using just one of the two
estimators; by optimizing b, we obtain a combined estimator that has lower
variance than either of the two.

Output Analysis

In analyzing variance reduction techniques, along with the effectiveness of a
technique it is important to consider how the technique affects the statisti-
cal interpretation of simulation outputs. So long as we deal with unbiased,
independent replications, computing confidence intervals for expectations is
a simple matter, as noted in Section 1.1 and explained in Appendix A. But
we will see that some variance reduction techniques complicate interval esti-
mation by introducing dependence across replications. This issue arises with
control variates if we use the estimated coefficient b̂n in (4.5). It turns out
that in the case of control variates the dependence can be ignored in large
samples; a more careful consideration of small-sample issues will be given in
Section 4.1.3.

For any fixed b, the control variate estimator Ȳ (b) in (4.1) is the sample
mean of independent replications Yi(b), i = 1, . . . , n. Accordingly, an asymp-
totically valid 1 − δ confidence interval for E[Y ] is provided by

Ȳ (b) ± zδ/2
σ(b)√

n
, (4.10)

where zδ/2 is the 1 − δ/2 quantile from the normal distribution (Φ(zδ/2) =
1 − δ/2) and σ(b) is the standard deviation per replication, as in (4.2).

In practice, σ(b) is typically unknown but can be estimated using the
sample standard deviation

s(b) =

√√√√ 1
n − 1

n∑
i=1

(Yi(b) − Ȳ (b))2.

The confidence interval (4.10) remains asymptotically valid if we replace σ(b)
with s(b), as a consequence of the limit in distribution

Ȳ (b) − E[Y ]
σ(b)/

√
n

⇒ N(0, 1)

and the fact that s(b)/σ(b) → 1; see Appendix A.2. If we use the estimated
coefficient b̂n in (4.5), then the estimator
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Ȳ (b̂n) =
1
n

n∑
i=1

(Yi − b̂n(Xi − E[X ]))

is not quite of the form Ȳ (b) because we have replaced the constant b with
the random quantity b̂n. Nevertheless, because b̂n → b∗, we have

√
n(Ȳ (b̂n) − Ȳ (b∗)) = (b̂n − b∗) ·

√
n(X̄ − E[X ]) ⇒ 0 · N(0, σ2

X) = 0,

so Ȳ (b̂n) satisfies the same central limit theorem as Ȳ (b∗). This means that
Ȳ (b̂n) is asymptotically as precise as Ȳ (b∗). Moreover, the central limit theo-
rem applies in the form

Ȳ (b̂n) − E[Y ]

s(b̂n)/
√

n
⇒ N(0, 1),

with s(b̂n) the sample standard deviation of the Yi(b̂n), i = 1, . . . , n, because
s(b̂n)/σ(b∗) → 1. In particular, the confidence interval (4.10) remains asymp-
totically valid if we replace Ȳ (b) and σ(b) with Ȳ (b̂n) and s(b̂n), and confidence
intervals estimated using b̂n are asymptotically no wider than confidence in-
tervals estimated using the optimal coefficient b∗.

We may summarize this discussion as follows. It is a simple matter to
estimate asymptotically valid confidence intervals for control variate estima-
tors. Moreover, for large n, we get all the benefit of the optimal coefficient
b∗ by using the estimate b̂n. However, for finite n, there may still be costs to
using an estimated rather than a fixed coefficient; we return to this point in
Section 4.1.3.

4.1.2 Multiple Controls

We now generalize the method of control variates to the case of multiple
controls. Examples 4.1.1–4.1.6 provide ample motivation for considering this
extension.

◦ If e−rtS(t) is a martingale, then e−rt1S(t1), . . . , e−rtdS(td) all have expec-
tation S(0) and thus provide d controls on each path.

◦ If the simulation involves d underlying assets, the terminal values of all
assets may provide control variates.

◦ Rather than use a single option as a control variate, we may want to use
options with multiple strikes and maturities.

◦ In an interest rate simulation, we may choose to use d bonds of different
maturities as controls.

Suppose, then, that each replication i of a simulation produces outputs
Yi and Xi = (X(1)

i , . . . , X
(d)
i )� and suppose the vector of expectations E[X ]

is known. We assume that the pairs (Xi, Yi), i = 1, . . . , n, are i.i.d. with
covariance matrix
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ΣX ΣXY

Σ�
XY σ2

Y

)
. (4.11)

Here, ΣX is d × d, ΣXY is d × 1, and, as before the scalar σ2
Y is the variance

of the Yi. We assume that ΣX is nonsingular; otherwise, some X(k) is a linear
combination of the other X(j)s and may be removed from the set of controls.

Let X̄ denote the vector of sample means of the controls. For fixed b ∈ �d,
the control variate estimator Ȳ (b) is

Ȳ (b) = Ȳ − b�(X̄ − E[X ]).

Its variance per replication is

Var[Yi − b�(Xi − E[X ])] = σ2
Y − 2b�ΣXY + b�ΣXXb. (4.12)

This is minimized at
b∗ = Σ−1

X ΣXY . (4.13)

As in the case of a single control variate, this is also the slope (more precisely,
the vector of coefficients) in a regression of Y against X .

As is customary in regression analysis, define

R2 = Σ�
XY Σ−1

X ΣXY /σ2
Y ; (4.14)

this generalizes the squared correlation coefficient between scalar X and Y and
measures the strength of the linear relation between the two. Substituting b∗

into the expression for the variance per replication and simplifying, we find
that the minimal variance (that is, the variance of Yi(b∗)) is

σ2
Y − Σ�

XY Σ−1
X ΣXY = (1 − R2)σ2

Y . (4.15)

Thus, R2 measures the fraction of the variance of Y that is removed in opti-
mally using X as a control.

In practice, the optimal vector of coefficients b∗ is unknown but may be
estimated. The standard estimator replaces ΣX and ΣXY in (4.13) with their
sample counterparts to get

b̂n = S−1
X SXY , (4.16)

where SX is the d × d matrix with jk entry

1
n − 1

(
n∑

i=1

X
(j)
i X

(k)
i − nX̄(j)X̄(k)

)
(4.17)

and SXY is the d-vector with jth entry

1
n − 1

(
n∑

i=1

X
(j)
i Yi − nX̄(j)Ȳ

)
.
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The number of controls d is ordinarily not very large so size is not an obstacle
in inverting SX , but if linear combinations of some of the controls are highly
correlated this matrix may be nearly singular. This should be considered in
choosing multiple controls.

A simple estimate of the variance of Ȳ (b̂n) is provided by sn/
√

n where
sn is the sample standard deviation of the adjusted replications

Yi(b̂n) = Yi − b̂�n (Xi − E[X ]).

The estimator sn ignores the fact that b̂n is itself estimated from the repli-
cations, but it is nevertheless a consistent estimator of σY (b∗), the optimal
standard deviation in (4.15). An asymptotically valid 1−δ confidence interval
is thus provided by

Ȳ (b̂n) ± zδ/2
sn√
n

. (4.18)

The connection between control variates and regression analysis suggests an
alternative way of forming confidence intervals; under additional assumptions
about the joint distribution of the (Xi, Yi) the alternative is preferable, espe-
cially if n is not very large. We return to this point in Section 4.1.3.

Variance Decomposition

In looking for effective control variates, it is useful to understand what part of
the variance of an ordinary estimator is removed through the use of controls.
We now address this point.

Let (X, Y ) be any random vector with Y scalar and X d-dimensional. Let
(X, Y ) have the partitioned covariance matrix in (4.11). For any b, we can
write

Y = E[Y ] + b�(X − E[X ]) + ε,

simply by defining ε so that equality holds. If b = b∗ = Σ−1
X ΣXY , then in fact

ε is uncorrelated with X ; i.e., Y − b∗�(X − E[X ]) is uncorrelated with X so

Var[Y ] = Var[b∗�X ] + Var[ε] = Var[b∗�X ] + Var[Y − b∗�X ].

In this decomposition, the part of Var[Y ] eliminated by using X as a control
is Var[b∗�X ] and the remaining variance is Var[ε].

The optimal vector b∗ makes b∗�(X − E[X ]) the projection of Y − E[Y ]
onto X − E[X ]; the residual ε may be interpreted as the part of Y − E[Y ]
orthogonal to X − E[X ], orthogonal here meaning uncorrelated. The smaller
this orthogonal component (as measured by its variance), the greater the
variance reduction achieved by using X as a control for Y . If, in particular,
Y is a linear combination of the components of X , then using X as a control
eliminates all variance. Of course, in this case E[Y ] is a linear combination of
the (known) components of E[X ], so simulation would be unnecessary.
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Consider, again, the examples with which we opened this section. If we
use multiple path values S(ti) of an underlying asset as control variates, we
eliminate all variance in estimating the expected value of any instrument
whose payoff is a linear combination of the S(ti). (In particular, each E[S(ti)]
is trivially estimated without error if we use S(ti) as a control.) The variance
that remains in estimating an expected payoff while using the S(ti) as controls
is attributable to the part of the payoff that is uncorrelated with the S(ti).
Similarly, if we use bond prices as control variates in pricing an interest rate
derivative, the remaining variance is due to the part of the derivative’s payoff
that is uncorrelated with any linear combination of bond prices.

Control Variates and Weighted Monte Carlo

In introducing the idea of a control variate in Section 4.1.1, we explained that
the observed error in estimating a known quantity could be used to adjust
an estimator of an unknown quantity. But the technique has an alternative
interpretation as a method for assigning weights to replications. This alterna-
tive perspective is sometimes useful, particularly in relating control variates
to other methods.

For simplicity, we start with the case of a single control; thus, Yi and Xi

are scalars and the pairs (Xi, Yi) are i.i.d. The control variate estimator with
estimated optimal coefficient b̂n is Ȳ (b̂n) = Ȳ − b̂n(X̄ −E[X ]). As in (4.5), the
estimated coefficient is given by

b̂n =
∑n

i=1(Xi − X̄)(Yi − Ȳ )∑n
i=1(Xi − X̄)2

.

By substituting this expression into Ȳ (b̂n) and simplifying, we arrive at

Ȳ (b̂n) =
n∑

i=1

(
1
n

+
(X̄ − Xi)(X̄ − E[X ])∑n

i=1(Xi − X̄)2

)
Yi ≡

n∑
i=1

wiYi. (4.19)

In other words, the control variate estimator is a weighted average of the
replications Y1, . . . , Yn. The weights wi are completely determined by the ob-
servations X1, . . . , Xn of the control.

A similar representation applies with multiple controls. Using the esti-
mated vector of coefficients in (4.16), the sample covariance matrix SX in
(4.17) and simplifying, we get

Ȳ (b̂n) =
n∑

i=1

(
1
n

+
1

n − 1
(X̄ − Xi)�S−1

X (X̄ − E[X ])
)

Yi, (4.20)

which is again a weighted average of the Yi. Here, as before, Xi denotes the
vector of controls (X(1)

i , . . . , X
(d)
i )� from the ith replication, and X̄ and E[X ]

denote the sample mean and expectation of the Xi, respectively.
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The representation in (4.20) is a special case of a general feature of regres-
sion — namely, that a fitted value of Y is a weighted average of the observed
values of the Yi with weights determined by the Xi. One consequence of this
representation is that if we want to estimate multiple quantities (e.g., prices
of various derivative securities) from the same set of simulated paths using
the same control variates, the weights can be calculated just once and then
applied to all the outputs. Hesterberg and Nelson [178] also show that (4.20)
is useful in applying control variates to quantile estimation. They indicate
that although it is possible for some of the weights in (4.19) and (4.20) to
be negative, the probability of negative weights is small in a sense they make
precise.

4.1.3 Small-Sample Issues

In our discussion (following (4.10)) of output analysis with the method of
control variates, we noted that because b̂n converges to b∗, we obtain an
asymptotically valid confidence interval if we ignore the randomness of b̂n

and the dependence it introduces among Yi(b̂n), i = 1, . . . , n. Moreover, we
noted that as n → ∞, the variance reduction achieved using b̂n approaches
the variance reduction that would be achieved if the optimal b∗ were known.

In this section, we supplement these large-sample properties with a dis-
cussion of statistical issues that arise in analyzing control variate estimators
based on a finite number of samples. We note that stronger distributional
assumptions on the simulation output lead to confidence intervals valid for
all n. Moreover, it becomes possible to quantify the loss in efficiency due to
estimating b∗. This offers some guidance in deciding how many control vari-
ates to use in a simulation. This discussion is based on results of Lavenberg,
Moeller, and Welch [221] and Nelson [277].

For any fixed b, the control variate estimator Ȳ (b) is unbiased. But using
b̂n, we have

Bias(Ȳ (b̂n)) = E[Ȳ (b̂n)] − E[Y ] = −E[b̂�n (X̄ − E[X ])],

which need not be zero because b̂n and X̄ are not independent. A simple way to
eliminate bias is to use n1 replications to compute an estimate b̂n1 and to then
apply this coefficient with the remaining n − n1 replications of (Xi, Yi). This
makes the coefficient estimate independent of X̄ and thus makes E[b̂�n1

X̄ ] =
E[b̂�n1

]E[X̄]. In practice, the bias produced by estimating b∗ is usually small so
the cost of estimating coefficients through separate replications is unattractive.
Indeed, the bias is typically O(1/n), whereas the standard error is O(1/

√
n).

Lavenberg, Moeller, and Welch [221] and Nelson [277] note that even if
b̂n is estimated from the same replications used to compute Ȳ and X̄ , the
control variate estimator is unbiased if the regression of Y on X is linear.
More precisely, if
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E[Y |X ] = c0+c1X
(1)+· · ·+cdX

(d) for some constants c0, c1, . . . , cd, (4.21)

then E[Ȳ (b̂n)] = E[Y ].
Under the additional assumption that Var[Y |X ] does not depend on X ,

Nelson [277] notes that an unbiased estimator of the variance of Ȳ (b̂n), n >
d − 1, is provided by

ŝ2
n =

(
1

n − d − 1

n∑
i=1

[Yi − Ȳ (b̂n) − b̂�n (Xi − E[X ])]2
)

×
(

1
n

+
1

n − 1
(X̄ − E[X ])�S−1

X (X̄ − E[X ])
)

.

The first factor in this expression is the sample variance of the regression
residuals, the denominator n − d − 1 reflecting the loss of d + 1 degrees of
freedom in estimating the regression coefficients in (4.21). The second factor
inflates the variance estimate when X̄ is far from E[X ].

As in Lavenberg et al. [221] and Nelson [277], we now add a final as-
sumption that (X, Y ) has a multivariate normal distribution, from which two
important consequences follow. The first is that this provides an exact confi-
dence interval for E[Y ] for all n: the interval

Ȳ (b̂n) ± tn−d−1,δ/2ŝn (4.22)

covers E[Y ] with probability 1 − δ, where tn−d−1,δ/2 denotes the 1 − δ/2
quantile of the t distribution with n−d−1 degrees of freedom. This confidence
interval may have better coverage than the crude interval (4.18), even if the
assumptions on which it is based do not hold exactly.

A second important conclusion that holds under the added assumption of
normality is an exact expression for the variance of Ȳ (b̂n). With d controls
and n > d + 2 replications,

Var[Ȳ (b̂n)] =
n − 2

n − d − 2
(1 − R2)

σ2
Y

n
. (4.23)

Here, as before, σ2
Y = Var[Y ] is the variance per replication without controls

and R2 is the squared multiple correlation coefficient defined in (4.14). As
noted in (4.15), (1 − R2)σ2

Y is the variance per replication of the control
variate estimator with known optimal coefficient. We may thus write (4.23)
as

Var[Ȳ (b̂n)] =
n − 2

n − d − 2
Var[Ȳ (b∗)]. (4.24)

In light of this relation, Lavenberg et al. [221] call (n − 2)/(n − d − 2) the
loss factor measuring the loss in efficiency due to using the estimate b̂n rather
than the exact value b∗.

Both (4.22) and (4.24) penalize the use of too many controls — more
precisely, they penalize the use of control variates that do not provide a suf-
ficiently large reduction in variance. In (4.22), a larger d results in a loss of
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degrees of freedom, a larger multiplier tn−d−1,δ/2, and thus a wider confidence
interval unless the increase in d is offset by a sufficient decrease in ŝn. In (4.24),
a larger d results in a larger loss factor and thus a greater efficiency cost from
using estimated coefficients. In both cases, the cost from using more controls
is eventually overwhelmed by increasing the sample size n; what constitutes
a reasonable number of control variates thus depends in part on the intended
number of replications.

The validity of the confidence interval (4.22) and the loss factor in (4.24)
depends on the distributional assumptions on (X, Y ) introduced above leading
up to (4.22); in particular, these results depend on the assumed normality of
(X, Y ). (Loh [239] provides extensions to more general distributions but these
seem difficult to use in practice.) In pricing applications, Y would often be the
discounted payoff of an option contract and thus highly skewed and distinctly
non-normal. In this case, application of (4.22) and (4.24) lacks theoretical
support.

Nelson [277] analyzes the use of various remedies for control variate estima-
tors when the distributional assumptions facilitating their statistical analysis
fail to hold. Among the methods he examines is batching. This method groups
the replications (Xi, Yi), i = 1, . . . , n, into k disjoint batches of n/k replica-
tions each. It then calculates sample means of the (Xi, Yi) within each batch
and applies the usual control variate procedure to the k sample means of the
k batches. The appeal of this method lies in the fact that the batch means
should be more nearly normally distributed than the original (Xi, Yi). The
cost of batching lies in the loss of degrees of freedom: it reduces the effective
sample size from n to k. Based on a combination of theoretical and exper-
imental results, Nelson [277] recommends forming 30 to 60 batches if up to
five controls are used. With a substantially larger number of controls, the cost
of replacing the number of replications n with k = 30–60 in (4.22) and (4.24)
would be more significant; this would argue in favor of using a larger number
of smaller batches.

Another strategy for potentially improving the performance of control vari-
ate estimators replaces the estimated covariance matrix SX with its true value
ΣX in estimating b∗. This is feasible if ΣX is known, which would be the case
in at least some of the examples introduced in Section 4.1.1. Nelson [277] and
Bauer, Venkatraman, and Wilson [40] analyze this alternative; perhaps sur-
prisingly, they find that it generally produces estimators inferior to the usual
method based on b̂n.

4.1.4 Nonlinear Controls

Our discussion of control variates has thus far focused exclusively on linear
controls, meaning estimators of the form

Ȳ − b�(X̄ − E[X ]), (4.25)
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with the vector b either known or estimated. There are, however, other ways
one might use the discrepancy between X̄ and E[X ] to try to improve the
estimator Ȳ in estimating E[Y ]. For example, in the case of scalar X , the
estimator

Ȳ
E[X ]
X̄

adjusts Ȳ upward if 0 < X̄ < E[X ], downward if 0 < E[X ] < X̄, and thus may
be attractive if Xi and Yi are positively correlated. Similarly, the estimator
Ȳ X̄/E[X ] may have merit if the Xi and Yi are negatively correlated. Other
estimators of this type include

Ȳ exp
(
X̄ − E[X ]

)
and Ȳ (X̄/E[X]).

In each case, the convergence of X̄ to E[X ] ensures that the adjustment to
Ȳ vanishes as the sample size increases, just as in (4.25). But for any finite
number of replications, the variance of the adjusted estimator could be larger
or smaller than that of Ȳ .

These are examples of nonlinear control variate estimators. They are all
special cases of estimators of the form h(X̄, Ȳ ) for functions h satisfying

h(E[X ], y) = y for all y.

The difference between the controlled estimator h(X̄, Ȳ ) and Ȳ thus depends
on the deviation of X̄ from E[X ].

Although the introduction of nonlinear controls would appear to substan-
tially enlarge the class of candidate estimators, it turns out that in large
samples, a nonlinear control variate estimator based on a smooth h is equiv-
alent to an ordinary linear control variate estimator. This was demonstrated
in Glynn and Whitt [159], who note a related observation in Cheng and Feast
[84]. We present the analysis leading to this conclusion and then discuss its
implications.

Delta Method

The main tool for the large-sample analysis of nonlinear control variate esti-
mators is the delta method. This is a result providing a central limit theorem
for functions of sample means. To state it generally, we let ξi, i = 1, 2, . . . be
i.i.d. random vectors in �k with mean vector µ and covariance matrix Σ. The
sample mean ξ̄ of ξ1, . . . , ξn satisfies the central limit theorem

√
n[ξ̄ − µ] ⇒ N(0, Σ).

Now let h : �k → � be continuously differentiable in a neighborhood of µ and
suppose the partial derivatives of h at µ are not all zero. For sufficiently large
n, a Taylor approximation gives

h(ξ̄) = h(µ) + ∇h(ζn)[ξ̄ − µ],
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with ∇h the gradient of h (a row vector) and ζn a point on the line segment
joining µ and ξ̄. As n → ∞, ξ̄ → µ and thus ζn → µ as well; continuity of the
gradient implies ∇h(ζn) → ∇h(µ). Thus, for large n, the error h(ξ̄) − h(µ)
is approximately the inner product of the constant vector ∇h(µ) and the
asymptotically normal vector ξ̄−µ, and is itself asymptotically normal. More
precisely, √

n[h(ξ̄) − h(µ)] ⇒ N(0,∇h(µ)Σ∇h(µ)�). (4.26)

See also Section 3.3 of Serfling [326], for example.

For the application to nonlinear controls, we replace ξi with (Xi, Yi), µ
with (E[X ], E[Y ]), and Σ with

Σ =
(

ΣX ΣXY

Σ�
XY σ2

Y

)
,

the covariance matrix in (4.11). From the delta method, we know that the
nonlinear control variate estimator is asymptotically normal with

√
n[h(X̄, Ȳ ) − E[Y ]] ⇒ N(0, σ2

h),

(recall that h(E[X ], E[Y ]) = E[Y ]) and

σ2
h =

(
∂h

∂y

)2

σ2
Y + 2

(
∂h

∂y

)
∇xhΣXY + ∇xhΣX∇xh�,

with ∇xh denoting the gradient of h with respect to the elements of X and
with all derivatives evaluated at (E[X ], E[Y ]). Because h(E[X ], ·) is the iden-
tity, the partial derivative of h with respect to its last argument equals 1 at
(E[X ], E[Y ]), so

σ2
h = σ2

Y + 2∇xhΣXY + ∇xhΣX∇xh�.

But this is precisely the variance of

Yi − b�(Xi − E[X ])

with b = −∇xh(E[X ], E[Y ]); see (4.12). Thus, the distribution of the nonlinear
control variate estimator using X̄ is asymptotically the same as the distrib-
ution of an ordinary linear control variate estimator using X̄ and a specific
vector of coefficients b. In particular, the limiting variance parameter σ2

h can
be no smaller than the optimal variance that would be derived from using the
optimal vector b∗.

A negative reading of this result leads to the conclusion that nonlinear con-
trols add nothing beyond what can be achieved using linear controls. A some-
what more positive and more accurate interpretation would be that whatever
advantages a nonlinear control variate estimator may have must be limited to
small samples. “Small” may well include all relevant sample sizes in specific
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applications. The delta method tells us that asymptotically only the linear
part of h matters, but if h is highly nonlinear a very large sample may be
required for this asymptotic conclusion to be relevant. For fixed n, each of the
examples with which we opened this section may perform rather differently
from a linear control.

It should also be noted that in the linear control variate estimator to which
any nonlinear control variate estimator is ultimately equivalent, the coefficient
b is implicitly determined by the function h. In particular, using a nonlinear
control does not entail estimating this coefficient. In some cases, a nonlinear
control may be effective because −∇xh is close to optimal but need not be
estimated.

4.2 Antithetic Variates

The method of antithetic variates attempts to reduce variance by introduc-
ing negative dependence between pairs of replications. The method can take
various forms; the most broadly applicable is based on the observation that
if U is uniformly distributed over [0, 1], then 1 − U is too. Hence, if we gen-
erate a path using as inputs U1, . . . , Un, we can generate a second path using
1 − U1, . . . , 1 − Un without changing the law of the simulated process. The
variables Ui and 1−Ui form an antithetic pair in the sense that a large value
of one is accompanied by a small value of the other. This suggests that an
unusually large or small output computed from the first path may be balanced
by the value computed from the antithetic path, resulting in a reduction in
variance.

These observations extend to other distributions through the inverse trans-
form method: F−1(U) and F−1(1 − U) both have distribution F but are an-
tithetic to each other because F−1 is monotone. For a distribution symmetric
about the origin, F−1(1 − u) and F−1(u) have the same magnitudes but op-
posite signs. In particular, in a simulation driven by independent standard
normal random variables, antithetic variates can be implemented by pairing a
sequence Z1, Z2, . . . of i.i.d. N(0, 1) variables with the sequence −Z1,−Z2, . . .
of i.i.d. N(0, 1) variables, whether or not they are sampled through the in-
verse transform method. If the Zi are used to simulate the increments of a
Brownian path, then the −Zi simulate the increments of the reflection of the
path about the origin. This again suggests that running a pair of simulations
using the original path and then its reflection may result in lower variance.

To analyze this approach more precisely, suppose our objective is to esti-
mate an expectation E[Y ] and that using some implementation of antithetic
sampling produces a sequence of pairs of observations (Y1, Ỹ1), (Y2, Ỹ2), . . . ,
(Yn, Ỹn). The key features of the antithetic variates method are the following:

◦ the pairs (Y1, Ỹ1), (Y2, Ỹ2), . . . , (Yn, Ỹn) are i.i.d.;
◦ for each i, Yi and Ỹi have the same distribution, though ordinarily they are

not independent.
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We use Y generically to indicate a random variable with the common distri-
bution of the Yi and Ỹi.

The antithetic variates estimator is simply the average of all 2n observa-
tions,

ŶAV =
1
2n

(
n∑

i=1

Yi +
n∑

i=1

Ỹi

)
=

1
n

n∑
i=1

(
Yi + Ỹi

2

)
. (4.27)

The rightmost representation in (4.27) makes it evident that ŶAV is the sample
mean of the n independent observations(

Y1 + Ỹ1

2

)
,

(
Y2 + Ỹ2

2

)
, . . . ,

(
Yn + Ỹn

2

)
. (4.28)

The central limit theorem therefore applies and gives

ŶAV − E[Y ]
σAV/

√
n

⇒ N(0, 1)

with

σ2
AV = Var

[
Yi + Ỹi

2

]
.

As usual, this limit in distribution continues to hold if we replace σAV with
sAV, the sample standard deviation of the n values in (4.28). This provides
asymptotic justification for a 1 − δ confidence interval of the form

ŶAV ± zδ/2
sAV√

n
,

where 1 − Φ(zδ/2) = δ/2.
Under what conditions is an antithetic variates estimator to be preferred

to an ordinary Monte Carlo estimator based on independent replications? To
make this comparison, we assume that the computational effort required to
generate a pair (Yi, Ỹi) is approximately twice the effort required to generate
Yi. In other words, we ignore any potential computational savings from, for
example, flipping the signs of previously generated Z1, Z2, . . . rather than
generating new normal variables. This is appropriate if the computational cost
of generating these inputs is a small fraction of the total cost of simulating Yi.
Under this assumption, the effort required to compute ŶAV is approximately
that required to compute the sample mean of 2n independent replications, and
it is therefore meaningful to compare the variances of these two estimators.
Using antithetics reduces variance if

Var
[
ŶAV

]
< Var

[
1
2n

2n∑
i=1

Yi

]
;

i.e., if
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Var
[
Yi + Ỹi

]
< 2Var[Yi].

The variance on the left can be written as

Var
[
Yi + Ỹi

]
= Var[Yi] + Var[Ỹi] + 2Cov[Yi, Ỹi]

= 2Var[Yi] + 2Cov[Yi, Ỹi],

using the fact that Yi and Ỹi have the same variance if they have the same
distribution. Thus, the condition for antithetic sampling to reduce variance
becomes

Cov
[
Yi, Ỹi

]
< 0. (4.29)

Put succinctly, this condition requires that negative dependence in the
inputs (whether U and 1 − U or Z and −Z) produce negative correlation
between the outputs of paired replications. A simple sufficient condition en-
suring this is monotonicity of the mapping from inputs to outputs defined by
a simulation algorithm. To state this precisely and to give a general formu-
lation, suppose the inputs to a simulation are independent random variables
X1, . . . , Xm. Suppose that Y is an increasing function of these inputs and Ỹ
is a decreasing function of the inputs; then

E[Y Ỹ ] ≤ E[Y ]E[Ỹ ].

This is a special case of more general properties of associated random vari-
ables, in the sense of Esary, Proschan, and Walkup [113]. Observe that if
Y = f(U1, . . . , Ud) or Y = f(Z1, . . . , Zd) for some increasing function f , then
Ỹ = f(1−U1, . . . , 1−Ud) and Ỹ = f(−Z1, . . . ,−Zd) are decreasing functions
of (U1, . . . , Ud) and (Z1, . . . , Zd), respectively. The requirement that the sim-
ulation map inputs to outputs monotonically is rarely satisfied exactly, but
provides some qualitative insight into the scope of the method.

The antithetic pairs (U, 1 − U) with U ∼ Unif[0,1] and (Z,−Z) with Z ∼
N(0, 1) share an additional relevant property: in each case, the average of the
paired values is the population mean, because

U + (1 − U)
2

= 1/2 and
Z + (−Z)

2
= 0.

It follows that if the output Y is a linear function of inputs (U1, . . . , Ud) or
(Z1, . . . , Zd), then antithetic sampling results in a zero-variance estimator. Of
course, in the linear case simulation would be unnecessary, but this observation
suggests that antithetic variates will be very effective if the mapping from
inputs to outputs is close to linear.

Variance Decomposition

Antithetic variates eliminate the variance due to the antisymmetric part of an
integrand, in a sense we now develop. For simplicity, we restrict attention to
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the case of standard normal inputs, but our observations apply equally well
to any other distribution symmetric about the origin and apply with minor
modifications to uniformly distributed inputs.

Suppose, then, that Y = f(Z) with Z = (Z1, . . . , Zd) ∼ N(0, I). Define
the symmetric and antisymmetric parts of f , respectively, by

f0(z) =
f(z) + f(−z)

2
and f1(z) =

f(z) − f(−z)
2

.

Clearly, f = f0 + f1; moreover, this gives an orthogonal decomposition of f
in the sense that f0(Z) and f1(Z) are uncorrelated:

E[f0(Z)f1(Z)] =
1
4
E[f2(Z) − f2(−Z)]

= 0
= E[f0(Z)]E[f1(Z)].

It follows that
Var[f(Z)] = Var[f0(Z)] + Var[f1(Z)]. (4.30)

The first term on the right is the variance of an estimate of E[f(Z)] based on
an antithetic pair (Z,−Z). Thus, antithetic sampling eliminates all variance
if f is antisymmetric (f = f1) and it eliminates no variance if f is symmetric
(f = f0).

Fox [127] advocates the use of antithetic sampling as the first step of a more
elaborate framework, in order to eliminate the variance due to the linear (or,
more generally, the antisymmetric) part of f .

Systematic Sampling

Antithetic sampling pairs a standard normal vector Z = (Z1, . . . , Zd) with its
reflection −Z = (−Z1, . . . ,−Zd), but it is natural to consider other vectors
formed by changing the signs of the components of Z. Generalizing still further
leads us to consider transformations T : �d → �d (such as multiplication
by an orthogonal matrix) with the property that TZ ∼ N(0, I) whenever
Z ∼ N(0, I). This property implies that the iterated transformations T 2Z,
T 3Z, . . . will also have standard normal distributions. Suppose that T k is
the identity for some k. The usual antithetic transformation has k = 2, but
by considering other rotations and reflections of �d, it is easy to construct
examples with larger values of k.

Define

f0(z) =
1
k

k∑
i=1

f(T iZ) and f1(z) = f(z) − f0(z).

We clearly have E[f0(Z)] = E[f(Z)]. The estimator f0(Z) generalizes the an-
tithetic variates estimator; in the survey sampling literature, methods of this
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type are called systematic sampling because after the initial random drawing
of Z, the k − 1 subsequent points are obtained through deterministic trans-
formations of Z.

The representation f(Z) = f0(Z) + f1(Z) again gives an orthogonal de-
composition. To see this, first observe that

E[f0(Z)2] =
1
k

k∑
i=1

E

f(T iZ) · 1
k

k∑
j=1

f(T jT iZ)


=

1
k

k∑
i=1

E
[
f(T iZ) · f0(T iZ)

]
= E[f(Z)f0(Z)],

so
E[f0(Z)f1(Z)] = E[f0(Z)(f(Z) − f0(Z))] = 0.

Thus, (4.30) continues to hold under the new definitions of f0 and f1. Assum-
ing the f(T iZ), i = 1, . . . , k, require approximately equal computing times,
the estimator f0(Z) beats ordinary Monte Carlo if

Var[f0(Z)] <
1
k

Var[f(Z)].

The steps leading to (4.29) generalize to the requirement

k−1∑
j=1

Cov[f(Z), f(T jZ)] < 0.

This condition is usually at least as difficult to satisfy as the simple version
(4.29) for ordinary antithetic sampling.

For a more general formulation of antithetic sampling and for historical
remarks, see Hammersley and Handscomb [169]. Boyle [52] is an early ap-
plication in finance. Other work on antithetic variates includes Fishman and
Huang [122] and Rubinstein, Samorodnitsky, and Shaked [312].

4.3 Stratified Sampling

4.3.1 Method and Examples

Stratified sampling refers broadly to any sampling mechanism that constrains
the fraction of observations drawn from specific subsets (or strata) of the
sample space. Suppose, more specifically, that our goal is to estimate E[Y ]
with Y real-valued, and let A1, . . . , AK be disjoint subsets of the real line for
which P (Y ∈ ∪iAi) = 1. Then



210 4 Variance Reduction Techniques

E[Y ] =
K∑

i=1

P (Y ∈ Ai)E[Y |Y ∈ Ai] =
K∑

i=1

piE[Y |Y ∈ Ai] (4.31)

with pi = P (Y ∈ Ai). In random sampling, we generate independent
Y1, . . . , Yn having the same distribution as Y . The fraction of these samples
falling in Ai will not in general equal pi, though it would approach pi as the
sample size n increased. In stratified sampling, we decide in advance what
fraction of the samples should be drawn from each stratum Ai; each observa-
tion drawn from Ai is constrained to have the distribution of Y conditional
on Y ∈ Ai.

The simplest case is proportional sampling, in which we ensure that the
fraction of observations drawn from stratum Ai matches the theoretical prob-
ability pi = P (Y ∈ Ai). If the total sample size is n, this entails generating
ni = npi samples from Ai. (To simplify the discussion, we ignore rounding
and assume npi is an integer instead of writing �npi�.) For each i = 1, . . . , K,
let Yij , j = 1, . . . , ni be independent draws from the conditional distribution
of Y given Y ∈ Ai. An unbiased estimator of E[Y |Y ∈ Ai] is provided by the
sample mean (Yi1 + · · · + Yini)/ni of observations from the ith stratum. It
follows from (4.31) that an unbiased estimator of E[Y ] is provided by

Ŷ =
K∑

i=1

pi ·
1
ni

ni∑
j=1

Yij =
1
n

K∑
i=1

ni∑
j=1

Yij . (4.32)

This estimator should be contrasted with the usual sample mean Ȳ = (Y1 +
· · · + Yn)/n of a random sample of size n. Compared with Ȳ , the stratified
estimator Ŷ eliminates sampling variability across strata without affecting
sampling variability within strata.

We generalize this formulation in two simple but important ways. First,
we allow the strata to be defined in terms of a second variable X . This stratifi-
cation variable could take values in an arbitrary set; to be concrete we assume
it is �d-valued and thus take the strata Ai to be disjoint subsets of �d with
P (X ∈ ∪iAi) = 1. The representation (4.31) generalizes to

E[Y ] =
K∑

i=1

P (X ∈ Ai)E[Y |X ∈ Ai] =
K∑

i=1

piE[Y |X ∈ Ai], (4.33)

where now pi = P (X ∈ Ai). In some applications, Y is a function of X (for
example, X may be a discrete path of asset prices and Y the discounted payoff
of a derivative security), but more generally they may be dependent without
either completely determining the other. To use (4.33) for stratified sampling,
we need to generate pairs (Xij , Yij), j = 1, . . . , ni, having the conditional
distribution of (X, Y ) given X ∈ Ai.

As a second extension of the method, we allow the stratum allocations
n1, . . . , nK to be arbitrary (while summing to n) rather than proportional to
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p1, . . . , pK . In this case, the first representation in (4.32) remains valid but
the second does not. If we let qi = ni/n be the fraction of observations drawn
from stratum i, i = 1, . . . , K, we can write

Ŷ =
K∑

i=1

pi ·
1
ni

ni∑
j=1

Yij =
1
n

K∑
i=1

pi

qi

ni∑
j=1

Yij . (4.34)

By minimizing the variance of this estimator over the qi, we can find an
allocation rule that is at least as effective as a proportional allocation. We
return to this point later in this section.

From this introduction it should be clear that the use of stratified sampling
involves consideration of two issues:

◦ choosing the stratification variable X , the strata A1, . . . , AK , and the allo-
cation n1, . . . , nK ;

◦ generating samples from the distribution of (X, Y ) conditional on X ∈ Ai.

In addressing the first issue we will see that stratified sampling is most effective
when the variability of Y within each stratum is small. Solutions to the second
issue are best illustrated through examples.

Example 4.3.1 Stratifying uniforms. Perhaps the simplest application of
stratified sampling stratifies the uniformly distributed random variables that
drive a simulation. Partition the unit interval (0, 1) into the n strata

A1 =
(

0,
1
n

]
, A2 =

(
1
n

,
2
n

]
, . . . , An =

(
n − 1

n
, 1
)

.

Each of these intervals has probability 1/n under the uniform distribution, so
in a proportional allocation we should draw one sample from each stratum.
(The sample size n and the number of strata K are equal in this example.) Let
U1, . . . , Un be independent and uniformly distributed between 0 and 1 and let

Vi =
i − 1

n
+

Ui

n
, i = 1, . . . , n. (4.35)

Each Vi is uniformly distributed between (i − 1)/n and i/n, which is to say
that Vi has the conditional distribution of U given U ∈ Ai for U ∼ Unif[0,1].
Thus, V1, . . . , Vn constitute a stratified sample from the uniform distribution.
(In working with the unit interval and the subintervals Ai, we are clearly free
to define these to be open or closed on the left or right; in each setting, we
adopt whatever convention is most convenient.)

Suppose Y = f(U) so that E[Y ] is simply the integral of f over the unit
interval. Then the stratified estimator

Ŷ =
1
n

n∑
i=1

f(Vi)
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is similar to the deterministic midpoint integration rule

1
n

n∑
i=1

f

(
2i − 1

2n

)
based on the value of f at the midpoints of the Ai. A feature of the random-
ization in the stratified estimator is that it makes Ŷ unbiased.

This example easily generalizes to partitions of (0, 1) into intervals of un-
equal lengths. If Ai = (ai, bi], then the conditional distribution of U given
U ∈ Ai is uniform between ai and bi; we can sample from this conditional
distribution by setting V = ai + U(bi − ai). �

Example 4.3.2 Stratifying nonuniform distributions. Let F be a cumulative
distribution function on the real line and let

F−1(u) = inf{x : F (x) ≤ u}

denote its inverse as defined in Section 2.2.1. Given probabilities p1, . . . , pK

summing to 1, define a0 = −∞,

a1 = F−1(p1), a2 = F−1(p1 + p2), . . . , aK = F−1(p1 + · · · + pK) = F−1(1).

Define strata

A1 = (a0, a1], A2 = (a1, a2], . . . , AK = (aK−1, aK ]

or with AK = (aK−1, aK) if aK = ∞. By construction, each stratum Ai has
probability pi under F ; for if Y has distribution F , then

P (Y ∈ Ai) = F (ai) − F (ai−1) = pi.

Thus, defining strata for F with specified probabilities is straightforward,
provided one can find the quantiles ai. Figure 4.4 displays ten equiprobable
(pi = 1/K) strata for the standard normal distribution.

To use the sets A1, . . . , AK for stratified sampling, we need to be able to
generate samples of Y conditional on Y ∈ Ai. As demonstrated in Exam-
ple 2.2.5, this is easy using the inverse transform method. If U ∼ Unif[0,1],
then

V = ai−1 + U(ai − ai−1)

is uniformly distributed between ai−1 and ai and then F−1(V ) has the distri-
bution of Y conditional on Y ∈ Ai.

Figure 4.5 illustrates the difference between stratified and random sam-
pling from the standard normal distribution. The left panel is a histogram of
500 observations, five from each of 100 equiprobable strata; the right panel is
a histogram of 500 independent draws from the normal distribution. Stratifi-
cation clearly produces a better approximation to the underlying distribution.
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−4 −3 −2 −1 0 1 2 3 4

Fig. 4.4. A partition of the real line into ten intervals of equal probability under the
standard normal distribution. The area under the normal density over each interval
is 1/10.

How might we use stratified samples from the normal distribution in sim-
ulating paths of a stochastic process? It would not be legitimate to use one
value from each of 100 strata to generate 100 steps of a single Brownian path:
the increments of Brownian motion are independent but the stratified values
are not, and ignoring this dependence would produce nonsensical results. In
contrast, we could validly use the stratified values to generate the first incre-
ment of 100 replications of a single Brownian path (or the terminal values of
the paths, as explained in Section 4.3.2). In short, in using stratified sampling
or any other variance reduction technique, we are free to introduce dependence
across replications but not within replications. �
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Fig. 4.5. Comparison of stratified sample (left) and random sample (right). The
stratified sample uses 100 equiprobable strata with five samples from each stratum;
the random sample consists of 500 independent draws from the normal distribution.
Both histograms use 25 bins.
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Example 4.3.3 Stratification through acceptance-rejection. A crude but al-
most universally applicable method for generating samples conditional on a
stratum generates unconditional samples and keeps those that fall in the target
set. This is the method described in Example 2.2.8 for conditional sampling,
and may be viewed as a form of acceptance-rejection in which the acceptance
probability is always 0 or 1.

To describe this in more detail, we use the notation of (4.33). Our goal is
to generate samples of the pair (X, Y ) using strata A1, . . . , AK for X , with
ni samples to be generated conditional on X ∈ Ai, i = 1, . . . , K. Given
a mechanism for generating unconditional samples from the distribution of
(X, Y ), we can repeatedly generate such samples until we have produced ni

samples with X ∈ Ai for each i = 1, . . . , K; any extra samples generated from
a stratum are simply rejected.

The efficiency of this method depends on the computational cost of gen-
erating pairs (X, Y ) and determining the stratum in which X falls. It also
depends on the stratum probabilities: if P (X ∈ Ai) is small, a large number
of candidates may be required to produce ni samples from Ai. These com-
putational costs must be balanced against the reduction in variance achieved
through stratification. Glasserman, Heidelberger, and Shahabuddin [143] an-
alyze the overhead from rejected samples in this method based on a Poisson
approximation to the arrival of samples from each stratum. �

Example 4.3.4 Stratifying the unit hypercube. The methods described in Ex-
amples 4.3.1 and 4.3.2 extend, in principle, to multiple dimensions. Using the
inverse transform method, a vector (X1, . . . , Xd) of independent random vari-
ables can be represented as (F−1

1 (U1), . . . , F−1
d (Ud)) with Fi the distribution

of Xi and U1, . . . , Ud independent and uniform over [0, 1). In this sense, it suf-
fices to consider the uniform distribution over the d-dimensional hypercube
[0, 1)d. (In the case of dependent X1, . . . , Xd, replace Fi with the conditional
distribution of Xi given X1, . . . , Xi−1.) In stratifying the unit hypercube with
respect to the uniform distribution, it is convenient to take the strata to be
products of intervals because the probability of such a set is easily calculated
and because it is easy to sample uniformly from such a set by applying a
transformation like (4.35) to each coordinate.

Suppose, for example, that we stratify the jth coordinate of the hypercube
into Kj intervals of equal length. Each stratum of the hypercube has the form

d∏
j=1

[
ij − 1
Kj

,
ij
Kj

)
, ij ∈ {1, . . . , Kj}

and has probability 1/(K1 · · ·Kd). To generate a vector V uniformly distrib-
uted over this set, generate U1, . . . , Ud independently from Unif[0,1) and define
the jth coordinate of V to be

Vj =
ij − 1 + Uj

Kj
, j = 1, . . . , d. (4.36)
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In this example, the total number of strata is K1 · · ·Kd. Generating at least
one point from each stratum therefore requires a sample size at least this large.
Unless the Kj are quite small (in which case stratification may provide little
benefit), this is likely to be prohibitive for d larger than 5, say. In Section 4.4
and Chapter 5, we will see methods related to stratified sampling that are
better suited to higher dimensions. �

Output Analysis

We now turn to the problem of interval estimation for µ
�
= E[Y ] using strat-

ified sampling. As in (4.33), let A1, . . . , AK denote strata for a stratification
variable X and let Yij have the distribution of Y conditional on X ∈ Ai. For
i = 1, . . . , K, let

µi = E[Yij ] = E[Y |X ∈ Ai] (4.37)
σ2

i = Var[Yij ] = Var[Y |X ∈ Ai]. (4.38)

Let pi = P (X ∈ Ai), i = 1, . . . , K, denote the stratum probabilities; we re-
quire these to be strictly positive and to sum to 1. Fix an allocation n1, . . . , nK

with all ni ≥ 1 and n1 + · · · + nK = n. Let qi = ni/n denote the fraction of
samples allocated to the ith stratum. For any such allocation the estimator
Ŷ in (4.33) is unbiased because

E[Ŷ ] =
K∑

i=1

pi ·
1
ni

ni∑
j=1

E[Yij ] =
K∑

i=1

piµi = µ.

The variance of Ŷ is given by

Var[Ŷ ] =
K∑

i=1

p2
i Var

 1
ni

ni∑
j=1

Yij

 =
K∑

i=1

p2
i

σ2
i

ni
=

σ2(q)
n

,

with

σ2(q) =
K∑

i=1

p2
i

qi
σ2

i . (4.39)

For each stratum Ai, the samples Yi1, Yi2, . . . are i.i.d. with mean µi and
variance σ2

i and thus satisfy

1√
�nqi�

�nqi�∑
j=1

(Yij − µi) ⇒ N(0, σ2
j ),

as n → ∞ with q1, . . . , qK fixed. The centered and scaled estimator
√

n(Ŷ −µ)
can be written as
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√
n(Ŷ − µ) =

√
n

K∑
i=1

pi

 1
�nqi�

�nqi�∑
j=1

(Yij − µi)


≈

K∑
i=1

pi√
qi

 1√
�nqi�

�nqi�∑
j=1

(Yij − µi)

 ,

the approximation holding in the sense that the ratio of the two expressions
approaches 1 as n → ∞. This shows that

√
n(Ŷ − µ) is asymptotically a

linear combination (with coefficients pi/
√

qi) of independent normal random
variables (with mean 0 and variances σ2

i ). It follows that
√

n(Ŷ − µ) ⇒ N(0, σ2(q))

with σ2(q) as defined in (4.39). This limit holds as the sample size n increases
with the number of strata K held fixed.

A consequence of this central limit theorem for Ŷ is the asymptotic validity
of

Ŷ ± zδ/2
σ(q)√

n
(4.40)

as a 1 − δ confidence interval for µ, with zδ/2 = Φ−1(1 − δ/2). In practice,
σ2(q) is typically unknown but can be consistently estimated using

s2(q) =
K∑

i=1

p2
i

qi
s2

i ,

where s2
i is the sample standard deviation of Yi1, . . . , Yini .

Alternatively, one can estimate σ2(q) through independent replications of
Ŷ . More precisely, suppose the sample size n can be expressed as mk with m
and k integers and m ≥ 2. Suppose ki = qik is an integer for all i = 1, . . . , K
and note that ni = mki. Then Ŷ is the average of m independent stratified
estimators Ŷ1, . . . , Ŷm, each of which allocates a fraction qi of observations to
stratum i and has a total sample size of k. Each Ŷj thus has variance σ2(q)/k;
because Ŷ is the average of the Ŷ1, . . . , Ŷm, an asymptotically (as m → ∞)
valid confidence interval for µ is provided by

Ŷ ± zδ/2
σ(q)/

√
k√

m
. (4.41)

This reduces to (4.40), but σ(q)/
√

k can now be consistently estimated using
the sample standard deviation of Ŷ1, . . . , Ŷm. This is usually more convenient
than estimating all the stratum variances σ2

i , i = 1, . . . , K.
In this formulation, each Ŷj may be thought of as a batch with sample size

k and the original estimator Ŷ as the sample mean of m independent batches.
Given a total sample size n, is it preferable to have at least m observations



4.3 Stratified Sampling 217

from each stratum, as in this setting, or to increase the number of strata so
that only one observation is drawn from each? A larger m should improve our
estimate of σ(q) and the accuracy of the normal approximation implicit in the
confidence intervals above. However, we will see below (cf. (4.46)) that taking
finer strata reduces variance. Thus, as is often the case, we face a tradeoff
between reducing variance and accurately measuring variance.

Optimal Allocation

In the case of a proportional allocation of samples to strata, qi = pi and the
variance parameter σ2(q) simplifies to

K∑
i=1

p2
i

qi
σ2

i =
K∑

i=1

piσ
2
i . (4.42)

To compare this to the variance without stratification, observe that

E[Y 2] =
K∑

i=1

piE[Y 2|X ∈ Ai] =
K∑

i=1

pi(σ2
i + µ2

i ),

so using µ =
∑K

i=1 piµi we get

Var[Y ] = E[Y 2] − µ2 =
K∑

i=1

piσ
2
i +

K∑
i=1

piµ
2
i −
(

K∑
i=1

piµi

)2

. (4.43)

By Jensen’s inequality,

K∑
i=1

piµ
2
i ≥

(
K∑

i=1

piµi

)2

with strict inequality unless all µi are equal. Thus, comparing (4.42) and
(4.43), we conclude that stratified sampling with a proportional allocation can
only decrease variance.

Optimizing the allocation can produce further variance reduction. Mini-
mizing σ2(q) subject to the constraint that (q1, . . . , qK) be a probability vector
yields the optimal allocation

q∗i =
piσi∑K

	=1 p	σ	

, i = 1, . . . , K.

In other words, the optimal allocation for each stratum is proportional to the
product of the stratum probability and the stratum standard deviation. The
optimal variance is thus
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σ2(q∗) =
K∑

i=1

p2
i

q∗i
σ2

i =

(
K∑

i=1

piσi

)2

.

Comparison with (4.42) indicates that the additional reduction in variance
from optimizing the allocation is greatest when the stratum standard devia-
tions vary widely.

In practice, the σi are rarely known so the optimal fractions q∗i are not
directly applicable. Nevertheless, it is often practical to use pilot runs to get
estimates of the σi and thus of the q∗i . The estimated optimal fractions can
then be used to allocate samples to strata in a second (typically larger) set of
runs.

In taking the optimal allocation to be the one that minimizes variance,
we are implicitly assuming that the computational effort required to generate
samples is the same across strata. But this assumption is not always appro-
priate. For example, in sampling from strata through acceptance-rejection as
described in Example 4.3.3, the expected time required to sample from Ai is
proportional to 1/pi. A more complete analysis should therefore account for
differences in computational costs across strata.

Suppose, then, that τi denotes the expected computing time required to
sample (X, Y ) conditional on X ∈ Ai and let s denote the total computing
budget. Let Ŷ (s) denote the stratified estimator produced with a budget s,
assuming the fraction of samples allocated to stratum i is qi. (This is asymp-
totically equivalent to assuming the fraction of the computational budget al-
located to stratum i is proportional to qiτi.) Arguing much as in Section 1.1.3,
we find that √

s[Ŷ (s) − µ] ⇒ N
(
0, σ2(q, τ)

)
,

with

σ2(q, τ) =

(
K∑

i=1

p2
i σ

2
i

qi

)(
K∑

i=1

qiτi

)
.

By minimizing this work-normalized variance parameter we find that the op-
timal allocation is

q∗i =
piσi/

√
τi∑K

	=1 p	σ	/
√

τ	

,

which now accounts for differences in computational costs across strata. Like
the σi, the τi can be estimated through pilot runs.

Variance Decomposition

The preceding discussion considers the allocation of samples to given strata.
In order to consider the question of how strata should be selected in the first
place, we now examine what part of the variance of Y is removed through
stratification of X .
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As before, let A1, . . . , AK be strata for X . Let η ≡ η(X) ∈ {1, . . . , K}
denote the index of the stratum containing X , so that X ∈ Aη. We can
always write

Y = E[Y |η] + ε (4.44)

simply by defining the residual ε so that equality holds. It is immediate that
E[ε|η] = 0 and that ε is uncorrelated with E[Y |η] because

E[ε (E[Y |η] − E[Y ])] = 0,

as can be seen by first conditioning on η. Because (4.44) decomposes Y into
the sum of uncorrelated terms, we have

Var[Y ] = Var[E[Y |η]] + Var[ε].

We will see that stratified sampling with proportional allocation eliminates
the first term on the right, leaving only the variance of the residual term and
thus guaranteeing a variance reduction.

The residual variance is E[ε2] because E[ε] = 0. Also,

E[ε2|η] = E
[
(Y − E[Y |η])2|η

]
= Var[Y |η].

We thus arrive at the familiar decomposition

Var[Y ] = Var[E[Y |η]] + E [Var[Y |η]] . (4.45)

The conditional expectation of Y given η = i is µi, and the probability that
η = i is pi. The first term on the right side of (4.45) is thus

Var[E[Y |η]] =
K∑

i=1

piµ
2
i −
(

K∑
i=1

piµi

)2

.

Comparing this with (4.43), we conclude from (4.44) and (4.45) that

Var[ε] = E [Var[Y |η]] =
K∑

i=1

piσ
2
i ,

which is precisely the variance parameter in (4.42) for stratified sampling
with proportional allocation. This confirms that the variance parameter of
the stratified estimator is the variance of the residual of Y after conditioning
on η.

Consider now the effect of alternative choices of strata. The total variance
Var[Y ] in (4.45) is constant, so making the residual variance small is equivalent
to making Var[E[Y |η]] large — i.e., to making Var[µη] large. This indicates that
we should try to choose strata to achieve a high degree of variability across the
stratum means µ1, . . . , µK and low variability within each stratum. Indeed,
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from (4.45) we find that stratification eliminates inter-stratum variability,
leaving only intra-stratum variability.

Another consequence of (4.45) is that further stratification results in fur-
ther variance reduction. More precisely, suppose the partition {Ã1, . . . , ÃK̃}
refines the partition {A1, . . . , AK}, in the sense that the stratum index η̃ of
the new partition completely determines η. Then E[Y |η] = E[E[Y |η̃]|η] and
Jensen’s inequality yields

Var[E[Y |η]] ≤ Var[E[Y |η̃]], (4.46)

from which it follows that the residual variance from the refined strata cannot
exceed the residual variance from the original strata.

The decomposition (4.44) invites a comparison between stratified sampling
and control variates. Consider the case of real-valued X . Using the method of
Example 4.3.2, we can in principle stratify X using an arbitrarily large number
of equiprobable intervals. As we refine the stratification, it is reasonable to
expect that E[Y |η] will approach E[Y |X ]. (For a specific result of this type
see Lemma 4.1 of Glasserman, Heidelberger, and Shahabuddin [139].) The
decomposition (4.44) becomes

Y = E[Y |X ] + ε = g(X) + ε,

with g(x) = E[Y |X = x]. If g is linear, then the variance removed through
(infinitely fine) stratification of X is precisely the same as the variance that
would be removed using X as a control variate. But in the general case, using
X as a control variate would remove only the variance associated with the
linear part of g near E[X ]; see the discussion in Section 4.1.4. In contrast,
infinitely fine stratification of X removes all the variance of g(X) leaving only
the variance of the residual ε. In this sense, using X as a stratification variable
is more effective than using it as a control variate. However, it should also be
noted that using X as a control requires knowledge only of E[X ] and not the
full distribution of X ; moreover, it is often easier to use X as a control than
to generate samples from the conditional law of (X, Y ) given the stratum
containing X .

4.3.2 Applications

This section illustrates the application of stratified sampling in settings some-
what more complex than those in Examples 4.3.1–4.3.4. As noted in Exam-
ple 4.3.4, fully stratifying a random vector becomes infeasible in high dimen-
sions. We therefore focus primarily on methods that stratify a scalar projection
in a multidimensional setting. This can be effective in valuing a derivative se-
curity if its discounted payoff is highly variable along the selected projection.

Terminal Stratification

In the pricing of options, the most important feature of the path of an under-
lying asset is often its value at the option expiration; much of the variability
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in the option’s payoff can potentially be eliminated by stratifying the termi-
nal value. As a step in this direction, we detail the stratification of Brownian
motion along its terminal value. In the special case of an asset described
by geometric Brownian motion with constant volatility, this is equivalent to
stratifying the terminal value of the asset price itself.

Suppose, then, that we need to generate a discrete Brownian path W (t1),
. . . , W (tm) and that we want to stratify the terminal value W (tm). We can
accomplish this through a variant of the Brownian bridge construction of
Brownian motion presented in Section 3.1. Using the inverse transform method
as in Example 4.3.2 we can stratify W (tm), and then conditional on each value
of W (tm) we can generate the intermediate values W (t1), . . . , W (tm−1).

Consider, in particular, the case of K equiprobable strata and a propor-
tional allocation. Let U1, . . . , UK be independent Unif[0,1] random variables
and set

Vi =
i − 1
K

+
Ui

K
, i = 1, . . . , K.

Then Φ−1(V1), . . . ,Φ−1(VK) form a stratified sample from the standard nor-
mal distribution and

√
tmΦ−1(V1), . . . ,

√
tmΦ−1(Vm) form a stratified sample

from N(0, tm), the distribution of W (tm). To fill in the path leading to each
W (tm), we recall from Section 3.1 that the conditional distribution of W (tj)
given W (tj−1) and W (tm) is

N

(
tm − tj

tm − tj−1
W (tj−1) +

tj − tj−1

tm − tj−1
W (tm),

(tm − tj)(tj − tj−1)
tm − tj−1

)
,

with t0 = 0 and W (0) = 0.
The following algorithm implements this idea to generate K Brownian

paths stratified along W (tm):

for i = 1, . . . , K
generate U ∼ Unif[0,1]
V ← (i − 1 + U)/K
W (tm) ← √

tmΦ−1(V )
for j = 1, . . . , m − 1

generate Z ∼ N(0, 1)

W (tj) ← tm−tj

tm−tj−1
W (tj−1) + tj−tj−1

tm−tj−1
W (tm) +

√
(tm−tj)(tj−tj−1)

tm−tj−1
Z

Figure 4.6 illustrates the construction. Of the K = 10 paths generated by this
algorithm, exactly one terminates in each of the K = 10 strata defined for
W (tm), here with tm = 1.

If the underlying asset price S(t) is modeled by geometric Brownian mo-
tion, then driving the simulation of S with these Brownian paths stratifies the
terminal asset price S(tm); this is a consequence of the fact that S(tm) is a
monotone transformation of W (tm). In valuing an option on S, rather than
constructing equiprobable strata over all possible terminal values, we may
combine all values of S(tm) that result in zero payoff into a single stratum
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Fig. 4.6. Simulation of K Brownian paths using terminal stratification. One path
reaches each of the K strata. The strata are equiprobable under the distribution of
W (1).

and create a finer stratification of terminal values that potentially produce a
nonzero payoff. (The payoff will not be completely determined by S(tm) if it
is path-dependent.)

As an example of how a similar construction can be used in a more complex
example, consider the dynamics of a forward LIBOR rate Ln as in (4.6).
Consider a single-factor model (so that W is a scalar Brownian motion) with
deterministic but time-varying volatility σn ≡ σ. Without the drift term in
(4.6), the terminal value Ln(tm) would be determined by∫ tm

0

σ(u) dW (u)

rather than W (tm), so we may prefer to stratify this integral instead. If σ is
constant over each interval [ti, ti+1), this integral simplifies to

W (tm)σ(tm−1) +
m−1∑
i=1

W (ti)[σ(ti−1) − σ(ti)]. (4.47)

Similarly, for some path-dependent options one may want to stratify the av-
erage

1
m

m∑
i=1

W (ti). (4.48)

In both cases, the stratification variable is a linear combination of the W (ti)
and is thus a special case of the general problem treated next.
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Stratifying a Linear Projection

Generating (W (t1), . . . , W (tm)) stratified along W (tm) or (4.47) or (4.48) are
all special cases of the problem of generating a multivariate normal random
vector stratified along some projection. We now turn to this general formula-
tion of the problem.

Suppose, then, that ξ ∼ N(µ, Σ) in �d and that we want to generate ξ with
X ≡ v�ξ stratified for some fixed vector v ∈ �d. Suppose the d × d matrix Σ
has full rank. We may take µ to be the zero vector because stratifying v�ξ is
equivalent to stratifying v�(ξ − µ) since v�µ is a constant. Also, stratifying
X is equivalent to stratifying any multiple of X ; by scaling v if necessary, we
may therefore assume that v�Σv = 1. Thus,

X = v�ξ ∼ N(0, v�Σv) = N(0, 1),

so we know how to stratify X using the method in Example 4.3.1.
The next step is to generate ξ conditional on the value of X . First observe

that ξ and X are jointly normal with(
ξ
X

)
∼ N

(
0,

(
Σ Σv

v�Σ v�Σv

))
.

Using the Conditioning Formula (2.25), we find that

(ξ|X = x) ∼ N

(
Σv

v�Σv
x, Σ − Σvv�Σ

v�Σv

)
= N

(
Σvx,Σ − Σvv�Σ

)
.

Observe that the conditional covariance matrix does not depend on x; this is
important because it means that only a single factorization is required for the
conditional sampling. Let A be any matrix for which AA� = Σ (such as the
one found by Cholesky factorization) and observe that

(A − Σvv�A)(A − Σvv�A)�

= AA� − AA�vv�Σ − Σvv�AA� + Σvv�Σvv�Σ
= Σ − Σvv�Σ,

again using the fact that v�Σv = 1. Thus, we can use the matrix A−Σvv�A
to sample from the conditional distribution of ξ given X .

The following algorithm generates K samples from N(0, Σ) stratified along
the direction determined by v:

for i = 1, . . . , K
generate U ∼ Unif[0,1]
V ← (i − 1 + U)/K
X ← Φ−1(V )
generate Z ∼ N(0, I) in �d

ξ ← ΣvX + (A − Σvv�A)Z
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By construction, of the K values of X generated by this algorithm, exactly one
will fall in each of K equiprobable strata for the standard normal distribution.
But observe that under this construction,

v�ξ = v�ΣvX + v�(A − Σvv�A)Z = X.

Thus, of the K values of ξ generated, exactly one has a projection v�ξ falling
into each of K equiprobable strata. In this sense, the algorithm generates
samples from N(0, Σ) stratified along the direction determined by v.

To apply this method to generate a Brownian path with the integral in
(4.47) stratified, take Σ to be the covariance matrix of the Brownian path
(Σij = min(ti, tj), as in (3.6)) and

v ∝ (σ(0) − σ(1), σ(1) − σ(2), . . . , σ(m − 2) − σ(m − 1), σ(m − 1))�,

normalized so that v�Σv = 1. To generate the path with its average (4.48)
stratified, take v to be the vector with all entries equal to the square root of
the sum of the entries of Σ. Yet another strategy for choosing stratification
directions is to use the principal components of Σ (cf. Section 2.3.3).

Further simplification is possible in stratifying a sample from the standard
multivariate normal distribution N(0, I). In this case, the construction above
becomes

ξ = vX + (I − vv�)Z, X ∼ N(0, 1), Z ∼ N(0, I),

with v now normalized so that v�v = 1. Since X = v�ξ, by stratifying X we
stratify the projection of ξ onto v. The special feature of this setting is that
the matrix-vector product (I − vv�)Z can be evaluated as Z− v(v�Z), which
requires O(d) operations rather than O(d2).

This construction extends easily to allow stratification along multiple di-
rections simultaneously. Let B denote a d×m matrix, m ≤ d, whose columns
represent the stratification directions. Suppose B has been normalized so that
B�ΣB = I. If Σ itself is the identity matrix, this says that the m columns of
B form a set of orthonormal vectors in �d. Where we previously stratified the
scalar projection X = v�ξ, we now stratify the m-vector X = B�ξ, noting
that X ∼ N(0, I). For this, we first stratify the m-dimensional hypercube as
in Example 4.3.4 and then set Xj = Φ−1(Vj), j = 1, . . . , m, with (V1, . . . , Vm)
sampled from a stratum of the hypercube as in (4.36). This samples X from
the m-dimensional standard normal distribution with each of its components
stratified. We then set

ξ = ΣBX + (A − ΣBB�A)Z, Z ∼ N(0, I),

for any d × d matrix A satisfying AA� = Σ. The projection B�ξ of ξ onto
the columns of B returns X and is stratified by construction.

To illustrate this method, we apply it to the LIBOR market model dis-
cussed in Section 3.7, using the notation and terminology of that section. We
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use accrual intervals of length δ = 1/2 and set all forward rates initially equal
to 6%. We consider a single-factor model (i.e., one driven by a scalar Brownian
motion) with a piecewise constant stationary volatility, meaning that σn(t)
depends on n and t only through n − η(t), the number of maturity dates re-
maining until Tn. We consider a model in which volatility decreases linearly
from 0.20 to 0.10 over a 20-year horizon, and a model in which all forward
rate volatilities are 0.15.

Our simulation uses a time increment equal to δ, throughout which volatil-
ities are constant. We therefore write∫ Tn

0

σn(t) dW (t) =
√

δ

n∑
i=1

σn(Ti−1)Zi, (4.49)

with Z1, Z2, . . . independent N(0, 1) variables. This suggests using the vec-
tor (σn(0), σn(T1), . . . , σn(Tn−1)) as the stratification direction in sampling
(Z1, . . . , Zn) from the standard normal distribution in �n.

Table 4.2 reports estimated variance reduction ratios for pricing various
options in this model. Each entry in the table gives an estimate of the ratio
of the variance using ordinary Monte Carlo to the variance using a stratified
sample of equal size. The results are based on 40 strata (or simply 40 indepen-
dent samples for ordinary Monte Carlo); the estimated ratios are based 1000
replications, each replication using a sample size of 40. The 1000 replications
merely serve to make the ratio estimates reliable; the ratios themselves should
be interpreted as the variance reduction achieved by using 40 strata.

The results shown are for a caplet with a maturity of 20 years, a caplet with
a maturity of 5 years, bonds with maturities 20.5 and 5.5 years, and a swaption
maturing in 5 years to enter into a 5-year, fixed-for-floating interest rate swap.
The options are all at-the-money. The results are based on simulation in the
spot measure using the log-Euler scheme in (3.120), except for the last row
which applies to the forward measure for maturity 20.5. In each case, the
stratification direction is based on the relevant portion of the volatility vector
— forty components for a 20-year simulation, ten components for a 5-year
simulation. (Discounting a payment to be received at Tn+1 requires simulating
to Tn.)

The results in the table indicate that the variance reduction achieved varies
widely but can be quite substantial. With notable exceptions, we generally see
greater variance reduction at shorter maturities, at least in part because of
the discount factor (see, e.g., (3.109)). The stratification direction we use is
tailored to a particular rate Ln (through (4.49)), but not necessarily to the
discount factor. The discount factor becomes a constant under the forward
measure and, accordingly, we see a greater variance reduction in this case,
at the same maturity. Surprisingly, we find the greatest improvement in the
case of the swaption, even though the stratification direction is not specifically
tailored to the swap rate.
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Linear Constant
volatility volatility

Spot Measure
Caplet, T = 20 2 8
Caplet, T = 5 26 50
Swaption, T = 5 38 79
Bond, T = 20.5 12 4
Bond, T = 5.5 5 4

Forward Measure
Caplet, T = 20 11 11

Table 4.2. Variance reduction factors using one-dimensional stratified sampling
in a single-factor LIBOR market model. The stratification direction is determined
by the vector of volatilities. The results are based on 1000 replications of samples
(stratified or independent) of size 40. For each instrument, the value of T indicates
the maturity.

Optimal Directions

In estimating E[f(ξ)] with ξ ∼ N(µ, Σ) and f a function from �d to �, it would
be convenient to know the stratification direction v for which stratifying v�ξ
would produce the greatest reduction in variance. Finding this optimal v is
rarely possible; we give a few examples for which the optimal direction is
available explicitly.

With no essential loss of generality, we restrict attention to the case of
E[f(Z)] with Z ∼ N(0, I). From the variance decomposition (4.45) and the
surrounding discussion, we know that the residual variance after stratifying
a linear combination v�Z is E[Var[f(Z)|η]], where η is the (random) index
of the stratum containing v�Z. If we use equiprobable strata and let the
number of strata grow (with each new set of strata refining the previous set),
this residual variance converges to E[Var[f(Z)|v�Z]] (cf. Lemma 4.1 of [139]).
We will therefore compare alternative choices of v through this limiting value.

In the linear case f(z) = b�z, it is evident that the optimal direction is
v = b. Next, let f(z) = z�Az for some d × d matrix A. We may assume that
A is symmetric and thus that it has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and
associated orthonormal eigenvectors v1, . . . , vd. Minimizing E[Var[f(Z)|v�Z]]
over vectors v for which v�v = 1 is equivalent to maximizing Var[E[f(Z)|v�Z]]
over the same set because the two terms sum to Var[f(Z)] for any v. In the
quadratic case, some matrix algebra shows that v�v = 1 implies

Var[E[Z�AZ|v�Z]] = (v�Av)2.

This is maximized by v1 if λ2
1 ≥ λ2

d and by vd if λ2
d ≥ λ2

1. In other words,
the optimal stratification direction is an eigenvector of A associated with an
eigenvalue of largest absolute value. The effect of optimal stratification is to
reduce variance from

∑
i λ2

i to
∑

i λ2
i − maxi λ2

i .
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As a final case, let f(z) = exp(1
2z�Az). For f(Z) to have finite second

moment, we now require that λ1 < 1/2. Theorem 4.1 of [139] shows that
the optimal stratification direction in this case is an eigenvector vj∗ where j∗

satisfies (
λj∗

1 − λj∗

)2

= max
i=1,...,d

(
λi

1 − λi

)2

. (4.50)

As in the previous case, this criterion will always select either λ1 or λd, but
it will not necessarily select the one with largest absolute value.

Simulation is unnecessary for evaluation of E[f(Z)] in each of these exam-
ples. Nevertheless, a linear, quadratic, or exponential-quadratic function may
be useful as an approximation to a more general f and thus as a guide in
selecting stratification directions. Fox [127] uses quadratic approximations for
related purposes in implementing quasi-Monte Carlo methods. Glasserman,
Heidelberger, and Shahabuddin [139] use an exponential-quadratic approxi-
mation for stratified sampling in option pricing; in their application, A is the
Hessian of the logarithm of an option’s discounted payoff. We discuss this
method in Section 4.6.2.

Radial Stratification

The symmetry of the standard multivariate normal distribution makes it
possible to draw samples from this distribution with stratified norm. For
Z ∼ N(0, I) in �d, let

X = Z2
1 + · · · + Z2

d ,

so that
√

X = ‖Z‖ is the radius of the sphere on which Z falls. The distribution
of X is chi-square with d degrees of freedom (abbreviated χ2

d) and is given
explicitly in (3.71). Section 3.4.2 discusses efficient methods for sampling from
χ2

d, but for stratification it is more convenient to use the inverse transform
method as explained in Example 4.3.2. There is no closed-form expression for
the inverse of the χ2

d distribution, but the inverse can be evaluated numerically
and methods for doing this are available in many statistical software libraries
(see, e.g., the survey in Section 18.5 of [201]). Hence, by generating a stratified
sample from Unif[0,1] and then applying the inverse of the χ2

d distribution,
we can generate stratified values of X .

The next step is to sample Z conditional on the value of the stratification
variable X . Because of the symmetry of the normal distribution, given X the
vector Z is uniformly distributed on the sphere of radius

√
X. This is the basis

of the Box-Muller method (cf. Section 2.3) in dimension 2 but it holds for all
dimensions d. To sample uniformly from the sphere of radius R =

√
X in �d,

we can extend the Box-Muller construction as follows: sample U1, . . . , Ud−1

independently from Unif[0,1] and set

Z1 = R cos(2πU1)
Z2 = R sin(2πU1) cos(2πU2)
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...
...

...
Zd−1 = R sin(2πU1) sin(2πU2) · · · sin(2πUd−2) cos(2πUd−1)

Zd = R sin(2πU1) sin(2πU2) · · · sin(2πUd−2) sin(2πUd−1).

Alternatively, given a method for generating standard normal random vari-
ables we can avoid the evaluation of sines and cosines. If ξ1, . . . , ξd are indepen-
dent N(0, 1) random variables and ξ = (ξ1, . . . , ξd)�, then ξ/‖ξ‖ is uniformly
distributed over the unit sphere and

Z = R
ξ

‖ξ‖

is uniformly distributed over the sphere of radius of R.
It should be noted that neither of these constructions extends easily to

stratified sampling from N(0, Σ) for general Σ. If ζ ∼ N(0, Σ) and X = ζΣ−1ζ,
then X ∼ χ2

d and we can stratify X just as before; moreover, given X , ζ is
uniformly distributed over the ellipsoid

HX = {x ∈ �d : x�Σ−1x = X}.

The difficulty lies in sampling uniformly from the ellipsoid. Extending the
Box-Muller construction entails replacing the sines and cosines with elliptic
functions. The second construction does not appear to generalize at all: if
ξ ∼ N(0, Σ), the vector

√
Xξ/

√
ξ�Σ−1ξ lies on the ellipsoid HX but is not

uniformly distributed over the ellipsoid.
The construction does, however, generalize beyond the standard normal

to the class of spherically contoured distributions. The random vector Y is
said to have a spherically contoured distribution if its conditional distribution
given ‖Y ‖ is uniform over the sphere of radius ‖Y ‖; see Fang, Kotz, and Ng
[114]. To stratify Y along its radius, we must therefore stratify X = ‖Y ‖,
which will not be χ2

d except in the normal case. Given X , we can sample Y
uniformly from the sphere of radius ‖X‖ using either of the methods described
above for the normal distribution.

Radial stratification is proposed and applied in [142] as a method for re-
ducing variance in estimating the risk in a portfolio of options for which losses
result from large moves of the underlying assets in any direction.

Stratifying a Poisson Process

In this example, we generate a Poisson process on [0, T ] with the total number
of jumps in this interval stratified. Let λ denote the arrival rate for the Poisson
process and N the number of jumps in [0, T ]. Then N is a Poisson random
variable with distribution

P (N = k) = e−λT (λT )k

k!
, k = 0, 1, 2, . . . .
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We can sample from this distribution using the inverse transform method, as in
Figure 3.9, and thus generate a stratified sample of values as in Example 4.3.2.

For each value of N in the stratified sample, we need to generate the
arrival times of the jumps in [0, T ] conditional on the number of jumps N .
For this we use a standard property of the Poisson process: given N = k, the
arrival times of the jumps have the joint distribution of the order statistics of
k independent random variables uniformly distributed over [0, T ]. Thus, we
may start from Unif[0,1] random variables U1, . . . , Uk, multiply them by T
to make them uniform over [0, T ], and then sort them in ascending order to
obtain the arrival times.

An alternative to sorting, detailed in Fox [127], samples directly from the
joint distribution of the order statistics. Let V1, . . . , Vk and U1, . . . , Uk denote
independent Unif[0,1] random variables. Then

V
1/k
1 V

1/(k−1)
2 · · ·Vk, . . . , V

1/k
1 V

1/(k−1)
2 , V

1/k
1 (4.51)

have the joint distribution of the ascending order statistics of U1, . . . , Uk. For
example,

P (max(U1, . . . , Uk) ≤ x) = P (U1 ≤ x) · · ·P (Uk ≤ x) = xk, x ∈ [0, 1],

and the last term in (4.51) simply samples from this distribution by applying
its inverse to V1. An induction argument verifies correctness of the remaining
terms in (4.51). The products in (4.51) can be evaluated recursively from
right to left. (To reduce round-off error, Fox [127] recommends recursively
summing the logarithms of the V

1/(k−i+1)
i and then exponentiating.) The ith

arrival time, i = 1, . . . , k, can then be generated as

τi = TV
1/k
1 V

1/(k−1)
2 · · ·V 1/i

k−i+1; (4.52)

i.e., by rescaling from [0, 1] to [0, T ]. Because the terms in (4.51) are generated
from right to left, Fox [127] instead sets

τi = T · (1 − V
1/k
1 V

1/(k−1)
2 · · ·V 1/(k−i+1)

i );

this has the same distribution as (4.52) and allows generation of the arrival
times in a single pass. (Subtracting the values in (4.51) from 1 maps the ith
largest value to the ith smallest.)

This method of stratification extends, in principle, to inhomogeneous Pois-
son processes. The number of arrivals in [0, T ] continues to be a Poisson ran-
dom variable in this case. Conditional on the number of arrivals, the times of
the arrivals continue to be distributed as order statistics, but now of random
variables with a density proportional to the arrival rate λ(t), t ∈ [0, T ], rather
than a uniform density.
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Terminal Stratification in a Binomial Lattice

A binomial lattice provides a discrete-time, discrete-space approximation to
the evolution of a diffusion process. Each node in the lattice (see Figure 4.7)
is associated with a level of the underlying asset (or rate) S; over a single time
step, the movement of the asset is restricted to two successor nodes, usually
corresponding to a move up and a move down. By varying the spacing of the
nodes and the transition probabilities, it is possible to vary the conditional
mean and variance of the change in the underlying asset over a single time
step, and thus to approximate virtually any diffusion processes.

S
p

1-p

Fig. 4.7. A four-step binomial lattice. Each node has an associated value S of the
underlying asset. Each node has two successor nodes, corresponding to a move up
and a move down.

Binomial lattices are widely used for numerical option pricing. A typical
algorithm proceeds by backward induction: an option contract determines the
payoffs at the terminal nodes (which correspond to the option expiration); the
option value at any other node is determined by discounting the values at its
two successor nodes.

Consider, for example, the pricing of a put with strike K. Each terminal
node corresponds to some level S of the underlying asset at expiration and
thus to an option value (K − S)+. A generic node in the lattice has an “up”
successor node and a “down” successor node; suppose the option values Vu

and Vd, respectively, at the two successor nodes have already been calculated.
If the probability of a move up is p, and if the discount factor over a single
step is 1/(1 + R), then the value at the current node is

V =
1

1 + R
(pVu + (1 − p)Vd) .
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In pricing an American put, the backward induction rule is

V = max
(

1
1 + R

(pVu + (1 − p)Vd) , K − S

)
.

Binomial option pricing is ordinarily a deterministic calculation, but it can
be combined with Monte Carlo. Some path-dependent options, for example,
are more easily valued through simulation than through backward induction.
In some cases, there are advantages to sampling paths through the binomial
lattice rather than sampling paths of a diffusion. For example, in an interest
rate lattice, it is possible to compute bond prices at every node. The avail-
ability of these bond prices can be useful in pricing path-dependent options
on, e.g., bonds or swaps through simulation.

An ordinary simulation through a binomial lattice starts at the root node
and generates moves up or down using the appropriate probabilities for each
node. As a further illustration of stratified sampling, we show how to simulate
paths through a binomial lattice with the terminal value stratified.

Consider, first, the case of a binomial lattice for which the probability of
an up move has the same value p at all nodes. In this case, the total number
of up moves N through an m-step lattice has the binomial distribution

P (N = k) =
(

m

k

)
pk(1 − p)m−k, k = 0, 1, . . . , m.

Samples from this distribution can be generated using the inverse transform
method for discrete distributions, as in Example 2.2.4, much as in the case
of the Poisson distribution in Figure 3.9. As explained in Example 4.3.2, it is
a simple matter to generate stratified samples from a distribution using the
inverse transform method. Thus, we have a mechanism for stratifying the total
number of up moves through the lattice. Since the terminal node is determined
by the difference N − (m−N) = 2N −m between the number of up and down
moves, stratifying N is equivalent to stratifying the terminal node.

The next step is to sample a path through the lattice conditional on the
terminal node — equivalently, conditional on the number of up moves N . The
key observation for this procedure is that, given N , all paths through the
lattice with N up moves (hence m − N down moves) are equally likely. Gen-
erating a path conditional on N is simply a matter of randomly distributing
N “ups” among m moves. At each step, the probability of a move up is the
ratio of the number of remaining up moves to the number of remaining steps.
The following algorithm implements this idea:

k ← N (total number of up moves to be made)
for i = 0, . . . , m − 1

if k = 0 move down
if k ≥ m − i move up
if 0 < k < m − i
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generate U ∼ Unif[0,1]
if (m − i)U < k

k ← k − 1
move up

else move down

The variable k records the number of remaining up moves and m − i is the
number of remaining steps. The condition (m − i)U < k is satisfied with
probability k/(m− i). This is the ratio of the number of remaining up moves
to the number of remaining steps, and is thus the conditional probability of an
up move on the next step. Repeating this algorithm for each of the stratified
values of N produces a set of paths through the lattice with stratified terminal
node.

This method extends to lattices in which the probability of an up move
varies from node to node, though this extension requires substantial addi-
tional computing. The first step is to compute the distribution of the termi-
nal node, which is no longer binomial. The probability of reaching a node can
be calculated using the lattice itself: this probability is the “price” (without
discounting) of a security that pays 1 in that node and 0 everywhere else.
Through forward induction, the probabilities of all terminal nodes can be
found in O(m2) operations. Once these are computed, it becomes possible to
use the discrete inverse transform method to generate stratified samples from
the terminal distribution.

The next step is to simulate paths through the lattice conditional on a
terminal node. For this, let p denote the unconditional probability of an up
move at the current node. Let hu denote the unconditional probability of
reaching the given terminal node from the up successor of the current node;
let hd denote the corresponding probability from the down successor. Then
the conditional probability of an up move at the current node (given the ter-
minal node) is phu/(phu+(1−p)hd) and the conditional probability of a down
move is (1−p)hd/(phu +(1−p)hd). Once the hu and hd have been calculated
at every node, it is therefore a simple matter to simulate paths conditional
on a given terminal node by applying these conditional probabilities at each
step. Implementing this requires calculation of O(m) conditional probabili-
ties at every node, corresponding to the O(m) terminal nodes. These can be
calculated with a total effort of O(m3) using backward induction.

4.3.3 Poststratification

As should be evident from our discussion thus far, implementation of strat-
ified sampling requires knowledge of stratum probabilities and a mechanism
for conditional sampling from strata. Some of the examples discussed in Sec-
tion 4.3.2 suggest that conditional sampling may be difficult even when com-
puting stratum probabilities is not. Poststratification combines knowledge of
stratum probabilities with ordinary independent sampling to reduce variance,
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at least asymptotically. It can therefore provide an attractive alternative to
genuine stratification when conditional sampling is costly.

As before, suppose our objective is to estimate E[Y ]. We have a mech-
anism for generating independent replications (X1, Y1), . . . , (Xn, Yn) of the
pair (X, Y ); moreover, we know the probabilities pi = P (X ∈ Ai) for strata
A1, . . . , AK . As usual, we require that these be positive and sum to 1. For
i = 1, . . . , K, let

Ni =
n∑

j=1

1{Xj ∈ Ai}

denote the number of samples that fall in stratum i and note that this is now
a random variable. Let

Si =
n∑

j=1

1{Xj ∈ Ai}Yj

denote the sum of those Yj for which Xi falls in stratum i, for i = 1, . . . , K.
The usual sample mean Ȳ = (Y1 + · · · + Yn)/n can be written as

Ȳ =
S1 + · · · + SK

n
=

K∑
i=1

Ni

n
· Si

Ni
,

at least if all Ni are nonzero. By the strong law of large numbers, Ni/n → pi

and Si/Ni → µi, with probability 1, where µi = E[Y |X ∈ Ai] denotes the
stratum mean, as in (4.37). Poststratification replaces the random fraction
Ni/n with its expectation pi to produce the estimator

Ŷ =
K∑

i=1

pi
Si

Ni
. (4.53)

Whereas the sample mean Ȳ assigns weight 1/n to every observation, the
poststratified estimator weights values falling in stratum i by the ratio pi/Ni.
Thus, values from undersampled strata (Ni < npi) get more weight and values
from oversampled strata (Ni > npi) get less weight. To cover the possibility
that none of the n replications falls in the ith stratum, we replace Si/Ni with
zero in (4.53) if Ni = 0.

It is immediate from the almost sure convergence of Si/Ni to µi that the
poststratified estimator Ŷ is a consistent estimator of E[Y ]. Less clear are its
merits relative to the ordinary sample mean or a genuinely stratified estimator.
We will see that, asymptotically as the sample size grows, poststratification
is as effective as stratified sampling in reducing variance. To establish this
result, we first consider properties of ratio estimators more generally.
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Ratio Estimators

We digress briefly to derive a central limit theorem for ratio estimators. For
this discussion, let (Ri, Qi), i = 1, 2, . . ., be independent and identically dis-
tributed pairs of random variables with

E[Ri] = µR, E[Qi] = µQ, Var[Ri] = σ2
R, Var[Qi] = σ2

Q, Cov[Ri, Qi] = σRQ,

and µQ = 0. The sample means of the first n values are

R̄ =
1
n

n∑
i=1

Ri, Q̄ =
1
n

n∑
i=1

Qi.

By the strong law of large numbers, the ratio R̄/Q̄ converges with probability
1 to µR/µQ.

By applying the delta method introduced in Section 4.1.4 to the function
h(x, y) = x/y, we obtain a central limit theorem of the form

√
n

(
R̄

Q̄
− µR

µQ

)
⇒ N(0, σ2)

for the ratio estimator. The variance parameter σ2 is given by the general
expression in (4.26) for the delta method and simplifies in this case to

σ2 =
µ2

R

µ4
Q

σ2
R − 2µR

µ3
Q

σRQ +
σ2

R

µ2
Q

=
Var[R − µR

µQ
Q]

µ2
Q

. (4.54)

This parameter is consistently estimated by

s2 =
n∑

i=1

(
Ri − R̄Qi/Q̄

)2/
n(Q̄)2,

from which we obtain an asymptotically valid 1 − δ confidence interval

R̄

Q̄
± zδ/2

s√
n

,

with zδ/2 = −Φ−1(δ/2).
For fixed n, R̄/Q̄ is a biased estimator of µR/µQ. The bias has the form

E

[
R̄

Q̄
− µR

µQ

]
=

(µRσ2
Q/µ3

Q) − (σRQ/µ2
Q)

n
+ O(1/n2);

see, e.g., Fishman [121], p.109. Subtracting an estimate of the leading term
can reduce the bias to O(1/n2).
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Poststratification: Asymptotic Variance

We now apply this analysis of ratio estimators to derive a central limit theo-
rem for the poststratified estimator Ŷ , which is a linear combination of ratio
estimators. A straightforward extension of the result for a single ratio gives

√
n

(
S1

N1
− µ1, . . . ,

SK

NK
− µK

)
⇒ N(0, Σ),

with the limiting matrix Σ again determined by the delta method. For the
diagonal entries of Σ, (4.54) gives

Σii =
Var[Y 1{X ∈ Ai} − µi1{X ∈ Ai}]

p2
i

=
σ2

i

pi
,

with σ2
i the stratum variance defined in (4.38). A similar calculation for j = i

gives

Σij =
Cov[(Y − µi)1{X ∈ Ai}, (Y − µj)1{X ∈ Aj}]

pipj
= 0

because Ai and Aj are disjoint.
The poststratified estimator satisfies

Ŷ − µ =
K∑

i=1

pi

(
Si

Ni
− µi

)
and therefore √

n[Ŷ − µ] ⇒ N(0, σ2)

with

σ2 =
K∑

i,j=1

piΣijpj =
K∑

i=1

piσ
2
i .

This is precisely the asymptotic variance for the stratified estimator based on
proportional allocation of samples to strata; see (4.42). It can be estimated
consistently by replacing each σ2

i with the sample variance of the observations
falling in the ith stratum.

From this result we see that in the large-sample limit , we can extract all
the variance reduction of stratified sampling without having to sample condi-
tionally from the strata by instead weighting each observation according to its
stratum. How large the sample needs to be for the two methods to give similar
results depends in part on the number of strata and their probabilities. There
is no simple way to determine at what sample size this limit becomes rele-
vant without experimentation. But stratified sampling is generally preferable
and poststratification is best viewed as an alternative for settings in which
conditional sampling from the strata is difficult.
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4.4 Latin Hypercube Sampling

Latin hypercube sampling is an extension of stratification for sampling in
multiple dimensions. Recall from the discussion in Example 4.3.4 that strat-
ified sampling in high dimensions is possible in principle but often infeasible
in practice. The difficulty is apparent even in the simple case of sampling
from the d-dimensional hypercube [0, 1)d. Partitioning each coordinate into
K strata produces Kd strata for the hypercube, thus requiring a sample size
of at least Kd to ensure that each stratum is sampled. For even moderately
large d, this may be prohibitive unless K is small, in which case stratification
provides little benefit. For this reason, in Section 4.3.2 we focused on methods
for stratifying a small number of important directions in multidimensional
problems.

Latin hypercube sampling treats all coordinates equally and avoids the ex-
ponential growth in sample size resulting from full stratification by stratifying
only the one-dimensional marginals of a multidimensional joint distribution.
The method, introduced by McKay, Conover, and Beckman [259] and further
analyzed in Stein [337], is most easily described in the case of sampling from
the uniform distribution over the unit hypercube. Fix a dimension d and a
sample size K. For each coordinate i = 1, . . . , d, independently generate a
stratified sample V

(1)
i , . . . , V

(K)
i from the unit interval using K equiprobable

strata; each V
(j)
i is uniformly distributed over [(j −1)/K, j/K). If we arrange

the d stratified samples in columns,

V
(1)
1 V

(1)
2 · · · V

(1)
d

V
(2)
1 V

(2)
2 · · · V

(2)
d

...
...

...
V

(K)
1 V

(K)
2 · · · V

(K)
d

then each row gives the coordinates of a point in [0, 1)d. The first row identifies
a point in [0, 1/K)d, the second a point in [1/K, 2/K)d, and so on, correspond-
ing to K points falling in subcubes along the diagonal of the unit hypercube.
Now randomly permute the entries in each column of the array. More precisely,
let π1, . . . , πd be permutations of {1, . . . , K}, drawn independently from the
distribution that makes all K! such permutations equally likely. Let πj(i) de-
note the value to which i is mapped by the jth permutation. The rows of the
array

V
π1(1)
1 V

π2(1)
2 · · · V

πd(1)
d

V
π1(2)
1 V

π2(2)
2 · · · V

πd(2)
d

...
...

...
V

π1(K)
1 V

π2(K)
2 · · · V

πd(K)
d

(4.55)

continue to identify points in [0, 1)d, but they are no longer restricted to
the diagonal. Indeed, each row is a point uniformly distributed over the unit
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hypercube. The K points determined by the K rows are not independent: if
we project the K points onto their ith coordinates, the resulting set of values
{V πi(1)

i , . . . , V
πi(K)
i } is the same as the set {V (1)

i , . . . , V
(K)
i }, and thus forms

a stratified sample from the unit interval.
The “marginal” stratification property of Latin hypercube sampling is il-

lustrated in Figure 4.8. The figure shows a sample of size K = 8 in dimension
d = 2. Projecting the points onto either of their two coordinates shows that
exactly one point falls in each of the eight bins into which each axis is par-
titioned. Stratified sampling would require drawing a point from each square
and thus a sample size of 64.

0 1
0

1

Fig. 4.8. A Latin hypercube sample of size K = 8 in dimension d = 2.

To generate a Latin hypercube sample of size K in dimension d, let U
(j)
i

be independent Unif[0,1) random variables for i = 1, . . . , d and j = 1, . . . , K.
Let π1, . . . , πd be independent random permutations of {1, . . . , K} and set

V
(j)
i =

πi(j) − 1 + U
(j)
i

K
, i = 1, . . . , d, j = 1, . . . , K. (4.56)

The sample consists of the K points (V (j)
1 , . . . , V

(j)
d ), j = 1, . . . , K. To gener-

ate a random permutation, first sample uniformly from {1, . . . , K}, then sam-
ple uniformly from the remaining values, and continue until only one value
remains. In (4.56) we may choose one of the permutations (πd, say) to be the
identity, πd(i) ≡ i without affecting the joint distribution of the sample.

Using the inverse transform method, this construction easily extends to
nonuniform distributions. For example, to generate a Latin hypercube sample
of size K from N(0, I) in �d, set

Z
(j)
i = Φ−1(V (j)

i ), i = 1, . . . , d, j = 1, . . . , K
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with Φ the cumulative normal and V
(j)
i as in (4.56). The sample consists of

the vectors
Z(j) = (Z(j)

1 , . . . , Z
(j)
d ), j = 1, . . . , K, (4.57)

in �d. Projecting these K points onto any axis produces a stratified sample of
size K from the standard univariate normal distribution. Even if the inverse
transform is inconvenient or if the marginals have different distributions, the
construction in (4.55) continues to apply, provided we have some mechanism
for stratifying the marginals: generate a stratified sample from each marginal
using K equiprobable strata for each, then randomly permute these d stratified
samples.

This construction does rely crucially on the assumption of independent
marginals, and transforming variables to introduce dependence can affect the
partial stratification properties of Latin hypercube samples in complicated
ways. This is evident in the case of a multivariate normal distribution N(0, Σ).
To sample from N(0, Σ), we set X = AZ with Z ∼ N(0, I) and AA� = Σ.
Replacing independently generated Zs with the Latin hypercube sample (4.57)
produces points X(j) = AZ(j), j = 1, . . . , K; but the marginals of the X(j)

so constructed will not in general be stratified. Rather, the marginals of the
A−1X(j) are stratified.

Example 4.4.1 Brownian paths. As a specific illustration, consider the sim-
ulation of Brownian paths at times 0 = t0 < t1 · · · < td. As in (4.57), let
Z(1), . . . , Z(K) denote a Latin hypercube sample from N(0, I) in d dimen-
sions. From these K points in �d, we generate K discrete Brownian paths
W (1), . . . , W (K) by setting

W (j)(tn) =
n∑

i=1

√
ti − ti−1Z

(j)
i , n = 1, . . . , d.

If we fix a time tn, n ≥ 2, and examine the K values W (1)(tn), . . . , W (K)(tn),
these will not form a stratified sample from N(0, tn). It is rather the incre-
ments of the Brownian paths that would be stratified.

These K Brownian paths could be used to generate K paths of a process
driven by a single Brownian motion. It would not be appropriate to use
the K Brownian paths to generate a single path of a process driven by a
K-dimensional Brownian motion. Latin hypercube sampling introduces de-
pendence between elements of the sample, whereas the coordinates of a K-
dimensional (standard) Brownian motion are independent. Using (W (1), . . . ,
W (K)) in place of a K-dimensional Brownian motion would thus change the
law of the simulated process and could introduce severe bias. In contrast, the
marginal law of each W (j) coincides with that of a scalar Brownian motion.
Put succinctly, in implementing a variance reduction technique we are free to
introduce dependence across paths but not within paths. �

Example 4.4.2 Paths through a lattice. To provide a rather different exam-
ple, we apply Latin hypercube sampling to the problem of simulating paths
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through a binomial lattice. (See Figure 4.7 and the surrounding discussion for
background.) Consider an m-step lattice with fixed probabilities p and 1 − p.
The “marginals” in this example correspond to the m time steps, so the di-
mension d equals m, and the sample size K is the number of paths. We encode
a move up as a 1 and a move down as a 0. For each i = 1, . . . , m we generate
a stratified sample of 1s and 0s: we “generate” �pK� 1s and �K−pK� 0s, and
if pK is not an integer, the Kth value in the sample is 1 with probability p
and 0 with probability 1 − p. For example, with d = 4, K = 8, and p = 0.52,
we might get

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

the columns corresponding to the d = 4 stratified samples. Applying a random
permutation to each column produces, e.g.,

0 1 0 1
0 0 1 1
1 1 0 1
1 1 1 0
0 1 0 0
1 0 1 1
0 0 1 0
1 1 0 0

Each row now encodes a path through the lattice. For example, the last row
corresponds to two consecutive moves up followed by two consecutive moves
down. Notice that, for each time step i, the fraction of paths on which the
ith step is a move up is very nearly p. This is the property enforced by Latin
hypercube sampling.

One could take this construction a step further to enforce the (nearly)
correct fraction of up moves at each node rather than just at each time step.
For simplicity, suppose Kpd is an integer. To the root node, assign Kp 1s and
K(1 − p) 0s. To the node reached from the root by taking � steps up and k
steps down, � + k < d, assign Kp	+1(1 − p)k ones and Kp	(1 − p)k+1 zeros.
Randomly and independently permute the ones and zeros at all nodes. The
result encodes K paths through the lattice with the fraction of up moves out
of every node exactly equal to p.

Mintz [269] develops a simple way to implement essentially the same idea.
His implementation eliminates the need to precompute and permute the out-
comes at all nodes. Instead, it assigns to each node a counter that keeps track
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of the number of paths that have left that node by moving up. For example,
consider again a node reached from the root by taking � steps up and k steps
down, �+k < d. Let K be the total number of paths to be generated and again
suppose for simplicity that Kpd is an integer. The number of paths reaching
the designated node is

K	k = Kp	(1 − p)k,

so the counter at that node counts from zero to pK	k, the number of paths
that exit that node by moving up. If a path reaches the node and finds the
counter at i, it moves down with probability i/pK	k and moves up with the
complementary probability. If it moves up, the counter is incremented to i+1.
�

Variance Reduction and Variance Decomposition

We now state some properties of Latin hypercube sampling that shed light
on its effectiveness. These properties are most easily stated in the context of
sampling from [0, 1)d. Thus, suppose our goal is to estimate

αf =
∫

[0,1)d

f(u) du

for some square-integrable f : [0, 1)d → �. The standard Monte Carlo estima-
tor of this integral can be written as

ᾱf =
1
K

K−1∑
j=0

f(Ujd+1, Ujd+2, . . . , Ujd+d)

with U1, U2, . . . independent uniforms. The variance of this estimator is σ2/K
with σ2 = Var[f(U1, . . . , Ud)]. For V (1), . . . , V (K) as in (4.56), define the esti-
mator

α̂f =
1
K

K∑
j=1

f(V (j)).

McKay et al. [259] show that

Var[α̂f ] =
σ2

K
+

K − 1
K

Cov[f(V (1)), f(V (2))],

which could be larger or smaller than the variance of the standard estimator
ᾱf , depending on the covariance between distinct points in the Latin hyper-
cube sample. By construction, V (j) and V (k) avoid each other — for example,
their ith coordinates cannot fall in the same bin if j = k — which suggests
that the covariance will often be negative. This holds, in particular, if f is
monotone in each coordinate, as shown by McKay et al. [259]. Proposition 3
of Owen [288] shows that for any (square-integrable) f and any K ≥ 2,
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Var[α̂f ] ≤ σ2

K − 1
,

so the variance produced by a Latin hypercube sample of size K is no larger
than the variance produced by an i.i.d. sample of size K − 1.

Stein [337] shows that as K → ∞, Latin hypercube sampling eliminates
the variance due to the additive part of f , in a sense we now explain. For each
i = 1, . . . , d, let

fi(u) = E[f(U1, . . . , Ui−1, u, Ui, . . . , Ud)],

for u ∈ [0, 1). Observe that each fi(U), U ∼ Unif[0,1) has expectation αf .
The function

fadd(u1, . . . , ud) =
d∑

i=1

fi(ui) − (d − 1)αf

also has expectation αf and is the best additive approximation to f in the
sense that ∫

[0,1)d

(f(u1, . . . , ud) − fadd(u1, . . . , ud))
2

du1 · · · dud

≤
∫

[0,1)d

(
f(u1, . . . , ud) −

d∑
i=1

hi(ui)

)2

du1 · · · dud

for any univariate functions h1, . . . , hd. Moreover, the residual

ε = f(U1, . . . , Ud) − fadd(U1, . . . , Ud)

is uncorrelated with f(U1, . . . , Ud) and this allows us to decompose the vari-
ance σ2 of f(U1, . . . , Ud) as σ2 = σ2

add + σ2
ε with σ2

add the variance of
fadd(U1, . . . , Ud) and σ2

ε the variance of the residual. Stein [337] showed that

Var[α̂f ] =
σ2

ε

K
+ o(1/K). (4.58)

Up to terms of order 1/K, Latin hypercube sampling eliminates σ2
add — the

variance due to the additive part of f — from the simulation variance. This
further indicates that Latin hypercube sampling is most effective with inte-
grands that nearly separate into a sum of one-dimensional functions.

Output Analysis

Under various additional conditions on f , Loh [238], Owen [285], and Stein
[337] establish a central limit theorem for Ŷ of the form

√
K[α̂f − αf ] ⇒ N(0, σ2

ε ),
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which in principle provides the basis for a large-sample confidence interval for
αf based on Latin hypercube sampling. In practice, σ2

ε is neither known nor
easily estimated, making this approach difficult to apply.

A simpler approach to interval estimation generates i.i.d. estimators
α̂f (1), . . . , α̂f (n), each based on a Latin hypercube sample of size K. An
asymptotically (as n → ∞) valid 1 − δ confidence interval for αf is provided
by (

1
n

n∑
i=1

α̂f (i)

)
± zδ/2

ŝ√
n

,

with ŝ the sample standard deviation of α̂f (1), . . . , α̂f (n).
The only cost to this approach lies in foregoing the possibly greater vari-

ance reduction from generating a single Latin hypercube sample of size nK
rather than n independent samples of size K. Stein [337] states that this loss
is small if K/d is large.

A K × K array is called a Latin square if each of the symbols 1, . . . , K
appears exactly once in each row and column. This helps explain the name
“Latin hypercube sampling.” Latin squares are used in the design of exper-
iments, along with the more general concept of an orthogonal array. Owen
[286] extends Stein’s [337] approach to analyze the variance of Monte Carlo
estimates based on randomized orthogonal arrays. This method generalizes
Latin hypercube sampling by stratifying low-dimensional (but not just one-
dimensional) marginal distributions.

Numerical Illustration

We conclude this section with a numerical example. We apply Latin hypercube
sampling to the pricing of two types of path-dependent options — an Asian
option and a barrier option. The Asian option is a call on the arithmetic
average of the underlying asset over a finite set of dates; the barrier option
is a down-and-out call with a discretely monitored barrier. The underlying
asset is GBM(r, σ2) with r = 5%, σ = 0.30, and an initial value of 50. The
barrier is fixed at 40. The option maturity is one year in all cases. We report
results for 8 and 32 equally spaced monitoring dates; the number of dates is
the dimension of the problem. With d monitoring dates, we may view each
discounted option payoff as a function of a standard normal random vector in
�d and apply Latin hypercube sampling to generate these vectors.

Table 4.3 reports estimated variance reduction factors. Each entry in the
table is an estimate of the ratio of the variance using independent sampling
to the variance using a Latin hypercube sample of the same size. Thus, larger
ratios indicate greater variance reduction. The sample sizes displayed are 50,
200, and 800. The ratios are estimated based on 1000 replications of samples
of the indicated sizes.

The most salient feature of the results in Table 4.3 is the effect of varying
the strike: in all cases, the variance ratio increases as the strike decreases. This
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is to be expected because at lower strikes the options are more nearly linear.
The variance ratios are nearly the same in dimensions 8 and 32 and show little
dependence on the sample size. We know that the variance of independent
replications (the numerators in these ratios) are inversely proportional to the
sample sizes. Because the ratios are roughly constant across sample sizes, we
may conclude that the variance using Latin hypercube sampling is nearly
inversely proportional to the sample size. This suggests that (at least in these
examples) the asymptotic result in (4.58) is relevant for sample sizes as small
as K = 50.

8 steps 32 steps
Strike 50 200 800 50 200 800

Asian 45 7.5 8.6 8.8 7.1 7.6 8.2
Option 50 3.9 4.4 4.6 3.7 3.6 4.0

55 2.4 2.6 2.8 2.3 2.1 2.5

Barrier 45 4.1 4.1 4.3 3.8 3.7 3.9
Option 50 3.2 3.2 3.4 3.0 2.9 3.1

55 2.5 2.6 2.7 2.4 2.2 2.4

Table 4.3. Variance reduction factors using Latin hypercube sampling for two path-
dependent options. Results are displayed for dimensions (number of monitoring
dates) 8 and 32 using samples of size 50, 200, and 800. Each entry in the table
is estimated from 1000 replications, each replication consisting of 50, 200, or 800
paths.

The improvements reported in Table 4.3 are mostly modest. Similar vari-
ance ratios could be obtained by using the underlying asset as a control vari-
ate; for the Asian option, far greater variance reduction could be obtained
by using a geometric average control variate as described in Example 4.1.2.
One potential advantage of Latin hypercube sampling is that it lends itself
to the use of a single set of paths to price many different types of options.
The marginal stratification feature of Latin hypercube sampling is beneficial
in pricing many different options, whereas control variates are ideally tailored
to a specific application.

4.5 Matching Underlying Assets

This section discusses a set of loosely related techniques with the common
objective of ensuring that certain sample means produced in a simulation ex-
actly coincide with their population values (i.e., with the values that would
be attained in the limit of infinitely many replications). Although these tech-
niques could be used in almost any application of Monte Carlo, they take on
special significance in financial engineering where matching sample and pop-
ulation means will often translate to ensuring exact finite-sample pricing of
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underlying assets. The goal of derivatives pricing is to determine the value of a
derivative security relative to its underlying assets. One could therefore argue
that correct pricing of these underlying assets is a prerequisite for accurate
valuation of derivatives.

The methods we discuss are closely related to control variates, which
should not be surprising since we noted (in Example 4.1.1) that underlying
assets often provide convenient controls. There is also a link with stratified
sampling: stratification with proportional allocation ensures that the sam-
ple means of the stratum indicator functions coincide with their population
means. We develop two types of methods: moment matching based on trans-
formations of simulated paths, and methods that weight (but do not trans-
form) paths in order to match moments. When compared with control variates
or with each other, these methods may produce rather different small-sample
properties while becoming equivalent as the number of samples grows. This
makes it difficult to compare estimators on theoretical grounds.

4.5.1 Moment Matching Through Path Adjustments

The idea of transforming paths to match moments is most easily introduced
in the setting of a single underlying asset S(t) simulated under a risk-neutral
measure in a model with constant interest rate r. If the asset pays no divi-
dends, we know that E[S(t)] = ertS(0). Suppose we simulate n independent
copies S1, . . . , Sn of the process and define the sample mean process

S̄(t) =
1
n

n∑
i=1

Si(t).

For finite n, the sample mean will not in general coincide with E[S(t)]; the
simulation could be said to misprice the underlying asset in the sense that

e−rtS̄(t) = S(0), (4.59)

the right side being the current price of the asset and the left side its simulation
estimate.

A possible remedy is to transform the simulated paths by setting

S̃i(t) = Si(t)
E[S(t)]
S̄(t)

, i = 1, . . . , n, (4.60)

or
S̃i(t) = Si(t) + E[S(t)] − S̄(t), i = 1, . . . , n, (4.61)

and then using the S̃i rather than the Si to price derivatives. Using either the
multiplicative adjustment (4.60) or the additive adjustment (4.61) ensures
that the sample mean of S̃1(t), . . . , S̃n(t) exactly equals E[S(t)].

These and related transformations are proposed and tested in Barraquand
[37], Boyle et al. [53], and Duan and Simonato [96]. Duan and Simonato call
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(4.60) empirical martingale simulation; Boyle et al. use the name moment
matching. In other application domains, Hall [164] analyzes a related cen-
tering technique for bootstrap simulation and Gentle [136] refers briefly to
constrained sampling. In many settings, making numerical adjustments to
samples seems unnatural — some discrepancy between the sample and popu-
lation mean is to be expected, after all. In the financial context, the error in
(4.59) could be viewed as exposing the user to arbitrage through mispricing
and this might justify attempts to remove the error completely.

A further consequence of matching the sample and population mean of
the underlying asset is a finite-sample form of put-call parity. The algebraic
identity

(a − b)+ − (b − a)+ = a − b

implies the constraint

e−rT E[(S(T )− K)+] − e−rT E[(K − S(T ))+] = S(0) − e−rT K

on the values of a call, a put, and the underlying asset. Any adjustment that
equates the sample mean of S̃1(T ), . . . , S̃n(T ) to E[S(T )] ensures that

e−rT 1
n

n∑
i=1

(S̃i(T ) − K)+ − e−rT 1
n

n∑
i=1

(K − S̃i(T ))+ = S(0) − e−rT K.

This, too, may be viewed as a type of finite-sample no-arbitrage condition.
Of (4.60) and (4.61), the multiplicative adjustment (4.60) seems preferable

on the grounds that it preserves positivity whereas the additive adjustment
(4.61) can make some S̃i negative even if S1(t), . . . , Sn(t), E[S(t)] are all pos-
itive. However, we get E[S̃i(t)] = E[S(t)] using (4.61) but not with (4.60).
Indeed, (4.61) even preserves the martingale property in the sense that

E[e−r(T−t)S̃i(T )|S̃i(u), 0 ≤ u ≤ t] = S̃i(t).

Both (4.60) and (4.61) change the law of the simulated process (S̃i(t) and Si(t)
will not in general have the same distribution) and thus typically introduce
some bias in estimates computed from the adjusted paths. This bias vanishes
as the sample size n increases and is typically O(1/n).

Large-Sample Properties

There is some similarity between the transformations in (4.60) and (4.61) and
the nonlinear control variates discussed in Section 4.1.4. The current setting
does not quite fit the formulation in Section 4.1.4 because the adjustments
here affect individual observations and not just their means.

To extend the analysis in Section 4.1.4, we formulate the problem as one
of estimating E[h1(X)] with X taking values in �d and h1 mapping �d into
�. For example, we might have X = S(T ) and h1(x) = e−rT (x − K)+ in the
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case of pricing a standard call option. The moment matching estimator has
the form

1
n

n∑
i=1

h(Xi, X̄)

with X1, . . . , Xn i.i.d. and X̄ their sample mean. The function h is required to
satisfy h(x, µX) = h1(x) with µX = E[X ]. It is easy to see that an estimator
of the form

e−rT 1
n

n∑
i=1

(S̃i(T ) − K)+,

with S̃i as in (4.60) or (4.61), fits in this framework. Notice, also, that by
including in the vector X powers of other components of X , we make this
formulation sufficiently general to include matching higher-order moments as
well as the mean.

Suppose now that h(Xi, ·) is almost surely continuously differentiable in a
neighborhood of µX . Then

1
n

n∑
i=1

h(Xi, X̄) ≈ 1
n

n∑
i=1

h1(Xi) +
1
n

n∑
i=1

∇µh(Xi, µX)[X̄ − µX ], (4.62)

with ∇µh denoting the gradient of h with respect to its second argument.
Because X̄ → µX , this approximation becomes increasingly accurate as n
increases. This suggests that, asymptotically in n, the moment matching
estimator is equivalent to a control variate estimator with control X̄ and
coefficient vector

b�n =
1
n

n∑
i=1

∇µh(Xi, µX) → E [∇µh(X, µX)] . (4.63)

Some specific results in this direction are established in Duan, Gauthier, and
Simonato [97] and Hall [164]. However, even under conditions that make this
argument rigorous, the moment matching estimator may perform either better
or worse in small samples than the approximating control variate estimator.

The dependence among the observations h(Xi, X̄), i = 1, . . . , n, introduced
through use of a common sample mean X̄ complicates output analysis. One
approach proceeds as though the approximation in (4.62) held exactly and
estimates a confidence interval the way one would with a linear control variate
(cf. Sections 4.1.1 and 4.1.3). An alternative is to generate k independent
batches, each of size m, and to apply moment matching separately to each
batch of m paths. A confidence interval can then be formed from the sample
mean and sample standard deviation of the k means computed from the k
batches. As with stratified sampling or Latin hypercube sampling, the cost of
batching lies in foregoing potentially greater variance reduction by applying
the method to all km paths.
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Examples

We turn now to some more specific examples of moment matching transfor-
mations.

Example 4.5.1 Brownian motion and geometric Brownian motion. In the
case of a standard one-dimensional Brownian motion W , the additive trans-
formation

W̃i(t) = Wi(t) − W̄ (t)

seems the most natural way to match the sample and population means —
there is no reason to try to avoid negative values of W̃i, and the mean of a
normal distribution is a location parameter. The transformation

W̃i(t) =
Wi(t) − W̄ (t)

s(t)/
√

t
, (4.64)

with s(t) the sample standard deviation of W1(t), . . . , Wn(t), matches both
first and second moments. But for this it seems preferable to scale the incre-
ments of the Brownian motion: with

Wi(tk) =
k∑

j=1

√
tj − tj−1Zij

and {Zij} independent N(0, 1) random variables, set

Z̄j =
1
n

n∑
i=1

Zij , s2
j =

1
n − 1

n∑
i=1

(
Zij − Z̄j

)2
and

W̃i(tk) =
k∑

j=1

√
tj − tj−1

Zij − Z̄j

sj
.

This transformation preserves the independence of increments whereas (4.64)
does not.

For geometric Brownian motion S ∼ GBM(r, σ2), the multiplicative trans-
formation (4.60) is more natural. It reduces to

S̃i(t) = S(0)erT neσWi(t)∑n
j=1 eσWj(t)

.

This transformation does not lend itself as easily to matching higher moments.
As a simple illustration, we apply these transformations to the pricing of

a call option under Black-Scholes assumptions and compare results in Fig-
ure 4.9. An ordinary simulation generates replications of the terminal asset
price using
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Si(T ) = S(0) exp
(
(r − 1

2σ2)T + σ
√

TZi

)
, i = 1, . . . , n.

Method Z1 replaces each Zi with Zi − Z̄ and method Z2 uses (Zi − Z̄)/s,
with Z̄ the sample mean and s the sample standard deviation of Z1, . . . , Zn.
Methods SM and SA use the multiplicative and additive adjustments (4.60)
and (4.61). Method CV uses S̄ as a control variate with the optimal coefficient
estimated as in (4.5).

Figure 4.9 compares estimates of the absolute bias and standard error for
these methods in small samples of size n = 16, 64, 256, and 1024. The model
parameters are S(0) = K = 50, r = 5%, σ = 0.30, and the option expiration
is T = 1. The results are based on 5000 replications of each sample size. The
graphs in Figure 4.9 are on log-log scales; the slopes in the top panel are
consistent with a O(1/n) bias for each method and those in the bottom panel
are consistent with O(1/

√
n) standard errors. Also, the biases are about an

order of magnitude smaller than the standard errors.
In this example, the control variate estimator has the highest bias — recall

that bias in this method results from estimation of the optimal coefficient —
though the bias is quite small at n = 1024. Interestingly, the standard errors
for the CV and SM methods are virtually indistinguishable. This suggests
that the implicit coefficient (4.63) in the linear approximation to the multi-
plicative adjustment coincides with the optimal coefficient. The CV and SM
methods achieve somewhat smaller standard errors than SA and Z1, which
may be considered suboptimal control variate estimators. The lowest variance
is attained by Z2, but because this method adjusts both a sample mean and a
sample variance, it should be compared with a control variate estimator using
two controls. (Compared with ordinary simulation, the Z2 reduces variance
by a factor of about 40; the other methods reduce variance by factors ranging
from about 3 to 7.)

These results suggest that moment matching estimators are indeed closely
related to control variate estimators. They can sometimes serve as an indirect
way of implementing a control, potentially providing much of the variance
reduction while reducing small-sample bias. Though we observe this in Fig-
ure 4.9, there is of course no guarantee that the same would hold in other
examples. �

Example 4.5.2 Short rate models. We consider, next, finite-sample adjust-
ments to short rate processes with the objective of matching bond prices. We
begin with an idealized setting of continuous-time simulation of a short rate
process r(t) under the risk-neutral measure. From independent replications
r1, . . . , rn of the process, suppose we can compute estimated bond prices

B̄(0, T ) =
1
n

n∑
i=1

exp

(
−
∫ T

0

ri(t) dt

)
. (4.65)

From these we define empirical forward rates
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Fig. 4.9. Bias (top) and standard error (bottom) versus sample size in pricing a
standard call option under Black-Scholes assumptions. The graphs compare moment
matching based on the mean of Zi (Z1), the mean and standard deviation of Zi (Z2),
multiplicative (SM) and additive (SA) adjustments based on S̄, and an estimator
using S̄ as linear control variate (CV).

f̂(0, T ) = − ∂

∂T
log B̄(0, T ). (4.66)

The model bond prices and forward rates are

B(0, T ) = E

[
exp

(
−
∫ T

0

r(t) dt

)]
and
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f(0, T ) = − ∂

∂T
log B(0, T ).

The adjustment
r̃i(t) = ri(t) + f(0, t) − f̂(0, t)

results in
1
n

n∑
i=1

exp

(
−
∫ T

0

r̃i(t) dt

)
= B(0, T );

i.e., in exact pricing of bonds in finite samples.
Suppose, now, that we can simulate r exactly but only at discrete dates

0 = t0, t1, . . . , tm, and our bond price estimates from n replications are given
by

B̄(0, tm) =
1
n

n∑
i=1

exp

−
m−1∑
j=0

ri(tj)[tj+1 − tj ]

 .

The yield adjustment

r̃i(tj) = ri(tj) +
log B̄(0, tj+1) − log B̄(0, tj)

tj+1 − tj
− log B(0, tj+1) − log B(0, tj)

tj+1 − tj

results in
1
n

n∑
i=1

exp

−
m−1∑
j=0

r̃i(tj)[tj+1 − tj]

 = B(0, tm).

In this case, the adjustment corrects for discretization error as well as sampling
variability. �

Example 4.5.3 HJM framework. Consider a continuous-time HJM model of
the evolution of the forward curve f(t, T ), as in Section 3.6, and suppose we
can simulate independent replications f1, . . . , fn of the paths of the curve.
Because f(t, t) is the short rate at time t, the previous example suggests the
adjustment f̃i(t, t) = fi(t, t) + f(0, t)− f̂(0, t) with f̂ as in (4.66) and B̄(0, T )
as in (4.65) but with ri(t) replaced by fi(t, t). But the HJM setting provides
additional flexibility to match additional moments by adjusting other rates
f(t, u).

We know that for any 0 < t < T ,

E

[
exp

(
−
∫ t

0

f(u, u) du −
∫ T

t

f(t, u) du

)]
= B(0, T );

this follows from the fact that discounted bond prices are martingales and is
nearly the defining property of the HJM framework. We choose f̃ to enforce
the finite-sample analog of this property, namely

1
n

n∑
i=1

exp

(
−
∫ t

0

f̃i(u, u) du −
∫ T

t

f̃i(t, u) du

)
= B(0, T ).
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This is accomplished by setting

f̃i(t, T ) = fi(t, T ) + f(0, T )−
∑n

i=1 fi(t, T )Hi(t, T )∑n
i=1 Hi(t, T )

,

with

Hi(t, T ) = exp

(
−
∫ t

0

fi(u, u) du −
∫ T

t

fi(t, u) du

)
.

In practice, one would simulate on a discrete grid of times and maturities as
explained in Section 3.6.2 and this necessitates some modification. However,
using the discretization in Section 3.6.2, the discrete discounted bond prices
are martingales and thus lend themselves to a similar adjustment. �

Example 4.5.4 Normal random vectors. For i.i.d. normal random vectors,
centering by the sample mean is equivalent to sampling conditional on the
sample mean equaling the population mean. To see this, let X1, . . . , Xn be
independent N(µ, Σ) random vectors. The adjusted vectors

X̃i = Xi − X̄ + µ

have mean µ; moreover, they are jointly normal with

 X̃1

...
X̃n

 ∼ N


µ

...
µ

 ,


(n − 1)Σ/n −Σ/n . . . −Σ/n

−Σ/n (n − 1)Σ/n
...

...
. . . −Σ/n

−Σ/n −Σ/n (n − 1)Σ/n


 ,

as can be verified using the Linear Transformation Property (2.23). But this
is also the joint distribution of X1, . . . , Xn given X̄ = µ, as can be verified
using the Conditioning Formula (2.25). �

4.5.2 Weighted Monte Carlo

An alternative approach to matching underlying prices in finite samples as-
signs weights to the paths instead of shifting them. The weights are chosen
to equate weighted averages over the paths to the corresponding population
means.

Consider, again, the setting surrounding (4.59) with which we introduced
the idea of moment matching. Suppose we want to price an option on the
underlying asset S(t); we note that the simulation misprices the underlying
asset in finite samples in the sense that the sample mean S̄(t) deviates from
ertS(0). Rather than change the simulated values S1(t), . . . , Sn(t), we may
choose weights w1, . . . , wn satisfying

n∑
i=1

wiSi(t) = ertS(0),
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and then use these same weights in estimating the expected payoff of an
option. For example, this yields the estimate

e−rt
n∑

i=1

wi(Si(t) − K)+

for the price of a call struck at K.
The method can be formulated more generically as follows. Suppose we

want to estimate E[Y ] and we know the mean vector µX = E[X ] for some
random d-vector X . For example, X might record the prices of underlying
assets at future dates, powers of those prices, or the discounted payoffs of
tractable options. Suppose we know how to simulate i.i.d. replications (Xi, Yi),
i = 1, . . . , n, of the pair (X, Y ). In order to match the known mean µX in finite
samples, we choose weights w1, . . . , wn satisfying

n∑
i=1

wiXi = µX (4.67)

and then use
n∑

i=1

wiYi (4.68)

to estimate E[Y ]. We may also want to require that the weights sum to 1:

n∑
i=1

wi = 1. (4.69)

We can include this in (4.67) by taking one of the components of the Xi to
be identically equal to 1.

The number of constraints d is typically much smaller than the number of
replications n, so (4.67) does not determine the weights. We choose a partic-
ular set of weights by selecting an objective function H : �d → � and solving
the constrained optimization problem

min H(w1, . . . , wn) subject to (4.67). (4.70)

Because the replications are i.i.d., it is natural to restrict attention to functions
H that are convex and symmetric in w1, . . . , wn; the criterion in (4.70) then
penalizes deviations from uniformity in the weights.

An approach of this type was proposed by Avellaneda et al. [26, 27], but
more as a mechanism for model correction than variance reduction. In their
setting, the constraint (4.67) uses a vector µo (to be interpreted as market
prices) different from µX (the model prices). The weights thus serve to cali-
brate an imperfect model to the observed market prices of actively traded in-
struments in order to more accurately price a less liquid instrument. Broadie,
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Glasserman, and Ha [68] use a related technique for pricing American op-
tions; we return to this in Chapter 8. It should be evident from the discussion
leading to (4.68) and (4.70) that there is a close connection between this ap-
proach and using X as a control variate; we make the connection explicit in
Example 4.5.6. First we treat the objective considered by Avellaneda et al.
[26, 27].

Example 4.5.5 Maximum entropy weights. A particularly interesting and in
some respects convenient objective H is the (negative) entropy function

H(w1, . . . , wn) =
n∑

i=1

wi log wi,

which we take to be +∞ if any wi is negative. (By convention, 0 · log 0 = 0.)
Using this objective will always produce positive weights, provided there is a
positive feasible solution to (4.67). Such a solution exists whenever the convex
hull of the points X1, . . . , Xn contains µX , and this almost surely occurs for
sufficiently large n.

We can solve for the optimal weights by first forming the Lagrangian

n∑
i=1

wi log wi − ν

n∑
i=1

wi − λ�
n∑

i=1

wiXi.

Here, ν is a scalar and λ is a d-vector. For this objective it turns out to be
convenient to separate the constraint on the weight sum, as we have here.
Setting the derivative with respect to wi equal to zero and solving for wi

yields
wi = eν−1 exp(λ�Xi).

Constraining the weights to sum to unity yields

wi =
exp(λ�Xi)∑n

j=1 exp(λ�Xj)
. (4.71)

The vector λ is then determined by the condition∑n
i=1 eλ�XiXi∑n

i=1 eλ�Xi
= µX ,

which can be solved numerically.
Viewed as a probability distribution on {X1, . . . , Xn}, the (w1, . . . , wn)

in (4.71) corresponds to an exponential change of measure applied to the
uniform distribution (1/n, . . . , 1/n), in a sense to be further developed in
Section 4.6. The solution in (4.71) may be viewed as the minimal adjustment
to the uniform distribution needed to satisfy the constraints (4.67)–(4.69). �
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Example 4.5.6 Least-squares weights. The simplest objective to consider in
(4.70) is the quadratic

H(w1, . . . , wn) = 1
2w�w,

with w the vector of weights (w1, . . . , wn)�. We will show that the estimator
w�Y =

∑
wiYi produced by these weights is identical to the control variate

estimator Ȳ (b̂n) defined by (4.16).
Define an n × (d + 1) matrix A whose ith row is (1, X�

i − µ�
X). (Here

we assume that X1, . . . , Xn do not contain an entry identically equal to 1.)
Constraints (4.67)–(4.69) can be expressed as w�A = (1,0), where 0 is a row
vector of d zeros. The Lagrangian becomes

1
2w�w + w�Aλ

with λ ∈ �d. The first-order conditions are w = −Aλ. From the constraint
we get

(1,0) = w�A = −λ�A�A ⇒ −λ� = (1,0)(A�A)−1

⇒ w� = (1,0)(A�A)−1A�,

assuming the matrix A has full rank. The weighted Monte Carlo estimator of
the expectation of the Yi is thus

w�Y = (1,0)(A�A)−1A�Y, Y = (Y1, . . . , Yn)�. (4.72)

The control variate estimator is the first entry of the vector β ∈ �d+1 that
solves

min
β

1
2 (Y − Aβ)�(Y − Aβ);

i.e., it is the value fitted at (1, µX) in a regression of the Yi against the rows of
A. From the first-order conditions (Y −Aβ)�A = 0, we find that the optimal
β is (A�A)−1A�Y . The control variate estimator is therefore

(1,0)β = (1,0)(A�A)−1A�Y,

which coincides with (4.72). When written out explicitly, the weights in (4.72)
take precisely the form displayed in (4.20), where we first noted the interpre-
tation of a control variate estimator as a weighted Monte Carlo estimator.
�

This link between the general strategy in (4.68) and(4.70) for construct-
ing “moment-matched” estimators and the more familiar method of control
variates suggests that (4.68) provides at best a small refinement of the con-
trol variate estimator. As the sample size n increases, the refinement typically
vanishes and using knowledge of µX as a constraint in (4.67) becomes equiv-
alent to using it in a control variate estimator. A precise result to this effect
is proved in Glasserman and Yu [147]. This argues in favor of using control
variate estimators rather than (4.68), because they are easier to implement
and because more is known about their sampling properties.
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4.6 Importance Sampling

4.6.1 Principles and First Examples

Importance sampling attempts to reduce variance by changing the probability
measure from which paths are generated. Changing measures is a standard
tool in financial mathematics; we encountered it in our discussion of pricing
principles in Section 1.2.2 and several places in Chapter 3 in the guise of
changing numeraire. Appendix B.4 reviews some of the underlying mathe-
matical theory. When we switch from, say, the objective probability measure
to the risk-neutral measure, our goal is usually to obtain a more convenient
representation of an expected value. In importance sampling, we change mea-
sures to try to give more weight to “important” outcomes thereby increasing
sampling efficiency.

To make this idea concrete, consider the problem of estimating

α = E[h(X)] =
∫

h(x)f(x) dx

where X is a random element of �d with probability density f , and h is a
function from �d to �. The ordinary Monte Carlo estimator is

α̂ = α̂(n) =
1
n

n∑
i=1

h(Xi)

with X1, . . . , Xn independent draws from f . Let g be any other probability
density on �d satisfying

f(x) > 0 ⇒ g(x) > 0 (4.73)

for all x ∈ �d. Then we can alternatively represent α as

α =
∫

h(x)
f(x)
g(x)

g(x) dx.

This integral can be interpreted as an expectation with respect to the density
g; we may therefore write

α = Ẽ

[
h(X)

f(X)
g(X)

]
, (4.74)

Ẽ here indicating that the expectation is taken with X distributed according to
g. If X1, . . . , Xn are now independent draws from g, the importance sampling
estimator associated with g is

α̂g = α̂g(n) =
1
n

n∑
i=1

h(Xi)
f(Xi)
g(Xi)

. (4.75)
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The weight f(Xi)/g(Xi) is the likelihood ratio or Radon-Nikodym derivative
evaluated at Xi.

It follows from (4.74) that Ẽ[α̂g] = α and thus that α̂g is an unbiased
estimator of α. To compare variances with and without importance sampling
it therefore suffices to compare second moments. With importance sampling,
we have

Ẽ

[(
h(X)

f(X)
g(X)

)2
]

= E

[
h(X)2

f(X)
g(X)

]
.

This could be larger or smaller than the second moment E[h(X)2] without
importance sampling; indeed, depending on the choice of g it might even be
infinitely larger or smaller. Successful importance sampling lies in the art of
selecting an effective importance sampling density g.

Consider the special case in which h is nonnegative. The product h(x)f(x)
is then also nonnegative and may be normalized to a probability density.
Suppose g is this density. Then

g(x) ∝ h(x)f(x), (4.76)

and h(Xi)f(Xi)/g(Xi) equals the constant of proportionality in (4.76) regard-
less of the value of Xi; thus, the importance sampling estimator α̂g in (4.75)
provides a zero-variance estimator in this case. Of course, this is useless in
practice: to normalize h · f we need to divide it by its integral, which is α; the
zero-variance estimator is just α itself.

Nevertheless, this optimal choice of g does provide some useful guidance: in
designing an effective importance sampling strategy, we should try to sample
in proportion to the product of h and f . In option pricing applications, h
is typically a discounted payoff and f is the risk-neutral density of a discrete
path of underlying assets. In this case, the “importance” of a path is measured
by the product of its discounted payoff and its probability density.

If h is the indicator function of a set, then the optimal importance sampling
density is the original density conditioned on the set. In more detail, suppose
h(x) = 1{x ∈ A} for some A ⊂ �d. Then α = P (X ∈ A) and the zero-variance
importance sampling density h(x)f(x)/α is precisely the conditional density
of X given X ∈ A (assuming α > 0). Thus, in applying importance sampling
to estimate a probability, we should look for an importance sampling density
that approximates the conditional density. This means choosing g to make
the event {X ∈ A} more likely, especially if A is a rare set under f .

Likelihood Ratios

In our discussion thus far we have assumed, for simplicity, that X is �d-valued,
but the ideas extend to X taking values in more general sets. Also, we have
assumed that X has a density f , but the same observations apply if f is a
probability mass function (or, more generally, a density with respect to some
reference measure on �d, possibly different from Lebesgue measure).
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For option pricing applications, it is natural to think of X as a discrete
path of underlying assets. The density of a path (if one exists) is ordinarily not
specified directly, but rather built from more primitive elements. Consider, for
example, a discrete path S(ti), i = 0, 1, . . . , m, of underlying assets or state
variables, and suppose that this process is Markov. Suppose the conditional
distribution of S(ti) given S(ti−1) = x has density fi(x, ·). Consider a change
of measure under which the transition densities fi are replaced with transition
densities gi. The likelihood ratio for this change of measure is

m∏
i=1

fi(S(ti−1), S(ti))
gi(S(ti−1), S(ti))

.

More precisely, if E denotes expectation under the original measure and Ẽ
denotes expectation under the new measure, then

E[h(S(t1), . . . , S(tm))] = Ẽ

[
h(S(t1), . . . , S(tm))

m∏
i=1

fi(S(ti−1), S(ti))
gi(S(ti−1), S(ti))

]
,

(4.77)
for all functions h for which the expectation on the left exists and is finite.

Here we have implicitly assumed that S(t0) is a constant. More generally,
we could allow it to have density f0 under the original measure and den-
sity g0 under the new measure. This would result in an additional factor of
f0(S(t0))/g(S(t0)) in the likelihood ratio.

We often simulate a path S(t0), . . . , S(tm) through a recursion of the form

S(ti+1) = G(S(ti), Xi+1), (4.78)

driven by i.i.d. random vectors X1, X2, . . . , Xm. Many of the examples con-
sidered in Chapter 3 can be put in this form. The Xi will often be normally
distributed, but for now let us simply assume they have common density f . If
we apply a change of measure that preserves the independence of the Xi but
changes their common density to g, then the corresponding likelihood ratio is

m∏
i=1

f(Xi)
g(Xi)

.

This means that

E[h(S(t1), . . . , S(tm))] = Ẽ

[
h(S(t1), . . . , S(tm))

m∏
i=1

f(Xi)
g(Xi)

]
, (4.79)

where, again, E and Ẽ denote expectation under the original and new mea-
sures, respectively, and the expectation on the left is assumed finite. Equation
(4.79) relies on the fact that S(t1), . . . , S(tm) are functions of X1, . . . , Xm.
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Random Horizon

Identities (4.77) and (4.79) extend from a fixed number of steps m to a ran-
dom number of steps, provided the random horizon is a stopping time. We
demonstrate this in the case of i.i.d. inputs, as in (4.79). For each n = 1, 2, . . .
let hn be a function of n arguments and suppose we want to estimate

E[hN (S(t1), . . . , S(tN ))], (4.80)

with N a random variable taking values in {1, 2, . . .}. For example, in the case
of a barrier option with barrier b, we might define N to be the index of the
smallest ti for which S(ti) > b, taking N = m if all S(t0), . . . , S(tm) lie below
the barrier. We could then express the discounted payoff of an up-and-out put
as hN (S(t1), . . . , S(tN )) with

hn(S(t1), . . . , S(tn)) =
{

e−rtm(K − S(tm))+, n = m;
0, n = 0, 1, . . . , m − 1.

The option price then has the form (4.80).
Suppose that (4.78) holds and, as before, E denotes expectation when the

Xi are i.i.d. with density f and Ẽ denotes expectation when they are i.i.d. with
density g. For concreteness, suppose that S(t0) is fixed under both measures.
Let N be a stopping time for the sequence X1, X2, . . .; for example, N could
be a stopping time for S(t1), S(t2), . . . as in the barrier option example. Then

E[hN (S(t1), . . . , S(tN ))1{N < ∞}]

= Ẽ

[
hN (S(t1), . . . , S(tN ))

N∏
i=1

f(Xi)
g(Xi)

1{N < ∞}
]

,

provided the expectation on the left is finite. This identity (sometimes called
Wald’s identity or the fundamental identity of sequential analysis — see, e.g.,
Asmussen [20]) is established as follows:

E[hN(S(t1), . . . , S(tN ))1{N < ∞}]

=
∞∑

n=1

E[hn(S(t1), . . . , S(tn))1{N = n}]

=
∞∑

n=1

Ẽ

[
hn(S(t1), . . . , S(tn))1{N = n}

n∏
i=1

f(Xi)
g(Xi)

]

= Ẽ

[
hN (S(t1), . . . , S(tN))

N∏
i=1

f(Xi)
g(Xi)

1{N < ∞}
]

. (4.81)

The second equality uses the stopping time property: because N is a stopping
time the event {N = n} is determined by X1, . . . , Xn and this allows us to
apply (4.79) to each term in the infinite sum. It is entirely possible for the
event {N < ∞} to have probability 1 under one of the measures but not the
other; we will see an example of this in Example 4.6.3.
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Long Horizon

We continue to consider two probability measures under which random vectors
X1, X2, . . . are i.i.d., P giving the Xi density f , P̃ giving them density g.

It should be noted that even if f and g are mutually absolutely continuous,
the probability measures P and P̃ will not be. Rather, absolute continuity
holds for the restrictions of these measures to events defined by a finite initial
segment of the infinite sequence. For A ⊆ �d, the event{

lim
m→∞

1
m

m∑
i=1

1{Xi ∈ A} =
∫

A

f(x) dx

}
has probability 1 under P ; but some such event must have probability 0 under
P̃ unless f and g are equal almost everywhere. In short, the strong law of large
numbers forces P and P̃ to disagree about which events have probability 0.

This collapse of absolute continuity in the limit is reflected in the somewhat
pathological behavior of the likelihood ratio as the number of terms grows,
through an argument from Glynn and Iglehart [157]. Suppose that

Ẽ [| log(f(X1)/g(X1))|] < ∞;

then the strong law of large numbers implies that

1
m

m∑
i=1

log(f(Xi)/g(Xi)) → Ẽ [log(f(X1)/g(X1))] ≡ c (4.82)

with probability 1 under P̃ . By Jensen’s inequality,

c ≤ log Ẽ[f(X1)/g(X1)] = log
∫

f(x)
g(x)

g(x) dx = 0,

with strict inequality unless P̃ (f(X1) = g(X1)) = 1 because log is strictly
concave. But if c < 0, (4.82) implies

m∑
i=1

log(f(Xi)/g(Xi)) → −∞;

exponentiating, we find that

m∏
i=1

f(Xi)
g(Xi)

→ 0

with P̃ -probability 1. Thus, the likelihood ratio converges to 0 though its
expectation equals 1 for all m. This indicates that the likelihood ratio becomes
highly skewed, taking increasingly large values with small but non-negligible
probability. This in turn can result in a large increase in variance if the change
of measure is not chosen carefully.
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Output Analysis

An importance sampling estimator does not introduce dependence between
replications and is just an average of i.i.d. replications. We can therefore sup-
plement an importance sampling estimator with a large-sample confidence
interval in the usual way by calculating the sample standard deviation across
replications and using it in (A.6). Because likelihood ratios are often highly
skewed, the sample standard deviation will often underestimate the true stan-
dard deviation, and a very large sample size may be required for confidence
intervals based on the central limit theorem to provide reasonable coverage.
These features should be kept in mind in comparing importance sampling
estimators based on estimates of their standard errors.

Examples

Example 4.6.1 Normal distribution: change of mean. Let f be the univariate
standard normal density and g the univariate normal density with mean µ and
variance 1. Then simple algebra shows that

m∏
i=1

f(Zi)
g(Zi)

= exp

(
−µ

m∑
i=1

Zi +
m

2
µ2

)
.

A bit more generally, if we let gi have mean µi, then

m∏
i=1

f(Zi)
gi(Zi)

= exp

(
−

m∑
i=1

µiZi + 1
2

m∑
i=1

µ2
i

)
. (4.83)

If we simulate Brownian motion on a grid 0 = t0 < t1 < · · · < tm by setting

W (tn) =
n∑

i=1

√
ti − ti−1Zi,

then (4.83) is the likelihood ratio for a change of measure that adds mean
µi
√

ti − ti−1 to the Brownian increment over [ti−1, ti]. �

Example 4.6.2 Exponential change of measure. The previous example is a
special case of a more general class of convenient measure transformations.
For a cumulative distribution function F on �, define

ψ(θ) = log
∫ ∞

−∞
eθx dF (x).

This is the cumulant generating function of F , the logarithm of the moment
generating function of F . Let Θ = {θ : ψ(θ) < ∞} and suppose that Θ is
nonempty. For each θ ∈ Θ, set
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Fθ(x) =
∫ x

−∞
eθu−ψ(θ) dF (u);

each Fθ is a probability distribution, and {Fθ, θ ∈ Θ} form an exponential
family of distributions. The transformation from F to Fθ is called exponential
tilting, exponential twisting, or simply an exponential change of measure. If
F has a density f , then Fθ has density

fθ(x) = eθx−ψ(θ)f(x).

Suppose that X1, . . . , Xn are initially i.i.d. with distribution F = F0 and
that we apply a change of measure under which they become i.i.d. with dis-
tribution Fθ. The likelihood ratio for this transformation is

n∏
i=1

dF0(Xi)
dFθ(Xi)

= exp

(
−θ

n∑
i=1

Xi + nψ(θ)

)
. (4.84)

The standard normal distribution has ψ(θ) = θ2/2, from which we see that
this indeed generalizes Example 4.6.1. A key feature of exponential twisting is
that the likelihood ratio — which is in principle a function of all X1, . . . , Xn

— reduces to a function of the sum of the Xi. In statistical terminology, the
sum of the Xi is a sufficient statistic for θ.

The cumulant generating function ψ records important information about
the distributions Fθ. For example, ψ′(θ) is the mean of Fθ. To see this, let Eθ

denote expectation with respect to Fθ and note that ψ(θ) = log E0[exp(θX)].
Differentiation yields

ψ′(θ) =
E0[XeθX]
E0[eθX ]

= E0[XeθX−ψ(θ)] = Eθ[X ].

A similar calculation shows that ψ′′(θ) is the variance of Fθ. The function ψ
passes through the origin; Hölder’s inequality shows that it is convex, so that
ψ′′(θ) is indeed positive. For further theoretical background on exponential
families see, e.g., Barndorff-Nielson [35].

We conclude with some examples of exponential families. The normal dis-
tributions N(θ, θσ2) form an exponential family in θ for all σ > 0. The gamma
densities

1
Γ(a)θa

xa−1e−x/θ, x ≥ 0,

form an exponential family in θ for each value of the shape parameter a > 0.
With a = 1, this is the family of exponential distributions with mean θ. The
Poisson distributions

e−λ λk

k!
, k = 0, 1, . . . ,

form an exponential family in θ = log λ. The binomial distributions
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n!
k!(n − k)!

pk(1 − p)n−k, k = 0, 1, . . . , n,

form an exponential family in θ = log(p/(1 − p)). �

Example 4.6.3 Ruin probabilities. A classic application of importance sam-
pling arises in estimating ruin probabilities in the theory of insurance risk.
Consider an insurance firm earning premiums at a constant rate p per unit
of time and paying claims that arrive at the jumps of a Poisson process with
rate λ. Letting N(t) denote the number of claims arriving in [0, t] and Yi the
size of the ith claim, i = 1, 2, . . ., the net payout of the firm over [0, t] is given
by

N(t)∑
i=1

Yi − pt.

Suppose the firm has a reserve of x; then ruin occurs if the net payout ever
exceeds x. We assume the claims are i.i.d. and independent of the Poisson
process. We further assume that λE[Yi] < p, meaning that premiums flow in
at a faster rate than claims are paid out; this ensures that the probability of
eventual ruin is less than 1.

If ruin ever occurs, it must occur at the arrival of a claim. It therefore
suffices to consider the discrete-time process embedded at the jumps of the
Poisson process. Let ξ1, ξ2, . . . be the interarrival times of the Poisson process;
these are independent and exponentially distributed with mean 1/λ. The net
payout between the (n−1)th and nth claims (including the latter but not the
former) is Xn = Yn − pξn. The net payout up to the nth claim is given by the
random walk Sn = X1 + · · · + Xn. Ruin occurs at

τx = inf{n ≥ 0 : Sn > x},

with the understanding that τx = ∞ if Sn never exceeds x. The probability
of eventual ruin is P (τx < ∞). Figure 4.10 illustrates the notation for this
example.

The particular form of the increments Xn is not essential to the problem
so we generalize the setting. We assume that X1, X2, . . . are i.i.d. with 0 <
P (Xi > 0) < 1 and E[Xi] < 0, but we drop the specific form Yn − pξn. We
add the assumption that the cumulant generating function ψX of the Xi (cf.
Example 4.6.2) is finite in a neighborhood of the origin. This holds in the
original model if the cumulant generating function ψY of the claim sizes Yi is
finite in a neighborhood of the origin.

For any point θ in the domain of ψX , consider the exponential change of
measure with parameter θ and let Eθ denote expectation under this measure.
Because τx is a stopping time, we may apply (4.81) to write the ruin probabil-
ity P (τx < ∞) as an Eθ-expectation. Because we have applied an exponential
change of measure, the likelihood ratio simplifies as in (4.84); thus, the ruin
probability becomes
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Y1

Y2

Yτ

S1

S2

Sτ

ξ1 ξ2 ξτ

x

Fig. 4.10. Illustration of claim sizes Yi, interarrival times ξi, and the random walk
Sn. Ruin occurs at the arrival of the τ th claim.

P (τx < ∞) = Eθ

[
e−θSτx+ψX(θ)τx1{τx < ∞}

]
. (4.85)

If 0 < ψ′
X(θ) < ∞ (which entails θ > 0 because ψ(0) = 0 and ψ′(0) =

E[Xn] < 0), then the random walk has positive drift Eθ[Xn] = ψ′
X(θ) under

the twisted measure, and this implies Pθ(τx < ∞) = 1. We may therefore omit
the indicator inside the expectation on the right. It also follows that we may
obtain an unbiased estimator of the ruin probability by simulating the random
walk under Pθ until τx and returning the estimator exp(−θSτx + ψX(θ)τx).
This would not be feasible under the original measure because of the positive
probability that τx = ∞.

Among all θ for which ψ′
X(θ) > 0, one is particularly effective for simula-

tion and indeed optimal in an asymptotic sense. Suppose there is a θ > 0 at
which ψX(θ) > 0. There must then be a θ∗ > 0 at which ψX(θ∗) = 0; con-
vexity of ψX implies uniqueness of θ∗ and positivity of ψ′

X(θ∗), as is evident
from Figure 4.11. In the insurance risk model with Xn = Yn − pξn, θ∗ is the
unique positive solution to

ψY (θ) + log
(

λ

λ + pθ

)
= 0,

where ψY is the cumulant generating function for the claim-size distribution.
With the parameter θ∗, (4.85) becomes

P (τx < ∞) = Eθ∗
[
e−θ∗Sτx

]
= e−θ∗xEθ∗

[
e−θ∗(Sτx−x)

]
.

Because the overshoot Sτx − x is nonnegative, this implies the simple bound
P (τx < ∞) ≤ e−θ∗x on the ruin probability. Under modest additional reg-
ularity conditions (for example, if the Xn have a density), Eθ∗

[
e−θ∗(Sτx−x)

]
converges to a constant c as x → ∞, providing the classical approximation
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θθ
*

ψ
X
(θ)

Fig. 4.11. Graph of a cumulant generating function ψX . The curve passes through
the origin and has negative slope there because ψ′

X(0) = E[X] < 0. At the positive
root θ∗, the slope is positive.

P (τx < ∞) ∼ ce−θ∗x,

meaning that the ratio of the two sides converges to 1 as x → ∞. Further de-
tails and some of the history of this approximation are discussed in Asmussen
[20] and in references given there.

From the perspective of simulation, the significance of θ∗ lies in the vari-
ance reduction achieved by the associated importance sampling estimator. The
unbiased estimator exp(−θ∗Sτx), sampled under Pθ∗ , has second moment

Eθ∗
[
e−2θ∗Sτx

]
≤ e−2θ∗x.

By Jensen’s inequality, the second moment of any unbiased estimator must be
at least as large as the square of the ruin probability, and we have seen that this
probability is O(e−θ∗x). In this sense, the second moment of the importance
sampling estimator based on θ∗ is asymptotically optimal as x → ∞.

This strategy for developing effective and even asymptotically optimal
importance sampling estimators originated in Siegmund’s [331] application
in sequential analysis. It has been substantially generalized, particularly for
queueing and reliability applications, as surveyed in Heidelberger [175]. �

Example 4.6.4 A knock-in option. As a further illustration of importance
sampling through an exponential change of measure, we apply the method
to a down-and-in barrier option. This example is from Boyle et al. [53]. The
option is a digital knock-in option with payoff

1{S(T ) > K} · 1{ min
1≤k≤m

S(tk) < H},

with 0 < t1 < · · · < tm = T , S the underlying asset, K the strike, and
H the barrier. If H is much smaller than S(0), most paths of an ordinary
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simulation will result in a payoff of zero; importance sampling can potentially
make knock-ins less rare.

Suppose the underlying asset is modeled through a process of the form

S(tn) = S(0) exp(Ln), Ln =
n∑

i=1

Xi,

with X1, X2, . . . i.i.d. and L0 = 0. This includes geometric Brownian motion
but many other models as well; see Section 3.5. The option payoff is then

1{Lm > c, τ < m}

where c = log(K/S(0)), τ is the first time the random walk Ln drops below
−b, and −b = log(H/S(0)). If b or c is large, the probability of a payoff is
small. To increase the probability of a payoff, we need to drive Ln down toward
−b and then up toward c.

Suppose the Xi have cumulant generating function ψ and consider im-
portance sampling estimators of the following form: exponentially twist the
distribution of the Xi by some θ− (with drift ψ′(θ−) < 0) until the barrier
is crossed, then twist the remaining Xτ+1, . . . , Xm by some θ+ (with drift
ψ′(θ+) > 0) to drive the process up toward the strike. On the event {τ < m},
the likelihood ratio for this change of measure is (using (4.81) and (4.84))

exp (−θ−Lτ + ψ(θ−)τ) · exp (−θ+[Lm − Lτ ] + ψ(θ+)[m − τ ])
= exp ((θ+ − θ−)Lτ − θ+Lm + (ψ(θ−) − ψ(θ+))τ + mψ(θ+)) .

The importance sampling estimator is the product of this likelihood ratio and
the discounted payoff.

We now apply a heuristic argument to select the parameters θ−, θ+. We
expect most of the variability in the estimator to result from the barrier
crossing time τ , because for large b and c we expect Lτ ≈ −b and Lm ≈ c
on the event {τ < m, Lm > c}. (In other words, the undershoot below −b
and the overshoot above c should be small.) If we choose θ−, θ+ to satisfy
ψ(θ−) = ψ(θ+), the likelihood ratio simplifies to

exp ((θ+ − θ−)Lτ − θ+Lm + mψ(θ+)) ,

and we thus eliminate explicit dependence on τ .
To complete the selection of the parameters θ±, we impose the condition

that traveling in a straight-line path from 0 to −b at rate |ψ′(θ−)| and then
from −b to c at rate ψ′(θ+), the process should reach c at time m; i.e.,

−b

ψ′(θ−)
+

c + b

ψ′(θ+)
= m.

These conditions uniquely determine θ±, at least if the domain of ψ is suffi-
ciently large. This is illustrated in Figure 4.12.
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θθ+
θ−

ψ(θ)

ψ’(θ+)ψ’(θ−) ψ’(θ+)

ψ’(θ−)

c

− b

0

m

Fig. 4.12. Illustration of importance sampling strategy for a knock-in option. Twist-
ing parameters θ± are chosen so that (a) ψ(θ−) = ψ(θ+) and (b) straight-line path
with slopes ψ′(θ−) and ψ′(θ+) reaches −b and then c in m steps.

In the case of geometric Brownian motion GBM(µ, σ2) with equally spaced
time points tn = nh, we have

Xn ∼ N((µ − 1
2σ2)h, σ2h),

and the cumulant generating function is

ψ(θ) = (µ − 1
2σ2)hθ + 1

2σ2hθ2.

Because this function is quadratic in θ, it is symmetric about its minimum and
the condition ψ(θ−) = ψ(θ+) implies that ψ′(θ−) = −ψ′(θ+). Thus, under our
proposed change of measure, the random walk moves at a constant speed of
|ψ′(θ±)|. To traverse the path down to the barrier and up to the strike in m
steps, we must have

|ψ′(θ±)| =
2b + c

m
.

We can now solve for the twisting parameters to get

θ± =
(

1
2
− µ

σ2

)
± 2b + c

mσ2h
.

The term in parentheses on the right is the point at which the quadratic ψ is
minimized. The twisting parameters θ± are symmetric about this point.

Table 4.4 reports variance ratios based on this method. The underlying
asset S(t) is GBM(r,σ2) with r = 5%, σ = 0.15, and initial value S(0) = 95.
We consider an option paying 10,000 if not knocked out, hence having price
10, 000 · e−rT P (τ < m, S(T ) > K). As above, m is the number of steps
and T ≡ tm is the option maturity. The last column of the table gives the
estimated ratio of the variance per replication using ordinary Monte Carlo to
the variance using importance sampling. It is thus a measure of the speed-
up produced by importance sampling. The estimates in the table are based
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on 100,000 replications for each case. The results suggest that the variance
ratio depends primarily on the rarity of the payoff, and not otherwise on the
maturity. The variance reduction can be dramatic for extremely rare payoffs.

An entirely different application of importance sampling to barrier options
is developed in Glasserman and Staum [146]. In that method, at each step
along a simulated path, the value of an underlying asset is sampled conditional
on not crossing a knock-out barrier so that all paths survive to maturity.
The one-step conditional distributions define the change of measure in this
approach. �

H K Price Variance Ratio

T = 0.25, m = 50 94 96 3017.6 2
90 96 426.6 10
85 96 5.6 477
90 106 13.2 177

T = 1, m = 50 90 106 664.8 6
85 96 452.0 9

T = 0.25, m = 100 85 96 6.6 405
90 106 15.8 180

Table 4.4. Variance reduction using importance sampling in pricing a knock-in
barrier option with barrier H and strike K.

4.6.2 Path-Dependent Options

We turn now to a more ambitious application of importance sampling with
the aim of reducing variance in pricing path-dependent options. We consider
models of underlying assets driven by Brownian motion (or simply by nor-
mal random vectors after discretization) and change the drift of the Brownian
motion to drive the underlying assets into “important” regions, with “impor-
tance” determined by the payoff of the option. We identify a specific change
of drift through an optimization problem.

The method described in this section is from Glasserman, Heidelberger,
and Shahabuddin (henceforth abbreviated GHS) [139], and that reference con-
tains a more extensive theoretical development than we provide here. This
method restricts itself to deterministic changes of drift over discrete time
steps. It is theoretically possible to eliminate all variance through a stochas-
tic change of drift in continuous time, essentially by taking the option being
priced as the numeraire asset and applying the change of measure associated
with this change of numeraire. This however requires knowing the price of the
option in advance and is not literally feasible, though it potentially provides a
basis for approximations. Related ideas are developed in Chapter 16 of Kloe-
den and Platen [211], Newton [278, 279], and Schoenmakers and Heemink
[319].
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We restrict ourselves to simulations on a discrete time grid 0 = t0 < t1 <
· · · < tm = T . We assume the only source of randomness in the simulated
model is a d-dimensional Brownian motion. The increment of the Brownian
motion from ti−1 to ti is simulated as

√
ti − ti−1Zi, where Z1, Z2, . . . , Zm are

independent d-dimensional standard normal random vectors. Denote by Z the
concatenation of the Zi into a single vector of length n ≡ md. Each outcome
of Z determines a path of underlying assets or state variables, and each such
path determines the discounted payoff of an option. If we let G denote the
composition of these mappings, then G(Z) is the discounted payoff derived
from Z. Our task is to estimate E[G(Z)], the expectation taken with Z having
the n-dimensional standard normal distribution.

An example will help fix ideas. Consider a single underlying asset modeled
as geometric Brownian motion GBM(r, σ2) and simulated using

S(ti) = S(ti−1) exp
(
[r − 1

2σ2](ti − ti−1) + σ
√

ti − ti−1Zi

)
, i = 1, . . . , m.

(4.86)
Consider an Asian call option on the arithmetic average S̄ of the S(ti). We
may view the payoff of the option as a function of the Zi and thus write

G(Z) = G(Z1, . . . , Zm) = e−rT [S̄ − K]+.

Pricing the option means evaluating E[G(Z)], the expectation taken with Z ∼
N(0, I).

Change of Drift: Linearization

Through importance sampling we can change the distribution of Z and still
obtain an unbiased estimator of E[G(Z)], provided we weight each outcome
by the appropriate likelihood ratio. We restrict ourselves to changes of dis-
tribution that change the mean of Z from 0 to some other vector µ. Let Pµ

and Eµ denote probability and expectation when Z ∼ N(µ, I). From the form
of the likelihood ratio given in Example 4.6.1 for normal random vectors, we
find that

E[G(Z)] = Eµ

[
G(Z)e−µ�Z+

1
2µ�µ

]
for any µ ∈ �n. We may thus simulate as follows:

for replications i = 1, . . . , N

generate Z(i) ∼ N(µ, I)
Y (i) ← G(Z(i)) exp

(
−µ�Z(i) + 1

2µ�µ
)

return (Y (1) + · · · + Y (N))/N .

This estimator is unbiased for any choice of µ; we would like to choose a µ
that produces a low-variance estimator.

If G takes only nonnegative values (as is typical of discounted option pay-
offs), we may write G(z) = exp(F (z)), with the convention that F (z) = −∞
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if G(z) = 0. Also, note that taking an expectation over Z under Pµ is equiva-
lent to replacing Z with µ + Z and taking the expectation under the original
measure. (In the algorithm above, this simply means that we can sample from
N(µ, I) by sampling from N(0, I) and adding µ.) Thus,

E[G(Z)] = E
[
eF (Z)

]
= Eµ

[
eF (Z)e−µ�Z+

1
2µ�µ

]
= E

[
eF (µ+Z)e−µ�(µ+Z)+

1
2µ�µ

]
= E

[
eF (µ+Z)e−µ�Z− 1

2µ�µ

]
. (4.87)

For any µ, the expression inside the expectation in (4.87) is an unbiased
estimator with Z having distribution N(0, I). To motivate a particular choice
of µ, we now expand F to first order to approximate the estimator as

eF (µ+Z)e−µ�Z− 1
2 µ�µ ≈ eF (µ)+∇F (µ)Ze−µ�Z− 1

2µ�µ, (4.88)

with ∇F (µ) the gradient of F at µ. If we can choose µ to satisfy the fixed-point
condition

∇F (µ) = µ�, (4.89)

then the expression on the right side of (4.88) collapses to a constant with
no dependence on Z. Thus, applying importance sampling with µ satisfying
(4.89) would produce a zero-variance estimator if (4.88) held exactly, and it
should produce a low-variance estimator if (4.88) holds only approximately.

Change of Drift: Normal Approximation and Optimal Path

We now present an alternative argument leading to an essentially equivalent
choice of µ. Recall from the discussion surrounding (4.76) that the optimal
importance sampling density is the normalized product of the integrand and
the original density. For the problem at hand, this means that the optimal
density is proportional to

eF (z)− 1
2 z�z,

because exp(F (z)) is the integrand and exp(−z�z/2) is proportional to the
standard normal density. Normalizing this function by its integral produces
a probability density but not, in general, a normal density. Because we have
restricted ourselves to changes of mean, we may try to select µ so that N(µ, I)
approximates the optimal distribution. One way to do this is to choose µ to
be the mode of the optimal density; i.e., choose µ to solve

max
z

F (z) − 1
2z�z. (4.90)
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The first-order condition for the optimum is ∇F (z) = z�, which coincides
with (4.89). If, for example, the objective in (4.90) is strictly concave, and if
the first-order condition has a solution, this solution is the unique optimum.

We may interpret the solution z∗ to (4.90) as an optimal path. Each z ∈ �n

may be interpreted as a path because each determines a discrete Brown-
ian path and thus a path of underlying assets. The solution to (4.90) is the
most “important” path if we measure importance by the product of payoff
exp(F (z)) and probability density exp(−z�z/2)/(2π)n/2. In choosing µ = z∗,
we are therefore choosing the new drift to push the process along the optimal
path.

GHS [139] give conditions under which this approach to importance sam-
pling has an asymptotic optimality property. This property is based on intro-
ducing a parameter ε and analyzing the second moment of the estimator as ε
approaches zero. From a practical perspective, a small ε should be interpreted
as a nearly linear F .

Asian Option

We illustrate the selection and application of the optimal change of drift in
the case of the Asian call defined above, following the discussion in GHS
[139]. Solving (4.90) is equivalent to maximizing G(z) exp(−z�z/2) with G the
discounted payoff of the Asian option. The discount factor e−rT is a constant in
this example, so for the purpose of optimization we may ignore it and redefine
G(z) to be [S̄ −K]+. Also, in maximizing it clearly suffices to consider points
z at which S̄ > K and thus at which G is differentiable.

For the first-order conditions, we differentiate

[S̄ − K]e−z�z/2

to get
∂S̄

∂zj
− [S̄ − K]zj = 0.

Using (4.86), we find that

∂S̄

∂zj
=

1
m

m∑
i=j

∂S(ti)
∂zj

=
1
m

m∑
i=j

σ
√

ti − ti−1S(ti).

The first-order conditions thus become

zj =

∑m
i=j σ

√
ti − ti−1S(ti)

mG(z)
.

Now we specialize to the case of an equally spaced time grid with ti−ti−1 ≡
h. This yields



4.6 Importance Sampling 271

z1 =
σ
√

h(G(z) + K)
G(z)

, zj+1 = zj −
σ
√

hS(tj)
mG(z)

, j = 1, . . . , m − 1. (4.91)

Given the value of G(z), (4.91) and (4.86) determine z. Indeed, if y ≡ G(z),
we could apply (4.91) to calculate z1 from y, then (4.86) to calculate S(t1),
then (4.91) to calculate z2, and so on. Through this iteration, each value
of y determines a z(y) and path S(ti, y), i = 1, . . . , m. Solving the first-order
conditions reduces to finding the y for which the payoff at S(t1, y), . . . , S(tm, y)
is indeed y; that is, it reduces to finding the root of the equation

1
m

m∑
j=1

S(tj , y) − K − y = 0.

GHS [139] report that numerical examples suggest that this equation has a
unique root. This root can be found very quickly through a one-dimensional
search. Once the root y∗ is found, the optimization problem is solved by
z∗ = z(y∗). To simulate, we then set µ = z∗ and apply importance sampling
with mean µ.

Combined Importance Sampling and Stratification

In GHS [139], further (and in some cases enormous) variance reduction is
achieved by combining importance sampling with stratification of a linear
projection of Z. Recall from Section 4.3.2 that sampling Z so that v�Z is
stratified for some v ∈ �n is easy to implement. The change of mean does
not affect this. Indeed, we may sample from N(µ, I) by sampling from N(0, I)
and then adding µ; we can apply stratified sampling to N(0, I) before adding
µ.

Two strategies for selecting the stratification direction v are considered
in GHS [139]. One simply sets v = µ on the grounds that µ is an important
path and thus a potentially important direction for stratification. The other
strategy expands (4.88) to get

eF (µ+Z)e−µ�Z− 1
2µ�µ ≈ eF (µ)+∇F (µ)Z+

1
2Z�H(µ)Ze−µ�Z− 1

2µ�µ,

with H(µ) the Hessian matrix of F at µ. Importance sampling with µ� =
∇F (µ) eliminates the linear term in the exponent, and this suggests that the
stratification should be tailored to the quadratic term.

In Section 4.3.2, we noted that the optimal stratification direction for
estimating an expression of the form E[exp(1

2Z�AZ)] with A symmetric is an
eigenvector of A. The optimal eigenvector is determined by the eigenvalues
of A through the criterion in (4.50). This suggests that we should stratify
along the optimal eigenvector of the Hessian of F at µ. This entails numerical
calculation of the Hessian and its eigenvectors.
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Table 4.5 shows results from GHS [139]. The table shows variance ratios
(i.e., variance reduction factors) using importance sampling and two combina-
tions of importance sampling with stratified sampling, using the two strategies
just described for selecting a stratification direction. All results use S(0) = 50,
r = 0.05, and T = 1 and are estimated from one million paths for each case.
The results show that importance sampling by itself can produce noteworthy
variance reduction (especially for out-of-the-money options) and that the com-
bined impact with stratification can be astounding. The combination reduces
variance by factors in the thousands.

Importance IS & IS &
n σ K Price Sampling Strat. (µ) Strat. (vj∗)

16 0.10 45 6.05 11 1,097 1,246
50 1.92 7 4,559 5,710
55 0.20 21 15,520 17,026

16 0.30 45 7.15 8 1,011 1,664
50 4.17 9 1,304 1,899
55 2.21 12 1,746 2,296

64 0.10 45 6.00 11 967 1,022
50 1.85 7 4,637 5,665
55 0.17 23 16,051 17,841

64 0.30 45 7.02 8 1,016 1,694
50 4.02 9 1,319 1,971
55 2.08 12 1,767 2,402

Table 4.5. Estimated variance reduction ratios for Asian options using importance
sampling and combinations of importance sampling with stratified sampling, strat-
ifying along the optimal µ or the optimal eigenvector vj∗ . Stratified results use 100
strata.

The results in Table 4.5 may seem to suggest that stratification has a
greater impact than importance sampling, and one may question the value of
importance sampling in this example. But the effectiveness of stratification is
indeed enhanced by the change in mean, which results in more paths producing
positive payoffs. The positive-part operator [·]+ applied to S̄ − K diminishes
the effectiveness of stratified sampling, because it tends to produce many
strata with a constant (zero) payoff — stratifying a region of constant payoff is
useless. By shifting the mean of Z, we implicitly move more of the distribution
of the stratification variable v�Z (and thus more strata) into the region where
the payoff varies. In this particular example, the region defined by S̄ > K is
reasonably easy to characterize and could be incorporated into the selection
of strata; however, this is not the case in more complex examples.

A further notable feature of Table 4.5 is that the variance ratios are quite
similar whether we stratify along µ or along the optimal eigenvector v∗. In
fact, GHS [139] find that the vectors µ and v∗ nearly coincide, once normalized
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to have the same length. They find similar patterns in other examples. This
phenomenon can occur when G is well approximated by a nonlinear function
of a linear combination of z1, . . . , zm. For suppose G(z) ≈ g(v�z); then, the
gradient of G is nearly proportional to v� and so µ will be nearly proportional
to v. Moreover, the Hessian of G will be nearly proportional to the rank-1
matrix vv�, whose only nonzero eigenvectors are multiples of v. Thus, in this
setting, the optimal mean is proportional to the optimal eigenvector.

Application in the Heath-Jarrow-Morton Framework

GHS [140] apply the combination of importance sampling and stratified sam-
pling in the Heath-Jarrow-Morton framework. The complexity of this setting
necessitates some approximations in the calculation of the optimal path and
eigenvector to make the method computationally feasible. We comment on
these briefly.

We consider a three-factor model (so d = 3) discretized in time and matu-
rity as detailed in Section 3.6.2. The discretization interval is a quarter of a
year and we consider maturities up to 20 years, so m = 80 and the vector Z
of random inputs has dimension n = md = 240. The factor loadings for each
of the three factors are as displayed in Figure 4.13, where they are plotted
against time to maturity.
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Fig. 4.13. Factor loadings in three-factor HJM model used to illustrate importance
sampling.

As in Section 3.6.2, we use f̂(ti, tj) to denote the forward rate at time ti
for the interval [tj , tj+1]. We use an equally spaced time grid so ti = ih with
h a quarter of a year. The initial forward curve is

f̂(0, tj) = log(150 + 12j)/100, j = 0, 1, . . . , 80,
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which increases gradually, approximately from 5% to 7%.
Among the examples considered in GHS [140] is the pricing of an interest

rate caplet maturing in T = tm years with a strike of K. The caplet pays

max
(
0, (ef̂(tm,tm)h − 1) − Kh)

)
at tm+1. For a maturity of T = 5 years, m = 20 and the optimal drift µ is a
vector of dimension md = 60. We encode this vector in the following way: the
first 20 components give the drift as a function of time for the first factor (i.e.,
the first component of the underlying three-dimensional Brownian motion);
the next 20 components give the drift for the second factor; and the last 20
components give the drift for the third factor.

With this convention, the left panel of Figure 4.14 displays the optimal
drift found through numerical solution of the optimization problem (4.90),
with exp(F (z)) the discounted caplet payoff determined by the input vector
z. This optimal path gives a positive drift to the first and third factors and a
negative drift to the second; all three drifts approach zero toward the end of
the 20 steps (the caplet maturity).

The right panel of Figure 4.14 shows the net effect on the short rate of this
change of drift. (Recall from Section 3.6.2 that the short rate at ti is simply
f̂(ti, ti).) If each of the three factors were to follow the mean paths in the left
panel of Figure 4.14, the short rate would follow the dashed line in the right
panel of the figure. This should be compared with the initial forward curve,
displayed as the solid line: without a change of drift, the central path of the
short rate would roughly follow this forward curve. Thus, the net effect of the
change of drift in the underlying factors is to push the short rate higher. This
is to be expected because the caplet payoff increases with the short rate. But
it is not obvious that the “optimal” way to push the short rate has the factors
follow the paths in the left panel of Figure 4.14.
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Fig. 4.14. Left panel shows optimal drift for factors in pricing a five-year caplet
struck at 7%. Right panel compares path of short rate produced by optimal drift
with the initial forward curve.
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Table 4.6 compares the efficacy of four variance reduction techniques in
pricing caplets: antithetic variates, importance sampling using the optimal
drift, and two combinations of importance sampling with stratified sampling
using either the optimal drift µ or the optimal eigenvector vj∗ for the strat-
ification direction. Calculation of the optimal eigenvector requires numerical
calculation of the Hessian. The table (from [140]) displays estimated variance
ratios based on 50,000 paths per method. The last two columns are based on
100 strata. The table indicates that importance sampling is most effective for
deep out-of-the-money caplets, precisely where antithetics become least effec-
tive. Both strategies for stratification produce substantial additional variance
reduction in these examples.

IS & IS &
T K Antithetics IS Strat. (µ) Strat. (vj∗)

2.5 0.04 8 8 246 248
0.07 1 16 510 444
0.10 1 173 3067 2861

5.0 0.04 4 8 188 211
0.07 1 11 241 292
0.10 1 27 475 512

10.0 0.04 4 7 52 141
0.07 1 8 70 185
0.10 1 12 110 244

15.0 0.04 4 5 15 67
0.07 2 6 22 112
0.10 1 8 31 158

Table 4.6. Estimated variance ratios for caplets in three-factor HJM model.

Further numerical results for other interest rate derivatives are reported
in GHS [140]. As in Table 4.6, the greatest variance reduction typically occurs
for out-of-the-money options. The combination of importance sampling with
stratification is less effective for options with discontinuous payoffs; a specific
example of this in [140] is a “flex cap,” in which only a subset of the caplets
in a cap make payments even if all expire in-the-money.

In a complex, high-dimensional setting like an HJM model, the computa-
tional overhead involved in finding the optimal path or the optimal eigenvector
can become substantial. These are fixed costs, in the sense that these calcu-
lations need only be done once for each pricing problem rather than once for
each path simulated. In theory, as the number of paths increases (which is to
say as the required precision becomes high), any fixed cost eventually becomes
negligible, but this may not be relevant for practical sample sizes.

GHS [140] develop approximations to reduce the computational overhead
in the optimization and eigenvector calculations. These approximations are
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based on assuming that the optimal drift (or optimal eigenvector) are piece-
wise linear between a relatively small number of nodes. This reduces the di-
mension of the problem. Consider, for example, the computation of a 120-
dimensional optimal drift consisting of three 40-dimensional segments. Mak-
ing a piecewise linear approximation to each segment based on four nodes per
segment reduces the problem to one of optimizing over the 12 nodes rather
than all 120 components of the vector. Figure 4.15 illustrates the results of
this approach in finding both the optimal drift and the optimal eigenvector for
a ten-year caplet with a 7% strike. These calculations are explained in detail
in GHS [140]. The figure suggests that the approach is quite effective. Simu-
lation results reported in [140] based on using these approximations confirm
the viability of the approach.
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Fig. 4.15. Optimal drift (left) and eigenvector (right) calculated using a piecewise
linear approximation with three or four nodes per segment.

4.7 Concluding Remarks

It is easier to survey the topic of variance reduction than to answer the ques-
tion that brings a reader to such a survey: “Which technique should I use?”
There is rarely a simple answer to this question. The most effective applica-
tions of variance reduction techniques take advantage of an understanding of
the problem at hand. The choice of technique should depend on the avail-
able information and on the time available to tailor a general technique to a
particular problem. An understanding of the strengths and weaknesses of al-
ternative methods and familiarity with examples of effective applications are
useful in choosing a technique.

Figure 4.16 provides a rough comparison of several techniques discussed in
this chapter. The figure positions the methods according to their complexity
and shows a range of typical effectiveness for each. We have not given the
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axes units or scales, nor have we defined what they mean or what counts as
typical; the figure should clearly not be taken literally or too seriously. We
include it to highlight some differences among the methods in the types of
implementations and applications discussed in this chapter.
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Fig. 4.16. Schematic comparison of some variance reduction techniques

The effectiveness of a method is the efficiency improvement it brings in
the sense discussed in Section 1.1.3. Effectiveness below the horizontal axis
in the figure is detrimental — worse than not using any variance reduction
technique. In the complexity of a method we include the level of effort and
detailed knowledge required for implementation. We now explain the positions
of the methods in the figure:

◦ Antithetic sampling requires no specific information about a simulated
model and is trivial to implement. It rarely provides much variance re-
duction. It can be detrimental (as explained in Section 4.2), but such cases
are not common.

◦ Control variates and methods for matching underlying assets (including
path adjustments and weighted Monte Carlo) give similar results. Of these
methods, control variates are usually the easiest to implement and the best
understood. Finding a good control requires knowing something about the
simulated model — but not too much. A control variate implemented with
an optimal coefficient is guaranteed not to increase variance. When the op-
timal coefficient is estimated rather than known, it is theoretically possible
for a control variate to be detrimental at very small sample sizes, but this
is not a practical limitation of the method.

◦ We have positioned stratified sampling at a higher level of complexity be-
cause we have in mind examples like those in Section 4.3.2 where the strat-
ification variable is tailored to the model. In contrast, stratifying a uniform
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distribution (as in Example 4.3.1) is trivial but not very effective by itself.
Using a variable for stratification requires knowing its distribution whereas
using it as a control only requires knowing its mean. Stratified sampling is
similar to using the distribution (more precisely, the stratum probabilities)
as controls and is thus more powerful than using just the mean. With a
proportional allocation, stratified sampling never increases variance; using
any other allocation may be viewed as a form of importance sampling.

◦ We have omitted Latin hypercube sampling from the figure. As a general-
ization of stratified sampling, it should lie upwards and to the right of that
method. But a generic application of Latin hypercube sampling (in which
the marginals simply correspond to the uniform random variables used to
drive a simulation) is often both easier to implement and less effective than
a carefully designed one-dimensional stratification. A problem for which a
generic application of Latin hypercube sampling is effective, is also a good
candidate for the quasi-Monte Carlo methods discussed in Chapter 5.

◦ As emphasized in the figure, importance sampling is the most delicate of
the methods discussed in this chapter. It has the capacity to exploit detailed
knowledge about a model (often in the form of asymptotic approximations)
to produce orders of magnitude variance reduction. But if the importance
sampling distribution is not chosen carefully, this method can also increase
variance. Indeed, it can even produce infinite variance.

There are counterexamples to nearly any general statement one could make
comparing variance reduction techniques and one could argue against any of
the comparisons implied by Figure 4.16. Nevertheless, we believe these com-
parisons to be indicative of what one finds in applying variance reduction
techniques to the types of models and problems that arise in financial engi-
neering.

We close this section with some further references to the literature on vari-
ance reduction. Glynn and Iglehart [156] survey the application of variance
reduction techniques in queueing simulations and discuss some techniques
not covered in this chapter. Schmeiser, Taaffe, and Wang [318] analyze biased
control variates with coefficients chosen to minimize root mean square error;
this is relevant to, e.g., Example 4.1.3 and to settings in which the mean of
a control variate is approximated using a binomial lattice. The conditional
sampling methods of Cheng [81, 82] are relevant to the methods discussed
in Sections 4.3.2 and 4.5.1. Hesterberg [177] and Owen and Zhou [292] pro-
pose defensive forms of importance sampling that mix an aggressive change
of distribution with a more conservative one to bound the worst-case vari-
ance. Dupuis and Wang [108] show that a dynamic exponential change of
measure — in which the twisting parameter is recomputed at each step —
can outperform a static twist. An adaptive importance sampling method for
Markov chains is shown in Kollman et al. [214] to converge exponentially fast.
An importance sampling method for stochastic volatility models is developed
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in Fournié, Lasry, and Touzi [125]. Schoenmakers and Heemink [319] apply
importance sampling for derivatives pricing through an approximating PDE.

Shahabuddin [327] uses rare-transition asymptotics to develop an impor-
tance sampling procedure for reliability systems; see Heidelberger [175] and
Shahabuddin [328] for more on this application area. Asmussen and Bin-
swanger [22], Asmussen, Binswanger, and Højgaard [23], and Juneja and Sha-
habuddin [206] address difficulties in applying importance sampling to heavy-
tailed distributions; see also Section 9.3.

Avramidis and Wilson [30] and Hesterberg and Nelson [178] analyze vari-
ance reduction techniques for quantile estimation. We return to this topic in
Chapter 9.

Among the techniques not discussed in this chapter is conditional Monte
Carlo, also called Rao-Blackwellization. This method replaces an estimator by
its conditional expectation. Asmussen and Binswanger [22] give a particularly
effective application of this idea to an insurance problem; Fox and Glynn [129]
combine it with other techniques to estimate infinite horizon discounted costs;
Boyle et al. [53] give some applications in option pricing.



5

Quasi-Monte Carlo

This chapter discusses alternatives to Monte Carlo simulation known as quasi-
Monte Carlo or low-discrepancy methods. These methods differ from ordinary
Monte Carlo in that they make no attempt to mimic randomness. Indeed,
they seek to increase accuracy specifically by generating points that are too
evenly distributed to be random. Applying these methods to the pricing of
derivative securities requires formulating a pricing problem as the calculation
of an integral and thus suppressing its stochastic interpretation as an expected
value. This contrasts with the variance reduction techniques of Chapter 4,
which take advantage of the stochastic formulation to improve precision.

Low-discrepancy methods have the potential to accelerate convergence
from the O(1/

√
n) rate associated with Monte Carlo (n the number of paths

or points generated) to nearly O(1/n) convergence: under appropriate con-
ditions, the error in a quasi-Monte Carlo approximation is O(1/n1−ε) for all
ε > 0. Variance reduction techniques, affecting only the implicit constant in
O(1/

√
n), are not nearly so ambitious. We will see, however, that the ε in

O(1/n1−ε) hides a dependence on problem dimension.
The tools used to develop and analyze low-discrepancy methods are very

different from those used in ordinary Monte Carlo, as they draw on number
theory and abstract algebra rather than probability and statistics. Our goal
is therefore to present key ideas and methods rather than an account of the
underlying theory. Niederreiter [281] provides a thorough treatment of the
theory.

5.1 General Principles

This section presents definitions and results from the theory of quasi-Monte
Carlo (QMC) methods. It is customary in this setting to focus on the problem
of numerical integration over the unit hypercube. Recall from Section 1.1 and
the many examples in Chapter 3 that each replication in a Monte Carlo simu-
lation can be interpreted as the result of applying a series of transformations
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(implicit in the simulation algorithm) to an input sequence of independent
uniformly distributed random variables U1, U2, . . .. Suppose there is an up-
per bound d on the number of uniforms required to produce a simulation
output and let f(U1, . . . , Ud) denote this output. For example, f may be the
result of transformations that convert the Ui to normal random variables,
the normal random variables to paths of underlying assets, and the paths to
the discounted payoff of a derivative security. We suppose the objective is to
calculate

E[f(U1, . . . , Ud)] =
∫

[0,1)d

f(x) dx. (5.1)

Quasi-Monte Carlo approximates this integral using∫
[0,1)d

f(x) dx ≈ 1
n

n∑
i=1

f(xi), (5.2)

for carefully (and deterministically) chosen points x1, . . . , xn in the unit hy-
percube [0, 1)d.

A few issues require comment:

◦ The function f need not be available in any explicit form; we merely require
a method for evaluating f , and this is what a simulation algorithm does.

◦ Whether or not we include the boundary of the unit hypercube in (5.1) and
(5.2) has no bearing on the value of the integral and is clearly irrelevant
in ordinary Monte Carlo. But some of the definitions and results in QMC
require care in specifying the set to which points on a boundary belong. It
is convenient and standard to take intervals to be closed on the left and
open on the right, hence our use of [0, 1)d as the unit hypercube.

◦ In ordinary Monte Carlo simulation, taking a scalar i.i.d. sequence of uni-
forms U1, U2, . . . and forming vectors (U1, . . . , Ud), (Ud+1, . . . , U2d), . . . pro-
duces an i.i.d. sequence of points from the d-dimensional hypercube. In
QMC, the construction of the points xi depends explicitly on the dimen-
sion of the problem — the vectors xi in [0, 1)d cannot be constructed by
taking sets of d consecutive elements from a scalar sequence.

The dependence of QMC methods on problem dimension is one of the
features that most distinguishes them from Monte Carlo. If two different
Monte Carlo algorithms corresponding to functions f : [0, 1)d1 → � and
g : [0, 1)d2 → � resulted in f(U1, . . . , Ud1) and g(U1, . . . , Ud2) having the
same distribution, then these two algorithms would have the same bias and
variance properties. The preferred algorithm would be the one requiring less
time to evaluate; the dimensions d1, d2 would be irrelevant except to the
extent that they affect the computing times. In ordinary Monte Carlo one
rarely even bothers to think about problem dimension, whereas in QMC the
dimension must be identified explicitly before points can be generated. Lower-
dimensional representations generally result in smaller errors. For some Monte
Carlo algorithms, there is no upper bound d on the number of input uniforms
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required per output; this is true, for example, of essentially all simulations
using acceptance-rejection methods, as noted in Section 2.2.2. Without an
upper bound d, QMC methods are inapplicable.

For the rest of this chapter, we restrict attention to problems with a finite
dimension d and consider approximations of the form in (5.2). The goal of
low-discrepancy methods is to construct points xi that make the error in
(5.2) small for a large class of integrands f . It is intuitively clear (and, as
we will see, correct in a precise sense) that this is equivalent to choosing the
points xi to fill the hypercube uniformly.

5.1.1 Discrepancy

A natural first attempt at filling the hypercube uniformly would choose the
xi to lie on a grid. But grids suffer from several related shortcomings. If the
integrand f is nearly a separable function of its d arguments, the informa-
tion contained in the values of f at nd grid points is nearly the same as the
information in just nd of these values. A grid leaves large rectangles within
[0, 1)d devoid of any points. A grid requires specifying the total number of
points n in advance. If one refines a grid by adding points, the number of
points that must be added to reach the next favorable configuration grows
very quickly. Consider, for example, a grid constructed as the Cartesian prod-
uct of 2k points along each of d dimensions for a total of 2kd points. Now
refine the grid by adding a point in each gap along each dimension; i.e., by
doubling the number of points along each dimension. The total number of
points added to the original grid to reach the new grid is 2(k+1)d − 2kd, which
grows very quickly with k. In contrast, there are low-discrepancy sequences
with guarantees of uniformity over bounded-length extensions of an initial
segment of the sequence.

To make these ideas precise, we need a precise notion of uniformity — or
rather deviation from uniformity, which we measure through various notions of
discrepancy. Given a collection A of (Lebesgue measurable) subsets of [0, 1)d,
the discrepancy of the point set {x1, . . . , xn} relative to A is

D(x1, . . . , xn;A) = sup
A∈A

∣∣∣∣#{xi ∈ A}
n

− vol(A)
∣∣∣∣ . (5.3)

Here, #{xi ∈ A} denotes the number of xi contained in A and vol(A) denotes
the volume (measure) of A. Thus, the discrepancy is the supremum over errors
in integrating the indicator function of A using the points x1, . . . , xn. (In all
interesting cases the xi are distinct points, but to cover the possibility of
duplication, count each point according to its multiplicity in the definition of
discrepancy.)

Taking A to be the collection of all rectangles in [0, 1)d of the form

d∏
j=1

[uj , vj), 0 ≤ uj < vj ≤ 1,
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yields the ordinary (or extreme) discrepancy D(x1, . . . , xn). Restricting A to
rectangles of the form

d∏
j=1

[0, uj) (5.4)

defines the star discrepancy D∗(x1, . . . , xn). The star discrepancy is obviously
no larger than the ordinary discrepancy; Niederreiter [281], Proposition 2.4,
shows that

D∗(x1, . . . , xn) ≤ D(x1, . . . , xn) ≤ 2dD∗(x1, . . . , xn),

so for fixed d the two quantities have the same order of magnitude.
Requiring each of these discrepancy measures to be small is consistent with

an intuitive notion of uniformity. However, both measures focus on products
of intervals and ignore, for example, a rotated subcube of the unit hypercube.
If the integrand f represents a simulation algorithm, the coordinate axes may
not be particularly meaningful. The asymmetry of the star discrepancy may
seem especially odd: in a Monte Carlo simulation, we could replace any uni-
form input Ui with 1−Ui and thus interchange 0 and 1 along one coordinate.
If, as may seem more natural, we take A to be all convex subsets of [0, 1]d, we
get the isotropic discrepancy; but the magnitude of this measure can be as
large as the dth root of the ordinary discrepancy (see p.17 of Niederreiter [281]
and Chapter 3 of Matous̆ek [256]). We return to this point in Section 5.1.3.

We will see in Section 5.1.3 that these notions of discrepancy are indeed
relevant to measuring the approximation error in (5.2). It is therefore sensible
to look for points that achieve low values of these discrepancy measures, and
that is what low-discrepancy methods do.

In dimension d = 1, Niederreiter [281], pp.23–24, shows that

D∗(x1, . . . , xn) ≥ 1
2n

, D(x1, . . . , xn) ≥ 1
n

, (5.5)

and that in both cases the minimum is attained by

xi =
2i − 1

2n
, i = 1, . . . , n. (5.6)

For this set of points, (5.2) reduces to the midpoint rule for integration over
the unit interval. Notice that (5.6) does not define the first n points of an
infinite sequence; in fact, the set of points defined by (5.6) has no values in
common with the corresponding set for n + 1.

Suppose, in contrast, that we fix an infinite sequence x1, x2, . . . of points
in [0, 1) and measure the discrepancy of the first n points. From the perspec-
tive of numerical integration, this is a more relevant case if we hope to be
able to increase the number of points in an approximation of the form (5.2).
Niederreiter [281], p.24, cites references showing that in this case
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D(x1, . . . , xn) ≥ D∗(x1, . . . , xn) ≥ c log n

n

for infinitely many n, with c a constant. This situation is typical of low-
discrepancy methods, even in higher dimensions: one can generally achieve a
lower discrepancy by fixing the number of points n in advance; using the first
n points of a sequence rather than a different set of points for each n typically
increases discrepancy by a factor of log n.

Much less is known about the best possible discrepancy in dimensions
higher than 1. Niederreiter [281], p.32, states that “it is widely believed” that
in dimensions d ≥ 2, any point set x1, . . . , xn satisfies

D∗(x1, . . . , xn) ≥ cd
(log n)d−1

n

and the first n elements of any sequence x1, x2, . . . satisfy

D∗(x1, . . . , xn) ≥ c′d
(log n)d

n
,

for constants cd, c′d depending only on the dimension d. These order-of-
magnitude discrepancies are achieved by explicit constructions (discussed in
Section 5.2). It is therefore customary to reserve the informal term “low-
discrepancy” for methods that achieve a star discrepancy of O((log n)d/n).
The logarithmic term can be absorbed into any power of n, allowing the
looser bound O(1/n1−ε), for all ε > 0.

Although any power of log n eventually becomes negligible relative to n,
this asymptotic property may not be relevant at practical values of n if d is
large. Accordingly, QMC methods have traditionally been characterized as ap-
propriate only for problems of moderately high dimension, with some authors
putting the upper limit at 40 dimensions, others putting it as low as 12 or 15.
But in many recent applications of QMC to problems in finance, these meth-
ods have been found to be effective in much higher dimensions. We present
some evidence of this in Section 5.5 and comment further in Section 5.6.

5.1.2 Van der Corput Sequences

Before proceeding with a development of further theoretical background, we
introduce a specific class of one-dimensional low-discrepancy sequences called
Van der Corput sequences. In addition to illustrating the general notion of
discrepancy, this example provides the key element of many multidimensional
constructions.

By a base we mean an integer b ≥ 2. Every positive integer k has a unique
representation (called its base-b or b-ary expansion) as a linear combination
of nonnegative powers of b with coefficients in {0, 1, . . . , b − 1}. We can write
this as
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k =
∞∑

j=0

aj(k)bj , (5.7)

with all but finitely many of the coefficients aj(k) equal to zero. The radical
inverse function ψb maps each k to a point in [0, 1) by flipping the coefficients
of k about the base-b “decimal” point to get the base-b fraction .a0a1a2 . . ..
More precisely,

ψb(k) =
∞∑

j=0

aj(k)
bj+1

. (5.8)

The base-b Van der Corput sequence is the sequence 0 = ψb(0), ψb(1), ψb(2),
. . . . Its calculation is illustrated in Table 5.1 for base 2.

k k Binary ψ2(k) Binary ψ2(k)

0 0 0 0
1 1 0.1 1/2
2 10 0.01 1/4
3 11 0.11 3/4
4 100 0.001 1/8
5 101 0.101 5/8
6 110 0.011 3/8
7 111 0.111 7/8

Table 5.1. Illustration of radical inverse function ψb in base b = 2.

Figure 5.1 illustrates how the base-2 Van der Corput sequence fills the
unit interval. The kth row of the array in the figure shows the first k nonzero
elements of the sequence; each row refines the previous one. The evolution of
the point set is exemplified by the progression from the seventh row to the last
row, in which the “sixteenths” are filled in. As these points are added, they
appear on alternate sides of 1/2: first 1/16, then 9/16, then 5/16, and so on.
Those that are added to the left of 1/2 appear on alternate sides of 1/4: first
1/16, then 5/16, then 3/16, and finally 7/16. Those on the right side of 1/2
similarly alternate between the left and right sides of 3/4. Thus, while a naive
refinement might simply insert the new values in increasing order 1/16, 3/16,
5/16,. . . , 15/16, the Van der Corput inserts them in a maximally balanced
way.

The effect of the size of the base b can be seen by comparing Figure 5.1
with the Van der Corput sequence in base 16. The first 15 nonzero elements
of this sequence are precisely the values appearing the last row of Figure 5.1,
but now they appear in increasing order. The first seven values of the base-16
sequence are all between 0 and 1/2, whereas those of the base-2 sequence are
spread uniformly over the unit interval. The larger the base, the greater the
number of points required to achieve uniformity.
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Fig. 5.1. Illustration of the Van der Corput sequence in base 2. The kth row of this
array shows the first k nonzero elements of the sequence.

Theorem 3.6 of Niederreiter [281] shows that all Van der Corput sequences
are low-discrepancy sequences. More precisely, the star discrepancy of the
first n elements of a Van der Corput sequence is O(log n/n), with an implicit
constant depending on the base b.

5.1.3 The Koksma-Hlawka Bound

In addition to their intuitive appeal as indicators of uniformity, discrepancy
measures play a central role in bounding the error in the approximation (5.2).
The key result in this direction is generally known as the Koksma-Hlawka
inequality after a one-dimensional result published by Jurjen Koksma in 1942
and its generalization by Edmund Hlawka in 1961. This result bounds the
integration error in (5.2) by the product of two quantities, one depending
only on the integrand f , the other — the star discrepancy of x1, . . . , xn —
depending only on the point set used.

Finite Variation

The bound depends on the integrand f through its Hardy-Krause variation,
which we now define, following Niederreiter [281]. For this we need f defined
(and finite) on the closed unit hypercube [0, 1]d. Consider a rectangle of the
form
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J = [u−
1 , u+

1 ] × [u−
2 , u+

2 ] × · · · × [u−
d , u+

d ],

with 0 ≤ u−
i ≤ u+

i ≤ 1, i = 1, . . . , d. Each vertex of J has coordinates of
the form u±

i . Let E(J) be the set of vertices of J with an even number of +
superscripts and let O(J) contain those with an odd number of + superscripts.
Define

∆(f ; J) =
∑

u∈E(J)

f(u) −
∑

u∈O(J)

f(u);

this is the sum of f(u) over the vertices of J with function values at adjacent
vertices given opposite signs.

The unit hypercube can be partitioned into a set P of rectangles of the
form of J . Letting P range over all such partitions, define

V (d)(f) = sup
P

∑
J∈P

|∆(f ; J)|.

This is a measure of the variation of f . Niederreiter [281, p.19] notes that

V (d)(f) =
∫ 1

0

· · ·
∫ 1

0

∣∣∣∣ ∂df

∂u1 · · · ∂ud

∣∣∣∣ du1 · · ·dud,

if the partial derivative is continuous over [0, 1]d. This expression makes the
interpretation of V (d) more transparent, but it should be stressed that f need
not be differentiable for V (d)(f) to be finite.

For any 1 ≤ k ≤ d and any 1 ≤ i1 < i2 < · · · < ik ≤ d, consider the
function on [0, 1]k defined by restricting f to points (u1, . . . , ud) with uj = 1
if j ∈ {i1, . . . , ik} and (ui1 , . . . , uik

) ranging over all of [0, 1]k. Denote by
V (k)(f ; i1, . . . , ik) the application of V (k) to this function. Finally, define

V (f) =
d∑

k=1

∑
1≤i1<···<ik≤d

V (k)(f ; i1, . . . , ik). (5.9)

This is the variation of f in the sense of Hardy and Krause.
We can now state the Koksma-Hlawka bound: if the function f has finite

Hardy-Krause variation V (f), then for any x1, . . . , xn ∈ [0, 1)d,∣∣∣∣∣ 1n
n∑

i=1

f(xi) −
∫

[0,1]d
f(u) du

∣∣∣∣∣ ≤ V (f)D∗(x1, . . . , xn). (5.10)

As promised, this result bounds the integration error through the product of
two terms. The first term is a measure of the variation of the integrand; the
second term is a measure of the deviation from uniformity of the points at
which the integrand is evaluated.

Theorem 2.12 of Niederreiter [281] shows that (5.10) is a tight bound in
the sense that for each x1, . . . , xn and ε > 0 there is a function f for which the
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error on the left comes within ε of the bound on the right. The function can
be chosen to be infinitely differentiable, so in this sense (5.10) is tight even
for very smooth functions.

It is natural to contrast the Koksma-Hlwaka inequality with the error
information available in ordinary Monte Carlo. To this end, let U, U1, U2, . . . be
independent and uniformly distributed over the d-dimensional unit hypercube
and let σ2

f = Var[f(U)]. From the central limit theorem, we know that∣∣∣∣∣ 1n
n∑

i=1

f(Ui) −
∫

[0,1]d
f(u) du

∣∣∣∣∣ ≤ zδ/2
σf√
n

, (5.11)

with probability approximately equal to 1− δ, with −zδ/2 the δ/2 quantile of
the standard normal distribution. From Chebyshev’s inequality we know that
for any δ > 0, ∣∣∣∣∣ 1n

n∑
i=1

f(Ui) −
∫

[0,1]d
f(u) du

∣∣∣∣∣ ≤ σf√
δn

, (5.12)

with probability at least 1−δ. The following observations are relevant in com-
paring the quasi-Monte Carlo and ordinary Monte Carlo error information:

◦ The Koksma-Hlawka inequality (5.10) provides a strict bound on the inte-
gration error, whereas (5.11) and (5.12) are probabilistic bounds and (5.11)
requires n to be large. In both (5.11) and (5.12) we may, however, choose
δ > 0 to bring the probability 1 − δ arbitrarily close to 1.

◦ Both of the terms V (f) and D∗(x1, . . . , xn) appearing in the Koksma-
Hlawka inequality are difficult to compute — potentially much more so
than the integral of f . In contrast, the unknown parameter σf in (5.11) and
(5.12) is easily estimated from f(U1), . . . , f(Un) with negligible additional
computation.

◦ In cases where V (f) and D∗(x1, . . . , xn) are known, the Koksma-Hlawka
bound is often found to grossly overestimate the true error of integration.
In contrast, the central limit theorem typically provides a sound and infor-
mative measure of the error in a Monte Carlo estimate.

◦ The condition that V (f) be finite is restrictive. It requires, for example, that
f be bounded, a condition often violated in option pricing applications.

In light of these observations, it seems fair to say that despite its theoret-
ical importance the Koksma-Hlawka inequality has limited applicability as a
practical error bound. This is a shortcoming of quasi-Monte Carlo methods in
comparison to ordinary Monte Carlo methods, for which effective error infor-
mation is readily available. The most important consequence of the Koksma-
Hlawka inequality is that it helps guide the search for effective point sets and
sequences by making precise the role of discrepancy.

The Koksma-Hlawka inequality is the best-known example of a set of re-
lated results. Hickernell [181] generalizes the inequality by extending both the
star discrepancy and the Hardy-Krause variation using more general norms.
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One such bound uses an L2 discrepancy defined by replacing the maximum
absolute deviation in (5.3) with a root-mean-square deviation. An analog of
(5.10) then holds for this notion of discrepancy, with V (f) replaced by an L2

notion of variation. An advantage of the L2 discrepancy is that it is compar-
atively easy to calculate — through simulation, for example.

Integrands arising in derivative pricing applications sometimes vanish off
a subset of [0, 1)d (once formulated as functions on the hypercube) and may
be discontinuous at the boundary of this domain. This is typical of barrier op-
tions, for example. Such integrands usually have infinite variation, as explained
in Figure 5.2. The Koksma-Hlawka inequality is therefore uninformative for
a large class of interesting integrands. An important variant of (5.10), one
of several cited in Niederreiter [281], p.21, applies to integrals over arbitrary
convex subsets of the hypercube. Thus, if our integrand would have finite vari-
ation but for the presence of the indicator function of a convex set, this result
allows us to absorb the indicator into the integration domain and obtain a
bound on the integration error. However, the bound in this case involves the
isotropic discrepancy which, as we noted in Section 5.1.1, exhibits a much
stronger dependence on dimension.

This points to another limitation of the Koksma-Hlawka bound, at least
from the perspective of our intended application. The Koksma-Hlawka result
is oriented to the axes of the hypercube, through the definitions of both V (f)
and the star discrepancy. The indicator of a rectangle, for example, has finite
variation if the rectangle is parallel to the axes but infinite variation if the rec-
tangle is rotated, as illustrated in Figure 5.2. This focus on a particular choice
of coordinates seems unnatural if the function f is the result of transform-
ing a simulation algorithm into a function on the unit hypercube; dropping
this focus leads to much larger error bounds with a qualitatively different
dependence on dimension (cf. Matous̆ek [257]). In Section 5.5.2, we discuss
applications of QMC methods that take account of more specific features of
integrands f arising in derivative pricing applications.

5.1.4 Nets and Sequences

Despite its possible shortcomings as a practical bound on integration error,
the Koksma-Hlawka inequality (5.10) nevertheless suggests that constructing
point sets and sequences with low discrepancy is a fruitful approach for numer-
ical integration. A valuable tool for constructing and describing such point sets
is the notion of a (t, m, d)-net and a (t, d)-sequence introduced by Niederre-
iter [280], extending ideas developed in base 2 by Sobol’ [335]. These are more
commonly referred to as (t, m, s)-nets and (t, s)-sequences; the parameter s in
this terminology refers to the dimension, for which we have consistently used
d. Briefly, a (t, m, d)-net is a finite set of points in [0, 1)d possessing a degree
of uniformity quantified by t; a (t, d)-sequence is a sequence of points certain
segments of which form (t, m, d)-nets.
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Fig. 5.2. Variation of the indicator function of the shaded square. In the left panel,
each small box has a ∆(f ; J) value of zero except the one containing the corner of
the shaded square; the variation remains finite. In the right panel, each small box
has a |∆(f ; J)| value of 1, except the one on the corner. Because the boxes can be
made arbitrarily small, the indicator function on the right has infinite variation.

To formulate the defintions of these sets and sequences, we first need to
define a b-ary box, also called an elementary interval in base b, with b ≥ 2 an
integer. This is a subset of [0, 1)d of the form

d∏
i=1

[
ai

bji
,
ai + 1

bji

)
,

with ji ∈ {0, 1, . . .} and ai ∈ {0, 1, . . . , bji−1}. The vertices of a b-ary box thus
have coordinates that are multiples of powers of 1/b, but with restrictions. In
base 2, for example, [3/4, 1) and [3/4, 7/8) are admissible but [5/8, 7/8) is not.
The volume of a b-ary box is 1/bj1+···+jd .

For integers 0 ≤ t ≤ m, a (t, m, d)-net in base b is a set of bm points
in [0, 1)d with the property that exactly bt points fall in each b-ary box of
volume bt−m. Thus, the net correctly estimates the volume of each such b-ary
box in the sense that the fraction of points bt/bm that lie in the box equals
the volume of the box.

A sequence of points x1, x2, . . . in [0, 1)d is a (t, d)-sequence in base b if
for all m > t each segment {xi : jbm < i ≤ (j + 1)bm}, j = 0, 1, . . ., is a
(t, m, d)-net in base b.

In these definitions, it should be evident that smaller values of t are asso-
ciated with greater uniformity: with smaller t, even small b-ary boxes contain
the right number of points. It should also be clear that, other things be-
ing equal, a smaller base b is preferable because the uniformity properties
of (t, m, d)-nets and (t, d)-sequences are exhibited in sets of bm points. With
larger b, more points are required for these properties to hold.

Figure 5.3 displays two nets. The 81 (= 34) points in the left panel comprise
a (0, 4, 2)-net in base 3. Dotted lines in the figure show 3-ary boxes with
dimensions 1/9×1/9 and 1/27×1/3 containing one point each, as they must.
(For points on the boundaries, recall our convention that intervals are closed



292 5 Quasi-Monte Carlo

on the left and open on the right.) The right panel shows a (1, 7, 2)-net in
base 2 (with 27 = 128 points) that is not a (0, 7, 2)-net. The dotted lines in
the figure show that 2-ary boxes with area 1/64 contain two points, but they
also show boxes with dimensions 1/16 × 1/8 that do not contain any points.

Fig. 5.3. Left panel shows 81 points comprising a (0, 4, 2)-net in base 3. Right panel
shows 128 points comprising a (1, 7, 2)-net in base 2. Both include a point at the
origin.

Niederreiter [281] contains an extensive analysis of discrepancy bounds
for (t, m, d)-nets and (t, d)-sequences. Of his many results we quote just one,
demonstrating that (t, d)-sequences are indeed low-discrepancy sequences.
More precisely, Theorem 4.17 of Niederreiter [281] states that if x1, x2, . . .
is a (t, d)-sequence in base b, then for n ≥ 2,

D∗(x1, . . . , xn) ≤ C(d, b)bt (log n)d

n
+ O

(
bt(log n)d−1

n

)
. (5.13)

The factor C(d, b) (for which Niederreiter provides an explicit expression) and
the implicit constant in the O(·) term do not depend on n or t. Theorem 4.10
of Niederreiter [281] provides a similar bound for (t, m, d)-nets, but with each
exponent of log n reduced by 1.

In the next section, we describe several specific constructions of low-
discrepancy sequences. The simplest constructions, producing Halton se-
quences and Hammersley points, are the easiest to introduce, but they yield
neither (t, d)-sequences nor (t, m, d)-nets. Faure sequences are (0, d)-sequences
and thus optimize the uniformity parameter t; however, they require a base
at least as large as the smallest prime greater than or equal to the dimension
d. Sobol’ sequences use base 2 regardless of the dimension (which has compu-
tational as well as uniformity advantages) but their t parameter grows with
the dimension d.
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5.2 Low-Discrepancy Sequences

We turn now to specific constructions of low-discrepancy sequences in arbi-
trary dimension d. We provide algorithms for the methods we consider and
make some observations on the properties and relative merits of various se-
quences. All methods discussed in this section build on the Van der Corput
sequences discussed in Section 5.1.2.

5.2.1 Halton and Hammersley

Halton [165], extending work of Hammersley [168], provides the simplest con-
struction and first analysis of low-discrepancy sequences in arbitrary dimen-
sion d. The coordinates of a Halton sequence follow Van der Corput sequences
in distinct bases. Thus, let b1, . . . , bd be relatively prime integers greater than
1, and set

xk = (ψb1(k), ψb2(k), . . . , ψbd
(k)), k = 0, 1, 2, . . . , (5.14)

with ψb the radical inverse function defined in (5.8).
The requirement that the bi be relatively prime is necessary for the se-

quence to fill the hypercube. For example, the two-dimensional sequence de-
fined by b1 = 2 and b2 = 6 has no points in [0, 1/2) × [5/6, 1). Because we
prefer smaller bases to larger bases, we therefore take b1, . . . , bd to be the first
d prime numbers. The two-dimensional cases, using bases 2 and 3, is illus-
trated in Figure 5.4. With the convention that intervals are closed on the left
and open on the right, each cell in the figure contains exactly one point.

k ψ2(k) ψ3(k)

0 0 0
1 1/2 1/3
2 1/4 2/3
3 3/4 1/9
4 1/8 4/9
5 5/8 7/9
6 3/8 2/9
7 7/8 5/9
8 1/16 8/9
9 9/16 1/27

10 5/16 10/27
11 13/16 19/27

0 1/4 1/2 3/4 1

1/3

2/3

1

Fig. 5.4. First twelve points of two-dimensional Halton sequence.

A word about zero: Some properties of low-discrepancy sequences are most
conveniently stated by including a 0th point, typically zero itself, as in (5.14).
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When the points are fed into a simulation algorithm, there is often good reason
to avoid zero — for example, Φ−1(0) = −∞. In practice, we therefore omit it.
Depending on whether or not x0 is included, xk is either the kth or (k + 1)th
point in the sequence, but we always take xk to be the point constructed
from the integer k, as in (5.14). Omission of x0 has no bearing on asymptotic
properties.

Halton points form an infinite sequence. We can achieve slightly better
uniformity if we are willing to fix the number of points n in advance. The n
points {(

k/n, ψb1(k), . . . , ψbd−1(k)
)
, k = 0, 1, . . . , n − 1

}
with relatively prime b1, . . . , bd−1 form a Hammersley point set in dimension
d.

The star discrepancy of the first n Halton points in dimension d with
relatively prime bases b1, . . . , bd satisfies

D∗(x0, . . . , xn−1) ≤ Cd(b1, . . . , bd)
(log n)d

n
+ O

(
(log n)d−1

n

)
,

with Cd(b1, . . . , bd) independent of n; thus, Halton sequences are indeed low-
discrepancy sequences. The corresponding n-element Hammersley point set
satisfies

D∗(x0, . . . , xn−1) ≤ Cd−1(b1, . . . , bd−1)
(log n)d−1

n
+ O

(
(log n)d−2

n

)
.

The leading orders of magnitude in these bounds were established in Halton
[165] and subsequently refined through work reviewed in Niederreiter [281,
p.44].

A formula for Cd(b1, . . . , bd) is given in Niederreiter [281]. This upper
bound is minimized by taking the bases to be the first d primes. With Cd

denoting this minimizing value, Niederreiter [281], p.47, observes that

lim
d→∞

log Cd

d log d
= 1,

so the bounding constant Cd grows superexponentially. This indicates that
while the Halton and Hammersley points exhibit good uniformity for fixed d
as n increases, their quality degrades rapidly as d increases.

The deterioration of the Halton sequence and Hammersley points in high
dimensions follows from the behavior of the Van der Corput sequence with
a large base. The Van der Corput sequence in base b consists of consecutive
monotone segments of length b. If the base is large, the sequence produces long
monotone segments, and projections of a Halton sequence onto coordinates
using large bases will have long diagonal segments in the projected hypercube.

This pattern is illustrated in Figure 5.5, which shows two projections of
the first 1000 nonzero points of the Halton sequence in dimension 30. The left
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panel is the projection onto the first two coordinates, which use bases 2 and
3; the right panel is the projection onto the last two coordinates, which use
bases 109 and 113, the 29th and 30th prime numbers. The impact of increasing
the bases — and thus also of increasing the dimension — is evident from the
figure.

Fig. 5.5. First 1000 points of the Halton sequence in dimension 30. Left panel shows
projection onto first two coordinates (bases 2 and 3); right panel shows projection
onto last two coordinates (bases 109 and 113).

As a possible remedy for the problem illustrated in Figure 5.5, Kocis and
Whiten [213] suggest using a leaped Halton sequence

xk = (ψb1(k�), ψb2(k�), . . . , ψbd
(k�)), k = 0, 1, 2, . . . ,

for some integer � ≥ 2. They recommend choosing � to be relatively prime to
the bases b1, . . . , bd.

This idea is illustrated in Figure 5.6, where we have applied it to a two-
dimensional Halton sequence with bases 109 and 113, the same bases used
in the right panel of Figure 5.5. Each panel of Figure 5.6 shows 1000 points,
using leaps � = 3, � = 107 (the prime that precedes 109), and � = 127
(the prime that succeeds 113). The figures suggest that leaping can indeed
improve uniformity, but also that its effect is very sensitive to the choice of
leap parameter �.

The decline in uniformity of Halton sequences with increasing dimension is
inherent to their construction. Several studies have concluded through numeri-
cal experiments that Halton sequences are not competitive with other methods
in high dimensions; these studies include Fox [126], Kocis and Whiten [213],
and, in financial applications, Boyle et al. [53] and Paskov [295]. An excep-
tion is Morokoff and Caflisch [272], where Halton sequences are found to be
effective on a set of test problems; see also the comments of Matous̆ek [257,
p.543] supporting randomized Halton sequences.
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Fig. 5.6. First 1000 points of leaped Halton sequence with bases 109 and 113. From
left to right, the leap parameters are � = 3, � = 107, and � = 127.

Implementation

Generating Halton points is essentially equivalent to generating a Van der
Corput sequence, which in turn requires little more than finding base-b ex-
pansions. We detail these steps because they will be useful later as well.

Figure 5.7 displays an algorithm to compute the base-b expansion of an
integer k ≥ 0. The function returns an array a whose elements are the co-
efficients of the expansion ordered from most significant to least. Thus, B-
ARY(6,2) is (1, 1, 0) and B-ARY(135,10) is (1, 3, 5).

B-ARY(k, b)
a ← 0
if (k > 0)

jmax ← �log(k)/ log(b)�
a ← (0, 0, . . . , 0) [length jmax + 1]
q ← bjmax

for j = 1, . . . jmax + 1
a(j) ← �k/q�
k ← k − q ∗ a(j)
q ← q/b

return a

Fig. 5.7. Function B-ARY(k, b) returns coefficients of base-b expansion of integer k
in array a. Rightmost element of a is least significant digit in the expansion.

To generate elements xn1 , xn1+1, . . . , xn2 of the Van der Corput sequence
in base b, we need the expansions of k = n1, n1 +1, . . . , n2. But computing all
of these through calls to B-ARY is wasteful. Instead, we can use B-ARY to
expand n1 and then update the expansion recursively. A function NEXTB-
ARY that increments a base-b expansions by 1 is displayed in Figure 5.8.
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NEXTB-ARY(ain, b)
m ← length(ain), carry← TRUE
for i = m, . . . , 1

if carry
if (ain(i) = b − 1)

aout(i) ← 0
else

aout(i) ← ain(i) + 1
carry ← FALSE

else
aout(i) ← ain(i)

if carry aout ← (1,aout(1), . . . , aout(m))
return aout

Fig. 5.8. Function NEXTB-ARY(ain, b) returns coefficients of base-b expansion of
integer k + 1 in array aout, given coefficients for integer k in array ain.

Elements xn1 , . . . , xn2 of the base-b Van der Corput sequence can now be
calculated by making an initial call to B-ARY(n1, b) to get the coefficients of
the expansion of n1 and then repeatedly applying NEXTB-ARY to get sub-
sequent coefficients. If the array a for a point n has m elements, we compute
xn as follows:

xn ← 0, q ← 1/b
for j = 1, . . . , m

xn ← xn + q ∗ a(m − j + 1)
q ← q/b

This evaluates the radical-inverse function ψb. By applying the same procedure
with prime bases b1, . . . , bd, we construct Halton points in dimension d.

As noted by Halton [165], it is also easy to compute ψb(k + 1) recursively
from ψb(k) without explicitly calculating the base-b expansion of either k or
k +1. Halton and Smith [166] provide a numerically stable implementation of
this idea, also used in Fox [126]. We will, however, need the base-b expansions
for other methods.

5.2.2 Faure

We noted in the previous section that the uniformity of Halton sequences de-
grades in higher dimensions because higher-dimensional coordinates are con-
structed from Van der Corput sequences with large bases. In particular, the
dth coordinate uses a base at least as large as the dth prime, and this grows
superexponentially with d. Faure [116] developed a different extension of Van
der Corput sequences to multiple dimensions in which all coordinates use a
common base. This base must be at least as large as the dimension itself, but
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can be much smaller than the largest base used for a Halton sequence of equal
dimension.

In a d-dimensional Faure sequence, the coordinates are constructed by
permuting segments of a single Van der Corput sequence. For the base b we
choose the smallest prime number greater than or equal to d. As in (5.7), let
a	(k) denote the coefficients in the base-b expansion of k, so that

k =
∞∑

	=0

a	(k)b	. (5.15)

The ith coordinate, i = 1, . . . , d, of the kth point in the Faure sequence is
given by

∞∑
j=1

y
(i)
j (k)
bj

, (5.16)

where

y
(i)
j (k) =

∞∑
	=0

(
�

j − 1

)
(i − 1)	−j+1a	(k) mod b, (5.17)

with (
m

n

)
=
{

m!/(m − n)!n!, m ≥ n,
0, otherwise,

and 0! = 1.
Each of the sums in (5.15)–(5.17) has only a finite number of nonzero

terms. Suppose the base-b expansion of k in (5.15) has exactly r terms, mean-
ing that ar−1(k) = 0 and a	(k) = 0 for all � ≥ r. Then the summands in
(5.17) vanish for � ≥ r. If j ≥ r + 1, then the summands for � = 0, . . . , r − 1
also vanish, so y

(i)
j (k) = 0 if j ≥ r + 1, which implies that (5.16) has at most

r nonzero terms. The construction may thus be viewed as the result of the
matrix-vector calculation

y
(i)
1 (k)

y
(i)
2 (k)

...
y
(i)
r (k)

 = C(i−1)


a0(k)
a1(k)

...
ar−1(k)

 mod b, (5.18)

where C(i) is the r × r matrix with entries

C(i)(m, n) =
(

n − 1
m − 1

)
in−m (5.19)

for n ≥ m and zero otherwise. With the convention that 00 = 1 and 0j = 0 for
j > 0, this makes C(0) the identity matrix. (Note that in (5.18) the coefficients
ai(k) are ordered from least significant to most significant.)

These generator matrices have the following cyclic properties:
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C(i) = C(1)C(i−1), i = 1, 2, . . . ,

and for i ≥ 2, C(i) mod i is the identity matrix.
To see the effect of the transformations (5.16)–(5.17), consider the in-

tegers from 0 to br − 1. These are the integers whose base-b expansions
have r or fewer terms. As k varies over this range, the vector a(k) =
(a0(k), a1(k), . . . , ar−1(k))� varies over all br vectors with elements in the
set {0, 1, . . . , b − 1}. The matrices C(i) have the property that the product
C(i)a(k) (taken mod b) ranges over exactly the same set. In other words,

C(i)a(k) mod b, 0 ≤ k < br

is a permutation of a(k), 0 ≤ k < br. In fact, the same is true if we restrict k
to any range of the form jbr ≤ k < (j + 1)br, with 0 ≤ j ≤ b − 1. It follows
that the ith coordinate x

(i)
k of the points xk, for any such set of k, form a

permutation of the segment ψb(k), jbr ≤ k < (j + 1)br+1, of the Van der
Corput sequence.

As a simple illustration, consider the case r = 2 and b = 3. The generator
matrices are

C(1) =
(

1 1
0 1

)
, C(2) = C(1)C(1) =

(
1 2
0 1

)
.

For k = 0, 1, . . . , 8, the vectors a(k) are(
0
0

)
,

(
1
0

)
,

(
2
0

)
,

(
0
1

)
,

(
1
1

)
,

(
2
1

)
,

(
0
2

)
,

(
1
2

)
,

(
2
2

)
.

The vectors C(1)a(k) (mod b) are(
0
0

)
,

(
1
0

)
,

(
2
0

)
,

(
1
1

)
,

(
2
1

)
,

(
0
1

)
,

(
2
2

)
,

(
0
2

)
,

(
1
2

)
.

And the vectors C(2)a(k) (mod b) are(
0
0

)
,

(
1
0

)
,

(
2
0

)
,

(
2
1

)
,

(
0
1

)
,

(
1
1

)
,

(
1
2

)
,

(
2
2

)
,

(
0
2

)
.

Now we apply (5.16) to convert each of these sets of vectors into fractions, by
premultiplying each vector by (1/3, 1/9). Arranging these fractions into three
rows, we get

0 1/3 2/3 1/9 4/9 7/9 2/9 5/9 8/9
0 1/3 2/3 4/9 7/9 1/9 8/9 2/9 5/9
0 1/3 2/3 7/9 1/9 4/9 5/9 8/9 2/9

The first row gives the first nine elements of the base-3 Van der Corput se-
quence and the next two rows permute these elements. Finally, by taking each
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column in this array as a point in the three-dimensional unit hypercube, we
get the first nine points of the three-dimensional Faure sequence.

Faure [116] showed that the discrepancy of the d-dimensional sequence
constructed through (5.16)–(5.17) satisfies

D∗(x1, . . . , xn) = Fd
(log n)d

n
+ O

(
(log n)d−1

n

)
,

with Fd depending on d but not n; thus, Faure sequences are indeed low-
discrepancy sequences. In fact, Fd → 0 quickly as d → ∞, in marked contrast
to the increase in the constant for Halton sequences.

In the terminology of Section 5.1.4, Faure sequences are (0, d)-sequences
and thus achieve the best possible value of the uniformity parameter t. The
example in the left panel of Figure 5.3 is the projection onto dimensions two
and three of the first 81 points of the three-dimensional Faure sequence with
base 3.

As a consequence of the definition of a (t, d)-sequence, any set of Faure
points of the form {xk : jbm ≤ k < (j +1)bm} with 0 ≤ j ≤ b−1 and m ≥ 1 is
a (0, m, d)-net, which we call a Faure net. (Recall that x0 = 0.) The discussion
following (5.19) may then be summarized as stating that, over a Faure net,
all one-dimensional projections are the same, as each is a permutation of a
segment of the Van der Corput sequence.

The cyclic properties of the generator matrices C(i) have implications for
higher dimensional projections as well. The projection of the points in a Faure
net onto the ith and jth coordinates depends only on the distance j−i, modulo
the base b. Thus, if the dimension equals the base, the b(b−1) two-dimensional
projections comprise at most b − 1 distinct sets in [0, 1)2. If we identify sets
in [0, 1)2 that result from interchanging coordinates, then there are at most
(b − 1)/2 distinct projections. Similar conclusions hold for projections onto
more than two coordinates.

This phenomenon is illustrated in Figure 5.9, which is based on a Faure
net in base 31, the 961 points constructed from k = 5(31)2, . . . , 6(31)2 − 1.
The projection onto coordinates 1 and 2 is identical to the projection onto co-
ordinates 19 and 20. The projection onto coordinates 1 and 31 would look the
same as the other two if plotted with the axes interchanged because modulo
31, 1 is the successor of 31.

Implementation

The construction of Faure points builds on the construction of Van der Corput
sequences in Section 5.2.1. To generate the d coordinates of the Faure point xk

in base b, we record the base-b expansion of k in a vector, multiply the vector
(mod b) by a generator matrix, and then convert the resulting vector to a point
in the unit interval. We give a high-level description of an implementation,
omitting many programming details. Fox [126] provides FORTRAN code to
generate Faure points.
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Fig. 5.9. Projections of 961 Faure points in 31 dimensions using base 31. From
left to right, the figures show coordinates 1 and 2, 19 and 20, and 1 and 31. The
first two are identical; the third would look the same as the others if the axes were
interchanged.

A key step is the construction of the generator matrices (5.19). Because
these matrices have the property that C(i) is the ith power of C(1), it is
possible to construct just C(1) and then recursively evaluate products of the
form C(i)a as C(1)C(i−1)a. However, to allow extensions to more general
matrices, we do not take advantage of this in our implementation.

As noted by Fox [126] (for the case i = 1), in calculating the matrix
entries in (5.19), evaluation of binomial coefficients can be avoided through
the recursion (

n + 1
k + 1

)
=
(

n

k + 1

)
+
(

n

k

)
,

n ≥ k ≥ 0. Figure 5.10 displays a function FAUREMAT that uses this recur-
sion to construct C(i).

FAUREMAT(r, i)
C(1, 1) ← 1
for m = 2, . . . , r

C(m,m) ← 1
C(1, m) ← i ∗C(1, m − 1)

for n = 3, . . . , r
for m = 2, . . . , n − 1

C(m,n) = C(m − 1, n − 1) + i ∗ C(m,n − 1)
return C

Fig. 5.10. Function FAUREMAT(r, i) returns r × r generator matrix C(i).

The function FAUREPTS in Figure 5.11 uses FAUREMAT to generate
Faure points. The function takes as inputs the starting index n0, the total
number of points to generate npts, the dimension d, and the base b. The
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starting index n0 must be greater than or equal to 1 and the base b must be a
prime number at least as large as d. One could easily modify the function to
include an array of prime numbers to save the user from having to specify the
base. Calling FAUREPTS with n0 = 1 starts the sequence at the first nonzero
point. Fox [126] recommends starting at n0 = b4 − 1 to improve uniformity.

The advantage of generating npts points in a single call to the function lies
in constructing the generator matrices just once. In FAUREPTS, rmax is the
number of places in the base-b representation of n0 + npts − 1, so the largest
generator matrices needed are rmax × rmax. We construct these and then use
the submatrices needed to convert smaller integers. The variable r keeps track
of the length of the expansion a of the current integer k, so we use the first r
rows and columns of the full generator matrices to produce the required r× r
generator matrices. The variable r increases by one each time k reaches qnext,
the next power of b.

FAUREPTS(n0, npts, d, b)
nmax ← n0 + npts − 1, rmax ← 1 + �log(nmax)/ log(b)�
P ← 0 [nmax × d], y(1, . . . , rmax) ← 0
r ← 1 + �log(max(1, n0 − 1))/ log(b)�, qnext ← br

a ← B-ARY(n0 − 1, b, 1)
for i = 1, . . . , d − 1

C(i) ← FAUREMAT(rmax, i)
bpwrs ← (1/b, 1/b2, . . . , 1/brmax)
for k = n0, . . . , nmax

a ← NEXTB-ARY(a, b)
if (k = qnext)

r ← r + 1
qnext ← b ∗ qnext

for j = 1, . . . , r
P (k − n0 + 1, 1) ← P (k − n0 + 1, 1) + bpwrs(j) ∗ a(r − j + 1)

for i = 2, . . . , d
for m = 1, . . . , r

for n = 1, . . . , r

y(m) ← y(m) + C(i)(m, n) ∗ a(r − n + 1)
y(m) ← y(m) mod b
P (k − n0 + 1, i) ← P (k − n0 + 1, i) + bpwrs(m) ∗ y(m)
y(m) ← 0

return P

Fig. 5.11. Function FAUREPTS(n0, npts, d, b) returns npts×d array whose rows are
coordinates of d-dimensional Faure points in base b, starting from the n0th nonzero
point.
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The loop over m and n near the bottom of FAUREPTS executes the
matrix-vector product in (5.18). The algorithm traverses the elements of the
vector a from the highest index to the lowest because the variable a in the
algorithm is flipped relative to the vector of coefficients in (5.18). This re-
sults from a conflict in two notational conventions: the functions B-ARY and
NEXTB-ARY follow the usual convention of ordering digits from most signif-
icant to least, whereas in (5.18) and the surrounding discussion we prefer to
start with the least significant digit.

In FAUREPTS, we apply the mod-b operation only after multiplying each
vector of base-b coefficients by a generator matrix. We could also take the re-
mainder mod b after each multiplication of an element of C(i) by an element
of a, or in setting up the matrices C(i); indeed, we could easily modify FAU-
REMAT to return C(i) mod b by including b as an argument of that function.
Taking remainders at intermediate steps can eliminate problems from over-
flow, but requires additional calculation.

An alternative construction of Faure points makes it possible to replace the
matrix-vector product in (5.18) (the loop over m and n in FAUREPTS) with a
single vector addition. This alternative construction produces permutations of
Faure points, rather than the Faure points themselves. It relies on the notion
of a Gray code in base b; we return to it in the next section after a more
general discussion of Gray codes.

5.2.3 Sobol’

Sobol’ [335] gave the first construction of what is now known as a (t, d)-
sequence (he used the name LPτ -sequence). The methods of Halton and Ham-
mersley have low discrepancy, but they are not (t, d)-sequences or (t, m, d)-
nets. Sobol’s construction can be succinctly contrasted with Faure’s as fol-
lows: Whereas Faure points are (0, d)-sequences in a base at least as large
as d, Sobol’s points are (t, d)-sequences in base 2 for all d, with values of t
that depend on d. Faure points therefore achieve the best value of the uni-
formity parameter t, but Sobol’ points have the advantage of a much smaller
base. Working in base 2 also lends itself to computational advantages through
bit-level operations.

Like the methods of Halton, Hammersley, and Faure, Sobol’ points start
from the Van der Corput sequence, but now exclusively in base 2. The various
coordinates of a d-dimensional Sobol’ sequence result from permutations of
segments of the Van der Corput sequence. As in Section 5.2.2, these permu-
tations result from multiplying (binary) expansions of consecutive integers by
a set of generator matrices, one for each dimension. The key difference lies in
the construction of these generator matrices.

All coordinates of a Sobol’ sequence follow the same construction, but each
with its own generator. We may therefore begin by discussing the construction
of a single coordinate based on a generator matrix V. The elements of V are
equal to 0 or 1. Its columns are the binary expansions of a set of direction
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numbers v1, . . . , vr. Here, r could be arbitrarily large; in constructing the
kth point in the sequence, think of r as the number of terms in the binary
expansion of k. The matrix V will be upper triangular, so regardless of the
number of rows in the full matrix, it suffices to consider the square matrix
consisting of the first r rows and columns.

Let a(k) = (a0(k), . . . , ar−1(k))� denote the vector of coefficients of the
binary representation of k, so that

k = a0(k) + 2a1(k) + · · · + 2r−1ar−1(k).

Let 
y1(k)
y2(k)

...
yr(k)

 = V


a0(k)
a1(k)

...
ar−1(k)

 mod 2; (5.20)

then y1(k), . . . , yr(k) are coefficients of the binary expansion of the kth point
in the sequence; more explicitly,

xk =
y1(k)

2
+

y2(k)
4

+ · · · + yr(k)
2r

.

If V is the identity matrix, this produces the Van der Corput sequence in base
2.

The operation in (5.20) can be represented as

a0(k)v1 ⊕ a1(k)v2 ⊕ · · · ⊕ ar−1(k)vr, (5.21)

where the vj are the columns of (the r × r submatrix of) V and ⊕ denotes
binary addition,

0 ⊕ 0 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1, 1 ⊕ 1 = 0.

This formulation is useful in computer implementation. If we reinterpret vj

as the computer representation of a number (i.e., as a computer word of bits
rather than as an array) and implement ⊕ through a bitwise XOR operation,
then (5.21) produces the computer representation of xk.

We turn now to the heart of Sobol’s method, which is the specification of
the generator matrices — equivalently, of the direction numbers vj . We use
the same symbol vj to denote the number itself (a binary fraction) as we use
to denote the vector encoding its binary representation. For a d-dimensional
Sobol’ sequence we need d sets of direction numbers, one for each coordinate;
for simplicity, we continue to focus on a single coordinate.

Sobol’s method for choosing a set of direction numbers starts by selecting
a primitive polynomial over binary arithmetic. This is a polynomial

xq + c1x
q−1 + · · · + cq−1x + 1, (5.22)

with coefficients ci in {0, 1}, satisfying the following two properties (with
respect to binary arithmetic):
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◦ it is irreducible (i.e., it cannot be factored);
◦ the smallest power p for which the polynomial divides xp + 1 is p = 2q − 1.

Irreducibility implies that the constant term 1 must indeed be present as
implied by (5.22). The largest power q with a nonzero coefficient is the degree
of the polynomial. The polynomials

x + 1, x2 + x + 1, x3 + x + 1, x3 + x2 + 1

are all the primitive polynomials of degree one, two, or three.
Table 5.2 lists 53 primitive polynomials, including all those of degree 8 or

less. (A list of 360 primitive polynomials is included in the implementation
of Lemieux, Cieslak, and Luttmer [231].) Each polynomial in the table is en-
coded as the integer defined by interpreting the coefficients of the polynomial
as bits. For example, the integer 37 in binary is 100101, which encodes the
polynomial x5 + x2 + 1. Table 5.2 includes a polynomial of degree 0; this is
a convenient convention that makes the construction of the first coordinate
of a multidimensional Sobol’ sequence consistent with the construction of the
other coordinates.

Degree Primitive Polynomials

0 1
1 3 (x + 1)
2 7 (x2 + x + 1)
3 11 (x3 + x + 1), 13 (x3 + x2 + 1)
4 19, 25
5 37, 59, 47, 61, 55, 41
6 67, 97, 91, 109, 103, 115
7 131, 193, 137, 145, 143, 241, 157, 185, 167,

229, 171, 213, 191, 253, 203, 211, 239, 247
8 285, 369, 299, 425, 301, 361, 333, 357, 351,

501, 355, 397, 391, 451, 463, 487

Table 5.2. Primitive polynomials of degree 8 or less. Each number in the right
column, when represented in binary, gives the coefficients of a primitive polynomial.

The polynomial (5.22) defines a recurrence relation

mj = 2c1mj−1 ⊕22c2mj−2 ⊕· · ·⊕2q−1cq−1mj−q+1 ⊕2qmj−q ⊕mj−q. (5.23)

The mj are integers and ⊕ may again be interpreted either as binary addi-
tion of binary vectors (by identifying mj with its vector of binary coefficients)
or as bit-wise XOR applied directly to the computer representations of the
operands. By convention, the recurrence relation defined by the degree-0 poly-
nomial is mj ≡ 1. From the mj , the direction numbers are defined by setting

vj = mj/2j.
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For this to fully define the direction numbers we need to specify initial
values m1, . . . , mq for (5.23). A minimal requirement is that each initializing
mj be an odd integer less than 2j; all subsequent mj defined by (5.23) will
then share this property and each vj will lie strictly between 0 and 1. More
can be said about the proper initialization of (5.23); we return to this point
after considering an example.

Consider the primitive polynomial

x3 + x2 + 1

with degree q = 3. The recurrence (5.23) becomes

mj = 2mj−1 ⊕ 8mj−3 ⊕ mj−3

and suppose we initialize it with m1 = 1, m2 = 3, m3 = 3. The next two
elements in the sequence are as follows:

m4 = (2 · 3) ⊕ (8 · 1) ⊕ 1
= 0110 ⊕ 1000⊕ 0001
= 1111
= 15

m5 = (2 · 15) ⊕ (8 · 3) ⊕ 3
= 11110⊕ 11000⊕ 00011
= 00101
= 5

From these five values of mj , we can calculate the corresponding values of
vj by dividing by 2j. But dividing by 2j is equivalent to shifting the “binary
point” to the left j places in the representation of mj . Hence, the first five
direction numbers are

v1 = 0.1, v2 = 0.11, v3 = 0.011, v4 = 0.1111, v5 = 0.00101,

and the corresponding generator matrix is

V =


1 1 0 1 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 0
0 0 0 0 1

 . (5.24)

Observe that taking mj = 1, j = 1, 2, . . ., (i.e., using the degree-0 polynomial)
produces the identity matrix.

Finally, we illustrate the calculation of the sequence x1, x2, . . .. For each
k, we take the vector a(k) of binary coefficients of k and premultiply it (mod
2) by the matrix V. The resulting vector gives the coefficients of a binary
fraction. The first three vectors are
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V


1
0
0
0
0

 =


1
0
0
0
0

 , V


0
1
0
0
0

 =


1
1
0
0
0

 , V


1
1
0
0
0

 =


0
1
0
0
0

 ,

which produce the points 1/2, 3/4, and 1/4. For k = 29, 30, 31 (the last three
points that can be generated with a 5 × 5 matrix), we have

V


1
0
1
1
1

 =


0
0
1
1
1

 , V


0
1
1
1
1

 =


0
1
1
1
1

 , V


1
1
1
1
1

 =


1
1
1
1
1

 ,

which produce 7/32, 15/32, and 31/32.
Much as in the case of Faure points, this procedure produces a permutation

of the segment ψ2(k), 2r−1 ≤ k < 2r, of the Van der Corput sequence when
V is r × r. This crucial property relies on the fact that V was constructed
from a primitive polynomial.

Gray Code Construction

Antanov and Saleev [18] point out that Sobol’s method simplifies if the usual
binary representation a(k) is replaced with a Gray code representation. In a
Gray code, k and k+1 have all but one coefficient in common, and this makes
it possible to construct the values xk recursively.

One way to define a Gray code is to take the bitwise binary sum of the
usual binary representation of k, ar−1(k) · · · a1(k)a0(k), with the shifted string
0ar−1(k) · · · a1(k); in other words, take the ⊕-sum of the binary representa-
tions of k and �k/2�. This encodes the numbers 1 to 7 as follows:

1 2 3 4 5 6 7
Binary 001 010 011 100 101 110 111

Gray code 001 011 010 110 111 101 100

For example, the Gray code for 3 is calculated as 011⊕ 001.
Exactly one bit in the Gray code changes when k is incremented to k + 1.

The position of that bit is the position of the rightmost zero in the ordinary
binary representation of k, taking this to mean an initial zero if the binary
representation has only ones. For example, since the last bit of the binary
representation of 4 is zero, the Gray codes for 4 and 5 differ in the last bit.
Because the binary representation of 7 is displayed as 111, the Gray code for
8 differs from the Gray code for 7 through the insertion of an initial bit, which
would produce 1100.



308 5 Quasi-Monte Carlo

The binary strings formed by the Gray code representations of the integers
0, 1, . . . , 2r−1 are a permutation of the sequence of strings formed by the usual
binary representations of the same integers, for any r. If in the definition of the
radical inverse function ψ2 in (5.8) we replaced the usual binary coefficients
with Gray code coefficients, the first 2r − 1 values would be a permutation
of the corresponding elements of the Van der Corput sequence. Hence, the
two sequences have the same asymptotic discrepancy. Antanov and Saleev
[18] show similarly that using a Gray code with Sobol’s construction does not
affect the asymptotic discrepancy of the resulting sequence.

Suppose, then, that in (5.21) we replace the binary coefficients aj(k) with
Gray code coefficients gj(k) and redefine xk to be

xk = g0(k)v1 ⊕ g1(k)v2 ⊕ · · · ⊕ gr−1(k)vr .

Suppose that the Gray codes of k and k + 1 differ in the �th bit; then

xk+1 = g0(k + 1)v1 ⊕ g1(k + 1)v2 ⊕ · · · ⊕ gr−1(k + 1)vr

= g0(k)v1 ⊕ g1(k)v2 ⊕ · · · ⊕ (g	(k) ⊕ 1)v	 ⊕ · · · ⊕ gr−1(k)vr

= xk ⊕ v	. (5.25)

Rather than compute xk+1 from (5.21), we may thus compute it recursively
from xk through binary addition of a single direction number. The computer
implementations of Bratley and Fox [57] and Press et al. [299] use this formu-
lation.

It is worth noting that if we start the Sobol’ sequence at k = 0, we never
need to calculate a Gray code. To use (5.25), we need to know only �, the index
of the bit that would change if we calculated the Gray code. But, as explained
above, � is completely determined by the ordinary binary expansion of k. To
start the Sobol’ sequence at an arbitrary point xn, we need to calculate the
Gray code of n to initialize the recursion in (5.25).

The simplification in (5.25) extends to the construction of Faure points
in any arbitrary (prime) base b through an observation of Tezuka [348]. We
digress briefly to explain this extension. Let a0(k), a1(k), . . . , ar(k) denote the
coefficients in the base-b expansion of k. Setting

g0(k)
g1(k)

...
gr(k)

 =


1

b − 1 1
. . .

b − 1 1
b − 1 1




a0(k)
a1(k)

...
ar(k)

 mod b

defines a base-b Gray code, in the sense that the vectors thus calculated for
k and k + 1 differ in exactly one entry. The index of the entry that changes
is the smallest � for which a	(k) = b − 1 (padding the expansion of k with an
initial zero, if necessary, to ensure it has the same length as the expansion of
k + 1). Moreover, g	(k + 1) = g	(k) + 1 modulo b.
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This simplifies the Faure construction. Instead of defining the coefficients
y
(i)
j (k) through the matrix-vector product (5.18), we may set

(y(i)
1 (k + 1), . . . , y(i)

r (k + 1)) =

(y(i)
1 (k), . . . , y(i)

r (k)) + (C(i)(1, �), . . . ,C(i)(r, �)) mod b,

once � has been determined from the vector a(k). This makes it possible
to replace the loop over both m and n near the bottom of FAUREPTS in
Figure 5.11 with a loop over a single index. See Figure 5.13.

Choosing Initial Direction Numbers

In initializing the recurrence (5.23), we required only that each mj be an odd
integer less than 2j . But suppose we initialize two different sequences (corre-
sponding to two different coordinates of a d-dimensional sequence) with the
same values m1, . . . , mr. The first r columns of their generator matrices will
then also be the same. The kth value generated in a Sobol’ sequence depends
only on as many columns as there are coefficients in the binary expansion of
k; so, the first 2r − 1 values of the two sequences would be identical. Thus,
whereas the choice of initial values may not be significant in constructing a
one-dimensional sequence, it becomes important when d such sequences are
yoked together to make a d-dimensional sequence.

Sobol’ [336] provides some guidance for choosing initial values. He es-
tablishes two results on uniformity properties achieved by initial values sat-
isfying additional conditions. A d-dimensional sequence x0, x1, . . . satisfies
Sobol’s Property A if for every j = 0, 1, . . . exactly one of the points xk,
j2d ≤ k < (j + 1)2d falls in each of the 2d cubes of the form

d∏
i=1

[
ai

2
,
ai + 1

2

)
, ai ∈ {0, 1}.

The sequence satisfies Sobol’s Property A’ if for every j = 0, 1, . . . exactly one
of the points xk, j22d ≤ k < (j + 1)22d falls in each of the 22d cubes of the
form

d∏
i=1

[
ai

4
,
ai + 1

4

)
, ai ∈ {0, 1, 2, 3}.

These properties bear some resemblance to the definition of a (t, d)-sequence
but do not fit that definition because they restrict attention to specific equi-
lateral boxes.

Let v
(i)
j denote the jth direction number associated with the ith coordinate

of the sequence. The generator matrix of the ith sequence is then

V(i) = [v(i)
1 |v(i)

2 | · · · |v(i)
r ],
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where we again use v
(i)
j to denote the (column) vector of binary coefficients of

a direction number as well as the direction number itself. Sobol’ [336] shows
that Property A holds if and only if the determinant constructed from the
first d elements of the first row of each of the matrices satisfies∣∣∣∣∣∣∣∣∣∣

V(1)
11 V(1)

12 · · · V(1)
1d

V(2)
11 V(2)

12 · · · V(2)
1d

...
...

...
V(d)

11 V(d)
12 · · · V(d)

1d

∣∣∣∣∣∣∣∣∣∣
= 0 mod 2.

Property A applies to sets of size 2d and generating the first 2d points involves
exactly the first d columns of the matrices. Sobol’ also shows that Property
A’ holds if and only if the determinant constructed from the first 2d elements
of the first two rows of each of the matrices satisfies∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V(1)
11 V(1)

12 · · · V(1)
1,2d

...
...

...
V(d)

11 V(d)
12 · · · V(d)

1,2d

V(1)
21 V(1)

22 · · · V(1)
2,2d

...
...

...
V(d)

21 V(d)
22 · · · V(d)

2,2d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 mod 2.

To illustrate, suppose d = 3 and suppose the first three mj values for the
first three coordinates are as follows:

(m1, m2, m3) = (1, 1, 1), (m1, m2, m3) = (1, 3, 5), (m1, m2, m3) = (1, 1, 7).

The first coordinate has mj = 1 for all j. The second coordinate is generated
by a polynomial of degree 1, so all subsequent values are determined by m1;
and because the third coordinate is generated by a polynomial of degree 2,
that sequence is determined by the choice of m1 and m2.

From the first three mj values in each coordinate, we determine the ma-
trices

V(1) =

1 0 0
0 1 0
0 0 1

 , V(2) =

1 1 1
0 1 0
0 0 1

 , V(3) =

1 0 1
0 1 1
0 0 1

 .

From the first row of each of these we assemble the matrix

D =

1 0 0
1 1 1
1 0 1

 .

Because this matrix has a determinant of 1, Sobol’s Property A holds.
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The test matrix D can in fact be read directly from the mj values: Dij = 1
if the mj value for the ith coordinate is greater than or equal to 2j−1, and
Dij = 0 otherwise.

Table 5.3 displays initial values of the mj for up to 20 dimensions. Recall
that the number of initial values required equals the degree of the correspond-
ing primitive polynomial, and this increases with the dimension. The values
displayed in parentheses are determined by the initial values in each row.
The values displayed are from Bratley and Fox [57], who credit unpublished
work of Sobol’ and Levitan (also cited in Sobol’ [336]). These values satisfy
Property A; Property A’ holds for d ≤ 6.

m1 m2 m3 m4 m5 m6 m7 m8

1 1 (1) (1) (1) (1) (1) (1) (1)
2 1 (3) (5) (15) (17) (51) (85) (255)
3 1 1 (7) (11) (13) (61) (67) (79)
4 1 3 7 (5) (7) (43) (49) (147)
5 1 1 5 (3) (15) (51) (125) (141)
6 1 3 1 1 (9) (59) (25) (89)
7 1 1 3 7 (31) (47) (109) (173)
8 1 3 3 9 9 (57) (43) (43)
9 1 3 7 13 3 (35) (89) (9)

10 1 1 5 11 27 (53) (69) (25)
11 1 3 5 1 15 (19) (113) (115)
12 1 1 7 3 29 (51) (47) (97)
13 1 3 7 7 21 (61) (55) (19)
14 1 1 1 9 23 37 (97) (97)
15 1 3 3 5 19 33 (3) (197)
16 1 1 3 13 11 7 (37) (101)
17 1 1 7 13 25 5 (83) (255)
18 1 3 5 11 7 11 (103) (29)
19 1 1 1 3 13 39 (27) (203)
20 1 3 1 15 17 63 13 (65)

Table 5.3. Initial values satisfying Sobol’s Property A for up to 20 dimensions.
In each row, values in parentheses are determined by the previous values in the
sequence.

Bratley and Fox [57] include initializing values from the same source for up
to 40 dimensions. A remark in Sobol’ [336] indicates that the Sobol’-Levitan
values should satisfy Property A for up to 51 dimensions; however, we find (as
does Morland [270]) that this property does not consistently hold for d > 20.
More precisely, for d ranging from 21 to 40, we find that Property A holds only
at dimensions 23, 31, 33, 34, and 37. We have therefore limited Table 5.3 to the
first 20 dimensions. The complete set of values used by Bratley and Fox [57]
is in their FORTRAN program, available through the Collected Algorithms
of the ACM.
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Press et al. [299] give initializing values for up to six dimensions; their
values fail the test for Property A in dimensions three, five, and six. A further
distinction merits comment. We assume (as do Sobol’ [336] and Bratley and
Fox [57]) that the first coordinate uses mj ≡ 1; this makes the first generator
matrix the identity and thus makes the first coordinate the Van der Corput
sequence in base 2. We use the polynomial x + 1 for the second coordinate,
and so on. Press et al. [299] use x + 1 for the first coordinate. Whether or
not Property A holds for a particular set of initializing values depends on
whether the first row (with mj ≡ 1) of Table 5.3 is included. Thus, one
cannot interchange the initializing values used here with those used by Press
et al. [299] for the same primitive polynomial, even in cases where both satisfy
Property A.

The implementation of Lemieux, Cieslak, and Luttmer [231] includes ini-
tializing values for up to 360 dimensions. These values do not necessarily
satisfy Sobol’s property A, but they are the result of a search for good values
based on a resolution criterion used in design of random number generators.
See [231] and references cited there.

Discrepancy

In the terminology of Section 5.1.4, Sobol’ sequences are (t, d)-sequences in
base 2. The example in the right panel of Figure 5.3 is the projection onto
dimensions four and five of the first 128 points of a five-dimensional Sobol’
sequence.

Theorem 3.4 of Sobol’ [335] provides a simple expression for the t para-
meter in a d-dimensional sequence as

t = q1 + q2 + · · · + qd−1 − d + 1, (5.26)

where q1 ≤ q2 ≤ · · · ≤ qd−1 are the degrees of the primitive polynomials
used to construct coordinates 2 through d. Recall that the first coordinate
is constructed from the degenerate recurrence with mj ≡ 1, which may be
considered to have degree zero. If instead we used polynomials of degrees
q1, . . . , qd for the d coordinates, the t value would be q1 + · · ·+ qd − d. Sobol’
[335] shows that while t grows faster than d, it does not grow faster than
d log d.

Although (5.26) gives a valid value for t, it does not always give the best
possible value: a d-dimensional Sobol’ sequence may be a (t′, d)-sequence for
some t′ < t. Sobol [335] provides conditions under which (5.26) is indeed the
minimum valid value of t.

Because they are (t, d)-sequences, Sobol’ points are low-discrepancy se-
quences; see (5.13) and the surrounding discussion. Sobol’ [335] provides more
detailed discrepancy bounds.
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Implementation

Bratley and Fox [57] and Press et al. [299] provide computer programs to
generate Sobol’ points in FORTRAN and C, respectively. Both take advantage
of bit-level operations to increase efficiency. Timings reported in Bratley and
Fox [57] indicate that using bit-level operations typically increases speed by
a factor of more than ten, with greater improvements in higher dimensions.

We give a somewhat more schematic description of an implementation,
suppressing programming details in the interest of transparency. Our descrip-
tion also highlights similarities between the construction of Sobol’ points and
Faure points.

As in the previous section, we separate the construction of generator ma-
trices from the generation of the points themselves. Figure 5.12 displays a
function SOBOLMAT to produce a generator matrix as described in the dis-
cussion leading to (5.24). The function takes as input a binary vector cvec

giving the coefficients of a primitive polynomial, a vector minit of initializing
values, and a parameter r determining the size of the matrix produced. For
a polynomial of degree q, the vector cvec has the form (1, c1, . . . , cq−1, 1); see
(5.22). The vector minit must then have q elements — think of using the row
of Table 5.3 corresponding to the polynomial cvec, including only those values
in the row that do not have parentheses. The parameter r must be at least as
large as q. Building an r × r matrix requires calculating mq+1, . . . , mr from
the initial values m1, . . . , mq in minit. These are ultimately stored in mvec

which (to be consistent with Table 5.3) orders m1, . . . , mr from left to right.
In calling SOBOLMAT, the value of r is determined by the number of points
to be generated: generating the point x2k requires r = k + 1.

The function SOBOLMAT could almost be substituted for FAUREMAT
in the function FAUREPTS of Figure 5.11: the only modification required
is passing the ith primitive polynomial and the ith set of initializing values,
rather than just i itself. The result would be a legitimate algorithm to generate
Sobol’ points.

Rather than reproduce what we did in FAUREPTS, here we display an
implementation using the Gray code construction of Antanov and Saleev [18].
The function SOBOLPTS in Figure 5.13 calls an undefined function GRAY-
CODE2 to find a binary Gray code representation. This can implemented
as

GRAYCODE2(n) = B-ARY(n, 2) ⊕ B-ARY(�n/2�, 2),

after padding the second argument on the right with an initial zero to give
the two arguments the same length.

In SOBOLPTS, a Gray code representation is explicitly calculated only
for n0 − 1. The Gray code vector g is subsequently incremented by toggling
the �th bit, with � determined by the usual binary representation a, or by
inserting a leading 1 at each power of 2 (in which case � = 1). As in (5.25),
the value of � is then the index of the column of V(i) to be added (mod
2) to the previous point. The coefficients of the binary expansion of the ith
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SOBOLMAT(cvec, minit, r)
[cvec has the form (1, c1, . . . , cq−1, 1), minit has length q ≤ r]
q ← length(cvec) − 1
if (q = 0) V ← I [r × r identity]
if (q > 0)

mvec ← (minit(1, . . . , q), 0, . . . , 0) [length r]
mstate ← minit

for i = q + 1, . . . , r
mnext ← 2c1mstate(q) ⊕ 4c2mstate(q − 1) ⊕ · · · ⊕ 2qmstate(1) ⊕ mstate(1)
mvec(i) ← mnext

mstate ← (mstate(2, . . . , q), mnext)
for j = 1, . . . , r

mbin ← B-ARY(mvec(j), 2)
k ←length(mbin)
for i = 1, . . . , k

V(j − i + 1, j) ← mbin(k − i + 1)
return V

Fig. 5.12. Function SOBOLMAT(cvec, minit, r) returns r × r generator matrix V
constructed from polynomial coefficients (1, c1, . . . , cq−1, 1) in cvec and q initial values
in array minit.

coordinate of each point are held in the ith column of the array y. Taking
the inner product between this column and the powers of 1/2 in bpwrs maps
the coefficients to [0, 1). The argument ppvec is an array encoding primitive
polynomials using the numerical representation in Table 5.2, and mmat is an
array of initializing values (as in Table 5.3).

5.2.4 Further Constructions

The discussions in Sections 5.2.2 and 5.2.3 make evident similarities between
the Faure and Sobol’ constructions: both apply permutations to segments of
the Van der Corput sequence, and these permutations can be represented
through generator matrices. This strategy for producing low-discrepancy se-
quences has been given a very general formulation and analysis by Nieder-
reiter [281]. Points constructed in this framework are called digital nets or
sequences. Section 4.5 of Niederreiter [281] presents a special class of digital
sequences, which encompass the constructions of Faure and Sobol’. Niederre-
iter shows how to achieve a t parameter through this construction (in base
2) strictly smaller than the best t parameter for Sobol’ sequences in all di-
mensions greater than seven. Thus, these Niederreiter sequences have some
theoretical superiority over Sobol’ sequences. Larcher [219] surveys more re-
cent theoretical developments in digital point sets.

Bratley, Fox, and Niederreiter [58] provide a FORTRAN generator for
Niederreiter sequences. They note that for base 2 their program is “essentially



5.2 Low-Discrepancy Sequences 315

SOBOLPTS(n0, npts, d, pvec, mmat)
nmax ← n0 + npts − 1
rmax ← 1 + �(log(nmax)/ log(2))�, r ← 1
P ← 0 [npts × d], y ← 0 [rmax × d]
if (n0 > 1) r ← 1 + �(log(n0 − 1)/ log(2))�
qnext ← 2r

a ← B-ARY(n0 − 1, 2)
g ← GRAYCODE2(n0 − 1)
for i = 1, . . . , d [build matrices using polynomials in pvec]

q ← �(log(pvec(i))/ log(2))�
cvec ← B-ARY(pvec(i), 2)

V(i) ← SOBOLMAT(cvec, (mmat(i, 1), . . . , mmat(i, q)), rmax)
bpwrs ← (1/2, 1/4, . . . , 1/2rmax )
for i = 1, . . . , d [Calculate point n0 − 1 using Gray code]

for m = 1, . . . , r
for n = 1, . . . , r

y(m, i) ← y(m, i) + V(i)(m,n) ∗ g(r − n + 1) mod 2
for k = n0, . . . , nmax

if (k = qnext)
r ← r + 1
g ← (1, g) [insert 1 in Gray code at powers of 2]
� ← 1 [first bit changed]
qnext ← 2 ∗ qnext

else
� ← index of rightmost zero in a
g(�) ← 1 − g(�) [increment Gray code]

a ← NEXTB-ARY(a, 2)
for i = 1, . . . , d [Calculate point k recursively]

for m = 1, . . . , r

y(m, i) ← y(m, i) + V(i)(m,r − � + 1) mod 2
for j = 1, . . . , r

P (k − n0 + 1, i) ← P (k − n0 + 1, i) + bpwrs(j) ∗ y(j, i)
return P

Fig. 5.13. Function SOBOLPTS(n0, npts, d, pvec, mmat) returns npts×d array whose
rows are coordinates of d-dimensional Sobol’ points, using polynomials encoded in
pvec and initializing values in the rows of mmat.

identical” to one for generating Sobol’ points, differing only in the choice of
generator matrices. Their numerical experiments indicate roughly the same
accuracy using Niederreiter and Sobol’ points on a set of test integrals.

Tezuka [347] introduces a counterpart of the radical inverse function with
respect to polynomial arithmetic. This naturally leads to a generalization of
Halton sequences; Tezuka also extends Niederreiter’s digital construction to
this setting and calls the resulting points generalized Niederreiter sequences.
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Tezuka and Tokuyama [349] construct (0, d)-sequences in this setting using
generator matrices for which they give an explicit expression that generalizes
the expression in (5.19) for Faure generator matrices. Tezuka [348] notes that
these generator matrices have the form

A(i)(C(1))i−1, i = 1, . . . , d, (5.27)

with C(1) as in (5.19), and A(i) arbitrary nonsingular (mod b) lower triangular
matrices. The method of Tezuka and Tokuyama [349] is equivalent to taking
A(i) to be the transpose of (C(1))i−1. Tezuka [348] shows that all sequences
constructed using generator matrices of the form (5.27) in a prime base b ≥ d
are (0, d)-sequences. He calls these generalized Faure sequences; they are a
special case of his generalized Niederreiter sequences and they include ordinary
Faure sequences (take each A(i) to be the identity matrix). Although the path
leading to (5.27) is quite involved, the construction itself requires only minor
modification of an algorithm to generate Faure points.

Faure [117] proposes an alternative method for choosing generator matrices
to construct (0, d)-sequences and shows that these do not have the form in
(5.27).

A series of theoretical breakthroughs in the construction of low-discrepancy
sequences have been achieved by Niederreiter and Xing using ideas from alge-
braic geometry; these are reviewed in their survey article [282]. Their methods
lead to (t, d)-sequences with theoretically optimal t parameters. Pirsic [298]
provides a software implementation and some numerical tests. Further numer-
ical experiments are reported in Hong and Hickernell [187].

5.3 Lattice Rules

The constructions in Sections 5.2.1–5.2.3 are all based on extending the Van
der Corput sequence to multiple dimensions. The lattice rules discussed in this
section provide a different mechanism for constructing low-discrepancy point
sets. Some of the underlying theory of lattice methods suggests that they
are particularly well suited to smooth integrands, but they are applicable to
essentially any integrand.

Lattice methods primarily define fixed-size point sets, rather than infi-
nite sequences. This is a shortcoming when the number of points required to
achieve a satisfactory precision is not known in advance. We discuss a mecha-
nism for extending lattice rules after considering the simpler setting of a fixed
number of points.

A rank-1 lattice rule of n points in dimension d is a set of the form{
k

n
v mod 1, k = 0, 1, . . . , n − 1

}
, (5.28)

with v a d-vector of integers. Taking the remainder modulo 1 means taking
the fractional part of a number (x mod 1 = x − �x�), and the operation is
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applied separately to each coordinate of the vector. To ensure that this set
does indeed contain n distinct points (i.e., that no points are repeated), we
require that n and the components of v have 1 as their greatest common
divisor.

An n-point lattice rule of rank r takes the form{
r∑

i=1

ki

ni
vi mod 1, ki = 0, 1, . . . , ni − 1, i = 1, . . . , r

}
,

for linearly independent integer vectors v1, . . . ,vr and integers n1, . . . , nr ≥ 2
with each ni dividing ni+1, i = 1, . . . , r − 1, and n1 · · ·nr = n. As in the
rank-1 case, we require that ni and the elements of vi have 1 as their greatest
common divisor.

Among rank-1 lattices, a particularly simple and convenient class are the
Korobov rules, which have a generating vector v of the form (1, a, a2, . . . , ad−1),
for some integer a. In this case, (5.28) can be described as follows: for each
k = 0, 1, . . . , n − 1, set y0 = k, u0 = k/n,

yi = ayi−1 mod n, i = 1, . . . , d − 1, ui = yi/n,

and set xk = (u0, u1, . . . , ud−1). Comparison with Section 2.1.2 reveals that
this is the set of vectors formed by taking d consecutive outputs from a mul-
tiplicative congruential generator, from all initial seeds y0.

It is curious that the same mechanism used in Chapter 2 to mimic random-
ness is here used to try to produce low discrepancy. The apparent paradox is
resolved by noting that here we intend to use the full period of the generator
(we choose the modulus n equal to the number of points to be generated),
whereas the algorithms of Section 2.1 are designed so that we use a small
fraction of the period. To reconcile the two applications, we would like the
discrepancy of the first N out of n points to be O(1/

√
N) for small N and

O((log N)d/N) for large N .
The connection between Korobov rules and multiplicative congruential

generators has useful consequences. It simplifies implementation and it fa-
cilitates the selection of generating vectors by making relevant the exten-
sively studied properties of random number generators; see Hellekalek [176],
Hickernell, Hong, L’Ecuyer, and Lemieux [184], L’Ecuyer and Lemieux [226],
Lemieux and L’Ecuyer [232], and Niederreiter [281]. Hickernell [182], Chapter
5 of Niederreiter [281], and Sloan and Joe [333] analyze the discrepancy of
lattice rules and other measures of their quality.

Tables of good generating vectors v can be found in Fang and Wang [115]
for up to 18 dimensions. Sloan and Joe [333] give tables for higher-rank lattice
rules in up to 12 dimensions. L’Ecuyer and Lemieux [226] provide tables of
multipliers a for Korobov rules passing tests of uniformity.
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Integration Error

The Koksma-Hlawka bound (5.10) applies to lattice rules as it does to all
point sets. But the special structure of lattice rules leads to a more explicit
expression for the integration error using such a rule, and this in turn sheds
light on both the design and scope of these methods.

Fix an integrand f on [0, 1]d, and for each d-vector of integers z define the
Fourier coefficient

f̂(z) =
∫

[0,1)d

f(x) e−2π
√
−1x�z dx.

The integral of f over the hypercube is f̂(0). Suppose that f is sufficiently
regular to be represented by its Fourier series, in the sense that

f(x) =
∑

z

f̂(z)e2π
√
−1x�z, (5.29)

the sum ranging over all integer vectors z and converging absolutely.
A rank-1 lattice rule approximation to the integral of f is

1
n

n−1∑
k=0

f

(
k

n
v mod 1

)
=

1
n

n−1∑
k=0

∑
z

f̂(z) exp
(
2π

√
−1kv�z/n

)
=
∑

z

f̂(z)
1
n

n−1∑
k=0

[
exp
(
2π

√
−1v�z/n

)]k
. (5.30)

The first equality follows from the Fourier representation of f and the period-
icity of the function u �→ exp(2π

√
−1u), which allows us to omit the reduction

modulo 1. For the second equality, the interchange in the order of summation
is justified by the assumed absolute convergence of the Fourier series for f .
Now the average over k in (5.30) simplifies to

1
n

n−1∑
k=0

[
exp
(
2π

√
−1v�z/n

)]k
=
{

1, if v�z = 0 mod n,
0, otherwise.

To see why, observe that if v�z/n is an integer then each of the summands
on the left is just 1; otherwise,

n−1∑
k=0

[
exp
(
2π

√
−1v�z/n

)]k
=

1 − exp(2π
√
−1v�z)

1 − exp(2π
√
−1v�z/n)

= 0

because v�z is an integer. Using this in (5.30), we find that the lattice rule
approximation simplifies to the sum of f̂(z) over all integer vectors z for which
v�z = 0 mod n. The correct value of the integral is f̂(0), so the error in the
approximation is
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z �=0,v�z=0 mod n

f̂(z). (5.31)

The values of |f̂(z)| = |f̂(z1, . . . , zd)| for large values of |z| = |z1|+· · ·+|zd|
reflect the smoothness of f , in the sense that large values of |z| correspond
to high-frequency oscillation terms in the Fourier representation of f . The
expression in (5.31) for the integration error thus suggests the following:

(i) the generator v should be chosen so that v�z = 0 mod n only if |z| is
large — vectors v with this property are known informally as good lattice
points;

(ii) lattice rules are particularly well suited to integrands f that are smooth
precisely in the sense that f̂(z) decreases quickly as |z| increases.

The first of these observations helps guide the search for effective choices
of v. (Results showing the existence of good lattice points are detailed in
Chapter 5 of Niederreiter [281].) Precise criteria for selecting v are related to
the spectral test mentioned in the discussion of random number generators in
Section 2.1. Recommended values are tabulated in Fang and Wang [115].

The direct applicability of observation (ii) seems limited, at least for the
integrands implicit in derivative pricing. Bounding the Fourier coefficients of
such functions is difficult, and there is little reason to expect these functions to
be smooth. Moreover, the derivation leading to (5.31) obscures an important
restriction: for the Fourier series to converge absolutely, f must be continuous
on [0, 1]d and periodic at the boundaries (because absolute convergence makes
f the uniform limit of functions with these properties). Sloan and Joe [333]
advise caution in applying lattice rules to nonperiodic integrands; in their nu-
merical results, they find Monte Carlo to be the best method for discontinuous
integrands.

Extensible Lattice Rules

We conclude our discussion of lattice rules with a method of Hickernell et al.
[184] for extending fixed-size lattice rules to infinite sequences.

Consider a rank-1 lattice rule with generating vector v = (v1, . . . , vd).
Suppose the number of points n equals br for some base b and integer r. Then
the segment ψb(0), ψb(1), . . . , ψb(n − 1) of the Van der Corput sequence in
base b is a permutation of the coefficients k/n, k = 0, 1, . . . , n − 1, appearing
in (5.28). The point set is therefore unchanged if we represent it as

{ψb(k)v mod 1, k = 0, 1, . . . , n − 1}.

We may now drop the upper limit on k to produce an infinite sequence.
The first br points in this sequence are the original lattice point set. Each

of the next (b−1) nonoverlapping segments of length br will be shifted versions
of the original lattice. The first br+1 points will again form a lattice rule of
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the type (5.28), but now with n replaced by br+1, and so on. In this way, the
construction extends and refines the original lattice.

Hickernell et al. [184] give particular attention to extensible Korobov rules,
which are determined by the single parameter a. They provide a table of values
of this parameter that exhibit good uniformity properties when extended using
b = 2. Their numerical results use a = 17797 and a = 1267.

5.4 Randomized QMC

We began this chapter with the suggestion that choosing points determinis-
tically rather than randomly can reduce integration error. It may therefore
seem odd to consider randomizing points chosen carefully for this purpose.
There are, however, at least two good reasons for randomizing QMC.

The first reason is as immediately applicable as it is evident: by random-
izing QMC points we open the possibility of measuring error through a confi-
dence interval while preserving much of the accuracy of pure QMC. Random-
ized QMC thus seeks to combine the best features of ordinary Monte Carlo
and quasi-Monte Carlo. The tradeoff it poses — sacrificing some precision to
get a better measure of error — is essentially the same one we faced with
several of the variance reduction techniques of Chapter 4.

The second reason to consider randomizing QMC is less evident and may
also be less practically relevant: there are settings in which randomization
actually improves accuracy. A particularly remarkable result of this type is a
theorem of Owen [289] showing that the root mean square error of integration
using a class of randomized nets is O(1/n1.5−ε), whereas the error without
randomization is O(1/n1−ε). Owen’s result applies to smooth integrands and
may therefore be of limited applicability to pricing derivatives; nevertheless,
it is notable that randomization takes advantage of the additional smooth-
ness though QMC does not appear to. Hickernell [180], Matous̆ek [257], and
L’Ecuyer and Lemieux [226] discuss other ways in which randomization can
improve accuracy.

We describe four methods for randomizing QMC. For a more extensive
treatment of the topic, see the survey article of L’Ecuyer and Lemieux [226]
and Chapter 14 of Fox [127]. We limit the discussion to randomization of point
sets of a fixed size n. We denote such a point set generically by

Pn = {x1, . . . , xn},

each xi an element of [0, 1)d.

Random Shift

The simplest randomization of the point set Pn generates a random vector U
uniformly distributed over the d-dimensional unit hypercube and shifts each
point in Pn by U , modulo 1:
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Pn(U) = {xi + U mod 1, i = 1, . . . , n}. (5.32)

The reduction mod 1 applies separately to each coordinate. The randomized
QMC estimate of the integral of f is

If (U) =
1
n

n∑
i=1

f(xi + U mod 1).

This mechanism was proposed by Cranley and Patterson [92] in the setting
of a lattice rule, but can be applied with other low-discrepancy point sets. It
should be noted, however, that the transformation changes the discrepancy of
a point set and that a shifted (t, m, d)-net need not be a (t, m, d)-net.

For any Pn ⊆ [0, 1)d, each element of Pn(U) is uniformly distributed
over the hypercube, though the points are clearly not independent. Repeat-
ing the randomization with independent replications of U produces indepen-
dent batches of n points each. Each batch yields a QMC estimate of the form
If (U), and these estimates are independent and identically distributed. More-
over, each If (U) is an unbiased estimate of the integral f , so computing an
asymptotically valid confidence interval for the integral is straightforward.

L’Ecuyer and Lemieux [226] compare the variance of If (U) and an ordinary
Monte Carlo estimate with Pn a lattice rule. They show that either variance
could be smaller, depending on the integrand f , but argue that If (U) often
has smaller variance in problems of practical interest.

The random-shift procedure may be viewed as an extreme form of system-
atic sampling (discussed in Section 4.2), in which a single point U is chosen
randomly and n points are then chosen deterministically conditional on U . The
variance calculation of L’Ecuyer and Lemieux [226] for a randomly shifted lat-
tice rule has features in common with the calculation for systematic sampling
in Section 4.2.

Random Permutation of Digits

Another mechanism for randomizing QMC applies a random permutation
of 0, 1, . . . , b − 1 to the coefficients in the base-b expansion of the coor-
dinates of each point. Consider, first, the one-dimensional case and write
xk = 0.a1(k)a2(k) . . . for a b-ary representation of xk. Let πj , j = 1, 2, . . .
be independent random permutations of {0, 1, . . . , b − 1}, uniformly distrib-
uted over all b! permutations of the set. Randomize Pn by mapping each point
xk to the point 0.π1(a1(k))π2(a2(k)) . . ., applying the same permutations πj

to all points xk. For a d-dimensional point set, randomize each coordinate in
this way, using independent permutations for different coordinates.

Randomizing an arbitrary point x ∈ [0, 1)d in this way produces a random
vector uniformly distributed over [0, 1)d. Thus, for any Pn, the average of
f over the randomization of Pn is an unbiased estimate of the integral of
f . Independent randomizations produce independent estimates that can be
combined to estimate a confidence interval.
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Matous̆ek [257] analyzes the expected mean-square discrepancy for a gen-
eral class of randomization procedures that includes this one. This random-
ization maps b-ary boxes to b-ary boxes of the same volume, so if Pn is a
(t, m, d)-net, its randomization is too.

Scrambled Nets

Owen [287, 288, 289] introduces and analyzes a randomization mechanism
that uses a hierarchy of permutations. This scrambling procedure permutes
each digit of a b-ary expansion, but the permutation applied to the jth digit
depends on the first j − 1 digits.

To make this more explicit, first consider the one-dimensional case. Sup-
pose x has b-ary representation 0.a1a2a3 . . .. The first coefficient a1 is mapped
to π(a1), with π a random permutation of {0, 1, . . . , b − 1}. The second co-
efficient is mapped to πa1(a2), the third coefficient to πa1a2(a3), and so on;
the random permutations π, πa1 , πa1a2 , . . ., aj = 0, 1, . . . , b − 1, j = 1, 2, . . .,
are independent with each uniformly distributed over the set of all permu-
tations of {0, 1, . . . , b − 1}. To scramble a d-dimensional point set, apply this
procedure to each coordinate, using independent sets of permutations for each
coordinate.

Owen [290] describes scrambling as follows. In each coordinate, partition
the unit interval into b subintervals of length 1/b and randomly permute those
subintervals. Further partition each subinterval into b subintervals of length
1/b2 and permute those, randomly and independently, and so on. At the jth
step, this procedure constructs bj−1 partitions, each consisting of b intervals,
and permutes each partition independently. In contrast, Matous̆ek’s random
digit permutation applies the same permutation to all bj−1 partitions at each
step j.

Owen [287] shows that a scrambled (t, m, d)-net is a (t, m, d)-net with prob-
ability one, and a scrambled (t, d)-sequence is a (t, d)-sequence with probabil-
ity one. Owen [288, 289, 290] shows that the variance of a scrambled net esti-
mator converges to zero faster than the variance of an ordinary Monte Carlo
estimator does, while cautioning that the faster rate may not set in until the
number of points becomes very large. For sufficiently smooth integrands, the
variance is O(1/n3−ε) in the sample size n. The superior asymptotic perfor-
mance with randomization results from cancellation of error terms. For fixed
sample sizes, Owen [288, 290] bounds the amount by which the scrambled
net variance can exceed the Monte Carlo variance. Hickernell and Hong [183]
analyze the mean square discrepancy of scrambled nets.

Realizing the attractive features of scrambled nets in practice is not en-
tirely straightforward because of the large number of permutations required
for scrambling. Tan and Boyle [345] propose an approximate scrambling
method based on permuting just the first few digits and find experimentally
that it works well. Matous̆ek [257] outlines an implementation of full scram-
bling that reduces memory requirements at the expense of increasing comput-
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ing time: rather than store a permutation, he stores the state of the random
number generator and regenerates each permutation when it is needed. Hong
and Hickernell [187] define a simplified form of scrambling and provide algo-
rithms that generate scrambled points in about twice the time required for
unscrambled points.

Linear Permutation of Digits

As an alternative to full scrambling, Matous̆ek [257] proposes a “linear”
permutation method. This method maps a base-b expansion 0.a1a2 . . . to
0.ã1ã2 . . . using

ãj =
j∑

i=1

hijai + gj mod b,

with the hij and gj chosen randomly and independently from {0, 1, . . . , b− 1}
and the hii required to be positive. This method is clearly easier to implement
than full scrambling. Indeed, if the gj were all 0, this would reduce to the
generalized Faure method in (5.27) when applied to a Faure net Pn. The
condition that the diagonal entries hii be positive ensures the nonsingularity
required in (5.27).

All of the randomization methods described in this section produce points
uniformly distributed over [0, 1)d and thus unbiased estimators of integrals
over [0, 1)d when applied in the QMC approximation (5.2). Through indepen-
dent replications of any of these it is a simple matter to construct asymptot-
ically valid confidence intervals. The methods vary in evident ways in their
computational requirements; the relative merits of the estimates they produce
are less evident and warrant further investigation.

5.5 The Finance Setting

Our discussion of quasi-Monte Carlo has thus far been fairly abstract, dealing
with the generic problem of numerical integration over [0, 1)d. In this sec-
tion, we deal more specifically with the application of QMC to the pricing of
derivative securities. Section 5.5.1 discusses numerical results comparing QMC
methods and ordinary Monte Carlo on some test problems. Section 5.5.2 dis-
cusses ways of taking advantage of the structure of financial models to enhance
the effectiveness of QMC methods.

5.5.1 Numerical Examples

Several articles have reported numerical results obtained by applying QMC
methods to financial problems. These include Acworth et al. [4], Berman [45],
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Boyle et al. [53], Birge [47], Caflisch, Morokoff, and Owen [73], Joy, Boyle, and
Tan [204], Ninomiya and Tezuka [283], Papageorgiou and Traub [293], Paskov
[295], Paskov and Traub [296], Ross [309], and Tan and Boyle [345]. These in-
vestigations consider several different QMC methods applied to various pricing
problems and find that they work well. We comment more generally on the
numerical evidence after considering some examples.

A convenient set of problems for testing QMC methods are options on
geometric averages of lognormally distributed asset prices. These options are
tractable in arbitrarily high dimensions (and knowing the correct answer is
useful in judging performance of numerical methods) while sharing features
of more challenging multiple-asset and path-dependent pricing problems. We
consider, then, options with payoffs (S̄ − K)+ where either

S̄ =
d∏

i=1

Si(T )1/d (5.33)

for multiple assets S1, . . . , Sd, or

S̄ =
d∏

i=1

S(iT/d)1/d, (5.34)

for a single asset S. The underlying assets S1, . . . , Sd or S are modeled as
geometric Brownian motion. Because S̄ is lognormally distributed in both
cases, the option price is given by a minor modification of the Black-Scholes
formula, as noted in Section 3.2.2.

The two cases (5.33) and (5.34) reflect two potential sources of high dimen-
sionality in financial problems: d is the number of underlying assets in (5.33)
and it is the number of time steps in (5.34). Of course, in both cases S̄ is the
geometric average of (jointly) lognormal random variables so this distinction
is purely a matter of interpretation. The real distinction is the correlation
structure among the averaged random variables. In (5.34), the correlation is
determined by the dynamics of geometric Brownian motion and is rather high;
in (5.33), we are free to choose any correlation matrix for the (logarithms of
the) d assets. Choosing a high degree of correlation would be similar to reduc-
ing the dimension of the problem; to contrast with (5.34), in (5.33) we choose
the d assets to be independent of each other.

A comparison of methods requires a figure of merit. For Monte Carlo meth-
ods, variance is an appropriate figure of merit — at least for unbiased esti-
mators with similar computing requirements, as argued in Section 1.1.3. The
average of n independent replications has a variance exactly n times smaller
than the variance of a single replication, so a comparison of variances is not
tied to a particular sample size. In contrast, the integration error produced by
a QMC method does depend on the number of points n, and often quite errat-
ically. Moreover, the QMC error can be quite sensitive to problem parameters.
This makes the comparison of QMC methods less straightforward.
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As our figure of merit, we take the root mean square error or root mean
square relative error over a fixed set of problem instances. This is somewhat
arbitrary (especially in the choice of instances) but nevertheless informative.
Given m problems with true values C1, . . . , Cm and n-point QMC approxi-
mations Ĉ1(n), . . . , Ĉm(n), the root mean square error is

RMSE(n) =

√√√√ 1
m

m∑
i=1

(Ĉi(n) − Ci)2

and the RMS relative error is√√√√ 1
m

m∑
i=1

(
Ĉi(n) − Ci

Ci

)2

.

In order to compare QMC methods with Monte Carlo, we extend these
definitions to random estimators Ĉi(n) by replacing (Ĉi(n) − Ci)2 with
E[(Ĉi(n) − Ci)2] in both cases.

Our first example is based on (5.33) with d = 5 assets; as this is a rela-
tively low-dimensional problem, it should be particularly well suited to QMC
methods. For simplicity, we take the five assets to be independent copies of the
same process GBM(r, σ2) with an initial value of Si(0) = 100. We fix r at 5%,
and construct 500 problem instances through all combinations of the following
parameters: the maturity T is 0.15, 0.25, 0.5, 1, or 2 years; the volatility σ
varies from 0.21 to 0.66 in increments of 0.05; and the strike K varies from
94 to 103 in increments of 1. These 500 options range in price from 0.54 to
12.57; their average value is 5.62, and half lie between 4.06 and 7.02.

Figure 5.14 plots the RMSE against the number of points, using a log scale
for both axes. For the QMC methods, the figure displays the exact number of
points used. For the Sobol’ points, we skipped the first 256 points and then
chose the number of points to be powers of two. For the Faure points, we
skipped the first 625 (= 54) points and then chose the number of points to be
powers of five (the base). These choices are favorable for each method. For the
lattice rules the number of points is fixed. We used the following generating
vectors from p.287 of Fang and Wang [115]:

n v
1069 1, 63, 762, 970, 177
4001 1, 1534, 568, 3095, 2544

15019 1, 10641, 2640, 6710, 784
71053 1, 33755, 65170, 12740, 6878

These we implemented using the shifted points k(v − 0.5)/n (mod 1) as sug-
gested in Fang and Wang [115], rather than (5.28). We also tested Korobov
rules from L’Ecuyer and Lemieux [226] generated by a = 331, 219, 1716, 7151,
665, and 5693; these gave rather poor and erratic results and are therefore
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omitted from the figure. Using Monte Carlo, the RMSE scales exactly with√
n, so we estimated it at n = 64000 and then extended this value to other

values of n.
Figure 5.14 suggests several observations. The QMC methods produce root

mean square errors three to ten times smaller than those of Monte Carlo over
the range of sample sizes considered. Faure points appear to outperform the
lattice rules and Sobol’ points outperform the Faure points. In addition to
producing smaller errors, the QMC methods appear to converge at a faster
rate than Monte Carlo: their graphs are not only lower, they have a steeper
slope. For Sobol’ and Faure points, a convergence rate close to O(1/n) (evi-
denced by a slope close to −1) sets in after a few thousand points. The slope
for Monte Carlo is exactly −1/2 by construction.
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Fig. 5.14. Root mean square errors in pricing 500 options on the geometric mean
of five underlying assets.

The relative smoothness of the convergence of the Faure and Sobol’ ap-
proximations relies critically on our choice of favorable values of n for each
method. For example, taking n = 9000 produces larger RMS errors than
n = 3125 for the Faure sequence and larger than n = 4096 for the Sobol’
sequence. The various points plotted for lattice rules are unrelated to each
other because each value of n uses a different generating vector, whereas the
Sobol’ and Faure results use initial segments of infinite sequences.
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Figures 5.15 and 5.16 examine the effect of increasing problem dimension
while keeping the number of points nearly fixed. Figure 5.15 is based on (5.33)
with d =10, 30, 40, 70, 100, and 150. For this comparison we held the maturity
T fixed at 0.25, let the strike K range from 94 to 102 in increments of 2, and
let σ vary as before. Thus, we have fifty options for each value of d.

Because increasing d in the geometric mean (5.33) has the effect of reducing
the volatility of S̄, the average option price decreases with d, dropping from
3.46 at d = 10 to 1.85 at d = 150. Root mean square errors also decline, so
to make the comparison more meaningful we look at relative errors. These
increase with d for all three methods considered in Figure 5.15. The Monte
Carlo results are estimated RMS relative errors for a sample size of 5000,
but estimated from 64,000 replications. The Sobol’ sequence results in all
dimensions skip 4096 points and use n = 5120; this is 212 +210 and should be
favorable for a base-2 construction. For the Faure sequence, the base changes
with dimension. For each d we chose a value of n near 5000 that should be
favorable for the corresponding base: these values are 4 · 113, 5 · 312 + 7 · 31,
3 · 412, 712, 50 · 101, and 34 · 151. In each case, we skipped the first b4 points,
with b the base. The figure suggests that the advantage of the QMC methods
relative to Monte Carlo declines with increasing dimension but is still evident
at d = 150.
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Fig. 5.15. Root mean square relative error in pricing options on the geometric
average of d assets, with d the dimension.

The comparison in Figure 5.16 is similar but uses (5.34), so d now indexes
the number of averaging dates along the path of a single asset. For this com-
parison we fixed T at 0.25, we let K vary from 96 to 104 in increments of 2,
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and let σ vary as before, to produce a total of fifty options. Each option price
approaches a limit as d increases (the price associated with the continuous av-
erage), and the Monte Carlo RMSE is nearly constant across dimensions. The
errors using Faure points show a sharp increase at d = 100 and d = 150. The
errors using Sobol’ points show a much less severe dependence on dimension.
The number of points used for all three methods are the same in Figure 5.16
as Figure 5.15.
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Fig. 5.16. Root mean square error in pricing options on the geometric time-average
of d values of a single asset, with d the dimension.

Without experimentation, it is difficult to know how many QMC points
to use to achieve a desired accuracy. In ordinary Monte Carlo, one can use a
standard error estimated from a modest number of replications to determine
the number of replications to undertake in a second stage of sampling to reach
a target precision. Some authors have proposed stopping rules for QMC based
on monitoring fluctuations in the approximation — rules that stop once the
fluctuations are smaller than the required error tolerance. But such procedures
are risky, as illustrated in Figure 5.17. The figure plots the running average
of the estimated price of an option on the geometric average of 30 assets
(with T = 0.25, σ = 0.45, and K = 100) using Faure points. An automatic
stopping rule would likely detect convergence — erroneously — near 6000
points or 13000 points where the average plateaus. But in both cases, the
QMC approximation remains far from the true value, which is not crossed
until after more than 19000 points. These results use Faure points from the
start of the sequence (in base 31); skipping an initial portion of the sequence
would reduce the severity of this problem but would not eliminate it.
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Fig. 5.17. Cumulative average approximation to a 30-dimensional option price
using Faure points. The left panel magnifies the inset in the right panel. The ap-
proximation approaches the true value through plateaus that create the appearance
of convergence.

Next we compare randomized QMC point sets using a random shift modulo
1 as in (5.32). For this comparison we consider a single option — a call on
the geometric average of five assets, with T = 0.25, K = 100, and σ = 0.45.
Because of the randomization, we can now compare methods based on their
variances; these are displayed in Table 5.4. To compensate for differences in
the cardinalities of the point sets, we report a product nσ2, where n is the
number of points in the set and σ2 is the variance of the average value of the
integrand over a randomly shifted copy of the point set. This measure makes
the performance of ordinary Monte Carlo independent of the choice of n.

For the Faure and Sobol’ results, we generated each point set of size n by
starting at the nth point in the sequence; each n is a power of the correspond-
ing base. The lattice rules are the same as those used for Figure 5.14. For
the Korobov rules we display the number of points and the multiplier a; these
values are from L’Ecuyer and Lemieux [226].

All the QMC methods show far smaller variance than ordinary Monte
Carlo. Sobol’ points generally appear to produce the smallest variance, but
the smallest variance overall corresponds to a lattice rule. The Korobov rules
have larger variances than the other methods.

The numerical examples considered here suggest some general patterns:
the QMC methods produce substantially more precise values than ordinary
Monte Carlo; this holds even at rather small values of n, before O(1/n1−ε)
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Lattice Korobov Faure Sobol’ Monte Carlo

n nσ2 n (a) nσ2 n nσ2 n nσ2 nσ2

125 11.9 128 5.9 34.3
1069 2.7 1021 (331) 2.7 3125 1.1 1024 2.0 34.3
4001 0.6 4093 (219) 1.5 4096 0.9 34.3

15019 0.3 16381 (665) 3.5 15625 0.4 16384 0.4 34.3

Table 5.4. Variance comparison for randomly shifted QMC methods and Monte
Carlo.

convergence is evident; Sobol’ points generally produce smaller errors than
Faure points or lattice rules; the advantages of QMC persist even in rather
high dimensions, especially for Sobol’ points; randomized QMC point sets
produce low-variance estimates.

The effectiveness of QMC methods in high-dimensional pricing problems
runs counter to the traditional view that these methods are unsuitable in
high dimensions. The traditional view is rooted in the convergence rate of
O((log n)d/n): if d is large then n must be very large for the denominator
to overwhelm the numerator. The explanation for this apparent contradic-
tion may lie in the structure of problems arising in finance — these high-
dimensional integrals might be well-approximated by much lower-dimensional
integrals, a possibility we exploit in Section 5.5.2.

Extrapolating from a limited set of examples (we have considered just one
type of option and just one model of asset price dynamics) is risky, so we
comment on results from other investigations. Acworth et al. [4] and Boyle
et al. [53] find that Sobol’ points outperform Faure points and that both
outperform ordinary Monte Carlo in comparisons similar to those reported
here. Morland [270] reports getting better results with Sobol’ points than
Niederreiter points (of the type generated in Bratley, Fox, and Niederreiter
[58]). Joy et al. [204] test Faure sequences on several different types of options,
including an HJM swaption pricing application, and find that they work well.
Berman [45] compares methods on a broad range of options and models; he
finds that Sobol’ points give more precise results than ordinary Monte Carlo,
but he also finds that with some simple variance reduction techniques the
two methods perform very similarly. Paskov [295], Paskov and Traub [296],
and Caflisch et al. [73] find that Sobol’ points work well in pricing mortgage-
backed securities formulated as 360-dimensional integrals. Papageorgiou and
Traub [293] report improved results using a generalized Faure sequence and
Ninomiya and Tezuka [283] report superior results for similar problems using a
generalized Niederreiter sequence, but neither specifies the exact construction
used.

For the most part, these comparisons (like those presented here) pit QMC
methods against only the simplest form of Monte Carlo. Variance reduction
techniques can of course improve the precision of Monte Carlo estimates; they
provide a mechanism for taking advantage of special features of a model to



5.5 The Finance Setting 331

a much greater extent than QMC. Indeed, the “black-box” nature of QMC
methods is part of their appeal. As discussed in Section 5.1.3, the ready avail-
ability of error information through confidence intervals is an advantage of
Monte Carlo methods.

For calculations that need to be repeated often with only minor changes
in parameters — for example, options that need to be priced every day —
this suggests the following approach: tailor a Monte Carlo method to the
specific problem, using estimates of standard errors to compare algorithms,
and determine the required sample size; once the problem and its solution are
well understood, replace the random number generator with a quasi-Monte
Carlo generator.

5.5.2 Strategic Implementation

QMC methods have the potential to improve accuracy for a wide range of
integration problems without requiring an integrand-specific analysis. There
are, however, two ways in which the application of QMC methods can be
tailored to a specific problem to improve performance:

(i) changing the order in which coordinates of a sequence are assigned to
arguments of an integrand;

(ii) applying a change of variables to produce a more tractable integrand.

The first of these transformations is actually a special case of the second but
it merits separate consideration.

The strategy in (i) is relevant when some coordinates of a low-discrepancy
sequence exhibit better uniformity properties than others. This holds for Hal-
ton sequences (in which coordinates with lower bases are preferable) and for
Sobol’ sequences (in which coordinates generated by lower-degree polynomials
are preferable), but not for Faure sequences. As explained in Section 5.2.2,
all coordinates of a Faure sequence are equally well distributed. But the more
general strategy in (ii) is potentially applicable to all QMC methods.

As a simple illustration of (ii), consider the function on [0, 1)5 defined by

f(u1, u2, u3, u4, u5) = 1{|Φ−1(u4)| + |Φ−1(u5)| ≤ 2
√

2},

with Φ−1 the inverse cumulative normal distribution. Although this reduces to
a bivariate integrand, we have formulated it as a five-dimensional problem for
purposes of illustration. The integral of this function is the probability that
a pair of independent standard normal random variables fall in the square
in �2 with vertices (0,±2

√
2) and (±2

√
2, 0), which is approximately 0.9111.

Applying an orthogonal transformation to a pair of independent standard nor-
mal random variables produces another pair of independent standard normal
random variables, so the same probability applies to the rotated square with
vertices (±2,±2). Thus, a change of variables transforms the integrand above
to
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f̃(u1, u2, u3, u4, u5) = 1{max(|Φ−1(u4)|, |Φ−1(u5)|) ≤ 2}.
Figure 5.18 compares the convergence of QMC approximations to f (the dot-
ted line) and f̃ (the solid line) using a five-dimensional Faure sequence starting
at the 625th point. In this example, the rotation has an evident impact on
the quality of the approximation: after 3125 points, the integration error for
f is nearly four times as large as the error for f̃ . That a rotation could affect
convergence in this way is not surprising in view of the orientation displayed
by Faure sequences, as in, e.g., Figure 5.3.

22

22

)2,2(

500 1000 1500 2000 2500 3000
0.905

0.910

0.915

0.920

Number of Points

Fig. 5.18. Both squares on the left have probability 0.9111 under the bivariate
standard normal distribution. The right panel shows the convergence of QMC ap-
proximations for the probabilities of the two squares. The solid horizontal line shows
the exact value.

Assigning Coordinates

We proceed with an illustration of strategy (i) in which the form of the inte-
grand is changed only through a permutation of its arguments. In the examples
we considered in Section 5.5.1, the integrands are symmetric functions of their
arguments because we took the underlying assets to be identical in (5.33) and
we took the averaging dates to be equally spaced in (5.34). Changing the
assignment of coordinates to variables would therefore have no effect on the
value of a QMC approximation.

To break the symmetry of the multi-asset option in Section 5.5.1, we assign
linearly increasing volatilities σi = iσ1, i = 1, . . . , d, to the d assets. We take
the volatility of the ith asset as a rough measure of the importance of the ith
coordinate (and continue to assume the assets are uncorrelated). With this
interpretation, assigning the coordinates of a Sobol’ sequence to the assets in
reverse order should produce better results than assigning the ith coordinate
to the ith asset.
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To test this idea we take d = 30; the degrees of the primitive polynomials
generating the coordinates then increase from 0 to 8. We compare straightfor-
ward application of Sobol’ points with a reversed assignment of coordinates
based on root mean square relative error. Given an average level of volatility
σ̄, we choose σ1 so that σ̄2 = (σ2

1 + · · ·+ σ2
d)/d, with σi = iσ1. We let σ̄ range

from 0.21 to 0.66 in increments of 0.05, and we let K vary from 94 to 102 in
increments of 2 to get the same fifty option values we used for Figure 5.15.

Table 5.5 displays the resulting RMS relative errors. The first row shows
the number of points n. We specifically avoided values of n equal to powers
of 2 in order to further differentiate the coordinates of the sequence; this
makes the convergence of both methods erratic. In this example the reversed
assignment usually produces smaller errors, but not always.

750 1500 2500 3500 5000 7500 10000 12000

Sobol’ 0.023 0.012 0.017 0.021 0.013 0.012 0.007 0.005
Reverse 0.020 0.021 0.010 0.015 0.009 0.007 0.005 0.003

Table 5.5. RMS relative errors for options on the geometric average of 30 assets
with linearly increasing volatilities. Top row gives the number points. Second row is
based on assigning ith coordinate to ith asset; last row uses reversed assignment.

Changing Variables

A general strategy for improving QMC approximations applies a change of
variables to produce an integrand for which only a small number of arguments
are “important” and then applies the lowest-indexed coordinates of a QMC
sequence to those coordinates. Finding an effective transformation presents
essentially the same challenge as finding good stratification variables, a topic
treated in Section 4.3.2. As is the case in stratified sampling, the Gaussian
setting offers particular flexibility.

In the application of QMC to derivatives pricing, the integrand f subsumes
the dynamics of underlying assets as well as the form of the derivative contract.
In the absence of specific information about the payoff of a derivative, one
might consider transformations tied to the asset dynamics.

A simple yet effective example of this idea is the combination of Sobol’
sequences with the Brownian bridge construction of Brownian motion devel-
oped in Section 3.1. In a straightforward application of Sobol’ points to the
generation of Brownian paths, the ith coordinate of each point would be trans-
formed to a sample from the standard normal distribution (using Φ−1), and
these would be scaled and summed using the random walk construction (3.2).
To the extent that the initial coordinates of a Sobol’ sequence have uniformity
superior to that of higher-indexed coordinates, this construction does a par-
ticularly good job of sampling the first few increments of the Brownian path.
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However, many option contracts would be primarily sensitive to the terminal
value of the Brownian path.

Through the Brownian bridge construction, the first coordinate of a Sobol’
sequence determines the terminal value of the Brownian path, so this value
should be particularly well distributed. Moreover, the first several coordinates
of the Sobol’ sequence determine the general shape of the Brownian path; the
last few coordinates influence only the fine detail of the path, which is often
less important. This combination of Sobol’ points with the Brownian bridge
construction was proposed by Moskowitz and Caflisch [273] and has been
found by several authors (including Acworth et al. [4], Åkesson and Lehoczky
[9], and Caflisch et al. [73]) to be highly effective in finance applications.

As discussed in Section 3.1, the principal components construction of a
discrete Brownian path (or any other Gaussian vector) has an optimality
property that maximizes the importance (in the statistical sense of explained
variance) of any initial number of independent normals used to construct the
vector. Though this property lacks a precise relation to discrepancy, it suggests
a construction in which the ith coordinate of a Sobol’ sequence is assigned
to the ith principal component. Unlike the Brownian bridge construction, the
principal components construction is applicable with any covariance matrix.

This construction was proposed and tested in Acworth et al. [4]. Tables 5.6
and 5.7 show some of their results. The tables report RMS relative errors com-
paring an ordinary application of Sobol’ sequences with the Brownian bridge
and principal components constructions. The errors are computed over 250
randomly generated problem instances as described in [4]. Table 5.6 reports
results for barrier options and geometric average options on a single underlying
asset. The results indicate that both the Brownian bridge (BB) and princi-
pal components (PC) constructions can produce substantial error reductions
compared to straightforward application of Sobol’ points in a random walk
construction. This is particularly evident at smaller values of n.

Table 5.7 shows results for options on the geometric average of d assets.
The Brownian bridge construction is inapplicable in this setting, so only an
ordinary application of Sobol’ points (using Cholesky factorization) and the
principal components construction appear in the table. These methods are
compared for uncorrelated assets and assets for which all correlations are
0.3. In the case of uncorrelated assets, the principal components construction
simply permutes the coordinates of the Sobol’ sequence, assigning the ith
coordinate to the asset with the ith largest volatility. This suggests that the
differences between the two methods should be greater in the correlated case,
and this is borne out by the results in the table.

Neither the Brownian bridge nor the principal components construction
is tailored to a particular type of option payoff. Given additional information
about a payoff, we could try to find still better changes of variables. As an
example, consider again an option on the geometric mean of d uncorrelated
assets. A standard simulation would map a point (u1, . . . , ud) ∈ [0, 1)d to a
value of the average S̄ in (5.33) by first mapping each ui to Φ−1(ui) and then
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Barrier Options Average Options
Sobol’ BB PC Sobol’ BB PC

d = 10, n = 1,250 1.32 0.78 0.97 2.14 0.71 0.32
5,000 0.75 0.41 0.49 0.18 0.24 0.11

20,000 0.48 0.53 0.50 0.08 0.08 0.02
80,000 0.47 0.47 0.47 0.03 0.03 0.01

d = 50, n = 1,250 7.10 1.14 1.18 4.24 0.53 0.33
5,000 1.10 0.87 0.59 0.61 0.16 0.11

20,000 0.30 0.25 0.31 0.24 0.05 0.02
80,000 0.22 0.12 0.08 0.06 0.03 0.01

d = 100, n = 1,250 9.83 1.32 1.41 10.12 0.63 0.33
5,000 1.70 0.91 0.46 1.27 0.18 0.11

20,000 0.62 0.23 0.28 0.24 0.04 0.02
80,000 0.19 0.09 0.11 0.05 0.03 0.01

Table 5.6. RMS relative errors (in percent) for single-asset options with d steps per
path and n paths, using three different constructions of the underlying Brownian
paths.

setting

S̄ =

(
d∏

i=1

Si(0)

)1/d

exp

(
rT − T

2d

d∑
i=1

σ2
i +

√
T

d

d∑
i=1

σiΦ−1(ui)

)
.

However, a simple change of variables allows us to replace

d∑
i=1

σiΦ−1(ui) with

√√√√ d∑
i=1

σ2
i Φ−1(u1).

This reduces the problem to a one-dimensional integral and uses the first
coordinate u1 for that integration. This example is certainly not typical, but it
illustrates the flexibility available to change variables, particularly for models
driven by normal random variables. All of the examples of stratified sampling
in Section 4.3.2 can similarly be applied as changes of variables for QMC
methods. Further strategies for improving the accuracy of QMC methods are
developed in Fox [127].

5.6 Concluding Remarks

The preponderance of the experimental evidence amassed to date points to
Sobol’ sequences as the most effective quasi-Monte Carlo method for appli-
cations in financial engineering. They often produce more accurate results
than other QMC and Monte Carlo methods, and they can be generated very
quickly through the algorithms of Bratley and Fox [57] and Press et al. [299].
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Correlation 0 Correlation 0.3
Sobol’ PC Sobol’ PC

d = 10, n = 1,250 1.20 1.01 1.03 0.23
5,000 0.37 0.50 0.17 0.06

20,000 0.19 0.20 0.06 0.02
80,000 0.06 0.03 0.04 0.01

d = 50, n = 1,250 3.55 2.45 1.58 0.16
5,000 0.50 0.34 0.21 0.05

20,000 0.18 0.08 0.05 0.02
80,000 0.08 0.04 0.04 0.01

d = 100, n = 1,250 3.18 3.59 2.15 0.16
5,000 0.53 0.56 0.34 0.04

20,000 0.13 0.10 0.06 0.02
80,000 0.07 0.02 0.03 0.00

Table 5.7. RMS relative errors (in percent) for options on the geometric average
of d assets using n paths.

Although QMC methods are based on a deterministic perspective, the
performance of Sobol’ sequences in derivatives pricing can often be improved
through examination of the underlying stochastic model. Because the initial
coordinates of a Sobol’ sequence are more uniform than later coordinates,
a strategic assignment of coordinates to sources of randomness can improve
accuracy. The combination of Sobol’s points with the Brownian bridge con-
struction is an important example of this idea, but by no means the only
one. The applications of stratified sampling in Section 4.3.2 provide further
examples, because good directions for stratification are also good candidates
for effective use of the best Sobol’ coordinates.

One might consider applying methods from Chapter 4 — a control variate,
for example — in a QMC numerical integration. We prefer to take such combi-
nations in the opposite order: first analyze a stochastic problem stochastically
and use this investigation to find an effective variance reduction technique;
then reformulate the variance-reduced simulation problem as an integration
problem to apply QMC. Thus, one might develop an importance sampling
technique and then implement it using QMC. It would be much more diffi-
cult to derive effective importance sampling methods of the type illustrated
in Section 4.6 starting from a QMC integration problem.

Indeed, we view postponing the integration perspective as a good way to
apply QMC techniques to stochastic problems more generally. The transfor-
mation to a Brownian bridge construction, for example, is easy to understand
from a stochastic perspective but would be opaque if viewed as a change of
variables for an integration problem. Also, the simple error estimates provided
by Monte Carlo simulation are especially useful in developing and comparing
algorithms. After finding a satisfactory algorithm one may apply QMC to try
to further improve accuracy. This is particularly useful if similar problems
need to be solved repeatedly, as is often the case in pricing applications. Ran-
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domized QMC methods make it possible to compute simple error estimates
for QMC calculations and can sometimes reduce errors too.

The effectiveness of QMC methods in high-dimensional pricing problems
cannot be explained by comparing the O(1/

√
n) convergence of Monte Carlo

with the O(1/n1−ε) convergence of QMC because of the (log n)d factor sub-
sumed by the ε. An important part of the explanation must be that the main
source of dimensionality in most finance problems is the number of time steps,
and as the Brownian bridge and principal components constructions indicate,
this may artificially inflate the nominal dimension. Recent work has identified
abstract classes of integration problems for which QMC is provably effective in
high dimensions because of the diminishing importance of higher dimensions;
see Sloan and Wózniakowski [334] for a detailed analysis, Sloan [332] for an
overview, and Larcher, Leobacher, and Scheicher [220] for an application of
these ideas to the Brownian bridge construction. Owen [291] argues that the
key requirement for the effectiveness of QMC in high dimensions is that the
integrand be well-approximated by a sum of functions depending on a small
number of variables each.
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Discretization Methods

This chapter presents methods for reducing discretization error — the bias
in Monte Carlo estimates that results from time-discretization of stochastic
differential equations. Chapter 3 gives examples of continuous-time stochas-
tic processes that can be simulated exactly at a finite set of dates, meaning
that the joint distribution of the simulated values coincides with that of the
continuous-time model at the simulated dates. But these examples are excep-
tional and most models arising in derivatives pricing can be simulated only
approximately. The simplest approximation is the Euler scheme; this method
is easy to implement and almost universally applicable, but it is not always
sufficiently accurate. This chapter discusses methods for improving the Euler
scheme and, as a prerequisite for this, discusses criteria for comparing dis-
cretization methods.

The issues addressed in this chapter are orthogonal to those in Chap-
ters 4 and 5. Once a time-discretization method is fixed, applying a variance
reduction technique or quasi-Monte Carlo method may improve precision in
estimating an expectation at the fixed level of discretization, but it can do
nothing to reduce discretization bias.

6.1 Introduction

We begin by discussing properties of the Euler scheme, the simplest method
for approximate simulation of stochastic differential equations. We then un-
dertake an expansion to refine the Euler scheme and present criteria for com-
paring methods.

6.1.1 The Euler Scheme and a First Refinement

We consider processes X satisfying a stochastic differential equation (SDE)
of the form

dX(t) = a(X(t)) dt + b(X(t)) dW (t), (6.1)
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usually with X(0) fixed. In the most general setting we consider, X takes
values in �d and W is an m-dimensional standard Brownian motion, in which
case a takes values in �d and b takes values in �d×m. Some of the methods in
this chapter are most easily introduced in the simpler case of scalar X and W .
The coefficient functions a and b are assumed to satisfy the conditions in Ap-
pendix B.2 for existence and uniqueness of a strong solution to the SDE (6.1);
indeed, we will need to impose stronger conditions to reduce discretization
error.

We use X̂ to denote a time-discretized approximation to X . The Euler (or
Euler-Maruyama, after [254]) approximation on a time grid 0 = t0 < t1 <
· · · < tm is defined by X̂(0) = X(0) and, for i = 0, . . . , m − 1,

X̂(ti+1) = X̂(ti) + a(X̂(ti))[ti+1 − ti] + b(X̂(ti))
√

ti+1 − tiZi+1,

with Z1, Z2, . . . independent, m-dimensional standard normal random vectors.
To lighten notation, we restrict attention to a grid with a fixed spacing h,
meaning that ti = ih. Everything we discuss carries over to the more general
case provided the largest of the increments ti+1−ti decreases to zero. Adaptive
methods, in which the time steps depend on the evolution of X̂ and are thus
stochastic, require separate treatment; see, for example, Gaines and Lyons
[133].

With a fixed time step h > 0, we may write X̂(ih) as X̂(i) and write the
Euler scheme as

X̂(i + 1) = X̂(i) + a(X̂(i))h + b(X̂(i))
√

hZi+1. (6.2)

Implementation of this method is straightforward, at least if a and b are easy
to evaluate. Can we do better? And in what sense is one approximation better
than another? These are the questions we address.

In the numerical solution of ordinary differential equations, methods of
higher-order accuracy often rely on Taylor expansions. If b were identically
zero (and thus (6.1) non-stochastic), (6.2) would reduce to a linear approxi-
mation, and a natural strategy for improving accuracy would include higher-
order terms in a Taylor expansion of a(X(t)). A similar strategy applies to
stochastic differential equations, but it must be carried out consistent with
the rules of Itô calculus rather than ordinary calculus.

A First Refinement

Inspection of the Euler scheme (6.2) from the perspective of Taylor expansion
suggests a possible inconsistency: this approximation expands the drift to O(h)
but the diffusion term only to O(

√
h). The approximation to the diffusion term

omits O(h) contributions, so including a term of order h in the drift looks like
spurious accuracy. This discrepancy also suggests that to refine the Euler
scheme we may want to focus on the diffusion term.
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We now carry out this proposal. We will see, however, that whether or not
it produces an improvement compared to the Euler scheme depends on how
we measure error.

We start with the scalar case d = m = 1. Recall that the SDE (6.1)
abbreviates the relation

X(t) = X(0) +
∫ t

0

a(X(u)) du +
∫ t

0

b(X(u)) dW (u). (6.3)

The Euler scheme results from the approximations∫ t+h

t

a(X(u)) du ≈ a(X(t))h (6.4)

and ∫ t+h

t

b(X(u)) dW (u) ≈ b(X(t))[W (t + h) − W (t)]. (6.5)

In both cases, an integrand over [t, t+h] is approximated by its value at t. To
improve the approximation of the diffusion term, we need a better approxima-
tion of b(X(u)) over an interval [t, t + h]. We therefore examine the evolution
of b(X(u)).

From Itô’s formula we get

db(X(t))
= b′(X(t)) dX(t) + 1

2 b′′(X(t))b2(X(t)) dt

=
[
b′(X(t))a(X(t)) + 1

2 b′′(X(t))b2(X(t))
]

dt + b′(X(t))b(X(t)) dW (t)
≡ µb(X(t)) dt + σb(X(t)) dW (t),

where b′ and b′′ are the first and second derivatives of b. Applying the Euler
approximation to the process b(X(t)) results in the approximation of b(X(u)),
t ≤ u ≤ t + h by

b(X(u)) ≈ b(X(t)) + µb(X(t))[u − t] + σb(X(t))[W (u) − W (t)]
= b(X(t)) +

(
b′(X(t))a(X(t)) + 1

2b′′(X(t))b2(X(t))
)
[u − t]

+ b′(X(t))b(X(t))[W (u) − W (t)].

Now W (u)−W (t) is O(
√

u − t) (in probability) whereas the drift term in this
approximation is O(u−t) and thus of higher order. Dropping this higher-order
term yields the simpler approximation

b(X(u)) ≈ b(X(t)) + b′(X(t))b(X(t))[W (u) − W (t)], u ∈ [t, t + h]. (6.6)

Armed with this approximation, we return to the problem of refining (6.5).
Instead of freezing b(X(u)) at b(X(t)) over the interval [t, t + h], as in (6.5),
we use the approximation (6.6). Thus, we replace (6.5) with
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t

b(X(u)) dW (u)

≈
∫ t+h

t

(b(X(t)) + b′(X(t))b(X(t))[W (u) − W (t)]) dW (u)

= b(X(t))[W (t + h) − W (t)]

+ b′(X(t))b(X(t))

(∫ t+h

t

[W (u) − W (t)] dW (u)

)
. (6.7)

The proposed refinement uses this expression in place of b(X̂(i))
√

hZi+1 in
the Euler scheme (6.2).

To make this practical, we need to simplify the remaining integral in (6.7).
We can write this integral as∫ t+h

t

[W (u) − W (t)] dW (u)

=
∫ t+h

t

W (u) dW (u) − W (t)
∫ t+h

t

dW (u)

= Y (t + h) − Y (t) − W (t)[W (t + h) − W (t)] (6.8)

with

Y (t) =
∫ t

0

W (t) dW (t);

i.e., Y (0) = 0 and
dY (t) = W (t) dW (t).

Itô’s formula verifies that the solution to this SDE is

Y (t) = 1
2W (t)2 − 1

2 t.

Making this substitution in (6.8) and simplifying, we get∫ t+h

t

[W (u) − W (t)] dW (u) = 1
2 [W (t + h) − W (t)]2 − 1

2h. (6.9)

Using this identity in (6.7), we get∫ t+h

t

b(X(u)) dW (u) ≈ b(X(t))[W (t + h) − W (t)]

+ 1
2b′(X(t))b(X(t))

(
[W (t + h) − W (t)]2 − h

)
.

Finally, we use this approximation to approximate X(t+h). We refine the
one-step Euler approximation

X(t + h) ≈ X(t) + a(X(t))h + b(X(t))[W (t + h) − W (t)]
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to

X(t + h) ≈ X(t) + a(X(t))h + b(X(t))[W (t + h) − W (t)]
+ 1

2b′(X(t))b(X(t))
(
[W (t + h) − W (t)]2 − h

)
.

In a simulation algorithm, we apply this recursively at h, 2h, . . ., replacing the
increments of W with

√
hZi+1; more explicitly, we have

X̂(i + 1) = X̂(i) + a(X̂(i))h + b(X̂(i))
√

hZi+1

+ 1
2b′(X̂(i))b(X̂(i))h(Z2

i+1 − 1). (6.10)

This algorithm was derived by Milstein [266] through an analysis of partial
differential equations associated with the diffusion X . It is sometimes called
the Milstein scheme, but this terminology is ambiguous because there are
several important methods due to Milstein.

The approximation method in (6.10) adds a term to the Euler scheme. It
expands both the drift and diffusion terms to O(h). Observe that, conditional
on X̂(i), the new term

1
2b′(X̂(i))b(X̂(i))h(Z2

i+1 − 1)

has mean zero and is uncorrelated with the Euler terms because Z2
i+1 − 1

and Zi+1 are uncorrelated. The question remains, however, whether and in
what sense (6.10) is an improvement over the Euler scheme. We address this
in Section 6.1.2, after discussing the case of vector-valued X and W .

The Multidimensional Case

Suppose, now, that X(t) ∈ �d and W (t) ∈ �m. Write Xi, Wi, and ai for the
ith components of X , W , and a, and write bij for the ij-entry of b. Then

Xi(t + h) = Xi(t) +
∫ t+h

t

ai(X(u)) du +
m∑

j=1

∫ t+h

t

bij(X(u)) dWj(u),

and we need to approximate the integrals on the right. As in the Euler scheme,
we approximate the drift term using∫ t+h

t

ai(X(u)) du ≈ ai(X(t))h.

The argument leading to (6.7) yields∫ t+h

t

bij(X(u)) dWj(u) ≈ bij(X(t))[Wj(t + h) − Wj(t)]

+
d∑

	=1

m∑
k=1

∂bij

∂x	
(X(t))b	k(X(t))

∫ t+h

t

[Wk(u) − Wk(t)] dWj(u). (6.11)
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For k = j, we can evaluate the integral in (6.11) as in the scalar case:∫ t+h

t

[Wj(u) − Wj(t)] dWj(u) = 1
2 [Wj(t + h) − Wj(t)]2 − 1

2h.

However, there is no comparable expression for the off-diagonal terms∫ t+h

t

[Wk(u) − Wk(t)] dWj(u), k = j.

These mixed integrals (or more precisely their differences) are called Lévy
area terms; see the explanation in Protter [300, p.82], for example. Generating
samples from their distribution is a challenging simulation problem. Methods
for doing so are developed in Gaines and Lyons [132] and Wiktorsson [356],
but the difficulties involved limit the applicability of the expansion (6.11) in
models driven by multidimensional Brownian motion. Fortunately, we will see
that for the purpose of estimating an expectation it suffices to simulate rough
approximations to these mixed Brownian integrals.

6.1.2 Convergence Order

Equation (6.10) displays a refinement of the Euler scheme based on expanding
the diffusion term to O(h) rather than just O(

√
h). To discuss the extent and

the sense in which this algorithm is an improvment over the Euler scheme, we
need to establish a figure of merit for comparing discretizations.

Two broad categories of error of approximation are commonly used in
measuring the quality of discretization methods: criteria based on the path-
wise proximity of a discretized process to a continuous process, and criteria
based on the proximity of the corresponding distributions. These are generally
termed strong and weak criteria, respectively.

Let {X̂(0), X̂(h), X̂(2h), . . .} be any discrete-time approximation to a
continuous-time process X . Fix a time T and let n = �T/h�. Typical strong
error criteria are

E
[
‖X̂(nh) − X(T )‖

]
, E

[
‖X̂(nh) − X(T )‖2

]
,

and

E

[
sup

0≤t≤T
‖X̂(�t/h�h) − X(t)‖

]
,

for some vector norm ‖ · ‖. Each of these expressions measures the deviation
between the individual values of X and the approximation X̂.

In contrast, a typical weak error criterion has the form∣∣∣E[f(X̂(nh))] − E[f(X(T ))]
∣∣∣ , (6.12)
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with f ranging over functions from �d to � typically satisfying some smooth-
ness conditions. Requring that an expression of the form (6.12) converge to
zero as h decreases to zero imposes no constraint on the relation between the
outcomes of X̂(nh) and X(T ); indeed, the two need not even be defined on
the same probability space. Making the error criterion (6.12) small merely
requires that the distributions of X̂(nh) and X(T ) be close.

For applications in derivatives pricing, weak error criteria are most rele-
vant. We would like to ensure that prices (which are expectations) computed
from X̂ are close to prices computed from X ; we are not otherwise concerned
about the paths of the two processes. It is nevertheless useful to be aware of
strong error criteria to appreciate the relative merits of alternative discretiza-
tion methods.

Even after we fix an error criterion, it is rarely possible to ensure that
the error using one discretization method will be smaller than the error using
another in a specific problem. Instead, we compare methods based on their
asymptotic performance for small h.

Under modest conditions, even the simple Euler scheme converges (with
respect to both strong and weak criteria) as the time step h decreases to zero.
We therefore compare discretization schemes based on the rate at which they
converge. Following Kloeden and Platen [211], we say that a discretization X̂
has strong order of convergence β > 0 if

E
[
‖X̂(nh) − X(T )‖

]
≤ chβ (6.13)

for some constant c and all sufficiently small h. The discretization scheme has
weak order of convergence β if∣∣∣E[f(X̂(nh))] − E[f(X(T ))]

∣∣∣ ≤ chβ (6.14)

for some constant c and all sufficiently small h, for all f in a set C2β+2
P .

The set C2β+2
P consists of functions from �d to � whose derivatives of order

0, 1, . . . , 2β + 2 are polynomially bounded. A function g : �d → � is polyno-
mially bounded if

|g(x)| ≤ k(1 + ‖x‖q)

for some constants k and q and all x ∈ �d. The constant c in (6.14) may
depend on f .

In both (6.13) and (6.14), a larger value of β implies faster convergence
to zero of the discretization error. The same scheme will often have a smaller
strong order of convergence than its weak order of convergence. For example,
the Euler scheme typically has a strong order of 1/2, but it often achieves a
weak order of 1.

Convergence Order of the Euler Scheme

In more detail, the Euler scheme has strong order 1/2 under conditions only
slightly stronger than those in Theorem B.2.1 of Appendix B.2 for existence
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and uniqueness of a (strong) solution to the SDE (6.1). We may generalize
(6.1) by allowing the coefficient functions a and b to depend explicitly on
time t as well as on X(t). Because X is vector-valued, we could alternatively
take t to be one of the components of X(t); but that formulation leads to
unnecessarily strong conditions for convergence because it requires that the
coefficients be as smooth in t as they are in X . In addition to the conditions
of Theorem B.2.1, suppose that

E
[
‖X(0) − X̂(0)‖2

]
≤ K

√
h (6.15)

and

‖a(x, s) − a(x, t)‖ + ‖b(x, s) − b(x, t)‖ ≤ K(1 + ‖x‖)
√

|t − s|, (6.16)

for some constant K; then the Euler scheme has strong order 1/2. (This is
proved in Kloeden and Platen [211], pp.342–344. It is observed in Milstein [266]
though without explicit hypotheses.) Condition (6.15) is trivially satisfied if
X(0) is known and we set X̂(0) equal to it.

Stronger conditions are required for the Euler scheme to have weak order
1. For example, Theorem 14.5.2 of Kloeden and Platen [211] requires that the
functions a and b be four times continuously differentiable with polynomially
bounded derivatives. More generally, the Euler scheme has weak order β if a
and b are 2(β+1) times continuously differentiable with polynomially bounded
derivatives; the condition (6.14) then applies only to functions f with the same
degree of smoothness.

To see how smoothness can lead to a higher weak order than strong order,
consider the following argument. Suppose, for simplicity, that T = nh and
that X(0) is fixed so that E[f(X(0))] is known. By writing

E[f(X(T ))] = E[f(X(0))] + E

[
n−1∑
i=0

E[f(X((i + 1)h)) − f(X(ih))|X(ih)]

]
,

we see that accurate estimation of E[f(X(T ))] follows from accurate esti-
mation of the conditional expectations E[f(X((i + 1)h)) − f(X(ih))|X(ih)].
Applying a Taylor approximation to f (and taking X scalar for simplicity),
we get

E[f(X((i + 1)h)) − f(X(ih))|X(ih)]

≈
r∑

j=0

f (j)(X(ih))
j!

E[(X((i + 1)h) − X(ih))j |X(ih)]. (6.17)

Thus, if f is sufficiently smooth, then to achieve a high order of weak conver-
gence a discretization scheme need only approximate conditional moments of
the increments of the process X . With sufficient smoothness in the coefficient
functions a and b, higher conditional moments are of increasingly high order
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in h. Smoothness conditions on a, b, and f leading to a weak order of conver-
gence β for the Euler scheme follow from careful accounting of the errors in
expanding f and approximating the conditional moments; see Kloeden and
Platen [211], Section 14.5, and Talay [340, 341].

The accuracy of a discretization scheme in estimating an expression of
the form E[f(X(T ))] does not necessarily extend to the simulation of other
quantities associated with the same process. In Section 6.4 we discuss difficul-
ties arising in simulating the maximum of a diffusion, for example. Talay and
Zheng [344] analyze discretization error in estimating quantiles of the distri-
bution of a component of X(T ). They provide very general conditions under
which the bias in a quantile estimate computed from an Euler approxima-
tion is O(h); but they also show that the implicit constant in this O(h) error
is large — especially in the tails of the distribution — and that this makes
accurate quantile estimation difficult.

Convergence Order of the Refined Scheme

Theorem 10.3.5 of Kloeden and Platen [211] and Theorem 2-2 of Talay [340]
provide conditions under which Milstein’s refinement (6.10) and its multidi-
mensional generalization based on (6.11) have strong order 1. The conditions
required extend the linear growth, Lipschitz condition, and (6.16) to deriva-
tives of the coefficient functions a and b. Thus, under these relatively modest
additional conditions, expanding the diffusion term to O(h) instead of just
O(

√
h) through the derivation in Section 6.1.1 increases the order of strong

convergence.
But the weak order of convergence of the refined scheme (6.10) is also 1,

as it is for the Euler scheme. In this respect, including additional terms —
as in (6.10) and (6.11) — does not result in greater accuracy. This should
not be viewed as a deficiency of Milstein’s method; rather, the Euler scheme
is better than it “should” be, achieving order-1 weak convergence without
expanding all terms to O(h). This is in fact just the simplest example of a
broader pattern of results on the number of terms required to achieve strong
or weak convergence of a given order (to which we return in Section 6.3.1).
In order to achieve a weak order greater than that of the Euler scheme, we
need to expand dt-integrals to order h2 and stochastic integrals to order h.
We carry this out in the next section to arrive at a method with a higher weak
order of convergence.

It is reassuring to know that a discretization scheme has a high order of
convergence, but before venturing into our next derivation we should take
note of the fact that good accuracy on smooth functions may not be directly
relevant to our intended applications: option payoffs are typically nondiffer-
entiable. Bally and Talay [34] show that the weak order of the Euler scheme
holds for very general f and Yan [357] analyzes SDEs with irregular coeffi-
cients, but most of the literature requires significant smoothness assumptions.
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When applying higher-order discretization methods, it is essential to test the
methods numerically.

6.2 Second-Order Methods

We now proceed to further refine the Euler scheme to arrive at a method
with weak order 2. The derivation follows the approach used in Section 6.1.1,
expanding the integrals of a(X(t)) and b(X(t)) to refine the Euler approxi-
mations in (6.4) and (6.5), but now we keep more terms in the expansions.
We begin by assuming that in the SDE (6.1) both X and W are scalar.

6.2.1 The Scalar Case

To keep the notation manageable, we adopt some convenient shorthand. With
the scalar SDE (6.1) defining X , we associate the operators

L0 = a
d

dx
+ 1

2 b2 d2

dx2
(6.18)

and
L1 = b

d

dx
, (6.19)

meaning that for any twice differentiable f , we have

L0f(x) = a(x)f ′(x) + 1
2b2(x)f ′′(x)

and
L1f(x) = b(x)f ′(x).

This allows us to write Itô’s formula as

df(X(t)) = L0f(X(t)) dt + L1f(X(t)) dW (t). (6.20)

To accommodate functions f(t, X(t)) that depend explicitly on time, we would
generalize (6.18) to

L0 =
∂

∂t
+ a

∂

∂x
+ 1

2b2 ∂2

∂x2
.

As in Section 6.1.1, the key to deriving a discretization scheme lies in
approximating the evolution of X over an interval [t, t+h]. We start from the
representation

X(t + h) = X(t) +
∫ t+h

t

a(X(u)) du +
∫ t+h

t

b(X(u)) dW (u), (6.21)

and approximate each of the two integrals on the right.
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The Euler scheme approximates the first integral using the approximation
a(X(u)) ≈ a(X(t)) for u ∈ [t, t + h]. To derive a better approximation for
a(X(u)), we start from the exact representation

a(X(u)) = a(X(t)) +
∫ u

t

L0a(X(s)) ds +
∫ u

t

L1a(X(s)) dW (s);

this is Itô’s formula applied to a(X(u)). Next we apply the Euler approx-
imation to each of the two integrals appearing in this representation; in
other words, we set L0a(X(s)) ≈ L0a(X(t)) and L1a(X(s)) ≈ L1a(X(t))
for s ∈ [t, u] to get

a(X(u)) ≈ a(X(t)) + L0a(X(t))
∫ u

t

ds + L1a(X(t))
∫ u

t

dW (s).

Now we use this aproximation in the first integral in (6.21) to get∫ t+h

t

a(X(u)) du

≈ a(X(t))h + L0a(X(t))
∫ t+h

t

∫ u

t

ds du + L1a(X(t))
∫ t+h

t

∫ u

t

dW (s) du

≡ a(X(t))h + L0a(X(t))I(0,0) + L1a(X(t))I(1,0), (6.22)

with I(0,0) and I(1,0) denoting the indicated double integrals. This gives us
our approximation to the first term in integral in (6.21).

We use corresponding steps for the second integral in (6.21). We approxi-
mate the integrand b(X(u)), u ∈ [t, t + h] using

b(X(u)) = b(X(t)) +
∫ u

t

L0b(X(s)) ds +
∫ u

t

L1b(X(s)) dW (s)

≈ b(X(t)) + L0b(X(t))
∫ u

t

ds + L1b(X(t))
∫ u

t

dW (s)

and thus approximate the integral as∫ t+h

t

b(X(u)) dW (u)

≈ b(X(t))[W (t + h) − W (t)] + L0b(X(t))
∫ t+h

t

∫ u

t

ds dW (u)

+L1b(X(t))
∫ t+h

t

∫ u

t

dW (s) dW (u)

≡ b(X(t))[W (t + h) − W (t)] + L0b(X(t))I(0,1) + L1b(X(t))I(1,1). (6.23)

Once again, the I(i,j) denote the indicated double integrals.
If we combine (6.22) and (6.23) and make explicit the application of the

operators L0 and L1 to a and b, we arrive at the approximation
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X(t + h) ≈ X(t) + ah + b∆W + (aa′ + 1
2b2a′′)I(0,0)

+(ab′ + 1
2b2b′′)I(0,1) + ba′I(1,0) + bb′I(1,1), (6.24)

with ∆W = W (t + h)−W (t), and the functions a, b and their derivatives all
evaluated at X(t).

The Discretization Scheme

To turn the approximation in (6.24) into an implementable algorithm, we need
to be able to simulate the double integrals I(i,j). Clearly,

I(0,0) =
∫ t+h

t

∫ u

t

ds du = 1
2h2.

From (6.9) we know that

I(1,1) =
∫ t+h

t

[W (u) − W (t)] dW (u) = 1
2 [(∆W )2 − h].

The term I(0,1) is

I(0,1) =
∫ t+h

t

∫ u

t

ds dW (u) =
∫ t+h

t

(u − t) dW (u).

Applying integration by parts (which can be justified by applying Itô’s formula
to tW (t)), we get

I(0,1) = hW (t + h) −
∫ t+h

t

W (u) du

= h[W (t + h) − W (t)] −
∫ t+h

t

[W (u) − W (t)] du

= h∆W − I(1,0). (6.25)

So, it only remains to examine

I(1,0) =
∫ t+h

t

[W (u) − W (t)] du.

Given W (t), the area I(1,0) and the increment ∆W = W (t + h) − W (t)
are jointly normal. Each has conditional mean 0; the conditional variance of
∆W is h and that of I(1,0) is h3/3 (see (3.48)). For their covariance, notice
first that

E[I(1,0)|W (t), ∆W ] = 1
2h∆W (6.26)

(as illustrated in Figure 6.1), so E[I(1,0)∆W ] = 1
2h2. We may therefore simu-

late W (t + h) − W (t) and I(1,0) as



6.2 Second-Order Methods 351(
∆W
∆I

)
∼ N

(
0,

(
h 1

2h2

1
2h2 1

3h3

))
. (6.27)

This leads to the following second-order scheme:

X̂((i + 1)h) = X̂(ih) + ah + b∆W + (ab′ + 1
2b2b′′)[∆Wh − ∆I]

+ a′b∆I + 1
2bb′[∆W 2 − h]

+ (aa′ + 1
2b2a′′)1

2h2, (6.28)

with the functions a, b and their derivatives all evaluated at X̂(ih).

t t+h

W(t)

W(t+h)

∆I

Fig. 6.1. The shaded area is ∆I . Given W (t) and W (t + h), the conditional ex-
pectation of W at any intermediate time lies on the straight line connecting these
endpoints. The conditional expectation of ∆I is given by the area of the triangle
with base h and height ∆W = W (t + h) − W (t).

This method was introduced by Milstein [267] in a slightly different form.
Talay [341] shows that Milstein’s scheme has weak order 2 under conditions on
the coefficient functions a and b. These conditions include the requirement that
the functions a and b be six times continuously differentiable with uniformly
bounded derivatives. The result continues to hold if ∆I is replaced by its
conditional expectation ∆Wh/2; this type of simplification becomes essential
in the vector case, as we explain in the next section.

Implementation of (6.28) and similar methods requires calculation of the
derivatives of the coefficient functions of a diffusion. Methods that use dif-
ference approximations to avoid derivative calculations without a loss in con-
vergence order are developed in Milstein [267] and Talay [341]. These types
of approximations are called Runge-Kutta methods in analogy with methods
used in the numerical solution of ordinary differential equations.

6.2.2 The Vector Case

We now extend the scheme in (6.28) to d-dimensional X driven by m-
dimensional W . Much as in the scalar case, we start from the representation



352 6 Discretization Methods

Xi(t + h) = Xi(t) +
∫ t+h

t

ai(u) du +
m∑

k=1

∫ t+h

t

bik(u) dWk(u), i = 1, . . . , d,

and approximate each of the integrals on the right. In this setting, the relevant
operators are

L0 =
∂

∂t
+

d∑
i=1

ai
∂

∂xi
+ 1

2

d∑
i,j=1

m∑
k=1

bikbjk
∂2

∂xi∂xj
(6.29)

and

Lk =
d∑

i=1

bik
∂

∂xi
, k = 1, . . . , m. (6.30)

The multidimensional Itô formula for twice continuously differentiable f :
�d → � becomes

df(X(t)) = L0f(X(t)) dt +
m∑

k=1

Lkf(X(t)) dWk(t). (6.31)

Applying (6.31) to ai, we get

ai(X(u)) = ai(X(t)) +
∫ u

t

L0ai(X(s)) ds +
m∑

k=1

∫ u

t

Lkai(X(s)) dWk(s).

The same steps leading to the approximation (6.22) in the scalar case now
yield the approximation∫ t+h

t

ai(X(u)) du ≈ ai(X(t))h + L0ai(X(t))I(0,0) +
m∑

k=1

Lkai(X(t))I(k,0),

with

I(k,0) =
∫ t+h

t

∫ u

t

dWk(s) du, k = 1, . . . , m.

Similarly, the representation

bik(X(u)) = bik(X(t)) +
∫ u

t

L0bik(X(s)) ds +
m∑

j=1

∫ u

t

Ljbik(X(s)) dWj(s),

leads to the approximation∫ t+h

t

bik(X(u)) dWk(u)

≈ bik(X(t))h + L0bik(X(t))I(0,k) +
m∑

j=1

Ljbik(X(t))I(j,k),
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with

I(0,k) =
∫ t+h

t

∫ u

t

ds dWk(u), k = 1, . . . , m,

and

I(j,k) =
∫ t+h

t

∫ u

t

dWj(u) dWk(u), j, k = 1, . . . , m.

The notational convention for these integrals should be evident: in I(j,k)

we integrate first over Wj and then over Wk. This interpretation extends to
j = 0 if we set W0(t) ≡ t.

By combining the expansions above for the integrals of ai and bik, we
arrive at the discretization

X̂i(t + h) = X̂i(t) + ai(X̂(t))h +
m∑

k=1

bik(X̂(t))∆Wk

+ 1
2L

0ai(X̂(t))h2 +
m∑

k=1

Lkai(X̂(t))I(k,0)

+
m∑

k=1

L0bik(X̂(t))I(0,k) +
m∑

j=1

Ljbik(X̂(t))I(j,k)

 , (6.32)

for each i = 1, . . . , d. Here we have substituted h2/2 for I(0,0) and abbreviated
Wk(t + h) − Wk(t) as ∆Wk. The application of each of the operators Lj to
any of the coefficient functions ai, bik produces a polynomial in the coefficient
functions and their derivatives; these expressions can be made explicit using
(6.29) and (6.30). Using the identity

I(0,j) + I(j,0) = ∆Wjh,

which follows from (6.25), we could rewrite all terms involving I(0,j) as multi-
ples of (∆Wjh− I(j,0)) instead. Thus, to implement (6.32) we need to sample,
for each j = 1, . . . , m, the Brownian increments ∆Wj together with the inte-
grals I(j,0) and I(j,k), k = 1, . . . , m. We address this issue next.

Commutativity Condition

As noted in Section 6.1.1, the mixed Brownian integrals I(j,k) with j = k are
difficult to simulate, so (6.32) does not provide a practical algorithm without
further simplification. Simulation of the mixed integrals is obviated in models
satisfying the commutativity condition

Lkbij = Ljbik (6.33)

for all i = 1, . . . , d. This is a rather artificial condition and is not often satisfied
in practice, but it provides an interesting simplification of the second-order
approximation.
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When (6.33) holds, we may group terms in (6.32) involving mixed integrals
I(j,k), j, k ≥ 1, and write them as

m∑
j=1

m∑
k=1

LjbikI(j,k) =
m∑

j=1

LjbijI(j,j) +
m∑

j=1

m∑
k=j+1

Ljbik(I(j,k) + I(k,j)).

As in the scalar case (6.9), the diagonal term I(j,j) evaluates to (∆W 2
j − h)/2

and is thus easy to simulate. The utility of the commutativity condition lies
in the observation that even though each I(j,k), j = k, is difficult to simulate,
the required sums simplify to

I(j,k) + I(k,j) = ∆Wj∆Wk. (6.34)

This follows from applying Itô’s formula to Wj(t)Wk(t) to get

Wj(t+h)Wk(t+h)−Wj(t)Wk(t) =
∫ t+h

t

Wk(u) dWj(u)+
∫ t+h

t

Wj(u) dWk(u)

and then subtracting Wk(t)∆Wj + Wj(t)∆Wk from both sides.
When the commutativity condition is satisfied, the discretization scheme

(6.32) thus simplifies to

X̂i(t + h) = X̂i(t) + ai(X̂(t))h +
m∑

k=1

bik(X̂(t))∆Wk + 1
2L

0ai(X̂(t))h2

+
m∑

k=1

([
Lkai(X̂(t)) − L0bik(X̂(t))

]
∆Ik + L0bik(X̂(t))∆Wkh

)

+
m∑

j=1

Ljbij(X̂(t))1
2 (∆W 2

j − h) +
m∑

k=j+1

Ljbik(X̂(t))∆Wj∆Wk

 , (6.35)

with ∆Ik = I(k,0). Because the components of W are independent of each
other, the pairs (∆Wk, ∆Ik), k = 1, . . . , m, are independent of each other.
Each such pair has the bivariate normal distribution identified in (6.27) and
is thus easy to simulate.

Example 6.2.1 LIBOR Market Model. As an illustration of the commuta-
tivity condition (6.33), we consider the LIBOR market model of Section 3.7.
Thus, take Xi to be the ith forward rate Li in the spot measure dynamics in
(3.112). This specifies that the evolution of Li is governed by an SDE of the
form

dLi(t) = Li(t)µi(L(t), t) dt + Li(t)σi(t)� dW (t),

with, for example, σi a deterministic function of time. In the notation of this
section, bij = Liσij . The commutativity condition (6.33) requires
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d∑
r=1

brk
∂bij

∂xr
=

d∑
r=1

brj
∂bik

∂xr
,

and this is satisfied because both sides evaluate to σijσikLi. More generally,
the commutativity condition is satisfied whenever bij(X(t)) factors as the
product of a function of Xi(t) and a deterministic function of time.

If we set Xi(t) = log Li(t) then X solves an SDE of the form

dXi(t) =
(
µi(X(t), t) − 1

2‖σi(t)‖2
)

dt + σi(t)� dW (t).

In this case, bij = σij does not depend on X at all so the commutativity
condition is automatically satisfied. �

A Simplified Scheme

Even when the commutativity condition fails, the discretization method (6.32)
can be simplified for practical implementation. Talay [340] and Kloeden and
Platen [211, p.465] show that the scheme continues to have weak order 2 if
each ∆Ij is replaced with 1

2∆Wjh. (Related simplifications are used in Milstein
[267] and Talay [341].) Observe from (6.26) that this amounts to replacing ∆Ij

with its conditional expectation given ∆Wj . As a consequence, 1
2∆Wjh has

the same covariance with ∆Wj as ∆Ij does:

E[∆Wj · 1
2∆Wjh] = 1

2hE[∆W 2
j ] = 1

2h2.

It also has the same mean as ∆Ij but variance h3/4 rather than h3/3, an
error of O(h3). This turns out to be close enough to preserve the order of
convergence. In the scalar case (6.28), the simplified scheme is

X̂(n + 1) = X̂(n) + ah + b∆W

+ 1
2 (a′b + ab′ + 1

2b2b′′)∆Wh + 1
2bb′[∆W 2 − h]

+ (aa′ + 1
2b2a′′)1

2h2, (6.36)

with a, b, and their derivatives evaluated at X̂(n).
In the vector case, the simplified scheme replaces the double integrals in

(6.32) with simpler random variables. As in the scalar case, I(0,k) and I(k,0)

are approximated by ∆Wkh/2. Each I(j,j), j = 0, evaluates to (∆W 2
j − h)/2.

For j, k different from zero and from each other, I(j,k) is approximated by
(Talay [341], Kloeden and Platen [211], Section 14.2)

1
2 (∆Wj∆Wk − Vjk), (6.37)

with Vkj = −Vjk, and the Vjk, j < k, independent random variables tak-
ing values h and −h each with probability 1/2. Let Vjj = h. The resulting
approximation is, for each coordinate i = 1, . . . , d,
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X̂i(n + 1) =

X̂i(n) + aih +
m∑

k=1

bik∆Wk + 1
2L

0aih
2 + 1

2

m∑
k=1

(
Lkai + L0bik

)
∆Wkh

+ 1
2

m∑
k=1

m∑
j=1

Ljbik (∆Wj∆Wk − Vjk) , (6.38)

with all ai, bij , and their derivatives evaluated at X̂(n).
In these simplified schemes, the ∆W can be replaced with other random

variables ∆̂W with moments up to order 5 that are within O(h3) of those
of ∆W . (See the discussion following (6.17) and, for precise results Kloeden
and Platen [211, p.465] and Talay [341, 342].) This includes the three-point
distributions

P (∆̂W = ±
√

3h) =
1
6
, P (∆̂W = 0) =

2
3
.

These are faster to generate, but using normally distributed ∆W will generally
result in smaller bias. The justification for using (6.37) also lies in the fact
that these simpler random variables have moments up to order five that are
within O(h3) of those of the I(j,k); see Section 5.12 of Kloeden and Platen [211,
p.465], Section 1.6 of Talay [341], or Section 5 of Talay [342]. Talay [341, 342]
calls these “Monte Carlo equivalent” families of random variables.

Example 6.2.2 Stochastic volatility model. In Section 3.4, we noted that the
square-root diffusion is sometimes used to model stochastic volatility. Heston’s
[179] model is

dS(t) = rS(t) dt +
√

V (t)S(t) dW1(t)

dV (t) = κ(θ − V (t)) dt +
√

V (t)(σ1 dW1(t) + σ2 dW2(t)),

with S interpreted as, e.g., a stock price. The Brownian motions W1 and W2

are independent of each other. Heston [179] derives a formula for option prices
in this setting using Fourier transform inversion. This provides a benchmark
against which to compare simulation methods.

The simplified second-order scheme (6.38) for this model is as follows:

Ŝ(i + 1) = Ŝ(i)(1 + rh +
√

V̂ (i)∆W1) + 1
2r2Ŝ(i)h2

+

[r +
σ1 − κ

4

]
ˆS(i)
√

V̂ (i) +
[
κθ

4
− σ2

16

]
Ŝ(i)√
V̂ (i)

∆W1h

+ 1
2 Ŝ(i)(V̂ (i) +

σ1

2
)(∆W 2

1 − h) + 1
4σ2Ŝ(i)(∆W2∆W1 + ξ)

and
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V̂ (i + 1) =

κθh + (1 − κh)V̂ (i) +
√

V̂ (i)(σ1∆W1 + σ2∆W2) − 1
2κ2(θ − V̂ (i))h2

+

[κθ

4
− σ2

16

]
1√
V̂ (i)

− 3κ

2

√
V̂ (i)

 (σ1∆W1 + σ2∆W2)h

+ 1
4σ2

1(∆W 2
1 − h) + 1

4σ2
2(∆W 2

2 − h) + 1
2σ1σ2∆W1∆W2,

with σ2 = σ2
1 + σ2

2 and ξ taking the values h and −h with probability 1/2
independent of the Brownian increments. To avoid taking the square root of
a negative number or dividing by zero, we replace V̂ (i) by its absolute value
before advancing these recursions.

Figure 6.2 displays numerical results using this scheme and a simple Euler
approximation. We use parameters S(0) = 100, V (0) = 0.04, r = 5%, κ = 1.2,
θ = 0.04, σ = 0.30, and σ1 = ρσ with ρ = −0.5. Using Heston’s [179] formula,
the expectation E[e−rT (S(T ) − K)+] with T = 1 and K = 100 evaluates to
10.3009. We compare our simulation results against this value to estimate
bias. We use simulation time step h = T/n, with n = 3, 6, 12, 25, and 100
and run 2–4 million replications at each n for each method.

Figure 6.2 plots the estimated log absolute bias against log n. The bias
in the Euler scheme for this example falls below 0.01 at n = 25 steps per
year, whereas the second-order method has a bias this small even at n = 3
steps per year. As n increases, the results for the Euler scheme look roughly
consistent with first-order convergence; the second-order method produces
smaller estimated biases but its convergence is much more erratic. In fact our
use of (6.38) for this problem lacks theoretical support because the square-root
functions in the model dynamics and the kink in the call option payoff violate
the smoothness conditions required to ensure second-order convergence. The
more regular convergence displayed by the Euler scheme in this example lends
itself to the extrapolation method in Section 6.2.4.

6.2.3 Incorporating Path-Dependence

The error criterion in (6.14) applies to expectations of the form E[f(X(T ))]
with T fixed. Accurate estimation of E[f(X(T ))] requires accurate approxi-
mation only of the distribution of X(T ). In many pricing problems, however,
we are interested not only in the terminal state of an underlying process, but
also in the path by which the terminal state is reached. The error criterion
(6.14) does not appear to offer any guarantees on the approximation error in
simulating functions of the path, raising the question of whether properties of
the Euler and higher-order schemes extend to such functions.

One way to extend the framework of the previous sections to path-
dependent quantities is to transform dependence on the past into dependence
on supplementary state variables. This section illustrates this idea.
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Fig. 6.2. Estimated bias versus number of steps in discretization of a stochastic
volatility model.

Suppose we want to compute a bond price

E

[
exp

(
−
∫ T

0

r(t) dt

)]
(6.39)

with the (risk-neutral) dynamics of the short rate r described by the scalar
SDE

dr(t) = µ(r(t)) dt + σ(r(t)) dW (t).

If we simulate some discretization r̂(i) = r̂(ih), i = 0, 1, . . . , n − 1 with time
step h = T/n, the simplest estimate of the bond price would be

exp

(
−h

n−1∑
i=0

r̂(i)

)
. (6.40)

An alternative introduces the variable

D(t) = exp
(
−
∫ t

0

r(u) du

)
,

develops a discretization scheme for the bivariate diffusion

d

(
r(t)
D(t)

)
=
(

µ(r(t))
−r(t)D(t)

)
dt +

(
σ(r(t))

0

)
dW (t), (6.41)

and uses D̂(nh) as an estimate of the bond price (6.39). In (6.41), the driving
Brownian motion is still one-dimensional, so we have not really made the prob-
lem any more difficult by enlarging the state vector. The difficulties addressed
in Section 6.2.2 arise when W is vector-valued.
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The Euler scheme for the bivariate diffusion is

r̂(i + 1) = r̂(i) + µ(r̂(i))h + σ(r̂(i))∆W

D̂(i + 1) = D̂(i) − r̂(i)D̂(i)h.

Because of the smoothness of the coefficients of the SDE for D(t), this dis-
cretization inherits whatever order of convergence the coefficients µ and σ
ensure for r̂. Beyond this guarantee, the bivariate formulation offers no clear
advantage for the Euler scheme compared to simply using (6.40). Indeed, if
we apply the Euler scheme to log D(t) rather than D(t), we recover (6.40)
exactly.

But we do find a difference when we apply a second-order discretization.
The simplified second-order scheme for a generic bivariate diffusion X driven
by a scalar Brownian motion has the form(

X̂1(i + 1)
X̂2(i + 1)

)
= Euler terms + 1

2

(
L0a1(X̂(i))
L0a2(X̂(i))

)
h2

+ 1
2

(
L1b1(X̂(i))
L1b2(X̂(i))

)
(∆W 2 − h) + 1

2

(
L1a1(X̂(i)) + L0b1(X̂(i))
L1a2(X̂(i)) + L0b2(X̂(i))

)
∆Wh

with

L0 = a1
∂

∂x1
+ a2

∂

∂x2
+ 1

2

(
b2
1

∂2

∂x2
1

+ 2b1b2
∂2

∂x1x2
+ b2

2

∂2

∂x2
2

)
and

L1 = b1
∂

∂x1
+ b2

∂

∂x2
.

When specialized to the bond-pricing setting, this discretizes r(t) as

r̂(i + 1) = r̂(i) + µh + σ∆W + 1
2σσ′[∆W 2 − h]

+ 1
2 (σµ′ + µσ′ + 1

2σ2σ′′)∆Wh + 1
2 (µ′µ + 1

2σ2µ′′)h2

with µ, σ and their derivatives on the right evaluated at r̂(i). This is exactly
the same as the scheme for r(t) alone. But in discretizing D(t), we get

L1(−r(t)D(t)) = −σ(r(t))D(t)

and
L0(−r(t)D(t)) = −µ(r(t))D(t) + r(t)2D(t).

Hence, the scheme becomes

D̂(i + 1) = D̂(i)
(
1 − r̂(i)h + 1

2 [r̂(i)2 − µ(r̂(i))]h2 − 1
2σ(r̂(i))∆Wh

)
,

which involves terms not reflected in (6.40).
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Again because of the smoothness of the coefficients for D(t), this method
has weak order 2 if the scheme for r(t) itself achieves this order. Thus, the
weak error criterion extends to the bond price (6.39), though it would not
necessarily extend if we applied the crude discretization in (6.40).

The same idea clearly applies in computing a function of, e.g.,(
X(T ),

∫ T

0

X(t) dt

)
,

as might be required in pricing an Asian option. In contrast, incorporating
path-dependence through the maximum or minimum of a process (to price
a barrier or lookback option, for example) is more delicate. We can define a
supplementary variable of the form

M(t) = max
0≤s≤t

X(t)

to remove dependence on the past of X , but the method applied above with
the discount factor D(t) does not extend to the bivariate process (X(t), M(t)).
The difficulty lies in the fact that the running maximum M(t) does not satisfy
an SDE with smooth coefficients. For example, M remains constant except
when X(t) = M(t). Asmussen, Glynn, and Pitman [24] show that even when
X is ordinary Brownian motion (so that the Euler scheme for X is exact),
the Euler scheme for M has weak order 1/2 rather than the weak order 1
associated with smooth coefficient functions. We return to the problem of
discretizing the running maximum in Section 6.4.

6.2.4 Extrapolation

An alternative approach to achieving second-order accuracy applies Richard-
son extrapolation (also called Romberg extrapolation) to two estimates ob-
tained from a first-order scheme at two different levels of discretization. This is
easier to implement than a second-order scheme and usually achieves roughly
the same accuracy — sometimes better, sometimes worse. The same idea can
(under appropriate conditions) boost the order of convergence of a second-
order or even higher-order scheme, but these extensions are not as effective in
practice.

To emphasize the magnitude of the time increment, we write X̂h for a
discretized process with step size h. We write X̂h(T ) for the state of the
discretized process at time T ; more explicitly, this is X̂h(�T/h�h).

As discussed in Section 6.1.2, the Euler scheme often has weak order 1, in
which case

|E[f(X̂h(T ))] − E[f(X(T ))]| ≤ Ch (6.42)

for some constant C, for all sufficiently small h, for suitable f . Talay and
Tubaro [343], Bally and Talay [34], and Protter and Talay [301] prove that
the bound in (6.42) can often be strengthened to an equality of the form
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E[f(X̂h(T ))] = E[f(X(T ))] + ch + o(h),

for some constant c depending on f . In this case, the discretization with time
step 2h satisfies

E[f(X̂2h(T ))] = E[f(X(T ))] + 2ch + o(h),

with the same constant c.
By combining the approximations with time steps h and 2h, we can elimi-

nate the leading error term. More explicitly, from the previous two equations
we get

2E[f(X̂h(T ))] − E[f(X̂2h(T ))] = E[f(X(T ))] + o(h). (6.43)

This suggests the following algorithm: simulate with time step h to estimate
E[f(X̂h(T ))]; simulate with time step 2h to estimate E[f(X̂2h(T ))]; double
the first estimate and subtract the second to estimate E[f(X(T ))]. The bias
in this combined estimate is of smaller order than the bias in either of its two
components.

Talay and Tubaro [343] and Protter and Talay [301] give conditions under
which the o(h) term in (6.43) is actually O(h2) (and indeed under which the
error can be expanded in arbitrarily high powers of h). This means that apply-
ing extrapolation to the Euler scheme produces an estimate with weak order
2. Because the Euler scheme is easy to implement, this offers an attractive
alternative to the second-order schemes derived in Sections 6.2.1 and 6.2.2.

The variance of the extrapolated estimate is typically reduced if we use
consistent Brownian increments in simulating paths of X̂h and X̂2h. Each
Brownian increment driving X̂2h is the sum of two of the increments driving
X̂h. If we use

√
hZ1,

√
hZ2, . . . as Brownian increments for X̂h, we should use√

h(Z1 + Z2),
√

h(Z3 + Z4), . . . as Brownian increments for X̂2h. Whether or
not we use this construction (as opposed to, e.g., simulating the two inde-
pendently) has no bearing on the validity of (6.43) because (6.43) refers only
to expectations and is unaffected by any dependence between X̂h and X̂2h.
Observe, however, that

Var
[
2f(X̂h(T )) − f(X̂2h(T ))

]
= 4Var

[
f(X̂h(T ))

]
+ Var

[
f(X̂2h(T ))

]
−4Cov

[
f(X̂h(T )), f(X̂2h(T ))

]
.

Making f(X̂h(T )) and f(X̂2h(T )) positively correlated will therefore reduce
variance, even though it has no effect on discretization bias. Using consistent
Brownian increments will not always produce positive correlation, but it often
will. Positive correlation can be guaranteed through monotonicity conditions,
for example. This issue is closely related to the effectiveness of antithetic
sampling; see Section 4.2, especially the discussion surrounding (4.29).

Extrapolation can theoretically be applied to a second-order scheme to
further increase the order of convergence. Suppose that we start from a scheme



362 6 Discretization Methods

having weak order 2, such as the simplified scheme (6.36) or (6.38). Suppose
that in fact

E[f(X̂h(T ))] = E[f(X(T ))] + ch2 + o(h2).

Then

1
3
(4E[f(X̂h(T ))] − E[f(X̂2h(T ))])

=
1
3
({4E[f(X(T ))] + 4ch2 + o(h2)} − {E[f(X(T ))] + 4ch2 + o(h2)})

= E[f(X(T ))] + o(h2).

If the o(h2) error is in fact O(h3), then the combination

1
21

(32E[f(X̂h(T ))] − 12E[f(X̂2h(T ))] + E[f(X̂4h(T ))])

eliminates that term too. Notice that the correct weights to apply to X̂h, X̂2h,
and any other discretization depend on the weak order of convergence of the
scheme used.

6.3 Extensions

6.3.1 General Expansions

The derivations leading to the strong first-order scheme (6.10) and the weak
second-order schemes (6.28) and (6.32) generalize to produce approximations
that are, in theory, of arbitrarily high weak or strong order, under conditions
on the coefficient functions. These higher-order methods can be cumbersome
to implement and are of questionable practical significance; but they are of
considerable theoretical interest and help underscore a distinction between
weak and strong approximations.

We consider a d-dimensional process X driven by an m-dimensional stan-
dard Brownian motion W through an SDE of the form

dX(t) = b0(X(t)) dt +
d∑

j=1

bj(X(t))� dW (t).

We have written the drift coefficient as b0 rather than a to allow more compact
notation in the expansions that follow. Let L0 be as in (6.29) but with ai

replaced by b0i and let Lk be as in (6.30), k = 1, . . . , m.
For any n = 1, 2, . . ., and any j1, j2, . . . , jn ∈ {0, 1, . . . , m}, define the

multiple integrals

I(j1,j2,...,jn) =
∫ t+h

t

· · ·
∫ u3

t

∫ u2

t

dWj1 (u1) dWj2 (u2) · · ·dWjn(un),
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with the convention that dW0(u) = du. These integrals generalize those used
in Section 6.2.2. Here, t and h are arbitrary positive numbers; as in Sec-
tion 6.2.2, our objective is to approximate an arbitrary increment from X(t)
to X(t + h).

The general weak expansion of order β = 1, 2, . . . takes the form

X(t + h) ≈ X(t) +
β∑

n=1

∑
j1,...,jn

Lj1 · · · Ljn−1bjnI(j1,...,jn), (6.44)

with each ji ranging over 0, 1, . . . , m. (This approximation applies to each
coordinate of the vectors X and bjn .) When β = 2, this reduces to the second-
order scheme in (6.32). Kloeden and Platen [211] (Section 14.5) justify the
general case and provide conditions under which this approximation produces
a scheme with weak order β.

In contrast to (6.44), the general strong expansion of order β = 1/2, 1,
3/2,. . . takes the form (Kloeden and Platen [211], Section 14.5)

X(t + h) ≈ X(t) +
∑

(j1,...,jn)∈Aβ

Lj1 · · · Ljn−1bjnI(j1,...,jn). (6.45)

The set Aβ is defined as follows. A vector of indices (j1, . . . , jn) is in Aβ if
either (i) the number of indices n plus the number of indices that are 0 is less
than or equal to 2β, or (ii) n = β + 1

2 and all n indices are 0. Thus, when
β = 1, the weak expansion sums over j = 0 and j = 1 (the Euler scheme),
whereas the strong expansion sums over j = 0, j = 1, and (j1, j2) = (1, 1) to
get (6.10). Kloeden and Platen [211], Section 10.6, show that (6.45) indeed
results in an approximation with strong order β.

Both expansions (6.44) and (6.45) follow from repeated application of the
steps we used in (6.7) and (6.22)–(6.23). The distinction between the two
expansions can be summarized as follows: the weak expansion treats terms
∆Wj , j = 0, as having the same order as h, whereas the strong expansion
treats them as having order h1/2. Thus, indices equal to zero (corresponding
to “dt” terms rather than “dWj” terms) count double in reckoning the number
of terms to include in the strong expansion (6.45).

6.3.2 Jump-Diffusion Processes

Let {N(t), t ≥ 0} be a Poisson process, let {Y1, Y2, . . .} be i.i.d. random
vectors, W a standard multidimensional Brownian motion with N , W , and
{Y1, Y2, . . .} independent of each other. Consider jump-diffusion models of the
form

dX(t) = a(X(t−)) dt+b(X(t−))� dW (t)+c(X(t−), YN(t−)+1) dN(t). (6.46)

Between jumps of the Poission process, X evolves like a diffusion with coeffi-
cient functions a and b; at the nth jump of the Poisson process, the jump in
X is
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X(t) − X(t−) = c(X(t−), Yn),

a function of the state of X just before the jump and the random variable Yn.
We discussed a special case of this model in Section 3.5.1. Various processes
of this type are used to model the dynamics of underlying assets in pricing
derivative securities.

Mikulevicius and Platen [265] extend the general weak expansion (6.44)
to processes of this type and analyze the discretization schemes that follow
from this expansion. Their method uses a pure-diffusion discretization method
between the jumps of the Poisson process and applies the function c to the dis-
cretized process to determine the jump in the discretized process at a jump of
the Poisson process. The jump magnitudes are thus computed exactly, condi-
tional on the value of the discretized process just before a jump. Mikulevicius
and Platen [265] show, in fact, that the weak order of convergence of this
method equals the order of the scheme used for the pure-diffusion part, under
conditions on the coefficient functions a, b, and c.

In more detail, this method supplements the original time grid 0, h, 2h, . . .
with the jump times of the Poisson process. Because the Poisson process is
independent of the Brownian motion, we can imagine generating all of these
jump times at the start of a simulation. (See Section 3.5 for a discussion of
the simulation of Poisson processes.) Let 0 = τ0, τ1, τ2, . . . be the combined
time grid, including both the multiples of h and the Poisson jump times. The
discretization scheme proceeds by simulating X̂ from τi to τi+1, i = 0, 1, . . ..
Given X̂(τi), we apply an Euler scheme or higher-order scheme to generate
X̂(τi+1−), using the coefficient functions a and b. If τi+1 is a Poisson jump
time — the nth, say — we generate Yn and set

X̂(τi+1) = X̂(τi+1−) + c(X̂(τi+1−), Yn).

If τi+1 is not a jump time, we set X̂(τi+1) = X̂(τi+1−).
Glasserman and Merener [145] apply this method to a version of the LI-

BOR market model with jumps. The jump processes they consider are more
general than Poisson processes, having arrival rates that depend on the cur-
rent level of forward rates. They extend the method to this setting by using
a bound on the state-dependent arrival rates to construct jumps by thinning
a Poisson process. This requires relaxing the smoothness conditions imposed
on c in Mikulevicius and Platen [265].

Maghsoodi [245] provides various alternative discretization schemes for
jump-diffusion processes and considers both strong and weak error criteria.
He distinguishes jump-adapted methods (like the one described above) that
include the Poisson jump epochs in the time grid from those that use a fixed
grid. A jump-adapted method may become computationally burdensome if the
jump intensity is very high. Protter and Talay [301] analyze the Euler scheme
for stochastic differential equations driven by Lévy processes, which include
(6.46) as a special case. Among other results, they provide error expansions
in powers of h justifying the use of Richardson extrapolation.
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6.3.3 Convergence of Mean Square Error

The availability of discretization schemes of various orders poses a tradeoff:
using a higher-order scheme requires more computing time per path and thus
reduces the number of paths that can be completed in a fixed amount of time.
The number of paths completed affects the standard error of any estimates we
compute, but has no effect on discretization bias, which is determined by our
choice of scheme. Thus, we face a tradeoff between reducing bias and reducing
variance.

We discussed this tradeoff in a more general setting in Section 1.1.3 and
the asymptotic conclusions reached there apply in the current setting. Here
we present a slightly different argument to arrive at the same conclusion.

We suppose that our objective is to minimize mean square error (MSE),
the sum of variance and squared bias. Using a discretization scheme of weak
order β, we expect

Bias ≈ c1h
β

for some constant c1. For the variance based on n paths we expect

Variance ≈ c2

n

for some constant c2. The time step h would generally have some effect on
variance; think of c2 as the limit as h decreases to zero of the variance per
replication.

If we make the reasonable assumption that the computing time per path is
proportional to the number of steps per path, then it is inversely proportional
to h. The total computing time for n paths is then nc3/h, for some constant
c3.

With these assumptions and approximations, we formulate the problem of
minimizing MSE subject to a computational budget s as follows:

min
n,h

(
c2
1h

2β +
c2

n

)
subject to

nc3

h
= s.

Using the constraint to eliminate a variable, we put this in the form

min
h

(
c2
1h

2β +
c2c3

hs

)
,

which is minimized at
h = cs−

1
2β+1 (6.47)

with c a constant. Substituting this back into our expressions for the squared
bias and the variance, we get

MSE ≈ c′1s
− 2β

2β+1 + c′2s
− 2β

2β+1 = c′s−
2β

2β+1 ,

for some constants c′, c′1, c′2. The optimal allocation thus balances variance
and squared bias. Also, the optimal root mean square error becomes
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√
MSE ∝ s−

β
2β+1 . (6.48)

This is what we found in Section 1.1.3 as well.
These calculations show how the order β of a scheme affects both the opti-

mal allocation of effort and the convergence rate under the optimal allocation.
As the convergence order β increases, the optimal convergence rate in (6.48)
approaches s−1/2, the rate associated with unbiased simulation. But for the
important cases of β = 1 (first-order) and β = 2 (second-order) we get rates of
s−1/3 and s−2/5. This makes precise the notion that simulating a process for
which a discretization scheme is necessary is harder than simulating a solv-
able model. It also shows that when very accurate results are required (i.e.,
when s is large), a higher-order scheme will ultimately dominate a lower-order
scheme.

Duffie and Glynn [100] prove a limit theorem that justifies the convergence
rate implied by (6.48). They also report numerical results that are generally
consistent with their theoretical predictions.

6.4 Extremes and Barrier Crossings: Brownian
Interpolation

In Section 6.2.3 we showed that discretization methods can sometimes be ex-
tended to path-dependent payoffs through supplementary state variables. The
additional state variables remove dependence on the past; standard discretiza-
tion procedures can then be applied to the augmented state vector.

In option pricing applications, path-dependence often enters through the
maximum or minimum of an underlying asset over the life of the option. This
includes, for example, options whose payoffs depend on whether or not an un-
derlying asset crosses a barrier. Here, too, path-dependence can be eliminated
by including the running maximum or minimum in the state vector. However,
this renders standard discretization procedures inapplicable because of the
singular dynamics of these supplementary variables. The running maximum,
for example, can increase only when it is equal to the underlying process.

This issue arises even when the underlying process X is a standard Brown-
ian motion. Let

M(t) = max
0≤u≤t

X(u)

and let
M̂h(n) = max{X(0), X(h), X(2h), . . . , X(nh)}. (6.49)

Then M̂h(n) is the maximum of the Euler approximation to X over [0, nh];
the Euler approximation to X is exact for X itself because X is Brownian
motion. Fix a time T and let h = T/n so that M̂h(n) is the discrete-time
approximation of M(T ). Asmussen, Glynn, and Pitman [24] show that the
normalized error
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h−1/2[M̂h(n) − M(T )]

has a limiting distribution as h → 0. This result may be paraphrased as
stating that the distribution of M̂h(n) converges to that of M(T ) at rate
h1/2. It follows that the weak order of convergence (in the sense of (6.14))
cannot be greater than 1/2. In contrast, we noted in Section 6.1.2 that for
SDEs with smooth coefficient functions the Euler scheme has weak order of
convergence 1. Thus, the singularity of the dynamics of the running maximum
leads to a slower convergence rate.

In the case of Brownian motion, this difficulty can be circumvented by
sampling M(T ) directly, rather than through (6.49). We can sample from
the joint distribution of X(T ) and M(T ) as follows. First we generate X(T )
from N(0, T ). Conditional on X(T ) the process {X(t), 0 ≤ t ≤ T } becomes a
Brownian bridge, so we need to sample from the distribution of the maximum
of a Brownian bridge. We discussed how to do this in Example 2.2.3. Given
X(T ), set

M(T ) =
X(T ) +

√
X(T )2 − 2T log U

2
with U ∼ Unif[0,1] independent of X(T ). The pair (X(T ), M(T )) then has
the joint distribution of the terminal and maximum value of the Brownian
motion over [0, T ].

This procedure, exact for Brownian motion, suggests an approximation
for more general processes. Suppose X is a diffusion satisfying the SDE (6.1)
with scalar coefficient functions a and b. Let X̂(i) = X̂(ih), i = 0, 1, . . ., be
a discrete-time approximation to X , such as one defined through an Euler
or higher-order scheme. The simple estimate (6.49) applied to X̂ is equiva-
lent to taking the maximum over a piecewise linear interpolation of X̂ . We
can expect to get a better approximation by interpolating over the interval
[ih, (i + 1)h) using a Brownian motion with fixed parameters ai = a(X̂(i))
and bi = b(X̂(i)). Given the endpoints X̂(i) and X̂((i + 1)), the maximum of
the interpolating Brownian bridge can be simulated using

M̂i =
X̂(i + 1) + X̂(i) +

√
[X̂(i + 1) − X̂(i)]2 − 2b2

i h log Ui

2
, (6.50)

with U0, U1, . . . independent Unif[0,1] random variables. (The value of a(X̂(i))
becomes immaterial once we condition on X̂(i+1).) The maximum of X over
[0, T ] can then be approximated using

max{M̂0, M̂1, . . . , M̂n−1}.

Similar ideas are suggested in Andersen and Brotherton-Ratcliffe [16] and in
Beaglehole, Dybvig, and Zhou [41] for pricing lookback options; their numeri-
cal results indicate that the approach can be very effective. Baldi [31] analyzes
related techniques in a much more general setting.
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In some applications, X may be better approximated by geometric Brown-
ian motion than by ordinary Brownian motion. This can be accommodated
by applying (6.50) to log X̂ rather than X̂. This yields

log M̂i =
log(X̂(i + 1)X̂(i)) +

√
[log(X̂(i + 1)/X̂(i))]2 − 2(bi/X̂(i))2h log Ui

2
,

and exponentiating produces M̂i.

Barrier Crossings

Similar ideas apply in pricing barrier options with continuously monitored
barriers. Suppose B > X(0) and let

τ = inf{t ≥ 0 : X(t) > B}.

A knock-out option might have a payoff of the form

(K − X(T ))+1{τ > T }, (6.51)

with K a constant. This requires simulation of X(T ) and the indicator 1{τ >
T }.

The simplest method sets

τ̂ = inf{i : X̂(i) > B}

and approximates (X(T ),1{τ > T }) by (X̂(n),1{τ̂ > n}) with h = T/n, for
some discretizaton X̂. But even if we could simulate X exactly on the discrete
grid 0, h, 2h, . . . , this would not sample 1{τ > T } exactly: it is possible for X
to cross the barrier at some time t between grid points ih and (i + 1)h and
never be above the barrier at any of the dates 0, h, 2h, . . ..

The method in (6.50) can be used to reduce discretization error in sampling
the survival indicator 1{τ > T }. Observe that the barrier is crossed in the
interval [ih, (i + 1)h) precisely if the maximum over this interval exceeds B.
Hence, we can approximate the survival indicator 1{τ > T } using

n−1∏
i=0

1{M̂i ≤ B}, (6.52)

with nh = T and M̂i as in (6.50).
This method can be simplified. Rather than generate M̂i, we can sample

the indicators 1{M̂i ≤ B} directly. Given X̂(i) and X̂(i + 1), this indicator
takes the value 1 with probability

p̂i = P (M̂i ≤ B|X̂(i), X̂(i + 1)) = 1 − exp

(
−2(B − X̂(i))(B − X̂(i + 1))

b(X̂(i))2h

)
,
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(assuming B is greater than both X̂(i) and X̂(i + 1)) and it takes the value
0 with probability 1 − p̂i. Thus, we can approximate 1{τ > T } using

n−1∏
i=0

1{Ui ≤ p̂i}.

For fixed U0, U1, . . . , Un−1, this has the same value as (6.52) but is slightly sim-
pler to evaluate. The probabilities p̂i could alternatively be computed based
on an approximating geometric (rather than ordinary) Brownian motion.

The discretized process X̂ is often a Markov process and this leads to
further simplification. Consider, for example, the payoff in (6.51). Using (6.52),
we approximate the payoff as

(K − X̂(n))+
n−1∏
i=0

1{M̂i ≤ B}. (6.53)

The conditional expectation of this expression given the values of X̂ is

E

[
(K − X̂(n))+

n−1∏
i=0

1{M̂i ≤ B}|X̂(0), X̂(1), . . . , X̂(n)

]
(6.54)

= (K − X̂(n))+
n−1∏
i=0

E[1{M̂i ≤ B}|X̂(i), X̂(i + 1)]

= (K − X̂(n))+
n−1∏
i=0

p̂i. (6.55)

Thus, rather than generate the barrier-crossing indicators, we can just multi-
ply by the probabilities p̂i.

Because (6.55) is the conditional expectation of (6.53), the two have the
same expectation and thus the same discretization bias. By Jensen’s inequal-
ity, the second moment of (6.53) is larger than the second moment of its condi-
tional expectation (6.55), so using (6.55) rather than (6.53) reduces variance.
(This is an instance of a more general strategy for reducing variance known
as conditional Monte Carlo, based on replacing an estimator with its con-
ditional expectation; see, Boyle et al. [53] for other applications in finance.)
Using (6.53), we would stop simulating a path once some M̂i exceeds B. Using
(6.55), we never generate the M̂i and must therefore simulate every path for
n steps, unless some X̂(i) exceeds B (in which case p̂i = 0). So, although
(6.55) has lower variance, it requires greater computational effort per path.
A closely related tradeoff is investigated by Glasserman and Staum [146];
they consider estimators in which each transition of an underlying asset is
sampled conditional on not crossing a barrier. In their setting, products of
survival probabilities like those in (6.55) serve as likelihood ratios relating the
conditional and unconditional evolution of the process.
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Baldi, Caramellino, and Iovino [32] develop methods for reducing dis-
cretization error in a general class of barrier option simulation problems. They
consider single- and double-barrier options with time-varying barriers and de-
velop approximations to the one-step survival probabilities that refine the p̂i

above. The p̂i are based on a single constant barrier and a Brownian approxi-
mation over a time interval of length h. Baldi et al. [32] derive asymptotics of
the survival probabilities as h → 0 for quite general diffusions based, in part,
on a linear approximation to upper and lower barriers.

Averages Revisited

As already noted, the simulation estimators based on (6.50) or (6.52) can be
viewed as the result of using Brownian motion to interpolate between the
points X̂(i) and X̂(i + 1) in a discretization scheme. The same idea can be
applied in simulating other path-dependent quantities besides extremes and
barrier-crossing indicators.

As an example, consider simulation of the pair(
X(T ),

∫ T

0

X(t) dt

)

for some scalar diffusion X . In Section 6.2.3, we suggested treating this pair
as the state at time T of a bivariate diffusion and applying a discretization
method to this augmented process. An alternative simulates a discretization
X̂(i), i = 0, 1, . . . , n, and uses Brownian interpolation to approximate the
integral. More explicitly, the approximation is∫ T

0

X(t) dt ≈
n−1∑
i=0

biÂi,

with bi = b(X̂(i)) and each Âi sampled from the distribution of∫ t+h

t

W (u) du, W ∼ BM(0,1),

conditional on W (t) = X̂(i) and W (t + h) = X̂(i + 1). The calculations used
to derive (6.27) show that this conditional distribution is normal with mean
h(X̂(i + 1) + X̂(i))/2 and variance h3/3. Thus, the Âi are easily generated.

This leads to a discretization scheme only slightly different from the one ar-
rived at through the approach in Section 6.2.3. Because of the relative smooth-
ness of the running integral, the effect of Brownian interpolation in this setting
is minor compared to the benefit in simulating extremes or barrier crossings.
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6.5 Changing Variables

We conclude our discussion of discretization methods by considering the flexi-
bility to change variables through invertible transformations of a process. If X
is a d-dimensional diffusion and g : �d → �d is a smooth, invertible transfor-
mation, we can define a process Y (t) = g(X(t)), simulate a discretization Ŷ ,
and define X̂ = g−1(Ŷ ) to get a discretization of the original process X . Thus,
even if we restrict ourselves to a particular discretization method (an Euler or
higher-order scheme), we have a great deal of flexibility in how we implement
it. Changing variables has the potential to reduce bias and can also be useful
in enforcing restrictions (such as nonnegativity) on simulated values. There
is little theory available to guide such transformations; we illustrate the idea
with some examples.

Taking Logarithms

Many of the stochastic processes that arise in mathematical finance take only
positive values. This property often results from specifying that the diffu-
sion term be proportional to the current level of the process, as in geo-
metric Brownian motion and in the LIBOR market model of Section 3.7.
If the coordinates of a d-dimensional process X are positive, we may define
Yi(t) = log Xi(t), i = 1, . . . , d, apply Itô’s formula to derive an SDE satisfied
by Y = (Y1, . . . , Yd), simulate a discretization Ŷ of Y , and then (if they are
needed) approximate the original Xi with X̂i = exp(Ŷi). We encountered this
idea in Section 3.7.3 in the setting of the LIBOR market model.

Applying a logarithmic transformation can have several benefits. First, it
ensures that the simulated X̂i are positive because they result from exponen-
tiation, whereas even a high-order scheme applied directly to the dynamics of
X will produce some negative values. Keeping the variables positive can be
important if the variables represent asset prices or interest rates.

Second, a logarithmic transformation can enhance the numerical stability
of a discretization method, meaning that it can reduce the propagation of
round-off error. A process with “additive noise” can generally be simulated
with less numerical error than a process with “multiplicative noise.” Numerical
stability is discussed in greater detail in Kloeden and Platen [211].

Third, a logarithmic transformation can reduce discretization bias. For
example, an Euler scheme applied to geometric Brownian motion becomes
exact if we first take logarithms. More generally, if the coefficients of a diffusion
are nearly proportional to the level of the process, then the coefficitions of the
log process are nearly constant.

This idea is illustrated in Figure 6.3, which is similar to examples in
Glasserman and Merener [145] and is based on numerical results obtained
by Nicolas Merener. The figure shows estimated biases in pricing a six-month
caplet maturing in 20 years using the LIBOR market model with the decreas-
ing volatility parameters used in Table 4.2. The largest practical time step in
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this setting is the length of the accrual period; the figure compares methods
using one, two, and four steps per accrual period with between four and 20
million replications per method. In this example, taking logarithms cuts the
absolute bias roughly in half for the Euler scheme. The figure also shows re-
sults using a second-order method for rates (×) and log rates (◦); even with
10 million replications, the mean errors in these methods are not statistically
distinguishable from zero. In a LIBOR market model with jumps, Glasserman
and Merener [145] find experimentally that a first-order scheme applied to log
rates is as accurate as a second-order scheme applied to the rates themselves.
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Fig. 6.3. Estimated bias versus number of steps in caplet pricing. The × and ◦
correspond to second-order schemes for rates and log rates, respectively.

As an aside, we note that the most time-consuming part of simulating
an Euler approximation to a LIBOR market model is evaluating the drift
coefficient. To save computing time, one might use the same value of the drift
for multiple time steps, along the lines of Example 4.1.4, but with occasional
updating of the drift. A similar idea is found to be effective in Hunter et
al. [192] as part of a predictor-corrector method (of the type discussed in
Chapter 15 of Kloeden and Platen [211]).

Imposing Upper and Lower Bounds

Taking logarithms enforces a lower bound at zero on a discretized process.
Suppose the coordinates of X are known to evolve in the interval (0, 1). How
could this be imposed on a discretization of X? Enforcing such a condition
could be important if, for example, the coordinates of X are zero-coupon
bond prices, which should always be positive and should never exceed their
face value of 1.

Glasserman and Wang [149] consider the transformations
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Yi = Φ−1(Xi) and Yi = log
(

Xi

1 − Xi

)
, (6.56)

both of which are increasing functions from (0, 1) onto the real line. Itô’s
formula produces an SDE for Y from an SDE for X in either case; the result-
ing SDE can be discretized and then the inverse transformations applied to
produce

X̂i = Φ(Ŷi) or X̂i =
exp(Ŷi)

1 + exp(Ŷi)
.

If the coordinates of X correspond to bonds of increasing maturities, we
may also want to enforce an ordering of the form

1 ≥ X1(t) ≥ X2(t) ≥ · · · ≥ Xd(t) ≥ 1 (6.57)

in the discretization. The method in [149] accomplishes this by defining Y1 =
g(X1), Yi = g(Xi/Xi−1), i = 2, . . . , d, with g an increasing function from (0, 1)
to � as in (6.56). Itô’s formula gives the dynamics of (Y1, . . . , Yd) and then a
discretization (Ŷ1, . . . , Ŷd); applying the inverse of g produces a discretization
(X̂1, . . . , X̂d) satsifying (6.57).

Constant Diffusion Transformation

Consider the SDE (6.1) in the case of scalar X and W . Suppose there exists
an invertible, twice continuously differentiable transformation g : � → � for
which g′(x) = 1/b(x). With Y (t) = g(X(t)), Itô’s formula gives

dY (t) =
[
a(X(t))g′(X(t)) + 1

2b2(X(t))g′′(X(t))
]

dt + g′(X(t))b(X(t)) dW (t)
= ã(Y (t)) dt + dW (t),

with ã(y) = a(f(y))g′(f(y))+ 1
2b2(f(y))g′′(f(y)) and f the inverse of g. Chang-

ing variables from X to Y thus produces an SDE with a constant diffusion
coefficient. This is potentially useful in reducing discretization error, though
the impact on the drift cannot be disregarded. Moving all state-dependence
from the diffusion to the drift is attractive in combination with a predictor-
corrector method, which improves accuracy by averaging current and future
levels of the drift coefficient.

To illustrate the constant diffusion transformation we apply it to the
square-root diffusion

dX(t) = α(x̄ − X(t)) dt + σ
√

X(t)dW (t).

Let Y (t) = 2
√

X/σ; then Y is a Bessel-like process,

dY (t) =
[(

4αx̄ − σ2

2σ2

)
1

Y (t)
− α

2
Y (t)

]
dt + dW (t).
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In Section 3.4 we imposed the condition 2αx̄ ≥ σ2, and this is precisely the
condition required to ensure that Y never reaches zero if Y (0) > 0.

Now suppose X and W take values in �d and suppose the d × d matrix
b(x) has inverse c(x). Aı̈t-Sahalia [7] shows that there is an invertible trans-
formation g : �d → �d such that the diffusion matrix of Y (t) = g(X(t)) is
the identity if and only if

∂cij

∂xk
=

∂cik

∂xj
,

for all i, j, k = 1, . . . , d. This condition implies the commutativity condition
(6.33). It follows that processes X that can be transformed to have a con-
stant diffusion matrix are also processes for which a second-order scheme is
comparatively easy to implement.

Martingale Discretization

The requirement that discounted asset prices be martingales is central to the
pricing of derivative securities. The martingale property is usually imposed in
a continuous-time model; but as we have noted at several points, it is desirable
to enforce the property on the simulated approximation as well. Doing so
extends the no-arbitrage property to prices computed from a simulation. It
also preserves the internal consistency of a simulated model by ensuring that
prices of underlying assets computed in a simulation coincide with those used
as inputs to the simulation; cf. the discussions in Sections 3.3.2, 3.6.2, 3.7.3,
Example 4.1.3, and Section 4.5.

If the SDE (6.1) has drift coefficient a identically equal to zero, then the
Euler and higher-order methods in Sections 6.1.1 and 6.2 all produce dis-
cretizations X̂ that are discrete-time martingales. In this sense, the martingale
property is almost trivially preserved by the discretization methods. However,
the variables simulated do not always coincide with the variables to which the
martingale property applies. For example, in pricing fixed-income derivatives
we often simulate interest rates but the martingale property applies to dis-
counted bonds and not to the interest rates themselves.

The simulation method developed for the Heath-Jarrow-Morton frame-
work in Section 3.6.2 may be viewed as a nonstandard Euler scheme — non-
standard because of the modified drift coefficient. We modified the drift in
forward rates precisely so that the discretized discounted bond prices would
be martingales. In the LIBOR market models of Section 3.7, we argued that
an analogous drift modification is infeasible. Instead, in Section 3.7.3 we dis-
cussed ways of preserving the martingale property through changes of vari-
ables. These methods include discretizing the discounted bond prices directly
or discretizing their differences.

Preserving the martingale property is sometimes at odds with preserving
bounds on variables. If X is a positive martingale then the Euler approx-
imation to X is a martingale but not, in general, a positive process. Both
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properties can usually be enforced by discretizing log X instead. If X is a
martingale taking values in (0, 1), then defining Y as in (6.56), discretizing
Y , and then inverting the transformation preserves the bounds on X but not
the martingale property. Using the transformation Φ−1, a simple correction
to the drift preserves the martingale property as well as the bounds. As shown
in [149], when applied to the multidimensional constraint (6.57), this method
preserves the constraints and limits departures from the martingale property
to terms that are o(h), with h the simulation time step.

6.6 Concluding Remarks

The benchmark method for reducing discretization error is the combination of
the Euler scheme with two-point extrapolation, as in Section 6.2.4. This tech-
nique is easy to implement and is usually faster than a second-order expansion
for comparable accuracy, especially in high dimensions. The smoothness con-
ditions required on the coefficient functions to ensure the validity of extrapo-
lation are not always satisfied in financial engineering applications, but similar
conditions underlie the theoretical support for second-order approximations.

Second-order and higher-order schemes do have practical applications, but
they should always be compared with the simpler alternative of an extrapo-
lated Euler approximation. A theoretical comparison is usually difficult, but
the magnitudes of the derivatives of the coefficient functions can provide some
indication, with large derivatives unfavorable for higher-order methods. Ta-
lay and Tubaro [343] analyze specific models for which they derive explicit
expressions for error terms. They show, for example, that the refinement in
(6.10) can produce larger errors than an Euler approximation.

Of the many expansions discussed in this chapter, the most useful (in
addition to the extrapolated Euler scheme) are (6.28) for scalar processes and
(6.38) for vector processes.

For specific applications in financial engineering, a technique that uses
information about the problem context is often more effective than a general-
purpose expansion. For example, even a simple logarithmic change of vari-
ables can reduce discretization error, with the added benefit of ensuring that
positive variables stay positive. The methods of Section 6.4 provide another
illustration: they offer simple and effective ways of reducing discretization er-
ror in pricing options sensitive to barrier crossings and extreme values of the
underlying assets. The simulation methods in Sections 3.6 and 3.7 also address
discretization issues for specific models.

The literature on discretization methods for stochastic differential equa-
tions offers many modifications of the basic schemes discussed in Sections 6.1.1,
6.2, and 6.3.1. Kloeden and Platen [211] provide a comprehensive treatment
of these methods. Another direction of research investigates the law of the
error of a discretization method, as in Jacod and Protter [193].
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This chapter has discussed the use of second-order and higher-order expan-
sions in simulation, but the same techniques are sometimes useful in deriving
approximations without recourse to simulation.



7

Estimating Sensitivities

Previous chapters have addressed various aspects of estimating expectations
with a view toward computing the prices of derivative securities. This chapter
develops methods for estimating sensitivities of expectations, in particular
the derivatives of derivative prices commonly referred to as “Greeks.” From
the discussion in Section 1.2.1, we know that in an idealized setting of con-
tinuous trading in a complete market, the payoff of a contingent claim can
be manufactured (or hedged) through trading in underlying assets. The risk
in a short position in an option, for example, is offset by a delta-hedging
strategy of holding delta units of each underlying asset, where delta is simply
the partial derivative of the option price with respect to the current price of
that underlying asset. Implementation of the strategy requires knowledge of
these price sensitivities; sensitivities with respect to other parameters are also
widely used to measure and manage risk. Whereas the prices themselves can
often be observed in the market, their sensitivites cannot, so accurate calcula-
tion of sensitivities is arguably even more important than calculation of prices.
We will see, however, that derivative estimation presents both theoretical and
practical challenges to Monte Carlo simulation.

The methods for estimating sensitivities discussed in this chapter fall into
two broad categories: methods that involve simulating at two or more values
of the parameter of differentiation and methods that do not. The first cate-
gory — finite-difference approximations — are at least superficially easier to
understand and implement; but because they produce biased estimates their
use requires balancing bias and variance. Methods in the second category,
when applicable, produce unbiased estimates. They accomplish this by using
information about the simulated stochastic process to replace numerical dif-
ferentiation with exact calculations. The pathwise method differentiates each
simulated outcome with respect to the parameter of interest; the likelihood
ratio method differentiates a probability density rather than an outcome.
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7.1 Finite-Difference Approximations

Consider a model that depends on a parameter θ ranging over some interval
of the real line. Suppose that for each value of θ we have a mechanism for
generating a random variable Y (θ), representing the output of the model at
parameter θ. Let

α(θ) = E[Y (θ)].

The derivative estimation problem consists of finding a way to estimate α′(θ),
the derivative of α with respect to θ.

In the application to option pricing, Y (θ) is the discounted payoff of an
option, α(θ) is its price, and θ could be any of the many model or market
parameters that influence the price. When θ is the initial price of an underlying
asset, then α′(θ) is the option’s delta (with respect to that asset). The second
derivative α′′(θ) is the option’s gamma. When θ is a volatility parameter,
α′(θ) is often called “vega.” For interest rate derivatives, the sensitivities of
prices to the initial term structure (as represented by, e.g., a yield curve or
forward curve) are important.

7.1.1 Bias and Variance

An obvious approach to derivative estimation proceeds as follows. Simulate
independent replications Y1(θ), . . . , Yn(θ) of the model at parameter θ and
n additional replications Y1(θ + h), . . . , Yn(θ + h) at θ + h, for some h > 0.
Average each set of replications to get Ȳn(θ) and Ȳn(θ + h) and form the
forward-difference estimator

∆̂F ≡ ∆̂F (n, h) =
Ȳn(θ + h) − Ȳn(θ)

h
. (7.1)

This estimator has expectation

E[∆̂F ] = h−1[α(θ + h) − α(θ)]. (7.2)

We have not specified what relation, if any, holds between the outcomes Yi(θ)
and Yi(θ + h); this will be important when we consider variance, but (7.2)
is purely a property of the marginal distributions of the outcomes at θ and
θ + h.

If α is twice differentiable at θ, then

α(θ + h) = α(θ) + α′(θ)h + 1
2α′′(θ)h2 + o(h2).

In this case, it follows from (7.2) that the bias in the forward-difference esti-
mator is

Bias(∆̂F ) = E[∆̂F − α′(θ)] = 1
2α′′(θ)h + o(h). (7.3)

By simulating at θ−h and θ+h, we can form a central-difference estimator
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∆̂C ≡ ∆̂C(n, h) =
Ȳn(θ + h) − Ȳn(θ − h)

2h
. (7.4)

This estimator is often more costly than the forward-difference estimator in
the following sense. If we are ultimately interested in estimating α(θ) and
α′(θ), then we would ordinarily simulate at θ to estimate α(θ), so the forward-
difference estimator requires simulating at just one additional point θ + h,
whereas the central-difference estimator requires simulating at two additional
points. But this additional computational effort yields an improvement in
the convergence rate of the bias. If α is at least twice differentiable in a
neighborhood of θ, then

α(θ + h) = α(θ) + α′(θ)h + α′′(θ)h2/2 + o(h2)
α(θ − h) = α(θ) − α′(θ)h + α′′(θ)h2/2 + o(h2),

so subtraction eliminates the second-order terms, leaving

Bias(∆̂C) =
α(θ + h) − α(θ − h)

2h
− α′(θ) = o(h), (7.5)

which is of smaller order than (7.3). If α′′ is itself differentiable at θ, we can
refine (7.5) to

Bias(∆̂C) = 1
6α′′′(θ)h2 + o(h2). (7.6)

The superior accuracy of a central-difference approximation compared
with a forward-difference approximation is illustrated in Figure 7.1. The curve
in the figure plots the Black-Scholes formula against the price of the underly-
ing asset with volatility 0.30, an interest rate of 5%, a strike price of 100, and
0.04 years (about two weeks) to expiration. The figure compares the tangent
line at 95 with a forward difference calculated from prices at 95 and 100 and a
central difference using prices at 90 and 100. The slope of the central-difference
line is clearly much closer to that of the tangent line.

In numerical differentiation of functions evaluated through deterministic
algorithms, rounding errors resulting from small values of h limit the accuracy
of finite-difference approximations. (See, for example, the discussion in Sec-
tion 5.7 of Press et al. [299].) In applications of Monte Carlo, the variability in
estimates of function values usually prevents us from taking very small values
of h. So while it is advisable to be aware of possible round-off errors, this is
seldom the main obstacle to accurate estimation of derivatives in simulation.

Variance

The form of the bias of the forward- and central-difference estimators would
lead us to take ever smaller values of h to improve accuracy, at least if we
ignore the limits of machine precision. But the effect of h on bias must be
weighed against its effect on variance.

The variance of the forward-difference estimator (7.1) is
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Fig. 7.1. Comparison of central-difference approximation (dashed) and forward-
difference approximation (dotted) with exact tangent to the Black-Scholes formula.

Var[∆̂F (n, h)] = h−2Var
[
Ȳn(θ + h) − Ȳn(θ)

]
(7.7)

and a corresponding expression holds for the central-difference estimator (7.4).
In both cases, the factor h−2 alerts us to possibly disastrous consequences of
taking h to be very small. Equation (7.7) also makes clear that the dependence
between values simulated at different values of θ affects the variance of a finite-
difference estimator.

Suppose, for simplicity, that the pairs (Y (θ), Y (θ + h)) and (Yi(θ), Yi(θ +
h)), i = 1, 2, . . ., are i.i.d. so that

Var
[
Ȳn(θ + h) − Ȳn(θ)

]
=

1
n

Var [Y (θ + h) − Y (θ)] .

How the variance in (7.7) changes with h is determined by the dependence of
Var[Y (θ + h) − Y (θ)] on h.

Three cases of primary importance arise in practice:

Var[Y (θ + h) − Y (θ)] =


O(1), Case (i)
O(h), Case (ii)
O(h2), Case (iii).

(7.8)

Case (i) applies if we simulate Y (θ) and Y (θ + h) independently; for in this
case we have

Var[Y (θ + h) − Y (θ)] = Var[Y (θ + h)] + Var[Y (θ)] → 2Var[Y (θ)],

under the minor assumption that Var[Y (θ)] is continuous in θ. Case (ii) is the
typical consequence of simulating Y (θ + h) and Y (θ) using common random
numbers ; i.e., generating them from the same sequence U1, U2, . . . of Unif[0,1]
random variables. (In practice, this is accomplished by starting the simulations
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at θ and θ + h with the same seed for the random number generator.) For
Case (iii) to hold, we generally need not only that Y (θ) and Y (θ + h) use the
same random numbers, but also that for (almost) all values of the random
numbers, the output Y (·) is continuous in the input θ. We will have much
more to say about Case (iii) in Section 7.2.2.

7.1.2 Optimal Mean Square Error

Because decreasing h can increase variance while decreasing bias, minimiz-
ing mean square error (MSE) requires balancing these two considerations.
Increasing the number of replications n decreases variance with no effect on
bias, whereas h affects both bias and variance; our objective is to find the op-
timal relation between the two. This tradeoff is analyzed by Glynn [153], Fox
and Glynn [128], and Zazanis [358], and in early work by Frolov and Chentsov
[130].

Consider the forward-difference estimator with independent simulation at
θ and θ + h. We can reasonably assume that Case (i) of (7.8) applies, and for
emphasis we denote this estimator by ∆̂F,i = ∆̂F,i(n, h). Squaring the bias in
(7.3) and adding it to the variance in (7.7), we get

MSE(∆̂F,i(n, h)) = O(h2) + O(n−1h−2),

from which we see that minimal conditions for convergence are h → 0 and
nh2 → ∞.

To derive a more precise conclusion, we strengthen Cases (i) and (ii) of
(7.8). We have four estimators to consider: forward-difference and central-
difference using independent sampling or common random numbers at differ-
ent values of θ. We can give a unified treatment of these cases by considering
a generic estimator ∆̂ = ∆̂(n, h) for which

E[∆̂ − α′(θ)] = bhβ + o(hβ), Var[∆̂] =
σ2

nhη
+ o(h−η), (7.9)

for some positive β, η, σ, and some nonzero b. Forward- and central-difference
estimators typically have β = 1 and β = 2; taking η = 2 sharpens Case (i) of
(7.8) and taking η = 1 sharpens Case (ii).

Consider a sequence of estimators ∆̂(n, hn) with

hn = h∗n
−γ (7.10)

for some positive h∗ and γ. From our assumptions on bias and variance, we
get

MSE(∆̂) = b2h2β
n +

σ2

nhη
n
, (7.11)

up to terms that are of higher order in hn. The value of γ that maximizes
the rate of decrease of the MSE is γ = 1/(2β + η), from which we draw the
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natural implication that with a smaller bias (larger β), we can use a larger
increment h. If we substitute this value of γ into (7.11) and take the square
root, we find that

RMSE(∆̂) = O
(
n− β

2β+η

)
,

and this is a reasonable measure of the convergence rate of the estimator.
Taking this analysis one step further, we find that

n2β/(2β+η)MSE(∆̂) → b2h2β
∗ + σ2h−η

∗ ;

minimizing over h∗ yields an optimal value of

h∗ =
(

ησ2

2βb2

) 1
2β+η

.

The results of this analysis are summarized in Table 7.1 for the forward-
and central-difference estimators using independent sampling or common ran-
dom numbers. The variance and bias columns display leading terms only and
abbreviate the more complete expressions in (7.9). The table should be under-
stood as follows: if the leading terms of the variance and bias are as indicated
in the second and third columns, then the conclusions in the last three columns
hold. The requirement that b not equal zero in (7.9) translates to α′′(θ) = 0
and α′′′(θ) = 0 for the forward and central estimators, respectively. The re-
sults in the table indicate that, at least asymptotically, ∆̂C,ii dominates the
other three estimators because it exhibits the fastest convergence.

Estimator Variance Bias Optimal hn Convergence h∗

∆̂F,i
σ2

F,i

nh2
1
2
α′′(θ)h O(n−1/4) O(n−1/4)

(
4σ2

F,i

α′′(θ)2

)1/4

∆̂C,i
σ2

C,i

nh2
1
6
α′′′(θ)h2 O(n−1/6) O(n−1/3)

(
18σ2

C,i

α′′′(θ)2

)1/6

∆̂F,ii
σ2

F,ii

nh
1
2
α′′(θ)h O(n−1/3) O(n−1/3)

(
2σ2

F,ii

α′′(θ)2

)1/3

∆̂C,ii
σ2

C,ii

nh
1
6
α′′′(θ)h2 O(n−1/5) O(n−2/5)

(
9σ2

C,ii

α′′′(θ)2

)1/5

Table 7.1. Convergence rates of finite-difference estimators with optimal increment
hn. The estimators use either forward (F ) or central (C) differences and either
independent sampling (i) or common random numbers (ii).

Glynn [153] proves a central limit theorem for each of the cases in Table 7.1.
These results take the form

n
β

2β+η [∆̂(n, hn) − α′(θ)] ⇒ N

(
bhβ

∗ ,
σ2

hη
∗

)
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with hn as in (7.10) and γ = 1/(2β + η). The limit holds for any h∗ > 0; the
optimal values of h∗ in Table 7.1 minimize the second moment of the limiting
normal random variable.

For the forward-difference estimator with independent samples, the vari-
ance parameter σ2

F,i is given by

σ2
F,i = lim

h→0
(Var[Y (θ + h)] + Var[Y (θ)]) = 2Var[Y (θ)]

under the minimal assumption of continuity of Var[Y (θ)]. Because the central-
difference estimator has a denominator of 2h, σ2

C,i = Var[Y (θ)]/2. The para-
meters σ2

F,ii and σ2
C,ii do not admit a simple description. Their values depend

on the joint distribution of (Y (θ − h), Y (θ), Y (θ + h)), which depends in part
on the particular algorithm used for simulation — different algorithms may re-
spond differently to changes in an input parameter with the random numbers
held fixed. In contrast, Var[Y (θ)] is determined by the marginal distribution of
Y (θ) so all algorithms that legitimately sample from this distribution produce
the same variance. The variance of the finite-difference estimators appear in
the optimal values of h∗; though these are unlikely to be known in advance,
they can be estimated from preliminary runs and potentially combined with
rough estimates of the derivatives of α to approximate h∗.

Case (iii) of (7.8) is not reflected in Table 7.1. When it applies, the mean
square error takes the form

MSE(∆̂) = b2h2β
n +

σ2

n
,

and there is no tradeoff between bias and variance. We should take hn as
small as possible, and so long as nh2β

n is bounded, the RMSE is O(n−1/2).
This dominates all the convergence rates in Table 7.1.

The distinction between Cases (ii) and (iii) is illustrated in Figure 7.2.
The figure compares RMS relative errors of forward-difference estimators of
delta for a standard call option paying (S(T ) − K)+ and a digital option
paying 1{S(T ) > K}, with model parameters K = S(0) = 100, σ = 0.30, r =
0.05, and T = 0.25. The forward-difference estimators use common random
numbers, which in this example simply means using the same draw from the
normal distribution to generate S(T ) from both S(0) and S(0) + h. This
example is simple enough to allow exact calculation of the RMSE. To simplify
comparison, in the figure we divide each RMSE by the true value of delta to
get a relative error. The figure shows the effect of varying h with the number
of replications n fixed at 5000.

The standard call option fits in Case (iii) of (7.8); this will be evident from
the analysis in Section 7.2.2. As expected, its RMS relative error decreases
with decreasing h. The digital option fits in Case (ii) so its relative error
explodes as h approaches zero. From the figure we see that the relative error
for the digital option is minimized at a surprisingly large value of about 4;
the figure also shows that the cost of taking h too large is much smaller than
the cost of taking it too small.
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Fig. 7.2. RMS relative errors in forward-difference delta estimates for a standard
call and a digital option as a function of the increment h, with n = 5000.

Extrapolation

For a smooth function α(θ) = E[Y (θ)], the bias in finite-difference estimates
can be reduced through extrapolation, much as in Section 6.2.4. This tech-
nique applies to all the finite-difference estimators considered above; we illus-
trate it in the case of ∆̂C,ii, the central-difference estimator using common
random numbers.

A Taylor expansion of α(θ) shows that

α(θ + h) − α(θ − h)
2h

= α′(θ) +
1
6
α′′′(θ)h2 + O(h4);

odd powers of h are eliminated by the symmetry of the central-difference
estimator. Similarly,

α(θ + 2h) − α(θ − 2h)
4h

= α′(θ) +
2
3
α′′′(θ)h2 + O(h4).

It follows that the bias in the combined estimator
4
3
∆̂C,ii(n, h) − 1

3
∆̂C,ii(n, 2h)

is O(h4). Accordingly, the RMSE of this estimator is O(n−4/9) if h is taken
to be O(n−1/9). The ninth root of n varies little over practical sample sizes n,
so this estimator achieves a convergence rate of nearly n−1/2 with hn nearly
constant.

Second Derivatives

The analysis leading to Table 7.1 extends, with evident modifications, to finite-
difference estimators of second derivatives. Consider a central-difference esti-
mator of the form
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Ȳn(θ + h) − 2Ȳn(θ) + Ȳn(θ − h)
h2

. (7.12)

Its expectation is

α(θ + h) − 2α(θ) + α(θ − h)
h2

= α′′(θ) + O(h2),

if α is four times differentiable. The bias is then O(h2).
If values at θ and θ ± h are simulated independently of each other, the

numerator in (7.12) has variance that is O(1) in h, so the variance of the
ratio is O(h−4). By using common random numbers, we can often reduce
the variance of the numerator to O(h), but even in this case the estimator
variance is O(h−3). With hn chosen optimally, this results in a covergence rate
of O(n−2/7) for the RMSE. This makes precise the idea that estimating second
derivatives is fundamentally more difficult than estimating first derivatives.

For problems in which Case (iii) of (7.8) applies — the most favorable case
for derivative estimation — the estimator in (7.12) often has variance O(h−1).
Because of the nondifferentiability of option payoffs, there are no interesting
examples in which the variance of the numerator of (7.12) is smaller than
O(h3), and there are plenty of examples in which it is O(h).

Multiple Parameters

Suppose now that θ is a vector of parameters (θ1, . . . , θm) and that we need
to estimate the sensitivity of α(θ) = E[Y (θ)] to each of these parameters. A
straightforward approach selects an increment hi for each θi and estimates
∂α/∂θi using

1
2hi

[
Ȳn(θ1, . . . , θi + hi, . . . , θm) − Ȳn(θ1, . . . , θi − hi, . . . , θm)

]
,

or the corresponding forward-difference estimator. In addition to the prob-
lem of selecting an appropriate hi, this setting poses a further computational
challenge. It requires estimation of α(θ) at 2m + 1 values of θ using central
differences and m+1 values using forward differences. This difficulty becomes
even more severe for second derivatives. Finite-difference estimation of all sec-
ond derivatives ∂2α/∂θi∂θj requires simulation at O(m2) parameter values.
This may be onerous if m is large. In pricing interest rate derivatives, for ex-
ample, we may be interested in sensitivities with respect to all initial forward
rates or bond prices, in which case m could easily be 20 or more.

Techniques from the design of experiments and response surface method-
ology are potentially useful in reducing the number of parameter values at
which one simulates. For this formulation, let ∆Y denote the change in Y
resulting from incrementing each θi by hi, i = 1, . . . , m. The problem of esti-
mating sensitivities can be viewed as one of fitting a first-order model of the
form
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∆Y =
m∑

i=1

βihi + ε (7.13)

or a second-order model of the form

∆Y =
m∑

i=1

βihi +
m∑

i=1

m∑
j=i

βijhihj + ε. (7.14)

Each βi approximates the partial derivative of α with respect to θi, 2βii ap-
proximates ∂2α/∂θ2

i , and each βij , j = i, approximates ∂2α/∂θi∂θj . In both
cases, ε represents a residual error.

Given observations of Y at various values of θ, the coefficients βi, βij can
be estimated using, e.g., least squares or weighted least squares. Response
surface methodology (as in, e.g., Khuri and Cornell [210]) provides guidance
on choosing the values of θ at which to measure (i.e., simulate) Y .

In the terminology of experimental design, simulating at all 2m points
defined by adding or subtracting hi to each θi is a full factorial design. Simu-
lating at fewer points may add bias to estimates of some coefficients. But by
reducing the number of points at which we need to simulate, we can increase
the number of replications at each point and reduce variance. A design with
fewer points thus offers a tradeoff between bias and variance.

Most of the literature on response surface methodology assumes indepen-
dent residuals across observations. In simulation, we have the flexibility to
introduce dependence between observations through the assignment of the
output of the random number generator. Schruben and Margolin [323] ana-
lyze the design of simulation experiments in which the same random numbers
are used at multiple parameter values. They recommend a combination of
common random numbers and antithetic sampling across parameter values.

7.2 Pathwise Derivative Estimates

This section and the next develop alternatives to finite-difference methods
that estimate derivatives directly, without simulating at multiple parameter
values. They do so by taking advantage of additional information about the
dynamics and parameter dependence of a simulated process.

7.2.1 Method and Examples

In our discussion of optimal mean square error in Section 7.1, we noted that
in Case (iii) of (7.8) the MSE decreases with the parameter increment h. This
suggests that we should let h decrease to zero and estimate the derivative of
α(θ) = E[Y (θ)] using

Y ′(θ) = lim
h→0

Y (θ + h) − Y (θ)
h

. (7.15)



7.2 Pathwise Derivative Estimates 387

This estimator has expectation E[Y ′(θ)]. It is an unbiased estimator of α′(θ)
if

E

[
d

dθ
Y (θ)

]
=

d

dθ
E[Y (θ)]; (7.16)

i.e., if the interchange of differentiation and expectation is justified.
Even before discussing the validity of (7.16), we need to clarify what we

mean by (7.15). Up until this point, we have not been explicit about what
dependence, if any, the random variable Y has on the parameter θ. In our
discussion of finite-difference estimators, the notation Y (θ) indicated an out-
come of Y simulated at parameter value θ, but did not entail a functional
relation between the two. Indeed, we noted that the relation between Y (θ)
and Y (θ+h) could depend on whether the two outcomes were simulated using
common random numbers.

To make (7.15) precise, we need a collection of random variables {Y (θ), θ ∈
Θ} defined on a single probability space (Ω,F , P ). In other words, Y (θ) is a
stochastic process indexed by θ ∈ Θ. Take Θ ⊆ � to be an interval. We can
fix ω ∈ Ω and think of the mapping θ �→ Y (θ, ω) as a random function on
Θ. We can then interpret Y ′(θ) = Y ′(θ, ω) as the derivative of the random
function with respect to θ with ω held fixed. In (7.15), we implicitly assume
that the derivative exists with probability one, and when this holds, we call
Y ′(θ) the pathwise derivative of Y at θ.

As a practical matter, we usually think of each ω as a realization of the
output of an ideal random number generator. Each Y (θ, ω) is then the output
of a simulation algorithm at parameter θ with random number stream ω. Each
Y ′(θ, ω) is the derivative of the simulation output with respect to θ with the
random numbers held fixed. The value of this derivative depends, in part, on
how we implement a simulation algorithm.

We will see through examples that the existence with probability 1 of
the pathwise derivative Y ′(θ) at each θ typically holds. This is not to say
that, with probability 1, the mapping θ �→ Y (θ) is a differentiable function
on Θ. The distinction lies in the order of quantification: the exceptional set
of probability 0 on which (7.15) fails to exist can and often does depend on
θ. The union of these exceptional sets for θ ranging over Θ may well have
positive probability.

There is a large literature on pathwise derivative estimation in the discrete-
event simulation literature, where it is usually called infinitesimal perturbation
analysis. This line of work stems primarily from Ho and Cao [186] and Suri and
Zazanis [339]; a general framework is developed in Glasserman [138]. Broadie
and Glasserman [64] apply the method to option pricing and we use some
of their examples here. Chen and Fu [80] develop applications to mortgage-
backed securities.

To illustrate the derivation and scope of pathwise derivative estimators,
we now consider some examples.
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Example 7.2.1 Black-Scholes delta. The derivative of the Black-Scholes for-
mula with respect to the initial price S(0) of the underlying asset can be cal-
culated explicitly and is given by Φ(d) in the notation of (1.44). Calculation of
the Black-Scholes delta does not require simulation, but nevertheless provides
a useful example through which to introduce the pathwise method.

Let
Y = e−rT [S(T ) − K]+

with
S(T ) = S(0)e(r−1

2σ2)T+σ
√

TZ , Z ∼ N(0, 1), (7.17)

and take θ to be S(0), with r, σ, T , and K positive constants. Applying the
chain rule for differentiation, we get

dY

dS(0)
=

dY

dS(T )
dS(T )
dS(0)

. (7.18)

For the first of these two factors, observe that

d

dx
max(0, x − K) =

{
0, x < K
1, x > K.

This derivative fails to exist at x = K. But because the event {S(T ) = K}
has probability 0, Y is almost surely differentiable with respect to S(T ) and
has derivative

dY

dS(T )
= e−rT1{S(T ) > K}. (7.19)

For the second factor in (7.18), observe from (7.17) that S(T ) is linear in
S(0) with dS(T )/dS(0) = S(T )/S(0). Combining the two factors in (7.18),
we arrive at the pathwise estimator

dY

dS(0)
= e−rT S(T )

S(0)
1{S(T ) > K}, (7.20)

which is easily computed in a simulation of S(T ). The expected value of this
estimator is indeed the Black-Scholes delta, so the estimator is unbiased.

A minor modification of this derivation produces the pathwise estimator
of the Black-Scholes vega. Replace (7.18) with

dY

dσ
=

dY

dS(T )
dS(T )

dσ
.

The first factor is unchanged and the second is easily calculated from (7.17).
Combining the two, we get the pathwise estimator

dY

dσ
= e−rT (−σT +

√
TZ)S(T )1{S(T ) > K}.
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The expected value of this expression is the Black-Scholes vega, so this esti-
mator is unbiased.

Using (7.17) we can eliminate Z and write the vega estimator as

dY

dσ
= e−rT

(
log(S(T )/S(0))− (r + 1

2σ2)T
σ

)
S(T )1{S(T ) > K}.

This formulation has the feature that it does not rely on the particular ex-
pression in (7.17) for simulating S(T ). Although derived using (7.17), this
estimator could be applied with any other mechanism for sampling S(T ) from
its lognormal distribution. �

This example illustrates a general point about differentiability made at the
beginning of this section. Consider the discounted payoff Y as a function of
S(0). If we fix any S(0) > 0, then Y is differentiable at S(0) with probability
1, because for each S(0) the event {S(T ) = K} has probability 1. However,
the probability that Y is a differentiable function of S(0) throughout (0,∞) is
zero: for each value of Z, there is some S(0) at which Y fails to be differentiable
— namely, the S(0) that makes S(T ) = K for the given value of Z.

Example 7.2.2 Path-dependent deltas. As in the previous example, suppose
the underlying asset is modeled by geometric Brownian motion, but now let
the payoff be path-dependent. For example, consider an Asian option

Y = e−rT [S̄ − K]+, S̄ =
1
m

m∑
i=1

S(ti),

for some fixed dates 0 < t1 < · · · < tm ≤ T . Much as in Example 7.2.1,

dY

dS(0)
=

dY

dS̄

dS̄

dS(0)
= e−rT 1{S̄ > K} dS̄

dS(0)
.

Also,
dS̄

dS(0)
=

1
m

m∑
i=1

dS(ti)
dS(0)

=
1
m

m∑
i=1

S(ti)
S(0)

=
S̄

S(0)
.

The pathwise estimator of the option delta is

dY

dS(0)
= e−rT1{S̄ > K} S̄

S(0)
.

This estimator is in fact unbiased; this follows from a more general result in
Section 7.2.2. Because there is no formula for the price of an Asian option, this
estimator has genuine practical value. Because S̄ would be simulated anyway
in estimating the price of the option, this estimator requires negligible addi-
tional effort. Compared with a finite-difference estimator, it reduces variance,
eliminates bias, and cuts the computing time roughly in half.
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Similar comments apply in the case of a lookback put with discounted
payoff

Y = e−rT

(
max

1≤i≤m
S(ti) − S(tm)

)
.

The pathwise estimator of delta simplifies to Y/S(0), which is also unbiased.
Using similar arguments, we could also derive pathwise estimators of delta

and other derivatives for barrier options. However, for reasons discussed in
Section 7.2.2, these are not in general unbiased: a small change in S(0) can
result in a large change in Y . �

Example 7.2.3 Path-dependent vega. Now consider the sensitivity of the
Asian option in the previous example to the volatility σ. Let

S(ti) = S(ti−1)e(r− 1
2σ2)[ti−ti−1]+σ

√
ti−ti−1Zi , i = 1, . . . , m, (7.21)

with Z1, . . . , Zm independent N(0, 1) random variables. The parameter σ
affects S(ti) explicitly through this functional relation but also implicitly
through the dependence of S(ti−1) on σ. By differentiating both sides we
get a recursion for the derivatives along the path:

dS(ti)
dσ

=
dS(ti−1)

dσ

S(ti)
S(ti−1)

+ S(ti)[−σ(ti − ti−1) +
√

ti − ti−1Zi].

With initial condition dS(0)/dσ = 0, this recursion is solved by

dS(ti)
dσ

= S(ti)[−σti +
i∑

j=1

√
tj − tj−1Zj ],

which can also be written as

dS(ti)
dσ

= S(ti)[log(S(ti)/S(0)) − (r + 1
2σ2)ti]/σ.

The pathwise estimator of the Asian option vega is

e−rT 1
m

m∑
i=1

dS(ti)
dσ

1{S̄ > K}.

This example illustrates a general technique for deriving pathwise estimators
based on differentiating both sides of a recursive expression for the evolution
of an underlying asset. This idea is further developed in Section 7.2.3. �

Example 7.2.4 Options on multiple assets. Suppose the assets S1, . . . , Sd are
modeled by a multivariate geometric Brownian motion GBM(r, Σ) as defined
in Section 3.2.3. Their values can be generated by setting

Si(T ) = Si(0)e(r− 1
2σ2

i )T+
√

TXi , i = 1, . . . , d,
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with (X1, . . . , Xd) drawn from N(0, Σ). It follows that in this construc-
tion dSi(T )/dSi(0) = Si(T )/Si(0), just as in the univariate case, and also
dSi(T )/dSj(0) = 0, for j = i.

A spread option with discounted payoff

Y = e−rT [(S2(T ) − S1(T )) − K]+

has a delta with respect to each underlying asset. Their pathwise estimators
are

∂Y

∂S2(0)
= e−rT S2(T )

S2(0)
1{S2(T ) − S1(T ) > K}

and
∂Y

∂S1(0)
= −e−rT S1(T )

S1(0)
1{S2(T ) − S1(T ) > K}.

An option on the maximum of d assets with discounted payoff

Y = e−rT [max{S1(T ), . . . , Sd(T )} − K]+

has a delta with respect to each underlying asset. A small change in Si(T )
affects Y only if the ith asset attained the maximum and exceeded the strike,
so

∂Y

∂Si(T )
= e−rT 1{Si(T ) > max

j �=i
Sj(T ), Si(T ) > K}.

Multiplying this expression by Si(T )/Si(0) yields the pathwise estimator for
the ith delta. �

We introduced these examples in the setting of geometric Brownian motion
for simplicity, but the expressions derived in the examples apply much more
generally. Consider an underlying asset S(t) described by an SDE

dS(t)
S(t)

= µ(t) dt + σ(t) dW (t),

in which µ(t) and σ(t) could be stochastic but have no dependence on S(0).
The asset price at T is

S(T ) = S(0) exp

(∫ T

0

(
µ(t) − 1

2σ2(t)
)

dt +
∫ T

0

σ(t) dW (t)

)
,

and we still have dS(T )/dS(0) = S(T )/S(0). Indeed, this expression for the
derivative is valid whenever S(t) is given by S(0) exp(X(t)) for some process
X that does not depend on S(0).

Example 7.2.5 Square-root diffusion. As an example of a process that is not
linear in its initial state, consider a square-root diffusion

dX(t) = α(b − X(t)) dt + σ
√

X(t) dW (t).
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From Section 3.4 (and (3.68) in particular) we know that X(t) has the dis-
tribution of a multiple of a noncentral chi-square random variable with a
noncentrality parameter proportional to X(0):

X(t) ∼ c1χ
′2
ν (c2X(0)).

See (3.68)–(3.70) for explicit expressions for c1, c2, and ν. As explained in
Section 3.4, if ν > 1 we can simulate X(t) using

X(t) = c1

((
Z +

√
c2X(0)

)2

+ χ2
ν−1

)
, (7.22)

with Z ∼ N(0, 1) and χ2
ν−1 an ordinary chi-square random variable having

ν − 1 degrees of freedom, independent of Z. It follows that

dX(t)
dX(0)

= c1c2

(
1 +

Z√
c2X(0)

)
.

This generalizes to a path simulated at dates t1 < t2 < · · · through the
recursion

dX(ti+1)
dX(0)

= c1c2

(
1 +

Zi+1√
c2X(ti)

)
dX(ti)
dX(0)

,

with Zi+1 used to generate X(ti+1) from X(ti). The coefficients c1, c2 depend
on the time increment ti+1 − ti, as in (3.68)–(3.70). These expressions can be
applied to the Cox-Ingersoll-Ross [91] interest rate model and to the Heston
[179] stochastic volatility model in (3.65)–(3.65). �

Example 7.2.6 Digital options and gamma. Consider a digital option with
discounted payoff

Y = e−rT 1{S(T ) > K},
and for concreteness let S be modeled by geometric Brownian motion. Viewed
as a function of S(T ), the discounted payoff Y is differentiable except at
S(T ) = K, which implies that Y is differentiable with probability 1. But
because Y is piecewise constant in S(T ), this derivative is 0 wherever it exists,
and the same is true of Y viewed as a function of S(0). Thus,

0 = E

[
dY

dS(0)

]
= d

dS(0)
E[Y ].

This is an example in which the pathwise derivative exists with probability
1 but is entirely uninformative. The change in E[Y ] with a change in S(0)
is driven by the possibility that a change in S(0) will cause S(T ) to cross
the strike K, but this possibility is missed by the pathwise derivative. The
pathwise derivative sees only the local insensitivity of Y to S(0). This also
explains the qualitatively different behavior as h → 0 for the standard call
and the digital option in Figure 7.2.
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For much the same reason, the pathwise method is generally inapplicable to
barrier options. On a fixed path, a sufficiently small change in the underlying
asset will neither create nor eliminate a barrier crossing, so the effect of the
barrier is missed by the pathwise derivative.

The example of a digital option also indicates that the pathwise method,
at least in its simplest form, is generally inapplicable to estimating second
derivatives. If, for example, Y is the discounted payoff of an ordinary call op-
tion, then its first derivative (in S(T )) has exactly the form of a digital payoff
— see (7.19). The pathwise method faces the same difficulty in estimating the
gamma of a standard call option as it does in estimating the delta of a digital
option. �

7.2.2 Conditions for Unbiasedness

Example 7.2.6 points to a limitation in the scope of the pathwise method: it
is generally inapplicable to discontinuous payoffs. The possible failure of the
interchange of derivative and expectation in (7.16) is a practical as well as
theoretical issue. We therefore turn now to a discussion of conditions ensuring
the validity of (7.16) and thus the unbiasedness of the pathwise method.

We continue to use θ to denote a generic parameter and assume the ex-
istence of a random function {Y (θ), θ ∈ Θ} with Θ an interval of the real
line. As explained at the beginning of Section 7.2.1, this random function
represents the output of a simulation algorithm as a function of θ with the
simulation’s random numbers held fixed. We consider settings in which the
derivative Y ′(θ) exists with probability 1 at each θ ∈ Θ. As the examples of
Section 7.2.1 should make evident, this is by no means restrictive.

Given the existence of Y ′(θ), the most important question is the validity
of (7.16), which is a matter of interchanging a limit and an expectation to
ensure

E

[
lim
h→0

Y (θ + h) − Y (θ)
h

]
= lim

h→0
E

[
Y (θ + h) − Y (θ)

h

]
.

A necessary and sufficient condition for this is uniform integrability (see Ap-
pendix A) of the difference quotients h−1[Y (θ + h) − Y (θ)]. Our objective is
to provide sufficient conditions that are more readily verified in practice.

Inspection of the examples in Section 7.2.1 reveals a pattern in the deriva-
tion of the estimators: we apply the chain rule to express Y ′(θ) as a product
of terms, the first relating the discounted payoff to the path of the underlying
asset, the second relating the path to the parameter. Because this is a natural
and convenient way to derive estimators, we formulate conditions to fit this
approach, following Broadie and Glasserman [64].

We restrict attention to discounted payoffs that depend on the value of
an underlying asset or assets at a finite number of fixed dates. Rather than
distinguish between multiple assets and values of a single asset at multiple
dates, we simply suppose that the discounted payoff is a function of a random
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vector X(θ) = (X1(θ), . . . , Xm(θ)), which is itself a function of the parameter
θ. Thus,

Y (θ) = f(X1(θ), . . . , Xm(θ)),

for some function f : �m �→ � depending on the specific derivative security.
We require

(A1) At each θ ∈ Θ, X ′
i(θ) exists with probability 1, for all i = 1, . . . , m.

If f is differentiable, then Y inherits differentiability from X under condi-
tion (A1). As illustrated in the examples of Section 7.2.1, option payoffs often
fail to be differentiable, but the points at which differentiability fails can often
be ignored because they occur with probability 0. To make this precise, we
let Df ⊆ �m denote the set of points at which f is differentiable and require

(A2) P (X(θ) ∈ Df ) = 1 for all θ ∈ Θ.

This then implies that Y ′(θ) exists with probability 1 and is given by

Y ′(θ) =
m∑

i=1

∂f

∂xi
(X(θ))X ′

i(θ).

Comparison of Examples 7.2.1 and 7.2.6 indicates that even if points of
nondifferentiability of f occur with probability 0, the behavior of f at these
points is important. For both the standard call and the digital option, differ-
entiability fails on the zero-probability event {S(T ) = K}; but whereas the
payoff of the call is continuous as S(T ) crosses the strike, the payoff of the
digital option is not. This distinction leads to an unbiased estimator in the
first case and not the second. In fact we need a bit more than continuity; a
convenient condition is

(A3) There exists a constant kf such that for all x, y ∈ �m,

|f(x) − f(y)| ≤ kf‖x − y‖;

i.e., f is Lipschitz.

The standard call, Asian option, lookback, spread option, and max option
in Section 7.2.1 all satisfy this condition (as does any composition of linear
transformations and the functions min and max); the digital payoff does not.
We impose a related condition on X(θ):

(A4) There exist random variables κi, i = 1, . . . , m, such that for all θ1, θ2 ∈
Θ,

|Xi(θ2) − Xi(θ1)| ≤ κi|θ2 − θ1|,
and E[κi] < ∞, i = 1, . . . , m.
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Conditions (A3) and (A4) together imply that Y is almost surely Lipschitz
in θ because the Lipschitz property is preserved by composition. Thus,

|Y (θ2) − Y (θ1)| ≤ κY |θ2 − θ1|,

and for κY we may take

κY = kf

m∑
i=1

κi.

It follows that E[κY ] < ∞. Observing that∣∣∣∣Y (θ + h) − Y (θ)
h

∣∣∣∣ ≤ κY ,

we can now apply the dominated convergence theorem to interchange expec-
tation and the limit as h → 0 and conclude that dE[Y (θ)]/dθ exists and equals
E[Y ′(θ)]. In short, conditions (A1)–(A4) suffice to ensure that the pathwise
derivative is an unbiased estimator.

Condition (A4) is satisfied in all the examples of Section 7.2.1, at least if
Θ is chosen appropriately. No restrictions are needed when the dependence
on the parameter is linear as in, e.g., the mapping from S(0) to S(T ) for
geometric Brownian motion. In the case of the mapping from σ to S(T ), (A4)
holds if we take Θ to be a bounded interval; this is harmless because for the
purposes of estimating a derivative at σ we may take an arbitrarily small
neighborhood of σ. In Example 7.2.5, for the mapping from X(0) to X(t) to
be Lipschitz, we need to restrict X(0) to a set of values bounded away from
zero.

If conditions (A1)–(A4) hold and we strengthen (A4) slightly to require
E[κ2

i ] < ∞, then E[κ2
Y ] < ∞ and

E[(Y (θ + h) − Y (θ))2] ≤ E[κ2
Y ]h2,

from which it follows that Var[Y (θ + h) − Y (θ)] = O(h2), as in Case (iii) of
(7.8). Conversely, if Case (iii) holds, if Y ′(θ) exists with probability 1, and
E[Y (θ)] is differentiable, then

E[(Y (θ+h)−Y (θ))2] = Var[Y (θ+h)−Y (θ)]+(E[Y (θ+h)−Y (θ)])2 = O(h2).

Hence,

E

[(
Y (θ + h) − Y (θ)

h

)2
]

remains bounded as h → 0 and [Y (θ + h) − Y (θ)]/h is uniformly integrable.
Thus, the scope of the pathwise method is essentially the same as the scope
of Case (iii) in (7.8).

Of conditions (A1)–(A4), the one that poses a practical limitation is (A3).
As we noted previously, the payoffs of digital options and barrier options are
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not even continuous. Indeed, discontinuities in a payoff are the main obstacle
to the applicability of the pathwise method. A simple rule of thumb states that
the pathwise method applies when the payoff is continuous in the parameter
of interest. Though this is not a precise guarantee (of the type provided by
the conditions above), it provides sound guidance in most practical problems.

7.2.3 Approximations and Related Methods

This section develops further topics in sensitivity estimation using pathwise
derivatives. Through various approximations and extensions, we can improve
the efficiency or expand the scope of the method.

General Diffusion Processes

Consider a process X described by a stochastic differential equation

dX(t) = a(X(t)) dt + b(X(t)) dW (t) (7.23)

with fixed initial condition X(0). Suppose, for now, that this is a scalar process
driven by a scalar Brownian motion. We might simulate the process using an
Euler scheme with step size h; using the notation of Chapter 6, we write the
discretization as

X̂(i + 1) = X̂(i) + a(X̂(i))h + b(X̂(i))
√

hZi+1, X̂(0) = X(0),

with X̂(i) denoting the discretized approximation to X(ih) and Z1, Z2, . . .
denoting independent N(0, 1) random variables.

Let

∆̂(i) =
dX̂(i)
dX(0)

.

By differentiating both sides of the Euler scheme we get the recursion

∆̂(i + 1) = ∆̂(i) + a′(X̂(i))∆̂(i)h + b′(X̂(i))∆̂(i)
√

hZi+1, ∆̂(0) = 1, (7.24)

with a′ and b′ denoting derivatives of the coefficient functions. With

f(X̂(1), . . . , X̂(m))

denoting the discounted payoff of some option, the pathwise derivative of the
option’s delta is

m∑
i=1

∂f

∂xi
(X̂(1), . . . , X̂(m))∆̂(i).

A similar estimator could be derived by differentiating both sides of a higher-
order discretization of X .
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Under relatively minor conditions on the coefficient functions a and b, the
(continuous-time) solution X(t) to the SDE (7.23) is almost surely differen-
tiable in X(0). Moreover, its derivative ∆(t) = dX(t)/dX(0) satisfes

d∆(t) = a′(X(t))∆(t) dt + b′(X(t))∆(t) dW (t), ∆(0) = 1. (7.25)

See Section 4.7 of Kunita [217] or Section 5.7 of Protter [300] for precise
results of this type. It follows that (7.24) — derived by differentiating the
Euler scheme for X — is also the Euler scheme for ∆. Similar results apply
to derivatives of X(t) with respect to parameters of the coefficient functions
a and b.

In light of these results, there is no real theoretical obstacle to developing
pathwise estimators for general diffusions; through (7.25), the problem reduces
to one of discretizing stochastic differential equations. There may, however, be
practical obstacles to this approach. The additional effort required to simulate
(7.25) may be roughly the same as the effort required to simulate a second
path of X from a different initial state. (Contrast this with examples in Sec-
tion 7.2.1 for which dS(T )/dS(0) reduces to S(T )/S(0) and is thus available
at no additional cost.) Also, in the case of a d-dimensional diffusion X , we
need to replace (7.25) with a d × d system of equations for

∆ij(t) =
∂Xi(t)
∂Xj(0)

, i, j = 1, . . . , d.

Simulating a system of SDEs for this matrix of derivatives may be quite time-
consuming.

These considerations motivate the use of approximations in simulating the
derivatives of X(t). One strategy is to use coarser time steps in simulating the
derivatives than in simulating X . There are many ways of implementing this
strategy; we discuss just one and for simplicity we consider only the scalar
case.

Freezing a′(X(t)) and b′(X(t)) at their time-zero values transforms (7.24)
into

∆̂(i) = ∆̂(i − 1)
(
1 + a′(X(0))h + b′(X(0))

√
hZi

)
.

This is potentially much faster to simulate than (7.24), especially if evaluation
of a′ and b′ is time-consuming. To improve the accuracy of the approximation,
we might update the coefficients after every k steps. In this case, we would
use the coefficiencts a′(X(0)) and b′(X(0)) for i = 1, . . . , k, then use

∆̂(i) = ∆̂(i − 1)
(
1 + a′(X̂(k))h + b′(X̂(k))

√
hZi

)
for i = k + 1, . . . , 2k, and so on.

If, for purposes of differentiation, we entirely ignored the dependence of
a and b on the current state X , we would get simply ∆̂(i) ≡ 1. For S(t) =
S(0) exp(X(t)), this is equivalent to making the approximation dS(t)/dS(0) ≈
S(t)/S(0), which we know is exact in several cases.
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LIBOR Market Model

Similar approximations are derived and tested in the setting of LIBOR mar-
ket models by Glasserman and Zhao [150]. This application has considerable
practical value and also serves to illustrate the approach. We use the notation
of Section 3.7.

Consider, then, a system of SDEs of the form

dLn(t)
Ln(t)

= µn(L(t), t) dt + σn(t)� dW (t), n = 1, . . . , M,

with L(t) denoting the M -vector of all rates, W a d-dimensional Brownian
motion, and each σn an �d-valued deterministic function of time. We get the
spot measure dynamics (3.112) by setting

µn(L(t), t) =
n∑

j=η(t)

δjLj(t)σj(t)�σn(t)
1 + δjLj(t)

,

where, as in Section 3.7, η(t) denotes the index of the next maturity date as
of time t.

Let

∆nk(t) =
∂Ln(t)
∂Lk(0)

and write ∆̂nk for a discrete approximation to this process. From the spot
measure dynamics it is evident that ∆nk(t) ≡ 0 unless k ≤ n. Also, ∆nk(0) =
1{n = k}.

Suppose we simulate the forward rates Ln using a log-Euler scheme as in
(3.120), with fixed time step h. By differentiating both sides, we get

∆̂nk(i + 1) = ∆̂nk(i)
L̂n(i + 1)

L̂n(i)
+ L̂n(i + 1)

M∑
j=1

∂µ̂n(i)
∂L̂j(i)

∆̂jk(i)h, (7.26)

with

µ̂n(i) =
n∑

j=η(ih)

δjL̂j(i)σj(ih)�σn(ih)
1 + δjL̂j(i)

.

Simulating all O(M2) derivatives using (7.26) is clearly quite time-consuming,
and the main source of difficulty comes from the form of the drift.

If we replaced the µn(L(t), t) with

µo
n(t) = µn(L(0), t), (7.27)

we would make the drift time-varying but deterministic. (The deterministic
dependence on t enters through η and the volatility functions σj .) We used
this approximation in (4.8) to construct a control variate. Here we preserve
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the true drift µn in the dynamics of Ln but differentiate as though the drift
were µo

n; i.e., as though the forward rates inside the drift function were frozen
at their initial values. Differentiating the approximation

L̂n(i) ≈ L̂n(0) exp

(
i−1∑
	=0

(
µo

n(�h)h − 1
2‖σn(�h)‖2h +

√
hσn(�h)�Zi

))

yields

∆̂nk(i) =
L̂n(i)
Lk(0)

1{n = k} + L̂n(i)
i−1∑
	=0

∂µo
n(�h)

∂Lk(0)
h. (7.28)

The derivatives of µo,

∂µo
n(�h)

∂Lk(0)
=

δkσj(�h)�σn(�h)
(1 + δkLk(0))2

1{η(�h) ≤ k ≤ n},

are deterministic functions of time and can therefore be computed once,
stored, and applied to each replication. Consequently, the computational cost
of (7.28) is modest, especially when compared with the exact derivative re-
cursion (7.26), (“exact” here meaning exact for the Euler scheme).

Glasserman and Zhao [150] report numerical results using these methods
to estimate deltas of caplets. They find that the approximation (7.28) pro-
duces estimates quite close to the exact (for Euler) recursion (7.26), with
some degradation in the approximation at longer maturities. Both methods
are subject to discretization error but the discretization bias is small — less
than 0.2% of the continuous-time delta obtained by differentiating the Black
formula (3.117) for the continuous-time caplet price.

Smoothing

We noted in Section 7.2.2 that discontinuities in a discounted payoff generally
make the pathwise method inapplicable. In some cases, this obstacle can be
overcome by smoothing discontinuities through conditional expectations. We
illustrate this idea with two examples.

Our first example is the discounted digital payoff Y = e−rT1{S(T ) > K},
which also arises in the derivative of a standard call option; see Example 7.2.6.
If S ∼ GBM(µ, σ2) and we fix 0 < ε < T , then

E[Y |S(T − ε)] = e−rT Φ
(

log(S(T − ε)/K) + (µ − 1
2σ2)ε

σ
√

ε

)
.

Differentiation yields

dE[Y |S(T − ε)]
dS(T − ε)

=
e−rT

S(T − ε)σ
√

ε
φ

(
log(S(T − ε)/K) + (µ − 1

2σ2)ε
σ
√

ε

)
,

(7.29)
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and then, through the chain rule, the unbiased delta estimator

dE[Y |S(T − ε)]
dS(0)

=
e−rT

S(0)σ
√

ε
φ

(
log(S(T − ε)/K) + (µ − 1

2σ2)ε
σ
√

ε

)
.

This calculation illustrates that by conditioning on the underlying asset ε
time units before expiration, we can smooth the discontinuity in the digital
payoff and then, by differentiating, arrive at an unbiased derivative estimator.
Of course, the same argument allows exact calculation of the derivative of
E[Y ] in this example. The value of this derivation lies not so much in pro-
viding an exact expression for geometric Brownian motion as in providing an
approximation for more general processes. Equation (7.29) could, for exam-
ple, be applied to a stochastic volatility model by further conditioning on the
volatility at T − ε and using this value in place of σ. This expression should
then be multiplied by an exact or approximate expression for dS(T−ε)/dS(0).
If the underlying asset is simulated using a log-Euler scheme with time step
ε, then (7.29) does not introduce any error beyond that already inherent to
the discretization method.

Our second example of smoothing applies to barrier options. We again
introduce it through geometric Brownian motion though we intend it as an
approximation for more general processes. Consider a discretely monitored
knock-out option with discounted payoff

Y = e−rT (S(T ) − K)+1{ min
1≤i≤m

S(ti) > b},

for some fixed dates 0 < t1 < · · · < tm = T and barrier b < S(0). The
knock-out feature makes Y discontinuous in the path of the underlying asset.

For each i = 0, 1, . . . , m − 1, define the one-step survival probability

pi(x) = P (S(ti+1) > b|S(ti) = x) = Φ
(

log(x/b) + (µ − 1
2σ2)(ti+1 − ti)

σ
√

ti+1 − ti

)
.

From S construct a process S̃ having the same initial value as S but with
state transitions generated conditional on survival: given S̃(ti−1) = x, the
next state S̃(ti) has the distribution of S(ti) conditional on S(ti−1) = x and
S(ti) > b. More explicitily,

S̃(ti) = S̃(ti−1)e(µ− 1
2σ2)[ti−ti−1]+σ

√
ti−ti−1Zi

where
Zi = Φ−1

(
pi−1(S̃(ti−1)) + (1 − pi−1(S̃(ti−1))Ui

)
,

with U1, . . . , Um independent Unif[0,1] random variables. This mechanism
samples Zi from the normal distribution conditional on S̃(ti) > b; see Ex-
ample 2.2.5.

Using the conditioned process, we can write



7.3 The Likelihood Ratio Method 401

E

[
e−rT (S(T ) − K)+1{ min

1≤i≤m
S(ti) > b}

]
= E

[
e−rT (S̃(T ) − K)+

m−1∏
i=0

pi(S̃(ti))

]
. (7.30)

Expressions of this form are derived in Glasserman and Staum [146] through
the observation that switching from S to S̃ can be formulated as a change of
measure and that the product of the survival probabilities is the appropriate
likelihood ratio for this transformation. Because the conditioned process never
crosses the barrier, we can omit the indicator from the expression on the right.
The product of the survival probabilities smooths the indicator.

We could now differentiate with respect to S(0) inside the expectation
on the right side of (7.30) to get an estimator of the barrier option delta.
Though straightforward in principle, this is rather involved in practice. The
price we pay for switching from S to S̃ is the loss of linearity in S(0). Each
Zi depends on S̃(ti−1) and thus contributes a term when we differentiate
S̃(ti). The practical value of this approach is therefore questionable, but it
nevertheless serves to illustrate the flexibility we have to modify a problem
before differentiating.

7.3 The Likelihood Ratio Method

As explained in several places in Section 7.2, the scope of the pathwise method
is limited primarily by the requirement of continuity in the discounted payoff
as a function of the parameter of differentiation. The likelihood ratio method
provides an alternative approach to derivative estimation requiring no smooth-
ness at all in the discounted payoff and thus complementing the pathwise
method. It accomplishes this by differentiating probabilities rather than pay-
offs.

7.3.1 Method and Examples

As in Section 7.2.2, we consider a discounted payoff Y expressed as a function f
of a random vector X = (X1, . . . , Xm). The components of X could represent
different underlying assets or values of a single asset at multiple dates. In our
discussion of the pathwise method, we assumed the existence of a functional
dependence of X (and then Y ) on a parameter θ. In the likelihood ratio
method, we instead suppose that X has a probability density g and that θ
is a parameter of this density. We therefore write gθ for the density, and to
emphasize that an expectation is computed with respect to gθ, we sometimes
write it as Eθ.

In this formulation, the expected discounted payoff is given by
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Eθ[Y ] = Eθ[f(X1, . . . , Xm)] =
∫
�m

f(x)gθ(x) dx.

To derive a derivative estimator, we suppose that the order of differentiation
and integration can be interchanged to get

d

dθ
Eθ[Y ] =

∫
�m

f(x)
d

dθ
gθ(x) dx. (7.31)

If this indeed holds, then multiplying and dividing the integrand by gθ yields

d

dθ
Eθ[Y ] =

∫
�m

f(x)
ġθ(x)
gθ(x)

gθ(x) dx = Eθ

[
f(X)

ġθ(X)
gθ(X)

]
,

where we have written ġθ for dgθ/dθ. It now follows from this equation that
the expression

f(X)
ġθ(X)
gθ(X)

(7.32)

is an unbiased estimator of the derivative of Eθ[Y ]. This is a likelihood ratio
method (LRM) estimator.

Three issues merit comment:

◦ As with the pathwise method, the validity of this approach relies on an
interchange of differentation and integration. In practice, however, the in-
terchange in (7.31) is relatively benign in comparison to (7.16), because
probability densities are typically smooth functions of their parameters but
option payoffs are not. Whereas the interchange (7.16) imposes practical
limits on the use of the pathwise method, the validity of (7.31) is seldom
an obstacle to the use of the likelihood ratio method.

◦ Whether we view θ as a parameter of the path X or of its density is largely a
matter a choice. Suppose, for example, that X is a normal random variable
with distribution N(θ, 1) and Y = f(X) for some function f . The density
of X is gθ(x) = φ(x − θ) with φ the standard normal density. By following
the steps above, we arrive at the estimator

−f(X)
φ′(X − θ)
φ(X − θ)

= f(X)(X − θ)

for the derivative of Eθ[Y ]. But we could also write X(θ) = θ + Z with
Z ∼ N(0, 1) and apply the pathwise method to get the estimator

Y ′(θ) = f ′(X)
dX

dθ
= f ′(X).

This illustrates the flexibility we have in representing the dependence on
a parameter through the path X or its density (or both); this flexibility
should be exploited in developing derivative estimators.
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◦ In the statistical literature, an expression of the form ġθ/gθ, often written
d log gθ/dθ, is called a score function. In the estimator (7.32), the score
function is evaluated at the outcome X . We refer to the random variable
ġθ(X)/gθ(X) as the score. This term is short for “the differentiated log den-
sity evaluated at the simulated outcome” and also for “the expression that
multiplies the discounted payoff in a likelihood ratio method estimator.”

We illustrate the likelihood ratio method through examples. This approach
has been developed primarily in the discrete-event simulation literature; im-
portant early references include Glynn [152], Reiman and Weiss [305], and
Rubinstein [311]. It is sometimes called the score function method, as in Ru-
binstein and Shapiro [313]. Broadie and Glasserman [64] and Glasserman and
Zhao [150] develop applications in finance, and we include some of their ex-
amples here.

Example 7.3.1 Black-Scholes delta. To estimate the Black-Scholes delta us-
ing the likelihood ratio method, we need to view S(0) as a parameter of the
density of S(T ). Using (3.23), we find that the lognormal density of S(T ) is
given by

g(x) =
1

xσ
√

T
φ(ζ(x)), ζ(x) =

log(x/S(0)) − (r − 1
2σ2)T

σ
√

T
, (7.33)

with φ the standard normal density. Some algebra now shows that

dg(x)/dS(0)
g(x)

= −ζ(x)
dζ(x)
dS(0)

=
log(x/S(0)) − (r − 1

2σ2)T
S(0)σ2T

.

We get the score by evaluating this expression at S(T ) and an unbiased esti-
mator of delta by multiplying by the discounted payoff of the option:

e−rT (S(T ) − K)+
(

log(S(T )/S(0)) − (r − 1
2σ2)T

S(0)σ2T

)
.

If S(T ) is generated from S(0) using a standard normal random variable Z
as in (7.17), then ζ(S(T )) = Z and the estimator simplifies to

e−rT (S(T ) − K)+
Z

S(0)σ
√

T
. (7.34)

The form of the option payoff in this example is actually irrelevant; any
other function of S(T ) would result in an estimator of the same form. The
delta of a digital option, for example, can be estimated using

e−rT1{S(T ) > K} Z

S(0)σ
√

T
.

This is a general feature of the likelihood ratio method that contrasts markedly
with the pathwise method: the form of the estimator does not depend on
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the details of the discounted payoff. Once the score is calculated it can be
multiplied by many different discounted payoffs to estimate their deltas.

For estimating vega, the score function is

dg(x)/dσ

g(x)
= − 1

σ
− ζ(x)

dζ(x)
dσ

,

with
dζ(x)
dσ

=
log(S(0)/x) + (r + 1

2σ2)T

σ2
√

T
.

The derivative estimator is the product of the discounted payoff and the score
function evaluated at x = S(T ). After some algebraic simplification, the score
can be expressed as

Z2 − 1
σ

− Z
√

T ,

with Z as in (7.17). �

Example 7.3.2 Path-dependent deltas. Consider an Asian option, as in Ex-
ample 7.2.2. The payoff is a function of S(t1), . . . , S(tm), so we need the density
of this path. Using the Markov property of geometric Brownian motion, we
can factor this density as

g(x1, . . . , xm) = g1(x1|S(0))g2(x2|x1) · · · gm(xm|xm−1),

where each gj(xj |xj−1), j = 1, . . . , m, is the transition density from time tj−1

to time tj ,

gj(xj |xj−1) =
1

xjσ
√

tj − tj−1
φ (ζj(xj |xj−1)) ,

with

ζj(xj |xj−1) =
log(xj/xj−1) − (r − 1

2σ2)(tj − tj−1)
σ
√

tj − tj−1
.

It follows that S(0) is a parameter of the first factor g1(x1|S(0)) but does not
appear in any of the other factors. The score is thus given by

∂ log g(S(t1), . . . , S(tm))
∂S(0)

=
∂ log g1(S(t1)|S(0))

∂S(0)
=

ζ1(S(t1)|S(0))
S(0)σ

√
t1

.

This can also be written as
Z1

S(0)σ
√

t1
, (7.35)

with Z1 the normal random variable used to generate S(t1) from S(0), as in
(7.21). The likelihood ratio method estimator of the Asian option delta is thus

e−rT (S̄ − K)+
Z1

S(0)σ
√

t1
. (7.36)
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Again, the specific form of the discounted payoff is irrelevant; the same deriva-
tion applies to any function of the path of S over the interval [t1, T ], including
a discretely monitored barrier option.

Observe that the score has mean zero for all nonzero values of S(0), σ,
and t1, but its variance increases without bound as t1 ↓ 0. We discuss this
phenomenon in Section 7.3.2. �

Example 7.3.3 Path-dependent vega. Whereas in the previous example the
parameter S(0) appeared only in the distribution of S(t1), the parameter σ
influences every state transition. Accordingly, each transition along the path
contributes a term to the score. Following steps similar to those in the previous
two examples, we find that the score

∂ log g(S(t1), . . . , S(tm))
∂σ

=
m∑

j=1

∂ log g(S(tj)|S(tj−1))
∂σ

is given by

−
m∑

j=1

(
1
σ

+ ζj(S(tj)|S(tj−1)
∂ζj

∂σ

)
.

This can be written as

m∑
j=1

(
Z2

j − 1
σ

− Zj

√
tj − tj−1

)
, (7.37)

using the normal random variables Zj in (7.21). �

Example 7.3.4 Gaussian vectors and options on multiple assets. The prob-
lem of LRM delta estimation for an option on multivariate geometric Brownian
motion can be reduced to one of differentiation with respect to a parameter of
the mean of a normal random vector. Suppose therefore that X ∼ N(µ(θ), Σ)
with θ a scalar parameter of the d-dimensional mean vector µ, and Σ a d× d
covariance matrix of full rank. Let g = gθ denote the multivariate normal
density of X , as in (2.21). Differentiation reveals that the score is

d

dθ
log gθ(X) = (X − µ(θ))�Σ−1µ̇(θ),

with µ̇(θ) the vector of derivatives of the components of µ with respect to the
parameter θ. If we simulate X as µ(θ)+AZ with Z ∼ N(0, I) for some matrix
A satisfying AA� = Σ, then the score simplifies to

d

dθ
log gθ(X) = Z�A−1µ̇(θ). (7.38)

If θ is a parameter of Σ rather than µ, the score is
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d log gθ(X)/dθ

= − 1
2 tr
(
Σ−1(θ)Σ̇(θ)

)
+ 1

2 (X − µ)�Σ−1(θ)Σ̇(θ)Σ−1(θ)(X − µ) (7.39)

= − 1
2 tr
(
A−1(θ)Σ̇(θ)A−1(θ)�

)
+ 1

2Z�A−1(θ)Σ̇(θ)A−1(θ)�Z, (7.40)

where “tr” denotes trace, A(θ)A(θ)� = Σ(θ), and Σ̇(θ) the matrix of deriva-
tives of the elements of Σ(θ).

Now consider a d-dimensional geometric Brownian motion

dSi(t)
Si(t)

= r dt + v�i dW (t), i = 1, . . . , d,

with W a d-dimensional standard Brownian motion. Let A be the d×d matrix
with rows v�1 , . . . , v�d and suppose that A has full rank. Let Σ = AA�. Then
Si(T ) has the distribution of exp(Xi), i = 1, . . . , d, with

X ∼ N(µ, TΣ), µi = log Si(0) + (r − 1
2‖vi‖2)T.

We may view any discounted payoff f(S1(T ), . . . , Sd(T )) as a function of the
vector X . To calculate the delta with respect to the ith underlying asset, we
take Si(0) as a parameter of the mean vector µ. The resulting likelihood ratio
method estimator is

f(S1(T ), . . . , Sd(T )) · (Z�A−1)i

Si(0)
√

T
,

the numerator of the score given by the ith component of the vector (Z�A−1).
�

Example 7.3.5 Square-root diffusion. We use the notation of Example 7.2.5.
We know from Section 3.4.1 that X(t)/c1 has a noncentral chi-square density
and that X(0) appears in the noncentrality parameter. To estimate the sensi-
tivity of some E[f(X(t))] with respect to X(0), one could therefore calculate
a score function by differentiating the log density (available from (3.67)) with
respect to the noncentrality parameter. But the noncentral chi-square density
is cumbersome and its score function still more cumbersome, so this is not a
practical solution.

An alternative uses the decomposition (7.22). Any function of X(t) can be
represented as a function of a normal random variable with mean

√
c2X(0)

and an independent chi-square random variable. The expected value of the
function is then an integral with respect to the bivariate density of these two
random variables. Because the variables are independent, their joint density is
just the product of their marginal normal and chi-square densities. Only the
first of these densities depends on X(0), and X(0) enters through the mean.
The score function thus reduces to

d

dX(0)
log φ

(
x −

√
c2X(0)

)
=

x
√

c2 − c2

√
X(0)

2
√

X(0)
.
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Evaluating this at the normal random variable Z +
√

c2X(0) (with Z as in
(7.22)), we get the score

Z
√

c2

2
√

X(0)
.

Multiplying this by f(X(t)) produces an LRM estimator of the derivative
dE[f(X(t))]/dX(0). For the derivative of a function of a discrete path X(t1),
. . . , X(tm), replace Z with Z1 in the score, with Z1 the normal random
variable used in generating X(t1) from X(0). �

7.3.2 Bias and Variance Properties

The likelhood ratio method produces an unbiased estimator of a derivative
when (7.31) holds; i.e., when the integral (over x) of the limit as h → 0 of the
functions

f(x)
1
h

(
gθ+h(x)
gθ(x)

− 1
)

gθ(x) (7.41)

equals the limit of their integrals. Because probability densities tend to be
smooth functions of their parameters, this condition is widely satisfied. Spe-
cific conditions for exponential families of distributions are given in, e.g.,
Barndorff-Nielsen [35], and this case is relevant to several of our examples.
Glynn and L’Ecuyer [158] provide general conditions. In practice, the ap-
plicability of the likelihood ratio method is more often limited by either (i)
the need for explicit knowledge of a density, or (ii) a large variance, than by
the failure of (7.31).

Absolute Continuity

As suggested by (7.41), the likelihood ratio method is based on a limit of
importance sampling estimators (see Section 4.6). For fixed h, the integral
of (7.41) equals 1/h times the difference Eθ+h[f(X)] − Eθ[f(X)], the first
expectation relying on the importance sampling identity

Eθ+h[f(X)] = Eθ[f(X)gθ+h(X)/gθ(X)].

The validity of this identity relies on an implicit assumption of absolute con-
tinuity (cf. Appendix B.4): we need gθ+h(x) > 0 at all points x for which
gθ(x) > 0.

For a simple example in which absolute continuity fails, suppose X is
uniformly distributed over (0, θ). Its density is

gθ(x) =
1
θ
1{0 < x < θ},

which is differentiable in θ at x ∈ (0, θ). The score d log gθ(X)/dθ exists with
probability 1 and equals −1/θ. The resulting LRM estimator of the derivative
of Eθ[X ] is
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Eθ[X · −1
θ

] = −θ/2
θ

= − 1
2 ,

whereas the correct value is

d

dθ
Eθ[X ] = 1

2 .

The estimator even fails to predict the direction of change. This failure results
from the fact that gθ+h is not absolutely continuous with respect to gθ.

A related (and in practice more significant) limitation applies to the mul-
tivariate normal distribution. Suppose X ∼ N(µ, Σ) and we are interested in
the sensitivity of some expectation E[f(X)] to changes in θ, with θ a parame-
ter of µ or Σ. If X is a vector of length d and the d × d matrix Σ has rank
k < d, then X fails to have a density on �d and the likelihood ratio method
is not directly applicable. As discussed in Section 2.3.3, in the rank-deficient
case we could express d− k components of X as linear transformations of X̃ ,
a vector consisting of the other k components of X . Moreover, X̃ would then
have a density in �k. This suggests that we could write f(X) = f̃(X̃) for
some function f̃ and then apply the likelihood ratio method.

This transformation may not, however, entirely remove the obstacle to
using the method if it introduces explicit dependence on θ in the function f̃ .
A simple example illustrates this point. Suppose Z1 and Z2 are independent
normal random variables andX1

X2

X3

 =

µ1

µ2

µ3

+

1 0
0 1
a1 a2

(Z1

Z2

)
. (7.42)

We can reduce any function f of (X1, X2, X3) to a function of just the first
two components by defining

f̃(X1, X2) = f(X1, X2, a1(X1 − µ1) + a2(X2 − µ2) + µ3).

The pair (X1, X2) has a probability density in �2. But if any of the µi or ai

depend on θ then f̃ does too. This dependence is not captured by differenti-
ating the density of (X1, X2); capturing it requires differentiating f̃ , in effect
combining the likelihood ratio and pathwise methods. This may not be possi-
ble if f is discontinuous. The inability of the likelihood ratio method to handle
this example again results from a failure of absolute continuity: (X1, X2, X3)
has a density on a two-dimensional subspace of �3, but this subspace changes
with θ, so the densities do not have common support.

Variance Properties

A near failure of absolute continuity is usually accompanied by an explosion
in variance. This results from properties of the score closely related to the
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variance build-up in likelihood ratios discussed in Section 4.6.1 and Appen-
dix B.4.

In (7.42), one could get around the lack of a density by adding
√

εZ3 to
X3, with Z3 independent of Z1, Z2. This would lead to a score of the form in
(7.38) with

A−1 =

 1 0 0
0 1 0

−a1/
√

ε −a2/
√

ε 1/
√

ε

 ,

and thus infinite variance as ε → 0.
Something similar occurs with the score (7.35) for a path-dependent op-

tion sensitive to the values of GBM(r, σ2) at dates t1, . . . , tm. The score has
expected value 0 for all t1 > 0, but its variance grows without bound as t1
approaches 0. This, too, is a consequence of a breakdown of absolute con-
tinuity. The score in (7.35) results from viewing a value of S(t1) generated
from S(0) as though it had been generated from S(0) + h. For t1 > 0, all
positive values of S(t1) are possible starting from both S(0) and S(0)+h; the
two distributions of S(t1) are mutually absolutely continuous and thus have
a well-defined likelihood ratio. But viewed as probability measures on paths
starting at time 0 rather t1, the measures defined by S(0) and S(0) + h are
mutually singular: no path that starts at one value can also start at the other.
Absolute continuity thus fails as t1 → 0, and this is manifested by the increase
in variance of the score.

Next we consider the effect of a long time horizon. The score in (7.37) for
the vega of a function of the discrete path (S(t1), . . . , S(tm)) is a sum of m
independent random variables. Its variance grows linearly in m if the spacings
tj − tj−1 are constant, faster if the spacings themselves are increasing. This
suggests that the variance of an LRM estimator that uses this score will
typically increase with the number of dates m. The same occurs if we fix a
time horizon T , divide the interval [0, T ] into m equal time steps, and then let
m → ∞. Recall (cf. the discussion of Girsanov’s Theorem in Appendix B.4)
that the measures on paths for Brownian motions with different variance
parameters are mutually singular, so this explosion in variance once again
results from a breakdown of absolute continuity.

Figure 7.3 illustrates the growth in variance is estimating vega for an Asian
option. The model parameters are S(0) = K = 100, σ = 0.30, r = 5%; the
option payoff is based on the average level of the underlying asset over m
equally spaced dates with a spacing of 1/52 (one week). The value of m varies
along the horizontal access; the vertical axis shows variance (per replication)
on a log scale, as estimated from one million replications. The figure shows
that the variance grows with m for both the LRM and pathwise estimators.
The variance of the LRM estimator starts higher (by more than a factor of
10 at m = 2) and grows faster as m increases.

The growth in variance exhibited by the vega score (7.37) is intrinsic to the
method: subject only to modest technical conditions, the score is a martingale
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Fig. 7.3. Variance of vega estimators for an Asian option with weekly averaging as
a function of the number of weeks in the average.

and thus a process of increasing variance. Consider, for example, a simulation
(as in (4.78)) based on a recursion of the form

S(ti+1) = G(S(ti), Xi+1) (7.43)

driven by i.i.d. random vectors X1, X2, . . .. Suppose θ is a parameter of the
density gθ of the Xi. A likelihood ratio method estimator of the derivative
with respect to θ of some expectation E[f(S(t1), . . . , S(tm))] uses the score

m∑
i=1

ġθ(Xi)
gθ(Xi)

.

This is an i.i.d. sum and a martingale because

E

[
ġθ(Xi)
gθ(Xi)

]
=
∫

ġθ(x)
gθ(x)

gθ(x) dx

=
d

dθ

∫
gθ(x) dx = 0,

using the fact that gθ integrates to 1 for all θ. Alternatively, if gθ(y|x) is the
transition density of the process S(ti), i = 1, 2, . . ., we could use the score

m∑
i=1

ġθ(S(ti)|S(ti−1))
gθ(S(ti)|S(ti−1))

.

This is no longer an i.i.d. sum, but a similar argument shows that it is still a
martingale and hence that its variance increases with m.
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Because the score has mean zero, it provides a candidate control variate.
Using it as a control removes some of the variance introduced by the score,
but rarely changes the qualitative dependence on the number of steps m.

7.3.3 Gamma

We noted in Example 7.2.6 that the pathwise method does not readily extend
to estimating second derivatives. With the likelihood ratio method, second
derivatives are in principle no more difficult to estimate than first derivatives.
Let g̈θ denote the second derivative of gθ in θ. The argument leading to (7.32)
shows that

f(X)
g̈θ(X)
gθ(X)

(7.44)

is an unbiased estimator of d2Eθ[f(X)]/dθ2, subject to conditions permitting
two interchanges of derivative and expectation. These conditions seldom limit
the applicability of the method. However, just as the score ġθ(X)/gθ(X) can
lead to large variance in first-derivative estimates, its counterpart in (7.44)
often produces even larger variance in second-derivative estimates.

We illustrate the method with some examples.

Example 7.3.6 Black-Scholes gamma. We apply (7.44) to estimate gamma
— the second derivative with respect to the underlying price S(0) — in the
Black-Scholes setting. Using the notation of Example 7.3.1, we find that

d2g(S(T ))/dS2(0)
g(S(T ))

=
ζ(S(T ))2 − 1

S(0)2σ2T
− ζ(S(T ))

S(0)2σ
√

T
. (7.45)

Multiplying this expression by the discounted payoff e−rT (S(T ) − K)+ pro-
duces an unbiased estimator of the Black-Scholes gamma. If S(T ) is generated
from S(0) using (7.17), ζ(S(T )) can be replaced with the standard normal
random variable Z.

As with LRM first-derivative estimates, the form of the discounted payoff
is unimportant; (7.45) could be applied with other functions of S(T ). Much as
in Example 7.3.2, this expression also extends to path-dependent options. For
a function of S(t1), . . . , S(tm), replace T with t1 in (7.45); see the argument
leading to (7.35). �

Example 7.3.7 Second derivatives for Gaussian vectors. If X ∼ N(µ, σ2)
then differentiation with respect to µ yields

ġµ(X)
gµ(X)

=
X − µ

σ2

and
g̈µ(X)
gµ(X)

=
(X − µ)2 − σ2

σ4
.
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Higher orders of differentiation produce higher powers of X and often larger
variance.

More generally, let X be a random vector with multivariate normal distri-
bution N(µ(θ), Σ), with θ a scalar parameter and Σ of full rank. Then

g̈θ(X)
gθ(X)

= ([X − µ(θ)]�Σ−1µ̇(θ))2 − µ̇(θ)�Σ−1µ̇(θ) + [X − µ(θ)]�Σ−1µ̈(θ),

where µ̇ and µ̈ denote derivatives of µ with respect to θ. �

An alternative approach to estimating second derivatives combines the
pathwise and likelihood ratio methods, using each for one order of differen-
tiation. We illustrate this idea by applying it to the Black-Scholes gamma.
Suppose we apply the likelihood ratio method first and then the pathwise
method. Multiplying the discounted payoff by the score yields (7.34), which
we differentiate to get the “LR-PW” estimator

d

dS(0)

(
e−rT (S(T ) − K)+

Z

S(0)σ
√

T

)
= e−rT Z

S(0)2σ
√

T
1{S(T ) > K}K,

(7.46)
using dS(T )/dS(0) = S(T )/S(0). If instead we apply pathwise differentiation
first, we get the delta estimator (7.20). This expression has a functional de-
pendence on S(0) as well as a distributional dependence on S(0) through the
density of S(T ). Multiplying by the score captures the second dependence
but for the first we need to take another pathwise derivative. The resulting
“PW-LR” estimator is

e−rT

(
1{S(T ) > K}S(T )

S(0)
· Z

S(0)σ
√

T
+ 1{S(T ) > K}S(T )

d

dS(0)
1

S(0)

)
= e−rT 1{S(T ) > K}

(
S(T )
S(0)2

)(
Z

σ
√

T
− 1
)

.

The pure likelihood ratio method estimator of gamma is

e−rT (S(T ) − K)+
(

Z2 − 1
S(0)2σ2T

− Z

S(0)2σ
√

T

)
,

using (7.45).
Table 7.2 compares the variance per replication using these methods with

parameters S(0) = 100, σ = 0.30, r = 5%, three levels of the strike K, and
two maturities T . The table also compares variances for the likelihood ratio
method and pathwise estimators of delta; the exact values of delta and gamma
are included in the table for reference. Each variance estimate is based on 1
million replications.

The results in the table indicate that the pathwise estimator of delta has
lower variance than the likelihood ratio method estimator, especially at higher
values of S(0)/K. The results also indicate that the mixed gamma estimators
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have substantially lower variance than the pure likelihood ratio method es-
timator. The two mixed estimators have similar variances, except at lower
values of K where LR-PW shows a distinct advantage. This advantage is also
evident from the expression in (7.46).

T = 0.1 T = 0.5
K 90 100 110 90 100 110

Delta 0.887 0.540 0.183 0.764 0.589 0.411
LR 3.4 1.5 0.5 2.7 2.0 1.4
PW 0.1 0.3 0.2 0.3 0.4 0.3

Gamma 0.020 0.042 0.028 0.015 0.018 0.018
LR 0.1232 0.0625 0.0265 0.0202 0.0154 0.0116
PW-LR 0.0077 0.0047 0.0048 0.0015 0.0013 0.0013
LR-PW 0.0052 0.0037 0.0045 0.0007 0.0007 0.0009

Table 7.2. Variance comparison for estimators of Black-Scholes deltas and gammas
using the likelihood ratio (LR) and pathwise (PW) methods and combinations of
the two.

Although generalizing from numerical results is risky (especially with re-
sults based on such a simple example), we expect the superior performance of
the mixed gamma estimators campared with the pure likelihood ratio method
estimator to hold more generally. It holds, for example, in the more com-
plicated application to the LIBOR market model in Glasserman and Zhao
[150].

Yet another strategy for estimating second derivatives applies a finite-
difference approximation using two estimates of first derivatives. Glasserman
and Zhao [150] report examples in which the best estimator of this type has
smaller root mean square error than a mixed PW-LR estimator. A difficulty
in this method as in any use of finite differences is finding an effective choice
of parameter increment h.

7.3.4 Approximations and Related Methods

The main limitations on the use of the likelihood ratio method are (i) the
method’s reliance on explicit probability densities, and (ii) the large variance
sometimes produced by the score. This section describes approximations and
related methods that can in some cases address these limitations.

General Diffusion Processes

Several of the examples with which we introduced the likelihood ratio method
in Section 7.3.1 rely on the simplicity of probability densities associated with
geometric Brownian motion. In more complicated models, we rarely have ex-
plicit expressions for either marginal or transition densities, even in cases
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where these are known to exist. By the same token, in working with more
complicated models we are often compelled to simulate approximations (us-
ing, e.g., the discretization methods of Chapter 6), and we may be able to
develop derivative estimators for the approximating processes even if we can-
not for the original process.

Consider, for example, a general diffusion of the type in (7.23). An Euler
approximation to the process is a special case of the general recursion in
(7.43) in which the driving random variables are normally distributed. In fact,
whereas we seldom know the transition law of a general diffusion (especially
in multiple dimensions), the Euler approximation has a Gaussian transition
law and thus lends itself to use of the likelihood ratio method. If the method
is unbiased for the Euler approximation, it does not introduce any discretiza-
tion error beyond that already present in the Euler scheme. (Similar though
more complicated techniques can potentially be developed using higher-order
discretization methods; for example, in the second-order scheme (6.36), the
state transition can be represented as a linear transformation of a noncentral
chi-square random variable.)

We illustrate this idea through the Heston [179] stochastic volatility model,
using the notation of Example 6.2.2. We consider an Euler approximation

Ŝ(i + 1)=(1 + rh)Ŝ(i) + Ŝ(i)
√

V̂ (i)hZ1(i + 1)

V̂ (i + 1)= V̂ (i) + κ(θ − V̂ (i))h + σ

√
V̂ (i)h

(
ρZ1(i + 1) +

√
1 − ρ2Z2(i + 1)

)
with time step h and independent standard normal variables (Z1(i), Z2(i)),
i = 1, 2, . . .. The conditional distribution at step i + 1 given the state at the
ith step is normal,

N

((
(1 + rh)Ŝ(i)

V̂ (i) + κ(θ − V̂ (i))h

)
,

(
Ŝ2(i)V̂ (i)h ρσŜ(i)V̂ (i)h

ρσŜ(i)V̂ (i)h σ2V̂ (i)h

))
. (7.47)

Assume a fixed initial state (Ŝ(0), V̂ (0)) = (S(0), V (0)) and |ρ| = 1.
Consider the estimation of delta, a derivative with respect to S(0).

Through the argument in Example 7.3.2, it suffices to consider the dependence
of (Ŝ(1), V̂ (1)) on S(0). Because S(0) is not a parameter of the distribution of
V̂ (1), it actually suffices to consider Ŝ(1). Observe that S(0) appears in both
the mean and variance of Ŝ(1), so we need to combine contributions from
(7.38) and (7.40). After some algebraic simplification, the score becomes

Z1(1)(1 + rh)
S(0)

√
V (0)h

+
Z2

1 (1) − 1
S(0)

,

with Z1(1) the standard normal random variable used to generate Ŝ(1) in the
Euler scheme.

Next consider estimation of sensitivity to the parameter σ. Because σ
is a parameter of the transition law of the Euler scheme, every transition
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contributes a term to the score. For a generic transition out of a state (Ŝ, V̂ ),
we use (7.40) with

A =

 Ŝ
√

V̂ h 0

ρσ
√

V̂ h σ

√
V̂ h(1 − ρ2)

 , Σ̇ =
(

0 ρŜV̂ h

ρŜV̂ h 2σV̂ h

)
.

For the ith transition, (7.40) then simplifies to

Z2
2 (i) − 1

σ
+

ρZ1(i)Z2(i)
σ
√

1 − ρ2
. (7.48)

The score for a function of (Ŝ(i), V̂ (i)), i = 1, . . . , m, is then the sum of (7.48)
for i = 1, . . . , m.

LIBOR Market Model

The application of the likelihood ratio method to the Heston stochastic volatil-
ity model relies on the covariance matrix in (7.47) having full rank. But in an
Euler scheme in which the dimension of the state vector exceeds the dimension
of the driving Brownian motion, the covariance matrix of the transition law
is singular. As explained in Section 7.3.2, this prevents a direct application of
the likelihood ratio method. In LIBOR market models, the number of forward
rates in the state vector typically does exceed the dimension of the driving
Brownian motion (the number of factors), making this a practical as well as
a theoretical complication.

One way to address this issue notes that even if the one-step transition
law is singular, the k-step transition law may have a density for some k > 1.
But a first attempt to use this observation raises another issue: in an Euler
scheme for log forward rates (log L̂1, . . . , log L̂M ), as in (3.120), the one-step
transition law is normal but the k-step transition law is not, for k > 1, because
of the dependence of the drift term on the current level of rates. To get around
this problem, Glasserman and Zhao [150] make the approximation in (7.27)
under which the drift becomes a function of the initial rates rather than the
current rates. Using this approximation and a fixed time step h, the k-step
evolution of each log L̂n takes the form

log L̂n(k) = log Ln(0) + h

k−1∑
i=0

[
µo

n(ih) − 1
2‖σn(ih)‖2

]

+
√

h
[
σn(0)�, σn(h)�, . . . , σn((k − 1)h)�

]Z1

...
Zk


where the row vectors σn(ih)� have been concatenated into a single vector of
length kd, the column vectors Zi have been stacked into a column vector of
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the same length, and d is the number of factors. For sufficiently large k∗, the
M × k∗d matrix

A(k∗) =


σ1(0)� σ1(h)� · · · σ1((k∗ − 1)h)�

σ2(0)� σ2(h)� · · · σ2((k∗ − 1)h)�
...

...
...

σM (0)� σM (h)� · · · σM ((k∗ − 1)h)�


may have rank M even if the number of factors d is smaller than the num-
ber of rates M . Whether this occurs depends on how the volatilities σn(ih)
change with i. If it does occur, then the covariance matrix A(k∗)A(k∗)� of
the (approximate) k-step transition law is invertible and we may use formulas
in Example 7.3.4 for an arbitrary Gaussian vector.

For example, to apply this idea to estimate a sensitivity with respect to
some Lj(0), we set

X = (log L̂1(k∗h), . . . , log L̂M (k∗h))�,

an = log Ln(0) + h

k∗−1∑
	=0

[µ̂o
n(�h) − 1

2‖σn(�h)‖2], n = 1, . . . , M,

ȧn =
1{n = j}

Lj(0)
+ h

k∗−1∑
	=0

∂µ̂o
n(�h)

∂Lj(0)
, n = 1, . . . , M,

and Σ = A(k∗)A(k∗)�h. The (approximate) LRM estimator for the sensitivity
of an arbitrary discounted payoff f(L̂1(i), . . . , L̂M (i)), i > k∗, is then

f(L̂1(i), . . . , L̂M (i))(X − a)�Σ−1ȧ,

with a = (a1, . . . , aM )� and ȧ = (ȧ1, . . . , ȧM )�. Glasserman and Zhao [150]
test this method on payoffs with discontinuities (digital caplets and knock-out
caplets) and find that it substantially outperforms finite-difference estimation.
They compare methods based on the root mean square error achieved in a
fixed amount of computing time.

Mixed Estimators

Pathwise differentiation and LRM estimation can be combined to take ad-
vantage of the strengths of each approach. We illustrated one type of combi-
nation in discussing gamma estimation in Section 7.3.3. There we used each
method for one order of differentiation. An alternative type of combination
uses the likelihood ratio method near a discontinuity and pathwise differenti-
ation everywhere else.

We illustrate this idea with an example from Fournié et al. [124]. The
payoff of a digital option struck at K can be written as
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1{x > K} = fε(x) + (1{x > K} − fε(x))
≡ fε(x) + hε(x),

with
fε(x) = min{1, max{0, x − K + ε}/2ε}.

The function fε makes a piecewise linear approximation to the step-function
payoff of the digital option and hε corrects the approximation. We can ap-
ply pathwise differentiation to fε(S(T )) and the likelihood ratio method to
hε(S(T )) to get the combined delta estimator

1
2ε

1{|S(T )− K| < ε}S(T )
S(0)

+ hε(S(T ))
ζ(S(T ))
S(0)σ

√
T

,

assuming S(t) is a geometric Brownian motion and using the notation of
Example 7.3.1.

Figure 7.4 plots the variance of this estimator as a function of ε with
parameters S(0) = K = 100, σ = 0.30, r = 0.05, and T = 0.25. The case
ε = 0 corresponds to using only the likelihood ratio method. A small ε > 0
increases variance, because of the ε in the denominator of the estimator, but
larger values of ε can substantially reduce variance. The optimum occurs at a
surprisingly large value of ε ≈ 35.
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Fig. 7.4. Variance of mixed estimator as a function of linearization parameter ε.

Rewriting the combined estimator as

1{S(T ) > K} ζ(S(T ))
S(0)σ

√
T

+
(
1{|S(T )− K| < ε} S(T )

2εS(0)
− fε(S(T ))

ζ(S(T ))
S(0)σ

√
T

)
reveals an interpretation as a control variate estimator: the first term is the
LRM estimator and the expression in parentheses has expected value zero.
The implicit coefficient on the control is 1 and further variance reduction
could be achieved by optimizing the coefficient.
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Sensitivities to Calibration Instruments

Avellaneda and Gamba [28] consider the problem of estimating sensitivites of
derivative securities with respect to the prices of securities used to calibrate
a model, which may or may not be the underlying assets in the usual sense.
These sensitivities are relevant if the securities used to calibrate a model to
market prices are also the securities used for hedging, as is often the case.

The formulation in Avellaneda and Gamba [28] is based on weighted Monte
Carlo (as in Section 4.5.2), but similar ideas apply in a simpler control variate
setting. Denote by Y the discounted payoff of a derivative security and by X
the discounted payoff of a hedging instrument. Suppose we estimate the price
of the derivative security using an estimator of the form

Ŷ = Y − β(X − c), (7.49)

with β interpreted as the slope of a regression line. The constant c is the
observed market price of the hedging instrument, which may or may not
equal E[X ]. The difference E[X ]− c represents model error; if this is nonzero,
then (7.49) serves primarily to correct for model error rather than to reduce
variance. The coefficient β is the sensitivity of the corrected price to the
market price of the hedging instrument and thus admits an interpretation as
a hedge ratio. This coefficient can be estimated by applying, e.g., ordinary
least squares regression to simulated values of (X, Y ).

A link with regression can also be seen in the application of the likelihood
ratio method with the normal distribution. Suppose X ∼ N(θ, σ2) and sup-
pose Y depends on θ through X (for example, Y could be a function of X).
As in (7.38), the score for estimating sensitivity to θ is (X − θ)/σ2 and the
corresponding likelihood ratio method estimator has expectation

E

[
Y

(
X − θ

σ2

)]
=

Cov[X, Y ]
Var[X ]

.

This is precisely the slope in a regression of Y against X . From this perspec-
tive, using regression to estimate a sensitivity can be interpreted as using an
approximate LRM estimator based on the normal distribution.

7.4 Concluding Remarks

Extensive numerical evidence accumulated across many models and applica-
tions indicates that the pathwise method, when applicable, provides the best
estimates of sensitivities. Compared with finite-difference methods, pathwise
estimates require less computing time and they directly estimate derivatives
rather than differences. Compared with the likelihood ratio method, pathwise
estimates usually have smaller variance — often much smaller.
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The application of the pathwise method requires interchanging the order
of differentation and integration. Sufficient conditions for this interchange, tai-
lored to option pricing applications, are provided by conditions (A1)–(A4) in
Section 7.2.2. A simple rule of thumb states that the pathwise method yields
an unbiased estimate of the derivative of an option price if the option’s dis-
counted payoff is almost surely continuous in the parameter of differentiation.
The discounted payoff is a stochastic quantity, so this rule of thumb requires
continuity as the parameter varies with all random elements not depending
on the parameter held fixed. (This should not be confused with continuity of
the expected discounted payoff, which nearly always holds.) This rule excludes
digital and barrier options, for example.

Finite-difference approximations are easy to implement and would appear
to require less careful examination of the dependence of a model on its pa-
rameters. But when the pathwise method is inapplicable, finite-difference ap-
proximations have large mean square errors: the lack of continuity that may
preclude the use of the pathwise method produces a large variance in a finite-
difference estimate that uses a small parameter increment; a large increment
leads to a large bias. The size of an effective parameter increment — one min-
imizing the mean square error — is very sensitive to the pathwise continuity
of the discounted payoff. The question of continuity thus cannot be avoided
by using finite-difference estimates.

In contrast, the likelihood ratio method does not require any smoothness
in the discounted payoff because it is based on differentiation of probabil-
ity densities instead. This makes LRM potentially attractive in exactly the
settings in which the pathwise method fails. The application of LRM is, how-
ever, limited by two features: it requires explicit knowledge of the relevant
probability densities, and its estimates often have large variance.

The variance of LRM estimates becomes problematic when the para-
meter of differentiation influences many of the random elements used to
simulate a path. For example, consider the simulation of a discrete path
S(0), S(t1), S(t2), . . . of geometric Brownian motion, and contrast the esti-
mation of delta and vega. Only the distribution of S(t1) depends directly on
S(0); given S(t1), the subsequent S(tj) are independent of S(0). But every
transition depends on the volatility parameter σ. So, the score used to esti-
mate delta has just a single term, whereas the score used to estimate vega has
as many terms as there are transitions. Summing a large number of terms in
the score produces an LRM estimator with a large variance.

Several authors (including Benhamou [44], Cvitanić et al. [94], Fournié et
al. [124], and Gobet and Munos [161]) have proposed extensions of the like-
lihood ratio method using ideas from Malliavin calculus. These techniques
reduce to LRM when the relevant densities are available; otherwise, they re-
place the score with a Skorohod integral , which is then computed numerically
in the simulation itself. This integral may be viewed as a randomization of
the score in the sense that the score is its conditional expectation. Further
identities in this spirit are derived in Gobet and Munos [161], some leading to
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variance reduction. Except in special cases, evaluation of the Skorohod integral
is computationally demanding. Estimators that require it should therefore be
compared with the simpler alternative of applying LRM to an Euler approx-
imation, for which the (Gaussian) transition laws are explicitly available.

Estimating second derivatives is fundamentally more difficult than esti-
mating first derivatives, regardless of the method used. The pathwise method
is generally inapplicable to second derivatives of option prices: a kink in an
option payoff becomes a discontinuity in the derivative of the payoff. Combi-
nations of the pathwise method and likelihood ratio method generally produce
better gamma estimates than LRM alone. The two methods can also be com-
bined to estimate first derivatives, with one method in effect serving as a
control variate for the other.
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Pricing American Options

Whereas a European option can be exercised only at a fixed date, an Amer-
ican option can be exercised any time up to its expiration. The value of an
American option is the value achieved by exercising optimally. Finding this
value entails finding the optimal exercise rule — by solving an optimal stop-
ping problem — and computing the expected discounted payoff of the option
under this rule. The embedded optimization problem makes this a difficult
problem for simulation.

This chapter presents several methods that address this problem and dis-
cusses their strengths and weaknesses. The methods differ in the restrictions
they impose on the number of exercise opportunities or the dimension of the
underlying state vector, the information they require about the underlying
processes, and the extent to which they seek to compute the exact price or
just a reasonable approximation. Any general method for pricing American
options by simulation requires substantial computational effort, and that is
certainly the case for the methods we discuss here.

A theme of this chapter is the importance of understanding the sources
of high and low bias that affect all methods for pricing American options by
simulation. High bias results from using information about the future in mak-
ing the decision to exercise, and this in turn results from applying backward
induction to simulated paths. Low bias results from following a suboptimal ex-
ercise rule. Some methods mix the two sources of bias, but we will see that by
separating them it is often possible to produce a pair of estimates straddling
the optimal value.

8.1 Problem Formulation

A general class of continuous-time American option pricing problems can be
formulated by specifying a process U(t), 0 ≤ t ≤ T , representing the dis-
counted payoff from exercise at time t, and a class of admissible stopping
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times T with values in [0, T ]. The problem, then, is to find the optimal ex-
pected discounted payoff

sup
τ∈T

E[U(τ)].

An arbitrage argument justifies calling this the option price under appropriate
regularity conditions; see Duffie [98].

The process U is commonly derived from more primitive elements. With
little loss of generality, we restrict attention to problems that can be formu-
lated through an �d-valued Markov process {X(t), 0 ≤ t ≤ T } recording all
necessary information about relevant financial variables, such as the current
prices of the underlying assets. The Markov property can often be achieved
by augmenting the state vector to include supplementary variables (such as
stochastic volatility), if necessary. The payoff to the option holder from exer-
cise at time t is h̃(X(t)) for some nonnegative payoff function h̃. If we further
suppose the existence of an instantaneous short rate process {r(t), 0 ≤ t ≤ T },
the pricing problem becomes calculation of

sup
τ∈T

E

[
e
−
∫

τ

0
r(u) du

h̃(X(τ))
]

. (8.1)

It is implicit in the form of the discounting in this expression that the expecta-
tion is taken with respect to the risk-neutral measure. By taking the discount
factor to be a component of X , we could absorb the discounting into the func-
tion h̃. In this Markovian setting, it is natural to take the admissible stopping
rules T to be functions of the current state, augmenting the state vector if
necessary. This means that the exercise decision at time t is determined by
X(t).

This formulation includes the classical American put as a special case.
Consider a put struck at K on a single underlying asset S(t). The risk-neutral
dynamics of S are modeled as geometric Brownian motion GBM(r, σ2), with
r a constant risk-free interest rate. Suppose the option expires at T . Its value
at time 0 is then

sup
τ∈T

E[e−rτ(K − S(τ))+], (8.2)

where the elements of T are stopping times (with respect to S) taking values
in [0, T ]. This supremum is achieved by an optimal stopping time τ∗ that has
the form

τ∗ = inf{t ≥ 0 : S(t) ≤ b∗(t)}, (8.3)

for some optimal exercise boundary b∗. This is illustrated in Figure 8.1.
We have written the payoff in (8.2) as (K−S(τ))+ rather than (K−S(τ))

so that exercising an out-of-the-money option produces a zero payoff rather
than a negative payoff. This allows us to include the possibility that the option
expires worthless within the event {τ = T } rather than writing, e.g., τ = ∞
for this case. For this reason, in (8.1) and throughout this chapter we take the
payoff function h̃ to be nonnegative.
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K

Tτ

Fig. 8.1. Exercise boundary for American put with payoff (K −S(t))+. The option
is exercised at τ , the first time the underlying asset reaches the boundary.

In discussing simulation methods for pricing American options, we restrict
ourselves to options that can be exercised only at a fixed set of exercise op-
portunities t1 < t2 < · · · < tm. In many cases, such a restriction is part of the
option contract, and such options are often called “Bermudan” because they
lie between European and continuously exercisable American options. In some
cases, it is known in advance that exercise is suboptimal at all but a finite
set of dates, such as dividend payment dates. One may alternatively view the
restriction to a finite set of exercise dates as an approximation to a contract
allowing continuous exercise, in which case one would want to consider the
effect of letting m increase to infinity. Because even the finite-exercise problem
poses a significant challenge to Monte Carlo, we focus exclusively on this case.
We construe “American” to include both types of options.

To reduce notation, throughout this chapter we write X(ti) as Xi; this is
the state of the underlying Markov process at the ith exercise opportunity.
The discrete-time process X0 = X(0), X1, . . . , Xm is then a Markov chain on
�d. We discuss American option pricing based on simulation of this Markov
chain. In practice, simulating Xi+1 from Xi may entail simulating values of
X(t) with ti < t < ti+1. For example, it may be necessary to apply a time
discretization using a time step smaller than the intervals ti+1 − ti between
exercise dates. In this case, the simulated values of X1, . . . , Xm are subject to
discretization error. For the purposes of discussing American option pricing,
we disregard this issue and focus on the challenge of solving the optimal
stopping problem under the assumption that X1, . . . , Xm can be simulated
exactly.
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Dynamic Programming Formulation

Working with a finite-exercise Markovian formulation lends itself to a charac-
terization of the option value through dynamic programming. Let h̃i denote
the payoff function for exercise at ti, which we now allow to depend on i. Let
Ṽi(x) denote the value of the option at ti given Xi = x, assuming the option
has not previously been exercised. This can also be interpreted as the value of
a newly issued option at ti starting from state x. We are ultimately interested
in Ṽ0(X0). This value is determined recursively as follows:

Ṽm(x) = h̃m(x) (8.4)
Ṽi−1(x) = max{h̃i−1(x), E[Di−1,i(Xi)Ṽi(Xi)|Xi−1 = x]}, (8.5)

i = 1, . . . , m.

Here we have introduced the notation Di−1,i(Xi) for the discount factor from
ti−1 to ti. Equation (8.4) states that the option value at expiration is given
by the payoff function h̃m; equation (8.5) states that at the (i− 1)th exercise
date the option value is the maximum of the immediate exercise value and the
expected present value of continuing. (We usually exclude the current time 0
from the set of exercise opportunities; this can be accommodated in (8.5) by
setting h̃0 ≡ 0.)

Most methods for computing American option prices rely on the dynamic
programming representation (8.4)–(8.5). This is certainly true of the binomial
method in which the conditional expectation in (8.5) reduces to the average
over the two successor nodes in the lattice. (See Figure 4.7 and the surrounding
discussion.) Estimating these conditional expectations is the main difficulty
in pricing American options by simulation. The difficulty is present even in
the two-stage problem discussed in Example 1.1.3, and is compounded by the
nesting of conditional expectations in (8.5) as i decreases from m to 1.

By augmenting the state vector if necessary, we assume that the discount
factor Di−1,i is a deterministic function of Xi. The discount factor could have
the form

Di−1,i(Xi) = exp

(
−
∫ ti

ti−1

r(u) du

)
,

but this is not essential. The more general formulation frees us from reliance on
the risk-neutral measure. We simply require that the expectation is taken with
respect to the probability measure consistent with the choice of numeraire im-
plicit in the discount factor; see the discussion in Section 1.2.3. If we simulate
under the tm-maturity forward measure, the discount factor Di−1,i becomes
Bm(ti−1)/Bm(ti), with Bm(t) denoting the time-t price of a bond maturing
at tm.

In discussing pricing algorithms in this chapter, we suppress explicit dis-
counting and work with the following simplified dynamic programming recur-
sion:
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Vm(x) = hm(x) (8.6)
Vi−1(x) = max{hi−1(x), E[Vi(Xi)|Xi−1 = x]}. (8.7)

This formulation is actually sufficiently general to include (8.4)–(8.5), as we
now explain.

In (8.4)–(8.5), each Ṽi gives the value of the option in time-ti dollars,
but we could alternatively formulate the problem so that the value is always
recorded in time-0 dollars. Let D0,j(Xj) denote the discount factor from time
0 to tj , which we suppose is a deterministic function of Xj by augmenting the
state vector if necessary. To be consistent with its interpretation as a discount
factor, we require that D0,j(Xj) be nonnegative and that it satisfy D0,0 ≡ 1
and D0,i−1(Xi−1)Di−1,i(Xi) = D0,i(Xi). Now let

hi(x) = D0,i(x)h̃i(x), i = 1, . . . , m,

and
Vi(x) = D0,i(x)Ṽi(x), i = 0, 1, . . . , m.

Then V0 = Ṽ0 and the Vi satisfy

Vm(x) = hm(x)
Vi−1(x) = D0,i−1(x)Ṽi−1(x)

= D0,i−1(x)max{h̃i−1(x), E[Di−1,i(Xi)Ṽi(Xi)|Xi−1 = x]}
= max{hi−1(x), E[D0,i−1(x)Di−1,i(Xi)Ṽi(Xi)|Xi−1 = x]}
= max{hi−1(x), E[Vi(Xi)|Xi−1 = x]}.

Thus, the discounted values Vi satisfy a dynamic programming recursion of
exactly the form in (8.6)–(8.7). For the purpose of introducing simulation
estimators, (8.7) is slightly simpler, though in practical implementation one
usually uses (8.5).

Stopping Rules

The dynamic programming recursions (8.4)–(8.5) and (8.6)–(8.7) focus on
option values, but it is also convenient to view the pricing problem through
stopping rules and exercise regions. Any stopping time τ (for the Markov
chain X0, X1, . . . , Xm) determines a value (in general suboptimal) through

V
(τ)
0 (X0) = E[hτ (Xτ )]. (8.8)

Conversely, any rule assigning a “value” V̂i(x) to each state x ∈ �d and
exercise opportunity i, with V̂m = hm, determines a stopping rule

τ̂ = min{i ∈ {1, . . . , m} : hi(Xi) ≥ V̂i(Xi)}. (8.9)

The exercise region determined by V̂i at the ith exercise date is the set
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{x : hi(x) ≥ V̂i(x)} (8.10)

and the continuation region is the complement of this set. The stopping rule
τ̂ can thus also be described as the first time the Markov chain Xi enters an
exercise region. The value determined by using τ̂ in (8.8) does not in general
coincide with V̂0, though the two would be equal if we started with the optimal
value function.

Continuation Values

The continuation value of an American option with a finite number of exercise
opportunities is the value of holding rather than exercising the option. The
continuation value in state x at date ti (measured in time-0 dollars) is

Ci(x) = E[Vi+1(Xi+1)|Xi = x], (8.11)

i = 0, . . . , m−1. These also satisfy a dynamic programming recursion: Cm ≡ 0
and

Ci(x) = E [max{hi+1(Xi+1), Ci+1(Xi+1)}|Xi = x] , (8.12)

for i = 0, . . . , m − 1. The option value is C0(X0), the continuation value at
time 0.

The value functions Vi determine the continuation values through (8.11).
Conversely,

Vi(x) = max{hi(x), Ci(x)},
i = 1, . . . , m, so the Ci determine the Vi. An approximation Ĉi to the contin-
uation values determines a stopping rule through

τ̂ = min{i ∈ {1, . . . , m} : hi(Xi) ≥ Ĉi(Xi)}. (8.13)

This is the same as the stopping rule in (8.9) if the approximations satisfy
V̂i(x) = max{hi(x), Ĉi(x)}.

8.2 Parametric Approximations

Genuine pricing of American options entails solving the dynamic program-
ming problem (8.4)–(8.5) or (8.6)–(8.7). An alternative to trying to find the
optimal value is to find the best value within a parametric class. This reduces
the optimal stopping problem to a much more tractable finite-dimensional
optimization problem. The reduction can be accomplished by considering a
parametric class of exercise regions or a parametric class of stopping rules.
The two approaches become equivalent through the correspondences in (8.8)–
(8.10), so the distinction is primarily one of interpretation.

The motivation for considering parametric exercise regions is particularly
evident in the case of an option on a single underlying asset. The curved exer-
cise boundary in Figure 8.1, for example, is well-approximated by a piecewise



8.2 Parametric Approximations 427

linear function with three or four segments (or piecewise exponential as in Ju
[205]), which could be specified with four or five parameters. The option value
is usually not very sensitive to the exact position of the exercise boundary —
the value is continuous across the boundary — suggesting that even a rough
approximation to the boundary should produce a reasonable approximation
to the optimal option value.

The one-dimensional setting is, however, somewhat misleading. In higher-
dimensional problems (where Monte Carlo becomes relevant), the optimal
exercise region need not have a simple structure and there may be no evi-
dent way of parameterizing a class of plausible approximations. Developing
a parametric heuristic thus requires a deeper understanding of what drives
early exercise. The financial interpretation of the optimal stopping problems
that arise in pricing high-dimensional American options sometimes makes this
possible.

To formalize this approach, consider a class of stopping rules τθ, θ ∈ Θ,
with each τθ ∈ T and Θ a subset of some �M . Let

V θ
0 = sup

θ∈Θ
E[hτ(θ)(Xτ(θ))];

the objective of a parametric heuristic is to estimate V θ
0 , the optimal value

within the parametric class. Because the supremum in this definition is taken
over a subset of all admissible stopping rules T , we have

V θ
0 ≤ V0 = sup

τ∈T
E[hτ(Xτ )], (8.14)

typically with strict inequality. Thus, a consistent estimator of V θ
0 underesti-

mates the true option value.
A meta-algorithm for estimation of V θ

0 consists of the following steps:

Step 1: Simulate n1 independent replications X(j), j = 1, . . . , n1, of the
Markov chain (X0, X1, . . . , Xm);

Step 2: Find θ̂ maximizing

V̂ θ̂
0 =

1
n1

n1∑
j=1

hτ (j)(θ̂)(X
(j)

τ (j)(θ̂)
)

where for each θ ∈ Θ, τ (j)(θ) is the time of exercise on the jth repli-
cation at parameter θ.

Bias

Assuming Step 2 can be executed, the result is an estimator that is biased
high relative to V θ

0 , in the sense that

E[V̂ θ̂
0 ] ≥ V θ

0 . (8.15)
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This simply states that the expected value of the maximum over θ is at least
as large as the maximum over θ of the expected values. This can be viewed
as a consequence of Jensen’s inequality. It also results from the fact that the
in-sample optimum θ̂ implicitly uses information about the future evolution
of the simulated replications in determining an exercise decision.

The combination of the in-sample bias in (8.15) and the suboptimality bias
in (8.14) produces an unpredictable bias in V̂ θ̂

0 . One might hope that the high
bias in (8.15) offsets the low bias in (8.14), but without further examination
of specific cases this conjecture lacks support. Given that bias is inevitable in
this setting, it is preferable to control the bias and determine its direction.
This can be accomplished by adding the following to the meta-algorithm:

Step 3: Fix θ̂ at value found in Step 2. Simulate n2 additional independent
replications of the Markov chain using stopping rule τθ̂ and compute
the estimate

V̂ θ̂
0 =

1
n2

n1+n2∑
j=n1+1

hτ (j)(θ̂)(X
(j)

τ (j)(θ̂)
).

Because the second set of replications is independent of the set used to
determine θ̂, we now have

E[V̂ θ̂
0 |θ̂] = V θ̂

0 ,

which is the true value at parameter θ̂ and cannot exceed V0. Thus, taking
the unconditional expectation we get

E[V̂ θ̂
0 ] ≤ V0,

from which we conclude that the estimator produced by Step 3 is biased low.
This is an instance of a more general strategy developed in Broadie and

Glasserman [65, 66] for separating sources of high and low bias, to which we
return in Sections 8.3 and 8.5.

Estimators like θ̂ defined as solutions to sample optimization problems
have been studied extensively in other settings (including, for example, max-
imum likelihood estimation). There is a large literature establishing the con-
vergence of such estimators to the true optimum and also the convergence of
optimal-value estimators like V̂ θ̂

0 to the true optimum V θ
0 over Θ. Some results

of this type are presented in Chapter 6 of Rubinstein and Shapiro [313] and
Chapter 7 of Serfling [326].

Optimization

The main difficulty in implementing Steps 1–2, beyond selection of the class
of parametric rules, lies in the optimization problem of Step 2. Andersen [12]
considers exercise rules defined by a single threshold at each exercise date
and thus reduces the optimization problem to a sequence of one-dimensional
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searches. Fu and Hu [131] estimate derivatives with respect to parameters
(through the pathwise method discussed in Section 7.2) and use these to search
for optimal parameters. Garcia [134] uses a simplex method as in Press et al.
[299] with the exercise region at each time step described by two parameters.

The optimization problem in Step 2 ordinarily decomposes into m−1 sub-
problems, one for each exercise date except the last. This holds whenever the
parameter vector θ decomposes into m − 1 components with the ith compo-
nent parameterizing the exercise region at ti. This decomposition can be used
to search for an optimal parameter vector by optimizing sequentially from the
(m − 1)th date to the first.

In more detail, suppose θ = (θ1, . . . , θm−1) with θi parameterizing the
exercise region at ti. Each θi could itself be a vector. Now consider the follow-
ing inductive procedure, applied to n independent replications of the Markov
chain X0, X1, . . . , Xm:

(2a) find the value θ̂m−1 maximizing the average discounted payoff of the
option over the n paths assuming exercise is possible only at the (m−1)th
and mth dates;

(2b) with θ̂i, . . . , θ̂m−1 fixed, find the value θ̂i−1 maximizing the average dis-
counted payoff of the option over the n paths, assuming exercise is pos-
sible only at i− 1, i, . . . , m, and following the exercise policy determined
by θ̂i, . . . , θ̂m−1 at i, . . . , m − 1.

If each θi is a scalar, then this procedure reduces to a sequence of one-
dimensional optimization procedures. With a finite number of paths, each of
these is typically a nonsmooth optimization problem and is best solved using
an iterative search rather than a derivative-based method. Andersen [12] uses
a golden section procedure, as in Section 10.1 of Press [299].

There is no guarantee that (2a)–(2b) will produce an optimum for the
original problem in Step 2. In the decomposition, each θ̂i is optimized over
all paths whereas in the original optimization problem only a subset of paths
would survive until the ith date. One way to address this issue would be to
repeat steps (2a)–(2b) as follows: working backward from dates m − 1 to 1,
update each θ̂i using parameter values from the previous iteration to determine
the exercise decision at dates 1, . . . , i − 1, and parameter values from the
current iteration to determine the exercise decision at dates i + 1, . . . , m− 1.
Even this does not, however, guarantee an optimal solution to the problem in
Step 2.

Andersen [12] uses an approach of the type in Steps 1–3 to value Bermudan
swaptions in a LIBOR market model of the type discussed in Section 3.7. He
considers threshold rules in which the option is exercised if some function of
the state vector is above a threshold. He allows the threshold to vary with the
exercise date and optimizes the vector of thresholds. In the notation of this
section, each θi, i = 1, . . . , m − 1, is scalar and denotes the threshold for the
ith exercise opportunity.
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The simplest rule Andersen [12] considers exercises the swaption if the
value of the underlying swap is above a time-varying threshold. All the thresh-
old rules he tests try to capture the idea that exercise should occur when the
underlying swap has sufficient value. His numerical results indicate that sim-
ple rules work well and that Bermudan swaption values are not very sensitive
to the location of the exercise boundary in the parameterizations he uses.

This example illustrates a feature of many American option pricing prob-
lems. Although the problem is high-dimensional, it has a lot of structure,
making approximate solution feasible using relatively simple exercise rules
that tap into a financial understanding of what drives the exercise decision.

Parametric Value Functions

An alternative to specifying an approximate stopping rule or exercise regions
uses a parametric approximation to the optimal value function. Although the
two perspectives are ultimately equivalent, the interpretation and implemen-
tation are sufficiently different to merit separate consideration.

We work with the optimal continuation values Ci(x) in (8.11) rather than
the value function itself. Consider approximating each function Ci(x) by a
member Ci(x, θi) of a parametric family of functions. For example, we might
take θi to be a vector with elements θi1, . . . , θiM and consider functions of the
form

Ci(x, θi) =
M∑

j=1

θijψj(x),

for some set of basis functions ψ1, . . . , ψM . Our objective is to choose the
parameters θi to approximate the recursion (8.12).

Proceeding backward by induction, this entails choosing θ̂m−1 so that
Cm−1(x, θ̂m−1) approximates E[hm(Xm)|Xm−1 = x], with the conditional ex-
pectation estimated from simulated paths of the Markov chain. Given values
of θ̂i+1, . . . , θ̂m−1, we choose θ̂i so that Ci(x, θ̂i) approximates

E
[
max{hi+1(Xi+1), Ci+1(Xi+1, θ̂i+1)}|θ̂i+1, Xi = x

]
,

again using simulated paths to estimate the conditional expectation.
Applying this type of approach in practice involves several issues. Choos-

ing a parametric family of approximating functions is a problem-dependent
modeling issue; finding the optimal parameters and, especially, estimating the
conditional expectations present computational challenges. We return to this
approach in Section 8.6.

8.3 Random Tree Methods

Whereas the approximations of the previous section search for the best so-
lution within a parametric family, the random tree method of Broadie and
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Glasserman [65] seeks to solve the full optimal stopping problem and estimate
the genuine value of an American option. And whereas parametric approxi-
mations rely on insight into the form of a good stopping rule, the method of
this section assumes little more than the ability to simulate paths of the un-
derlying Markov chain. With only minimal conditions, the method produces
two consistent estimators, one biased high and one biased low, and both con-
verging to the true value. This combination makes it possible to measure and
control error as the computational effort increases.

The main drawback of the random tree method is that its computational
requirements grow exponentially in the number of exercise dates m, so the
method is applicable only when m is small — not more than about 5, say.
This substantially limits the scope of the method. Nevertheless, for problems
with small m it is very effective, and it also serves to illustrate a theme of this
chapter — managing sources of high and low bias.

Before discussing the details of the method, we explain how a combina-
tion of two biased estimators can be nearly as effective as a single unbiased
estimator. Suppose, then, that V̂n(b) and v̂n(b) are each sample means of n
independent replications, for each value of a simulation parameter b. Suppose
that as estimators of some V0 they are biased high and low, respectively, in
the sense that

E[V̂n(b)] ≥ V0 ≥ E[v̂n(b)]. (8.16)

Suppose that, for some halfwidth Hn(b),

V̂n(b) ± Hn(b)

is a valid 95% confidence interval for E[V̂n(b)] in the sense that the interval
contains this point with 95% probability; and suppose that

v̂n(b) ± Ln(b)

is similarly a valid 95% confidence interval for E[v̂n(b)]. Then by taking the
lower confidence limit of the low estimator and the upper confidence interval
of the high estimator, we get an interval(

v̂n(b) − Ln(b), V̂n(b) + Hn(b)
)

(8.17)

containing the unknown value V0 with probability at least 90% (at least 95%
if V̂n(b) and v̂n(b) are symmetric about their means). Thus, we can produce a
valid (though potentially very conservative) confidence interval by combining
the two estimators; see Figure 8.2. In our application of this idea to the random
tree method, the inequalities in (8.16) become equalities as b → ∞ and the
interval halfwidths Hn(b) and Ln(b) shrink to zero as n → ∞. The interval
in (8.17) can thus be made to shrink to the point V0 in the limit as the
computational effort grows.
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Fig. 8.2. Combining and high and low estimators to form a confidence interval.

8.3.1 High Estimator

As its name suggests, the random tree method is based on simulating a tree of
paths of the underlying Markov chain X0, X1, . . . , Xm. Fix a branching para-
meter b ≥ 2. From the initial state X0, simulate b independent successor states
X1

1 , . . . , Xb
1 all having the law of X1. From each X i

1, simulate b independent
successors X i1

2 , . . . , X ib
2 from the conditional law of X2 given X1 = X i

1. From
each X i1i2

2 , generate b successors X i1i21
3 , . . . , X i1i2b

3 , and so on. Figure 8.3
shows an example with m = 2 and b = 3. At the mth time step there are bm

nodes, and this is the source of the exponential growth in the computational
cost of the method.

We denote a generic node in the tree at time step i by Xj1j2···ji

i . The
superscript indicates that this node is reached by following the j1th branch
out of X0, the j2th branch out of the next node, and so on. Although it is not
essential that the branching parameter remain fixed across time steps, this is
a convenient simplification in discussing the method.

It should be noted that the random tree construction differs from what is
sometimes called a “nonrecombining” tree in that successor nodes are sampled
randomly. In a more standard nonrecombining tree, the placement of the nodes
is deterministic, as it is in a binomial lattice; see, for example, Heath et al.
[173].

From the random tree we define high and low estimators at each node by
backward induction. We use the formulation in (8.6)–(8.7). Thus, hi is the
discounted payoff function at the ith exercise date, and the discounted option
value satisfies Vm ≡ hm,

Vi(x) = max{hi(x), E[Vi+1(Xi+1)|Xi = x]}, (8.18)

i = 0, . . . , m − 1.
Write V̂ j1···ji

i for the value of the high estimator at node Xj1···ji

i . At the
terminal nodes we set

V̂ j1···jm
m = hm(Xj1···jm

m ). (8.19)

Working backward, we then set

V̂ j1···ji

i = max

hi(X
j1···ji

i ),
1
b

b∑
j=1

V̂ j1···jij
i+1

 . (8.20)
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Fig. 8.3. Illustration of random tree and high estimator for a call option with a
single underlying asset and a strike price of 100. Labels at each node show the level
of the underlying asset and (in brackets) the value of the high estimator.

In other words, the high estimator is simply the result of applying ordinary
dynamic programming to the random tree, assigning equal weight to each
branch. Its calculation is illustrated in Figure 8.3 with hi(x) = (x − 100)+.

A simple induction argument demonstrates that the high estimator is in-
deed biased high at every node, in the sense that

E[V̂ j1···ji

i |Xj1···ji

i ] ≥ Vi(X
j1···ji

i ). (8.21)

First observe that this holds (with equality) at every terminal node because
of (8.19) and the fact that Vm = hm. Now we show that if (8.21) holds at i+1
it holds at i. From (8.20) we get

E[V̂ j1···ji

i |Xj1···ji

i ] = E

max

hi(X
j1···ji

i ),
1
b

b∑
j=1

V̂ j1···jij
i+1

 |Xj1···ji

i


≥ max

hi(X
j1···ji

i ), E

1
b

b∑
j=1

V̂ j1···jij
i+1 |Xj1···ji

i


= max

{
hi(X

j1···ji

i ), E
[
V̂ j1···ji1

i+1 |Xj1···ji

i

]}
≥ max

{
hi(X

j1···ji

i ), E
[
Vi+1(X

j1···ji1
i+1 )|Xj1···ji

i

]}
= Vi(X

j1···ji

i ).

The first equality uses (8.20), the next step applies Jensen’s inequality, the
third step uses the fact that the b successors of each node are conditionally
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i.i.d., the fourth step applies the induction hypothesis at i + 1, and the last
step follows from (8.18).

A similar induction argument establishes that under modest moment con-
ditions, each V̂ j1···ji

i converges in probability (and in norm) as b → ∞ to
the true value Vi(X

j1···ji

i ), given Xj1···ji

i . This holds trivially at all terminal
nodes because V̂m is initialized to hm = Vm. The continuation value at the
(m− 1)th step is the average of i.i.d. replications and converges by the law of
large numbers. This convergence extends to the option value — the greater
of the immediate exercise and continuation values — by the continuity of the
max operation. A key step in the induction is the “contraction” property

|max(a, c1) − max(a, c2)| ≤ |c1 − c2|, (8.22)

which, together with (8.18) and (8.20), gives

|V̂ j1···ji

i − Vi(X
j1···ji

i )| ≤ 1
b

b∑
j=1

|V̂ j1···jij
i+1 − E[Vi+1(X

j1···ji1
i+1 )|Xj1···ji

i ]|.

This allows us to deduce convergence at step i from convergence at step i+1.
For details, see Theorem 1 of Broadie and Glasserman [65].

We are primarily interested in V̂0, the estimate of the option price at the
current time and state. Theorem 1 of [65] shows that if E[h2

i (Xi)] is finite for
all i = 1, . . . , m, then V̂0 converges in probability to the true value V0(X0);
moreover, it is asymptotically unbiased in the sense that E[V̂0] → V0(X0).

These properties hold as the branching parameter b increases to infinity. A
simple way to compute a confidence interval fixes a value of b and replicates
the random tree n times. (This is equivalent to generating nb branches out
of X0 and b branches out of all subsequent nodes.) Let V̄0(n, b) denote the
sample mean of the n replications of V̂0 generated this way, and let sV (n, b)
denote their sample standard deviation. Then with zδ/2 denoting the 1− δ/2
quantile of the normal distribution,

V̄0(n, b) ± zδ/2
sV (n, b)√

n

provides an asymptotically valid (for large n) 1 − δ confidence interval for
E[V̂0]. This is half of what we need for the interval in (8.17). The next section
provides the other half.

8.3.2 Low Estimator

The high bias of the high estimator may be attributed to its use of the same
information in deciding whether to exercise as in estimating the continuation
value. This is implicit in the dynamic programming recursion (8.20): the first
term inside the maximum is the immediate-exercise value, the second term is
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the estimated continuation value, and in choosing the maximum the estimator
is deciding whether to exercise or continue. But the estimated continuation
value is based on successor nodes, so the estimator is unfairly peeking into
the future in making its decision.

To remove this source of bias, we need to separate the exercise decision
from the value received upon continuation. This is the key to removing high
bias in all Monte Carlo methods for pricing American options. (See, for ex-
ample, the explanation of Step 3 in Section 8.2.) There are several ways of
accomplishing this in the random tree method.

To simplify the discussion, consider the related problem of estimating

max(a, E[Y ])

from i.i.d. replications Y1, . . . , Yb, for some constant a and random variable Y .
This is a simplified version of the problem we face at each node in the tree, with
a corresponding to the immediate exercise value and E[Y ] the continuation
value. The estimator max(a, Ȳ ), with Ȳ the sample mean of the Yi, is biased
high:

E[max(a, Ȳ )] ≥ max(a, E[Ȳ ]) = max(a, E[Y ]).

This corresponds to the high estimator of the previous section.
Suppose that we instead separate the Yi into two disjoint subsets and

calculate their sample means Ȳ1 and Ȳ2; these are independent of each other.
Now set

v̂ =
{

a, if Ȳ1 ≤ a;
Ȳ2, otherwise.

This estimator uses Ȳ1 to decide whether to “exercise,” and if it decides not
to, it uses Ȳ2 to estimate the “continuation” value. Its expectation is

E[v̂] = P (Ȳ1 ≤ a)a + (1 − P (Ȳ1 ≤ a))E[Y ] ≤ max(a, E[Y ]), (8.23)

so the estimator is indeed biased low. If a = E[Y ], then P (Ȳ1 ≤ a) → 1{E[Y ] <
a} and E[v̂] → max(a, E[Y ]) as the number of replications used to calculate
Ȳ1 increases. If the number of replications used to calculate Ȳ2 also increases
then v̂ → max(a, E[Y ]). Thus, in this simplified setting we can easily produce
a consistent estimator that is biased low.

Broadie and Glasserman [65] use a slightly different estimator. They use all
but one of the Yi to calculate Ȳ1 and use the remaining one for Ȳ2; they then
average the result over all b ways of leaving out one of the Yi. In more detail,
the estimator is defined as follows. At all terminal nodes, set the estimator
equal to the payoff at that node:

v̂j1j2···jm
m = hm(Xj1j2···jm

m ).

At node j1j2 · · · ji at time step i, and for each k = 1, . . . , b, set

v̂j1j2···ji

ik =

{
hi(X

j1j2···ji

i ) if 1
b−1

∑b
j=1,j �=k v̂j1j2···jij

i+1 ≤ hi(X
j1j2···ji

i );
v̂j1j2···jik

i+1 otherwise;
(8.24)
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then set

v̂j1j2···ji

i =
1
b

b∑
k=1

v̂j1j2···ji

ik . (8.25)

The estimator of the option price at the current time and state is v̂0.
The calculation of the low estimator is illustrated in Figure 8.4. Consider

the third node at the first exercise date. When we leave out the first successor
we estimate a continuation value of (4 + 0)/2 = 2 so we exercise and get 5. If
we leave out the second successor node we continue (because 7 > 5) and get
4. In the third case we continue and get 0. Averaging the three payoffs 5, 4,
and 0 yields a low estimate of 3 at that node.
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Fig. 8.4. Labels at each node show the level of the underlying asset and the value
of the low estimator in brackets.

An induction argument similar to the one used for the high estimator in
Section 8.3.1 and using the observation in (8.23) verifies that v̂0 is indeed
biased low. Theorem 3 of Broadie and Glasserman [65] establishes the conver-
gence in probability and in norm of v̂0 to the true value V0(X0).

From n independent replications of the random tree we can calculate the
sample mean v̄0(n, b) and sample standard deviation sv(n, b) of n independent
replications of the low estimator. We can then form a 1−δ confidence interval
for E[v̂0],

v̄0(n, b) ± zδ/2
sv(n, b)√

n
,

just as we did for the high estimator. Taking the lower limit for the low
estimator and the upper limit for the high estimator, we get the interval
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v̄0(n, b) − zδ/2

sv(n, b)√
n

, V̄0(n, b) + zδ/2
sV (n, b)√

n

)
.

For this interval to fail to include the true option value V0(X0), we must have

E[v̂0] ≤ v̄0(n, b) − zδ/2
sv(n, b)√

n

or

E[V̂0] ≥ V̄0(n, b) + zδ/2
sV (n, b)√

n
.

Each of these events has probability δ/2 (for large n), so their union can
have probability at most δ. We thus have a conservative confidence interval
for V0(X0). Moreover, because E[V̂0] and E[v̂0] both approach V0(X0) as b in-
creases, we can make the confidence interval as tight as we want by increasing
n and b. This simple technique for error control is a convenient feature of the
method.

8.3.3 Implementation

A naive implementation of the random tree method generates all mb nodes
(over m steps with branching parameter b) and then computes high and low
estimators recursively as described in Sections 8.3.1 and 8.3.2. By noting that
the high and low values at each node depend only on the subtree rooted at that
node, we can dramatically reduce the storage requirements of the method. It
is never necessary to store more than mb + 1 nodes at a time.

Depth-First Processing

The key to this reduction lies in depth-first generation and processing of the
tree. Recall that we may label nodes in the tree through a string of indices
j1j2 · · · ji, each taking values in the set {1, . . . , b}. The string j1j2 · · · ji labels
the node reached by following the j1th branch out of the root node, then
the j2th branch out of the node reached at step 1, and so on. In the depth-
first algorithm, we follow a single branch at a time rather than generating all
branches simultaneously.

Consider the case of a four-step tree. We begin by generating the following
nodes:

1, 11, 111, 1111.

At this point we have reached the terminal step and can go no deeper, so we
generate nodes

1112, . . . , 111b.

From these values, we can calculate high and low estimators at node 111. We
may now discard all b successors of node 111. Next we generate 112 and its
successors
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1121, 1122, . . . , 112b.

We discard these after using them to calculate high and low estimators at
112. We repeat the process to calculate the estimators at nodes 113, . . . , 11b.
These in turn can be discarded after we use them to calculate high and low
estimators at node 11. We repeat the process to compute estimators at nodes
12, . . . , 1b to get estimators at node 1, and then to get estimators at nodes
2, . . . , b, and finally at the root node.

Four stages of this procedure are illustrated in a tree with m = 4 and
b = 3 in Figure 8.5. The dashed lines indicate branches previously generated,
processed, and discarded. Detailed pseudo-code for implementing this method
is provided in Appendix C of Broadie and Glasserman [65].

Fig. 8.5. Depth-first processing of tree. Solid circles indicate nodes currently in
memory; hollow circles indicate nodes previously processed and no longer stored.

The maximal storage requirements of this method are attained in calcu-
lating the value at node b, at which point we are storing the values at nodes
1, . . . , b− 1. Just before determining the value at b, we need to know the val-
ues at b1, . . . , bb. But just before determining the value at bb we need to store
b1, . . . , bb− 1 and bb1, . . . , bbb. And just before processing bbb we also need to
store bbb1, . . . , bbbb. We thus need to store up to b nodes at every time step
plus the root node, leading to a total of mb + 1 nodes.

Pruning and Variance Reduction

Broadie et al. [69] investigate potential enhancements of the random tree
method, including the use of variance reduction techniques in combination
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with a pruning technique for reducing the computational burden of the
method. Their pruning technique is based on the observation that branch-
ing is needed only where the optimal exercise decision is unknown. If we know
it is optimal not to exercise at a node, than it would suffice to generate a sin-
gle branch out of that node. When we work backward through the tree, the
value we assign to that node for both the high and low estimators is simply
the (discounted) value of the corresponding estimator at the unique successor
node. This is what we do implicitly in an ordinary simulation to price a Eu-
ropean option, where we never have the choice to exercise early. By pruning
branches, we reduce the time needed to calculate estimators from a tree.

But how can we determine that the optimal decision at a node is to con-
tinue? Broadie et al. [69] suggest the use of bounds. Suppose, as we have in
Section 8.1, that the payoff functions hi, i = 1, . . . , m, are nonnegative. Then
at any node at which the payoff from immediate exercise is 0, it is optimal to
continue. This simple rule is often applicable at a large number of nodes.

European prices, when computable, can also be used as bounds. Consider
an arbitrary node Xi = Xj1···ji

i at the ith exercise date. Consider a European
option expiring at tm with discounted payoff function hm. Suppose the value
of this European option at node Xi is given by g(Xi). This, then, is a lower
bound on the value of the American option. If g(Xi) exceeds hi(Xi), then the
value of the American option must also exceed the immediate exercise value
hi(Xi) and it is therefore optimal to continue. The same argument applies if
the European option expires at one of the intermediate dates ti+1, . . . , tm−1.

When European counterparts of American options can be priced quickly
(using either a formula or a deterministic numerical method), the last step
of the tree can be completely pruned. At the (m − 1)th exercise date, the
value of the American option is the maximum of the immediate exercise value
and the value of a European option expiring at tm. If the European value is
easily computable, there is no need to simulate the tree from tm−1 to tm. This
reduces the size of the tree by a factor of b.

Broadie et al. [69] also discuss the use of antithetic variates and Latin
hypercube sampling in generating branches. In calculating the low estima-
tor with antithetics, they apply the steps in (8.24)–(8.25) to averages over
antithetic pairs. To apply Latin hypercube sampling, they generate two inde-
pendent Latin hypercube samples at each node, compute low estimators from
each set, and then combine the two by applying (8.24)–(8.25) with b = 2 to
the two low estimators.

Figure 8.6, based on results reported in Broadie et al. [69], illustrates
the performance of the method and the enhancements. The results displayed
are for an American option on the maximum of two underlying assets. This
allows comparison with a value computed from a two-dimensional binomial
lattice. The assets follow a bivariate geometric Brownian motion with a 0.30
correlation parameter, 20% volatilities, 10% dividend yields, and initial values
(90, 90), (100, 100), or (110, 110). The risk-free rate is 5%. The option has a
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strike price of 100 and can be exercised at time 0, 1, 2, or 3, with the time
between exercise opportunities equal to one year.
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Fig. 8.6. Relative error in price estimates for an American option on the maximum
of two underlying assets. Each interval shows high and low estimates and their
midpoint. Shorter intervals use pruning and antithetic branching.

The results displayed in Figure 8.6 apply to the initial values 90, 100, and
110 of the initial assets, for which the option prices are 7.234, 12.412, and
19.059. The vertical scale is measured in percent deviations from these values.
Within each of the three cases, the second confidence interval is computed
using pruning, antithetic branching, and a European option as a control vari-
ate, whereas the first confidence interval uses only the control variate. Within
each interval, the two squares indicate the high and low estimators and the
diamond indicates their midpoint. The use of the midpoint as point estimator
is somewhat arbitrary but effective. The confidence intervals are based on a
nominal coverage of 90% (zδ/2 = 1.645), but because these are conservative
intervals numerical tests indicate that the actual coverage is much higher.

The results displayed are based on branching parameter b = 50. The num-
ber of replications used to estimate standard errors is set so that computing
times are the same for all cases. Because pruning can substantially decrease
the computing time required per tree, it allows a much larger number of repli-
cations. The first interval in each case uses about one hundred replications
whereas the second interval in each case uses several thousand. The results
indicate that for problems of this size the random tree method can readily
produce estimates accurate to within about 1%, and that the proposed en-
hancements can be quite effective in increasing precision.

More extensive numerical tests are reported in [65] and [69], including
tests on problems with five underlying assets for which no “true” value is
available. The ability to compute a confidence interval is particularly valuable
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in such settings. These results support the view that the random tree method
is an attractive technique for problems with a high-dimensional state vector
and a small number of exercise opportunities. Its ability to produce a reliable
interval estimate sets it apart from heuristic approximations.

8.4 State-Space Partitioning

State-space partitioning (called stratification by Barraquand and Martineau
[38], quantization by Bally and Pagès [33]) uses a finite-state dynamic pro-
gram to approximate the value of an American option. Whereas the dynamic
program in the random tree method is based on randomly sampled states, in
this method the states are defined in advance based on a partitioning of the
state space of the underlying Markov chain X0, X1, . . . , Xm.

We continue to use the notation of Section 8.1 and the dynamic program-
ming formulation in (8.6)–(8.7). For each exercise date ti, i = 1, . . . , m, let
Ai1, . . . , Aibi be a partition of the state space of Xi into bi subsets. For the
initial time 0, take b0 = 1 and A01 = {X0}. Define transition probabilities

pi
jk = P (Xi+1 ∈ Ai+1,k|Xi ∈ Aij),

for all j = 1, . . . , bi, k = 1, . . . , bi+1, and i = 0, . . . , m − 1. (Take this to be
zero if P (Xi ∈ Aij) = 0.) These are not transition probabilities for X in the
Markovian sense (the probability that Xi+1 will fall in Ai+1,k given Xi ∈ Aij

will in general depend on past values of the chain), but we may nevertheless
use them to define an approximating dynamic program.

For each i = 1, . . . , m and j = 1, . . . , bi, define

hij = E[hi(Xi)|Xi ∈ Aij ],

taking this to be zero if P (Xi ∈ Aij) = 0. Now consider the backward induc-
tion

Vij = max{hij ,

bi+1∑
k=1

pi
jkVi+1,k}, (8.26)

i = 0, 1, . . . , m − 1, j = 1, . . . , bi, initialized with Vmj ≡ hmj. This method
takes the value V01 calculated through (8.26) as an approximation to V0(X0),
the value in the original dynamic program.

Implementation of this method requires calculation of the transition prob-
abilities pi

jk and averaged payoffs hij , and this is where simulation is useful.
We simulate a reasonably large number of replications of the Markov chain
X0, X1, . . . , Xm and estimate these quantities from the simulation. In more
detail, we record N i

jk, the number of paths that move from Aij to Ai+1,k, for
all i = 0, . . . , m − 1, j = 1, . . . , bi, and k = 1, . . . , bi+1. We then calculate the
estimates

p̂i
jk = N i

jk/(N i
j1 + · · · + N i

jbi
),
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taking the ratio to be zero whenever the denominator is zero. Similarly, we
calculate ĥij as the average value of h(Xi) over those replications in which
Xi ∈ Aij .

Using these estimates of the transition probabilities and average payoffs,
we can calculate estimates V̂ij of the approximating value function. We set
V̂mj = ĥmj for all j = 1, . . . , bm, and then recursively define

V̂ij = max{ĥij ,

bi+1∑
k=1

p̂i
jkV̂i+1,k},

for j = 1, . . . , bi, i = 0, 1, . . . , m − 1. Our estimate of the approximate option
value V01 is then V̂01.

By the strong law of large numbers, each p̂i
jk and ĥij converges with prob-

ability 1 to the corresponding pi
jk and hij as the number of replications in-

creases. Moreover, the mapping from the transition probabilities and average
payoffs to the value functions is continuous (because max, addition, and mul-
tiplication are continuous), so each V̂ij converges to Vij with probability 1 as
well. The simulation procedure thus gives a strongly consistent estimator of
V01.

This, however, says nothing about the relation between the approximation
V01 and the true option value V0(X0). For any finite number of replications,
the induction argument used to prove (8.21) in the random tree method shows
that

E[V̂01] ≥ V01,

but the sign of the error V01 − V0(X0) is unpredictable.
By adding a second simulation phase to the procedure, we can produce

an estimate that is guaranteed to be biased low, relative to the true value
V0(X0). The idea — similar to one we used in Section 8.2 — is to turn the
approximation Vij into an implementable stopping policy. The option value
thus produced is not just an ad hoc approximation; it is a value achievable by
the option holder by following a well-specified exercise policy.

For the ith state Xi of the underlying Markov chain, define Ji to be the
index of the subset containing Xi:

Xi ∈ AiJi .

To each path X0, X1, . . . , Xm, associate a stopping time

τ = min{i : hi(Xi) ≥ ViJi},

defining τ to be m if the inequality is never satisfied. This is the stopping rule
defined by the approximate value function Vij . Because no stopping rule can
be better than an optimal stopping rule, we have

E[hτ (Xτ )] ≤ V0(X0),
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which says that hτ (Xτ ) is biased low.
If the Vij were known, we could simulate replications of the Markov chain,

record hτ (Xτ ) on each path, and average over paths. This would produce
a consistent estimator of E[hτ (Xτ )]. The quantity E[hτ (Xτ )] does not entail
any approximations not already present in the Vij , and it has the advantage
of being an achievable value: at each exercise date, the holder of the option
could observe Xi and compare hi(Xi) with ViJi to determine whether or not
to stop.

Similar comments apply even if we rely on the estimates V̂ij rather than
true values Vij . Define τ̂ by replacing ViJi with V̂iJi in the definition of τ .
This, too, is an implementable and suboptimal stopping rule so

E[hτ̂ (Xτ̂ )|V̂ij , j = 1, . . . , bi, i = 1, . . . , m] ≤ V0(X0),

and the inequality then also holds for the unconditional expectation. The
conditional expectation on the left is the quantity to which the procedure
converges as the number of second-phase replications increases.

The main challenge in using any variant of this approach lies in the se-
lection of the state-space partitions. Bally and Pagès [33] discuss criteria for
“optimal” partitions and propose simulation-based procedures for their con-
struction. These appear to be computationally demanding. The effort might
be justified if a partition, once constructed, could be applied to price many
different American options. This, however, would not lend itself to tailoring
the partition to the form of the payoff.

It is natural to expect that as the resolution of the partitions increases, the
option value produced by this approach converges to the true value; see The-
orem 1 of Bally and Pagès [33] for a precise statement. But methods that rely
on refining a priori partitions are not well-suited to high-dimensional state
spaces, just as deterministic numerical integration procedures are not well-
suited to high-dimensional problems. In our discussion of stratified sampling
we noted (cf. Example 4.3.4) that the number of strata required to maintain
the same resolution along all dimensions grows exponentially with the num-
ber of dimensions. In the absence of problem-specific information, state-space
partitioning exhibits similar dependence on dimension.

8.5 Stochastic Mesh Methods

8.5.1 General Framework

Like the random tree algorithm of Section 8.3, the stochastic mesh method
solves a randomly sampled dynamic programming problem to approximate
the price of an American option. The key distinction is that in valuing the
option at a node at time step i, the mesh uses values from all nodes at time
step i + 1, not just those that are successors of the current node. This in fact
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is why it produces a mesh rather than a tree. It keeps the number of nodes at
each time step fixed, avoiding the exponential growth characteristic of a tree.

A general construction is illustrated in Figure 8.7. In the first phase, we
simulate independent paths of the Markov chain X0, X1, . . . , Xm; in the sec-
ond phase, we “forget” which node at time i generated which node at i + 1
and interconnect all nodes at consecutive time steps for the backward induc-
tion. We will consider other mechanisms for generating the nodes at each time
step, but this is the most important one. We refer to it as the independent-path
construction.

…

…

ijX

kiX ,1+

…

…
ijX

kiX ,1+

i

jkW

Fig. 8.7. Construction of stochastic mesh from independent paths. Nodes are gen-
erated by independent paths (top); weight W i

jk is then assigned to a transition from
the jth node at step i to the kth node at step i + 1 (bottom).

For the pricing problem, we use the dynamic programming formulation
and notation of (8.6)–(8.7). In the mesh, we use Xij to denote the jth node at
the ith exercise date, for i = 1, . . . , m and j = 1, . . . , b. We use V̂ij to denote
the estimated value at this node, computed as follows. At the terminal nodes
we set V̂mj = hm(Xmj); we then work backward recursively by defining

V̂ij = max

{
hi(Xij),

1
b

b∑
k=1

W i
jk V̂i+1,k

}
(8.27)

for some set of weights W i
jk. At the root node, we set
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V̂0 =
1
b

b∑
k=1

V̂1k, (8.28)

or the maximum of this and h0(X0) if we want to allow exercise at time 0.
A fundamental distinction between (8.27) and the superficially similar re-

cursion in (8.26) is that (8.27) evolves over randomly sampled nodes, whereas
(8.26) evolves over fixed subsets of the state space.

As we have already seen several algorithms with a structure similar to
(8.27), the main issue we need to address is the selection of the weights W i

jk .
A closely related issue is the sampling of the nodes Xij . The independent-path
construction in Figure 8.7 provides one mechanism but by no means the only
one. We could, for example, generate b nodes at each time step i by drawing
independent samples from the marginal distribution of Xi. Different rules for
sampling the nodes and selecting the weights correspond to different versions
of the method.

The formulation of the stochastic mesh method we give here is a bit more
general than the one originally introduced by Broadie and Glasserman [66].
The advantage of a more general formulation is that it allows a unified treat-
ment of related techniques, clarifying which features distinguish the methods
and which features are shared. We postpone discussion of the detailed con-
struction of weights — the central issue — to Sections 8.5.2 and 8.6.2 and
proceed with the general formulation.

Conditions on the Mesh

We first impose two conditions on the mesh construction and weights that
are unlikely to exclude any cases of practical interest, then add a third, more
restrictive condition. To state these, let

Xi = (Xi1, . . . , Xib)

denote the “mesh state” at step i consisting of all nodes at step i, for
i = 1, . . . , m, and let X0 = X0. We assume that the mesh construction is
Markovian in the following sense:

(M1) {X0, . . . ,Xi−1} and {Xi+1, . . . ,Xm} are independent given Xi, for all
i = 1, . . . , m − 1.

This condition is satisfied by the independent-path construction, because
in that case {X1j, . . . , Xmj}, j = 1, . . . , b, are independent copies of the
Markov chain. It is also satisfied if nodes at different exercise dates are gen-
erated independently of each other. We also require

(M2) Each weight W i
jk is a deterministic function of Xi and Xi+1.

This includes as a special case the possibility that W i
jk is a function only

of Xij and Xi+1,k.
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Recall from (8.11) that Ci(x) denotes the continuation value in state x
at time i. Our next condition restricts the choice of weights to those that
correctly estimate continuation values, on average:

(M3) For all i = 1, . . . , m − 1 and all j = 1, . . . , b,

1
b

b∑
k=1

E
[
W i

jkVi+1(Xi+1,k)|Xi

]
= Ci(Xij).

This says that if we knew the true option values at time i + 1, the expected
weighted average calculated at a node at time i would be the true continuation
value.

High Bias

As a first implication of (M1)–(M3), we show that these conditions imply that
the mesh estimator V̂0 defined by (8.27)–(8.28) is biased high. The argument
is similar to the one we used for the random tree algorithm in Section 8.3.1
but, because of the mesh weights, sufficiently different to merit presentation.

We show that if, for some i,

E[V̂i+1,j |Xi] ≥ Vi+1(Xi+1,j), j = 1, . . . , b, (8.29)

then the same holds for all smaller i. Once this is established, noting that
(8.29) holds (with equality) at i = m − 1 completes the induction argument.

Using (8.27) and Jensen’s inequality, we get

E[V̂ij |Xi] ≥ max

{
hi(Xij),

1
b

b∑
k=1

E[W i
jkV̂i+1,k|Xi]

}
. (8.30)

We examine the conditional expectations on the right. By further conditioning
on Xi+1 and using (M2), we get

E[W i
jkV̂i+1,k|Xi,Xi+1] = W i

jkE[V̂i+1,k|Xi,Xi+1]

= W i
jkE[V̂i+1,k|Xi+1], (8.31)

the second equality following from (M1) and the definition of V̂i+1,k through
the backward induction in (8.27). Applying the induction hypothesis (8.29)
to (8.31), we get

E[W i
jkV̂i+1,k|Xi,Xi+1] ≥ W i

jkVi+1(Xi+1,k),

from which follows

1
b

b∑
k=1

E[W i
jkV̂i+1,k|Xi] ≥

1
b

b∑
k=1

E[W i
jkVi+1(Xi+1,k)|Xi]

= Ci(Xij)
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using (M3). Applying this inequality to (8.30), we conclude that

E[V̂ij |Xi] ≥ max {hi(Xij), Ci(Xij)} = Vi(Xij),

which is what we needed to show.
This induction argument offers some insight into the types of conditions

needed to ensure convergence of the mesh values V̂ij to the true values Vi(Xi),
given Xij . Applying the contraction property (8.22) and (M3) to the mesh
recursion (8.27) yields the bound

|V̂ij − Vi(Xij)| ≤
∣∣∣∣∣1b

b∑
k=1

W i
jk V̂i+1,k − E[W i

jkVi+1(Xi+1,k)|Xi]

∣∣∣∣∣
≤
∣∣∣∣∣1b

b∑
k=1

W i
jkVi+1(Xi+1,k) − E[W i

jkVi+1(Xi+1,k)|Xi]

∣∣∣∣∣
+

∣∣∣∣∣1b
b∑

k=1

W i
jk[V̂i+1,k − Vi+1(Xi+1,k)]

∣∣∣∣∣ .
To require that the first term on the right side of the last inequality vanish is
to require that the summands satisfy a law of large numbers. The second term
requires a sufficiently strong induction hypothesis on the convergence of the
mesh estimate at time i + 1. Because V̂mj = Vm(Xmj) at all terminal nodes
for all b, it is natural to proceed backward by induction.

Broadie and Glasserman [66] use these observations to prove convergence
of the mesh estimator when X1, . . . ,Xm are independent of each other,
Xi1, Xi2, . . . are i.i.d. for each i, and each weight W i

jk is a function only of Xij

and Xi+1,k. The independence assumptions facilitate the application of laws
of large numbers. In the more general cases encompassed by conditions (M1)–
(M2), the problem is complicated by the dependence between nodes and the
generality of the weights. Avramidis and Matzinger [29] derive a probabilis-
tic upper bound on the error in the mesh estimator for a type of dependence
structure that fits within conditions (M1)–(M2). They use this bound to prove
convergence as b → ∞.

Rust [314] proves convergence of a related method for a general class of
dynamic programming problems, not specifically focused on American options
or optimal stopping. In his method, the {Xij, j = 1, . . . , b} are independent
and uniformly distributed over a compact set, and the same nodes are used
for all i.

Low Estimator

Broadie and Glasserman [66] supplement the high-biased mesh estimator with
a low-biased estimator. Their low estimator uses a stopping rule defined by
the mesh.
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To define the stopping rule, we need to extend the weights W i
jk from

Xi1, . . . , Xib to all points in the state space at time i. The details of how we
do this will be evident once we consider specific choices of weights; for now,
let us simply suppose that we have a function W i

k(·) on the state space at time
i. We interpret W i

k(x) as the weight from state x at time i to node Xi+1,k.
Through this weight function, the mesh defines a continuation value

throughout the state space, and not just at the nodes in the mesh. The con-
tinuation value at state x at time i, i = 1, . . . , m − 1, is given by

Ĉi(x) =
1
b

b∑
k=1

W i
k(x)V̂i+1,k . (8.32)

If we impose the reasonable requirement that W i
k(Xij) = W i

jk (so that the
weight function does in fact extend the original weights), then Ĉi(Xij) coin-
cides with the continuation value estimated by the mesh at node Xij , and Ĉi

interpolates from the original nodes to the rest of the state space. Set Ĉm ≡ 0.
With the mesh held fixed, we now simulate a path X0, X1, . . . , Xm of the

underlying Markov chain, independent of the paths used to construct the
mesh. Define a stopping time

τ̂ = min{i : hi(Xi) ≥ Ĉi(Xi)}; (8.33)

this is the first time the immediate exercise value is as great as the estimated
continuation value. The low estimator for a single path is

v̂ = hτ̂ (Xτ̂ ), (8.34)

the payoff from stopping at τ̂ .
That this is indeed biased low follows from the observation that no policy

can be better than an optimal policy. Conditioning on the mesh fixes the
stopping rule and yields

E[v̂|X1, . . . ,Xm] ≤ V0(X0).

The same then applies to the unconditional expectation.
By simulating multiple paths independently, with each following the mesh-

defined stopping rule, we can calculate an average low estimator conditional on
the mesh. We can then generate independent copies of the mesh and calculate
high and low estimators from each copy. From these independent replications
of the high and low estimators we can calculate sample means and standard
deviations to form a confidence interval for each estimator. The two intervals
can then be combined as in Figure 8.2. Assuming independently generated
nodes in the mesh, Broadie and Glasserman [66] give conditions under which
the low estimator is asymptotically unbiased, meaning that E[v̂] → V0(X0)
as b → ∞ in the mesh. When this holds, the combined confidence interval
shrinks to the point V0(X0) if we let b → ∞ and then n → ∞.
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An Interleaving Estimator

At several points in this chapter we have noted two sources of bias affecting
simulation estimates of American option prices: high bias resulting (through
Jensen’s inequality) from applying backward induction over a finite set of
paths, and low bias resulting from suboptimal exercise. The development of
high and low estimators in this section keeps the two sources of bias separate,
first applying backward induction and then applying a mesh-defined stopping
rule. But blending the two techniques has the potential to produce a more
accurate value by not compounding each source of bias. We present one such
combination from the method of Longstaff and Schwartz [241], though they
present it in a different setting.

Suppose value estimates V̂i+1,j , . . . , V̂mj , j = 1, . . . , b, have already been
determined for steps i + 1, . . . , m, starting with the initialization V̂mj =
hm(Xmj). These determine estimated continuation values:

Ĉ	j =
1
b

b∑
k=1

W 	
jkV̂	+1,k,

� = i, . . . , m − 1, Ĉm ≡ 0. Extending the weights throughout the state space
as before then defines continuation values Ĉ	(x) for every state x at time �.

To assign a value to a node Xij at step i, we consider two cases. If the
immediate exercise value hi(Xij) is at least as great as the estimated contin-
uation value Ĉij , then we exercise at node Xij and thus set

Vij = hi(Xij);

this coincides with the high estimator (8.27). If, however, hi(Xij) < Ĉij , then
rather than assign the high value Ĉij to the current node (as (8.27) does),
we simulate a path of the Markov chain X̃i, X̃i+1, . . . , X̃m starting from the
current node X̃i = Xij . To this path we apply the stopping rule (8.33) defined
by the continuation values at i + 1, . . . , m − 1. We record the payoff received
at exercise and assign this as the value at Vij , just as we would using the low
estimator starting from node Xij . (In the method of Longstaff and Schwartz
[241], the path X̃i, X̃i+1, . . . , X̃m is just the original path Xij , Xi+1,j , . . . , Xmj

passing through Xij , but one could alternatively simulate an independent path
from Xij .)

To be more precise, we need to define a new stopping time for each i and
apply it to a path starting from Xij . Thus, for the path X̃i, X̃i+1, . . . , X̃m

starting at X̃i = Xij , define

τ̂i = min{� ∈ {i, i + 1, . . . , m} : h	(X̃	) ≥ Ĉ	(X̃	)}.

Then the two cases for assigning a value to Vij can be combined into the rule

V̂ij = hτ̂i(X̃τ̂i). (8.35)
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This procedure interleaves elements of the high and low estimators, alter-
nating between the two by applying backward induction to estimate a contin-
uation value and then applying a suboptimal stopping rule starting from each
node. This may partly offset the two sources of bias, but a precise comparison
remains open for investigation. If every path X̃i, X̃i+1, . . . , X̃m used in (8.35)
is independent of the original set of paths (given X̃i = Xij), then because
the V̂ij in (8.35) result from stopping rules, these value estimates are biased
low. In practice, using the original mesh path Xij , . . . , Xmj rather than an
independent path will usually also result in a low bias, because in this method
the high bias resulting from Jensen’s inequality tends to be less pronounced
than the low bias resulting from a suboptimal stopping rule.

8.5.2 Likelihood Ratio Weights

In this section and in Section 8.6.2, we take up the question of defining weights
W i

jk that satisfy conditions (M2) and (M3) of Section 8.5.1. The alternatives
we consider differ in their scope and computational requirements.

This section discusses weights defined through likelihood ratios, as pro-
posed by Broadie and Glasserman [66]. Some of the ideas from our discussion
of importance sampling in Section 4.6.1 are relevant here as well. But whereas
the motivation for changing probability measure in importance sampling is
variance reduction, here we use it to correct pricing as we move backward
through the mesh.

Suppose that the state space of the Markov chain X0, X1, . . . , Xm is �d

and that the chain admits transition densities f1, . . . , fm, meaning that for
x ∈ �d and A ⊆ �d,

P (Xi ∈ A|Xi−1 = x) =
∫

A

fi(x, y) dy, i = 1, . . . , m.

With X0 fixed, g1(·) = f1(X0, ·) is the marginal density of X1, and then by
induction,

gi(y) =
∫

gi−1(x)fi(x, y) dx

gives the marginal density of Xi, i = 2, . . . , m. The optimal continuation value
in state x at time i is

Ci(x) = E[Vi+1(Xi+1)|Xi = x] =
∫

Vi+1(y)fi+1(x, y) dy,

an integral with respect to a transition density. The main purpose of weights
in the mesh is to estimate these continuation values.

Fix a node Xij in the mesh and consider the estimation of the continu-
ation value at that node. To motivate the introduction of likelihood ratios,
we begin with some simplifying assumptions. Suppose that the nodes Xi+1,k,
k = 1, . . . , b, at the next step in the mesh were generated independently of
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each other and of all other nodes in the mesh from some density g. Suppose
also that we know the true option values Vi+1(Xi+1,k) at these downstream
nodes. Averaging over the b nodes at step i + 1 and letting b → ∞ yields

1
b

b∑
k=1

Vi+1(Xi+1,k) →
∫

Vi+1(y)g(y) dy,

which will not in general equal the desired continuation value Ci(Xij). In
particular, if g is the marginal density gi+1 of the Markov chain at time i+1,
then the limit

1
b

b∑
k=1

Vi+1(Xi+1,k) → E[Vi+1(Xi+1)]

is the unconditional expected value at i + 1, whereas what we want is a
conditional expectation.

The purpose of the mesh weights is thus to correct for the fact that the
downstream nodes were sampled from g rather than from the transition den-
sity fi+1(Xij , ·). (In contrast, in the random tree method of Section 8.3 all
successor nodes of a given node are generated from the same transition law
and thus get equal weight.) Suppose we set each weight to be

W i
jk =

fi+1(Xij , Xi+1,k)
g(Xi+1,k)

, (8.36)

the likelihood ratio relating the transition density to the mesh density g. The
pairs (W i

jk, Vi+1(Xi+1,k)), k = 1, . . . , b, are i.i.d. given Xij , so we now get

1
b

b∑
k=1

W i
jkVi+1(Xi+1,k) → Eg[W i

jkVi+1(Xi+1,k)|Xij ]

=
∫

fi+1(Xij , y)
g(y)

Vi+1(y)g(y) dy

=
∫

fi+1(Xij , y)Vi+1(y) dy = Ci(Xij),

which is what we wanted. (We have subscripted the expectation by g to em-
phasize that Xi+1,k has density g.) This is in fact stronger than the require-
ment in (M3), and the weights in (8.36) clearly satisfy (M2).

Likelihood ratios provide the only completely general weights, in the fol-
lowing sense. If W i

jk is a function only of Xij and Xi+1,k, and if

Eg[W i
jkh(Xi+1,k)|Xij ] =

∫
fi+1(Xij , y)h(y) dy (8.37)

for all bounded h : �d → �, then the Radon-Nikodym Theorem (cf. Appen-
dix B.4) implies that W i

jk equals the likelihood ratio in (8.36) with probability



452 8 Pricing American Options

1. Interpret (8.37) as stating that the weights give the correct “price” at node
Xij for payoff h(·) at time i + 1. Uniqueness holds with other sufficiently rich
classes of functions h. This indicates that alternative strategies for selecting
weights must in part rely on restricting the class of admissible functions h,
though the restriction should not exclude the value function Vi+1.

Weights in a Markovian Mesh

We now drop the assumption that nodes in the mesh are generated indepen-
dently and consider more general constructions consistent with the Markovian
condition (M1). Even if we fix the mechanism used to generate the mesh, there
is some flexibility in the choice of likelihood ratio weights that results from
the flexibility in (M2) to allow the weights W i

jk to depend on all nodes at
times i and i + 1. The alternatives we present below satisfy (M1)–(M3).

Consider the independent-path construction of Figure 8.7 based on inde-
pendent paths (X1j , . . . , Xmj), j = 1, . . . , b. For k = j, Xi+1,k is independent
of Xij ; its conditional distribution given Xij is therefore just its unconditional
marginal distribution, which has density gi+1. For k = j, the conditional dis-
tribution is given by the transition density out of Xij , so no weight is needed.
We thus arrive at the weights

W i
jk =

{
fi+1(Xij , Xi+1,k)/gi+1(Xi+1,k), k = j,
1 k = j.

(8.38)

Alternatively, we could use the fact that the pairs (Xi	, Xi+1,	), � =
1, . . . , b, are i.i.d. (in the independent-path construction) with joint density
gi(x)fi+1(x, y). The relevant likelihood ratios now take the form W i

jj = 1 and

W i
jk =

fi+1(Xij , Xi+1,k)
gi(Xik)fi+1(Xik, Xi+1,k)

, k = j. (8.39)

In contrast to (8.38), these weights use information about the node Xik from
which Xi+1,k was generated. A simple calculation shows that each weight in
(8.38) is the conditional expectation given Xi+1,k of the corresponding weight
in (8.39).

Next consider yet another construction of the mesh in which the nodes at
i+1 are generated from the nodes at i as follows. We pick a node Xi	 randomly
and uniformly from the b nodes at time i and generate a successor by sampling
from the transition density fi+1(Xi	, ·) out of Xi	. We repeat the procedure
to generate a total of b nodes at time i + 1, each time drawing randomly and
uniformly from all b nodes at time i. (In other words, we sample b times “with
replacement” from the nodes at time i and generate a successor from each
selected node.) This construction is clearly consistent with the Markovian
condition (M1). Given Xi, the nodes at time i + 1 are i.i.d. with density

1
b

b∑
	=1

fi+1(Xi	, ·), (8.40)
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the average of the transition densities out of the nodes at time i. The corre-
sponding likelihood ratios are

W i
jk =

fi+1(Xij , Xi+1,k)
1
b

∑b
	=1 fi+1(Xi	, Xi+1,k)

. (8.41)

As b → ∞, the average density (8.40) converges to the marginal density
gi+1, so the weights in (8.41) are close to those in (8.39). But the weights in
(8.41) have a property that makes them appealing. If we fix k and sum over
j, we get

1
b

b∑
j=1

W i
jk = 1; (8.42)

the average weight into a node is 1. This property may be surprising. If we
were to interpret the ratios W i

jk/b as transition probabilities, we would expect
the average weight out of a node to sum to 1. Broadie and Glasserman [66]
point out at an attractive feature of the less obvious condition (8.42), which
we now explain.

Implications of the Weight Sum

Consider the pricing of a European option in a mesh. Suppose the option
has (discounted) payoff hm at tm, and to price it in the mesh we use the
recursion (8.27), but always taking the second term inside the max because
early exercise is not permitted. The resulting estimate V̂0 at the root node
can be written as

1
bm

∑
j1,...,jm

m∏
i=2

W i−1
ji−1ji

hm(Xmjm),

the sum ranging over all ji = 1, . . . , b, i = 1, . . . , m. In other words, V̂0 is the
average over all bm paths through the mesh of the payoff per path multiplied
by the product of weights along the arcs of the path. By grouping paths that
terminate at the same node, we can write this as

1
b

b∑
jm=1

hm(Xmjm)

 1
bm−1

∑
j1,...,jm−1

m∏
i=2

W i−1
ji−1ji

 .

If the weights are defined by likelihood ratios, then the factor in parentheses
has expected value 1; this can be verified by induction using the fact that a
likelihood ratio always has expected value 1. Rewriting this factor as

1
b

b∑
jm−1=1

Wm−1
jm−1jm

· 1
b

b∑
jm−2=1

Wm−2
jm−2jm−1

· · · 1
b

b∑
j1=1

W 1
j1j2
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reveals that it is identically 1 if (8.42) holds. Thus, when (8.42) holds, the
mesh estimate of the European option price is simply

1
b

b∑
jm=1

hm(Xmjm),

the average of the terminal payoffs.
This simplification is important because multiplying weights along steps

of a path through the mesh can produce exponentially growing variance. We
encountered this phenomenon in our discussion of importance sampling over
long time horizons; see the discussion surrounding (4.82). The property in
(8.42) thus replaces factors that have exponentially growing variance with the
constant 1. Of course, there is no reason to use a mesh to price a European
option, so this should be taken as indirect evidence that (8.42) is beneficial in
the more interesting case of pricing American options.

We arrived at the weights (8.41) through a construction that generates
nodes at time i + 1 by drawing b independent samples from the average den-
sity (8.40), given Xi. Now consider applying stratified sampling to this con-
struction using as stratification variable the index j of the node Xij selected
at time i. This gives us b equiprobable strata, so in a sample of size b we
draw exactly one value from each stratum. But this simply means that we
draw one successor from each density fi+1(Xij , ·), j = 1, . . . , b, which is ex-
actly what the independent-path construction does. In short, we may use the
independent-path construction (which carries out the stratification implicitly)
and then apply the weights (8.41). This is what Broadie and Glasserman [66]
do in their numerical tests. Boyle, Kolkiewicz, and Tan [55] also implement
this approach and combine it with low discrepancy sequences.

Weights for the Low Estimator

As explained in Section 8.5.1, a stochastic mesh defines an exercise policy
throughout the state space (and not just at the nodes of the mesh) once the
weights are extended to all points. This is the key to the low estimator defined
through (8.32)–(8.33) and also to the interleaving estimator in (8.35). Both
rely on the ability to estimate a continuation value Ĉi(x) at an arbitrary state
x and time i.

As in Section 8.5.1, we use W i
k(x) to denote the weight on a hypothetical

arc from state x at time i to mesh node Xi+1,k. In all of the likelihood ratio
weights (8.38)–(8.41) discussed in this section, the current node Xij appears
as an explicit argument of a function (a transition density). The obvious way
to extend (8.38)–(8.41) to arbitrary points x is thus to replace Xij with x.
This is the method used in Broadie and Glasserman [66]. To avoid computing
additional values of transition densities, one might alternatively use interpo-
lation.
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Example 8.5.1 American geometric average option on seven assets. We con-
sider a call option on the geometric average of multiple assets modeled by
geometric Brownian motion. This provides a convenient setting for testing
algorithms in high dimensions because the problem can be reduced to a single
dimension in order to compute an accurate price for comparison. We used this
idea in Section 5.5.1 to test quasi-Monte Carlo methods; see equation (5.33)
and the surrounding discussion.

We consider a specific example from Broadie and Glasserman [66]. There
are seven uncorrelated underlying assets. Each is modeled as GBM(r − δ,σ2)
with interest rate r = 3%, dividend yield δ = 5%, and volatility σ = 0.40. The
assets have an initial price of 100 and the option’s strike price is also 100. The
option expires in 1 year and can be exercised at intervals of 0.1 years starting
at 0 and ending at 1. A binomial lattice (applied to the one-dimensional
geometric average) yields a price of 3.27. The corresponding European option
has a price of 2.42, so the early-exercise feature has significant value in this
example.

In pricing the option in the stochastic mesh, we treat it as a seven-
dimensional problem and do not use the reduction to a single dimension. We
use the weights in (8.41). Because the seven underlying assets evolve indepen-
dently of each other, the transition density from one node to another factors
as the product of one-dimensional densities. More explicitly, the transition
density from one generic node x = (x1, . . . , x7) to another y = (y1, . . . , y7)
over a time interval of length ∆t is

f(x, y) =
7∏

i=1

1
σ
√

∆tyi

φ

(
log(yi/xi) − (r − δ − 1

2σ2)∆t

σ
√

∆t

)
,

with φ the standard normal density. This assumes that each xi and yi records
the level Si of the ith underlying asset. If instead we record log Si in xi and
yi, then the transition density simplifies to

f(x, y) =
7∏

i=1

1
σ
√

∆t
φ

(
yi − xi − (r − δ − 1

2σ2)∆t

σ
√

∆t

)
. (8.43)

Figure 8.8 displays numerical results from Broadie and Glasserman [66] for
this example. Computational effort increases as we move from left to right in
the figure: the label (50,500) indicates a mesh constructed from b = 50 paths
through which 500 additional paths are simulated to compute a low estimator,
and the other labels should be similarly interpreted. The solid lines in the
figure show the high and low estimators; the dashed lines show the upper and
lower confidence limits (based on a nominal coverage of 90%) using standard
errors estimated from 25 replications at each mesh size. The dotted horizontal
line shows the true price.

The bias of the low estimator is much smaller than that of the high esti-
mator in this example. Recall that the value computed by the low estimator
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Fig. 8.8. Convergence of high and low mesh estimators for an American geometric
average option on seven underlying assets.

reflects the exercise policy determined by the mesh. This means that even at
relatively small values of b (100, for example), the mesh does a reasonable
job of identifying an effective exercise policy, even though the high estimator
shows a large bias. The bias in the high estimator results from the back-
ward induction procedure, which overestimates the value implicit in the mesh
stopping rule. �

Computational Costs and Limitations

Estimating a continuation value at a single node in the mesh requires calcu-
lating b weights and then a weighted average and is thus an O(b) operation.
Each step in the backward induction procedure (8.27) requires estimating
continuation values at b nodes and is therefore an O(b2) operation. Applying
the mesh to an m-step problem requires O(mb2) time. The implicit constant
in this computing-time magnitude depends on the time required to generate
a single transition of the underlying Markov chain (which in turn depends
on the problem dimension d) and on the time to evaluate each weight. Each
replication of the low estimator requires calculation of an additional weighted
average at each step along a path and thus requires O(mb) computing time. It
is therefore practical to run many more low-estimator paths than the number
of mesh paths b; but reducing the bias in the low estimator requires increasing
b.

Based on numerical experiments, Broadie and Glasserman [66] tentatively
suggest that the root mean square error of the mesh estimator is O(b−1/2)
in problems for which exact simulation of X1, . . . , Xm is possible. This is the
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same convergence rate that would be obtained in estimating the price of a
European option from b independent replications. But because the compu-
tational requirements of the mesh are quadratic in b, the convergence rate
is a rather slow O(s−1/4) when measured in units of computing time s. In
contrast, European option pricing through independent replications retains
square-root convergence in s as well as b. In Section 8.6.2 we will see that
using regression the time required for each step in the backward induction is
proportional to b rather than b2, resulting in faster overall run times, usually
at the cost of some approximation error from the choice of regressors.

Broadie and Yamamoto [70] use a fast Gauss transform to accelerate back-
ward induction calculations. This method reduces the computational effort for
each step in the mesh from O(b2) to O(b), but entails an approximation in
the evaluation of the weights. Broadie and Yamamoto [70] find experimentally
that the method works well in up to three dimensions.

An important feature of likelihood ratio weights is that they do not depend
on the payoff functions hi. Once a mesh is constructed and all its weights com-
puted, it can be used to price many different American options. This requires
storing all weights, but significantly reduces computing times compared to
generating a new mesh.

Based on numerical tests, Broadie and Glasserman [66] emphasize the
importance of using control variates with the stochastic mesh. They use both
inner and outer controls: inner controls apply at each node in the mesh, outer
controls apply across independent replications of the mesh. Candidate control
variates are moments of the underlying assets and the prices of European
options, when available.

The main limitation on applying the mesh with likelihood ratio weights
is the need for a transition density. Transition densities for the underlying
Markov chain may be unknown or may fail to exist. We encountered similar
issues in estimating sensitivities in Section 7.3; see especially Section 7.3.2.

Recall that the state Xi of the underlying Markov chain records infor-
mation at the ith exercise date ti. The intervals ti+1 − ti separating exercise
dates could be large, in which case we may need to simulate Xi+1 from Xi

through a series of smaller steps. Even if we know the transition density over
a single step, we may not be able to evaluate the transition density from ti to
ti+1. We faced a similar problem in the setting of the LIBOR market model in
Section 7.3.4. In such settings, it may be necessary to use a multivariate nor-
mal or lognormal approximation to the transition density in order to compute
(approximate) likelihood ratios.

As discussed in Section 7.3.2, transition densities often fail to exist in
singular models, meaning models in which the dimension of the state vector
exceeds the dimension of the driving Brownian motion. This is often the case
in interest rate models. It can also arise through the introduction of supple-
mentary variables in the state vector Xi. Consider, for example, the pricing
of an American option on the average of a single underlying asset S. One
might take as state Xi the pair (S(ti), S̄(ti)), in which S(ti) records the cur-
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rent level of the underlying asset and S̄(ti) records the average over t1, . . . , ti.
This formulation eliminates path-dependence through the augmented state
but results in a singular model: given (S(ti), S̄(ti)) and S(ti+1), the value of
S̄(ti+1) is completely determined, so the Markov chain Xi does not admit a
transition density on �2. Weights based on likelihood ratios are infeasible in
such settings.

Constrained Weights

To address the problem of unknown or nonexistent transition densities,
Broadie et al. [68] propose a method that selects weights through a constrained
optimization problem. This method relies on the availability of known condi-
tional expectations, which are used to constrain the weights.

Suppose, then, that for some �M -valued function G on the state space of
the underlying Markov chain, the conditional expectation

g(x) = E[G(Xi+1)|Xi = x]

is a known function of the state x. For example, moments of the underlying
assets and simple European options often provide candidate functions. Fix a
node Xij and consider weights W i

jk, k = 1, . . . , b, satisfying

1
b

b∑
k=1

W i
jkG(Xi+1,k) = g(Xij); (8.44)

these are weights that correctly “price” the payoff G, to be received at i + 1,
from the perspective of node Xij . If Vi+1 is well-approximated by a linear
combination of the components of G, then such weights should provide a
good approximation to the continuation value at Xij when used in the basic
mesh recursion (8.27).

Taking one of the components of G to be a constant imposes the constraint

1
b

b∑
k=1

W i
jk = 1. (8.45)

We noted previously that the alternative condition (8.42) — which constrains
the sum of the weights into a node rather than out of a node — has an
appealing feature. But that condition links the choice of all b2 weights from
every node at step i to every node at step i + 1, whereas (8.44) and (8.45)
apply separately to the b weights used for each node Xij .

The number M of easily computed conditional expectations is likely to be
much smaller than the number of nodes b, in which case the constraints (8.44)
do not completely determine the weights. From all feasible weights, Broadie
et al. [68] select those minimizing an objective of the form
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b∑
k=1

H(W i
jk),

for some convex function H . The specific cases they consider are a quadratic
objective H(x) = x2/2 and the entropy objective H(x) = x log x. The
quadratic leads to a simpler optimization problem but could produce negative
weights, whereas the entropy objective will provide a nonnegative feasible so-
lution if one exists. Broadie et al. [68] report numerical results showing that
the two objectives result in similar price estimates and that these estimates
are close to those produced using likelihood ratio weights in cases in which a
transition density is available.

This approach to selecting mesh weights is closely related to weighted
Monte Carlo as presented in Section 4.5.2 and further analyzed in Glasser-
man and Yu [147]. As shown in Glasserman and Yu [148], it is also closely
related to the regression-based methods we discuss next. A distinction be-
tween the methods is that the constrained optimization problem produces
weights W i

jk that depend on both Xij and Xi+1,k, whereas weights defined
through regression (in the next section) depend on Xij and Xik.

8.6 Regression-Based Methods and Weights

Several authors — especially Carrière [78], Longstaff and Schwartz [241], and
Tsitsiklis and Van Roy [350, 351] — have proposed the use of regression to
estimate continuation values from simulated paths and thus to price American
options by simulation. Each continuation value Ci(x) in (8.11) is the regres-
sion of the option value Vi+1(Xi+1) on the current state x, and this suggests
an estimation procedure: approximate Ci by a linear combination of known
functions of the current state and use regression (typically least-squares) to es-
timate the best coefficients in this approximation. This approach is relatively
fast and broadly applicable; its accuracy depends on the choice of functions
used in the regression. The flexibility to choose these functions provides a
mechanism for exploiting knowledge or intuition about the pricing problem.

Though not originally presented this way, regression-based methods fit
well within the stochastic mesh framework of Section 8.5: they start from the
independent-path construction illustrated in Figure 8.7, and we will see that
the use of regression at each step corresponds to an implicit choice of weights
for the mesh. (We encountered a related observation in (4.19)–(4.20) where
we observed that using control variates for variance reduction is equivalent to
a particular way of assigning weights to replications.) This section therefore
uses notation and ideas from Section 8.5.

8.6.1 Approximate Continuation Values

Regression-based methods posit an expression for the continuation value of
the form
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E[Vi+1(Xi+1)|Xi = x] =
M∑

r=1

βirψr(x), (8.46)

for some basis functions ψr : �d �→ � and constants βir, r = 1, . . . , M . We
discussed this as an approximation strategy in Section 8.2. Using the notation
Ci for the continuation value at time i, we may equivalently write (8.46) as

Ci(x) = β�
i ψ(x), (8.47)

with
β�

i = (βi1, . . . , βiM ), ψ(x) = (ψ1(x), . . . , ψM (x))�.

One could use different basis function at different exercise dates, but to sim-
plify notation we suppress any dependence of ψ on i.

Assuming a relation of the form (8.46) holds, the vector βi is given by

βi = (E[ψ(Xi)ψ(Xi)�])−1E[ψ(Xi)Vi+1(Xi+1)] ≡ B−1
ψ BψV . (8.48)

Here, Bψ is the indicated M ×M matrix (assumed nonsingular) and BψV the
indicated vector of length M . The variables (Xi, Xi+1) inside the expectations
have the joint distribution of the state of the underlying Markov chain at dates
i and i + 1.

The coefficients βir could be estimated from observations of pairs (Xij ,
Vi+1(Xi+1,j)), j = 1, . . . , b, each consisting of the state at time i and the
corresponding option value at time i+1. Consider, in particular, independent
paths (X1j , . . . , Xmj), j = 1, . . . , b, and suppose for a moment that the values
Vi+i(Xi+1,j) are known. The least-squares estimate of βi is then given by

β̂i = B̂−1
ψ B̂ψV ,

where B̂ψ and B̂ψV are the sample counterparts of Bψ and BψV . More ex-
plicitly, B̂ψ is the M × M matrix with qr entry

1
b

b∑
j=1

ψq(Xij)ψr(Xij)

and B̂ψV is the M -vector with rth entry

1
b

b∑
k=1

ψr(Xik)Vi+1(Xi+1,k). (8.49)

All of these quantities can be calculated from function values at pairs of
consecutive nodes (Xij , Xi+1,j), j = 1, . . . , b. In practice, Vi+1 is unknown
and must be replaced by estimated values V̂i+1 at downstream nodes. The
estimate β̂i then defines an estimate

Ĉi(x) = β̂�
i ψ(x), (8.50)

of the continuation value at an arbitrary point x in the state space �d. This
in turn defines a procedure for estimating the option value:
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Regression-Based Pricing Algorithm

(i) Simulate b independent paths {X1j, . . . , Xmj}, j = 1, . . . , b, of the
Markov chain.

(ii) At terminal nodes, set V̂mj = hm(Xmj), j = 1, . . . , b.
(iii) Apply backward induction: for i = m − 1, . . . , 1,

◦ given estimated values V̂i+1,j , j = 1, . . . , b, use regression as above to
calculate β̂i = B̂−1

ψ B̂ψV ;
◦ set

V̂ij = max
{
hi(Xij), Ĉi(Xij)

}
, j = 1, . . . , b, (8.51)

with Ĉi as in (8.50).
(iv) Set V̂0 = (V̂11 + · · · + V̂1b)/b.

This is the approach introduced by Tsitsiklis and Van Roy [350, 351]. They
show in [351] that if the representation (8.46) holds at all i = 1, . . . , m − 1,
then the estimate V̂0 converges to the true value V0(X0) as b → ∞. Longstaff
and Schwartz [241] combine continuation values estimated using (8.50) with
their interleaving estimator discussed in Section 8.5.1. In other words, they
replace (8.51) with

V̂ij =
{

hi(Xij), hi(Xij) ≥ Ĉi(Xij);
V̂i+1,j hi(Xij) < Ĉi(Xij).

(8.52)

They recommend omitting nodes Xij with hi(Xij) = 0 in estimating βi.
Clément, Lamberton, and Protter [86] prove convergence of the Longstaff-
Schwartz procedure as b → ∞. The limit attained coincides with the true price
V0(X0) if the representation (8.46) holds exactly; otherwise, the limit coincides
with the value under a suboptimal exercise policy and thus underestimates
the true price. In practice, (8.52) therefore produces low-biased estimates.

The success of any regression-based approach clearly depends on the choice
of basis functions. Polynomials (sometimes damped by functions vanishing at
infinity) are a popular choice ([350, 241]). Through Taylor expansion, any
sufficiently smooth value function can be approximated by polynomials. How-
ever, the number of monomials of a given degree grows exponentially in the
number of variables, so without further restrictions on the value function the
number of basis functions required could grow quickly with the dimension of
the underlying state vector Xi. Longstaff and Schwartz [241] use 5–20 basis
functions in the examples they test.

We have presented the regression-based pricing algorithm above in the
discounted formulation (8.6)–(8.7) of the dynamic programming problem, as
we have all methods in this chapter. This assumes that payoffs and value
estimates are denominated in time-0 dollars. In practice, payoffs and value
estimates at time ti are usually denominated in time-ti dollars, and this re-
quires including explicit discounting in the algorithm. Consider, for example,
the case of a constant continuously compounded interest rate r. In step (ii)
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of the algorithm, we would use h̃m, as in (8.4); in step (iii) we would regress
e−r(ti+1−ti)V̂i+1,j (rather than V̂i+1,j) against ψ(Xi); in (8.49) we would re-
place Vi+1(Xi+1,k) with e−r(ti+1−ti)Vi+1(Xi+1,k). With these modifications,
Ĉi(x) in (8.50) would be interpreted as the present value of continuing (de-
nominated in time-ti dollars).

Low Estimator

The estimated vectors of coefficients β̂i determine approximate continuation
values Ĉi(x) for every step i and state x, through (8.50). These in turn define
an exercise policy, just as in (8.33), and thus a low estimator as in (8.34).
This is the low estimator of the stochastic mesh applied to continuation values
estimated through regression. The method of Longstaff and Schwartz [241] in
(8.52) usually produces a low-biased estimator as well, though as explained
in Section 8.5.1, their interleaving estimator mixes elements of high and low
bias.

Example 8.6.1 American max option. To illustrate regression-based pric-
ing, we consider an American option on the maximum of underlying assets
modeled by geometric Brownian motion. This example is used in Broadie and
Glasserman [65, 66] and Andersen and Broadie [15] with up to five underlying
assets; for simplicity, here we consider just two underlying assets, S1 and S2.
Each is modeled as GBM(r − δ,σ2) with interest rate r = 5%, dividend yield
δ = 10%, and volatility σ = 0.20. The two assets are independent of each
other. The (undiscounted) payoff upon exercise at time t is

h̃(S1(t), S2(t)) = (max(S1(t), S2(t)) − K)+.

We take S1(0) = S2(0) and K = 100. The option expires in T = 3 years and
can be exercised at nine equally spaced dates ti = i/3, i = 1, . . . , 9. Valuing
the option in a two-dimensional binomial lattice, as in Boyle, Evnine, and
Gibbs [54], yields option prices of 13.90, 8.08, and 21.34 for Si(0) = 100, 110,
and 90, respectively. These are useful for comparison.

To price the option using regression and simulation, we need to choose
basis functions. We compare various combinations of powers of the underlying
assets, the immediate exercise value h̃, and related functions. For each case
we apply the regression-based pricing algorithm (i)–(iv) with 4000 paths. The
continuation values estimated by regression define an exercise policy so we
then simulate a second set of 4000 paths that follow this exercise policy: this
is the low estimator in (8.33)–(8.34) based on the regression estimate (8.47) of
the continuation value. We also apply the method of Longstaff and Schwartz
[241] in (8.52). We replicate all three of these estimators 100 times to calculate
standard errors.

Tables 8.1 and 8.2 display numerical results for various sets of basis func-
tions and initial values of the underlying assets. The basis functions appear
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in Table 8.1. We treat S1 and S2 symmetrically in each case; the abbreviation
S2

i , for example, indicates that both S2
1 and S2

2 are included. We also include
a constant in each regression. The results in Table 8.1 are for Si(0) = 100; Ta-
ble 8.2 is based on the same basis functions but with Si(0) = 90 (left half) and
Si(0) = 110 (right half). The estimates have standard errors of approximately
0.02 to 0.03.

The results in the tables show that the pure regression-based estimator
can have significant high bias even with nine reasonable basis functions in a
two-dimensional problem (as in the third row of each table). The choice of
basis functions clearly affects the price estimate. In this example, including
the interaction term S1S2 and the exercise value h̃(S1, S2) appears to be par-
ticularly important. (Andersen and Broadie [15] get nearly exact estimates for
this example using twelve basis functions, including the value of a European
max option.)

Basis Functions Regression Low LSM

1, Si, S2
i , S3

i 15.74 13.62 13.67
1, Si, S2

i , S3
i , S1S2 15.24 13.65 13.68

1, Si, S2
i , S3

i , S1S2, max(S1, S2) 15.23 13.64 13.63
1, Si, S2

i , S3
i , S1S2, S2

1S2, S1S
2
2 15.07 13.71 13.67

1, Si, S2
i , S3

i , S1S2, S2
1S2, S1S

2
2 , h̃(S1, S2) 14.06 13.77 13.79

1, Si, S2
i , S1S2, h̃(S1, S2) 14.08 13.78 13.78

Table 8.1. Price estimates for an American option on the maximum of two assets.
The true price is 13.90. Each estimate has a standard error of approximately 0.025.

Regression Low LSM Regression Low LSM

9.49 7.93 7.92 24.52 20.79 21.14
9.39 7.97 7.87 23.18 21.02 21.15
9.44 7.98 7.87 22.76 20.98 21.02
9.25 7.95 7.87 22.49 21.08 21.15
8.24 8.01 7.95 21.42 21.25 21.20
8.27 7.99 7.99 21.38 21.26 21.16

Table 8.2. Price estimates for out-of-the-money (left) and in-the-money (right)
American option on the maximum of two assets. True prices are 8.08 and 21.34.
Each estimate has a standard error of approximately 0.02–0.03.

The low estimates appear to be less sensitive to the choice of basis func-
tions. As the high bias in the regression estimate decreases, the low estimate
generally increases; both properties result from a better fit to the continua-
tion value. The ordinary low estimator (labeled “Low”) and the Longstaff-
Schwartz estimator (labeled “LSM”) give nearly identical results. Longstaff
and Schwartz [241] recommend including only in-the-money nodes Xij in the
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regression used to estimate the continuation value Ci; this alternative gives
inferior results in this example and is therefore omitted from the tables.

Though it is risky to extrapolate from limited numerical tests, this example
suggests that using either of the low-biased estimators is preferable to relying
on the pure regression-based estimator, and that neither of the low-biased
estimators consistently outperforms the other. As expected, the choice of basis
functions has a significant impact on the estimated prices.

Figure 8.9 displays exercise regions at i = 4, the fourth of the nine ex-
ercise opportunities. The dashed lines show the optimal exercise boundary
computed from a binomial lattice: it is optimal to exercise the max option if
the price of one — but not both — of the underlying assets is sufficiently high.
(This and other properties of the exercise region are proved in Broadie and
Detemple [63].) The shaded area shows the exercise region estimated through
the last regression in Table 8.1. More specifically, the shaded area corresponds
to points at which h̃(S1, S2) is greater than or equal to the estimated contin-
uation value. The regression estimate generally comes close to the optimal
boundary but erroneously indicates that it is optimal to exercise in the lower-
left corner where the regression estimate of the continuation value is negative.
This can be corrected by replacing Ĉi(x) with max{0, Ĉi(x)} and exercising
only if h̃(S1, S2) is strictly greater than the continuation value. The results in
Table 8.1 use this correction.

60 80 100 120 140
60

80

100

120

140

Fig. 8.9. Exercise region for American max option on two underlying assets. The
shaded area is the exercise region determined by regression on seven basis functions;
dashed lines shows optimal boundary.
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8.6.2 Regression and Mesh Weights

We indicated at the beginning of this section that the regression-based al-
gorithm (i)–(iv) corresponds to a stochastic mesh estimator with an implicit
choice of mesh weights. We now make this explicit.

Using the regression representation (8.50) and then (8.49), we can write
the estimated continuation value at node Xij as

Ĉi(Xij) = ψ(Xij)�β̂i

= ψ(Xij)�B̂−1
ψ B̂ψV

=
1
b

b∑
k=1

(
ψ(Xij)�B̂−1

ψ ψ(Xik)
)

V̂i+1,k. (8.53)

Thus, the estimated continuation value at node Xij is a weighted average of
the estimated option values at step i + 1, with weights

W i
jk = ψ(Xij)�B̂−1

ψ ψ(Xik). (8.54)

In other words, (8.53) is a special case of the general mesh approximation

Ĉi(Xij) =
1
b

b∑
k=1

W i
jkV̂i+1,k. (8.55)

This extends to arbitrary points x in the state space, as in (8.32), if we simply
replace Xij with x in (8.54) and (8.55).

We made similar observations in our discussion of the link between control
variates and weighted Monte Carlo in (4.19)–(4.20) and Example 4.5.6, and
we can put the weights in (8.54) in the form appearing in (4.20). In the
representation (8.46) of the value function, one would often take one of the
basis functions to be a constant. To make this explicit, let ψ0 ≡ 1 and add a
term βi0ψ0(x) in (8.46). Let Sψ denote the sample covariance matrix of the
other basis functions: this is the M × M matrix with qr entry

1
b − 1

b∑
j=1

(
ψq(Xij)ψr(Xij) − bψ̄qψ̄r

)
,

where each ψ̄	 is the sample mean of ψ	 values at time i,

ψ̄	 =
1
b

b∑
j=1

ψ	(Xij).

If Sψ is nonsingular, then some matrix algebra shows that the regression
weights (8.54) can also be written as
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W i
jk = 1 +

b

b − 1
(ψ(Xij) − ψ̄)�S−1

ψ (ψ(Xik) − ψ̄), (8.56)

where ψ̄ is the M -vector of sample means ψ̄r, r = 1, . . . , M . (Had we not
removed the constant ψ0, the sample covariance matrix would have no chance
of being invertible.) This expression has the same form as (4.20). Like (8.54),
it extends to an arbitrary point x in the state space if we replace Xij with
x; this substitution defines the extended weights W i

k(x) needed for the low
estimator and interleaving estimator discussed in Section 8.5.1.

We make the following observations regarding this formulation:

◦ The regression-based weights (8.54) and (8.56) are symmetric in j and k.
They sum to b if we either fix j and sum over k or fix k and sum over j.
This is relevant to the discussion following (8.42).

◦ The regression-based weights satisfy conditions (M1) and (M2) of Sec-
tion 8.5.1. They satisfy condition (M3) if the regression equation (8.46)
is valid.

◦ From (8.56) we see that E[W i
jk|Xij ] is nearly 1 for any k = j. In this

respect the regression weights resemble likelihood ratios. But in contrast to
likelihood ratios the regression weights can take negative values.

◦ All of the likelihood ratio weights considered in Section 8.5.2 share the
property that the weight W i

jk depends on both the origin and destination
nodes Xij and Xi+1,k. In contrast, the weight assigned through regression
depends on Xij and Xik, but not on any values at step i+1. This results in
weights that are less variable but also less tuned to the observed outcomes. It
also means, curiously, that the weights implicit in regression are insensitive
to the spacing ti+1 − ti between exercise dates. Using least-squares and
(8.44) produces weights W i

jk that depend on Xij and Xi+1,k.
◦ The regression weight W i

jk depends on a type of distance between Xij and
Xik, or rather between ψ(Xij) and ψ(Xik). Consider, for example, what
happens when B̂ψ is the identity matrix. If ψ(Xij) and ψ(Xik) are orthog-
onal vectors, the weight W i

jk is zero; the absolute value of the weight is
greatest when these vectors are multiples of each other. Points ψ(Xik) that
are equidistant from ψ(Xij) in the Euclidean sense can get very different
weights W i

jk, as illustrated (for M = 2 dimensions) in Figure 8.10.
◦ As noted in the discussion surrounding (8.37), only likelihood ratio weights

can correctly price all payoffs at time i + 1 from the perspective of node
Xij . The regression weights correctly price payoffs whose price at time i as
a function of the current state is a linear combination of the basis functions
ψr. In practice, the true continuation value Ci is unlikely to be exactly
a linear combination of the basis functions, so the regression procedure
produces (an estimate of) the projection of Ci onto the span of ψ1, . . . , ψM .

◦ Calculating all estimated continuation values Ĉi(Xij), j = 1, . . . , b, using
the regression representation (8.50) requires a single O(M3) calculation to
compute β̂i and then O(Mb) calculations to compute β̂�

i ψ(Xij) at all b
nodes. In contrast, making explicit use of the weights as in (8.55) requires



8.6 Regression-Based Methods and Weights 467

)( ikXψ

)( ijXψ

)( ilXψ

)( inXψ

Fig. 8.10. The three points on the circle are the same distance from the center
but are assigned different weights by node j: if B̂ψ = I , the lth node gets positive
weight, the nth gets negative weight, and the kth gets zero weight.

O(M3) operations to calculate the weights and then O(b2) operations to
estimate all b continuation values. Because one would typically set b much
larger than M , this comparison favors taking advantage of the special struc-
ture of the weights, as in (8.50). If one prices multiple options using a single
mesh, the coefficients β̂i need to be recomputed for each option whereas the
weights (8.56) do not. The computational effort required for (8.55) can be
reduced to O(M3 + M2b) by rewriting (8.54) as

W i
jk = ε�j εk

with
εk = A�ψ(Xik), AA� = B̂−1

ψ .

Computing A is an O(M3) operation. Computing εk given A is O(M2) and
repeating this for k = 1, . . . , b is O(M2b). We can rearrange the calculation
of the sum in (8.55) as

b∑
k=1

W i
jkV̂i+1,k =

b∑
k=1

ε�j εkV̂i+1,k = ε�j

(
b∑

k=1

εkV̂i+1,k

)
.

Calculating the term in parentheses is O(Mb). This term is independent of j,
so calculating its inner product with all εj, j = 1, . . . , b, is also O(Mb). This
is advantageous if several options are to be priced using the same mesh and
basis functions because the matrix inversion is executed just once, rather
than separately for each option.

Example 8.6.2 Weights for a Brownian mesh. To illustrate the idea of
regression-based weights, we consider a simple example in which the under-
lying Markov chain Xi is the state of a standard one-dimensional Brownian
motion at dates ti = i. We consider the estimation of a continuation value (or
other conditional expectation) at t1 = 1, at which time the Brownian motion
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has a standard normal distribution. For basis functions we use the constant
1 and powers xn for n = 1, . . . , M . With M = 4 and Z denoting a standard
normal random variable, the matrix Bψ becomes

Bψ = E


1 Z Z2 Z3 Z4

Z Z2 Z3 Z4 Z5

Z2 Z3 Z4 Z5 Z6

Z3 Z4 Z5 Z6 Z7

Z4 Z5 Z6 Z7 Z8

 =


1 0 1 0 3
0 1 0 3 0
1 0 3 0 15
0 3 0 15 0
3 0 15 0 105

 .

Its inverse is

B−1
ψ =


15/8 0 −5/4 0 1/8

0 5/2 0 −1/2 0
−5/4 0 2 0 −1/4

0 −1/2 0 1/6 0
1/8 0 −1/4 0 1/24

 .

Consider two nodes X1j = xj and X1k = xk; these correspond to two possible
values of the Brownian motion at time 1. The corresponding weight Wjk ≡
W 1

jk is given by

Wjk = ψ(xj)B−1
ψ ψ(xk)

=
15
8

− 5
4
(x2

j + x2
k) +

5
2
xjxk +

1
8
(x4

j + x4
k) − 1

2
(xjx

3
k + x3

jxk) + 2x2
jx

2
k −

1
4
(x2

jx
4
k + x4

jx
2
k) +

1
6
x3

jx
3
k +

1
24

x4
jx

4
k.

More generally, regressing on powers up to order M makes each Wjk an M -th
order polynomial in xk for each value of xj .

The solid line in Figure 8.11 plots Wjk as a function of xk for xj = 1.
Taking xj = 1 means we are computing a conditional expectation (or price)
given that the Brownian motion is at 1 at time t1. Regression computes this
conditional expectation as a weighted average of downstream values that are
successors of other nodes xk at time t1. The solid line in the figure shows
the weight assigned to the successor of xk as the value of xk varies along the
horizontal axis. The weights oscillate and then drop to −∞ as xk moves away
from xj ≡ 1; these properties result from the polynomial form of the weights.

The dashed line in Figure 8.11 shows the conditional expectation of like-
lihood ratio weights based on (8.36). A direct comparison between likelihood
ratio weights and regression weights is not possible because (8.36) depends
on Xij and Xi+1,k, whereas the corresponding regression weight depends on
Xij and Xik. By taking the conditional expectation of (8.36) given Xik and
Xij , we make it a function of these nodes. In more detail, we consider the step
from ti = 1 to ti+1 = 2. The transition density is normal, f(x, y) = φ(y − x)
with φ the standard normal density. The marginal distribution at t2 = 2 is
N(0, 2). The likelihood ratio (8.36) is then
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Wjk =
√

2 exp
(

1
2X2

ij − 1
4 (Xi+1,k − 2Xij)2

)
. (8.57)

Using the fact that Xi+1,k − Xik has a standard normal distribution, we can
calculate the conditional expectation of Wjk given Xij and Xik to get

E[Wjk|Xij = xj , Xik = xk] =
2√
3

exp
(
−(x2

k − 4xjxk + x2
j)/6

)
.

Viewed as a function of xk with xj held fixed, this is a scaled normal density
centered at 2xj . It is plotted in Figure 8.11 with xj = 1. The unconditional
weights in (8.57) also traverse a scaled normal density, centered at 2Xij , if we
fix Xij and let Xi+1,k vary. The dashed line in the figure is more consistent
with intuition for how downstream nodes should be weighted than is the solid
line. �
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Fig. 8.11. Comparison of regression-based weight (solid) and conditional expecta-
tion of likelihood ratio weight (dashed). The curves show the weight assigned by
node xj = 1 to the successor of node xk as a function of xk.

Example 8.6.3 Option on a single underlying asset. Consider the pricing of
an American call option on an asset modeled by geometric Brownian motion.
The option expires in three years and can be exercised at any of 10 equally
spaced exercise opportunities: m = 10 and ti = 0.3i for i = 1, . . . , m. The
payoff upon exercise at ti is (S(ti) − K)+, with K = 100 and the underlying
asset S described by GBM(r − δ, σ2), with S(0) = 100, volatility σ = 0.20,
interest rate r = 5%, and dividend yield δ = 10%. (In the absence of dividends,
early exercise would be suboptimal and the option would reduce to a European
call.) This option is simple enough to be priced efficiently in a binomial lattice,
which yields a price of 7.98.
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Figure 8.12 shows the value of the option at t1 as a function of the level
S(t1) of the underlying asset. The solid line shows the value function com-
puted using a 2000-step binomial lattice. The other two lines show estimates
computed from an 800-path mesh generated using the independent-path con-
struction. The dashed line shows the value estimated using regression with
basis functions 1, x, x2, x3, and x4 and the dotted line is based on the likeli-
hood ratio weights (8.41) with transition densities evaluated as in each factor
of (8.43). In both cases, the value displayed is for time t1 and therefore results
from nine applications of the backward induction starting from the terminal
time tm. Both estimates come quite close to the exact value (as computed in
the binomial lattice), though the estimates based on likelihood ratio weights
are somewhat closer. As the number of paths increases, we should expect the
likelihood ratio values to approach the exact values while errors in the re-
gression values persist, because the exact value is not given by a fifth-order
polynomial. The greater accuracy of the likelihood ratio weights suggested
by the figure must be balanced against their much greater computational
burden; see the discussion of computational considerations near the end of
Section 8.5.2. �
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Fig. 8.12. Comparison of exact and estimated value functions for a call option on
a single underlying asset as functions of the price of the underlying asset.

8.7 Duality

Throughout this chapter, we have formulated the American option pricing
problem as one of maximizing over stopping times. Haugh and Kogan [172]
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and Rogers [308] have established dual formulations in which the price is rep-
resented through a minimization problem. The dual minimizes over a class
of supermartingales or martingales. These duality results lead to useful ap-
proximations and upper bounds on prices, in addition to having theoretical
interest.

We continue to work with discounted variables, as in (8.6)–(8.7), meaning
that all payoffs and values are denominated in time-0 dollars. An immediate
consequence of the dynamic programming recursion (8.7) is that

Vi(Xi) ≥ E[Vi+1(Xi+1)|Xi],

for all i = 0, 1, . . . , m−1, and this is the defining property of a supermartingale.
Also, Vi(Xi) ≥ hi(Xi) for all i. The value process Vi(Xi), i = 0, 1, . . . , m, is in
fact the minimal supermartingale dominating hi(Xi). Haugh and Kogan [172]
extend this characterization to formulate the pricing of American options as
a minimization problem.

Rogers [308] proves a continuous-time duality result which we specialize to
the case of m exercise dates. Let M = {Mi, i = 0, . . . , m} be a martingale with
M0 = 0. By the optional sampling property of martingales, for any stopping
time τ taking values in {1, . . . , m} we have

E[hτ (Xτ )] = E[hτ (Xτ ) − Mτ ] ≤ E[ max
k=1,...,m

{hk(Xk) − Mk}],

and thus
E[hτ (Xτ )] ≤ inf

M
E[ max

k=1,...,m
{hk(Xk) − Mk}],

the infimum taken over martingales with initial value 0. Because this inequal-
ity holds for every τ , it also holds for the supremum over τ , so

V0(X0) = sup
τ

E[hτ (Xτ )] ≤ inf
M

E[ max
k=1,...,m

{hk(Xk) − Mk}]. (8.58)

The minimization problem on the right is the dual problem.
What makes (8.58) particularly interesting is that it holds with equality.

We show this by constructing a martingale for which the expectation on the
right equals V0(X0). To this end, define

∆i = Vi(Xi) − E[Vi(Xi)|Xi−1], i = 1, . . . , m, (8.59)

and set
Mi = ∆1 + · · · + ∆i, i = 1, . . . , m, (8.60)

with M0 = 0. That this process is indeed a martingale follows from the prop-
erty

E[∆i|Xi−1] = 0 (8.61)

of the differences ∆i.
We now use induction to show that
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Vi(Xi) = max{hi(Xi), hi+1(Xi+1) − ∆i+1, . . . ,

hm(Xm) − ∆m − · · · − ∆i+1}, (8.62)

for all i = 1, . . . , m. This holds at i = m because Vm(Xm) = hm(Xm). As-
suming it holds at i, then using

Vi−1(Xi−1) = max{hi−1(Xi−1), E[Vi(Xi)|Xi−1]}
= max{hi−1(Xi−1), Vi(Xi) − ∆i}

we see that it extends to i − 1.
The option price at time 0 is

V0(X0) = E[V1(X1)|X0] = V1(X1) − ∆1.

By rewriting V1(X1) using (8.62), we find that

V0(X0) = max
k=1,...,m

(hk(Xk) − Mk) , (8.63)

thus verifying that equality is indeed achieved in (8.58) and that optimality is
attained by the martingale defined in (8.59)–(8.60). This optimal martingale
is a special case of one specified more generally by the Doob-Meyer decompo-
sition of a supermartingale; see Rogers [308].

The martingale differences (8.59) can alternatively be written as

∆i = Vi(Xi) − Ci−1(Xi−1) (8.64)

with Ci−1 denoting the continuation value, as in (8.12). Because C0(X0) =
V0(X0), finding the optimal martingale appears to be as difficult as solving
the original optimal stopping problem. But if we can find a martingale M̂
that is close to the optimal martingale, then we can use

max
k=1,...,m

(
hk(Xk) − M̂k

)
(8.65)

to estimate (an upper bound for) the option price.
Where can we find nearly optimal martingales? A general strategy is to

construct a martingale from an approximate value function or stopping rule.
This idea is developed and shown to be effective in Andersen and Broadie
[15] and Haugh and Kogan [172]. A suboptimal exercise policy provides a
lower bound on the price of an American option; the dual value defined by
extracting a martingale from the suboptimal policy complements the lower
bound with an upper bound.

There are various characterizations of the martingale associated with the
optimal value function and these suggest alternative strategies for constructing
approximating martingales. We discuss two such approaches based on (8.64).
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Martingales from Approximate Value Functions

Let Ĉi denote an approximation to the continuation value Ci, i = 0, 1, . . . , m−
1. For example, Ĉi could result from a parametric approximation, as in Sec-
tion 8.2, or through regression, as in (8.47). The associated approximate value
function is V̂i(x) = max{hi(x), Ĉi(x)}.

Along a simulated path X0, X1, . . . , Xm, one could evaluate the differences

∆̂i = V̂i(Xi) − Ĉi−1(Xi−1)

approximating (8.64). However, these are not in general martingale differences
because they may fail to satisfy (8.61); in particular, there is no guarantee that
the approximate value function satisfies

Ĉi−1(Xi−1) = E[V̂i(Xi)|Xi−1].

If the ∆̂i do not satisfy (8.61), then using their sum M̂k in (8.65) will not
produce a valid upper bound.

To extract martingale differences from an approximate value function, we
need to work a bit harder and compute (an estimate of)

∆̂i = V̂i(Xi) − E[V̂i(Xi)|Xi−1]. (8.66)

The first term on the right merely requires evaluating the approximation V̂i

along a simulated path of the Markov chain. For the second term, we can use
a nested simulation. At each step Xi−1 of the Markov chain, we generate n

successors X
(1)
i , . . . , X

(n)
i and use

1
n

n∑
j=1

V̂i(X
(j)
i ) (8.67)

to estimate the conditional expectation of Vi(Xi) given Xi−1. We discard
these n successors and generate a new one to get the next step Xi of the path
of the Markov chain. Thus, each nested simulation evolves over just a single
step of the Markov chain. (As discussed in Glasserman and Yu [148], nested
simulations become unnecessary if one selects basis functions for which the
required conditional expectations can be evaluated in closed form.)

The simulated values

∆̂i = V̂i(Xi) −
1
n

n∑
j=1

V̂i(X
(j)
i )

are martingale differences, even though the second term on the right is only an
estimate of the conditional expectation. This term is conditionally unbiased
(given Xi−1), so the conditional expectation of ∆̂i given Xi−1 is zero, as
required by (8.61). It follows that using these ∆̂i in (8.65) is guaranteed to
produce a high-biased estimator, even for finite n.
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Haugh and Kogan [172] propose and test other methods for constructing
upper bounds from approximate value functions. Their formulation of the dual
problem takes an infimum over supermartingales rather than martingales, and
they therefore use V̂i to construct supermartingales.

Martingales from Stopping Rules

Consider an exercise policy defined by stopping times τ1, . . . , τm with τi inter-
preted as the exercise time for an option issued at the ith exercise date — in
particular, τi ≥ i. Suppose these stopping times are defined by approximate
continuation values Ĉi, i = 1, . . . , m, with Ĉm ≡ 0, through

τi = min{k = i, . . . , m : hk(Xk) ≥ Ĉk(Xk)}, (8.68)

for i = 1, . . . , m, much as in (8.13). For example, Ĉi might be specified through
the regression representation (8.50).

If these stopping times defined an optimal exercise policy, then the differ-
ences

∆̂i = E[hτi(Xτi)|Xi] − E[hτi(Xτi)|Xi−1] (8.69)

would define an optimal martingale: this difference is just another way of writ-
ing (8.64). Even under a suboptimal policy, these ∆̂i are martingale differences
and thus lead to a valid upper bound. This therefore provides a general mech-
anism for defining martingales from stopping rules.

Evaluating these martingale differences requires computing (or estimating)
conditional expectations and for these we again use nested simulations. The
expression in (8.69) involves two conditional expectations which may appear
to require separate treatment. Rewriting the first term on the right side of
(8.69) as

E[hτi(Xτi)|Xi] =
{

hi(Xi), if hi(Xi) ≥ Ĉi(Xi);
E[hτi+1(Xτi+1)|Xi], if hi(Xi) < Ĉi(Xi),

(8.70)

reveals that the only conditional expectations we need to estimate are

E[hτk+1(Xτk+1)|Xk], k = 0, 1, . . . , m − 1.

These can then be used in (8.70) and (8.69) to compute the ∆̂i.
The method proceeds by replicating the following steps:

◦ Simulate a path X0, X1, . . . , Xm of the underlying Markov chain.
◦ At each Xi, i = 0, 1, . . . , m − 1,

– evaluate hi(Xi) and Ĉi(Xi) and check which is larger, as in (8.70), taking
h0 ≡ 0;

– simulate n subpaths starting from Xi and following the exercise policy
τi+1; record the payoff hτi+1(Xτi+1) from each subpath and use the aver-
age as an estimate of E[hτi+1(Xτi+1)|Xi].
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◦ Combine the estimates of the conditional expectations as in (8.69) and
(8.70) to estimate the differences ∆̂i.

◦ Sum these differences to get M̂k = ∆̂1 + · · · + ∆̂k, k = 1, . . . , m.
◦ Evaluate the maximum of hk(Xk) − M̂k over k = 1, . . . , m as in (8.65).

Observe that whereas each subpath used in (8.67) evolves for exactly one step
of the Markov chain, here the subpaths evolve for a random number of steps
determined by the stopping rule.

This is the method of Andersen and Broadie [15], but formulated in terms
of the differences (8.69). They apply their method in combination with stop-
ping rules defined as in Longstaff and Schwartz [241] and, for Bermudan swap-
tions, Andersen [12]. Their numerical results indicate excellent performance
with reasonable computational effort. As they point out, in addition to provid-
ing a confidence interval, the spread between the estimated lower and upper
bounds gives an indication of whether additional computational effort should
be dedicated to improving the exercise policy — for example, by increasing
the number of basis functions.

Numerical Example

Table 8.3 displays numerical results obtained by applying these dual estimates
to the American max option of Example 8.6.1. The labels “Dual-V̂ ” and
“Dual-τ” refer, respectively, to dual estimates based on approximate value
functions (as in (8.66)) and dual estimates based on stopping rules (as in
(8.69)). Each of these methods requires simulating subpaths; the table shows
results for n = 10 and n = 100 subpaths per replication in the last two pairs
of columns. The regression and low estimates in the first pair of columns are
repeated from Tables 8.1 and 8.2 for comparison. The dual results in Table 8.3
are based on 4000 initial paths used to estimate regression coefficients followed
by 100 independent paths along which the duals are computed using n = 10
or n = 100 subpaths at each step; the entire procedure is then replicated
100 times to allow estimation of standard errors. We consider initial values
S(0) = 100, 110, and 90, for which the correct prices are 13.90, 21.34, and 8.08.
The first three rows in Table 8.3 use the first set of basis functions displayed
in Table 8.1 (a poor set), and the second three rows use the last set of basis
functions from Table 8.1 (a much better set). Standard errors for all estimates
in the table range between 0.02 and 0.03.

The dual estimates are markedly better (giving tighter upper bounds) with
n = 100 subpaths than n = 10. Recall that the subpaths are used to estimate
the conditional expectations defining the ∆̂i so increasing n gives better es-
timates of these conditional expectations; the results in the table show the
importance of estimating these accurately. The results also indicate that the
two dual estimates give similar values in this example. When both methods
use the same number of paths and subpaths, and when these sample sizes are
large, we expect that Dual-τ will usually give better estimates than Dual-V̂
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because it is based directly on an implementable exercise rule rather than an
approximate value function. However, Dual-V̂ has the advantage of using only
single-step subpaths and thus requires less computing time per path. A defin-
itive comparison of the two methods would evaluate each under an optimal
implementation, and this would require finding the optimal combination of
sample sizes for the initial set of paths used for regression, the second-phase
paths, and the subpaths.

n = 10 n = 100

S(0) Regression Low Dual-V̂ Dual-τ Dual-V̂ Dual-τ

100 15.74 13.62 15.86 15.96 14.58 14.26
110 24.52 20.79 24.09 24.56 22.38 21.94
90 9.49 7.93 9.43 9.21 8.59 8.24

100 14.08 13.78 15.46 15.82 14.16 14.16
110 21.38 21.26 23.55 24.21 21.68 21.72
90 8.27 7.99 9.07 9.16 8.25 8.20

Table 8.3. Estimates for the American max option of Example 8.6.1. Correct values
for S(0) = 100, 110, and 90 are 13.90, 21.34, and 8.08. Standard errors for all
estimates in the table are approximately 0.02–0.03.

The dual estimates with n = 100 are noticeably better (lower) than the
regression estimates in the first three rows, but roughly the same as the re-
gression estimates in the last three rows. The dual estimates are thus most
valuable when the chosen basis functions do not provide a good fit to the
option value. This pattern is explained in part by a connection between the
regression estimates (and any other estimate based on approximate dynamic
programming) and the dual estimates, to which we now turn.

Connection with Regression

If the regression relation (8.47) holds — meaning that the optimal continua-
tion value is linear in the basis functions — then the regression residuals are
the optimal martingale differences. To see why, observe from the definition
(8.59) of the ∆i that

Vi+1(Xi+1) = E[Vi+1(Xi+1)|Xi] + ∆i+1,

and that the equivalent properties (8.46) and (8.47) then imply

Vi+1(Xi+1) = β̂�
i ψ(Xi) + ∆i+1.

This shows that ∆i+1 is the residual in the regression of Vi+1(Xi+1) against
ψ(Xi). If we knew with certainty that the regression relation (8.47) held, then
this would provide a simple mechanism for finding the ∆i as a by-product of
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estimating the coefficients β̂i. However, in the more typical case that (8.47)
holds only approximately, the regression residuals will not satisfy the martin-
gale difference condition (8.59) and are therefore not guaranteed to provide a
valid upper bound on the option price.

Even if the regression equation (8.47) does not hold exactly, this link
sheds light on the relation between the regression-based estimator calculated
through the dynamic programming recursion and the dual estimators. We end
this section by developing this idea.

Given coefficients vectors βi, i = 1, . . . , m−1, estimated or exact, consider
the sequence of value estimates

V̂m(Xm) = hm(Xm) (8.71)
V̂i(Xi) = max{hi(Xi), β�

i ψ(Xi)}, i = 1, . . . , m − 1, (8.72)

applied to a path X1, . . . , Xm of the underlying Markov chain. Set V̂0(X0) =
E[V̂1(X1)]. The limit as b → ∞ of the regression-based estimator defined
through (8.51) has this form; this follows from Theorem 2 of Tsitsiklis and
Van Roy [351].

Define residuals εi, i = 1, . . . , m − 1, through the equation

V̂i+1(Xi+1) = β�
i ψ(Xi) + εi+1,

and
V̂1(X1) = V̂0(X0) + ε1.

Using exactly the same algebraic steps leading to (8.62) and (8.63), we find
that

V̂0(X0) = max
k=1,...,m

(
hk(Xk) −

k∑
i=1

εi

)
. (8.73)

Thus, the approximation V̂0(X0) defined through regression and dynamic pro-
gramming admits a representation analogous to the dual formulation of the
true value V0(X0) in (8.63), except that the cumulative sum of the εi is not
in general a martingale.

This explains the pattern of numerical results in Table 8.3. With a good
choice of basis functions, β�

i ψ(Xi) is nearly equal to the continuation value
at Xi so the regression residual εi+1 is nearly equal to the optimal martingale
difference ∆i+1 and the regression approximation V̂0(X0) is nearly the same as
the dual value. With a poor choice of basis functions, the residuals are farther
from the optimal ∆i and we see a greater difference between the regression
estimate and the dual value.

These observations apply more generally to any approximation computed
through backward induction (including a stochastic mesh with likelihood ratio
weights), even without the use of regression. Suppose (8.71)–(8.72) hold with
β�

i ψ(Xi) replaced with an arbitrary approximation Ĉi to the continuation
value at step i. Define residuals through



478 8 Pricing American Options

V̂i+1(Xi+1) = Ĉi(Xi) + εi+1,

and then (8.73) holds. This shows that the high-biased estimates calculated
through backward induction in Sections 8.3 and 8.5–8.6 have nearly the same
form as high-biased estimates based on duality.

8.8 Concluding Remarks

The pricing of American options through Monte Carlo simulation is an active
and evolving area of research. We have limited this chapter to techniques that
address the problem generally, and not discussed the many ad hoc methods
that have been developed for specific models. Some of the history of the topic
and some early proposals are surveyed in Boyle et al. [53].

Because the field is still in flux, comparisons and conclusions are poten-
tially premature. Based on the current state of knowledge and an admittedly
subjective view of the field, we offer the following summary of the methods
discussed in this chapter.

◦ Parametric approximations provide a relatively simple way of computing
rough estimates, particularly in problems for which good information is
available about the main drivers of early exercise. A sound implementation
of this approach uses a second pass (Step 3 in Section 8.2) to compute a low-
biased estimator and also an estimate of the dual value. The gap between
the two estimates reflects the quality of the approximation.

◦ The random tree method is very simple to implement and relies on no more
than the ability to generate paths of the underlying processes. It provides a
conservative confidence interval that shrinks to the true value under minor
regularity conditions. Because its complexity is exponential in the number of
exercise dates, it is suitable only for options with few exercise opportunities
— not more than about five.

◦ State-space partitioning is relatively insensitive to the number of exercise
dates but its complexity is exponential in the dimension of the state space,
making it inapplicable to high-dimensional problems.

◦ The stochastic mesh and regression-based methods provide the most pow-
erful techniques for solving high-dimensional problems with many exercise
opportunities. Mesh weights based on likelihood ratios are theoretically the
most general but have two shortcomings: they require evaluating transition
densities for the underlying processes (which may be unknown or may fail
to exist), and their computational complexity is O(b2), with b the num-
ber of paths. Regression-based methods correspond to an implicit choice
of mesh weights. They reduce the O(b2) complexity of general weights to
O(Mb), with M the number of basis functions. This makes it practical to
simulate many more paths and thus achieve lower variability, though not
necessarily greater accuracy. Accuracy depends on the choice of basis func-
tions, which may require experimentation or good information about the
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structure of the problem. A sound implementation of either the stochastic
mesh or regression-based estimator uses a second pass to estimate a low-
biased estimator. This can be paired with an estimate of the dual value to
produce an interval for the true price. The first-pass estimator based on
dynamic programming is often biased high; this is essentially always true
using likelihood ratio weights and typically true using regression. In the case
of regression, the gap between high and low estimates provides a measure
of the quality of fit achieved with the chosen basis functions and can thus
alert the user to a need to change the set of basis functions.



9

Applications in Risk Management

This chapter discusses applications of Monte Carlo simulation to risk manage-
ment. It addresses the problem of measuring the risk in a portfolio of assets,
rather than computing the prices of individual securities. Simulation is use-
ful in estimating the profit and loss distribution of a portfolio and thus in
computing risk measures that summarize this distribution. We give particular
attention to the problem of estimating the probability of large losses, which
entails simulation of rare but significant events. We separate the problems of
measuring market risk and credit risk because different types of models are
used in the two domains.

There is less consensus in risk management around choices of models and
computational methods than there is in derivatives pricing. And while sim-
ulation is widely used in the practice of risk management, research on ways
of improving this application of simulation remains limited. This chapter em-
phasizes a small number of specific techniques for specific problems in the
broad area of risk management.

9.1 Loss Probabilities and Value-at-Risk

9.1.1 Background

A prerequisite to managing market risk is measuring market risk, especially
the risk of large losses. For the large and complex portfolios of assets held
by large financial institutions, this presents a significant challenge. Some of
the obstacles to risk measurement are administrative — creating an accurate,
centralized database of a firm’s positions spanning multiple markets and asset
classes, for example — others are statistical and computational. Any method
for measuring market risk must address two questions in particular:

◦ What statistical model accurately yet conveniently describes the move-
ments in the individual sources of risk and co-movements of multiple
sources of risk affecting a portfolio?
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◦ How does the value of a portfolio change in response to changes in the
underlying sources of risk?

The first of these questions asks for the joint distribution of changes in risk
factors — the exchange rates, interest rates, equity, and commodity prices to
which a portfolio may be exposed. The second asks for a mapping from risk
factors to portfolio value. Once both elements are specified, the distribution of
portfolio profit and loss is in principle determined, as is then any risk measure
that summarizes this distribution.

Addressing these two questions inevitably involves balancing the complex-
ity required by the first with the tractability required by the second. The
multivariate normal, for example, has known deficiencies as a model of mar-
ket prices but is widely used because of its many convenient properties. Our
focus is more on the computational issues raised by the second question than
the statistical issues raised by the first. It is nevertheless appropriate to men-
tion two of the most salient features of the distribution of changes in market
prices and rates: they are typically heavy-tailed, and their co-movements are
at best imperfectly described by their correlations. The literature document-
ing evidence of heavy tails is too extensive to summarize — an early refer-
ence is Mandelbrot [246]; Campbell, Lo, and MacKinlay [74] and Embrechts,
Klüppelberg, and Mikosch [111] provide more recent accounts. Shortcomings
of correlation and merits of alternative measures of dependence in financial
data are discussed by, among others, Embrechts, McNeil, and Straumann
[112], Longin and Solnik [240], and Mashal and Zeevi [255]. We revisit these
issues in Section 9.3, but mostly work with simpler models.

To describe in more detail the problems we consider, we introduce some
notation:

S = vector of m market prices and rates;
∆t = risk-measurement horizon;
∆S = change in S over interval ∆t;

V (S, t) = portfolio value at time t and market prices S;
L = loss over interval ∆t

= −∆V = V (S, t) − V (S + ∆S, t + ∆t);
FL(x) = P (L < x), the distribution of L.

The number m of relevant risk factors could be very large, potentially reaching
the hundreds or thousands. In bank supervision the interval ∆t is usually
quite short, with regulatory agencies requiring measurement over a two-week
horizon, and this is the setting we have in mind. The two-week horizon is often
interpreted as the time that might be required to unwind complex positions
in the case of an adverse market move. In other areas of market risk, such
as asset-liability management for pension funds and insurance companies, the
relevant time horizon is far longer and requires a richer framework.
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The notation above reflects some implicit simplifying assumptions. We con-
sider only the net loss over the horizon ∆t, ignoring for example the maximum
and minimum portfolio value within the horizon. We ignore the dynamics of
the market prices, subsuming all details about the evolution of S in the vector
of changes ∆S. And we assume that the composition of the portfolio remains
fixed, though the value of its components may change in response to the mar-
ket movement ∆S and the passage of time ∆t, which may bring assets closer
to maturity or expiry.

The portfolio’s value-at-risk (VAR) is a percentile of its loss distribution
over a fixed horizon ∆t. For example, the 99% VAR is a point xp satisfying

1 − FL(xp) ≡ P (L > xp) = p

with p = 0.01. (For simplicity, we assume throughout that FL is continuous so
that such a point exists; ties can be broken using (2.14).) A quantile provides
a simple way of summarizing information about the tail of a distribution, and
this particular value is often interpreted as a reasonable worst-case loss level.
VAR gained widespread acceptance as a measure of risk in the late 1990s, in
large part because of international initiatives in bank supervision; see Jorion
[203] for an account of this history. VAR might more accurately be called a
measure of capital adequacy than simply a measure of risk. It is used primarily
to determine if a bank has sufficient capital to sustain losses from its trading
activities.

The widespread adoption of VAR has been accompanied by frequent crit-
icism of VAR as a measure of risk or capital adequacy. Any attempt to sum-
marize a distribution in a single number is open to criticism, but VAR has a
particular deficiency stressed by Artzner, Delbaen, Eber, and Heath [19]: com-
bining two portfolios into a single portfolio may result in a VAR that is larger
than the sum of the VARs for the two original portfolios. This runs counter
to the idea that diversification reduces risk. Many related measures are free
of this shortcoming, including the conditional excess E[L|L > x], calling into
question the appropriateness of VAR.

The significance of VAR (and related measures) lies in its focus on the tail
of the loss distribution. It emphasizes a probabilistic view of risk, in contrast
to the more formulaic accounting perspective traditionally used to gauge cap-
ital adequacy. And through this probabilistic view, it calls attention to the
importance of co-movements of market risk factors in a portfolio-based ap-
proach to risk, in contrast to an earlier “building-block” approach that ignores
correlation. (See, for example, Section 4.2 of Crouhy, Galai, and Mark [93].)
We therefore focus on the more fundamental issue of measuring the tail of
the loss distribution, particularly at large losses — i.e., on finding P (L > x)
for large thresholds x. Once these loss probabilities are determined, it is a
comparatively simple matter to summarize them using VAR or some other
measure.

The relevant loss distribution in risk management is the distribution un-
der the objective probability measure describing observed events rather than
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the risk-neutral or other martingale measure used as a pricing device. His-
torical data is thus directly relevant in modeling the distribution of ∆S. One
can imagine a nested simulation (alluded to in Example 1.1.3) in which one
first generates price-change scenarios ∆S, and then in each scenario simulates
paths of underlying assets to revalue the derivative securities in a portfolio. In
such a procedure, the first step (sampling ∆S) takes place under the objective
probability measure and the second step (sampling paths of underlying assets)
ordinarily takes place under the risk-neutral or other risk-adjusted probability
measure. There is no logical or theoretical inconsistency in this combined use
of the two measures. It is useful to keep the roles of the different probability
measures in mind, but we do not stress the distinction in this chapter. Over
a short interval ∆t, it would be difficult to distinguish the real-world and
risk-neutral distributions of ∆S.

9.1.2 Calculating VAR

There are several approaches to calculating or approximating loss probabilities
and VAR, each representing some compromise between realism and tractabil-
ity. How best to make this compromise depends in part on the complexity of
the portfolio and on the accuracy required. We discuss some of the principal
methods because they are relevant to our treatment of variance reduction in
Section 9.2 and because they are of independent interest.

Normal Market, Linear Portfolio

By far the simplest approach to VAR assumes that ∆S has a multivariate
normal distribution and that the change in value ∆V (hence also the loss L)
is linear in ∆S. This gives L a normal distribution and reduces the problem
of calculating loss probabilities and VAR to the comparatively simple task of
computing the mean and standard deviation of L.

It is customary to assume that ∆S has mean zero because over a short
horizon the mean of each component ∆Sj is negligible compared to its stan-
dard deviation, and because mean returns are extremely difficult to estimate
from historical data. Suppose then that ∆S has distribution N(0, ΣS) for
some covariance matrix ΣS . Estimation of this covariance matrix is itself a
significant challenge; see, for example, the discussion in Alexander [10].

Further suppose that
∆V = δ�∆S, (9.1)

for some vector of sensitivities δ. Then L ∼ N(0, σ2
L) with σ2

L = δ�ΣSδ, and
the 99% VAR is 2.33σL because Φ(2.33) = 0.99.

One might object to the normal distribution as a model of market move-
ments because it can theoretically produce negative prices and because it is
inconsistent with, for example, a lognormal specification of price levels. But
all we need to assume is that the change ∆S over the interval (t, t + ∆t) is
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conditionally normal given the price history up to time t. Given Sj , assum-
ing that ∆Sj is normal is equivalent to assuming that the return ∆Sj/Sj is
normal. For small ∆t,

Sj(1 + ∆Sj/Sj) ≈ Sj exp(∆Sj/Sj),

so the distinction between normal and lognormal turns out to be relatively
minor in this setting.

It should also be noted that assuming that ∆S is conditionally normal
imposes a much weaker condition than assuming that changes over disjoint
intervals of length ∆t are i.i.d. normal. In our calculation of the distribution of
∆V based on (9.1), ΣS is the conditional covariance matrix for changes from
t to t + ∆t, given the price history to time t. At different times t, one would
ordinarily estimate different covariance matrices. The unconditional distribu-
tion of the changes ∆S would then be a mixture of normals and could even be
heavy-tailed. This occurs, for example, in GARCH models (see Section 8.4 of
Embrechts et al. [111]). Similar ideas are implicit in the discretization meth-
ods of Chapter 6: the increments of the Euler scheme (6.2) are conditionally
normal at each step, but the distribution of the state can be far from normal
after multiple steps.

Delta-Gamma Approximation

The assumption that V is linear in S holds, for example, for a stock portfolio
if S is the vector of underlying stock prices. But a portfolio with options has
a nonlinear dependence on the prices of underlying assets, and fixed-income
securities depend nonlinearly on interest rates. The model in (9.1) is thus not
universally applicable.

A simple way to extend (9.1) to capture some nonlinearity is to add a
quadratic term. The quadratic produced by Taylor expansion yields the delta-
gamma approximation

∆V ≈ ∂V

∂t
∆t + δ�∆S + 1

2∆S�Γ∆S, (9.2)

where

δi =
∂V

∂Si
, Γij =

∂2V

∂Si∂Sj

are first and second derivatives of V evaluated at (S(t), t). This in turn yields
a quadratic approximation to L = −∆V .

For this approximation to have practical value, the coefficients must be
easy to evaluate and finding the distribution of the approximation must be
substantially simpler than finding the distribution of L itself. As discussed in
Chapter 7, calculating δ and Γ can be difficult; however, these sensitivities
are routinely calculated for hedging purposes by individual trading desks and
can be aggregated (at the end of the day, for example) for calculation of
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firmwide risk. This is a somewhat idealized description — for example, many
off-diagonal gammas may not be readily available — but is sufficiently close
to reality to provide a valid premise for analysis.

If ∆S has a multivariate normal distribution, then finding the distribution
of the approximation in (9.2) requires finding the distribution of a quadratic
function of normal random variables. This can be done numerically through
transform inversion. We detail the derivation of the transform because it is
relevant to the techniques we apply in Section 9.2.

Delta-Gamma: Diagonalization

The first step derives a convenient expression for the approximation. As in
Section 2.3.3, we can replace the correlated normals ∆S ∼ N(0, ΣS) with
independent normals Z ∼ N(0, 1) by setting

∆S = CZ with CC� = ΣS .

In terms of Z, the quadratic approximation to L = −∆V becomes

L ≈ a − (C�δ)�Z − 1
2Z�(C�ΓC)Z (9.3)

with a = −(∆t)∂V/∂t deterministic.
It is convenient to choose the matrix C to diagonalize the quadratic term

in (9.3), and this can be accomplished as follows. Let C̃ be any square matrix
for which C̃C̃� = ΣS , such as the one found by Cholesky factorization. The
matrix − 1

2 C̃�ΓC̃ is symmetric and thus admits the representation

− 1
2 C̃�ΓC̃ = UΛU�

in which

Λ =


λ1

λ2

. . .
λm


is a diagonal matrix and U is an orthogonal matrix (UU� = I) whose columns
are eigenvectors of − 1

2 C̃�ΓC̃. The λj are eigenvalues of this matrix and also
of − 1

2ΓΣS . Now set C = C̃U and observe that

CC� = C̃UU�C̃� = ΣS

and
− 1

2C�ΓC = − 1
2U�(C̃�ΓC̃)U = U�(UΛU�)U = Λ.

Thus, by setting b = −C�δ we can rewrite (9.3) as
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L ≈ a + b�Z + Z�ΛZ

= a +
m∑

j=1

(bjZj + λjZ
2
j ) ≡ Q. (9.4)

The delta-gamma approximation now becomes P (L > x) ≈ P (Q > x), so we
need to find the distribution of Q.

Delta-Gamma: Moment Generating Function

We determine the distribution of Q by deriving its moment generating function
and characteristic function. The moment generating function is finite in a
neighborhood of the origin and, in light of the independence of the summands
in (9.4), factors as

E[eθQ] = eaθ
m∏

j=1

E[eθ(bjZj+λjZ2
j )] ≡ eaθ

m∏
j=1

eψj(θ).

If λj = 0, then (2.26) yields ψj(θ) = b2
jθ

2/2. Otherwise, we write

bjZj + λjZ
2
j = λj

(
Zj +

bj

2λj

)2

−
b2
j

4λj
,

which is a linear transformation of a noncentral chi-square random variable;
see (3.72). Using the identity (equation (29.6) of Johnson, Kotz, and Balakr-
ishnan [202]),

E[exp(θ(Zj + c)2)] = (1 − 2θ)−1/2 exp
(

θc2

1 − 2θ

)
,

for θ < 1/2, we arrive at the expression

ψ(θ) ≡ aθ +
m∑

j=1

ψj(θ) = aθ + 1
2

m∑
j=1

(
θ2b2

j

1 − 2θλj
− log(1 − 2θλj)

)
(9.5)

for log E[exp(θQ)], the cumulant generating function of Q. This equation
holds for all θ satisfying maxj θλj < 1/2.

The characteristic function of Q is obtained by evaluating the moment
generating function at a purely imaginary argument:

φ̂(u) = E[eiuQ] = eψ(iu), i =
√
−1.

The distribution of Q can now be computed through the inversion integral
(Chung [85], p.153)

P (Q ≤ x) − P (Q ≤ x − y) =
1
π

∫ ∞

0

Re
(

φ̂(u)
[
eiuy − 1

iu

]
e−iux

)
du. (9.6)
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Abate, Choudhury, and Whitt [1] discuss algorithms for numerical evaluation
of integrals of this type. To find P (Q ≤ x), choose y large so that P (Q ≤
x − y) ≈ 0.

Although the derivation of this method involves several steps, its imple-
mentation is relatively straightforward and fast. It is developed in this form
by Rouvinez [310]. Studer [338] suggests replacing the ordinary Taylor ex-
pansion in (9.2) with an Itô-Taylor expansion (of the type in Section 6.3.1),
leading to a slightly different quadratic. Britten-Jones and Schaefer [61] use
approximations to the distribution of quadratic functions of normals in place
of transform inversion. Extensions to non-normal risk factors are derived in
Duffie and Pan [104] and (as discussed in Section 9.3.2) Glasserman, Heidel-
berger, and Shahabuddin [144].

Figure 9.1 illustrates the delta-gamma approximation for a simple portfo-
lio. The portfolio consists of short positions of 10 calls and 5 puts on each of
10 underlying assets, with all options 0.10 years from expiration. We value the
portfolio using the Black-Scholes formula for each option, and the quadratic
approximation uses Black-Scholes deltas and gammas. The underlying assets
are uncorrelated and each has a 0.40 volatility.

The scatter plot in Figure 9.1 shows the results of 1000 randomly gener-
ated scenarios ∆S. These scenarios are sampled from a multivariate normal
distribution with independent components ∆Sj , j = 1, . . . , m. Each ∆Sj has
mean 0 and standard deviation Sj(0)σj

√
∆t, with ∆t = 0.04 years or about

two weeks. For each ∆S, we revalue the portfolio at time t + ∆t and underly-
ing prices S + ∆S using the Black-Scholes formula; this gives the horizontal
coordinate for each scenario. We also compute the quadratic approximation
by substituting ∆S and ∆t in the delta-gamma formula (9.2); this gives the
vertical coordinate for each scenario. The scatter plot illustrates the strong
relation between the exact and approximate losses in this example.

There is an evident inconsistency in this example between the model used
to generate scenarios and the formula used to value the portfolio. This is
representative of the standard practice of using fairly rough models to de-
scribe market risk while using more detailed models to price derivatives. It
should also be noted that, in theory, ∆S should be sampled from the objective
probability measure describing actual market movements — whereas pricing
formulas ordinarily depend on the risk-neutral dynamics of underlying assets
— so some inconsistency in how we model S for the two steps is appropri-
ate. Most importantly, the use of the Black-Scholes formula in this example
is convenient but by no means essential.

Our main interest in the delta-gamma approximation lies in accelerating
Monte Carlo simulation. Even in cases in which the method may not by itself
provide an accurate approximation to the loss distribution, it can provide a
powerful tool for variance reduction.
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Fig. 9.1. Comparison of delta-gamma approximation and actual portfolio losses in
1000 randomly generated scenarios for a portfolio of 150 options.

Monte Carlo Simulation

Estimating loss probabilities and VAR by simulation is simple in concept, as
illustrated by the following algorithm:

◦ For each of n independent replications
– generate a vector of market moves ∆S;
– revalue portfolio and compute loss V (S, t) − V (S + ∆S, t + ∆t).

◦ Estimate P (L > x) using

1
n

n∑
i=1

1{Li > x}

where Li is the loss on the ith replication.

The bottleneck in this algorithm is the portfolio revaluation step. For a
large portfolio of complex derivative securities, each revaluation may require
running thousands of numerical pricing routines. Individual pricing routines
may involve numerical integration, solving partial differential equations, or
even running a separate simulation (as alluded to in Example 1.1.3). This
makes variance reduction essential to achieving accurate estimates with rea-
sonable computational effort. We return to this topic in Section 9.2.

“Historical simulation” is a special case of this algorithm in which the sce-
narios ∆S are drawn directly from historical data — daily price changes over
the past year, for example. Past observations of changes ∆S in the underly-
ing risk factors are applied to the current portfolio to produce a histogram
of changes in portfolio value. This approach is sometimes defended on the
grounds that it is easy to explain to a nontechnical audience; but the his-
torical distribution of ∆S inevitably has gaps, especially in the tails. Fitting
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a theoretical distribution (or at least smoothing the tails) and then apply-
ing Monte Carlo gets around this artificial feature of the purely data-driven
implementation.

Quantile Estimation

The simulation algorithm above estimates loss probabilities P (L > x) rather
than VAR and it is in this context that we discuss variance reduction tech-
niques. Before doing so, we briefly discuss the estimation of VAR itself.

Let F̂L,n denote the empirical distribution of portfolio losses based on n
simulated replications,

F̂L,n(x) =
1
n

n∑
i=1

1{Li ≤ x}.

A simple estimate of the VAR at probability p (e.g., p = 0.01) is the empirical
quantile

x̂p = F̂−1
L,n(1 − p),

with the inverse of the piecewise constant function F̂L,n defined as in (2.14).
Applying piecewise linear interpolation to F̂L,n before taking the inverse gen-
erally produces more accurate quantile estimates. (See Avramidis and Wilson
[30] for a comparison of simulation-based quantile estimators, including sev-
eral using antithetic and Latin hypercube sampling.)

Under minimal conditions (as in Serfling [326], p.75), the empirical quantile
x̂p converges to the true quantile xp with probability 1 as n → ∞. A central
limit theorem provides additional information on the quality of convergence.
For this we assume that L has a strictly positive density f in a neighborhood
of xp. Then

√
n(x̂p − xp) ⇒

√
p(1 − p)
f(xp)

N(0, 1), (9.7)

as shown, for example, in Serfling [326], p.77. The term p(1−p) is the variance
of the loss indicator 1{L > xp}. We see from (9.7) that this variance is mag-
nified by a factor of 1/f(xp)2 when we estimate the quantile rather than the
loss probability. This factor is potentially very large, especially if p is small,
because the density is likely to be close to zero in this case. We will see that
by reducing variance in estimates of P (L > x) for x near xp, we can reduce
the variance in this central limit theorem for the VAR estimate.

Equation (9.7) provides the basis for a large-sample 1 − α confidence in-
terval for xp of the form

x̂p ± zα/2

√
p(1 − p)

f(xp)
√

n
,
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with 1−Φ(zα/2) = α/2. The interval remains asymptotically valid with f(xp)
replaced by f(x̂p) if f is continuous at xp. However, its reliance on evaluating
the density f makes this interval estimate impractical. To avoid this step, one
may divide the sample of n observations into batches, compute an estimate x̂p

from each batch, and form a confidence interval based on the sample standard
deviation of the estimates across batches.

An alternative confidence interval not relying on a central limit theorem
and valid for finite n uses the fact that the number of samples exceeding xp

has a binomial distribution with parameters n and p. Let

L(1) ≤ L(2) ≤ · · · ≤ L(n) (9.8)

denote the order statistics of the Li. An interval of the form [L(r), L(s)), r < s,
covers xp with probability

P (L(r) ≤ xp < L(s)) =
s−1∑
i=r

(
n

i

)
(1 − p)ipn−i.

The values r and s can be chosen to bring this probability close to the desired
confidence level 1 − α. These values do not depend on the loss distribution
FL.

Approximate Simulation

We noted previously that the bottleneck in using Monte Carlo simulation for
estimating loss probabilities and VAR lies in portfolio revaluation. It follows
that there are two basic strategies for accelerating simulation:

◦ reduce the number of scenarios required to achieve a target precision by
applying a variance reduction technique; or

◦ reduce the time required for each scenario through approximate portfolio
revaluation.

Our focus in the next section is on a specific set of techniques for the first
strategy. The second strategy is also promising but has received less systematic
study to date.

A general approach to approximate revaluation undertakes exact valuation
in a moderate number of scenarios (generated randomly or deterministically)
and fits a function to the value surface using some form of interpolation or
nonlinear regression. If the fitted approximation is easy to evaluate, then using
it in place of V (S + ∆S, t + ∆t) in the simulation algorithm makes it feasible
to generate a much larger number of scenarios and compute (approximate)
losses in each. The challenge in this approach lies in selecting an appropriate
functional form and — especially for high-dimensional S — computing enough
exact values to obtain a good fit.

The problem simplifies if the portfolio value is “separable” in the sense
that each instrument in the portfolio depends on only a small number of risk
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factors, though the total number of risk factors may be large. In the extreme
case of total separation, the portfolio value can be expressed as

V (S, t) = V1(S1, t) + · · · + Vm(Sm, t)

where Vj gives the value of all instruments sensitive to Sj (and only to Sj).
Suppose evaluating the functions Vj is time-consuming. Evaluating each

Vj at just two values of Sj yields the value of V at 2m points if we take all
vectors (S1, . . . , Sm) formed by combinations of the pairs of Sj values. Similar
though less dramatic savings apply if V decomposes as a sum of functions of,
say, 2–5 arguments each if m is much larger than 5.

Variants of this general approach are described by Jamshidian and Zhu
[198], Picoult [297], and Shaw [329]. Jamshidian and Zhu [198] propose a
partitioning and weighting of the set of possible S, using principal components
analysis (keeping only the most important components) to reduce the number
of risk factors. Abken [2] tests the method on portfolios of multicurrency
interest rate derivatives and reports mixed results.

9.2 Variance Reduction Using the Delta-Gamma
Approximation

We stressed in Chapter 4 that effective variance reduction takes advantage
of special features of a simulated model. In simulating portfolio losses we
should therefore look for information available that could be used to im-
prove precision. One source of information are the results of simulations of
the portfolio’s value in recent days under presumably similar market condi-
tions; this potentially effective direction has not received systematic study to
date. Another source of information for variance reduction is the quadratic
delta-gamma approximation (9.2) to portfolio value (or the linear delta ap-
proximation (9.1)), and this is the case we treat in detail. This strategy for
variance reduction leads to interesting theoretical results (especially in impor-
tance sampling) and effective variance reduction. The techniques we discuss
are primarily from Glasserman, Heidelberger, and Shahabuddin (henceforth
GHS) [143, 142, 144].

In order to use the delta-gamma approximation, we assume throughout
this section that the changes in risk factors ∆S are multivariate normal
N(0, ΣS). Section 9.3 develops extensions to a class of heavy-tailed distri-
butions. The techniques discussed in this section are applicable with any
quadratic approximation and thus could in principle be used with a hedged
portfolio in which all deltas and gammas are zero, provided a less local
quadratic approximation could be computed. As discussed in Section 9.1.2,
the delta-gamma approximation has the advantage that it may be available
with little or no additional computational effort.



9.2 Variance Reduction Using the Delta-Gamma Approximation 493

9.2.1 Control Variate

The simplest way to take advantage of the delta-gamma approximation L ≈ Q
applies it as a control variate. On each replication (meaning for each simulated
market move ∆S), evaluate Q along with the portfolio loss L. Using the
representation in (9.4) is convenient if we generate ∆S as CZ with Z ∼
N(0, I) and C the matrix constructed in the derivation of (9.4). Let (Li, Qi),
i = 1, . . . , n, be the values recorded on n independent replications. A control
variate estimator of P (L > x) is given by

1 − F̂ cv
L (x) =

1
n

n∑
i=1

1{Li > x} − β̂

(
1
n

n∑
i=1

1{Qi > y} − P (Q > y)

)
. (9.9)

An estimate β̂ of the variance-minimizing coefficient can be computed from
the (Li, Qi) as explained in Section 4.1.1.

As suggested by the notation in (9.9), the threshold y used for Q need not
be the same as the one applied to L, though it often would be in practice.
We could construct multiple controls by using multiple thresholds for Q. The
exact probability P (Q > y) needed for the control is evaluated using the
inversion integral in (9.6).

The control variate estimator (9.9) is easy to implement and numerical
experiments reported in Cardenas et al. [76] and GHS [142] indicate that it
often reduces variance by a factor of 2–5. However, the estimator suffers from
two related shortcomings:

◦ Even if L and Q are highly correlated, the loss indicators 1{L > x} and
1{Q > y} may not be, especially for large x and y. This is relevant because
the variance reduction achieved is (at best) ρ2, with ρ the correlation
between the indicators; see the discussion in Section 4.1.1.

◦ If x and y are large, few simulations produce values of L or Q greater than
these thresholds. This makes it difficult to estimate the optimal coefficient
β and thus further erodes the variance reduction achieved.

Both of these points are illustrated in Figure 9.1. Although the correla-
tion between exact and approximate losses is very high in this example, it
is weakest in the upper-right corner, the area of greatest interest, and few
observations fall in this area.

An indirect illustration of the first point above is provided by the normal
distribution. If a pair of random variables (X, Y ) has a bivariate normal dis-
tribution with correlation ρ, then the correlation of the indicators 1{X > u}
and 1{Y > u} approaches zero as u → ∞ if |ρ| = 1; see Embrechts et al.
[112].

Quantile Estimation

Using the control variate to estimate a quantile xp, (at which P (L > xp) = p)
requires inverting F̂ cv

L in (9.9) to find a point x̂p at which F̂ cv
L (x̂p) ≈ 1 − p.
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This appears to require recomputing the coefficient β̂ for multiple values of
x. But Hesterberg and Nelson [178] show that this can be avoided, as we now
explain.

Their method uses the connection between control variate estimators and
weighted Monte Carlo discussed in Section 4.1.2. Using (4.19), the control
variate estimator (9.9) can be expressed as

1 − F̂ cv
L (x) =

m∑
i=1

Wi1{Li > x} =
∑

i:Li>x

Wi,

where the weights Wi depend on Q1, . . . , Qn and y but not on L1, . . . , Ln or
x. Thus, F̂ cv

L (x) can be evaluated at multiple values of x simply by summing
over the appropriate set of weights, without recalculation of β̂.

Through this representation of the control variate estimator of the distri-
bution of L, the quantile estimator

x̂p = inf{x : 1 − F̂ cv
L (x) ≤ p}

becomes
x̂p = inf{x :

∑
i:Li>x

Wi ≤ p}.

Let L(i), i = 1, . . . , n, denote the order statistics of the Li, as in (9.8) and let
W (i) denote the weight corresponding to L(i). Then x̂p = L(ip) where

ip = min{k :
n∑

i=k+1

W (i) ≤ p}.

To smooth the estimator using linear interpolation, find α for which

α

n∑
i=ip

W (i) + (1 − α)
n∑

i=ip+1

W (i) = p

and then estimate the quantile as

x̂p = αL(ip−1) + (1 − α)L(ip).

This procedure is further simplified by the observation in Hesterberg and
Nelson [178] that for (9.9), the weights reduce to

Wi =

{
nP (Q ≤ y)/

∑n
j=1 1{Qj ≤ y}, if Qi ≤ y,

nP (Q > y)/
∑n

j=1 1{Qj > y}, if Qi > y.

This shows that the control variate estimator in (9.9) weights each indicator
1{Li > x} by the ratio of an exact and estimated probability for Q. As
further observed by Hesterberg and Nelson [178], this makes it a poststratified
estimator of P (L > x) with stratification variable Q and strata {Q ≤ y} and
{Q > y}. We will have more to say about using Q as a stratification variable
in Section 9.2.3.
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9.2.2 Importance Sampling

The control variate estimator (9.9) uses knowledge of the delta-gamma ap-
proximation Q after simulating replications of ∆S in order to adjust the aver-
age of the loss indicators 1{Li > x}. But as already noted, if we observe few
replications in which Qi > y, we have little information on which to base the
adjustment. This is evident in the connection with poststratification as well.

Through importance sampling, we can use the delta-gamma approximation
to guide the sampling of scenarios before we compute losses, rather than to
adjust our estimate after the scenarios are generated. In particular, we can
try to use our knowledge of the distribution of Q to give greater probability
to “important” scenarios in which L exceeds x. This idea is developed in GHS
[142, 143, 144].

Before proceeding with the details of this approach, consider the qualita-
tive information provided by the approximation

L ≈ Q = a +
m∑

j=1

bjZj +
m∑

j=1

λjZ
2
j ,

with the Zj independent standard normals, as in (9.4). The Zj do not corre-
spond directly to the original changes in market prices ∆Sj , but we can think
of them as primitive sources of risk that drive the market changes through
the relation ∆S = CZ. Also, since Z = C−1∆S, each Zj could be interpreted
as the change in value of a portfolio of linear positions in the elements of S.

What does this approximation to L say about how large losses occur? It
suggests that large losses occur when

(i) Zj is large and positive for some j with bj > 0;
(ii) Zj is large and negative for some j with bj < 0; or
(iii) Z2

j is large and positive for some j with λj > 0.

This further suggests that to make large losses more likely, we should

(i’) give a positive mean to those Zj for which bj > 0;
(ii’) give a negative mean to those Zj for which bj < 0; and
(iii’) increase the variance of those Zj for which λj > 0.

Each of the changes (i’)–(iii’) increases the probability of the corresponding
event (i)–(iii). We develop an importance sampling procedure that makes these
qualitative changes precise.

Exponential Twisting

In our discussion of importance sampling in Section 4.6, we saw examples in
which an exponential change of measure leads to dramatic variance reduction.
If our goal were to estimate P (Q > x) rather than P (L > x), this would lead
us to consider importance sampling based on “exponentially twisting” Q. In
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more detail (cf. Example 4.6.2), this means defining a family of probability
measures Pθ through the likelihood ratio

dPθ

dP
= eθQ−ψ(θ), (9.10)

with ψ the cumulant generating function in (9.5) and θ any real number at
which ψ(θ) < ∞. Writing Eθ for expectation under the new measure, we have

P (Q > x) = Eθ

[(
dP

dPθ

)
1{Q > x}

]
= Eθ

[
e−θQ+ψ(θ)1{Q > x}

]
.

To use this in simulation, we would need to generate Q from its distribution
under Pθ and then use the average of independent replications of

e−θQ+ψ(θ)1{Q > x}

to estimate P (Q > x).
If θ is positive, then Pθ gives greater probability to large values of Q than

P = P0 does, thus increasing the probability of the event {Q > x} for large
x, which is intuitively appealing. More precisely, the second moment of this
importance sampling estimator is

Eθ

[
e−2θQ+2ψ(θ)1{Q > x}

]
= E

[
e−θQ+ψ(θ)1{Q > x}

]
≤ e−θx+ψ(θ), (9.11)

which decreases exponentially in x if θ is positive.
This idea extends to the more relevant problem of estimating P (L > x).

Using Pθ as defined in (9.10), we have

P (L > x) = Eθ

[
e−θQ+ψ(θ)1{L > x}

]
;

the expression inside the expectation on the right is an unbiased importance
sampling estimator of the loss probability. Its second moment is

E
[
e−θQ+ψ(θ)1{L > x}

]
,

which is small if θ > 0 and Q is large on the event {L > x}.

Sampling from the Twisted Distribution

To use this estimator, we need to be able to generate independent replications
of

e−θQ+ψ(θ)1{L > x}
under the θ-twisted distribution. In other words, we need to be able to simu-
late the pair (Q, L) under Pθ. But recall from the generic simulation algorithm
of Section 9.1.2 that, even in the absence of importance sampling, we do not



9.2 Variance Reduction Using the Delta-Gamma Approximation 497

generate (Q, L) directly; instead we generate Z and then evaluate Q and L
from Z (through ∆S = CZ). Thus, (Q, L) = f(Z) for some deterministic
function f . Sampling Z from the standard multivariate normal distribution
gives (Q, L) its distribution under the original probability measure P ; to sim-
ulate (Q, L) under Pθ, it suffices to sample Z from its distribution under the
new measure.

What is the distribution of Z under Pθ? In other words, what is

Pθ(Z1 ≤ z1, . . . , Zm ≤ zm) = E
[
eθQ−ψ(θ)1{Z1 ≤ z1, . . . , Zm ≤ zm}

]
?

It is shown in GHS [143] that, rather remarkably, the Pθ-distribution of
Z is still multivariate normal, but with a new mean vector and covari-
ance matrix determined by the delta-gamma approximation. In particular,
Z ∼ N(µ(θ), Σ(θ)) where Σ(θ) is a diagonal matrix with diagonal entries
σ2

j (θ),

µj(θ) =
θbj

1 − 2λjθ
, σ2

j (θ) =
1

1 − 2λjθ
. (9.12)

Recall that in (9.5) we required 2λjθ < 1 so that ψ(θ) < ∞.
To show that this is indeed the Pθ-distribution of Z, it is easiest to argue

in the opposite direction. For arbitrary µ and Σ, the likelihood ratio relating
the density of N(µ, Σ) to N(0, I) is given by

|Σ|−1/2 exp
(
− 1

2 (Z − µ)�Σ−1(Z − µ)
)

exp
(
− 1

2Z�Z
) , (9.13)

the ratio of the two densities evaluated at Z. Substituting the specific para-
meters (9.12) and applying some simplifying algebra shows that this reduces
to exp(θQ − ψ(θ)), with Q related to Z through (9.4). Because this is the
likelihood ratio used to define Pθ, we may indeed conclude that under Pθ the
Zj are independent normals with the means and variances in (9.12). If µ and
Σ are chosen arbitrarily, (9.13) depends on the entire vector Z. For the spe-
cial case of (9.12), the dependence of the likelihood ratio on Z collapses to
dependence on Q. This is a key feature of this importance sampling strategy.

The new means and variances defined by (9.12) have the qualitative fea-
tures (i’)–(iii’) listed above for any θ > 0, so (9.10) is consistent with these
insights into how the delta-gamma approximation should guide the sampling
of scenarios. If all the λj are close to zero, we might use just the linear term
in Q (a delta-only approximation) for importance sampling. The parameters
in (9.12) would then reduce to a change of mean for the vector Z in a manner
consistent with features (i’) and (ii’).

Importance Sampling Algorithm

We can now summarize the ideas above in the following algorithm for esti-
mating portfolio loss probabilities through importance sampling:
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1. Choose a value of θ > 0 at which ψ(θ) < ∞. (More on this shortly.)
2. For each of n replications

(a) generate Z from N(µ(θ), Σ(θ)) with parameters given in (9.12);
(b) evaluate Q from Z using (9.4);
(c) set ∆S = CZ;
(d) calculate portfolio value V (S + ∆S, t + ∆t) and loss L;
(e) calculate

e−θQ+ψ(θ)1{L > x}. (9.14)

3. Calculate average of (9.14) over the n replications.

Rather little in this algorithm differs from the standard Monte Carlo al-
gorithm given in Section 9.1.2. In particular, the core of the algorithm —
invoking all the routines necessary to revalue the portfolio in step 2(d) —
is unchanged. Step 2(a) is only slightly more complicated than generating Z
from N(0, I). Step 2(c) would be needed even without importance sampling,
though here we require C to be the specific matrix constructed in deriving
(9.4) rather than an arbitrary matrix for which CC� = ΣS .

Choice of Twisting Parameter

Step 1 of the importance sampling algorithm requires us to choose θ, so we
now discuss the selection of this parameter. In the absence of additional infor-
mation, we choose a value of θ that would be effective in estimating P (Q > x)
and apply this value in estimating P (L > x).

In (9.11) we have an upper bound on the second moment of the importance
sampling estimator of P (Q > x) for all x and all θ at which ψ(θ) < ∞. We can
minimize this upper bound for fixed x by choosing θ to minimize ψ(θ)−θx. The
fact that ψ is convex (because it is a cumulant generating function) implies
that this expression is minimized at θx, the root of the equation

ψ′(θx) = x. (9.15)

This equation is illustrated in Figure 9.2.
In addition to minimizing an upper bound on the second moment of the

estimator, the parameter θx has an interpretation that sheds light on this ap-
proach to importance sampling. Equation (9.10) defines an exponential family
of probability measures, a concept we discussed in Section 4.6.1, especially in
Example 4.6.2. As a consequence, we have

ψ′(θ) = Eθ[Q] (9.16)

for any θ at which ψ(θ) is finite. This follows from differentiating the definition
ψ(θ) = log E[exp(θQ)] to get
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θ

ψ(θ)

ψ '(θ)=x

Fig. 9.2. Twisting parameter θ satisfying ψ′(θ) = x.

ψ′(θ) =
E[QeθQ]
E[eθQ]

= E[QeθQ−ψ(θ)].

Choosing the parameter θ to use for importance sampling is thus equivalent to
choosing Eθ[Q], the expected value of the delta-gamma approximation under
the new distribution. By choosing θ = θx as in (9.15), we are sampling from
a distribution under which

Eθx [Q] = x.

Whereas x was in the tail of the distribution under the original distribution,
it is near the center of the distribution when we apply importance sampling.

Asymptotic Optimality

GHS [143] prove an asymptotic optimality result for this approach to impor-
tance sampling when applied to estimation of P (Q > x). This should be in-
terpreted as indirect evidence that the approach is also effective in estimating
the actual loss probability P (L > x). Numerical examples in GHS [142, 143]
applying the approach to estimating loss probabilities in test portfolios lend
further support to the method.

The asymptotic optimality result (from Theorems 1 and 2 of [143]) is
as follows. Suppose λmax ≡ max1≤i≤m λi, the largest of the eigenvalues of
−ΓΣS/2 (as in (9.4)), is strictly positive; then the tail of Q satisfies

P (Q > x) = exp
(
− 1

2λmaxx + o(x)
)
,

and the second moment of the importance sampling estimator satisfies

Eθx

[
e−2θxQ+2ψ(θx)1{Q > x}

]
= exp (−λmaxx + o(x)) .
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Thus, as x increases, the second moment decreases at twice the exponential
rate of the probability itself. As explained in Example 4.6.3, this is the fastest
possible rate of decrease of any unbiased estimator. In this sense, the impor-
tance sampling estimator is asymptotically optimal.

Theorem 3 of GHS [143] establishes an asymptotic optimality result when
λmax < 0; this case is less interesting because it implies that Q is bounded
above. Theorem 4 of GHS [143] analyzes the effect of letting the number of
risk factors m increase and establishes a type of asymptotic optimality in this
case as well.

To estimate the tail P (Q > y) at many values of y — in order to estimate
a quantile, for example — one would want to use estimators of the form

e−θxQ+ψ(θx)1{Q > y},

rather than use a separate value of θ for each point y. Theorem 5 of GHS
[143] shows that this can be done without sacrificing asymptotic optimality.
More fundamentally, the effectiveness of the estimator is not very sensitive to
the value of θ used. In practice, to estimate loss probabilities over a range of
large values of y, it is advisable to choose θ = θx for x near the middle or left
endpoint of the range. At loss thresholds that are not “large” there is no need
to apply importance sampling.

Through a result of Glynn [154], variance reduction for tail probabilities
using importance sampling translates to variance reduction for quantile esti-
mates. In the central limit theorem (9.7) for quantile estimation, the factor
p(1−p) is the variance of the indicator function of the event that the quantile
xp is exceeded. With importance sampling, this factor gets replaced by the
variance of the importance sampling estimator of the probability of this event.
See Theorem 6 of GHS [144].

9.2.3 Stratified Sampling

To further reduce variance, we now apply stratified sampling to the estimator
(9.14) by stratifying Q. If the true loss L were exactly equal to the Q, this
would remove all variance, in the limit of infinitely fine stratification. (See
the discussion following equation (4.46).) This makes the approach attractive
even if Q is only an approximation to L.

Stratifying Q in (9.14) is a special case of a more general variance reduction
strategy of applying importance sampling by exponentially twisting a random
variable and then stratifying that random variable. This is then equivalent to
stratifying the likelihood ratio and thus to removing variance that may have
been introduced through the likelihood ratio. We encountered this strategy in
Section 4.6.2 where we applied importance sampling to add a mean vector µ
to a normal random vector Z and then stratified µ�Z.

Recall from our general discussion in Section 4.3 that to apply stratified
sampling to the pair (Q, L) with stratification variable Q, we need to address
two issues:
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◦ We need to find intervals Ak, k = 1, . . . , K, of known (and perhaps of
equal) probability for Q; these are the strata.

◦ We need a mechanism for sampling (Q, L) conditional on Q falling in a
particular stratum.

Once we have strata partitioning the real line, we use the decomposition

Eθ[e−θQ+ψ(θ)1{L > x}] =
K∑

k=1

Pθ(Q ∈ Ak)Eθ[e−θQ+ψ(θ)1{L > x}|Q ∈ Ak].

(9.17)
We estimate each conditional expectation by sampling (Q, L) conditional on
Q ∈ Ak and combine these estimates with the known stratum probabilities
Pθ(Q ∈ Ak).

Defining Strata

As explained in Example 4.3.2, defining strata for a random variable is in prin-
ciple straightforward given its cumulative distribution function. In the case of
Q, the cumulative distribution is available through transform inversion. How-
ever, some modification of the inversion integral (9.6) is necessary because for
(9.17) we need the distribution of Q under the importance sampling measure
Pθ.

Conveniently, Q remains a quadratic function of normal random variables
under Pθ because each Zj remains normal under Pθ. Using the parameters in
(9.12), we find that

Z̃j =
Zj − µj(θ)

σj(θ)
, j = 1, . . . , m,

are independent N(0, 1) random variables under Pθ. From (9.4), we get

Q = a +
m∑

j=1

(bj(µj + σj Z̃j) + λj(µj + σj Z̃j)2)

≡ ã +
m∑

j=1

(b̃jZ̃j + λ̃jZ̃j)2,

the new coefficients defined by matching terms. The cumulant generating
function of Q under Pθ now has the form in (9.5) but with the new coefficients.

A somewhat simpler derivation observes that the new cumulant generating
function — call it ψθ — satisfies

ψθ(u) = log Eθ[euQ] = log Eθ[euQeθQ−ψ(θ)] = ψ(θ + u) − ψ(θ).

The characteristic function of Q under the new measure is thus given by
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φ̂θ(u) = Eθ[eiuQ] = eψ(θ+iu)−ψ(θ), i =
√
−1. (9.18)

Using this function in the inversion integral (9.6) yields the distribution

Fθ(x) = Pθ(Q ≤ x).

By computing (9.6) iteratively we can find points ak at which Fθ(ak) = p1 +
· · · + pk for desired stratum probabilities pi and then set Ak = (ak−1, ak).
The endpoints of the intervals have zero probability and may be omitted or
included.

Conditional Sampling

Given a mechanism for evaluating the distribution Fθ (in this case through
transform inversion), we could generate Q conditional on Q ∈ Ak using the
inverse transform method as in Example 4.3.2. However, to use the strati-
fied decomposition (9.17), we need a mechanism to generate the pair (Q, L)
conditional on Q ∈ Ak and this is less straightforward.

Whether or not we apply stratified sampling, we do not generate (Q, L)
directly. Rather, we generate a normal random vector Z and then evaluate
both Q and L as functions of Z; see the algorithm of Section 9.2.2. To sample
(Q, L) conditional on Q ∈ Ak, we therefore need to sample Z conditional on
Q ∈ Ak and then evaluate L (and Q) from Z.

The analogous step in Section 4.6.2 required us to generate Z conditional
on µ�Z, and this proved convenient because the conditional distribution is
itself normal. However, no similar simplification applies in generating Z given
Q; see the discussion of radial stratification in Section 4.3.2.

In the absence of a direct way of generating Z conditional on the value of
a quadratic function of Z, GHS [143] use a brute-force acceptance-rejection
method along the lines of Example 2.2.8. The method generates independent
replications of Z from N(µ(θ), Σ(θ)), its unconditional distribution under Pθ,
evaluates Q, and assigns Z to stratum k if Q ∈ Ak. If no more samples for
this stratum are needed, Z is simply discarded.

This is illustrated in Figure 9.3 for an example with Q = λ1Z
2
1 + λ2Z

2
2

and positive λ1, λ2. The four strata of the distribution of Q in the lower part
of the figure define the four elliptical strata for (Z1, Z2) in the upper part of
the figure. The target sample size is eight. The labels on the points show the
order in which they were generated and the labels under the density show
which samples have been accepted for which strata. The points labeled 6, 9,
and 10 have been rejected because their strata are full; the second stratum
needs one more observation, so more candidates need to be generated.

To formulate this procedure more generally, suppose we have defined strata
A1, . . . , AK for Q and want to generate nk samples from stratum k, k =
1, . . . , K. Consider the following algorithm:
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Fig. 9.3. Illustration of stratified sampling by acceptance-rejection. The strata of
the density of Q define elliptical strata for (Z1, Z2). The labels under the density
indicate the points accepted for each stratum in generating a sample of size eight.

◦ initialize stratum counters Nk ← 0, k = 1, . . . , K
◦ repeat

— generate Z ∼ N(µ(θ), Σ(θ))
— evaluate Q
— find κ such that Q ∈ Aκ

— if Nκ < nκ

Nκ ← Nκ + 1
ZκNκ ← Z

until all Nk = nk, k = 1 . . . , K

For each stratum k = 1, . . . , K, this algorithm produces samples Zkj ,
j = 1 . . . , nk, with the property that Q evaluated at Zkj is in Ak. Also, each
accepted Zkj has the conditional distribution of Z given Q ∈ Ak.

This algorithm potentially generates many more candidate values of Z
than the total number required (which is n1 + · · · + nK) and in this respect
may seem inefficient. But executing the steps in this algorithm can take far
less time than revaluing the portfolio at each outcome of Z. In that case,
expending the effort to generate stratified scenarios is justified. Appendix A
of GHS [143] includes an analysis of the overhead due to this acceptance-
rejection algorithm. It indicates, for example, that in generating 20 samples
from each of 100 equiprobable strata, there is less than a 5% chance that the
number of candidates generated will exceed 3800.

Write Qkj and Lkj for the values of Q and L computed from Zkj , j =
1, . . . , nk, k = 1, . . . , K. Then the (Qkj , Lkj) form a stratified sample from
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the distribution of (Q, L) with stratification variable Q. These can now be
combined as in (4.32) to produce the estimator

K∑
k=1

Pθ(Q ∈ Ak)
1
nk

nk∑
j=1

e−θQkj+ψ(θ)1{Lkj > x}

of the loss probability P (L > x).
Numerical results reported in GHS [143] show that this combination of

importance sampling and stratification can substantially reduce variance, es-
pecially at values of x for which P (L > x) is small. The results in [143] use
strata that are equiprobable under the θ-twisted distribution, meaning that

Pθ(Q ∈ A1) = · · · = Pθ(Q ∈ AK) =
1
K

,

and a proportional allocation of samples to strata (in the sense of Sec-
tion 4.3.1). GHS [141] propose and test other allocation rules. They find that
some simple heuristics can further reduce variance by factors of 2–5.

If we use only the linear part of Q (a delta-only approximation) for impor-
tance sampling and stratification, then Q and Z are jointly normal and the
conditional distribution of Z given Q is again normal. In this case, the con-
ditional sampling can be implemented more efficiently by sampling directly
from this conditional normal distribution; see Section 4.3.2.

Poststratification

An alternative to using acceptance-rejection for stratification uses uncondi-
tional samples of Z and weights the stratum averages by the stratum proba-
bilities. This is poststratification, as discussed in Section 4.3.3. Let Z1, . . . , Zn

be independent samples from N(µ(θ), Σ(θ)). Let Nk be the random number
of these falling in stratum k, k = 1, . . . , K, and label these Zkj , j = 1, . . . , Nk.
Let (Qkj , Lkj) be the values computed from Zkj . The poststratified estimator
is

K∑
k=1

Pθ(Q ∈ Ak)
1

Nk

Nk∑
j=1

e−θQkj+ψ(θ)1{Lkj > x}.

Take the kth term to be zero if Nk = 0.
As shown in Section 4.3.3, the poststratified estimator achieves the same

variance reduction as the genuinely stratified estimator in the limit as the
same size increases. If L is much more time-consuming to evaluate than Q (as
would often be the case in practice), then stratification through acceptance-
rejection is preferable; otherwise, the poststratified estimator offers a faster
alternative.
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Numerical Examples

Table 9.1 compares variance reduction factors using the delta-gamma approx-
imation as a control variate (CV), for importance sampling (IS), and for com-
bined importance sampling and stratification (IS-S). These results are from
GHS [142]; more extensive results are reported there and in [143].

The results in the table are for portfolios of options on 10 or 100 underlying
assets. The assets are modeled as geometric Brownian motion, and option
prices, deltas, and gammas use Black-Scholes formulas. Each underlying asset
has a volatility of 0.30 and the assets are assumed uncorrelated except in
the last case. We assume a risk-free interest rate of r = 5%; for purposes of
these examples, we do not distinguish between the real and risk-neutral rates
of return on the assets, using r for both. We use the following simple test
portfolios:

(A) Short positions in 10 calls and 5 puts on each of 10 underlying assets, all
options expiring in 0.1 years.

(B) Same as (A), but with the number of puts increased to produce a net
delta of zero.

(C) Short positions in 10 calls and 10 puts on each of 100 underlying assets,
all options expiring in 0.1 years.

(D) Same as (C), but with each pair of underlying assets having correlation
0.2.

We use portfolios of short positions so that large moves in the prices of
the underlying assets produce losses. In each case, we use a loss threshold x
resulting in a loss probability P (L > x) near 5%, 1%, or 0.5%. This threshold
is specified in the table through xstd, the number of standard deviations above
the mean in the distribution of Q:

x = E[Q] + xstd

√
Var[Q]

= a +
m∑

j=1

λj + xstd

√√√√ m∑
j=1

(b2
j + 2λ2

j).

The results displayed in the last three columns of Table 9.1 are variance
reduction factors. Each is the ratio of variances using ordinary Monte Carlo
and using a variance reduction technique. The results indicate that the delta-
gamma control variate (column CV) yields modest variance reduction and that
its effectiveness generally decreases at smaller loss probabilities. Importance
sampling (IS) yields greater variance reduction, especially at the smallest loss
probabilities. The combination of importance sampling and stratification (IS-
S) yields very substantial variance reduction. The variance ratios in the table
are estimated using 120,000 replications for each method, with 40 strata and
3000 replications per strata for the IS-S results.
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Variance Ratios
Portfolio xstd P (L > x) CV IS IS-S

(A) 1.8 5.0% 5 7 30
2.6 1.1% 3 22 70
3.3 0.3% 2 27 173

(B) 1.9 4.7% 3 6 14
2.8 1.1% 2 18 30
3.2 0.5% 2 28 48

(C) 2.5 1.0% 3 27 45
(D) 2.5 1.0% 2 10 23

Table 9.1. Variance reduction factors in estimating loss probabilities using the
delta-gamma approximation as a control variate (CV), for importance sampling
(IS), and for importance sampling with stratification (IS-S).

More extensive results are reported in GHS [143]. Some of the test cases
included there are specifically designed to challenge the methods. These in-
clude portfolios of digital and barrier options combined in proportions that
yield a net delta of zero. None of the variance reduction methods based on
Q is effective in the most extreme cases, but the overall pattern is similar to
the results in Table 9.1: importance sampling is most effective at small loss
probabilities and stratification yields substantial additional variance reduc-
tion. Similar observations apply in estimating a conditional excess loss; the
variance reduction achieved in estimating E[L|L > x] is usually about the
same as that achieved in estimating P (L > x).

9.3 A Heavy-Tailed Setting

9.3.1 Modeling Heavy Tails

We noted in Section 9.1.1 that the normal distribution has shortcomings as a
model of changes in market prices: in virtually all markets, the distribution of
observed price changes displays a higher peak and heavier tails than can be
captured with a normal distribution. This is especially true over short time
horizons; see, for example, the daily return statistics in Appendix F of Duffie
and Pan [103]. High peaks and heavy tails are characteristic of a market with
small price changes in most periods accompanied by occasional very large
price changes.

While other theoretical distributions may do a better job of fitting market
data, the normal distribution offers many convenient properties for modeling
and computation. Choosing a description of market data thus entails a com-
promise between realism and tractability. This section shows how some of the
methods of Section 9.2 can be extended beyond the normal distribution to
capture features of market data.
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The qualitative property of having a high peak and heavy tails is often
measured through kurtosis. The kurtosis of a random variable X with mean
µ is given by

E[(X − µ)4]
(E[(X − µ)2])2

,

assuming X has a finite fourth moment. Every normal random variable has
a kurtosis of 3; distributions are sometimes compared on the basis of excess
kurtosis, the difference between the kurtosis and 3. A sample kurtosis can
be calculated from data by replacing the expectations in the definition with
sample averages.

Kurtosis normalizes the fourth central moment of a distribution by the
square of its variance. If two distributions have the same standard deviation,
the one with higher kurtosis will ordinarily have a higher peak and heavier
tails. Such a distribution is called leptokurtotic.

The simplest extension of the normal distribution exhibiting higher kur-
tosis is a mixture of two normals. Consider a mixture

qN(0, σ2
1) + (1 − q)N(0, σ2

2)

with q ∈ (0, 1). By this we mean the distribution of a random variable drawn
from N(0, σ2

1) with probability q and drawn from N(0, σ2
2) with probability

1 − q. Its variance is
σ2 = qσ2

1 + (1 − q)σ2
2 ,

and its kurtosis is
3(qσ4

1 + (1 − q)σ4
2)

(qσ2
1 + (1 − q)σ2

2)2
.

Whereas the normal distribution N(0, σ2) with the same variance has kurtosis
3, the mixture can achieve arbitrarily high kurtosis if we let σ1 increase and let
q approach zero while keeping the overall variance σ2 unchanged. Figure 9.4
compares the case σ1 = 1.4, σ2 = 0.6, and q = 0.4 with the standard normal
density, both having a standard deviation of 1.

This mechanism describes a market in which a fraction q of periods (e.g.,
days) have high variability and a fraction 1 − q have low variability. It can
be extended to a multivariate model by mixing multivariate normals N(0, Σ1)
and N(0, Σ2). All of the variance reduction techniques discussed in Section 9.2
extend in a straightforward way to this class of models. The techniques apply
to samples from each N(0, Σi), and results from the two distributions can be
combined using the weights q and 1 − q.

Heavy Tails

Kurtosis provides some information about the tails of a distribution, but it is
far from a complete measure of the heaviness of the tails. Further information
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Fig. 9.4. Solid line is the mixed normal density with σ1 = 1.4, σ2 = 0.6, and
q = 0.4. Dashed line is the standard normal density.

is provided by the rate of decay of a probability density or, equivalently, the
number of finite moments or exponential moments.

To focus on just one tail, consider the case of a nonnegative random vari-
able X , which could be the positive part of a random variable taking both
negative and positive values. The following conditions define three important
categories of distributions:

(i) E[exp(θX)] < ∞ for all θ ∈ �;
(ii) E[exp(θX)] < ∞ for all θ < θ∗ and E[exp(θX)] = ∞ for all θ > θ∗, for

some θ∗ ∈ (0,∞);
(iii) E[Xr] < ∞ for all r < ν and E[Xr] = ∞ for all r > ν, for some ν ∈ (0,∞).

The first category includes all normal random variables (or their positive
parts) and all bounded random variables. The second category describes dis-
tributions with exponential tails and includes all gamma distributions and in
particular the exponential density θ∗ exp(−θ∗x). The third category (for which
E[exp(θX)] = ∞ for all θ > 0) describes heavy-tailed distributions. This cat-
egory includes the stable Paretian distributions discussed in Section 3.5.2, for
which ν ≤ 2. This category includes distributions whose tails decay like x−ν

and, more generally, regularly varying tails, as defined in, e.g., Embrechts et
al. [111]. These three categories are not exhaustive; the lognormal, for ex-
ample, fits just between the second and third categories having θ∗ = 0 and
ν = ∞.

Empirical data is necessarily finite, making it impossible to draw definite
conclusions about the extremes of a distribution. Many studies have found
that the third category above provides the best description of market data,
with ν somewhere in the range of 3–7, depending on the market and the time
horizon over which returns are measured. Although a mixture of two normal
distributions can produce an arbitrarily large kurtosis, it lies within the first
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category above (because the tail is ultimately determined by the larger of
the two standard deviations), so it does not provide an entirely satisfactory
model.

Student t Distribution

An alternative extension of the normal distribution that provides genuinely
heavy tails is the Student t distribution with density

fν(x) =
Γ((ν + 1)/2)√

νπΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

, −∞ < x < ∞,

Γ(·) here denoting the gamma function. The parameter ν (the degrees of
freedom) controls the heaviness of the tails. If X has this tν density, then

P (X > x) ∼ constant × x−ν

as x → ∞, and ν determines the number of finite moments of |X | in the sense
of category (iii) above. If ν > 2, then X has variance ν/(ν − 2). The standard
normal density is the limit of fν as ν → ∞.

Figure 9.5 compares the t5 density (solid line) with a normal density
(dashed line) scaled to have the same variance. The higher peak of the t
distribution is evident from the left panel of the figure, which plots the den-
sities. The right panel shows the logarithms of the densities from which the
heavier tails of the t distribution are evident.
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Fig. 9.5. Comparison of t5 (solid) and normal distribution (dashed) with the same
variance. Left panel shows the densities, right panel shows the log densities.

A tν random variable can be represented as a ratio Z/
√

Y/ν in which Z
has the standard normal distribution and Y has the chi-square distribution
χ2

ν and is independent of Z. This representation shows that tν is a mixture
of normals, but rather than mixing just two normals, the tν mixes infinitely
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many. If we interpret a mixture of two normals as a normal distribution with
random variance taking values σ2

1 and σ2
2 , then the tν can be thought of as a

normal with random variance equal to ν/Y . This suggests a mechanism for
generating an even richer class of distributions by replacing ν/Y with other
random variables.

Multivariate t

Measuring the risk in a portfolio requires a multivariate model of changes in
market prices, so we need a multivariate model with heavy-tailed marginals.
A t density in �m (as defined in Anderson [17]) is given by

fν,Σ(x) =
Γ((ν + m)/2)

(νπ)m/2Γ(ν/2)|Σ|1/2

(
1 +

1
ν

x�Σ−1x

)−(ν+m)/2

, x ∈ �m.

(9.19)
Here, Σ is a symmetric, positive definite matrix, |Σ| is its determinant, and
ν is again the degrees of freedom parameter. If ν > 2, then the distribution
has covariance matrix νΣ/(ν − 2). If all diagonal entries of Σ are equal to
1, then Σ is the correlation matrix of the distribution (assuming ν > 2),
and each marginal is a univariate tν distribution. Without this restriction on
the diagonal of Σ, each coordinate has the distribution of a scaled tν random
variable. In the limit as ν → ∞, (9.19) becomes the density of the multivariate
normal distribution N(0, Σ).

If (X1, . . . , Xm) have (9.19) as their joint density, then they admit the
representation

(X1, . . . , Xm) =d
(ξ1, . . . , ξm)√

Y/ν
, (9.20)

where =d denotes equality in distribution, ξ = (ξ1, . . . , ξm) has distribution
N(0, Σ), and Y has distribution χ2

ν independent of ξ. A multivariate t ran-
dom vector is therefore a multivariate normal vector with a randomly scaled
covariance matrix. Also, it follows from (9.19) that the vector X with density
fν,Σ can be represented as

X =
AZ√
Y/ν

= AX̃, (9.21)

where AA� = Σ, Z ∼ N(0, I), and X̃ is a multivariate t random vector with
density fν,I . The components of X̃ are uncorrelated (their correlation matrix
is the identity), but not independent. Dependence is introduced by the shared
denominator.

The representation (9.20) and the factorization in (9.21) make (9.19) a
particularly convenient multivariate distribution and provide a mechanism for
simulation. Much of what we discuss in this section extends to other random
vectors with the representation (9.20) for some other choice of denominator.
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A shortcoming of (9.19) is that it requires all marginals to have the same
parameter ν and thus the same degree of heaviness in their tails. Because
empirical evidence suggests that for most markets ν should be in the range of
3–7, this is not a fatal flaw. It does, however, suggest considering more general
multivariate t distributions.

The t-Copula

One mechanism for allowing different coordinates to have different parameters
starts with a multivariate t vector of the type in (9.20) and then modifies the
marginals. Let Fν denote the cumulative distribution function of the univari-
ate tν distribution. Let the vector X have the representation in (9.20) with
Σ having all diagonal entries equal to 1. This implies that Xi ∼ tν and then
that Fν(Xi) is uniformly distributed on the unit interval. Just as in the inverse
transform method (Section 2.2.1), applying an inverse distribution F−1

νi
gives

F−1
νi

(Fν(Xi)) the t distribution with νi degrees of freedom. Applying such a
transformation to each coordinate produces a vector

(X̃1, . . . , X̃m) = (F−1
ν1

(Fν(X1)), . . . , F−1
νm

(Fν(X1)), (9.22)

the components of which have t distributions with arbitrary parameters ν1,
. . . , νm.

This is a special case of a more general mechanism (to which we return in
Section 9.4.2) for constructing multivariate distributions through “copulas,”
in this case a t-copula. The transformation in (9.22) does not preserve cor-
relations, making it difficult to give a concise description of the dependence
structure of (X̃1, . . . , X̃m); it does however preserve Spearman rank correla-
tions. This and related properties are discussed in Embrechts et al. [112].

To simulate changes ∆Si in market prices using (9.22), we would set

∆Si = σ̃i

√
νi − 2

νi
X̃i, (9.23)

assuming νi > 2. This makes σ̃2
i the variance of ∆Si and gives ∆Si a

scaled tνi distribution. The specification of the model would run in the op-
posite direction: using market data, we would first estimate σ̃i and νi for
each marginal ∆Si, i = 1, . . . , m; we would then apply the transformation
Xi = F−1

ν (Fνi(∆Si)) to each coordinate of the data, and finally estimate
the correlation matrix Σ of (X1, . . . , Xm). A similar procedure is developed
and tested in Hosking, Bonti, and Siegel [188] based on the normal distrib-
ution (i.e., with ν = ∞); GHS [144] recommend using a value of ν closer to
ν1, . . . , νm. Estimation of νi is discussed in Hosking et al. [188] and Johnson,
Kotz, and Balakrishnan [202].
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9.3.2 Delta-Gamma Approximation

The variance reduction techniques in Section 9.2 rely on the tractability of
the delta-gamma approximation (9.2) when ∆S has a multivariate normal
distribution. To extend these techniques to the multivariate t, we therefore
need to extend the analysis of the delta-gamma approximation. This analysis,
carried out in GHS [144], is of independent interest because it permits use
of the approximation as a rough but fast alternative to simulation. The ex-
tension applies to a large class of distributions admitting the representation
(9.20), in addition to the multivariate t. We comment on the application to
the transformed multivariate t in (9.22) after considering the simpler case of
(9.19).

Suppose, then, that ∆S has the multivariate tν density in (9.19) with
Σ = ΣS . By following exactly the steps leading to (9.4), we arrive at the
representation

Q = a +
m∑

j=1

(bjXj + λjX
2
j ) (9.24)

for the quadratic approximation to the loss L, with

CX = ∆S, X = (X1, . . . , Xm)�,

b = −C�δ, b = (b1, . . . , bm)�,

CC� = ΣS , − 1
2C�ΓC =


λ1

λ2

. . .
λm

 ,

where λ1, . . . , λm are the eigenvalues of −ΣSΓ/2 and X has the multivariate
tν density (9.19) with Σ = I the identity matrix. The constant a in (9.24) is
−(∆t)∂V/∂t, just as in (9.3).

At this point, the analyses of the normal and t distributions diverge. Un-
correlated jointly normal random variables are independent of each other, so
(9.4) expresses Q as a sum of independent random variables. But as explained
following (9.21), the components X1, . . . , Xm of the multivariate t random
vector are not independent even if they are uncorrelated. The independence
of the summands in (9.4) allowed us to derive the moment generating function
(and then characteristic function) of Q as the product of the moment generat-
ing functions of the summands. No such factorization applies to (9.24) because
of the loss of independence. Moreover, in the heavy-tailed setting, the Xi and
Q do not have moment generating functions; they belong to category (iii)
of Section 9.3.1. This further complicates the derivation of the characteristic
function of Q.
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Indirect Delta-Gamma

These obstacles can be circumvented through an indirect delta-gamma ap-
proximation. Use (9.20) to write

Q = a +
m∑

j=1

(
bj

Zj√
Y/ν

+ λj

Z2
j

Y/ν

)

with Z1, . . . , Zm independent N(0, 1) random variables. For fixed x ∈ �, define

Qx = (Y/ν)(Q − x) = (a − x)(Y/ν) +
m∑

j=1

(bj

√
Y/νZj + λjZ

2
j ) (9.25)

and observe that
P (Q ≤ x) = P (Qx ≤ 0). (9.26)

Thus, we can evaluate the distribution of Q at x indirectly by evaluating that
of Qx at zero. The random variable Qx turns out to be much more convenient
to work with.

Conditional on Y , Qx is a quadratic function of independent standard nor-
mal random variables. We can therefore apply (9.5) to get (as in Theorem 3.1
of GHS [144])

E[eθQx |Y ] = exp

(a − x)θY/ν + 1
2

m∑
j=1

θ2b2
jY/ν

1 − 2θλj

 m∏
j=1

1√
1 − 2θλj

, (9.27)

provided 2 maxj θλj < 1. The coefficient of Y in this expression is

α(θ) = (a − x)θ/ν + 1
2

m∑
j=1

θ2b2
jν

1 − 2θλj
. (9.28)

Suppose the moment generating function of Y is finite at α(θ):

φY (α(θ)) ≡ E[eα(θ)Y ] < ∞.

Then (9.27) yields

φx(θ) ≡ E[eθQx ] = φY (α(θ))
m∏

j=1

1√
1 − 2θλj

. (9.29)

This is the moment generating function of Qx. Replacing the real argument
θ with a purely imaginary argument

√
−1u, u ∈ �, yields the value of the

characteristic function at u. This characteristic function can be inserted in
the inversion integral (9.6) to compute P (Qx ≤ 0) and thus P (Q ≤ x).

In the specific case that X has a multivariate tν distribution, Y is χ2
ν and
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φY (θ) = (1 − 2θ)−ν/2, θ < 1/2,

which completes the calculation of (9.29). However, this derivation shows that
Qx has a tractable moment generating function and characteristic function in
greater generality.

Calculation of the distribution of Q through inversion of the characteristic
function of Qx is not quite as efficient as the approach in the multivariate
normal setting of Section 9.1.2 based on direct inversion of the characteristic
function of Q. Using the Fast Fourier Transform (as discussed in, e.g., Press et
al. [299]), the distribution of Q can be evaluated at N points using N terms in
the inversion integral in O(N log N) time, given the characteristic function of
Q. In the indirect approach based on (9.26), evaluating the distribution of Q
at N points requires N separate inversion integrals, because Qx depends on x.
With N terms in each inversion integral, the total effort becomes O(N2). This
is not a significant issue in our application of the approximation to variance
reduction because the number of points at which we need the distribution of
Q is small — often just one.

The derivation of (9.29) relies on the representation (9.20) of the mul-
tivariate t distribution (9.19) with common parameter ν for all marginals.
To extend it to the more general case of (9.22) with arbitrary parameters
ν1, . . . , νm, we make a linear approximation to the transformation in (9.22).
This converts a quadratic approximation in the X̃i variables into a quadratic
approximation in the Xi variables.

In more detail, write ∆Si = Ki(Xi), i = 1, . . . , m, for the mapping from
X1, . . . , Xm to ∆S defined by (9.22) and (9.23). The deltas and gammas of
the portfolio value V with respect to the Xi are given by

∂V

∂Xi
= δi

∂Ki

∂Xi
,

∂2V

∂Xi∂Xj
= Γij

∂Ki

∂Xi

∂Kj

∂Xj
, i = j,

∂2V

∂X2
i

= Γii

(
∂Ki

∂Xi

)2

+ δi
∂2Ki

∂X2
i

,

with all derivatives of K evaluated at 0. Using these derivatives, we arrive
at an approximation to the change in portfolio value (as in (9.2)) that is
quadratic in X1, . . . , Xm and to which the indirect approach through Qx and
(9.29) then applies.

9.3.3 Variance Reduction

We turn now to the use of the delta-gamma approximation for variance reduc-
tion in the heavy-tailed setting. With normally distributed ∆S, we applied
importance sampling by defining an exponential change of measure through
Q in (9.10). A direct application of this idea in the heavy-tailed setting is im-
possible, because Q no longer has a moment generating function (it belongs to
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category (iii) of Section 9.3.1), so there is no way to normalize the exponen-
tial twisting factor exp(θQ) to produce a probability distribution for positive
values of θ. Indeed, importance sampling with heavy-tailed distributions is
a notoriously difficult problem. Asmussen et al. [23] demonstrate the failure
of several plausible importance sampling estimators in heavy-tailed problems.
Beyond its relevance to risk management, the example we treat here is of in-
terest because it is one of few examples of effective importance sampling with
heavy-tailed distributions.

Importance Sampling

We circumvent the difficulty of working with Q by exponentially twisting
the indirect approximation Qx instead. We derived the moment generating
function of Qx in (9.29). Let ψx(θ) denote its cumulant generating function,
the logarithm of (9.29). Define an exponential family of probability measures
Pθ through the likelihood ratio

dPθ

dP
= eθQx−ψx(θ) (9.30)

for all θ at which ψx(θ) < ∞. This allows us to write loss probabilities as

P (L > y) = Eθ

[
e−θQx+ψx(θ)1{L > y}

]
and this yields the importance sampling estimator

e−θQx+ψx(θ)1{L > y}

with (Qx, L) sampled from their joint distribution under Pθ.
Before proceeding with the mechanics of this estimator, we should point

out what makes this approach appealing. We are free to choose x, so suppose
we have y = x. The second moment of the estimator is then given by

Eθ

[
e−2θQx+2ψx(θ)1{L > x}

]
= Eθ

[
e−θQx+ψx(θ)

(
dP

dPθ

)
1{L > x}

]
= E

[
e−θQx+ψx(θ)1{L > x}

]
,

which shows that to reduce variance we need the likelihood ratio to be small
on the event {L > x}. If Q provides a reasonable approximation to L, then
when L > x we often have Q > x and thus Qx > 0, and this tends to produce
a small likelihood ratio if θ is positive.

This tendency must be balanced against the magnitude of ψx. We strike a
balance through the choice of parameter θ. Choosing θ equal to θx, the root
of the equation

ψ′
x(θx) = 0,
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minimizes the convex function ψx. Finding θx is a one-dimensional minimiza-
tion problem and can be solved very quickly. This choice of θ imposes the
condition (see (9.16) and the surrounding discussion)

Eθx [Qx] = 0

and thus centers the distribution of Qx near 0. This centers the distribution
of Q near x which in turn makes the event {L > x} less rare.

To achieve these properties, we need to be able to sample the pair (Qx, L)
from their distribution under Pθ. As in Section 9.2.2, we do not sample these
directly; rather, we sample Y and Z1, . . . , Zm. From these variables we com-
pute Qx and X1, . . . , Xm and from the Xi we compute L. Thus, it suffices to
find the distribution of (Y, Z1, . . . , Zm) under Pθ.

This problem is solved by Theorem 4.1 of GHS [144] and the answer is in
effect embedded in the derivation of the moment generating function (9.29).
Let fY denote the density of Y under the original probability measure P = P0;
this is the χ2

ν density in the case of the multivariate t model. Let α(θ) be as
in (9.28). Then under Pθ, Y has density

fY,θ(y) = eα(θ)yfY (y)/φY (θ), (9.31)

with φY the moment generating function of fY . Conditional on Y , the com-
ponents of (Z1, . . . , Zm) are independent normal random variables Zj ∼
N(µj(θ), σ2

j (θ)), with

µj(θ) =
θbj

√
Y/ν

1 − 2λjθ
, σ2

j (θ) =
1

1 − 2λjθ
. (9.32)

This is verified by writing the likelihood ratio for the change of distribution
in (9.31) and multiplying it by the likelihood ratio corresponding to (9.32)
given Y . (The second step coincides with the calculation in Section 9.2.2.)
The product of these factors simplifies to (9.30), as detailed in GHS [144].
Notice that (9.32) also follows from (9.25) and (9.12) once we condition on Y .

This result says that the change of measure defined by exponentially twist-
ing Qx can be implemented by exponentially twisting Y and then changing
the means and variances of the Zj given Y . We have circumvented the diffi-
culty of applying importance sampling directly to the t random variables Xj

by instead applying exponential twisting to the denominator and numerator
random variables.

In the specific case that Y ∼ χ2
ν , the change of measure (9.31) gives Y

a gamma distribution with shape parameter ν/2 and scale parameter 2/(1 −
2α(θ)); i.e.,

fY,θ(y) =
(

2
1 − 2α(θ)

)−ν/2
y(ν−2)/2

Γ(ν/2)
exp
( −y

2/(1 − 2α(θ))

)
.

The χ2
ν distribution is the gamma distribution with shape parameter ν/2 and

scale parameter 2, so a negative value of α(θ) decreases the scale parameter.
This produces smaller values of Y and thus larger values of the Xj and ∆Sj .
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Importance Sampling Algorithm

The following algorithm summarizes the implementation of this importance
sampling technique in estimating a loss probability P (L > x):

1. Find θx solving ψ′(θx) = 0
2. For each of n replications

(a) generate Y from fY,θx

(b) given Y , generate Z from N(µ(θ), Σ(θ)) with parameters given
in (9.32)

(c) set X = Z/
√

Y/ν
(d) set ∆S = CX
(e) calculate portfolio loss L and approximation Qx

(f) evaluate
e−θxQx+ψx(θx)1{L > x} (9.33)

3. Calculate average of (9.33) over the n replications.

It is not essential (or necessarily optimal) to take the x in the definition
of Qx to be the same as the loss threshold in the probability P (L > x). In
estimating P (L > y) at several values of y from a single set of replications,
we would need to use a single value of x. This value should be chosen near
the middle of the range of y under consideration, or a bit smaller.

Asymptotic Optimality

GHS [144] establish an asymptotic optimality result for this approach applied
to estimating P (Q > x). This should be viewed as indirect support for use of
the method in the real problem of estimating P (L > x). The notion of asymp-
totic optimality in this setting is appropriate to a heavy-tailed distribution
and thus refers to a polynomial rather than exponential rate of decay. The
precise statement of the result is a bit involved (see Theorem 5.1 of [144]), but
it says roughly that P (Q > x) is O(x−ν/2) and that the second moment of the
estimator (9.33) (with L replaced by Q) is O(x−ν). Thus, the second moment
decreases at twice the rate of the probability itself. This result is relatively
insensitive to the choice of parameter θ, as explained in GHS [144].

Stratified Sampling

To further reduce the variance of the estimator (9.33), we stratify Qx. The
procedure is nearly the same as the one in the light-tailed setting of Sec-
tion 9.2.3.

To define strata, we need the distribution of Qx (for fixed x) under Pθ. We
get this distribution through numerical inversion of the characteristic function
of Qx under Pθ. The moment generating function of Qx under Pθ is given by
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u �→ φ(θ+u)/φ(θ) and evaluating this function along the imaginary axis yields
the characteristic function.

Once we have defined strata for Qx, we can use the acceptance-rejection
procedure of Section 9.2.3 to generate samples of X conditional on the stratum
containing Qx. From these we generate price changes ∆S and portfolios losses
L. Through these steps, we produce pairs (Qx, L) with Qx stratified.

Numerical Examples

Table 9.2 shows variance reduction factors in estimating loss probabilities for
four of the test cases reported in GHS [144]. Portfolios (A) and (B) are as
described in Section 9.2.3, except that each ∆Sj is now a scaled t random
variable,

∆Sj = σ̃j

√
νj − 2

νj
tνj .

For cases (A) and (B) in the table, all marginals have νj = 5. Cases (A’) and
(B’) use the same portfolios of options but of the ten underlying assets, five
have νj = 3 and five have νj = 7. These are generated using the t-copula in
(9.22) starting from a reference value of ν = 5.

In these examples, as in those of Section 9.2.3, we assume the portfolio
value is given by applying the Black-Scholes formula to each option. We use an
implied volatility of 0.30 in evaluating the Black-Scholes formula. The variance
of ∆Sj is σ̃2

j , which corresponds to an annual volatility of σ̃j/Sj

√
∆t, given

Sj . To equate this to the implied volatility, we set σ̃j = 0.30Sj

√
∆t. There

is still an evident inconsistency in applying the Black-Scholes formula with t-
distributed price changes, but option pricing formulas are commonly used this
way in practice. Also, the variance reduction techniques do not rely on special
features of the Black-Scholes formula, so the results should be indicative of
what would be obtained using more complex portfolio revaluation.

The stratified results use 40 approximately equiprobable strata. The vari-
ance ratios in the table are estimated from 40,000 replications. With stratified
sampling, this allows 1000 replications per stratum.

Variance Ratios
Portfolio x P (L > x) IS IS-S

(A) 469 1% 46 134
(B) 617 1% 42 112
(A’) 475 1% 38 55
(B’) 671 1% 39 57

Table 9.2. Variance reduction factors in estimating loss probabilities using the
delta-gamma approximation for importance sampling (IS) and for importance sam-
pling with stratification (IS-S).
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The results in Table 9.2 show even greater variance reduction in the heavy-
tailed setting than in the normal setting of Table 9.1. The results also suggest
that the methods are less effective when applied with the t-copula (9.22) than
when all marginals have the same parameter ν. Both of these observations
are further supported by the more extensive numerical tests reported in GHS
[144]. The worst cases found in [144], resulting in little or no variance reduc-
tion, combine the t-copula model of underlying assets with portfolios of digital
and barrier options. Results in [144] also indicate that the variance reduction
achieved in estimating a conditional excess E[L|L > x] is usually about the
same as that achieved in estimating the loss probability P (L > x).

Figure 9.6 (from [144]) gives a graphical illustration of the variance reduc-
tion achieved with portfolio (A). The figure plots estimated loss probabilities
P (L > x) for multiple values of x. The two outermost lines (solid) show
99% confidence intervals using standard simulation; these lines are formed
by connecting confidence limits computed at each value of x. The two dot-
ted lines show the tight intervals achieved by combining importance sampling
and stratified sampling. The results using the variance reduction techniques
were all estimated simultaneously: all use the same twisting parameter θx, the
same strata, and the same values of (Qx, L), with x ≈ 400. This is important
because in practice one would not want to generate separate scenarios for
different thresholds x.
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Fig. 9.6. Confidence intervals for loss probabilities for portfolio (A) using standard
simulation and importance sampling combined with stratification, from GHS [144].

The figure also illustrates how reducing variance in estimates of loss prob-
abilities results in more precise quantile estimates. To estimate the 99% VAR,
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for example, we would read across from 0.01 on the vertical axis until we hit
the estimated curve P (L > x), and then read down to find the correspond-
ing value of x. A rough indication of the uncertainty in the VAR estimate
is the space between the confidence interval curves at a height of 0.01. The
outer confidence bands (based on standard simulation) produce a wide inter-
val ranging roughly from x = 375 to 525, whereas the inner confidence bands
produce a tight interval for the quantile.

9.4 Credit Risk

Sections 9.1–9.3 of this chapter deal with market risk — the risk of losses
resulting from changes in market prices. Credit risk refers to losses resulting
from the failure of an obligor (a party under a legal obligation) to make a
contractual payment. Credit risk includes, for example, the possibility that a
debtor will fail to repay a loan, a bond issuer will miss a coupon payment, or a
counterparty to a swap will fail to make an interest payment. Market risk and
credit risk interact, so the distinction between the two is not always sharp;
but the models and methods used in the two settings differ in the features
they emphasize.

This section introduces some of the methods used to model credit risk, with
emphasis on their implementation through simulation. The development of
credit risk models remains an active area of research, and the field is currently
spread wide over modeling variations too numerous to survey. Our goal is to
illustrate some of the key features of models used in this area.

Section 9.4.1 discusses models of the time to default for a single obligor.
Such models are used in valuing corporate bonds and credit derivatives tied to
a single source of credit risk. Section 9.4.2 discusses mechanisms for capturing
dependence between the default times of multiple obligors, loosely referred to
as “default correlation.” This is a central issue in measuring the credit risk
in a portfolio and in valuing credit derivatives tied to the creditworthiness of
multiple obligors. Section 9.4.3 deals with a simulation method for measuring
portfolio credit risk.

9.4.1 Default Times and Valuation

The simplest setting in which to discuss credit risk is the valuation of a zero-
coupon bond subject to possible default. The issuer of the bond is scheduled
to make a fixed payment of 1 at a fixed time T . If the issuer goes into default
prior to time T , no payment is made; otherwise the payment of 1 is made as
scheduled. By letting τ denote the time of default, we can combine the two
cases by writing the obligor’s payment as 1{τ > T }.

At the heart of most models of credit risk is a mechanism describing the
occurrence of default and thus the distribution of τ . In referring to the dis-
tribution of τ , we should distinguish the distribution under a risk-neutral



9.4 Credit Risk 521

probability measure from the distribution under the objective probability
measure describing the observed time to default. The risk-neutral distribu-
tion is appropriate for valuation and the objective distribution is appropriate
for measuring risk. Some models of default are used in both settings; we will
not explicitly distinguish between the two and instead let context determine
which is relevant.

Given the (risk-neutral) distribution of τ and a short rate process r(t), the
value of the bond payment 1{τ > T } is in principle determined as

E

[
e
−
∫

T

0
r(t) dt1{τ > T }

]
. (9.34)

More generally, if default at time τ < T yields a cashflow of X(τ), then the
value of the bond is given by

E

[
e
−
∫ τ

0
r(t) dt

X(τ) + e
−
∫ T

0
r(t) dt1{τ > T }

]
,

assuming the event {τ = T } has zero probability. Expressions of this type
are sometimes used in reverse to find the distribution of the time to default
implied by the market prices of corporate bonds.

Default and Capital Structure

A line of research that includes Merton [262], Black and Scholes [50], Leland
[230], and much subsequent work values corporate bonds by starting from
fundamental principles of corporate finance. This leads to a characterization
of the default time τ as a first-passage time for the value of the issuing firm.

This approach posits a stochastic process for the value of a firm’s assets.
The value of the firm’s assets equals the value of its equity plus the value of its
debt. The limited liability feature of equity makes it an option on the firm’s
assets: if the value of the assets becomes insufficient to cover the debt, the
equity holders may walk away and surrender the firm to the bond holders.

Valuing equity and debt thus reduces to valuing a type of barrier option
in which the firm’s assets act as the underlying state variable and the barrier
crossing triggers default. Different models make different assumptions about
the dynamics of the firm’s value and about how the level of the barrier is de-
termined; see Chapter 11 of Duffie [98] for examples and extensive references.

In a sufficiently complex model, one might consider using simulation to
determine the distribution of the default time. Importance sampling would
then be potentially useful, especially if default is rare. Approximations of
the type discussed in Section 6.4 can be used to reduce discretization error
associated with the barrier crossing; see Caramellino and Iovino [75] for work
on this topic. But looking at default from the perspective of capital structure
and corporate finance has proved more successful as a conceptual framework
than as a valuation tool. Simpler models are usually used in practice. We
therefore omit further discussion of simulation in this setting.
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Default Intensity

A stochastic intensity for a default time τ is a process λ(t) for which the
process

1{τ ≤ t} −
∫ t

0

λ(u) du (9.35)

is a martingale. For small ∆t, interpret λ(t)∆t as the conditional probability
of default in (t, t + ∆t) given information available at time t. This generalizes
the intensity of a Poisson process, for which λ is deterministic.

To make precise the notion of available information and the martingale
property of (9.35) we would need to specify a filtration. A default time τ may
admit different intensities with respect to different filtrations and may admit
no intensity with respect to some filtrations. This is not just a technical issue
— it is significant in modeling as well. For example, if τ is the time of a
barrier crossing for Brownian motion, then τ has no intensity with respect
to the history of the Brownian motion. This follows from the fact that (9.35)
does not have the form required by the martingale representation theorem
(Theorem B.3.2 in Appendix B.3). This also makes precise the idea that an
observer of the Brownian path could anticipate the barrier crossing. The same
τ could, however, admit an intensity with respect to a different filtration that
records imperfect information about the Brownian path; see Duffie and Lando
[102].

A consequence of the existence of an intensity is the identity

P (τ > T ) = E

[
exp

(
−
∫ T

0

λ(u) du

)]
. (9.36)

The bond-valuation formula (9.34) becomes

E

[
exp

(
−
∫ T

0

[r(u) + λ(u)] du

)]
. (9.37)

This is evident if r and λ are independent processes, but it holds more gen-
erally if r is adapted to the filtration with respect to which λ is an intensity;
see Section 11.J of Duffie [98] and the references given there. As formulated
in [98] the result requires boundedness of r and λ, but this condition can be
relaxed and is routinely ignored in applications.

An appealing feature of (9.37) is that it values a defaultable bond the same
way one would value a default-free bond, but with the discount rate increased
from r to r + λ. This is consistent with the market practice of pricing credit
risk by discounting at a higher rate. It is also consistent with the practice of
interpreting yield spreads on corporate bonds as measures of their likelihood
of default.

Because (9.37) is a valuation result discounting at a risk-free interest rate,
it should be understood as an expectation under a risk-neutral measure. The
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relevant processes r and λ thus describe the risk-neutral dynamics of the
short rate and the default intensity. A counterpart of the Girsanov Theorem
(see Section VI.2 of Brémaud [60]) shows that changing probability measures
has a multiplicative effect on the intensity. The multiplicative factor may be
interpreted as a risk premium for default risk.

The valuation formula (9.37) assumes that in the event of default prior to
T the bond becomes worthless. In practice, the holder of a bond in default
usually recovers some fraction of the bond’s promised payments as a result
of a complex legal process. Incorporating partial recovery in a model requires
making simplifying assumptions about the amount received in the event of
default. Duffie and Singleton [106] take the recovery to be a fraction of the
value of the bond just prior to default; Jarrow and Turnbull [200] take it to
be a fraction of the value of an otherwise identical default-free bond; Madan
and Unal [244] use a random recovery rate. These and other assumptions are
discussed in Bielecki and Rutkowski [46].

The approach of Duffie and Singleton [106] leads to a simple extension of
(9.37). Suppose that the value of the bond just after default at time τ equals a
fraction 1−L(τ) of its value just before default. This time-dependent fraction
may be stochastic. Subject to regularity conditions, (9.37) generalizes to

E

[
exp

(
−
∫ T

0

[r(u) + λ(u)L(u)] du

)]
.

In this case, the spread between a defaultable and default-free bond reflects
the loss given default as well as the probability of default.

Intensity-Based Modeling

Intensity-based modeling of default uses a stochastic intensity to model the
time to default (rather than deriving the intensity from τ). A key property
for this construction is the fact that the cumulative intensity to default,∫ τ

0

λ(t) dt,

is exponentially distributed with mean 1. (This follows from Theorem II.16 of
Brémaud [60].) Given an arbitrary nonnegative process λ and an exponentially
distributed random variable ξ independent of λ, we may define

τ = inf{t ≥ 0 :
∫ t

0

λ(u) du = ξ} (9.38)

(much as in (3.83)), and then τ has intensity λ. This construction is also useful
in simulating a default time from its intensity.

A natural candidate for the process λ is the square-root diffusion of Sec-
tion 3.4, because it is positive and mean-reverting. With this choice of inten-
sity, the tail of the distribution of τ in (9.36) has exactly the same form as
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the bond pricing formula of Cox, Ingersoll, and Ross [91]; see Section 3.4.3.
Thus,

Fτ (t) ≡ P (τ ≤ t) = 1 − eA(t)+C(t)λ(0), (9.39)

with A and C as defined in Section 3.4.3. To simulate τ it therefore suffices
to apply the inverse transform method of Section 2.2.1 to this distribution —
simulation of λ itself is unnecessary. The same method applies, more generally,
when λ belongs to the class of affine jump-diffusions defined in Duffie and Kan
[101]. For example, Duffie and Gârleanu [99] consider in detail the case of a
square-root diffusion modified to take exponentially distributed jumps at the
epochs of a Poisson process.

Given an expression like (9.39) for the distribution of a default time τ ,
there would be little reason to model the dynamics of the intensity if we were
interested only in τ . But in valuing credit derivatives or measuring credit risk
we are often interested in capturing dependence between default times and
dependence between defaults and interest rates. One approach to this speci-
fies correlated processes for interest rates and intensities. A multifactor affine
process, as in Duffie and Singleton [106], provides a convenient framework in
which to model these correlated processes.

Ratings Transitions

Corporate bonds and other securities with significant credit risk can lose value
through credit events less severe than outright default. A change in credit
rating, for example, can produce a change in the market price of a bond.

A simple model of changes in credit ratings uses a Markov process
to describe ratings transition. Consider, for example, a finite state space
{0, 1, . . . , N} in which each state represents a level of credit quality. States
with higher indices correspond to higher credit quality; state 0 is an absorbing
state representing default. Let {X(t), t ≥ 0} be a Markov process on this state
space with transition rate q(i, j) from state i to state j, for i, j ∈ {0, 1, . . . , N}.
If default has not occurred by time t, then the default intensity at time t (with
respect to the history of the process X) is q(X(t), 0), the transition rate from
the current state X(t) to the default state 0. A model of this type is developed
by Jarrow, Lando, and Turnbull [199].

One can simulate paths of X by simulating the sojourns in each state and
the transitions between states. At the entry of X to state i = 0, generate a
random variable ξ exponentially distributed with mean 1/q(i), where

q(i) =
∑
j �=i

q(i, j);

this is the length of the sojourn in state i. After advancing the simulation
clock by ξ time units, generate a transition out of state i by choosing state j
with probability q(i, j)/q(i), j = i.
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9.4.2 Dependent Defaults

The models described in the previous section focus on a single default time.
The credit risk in a portfolio and the value of some credit derivatives depend
on the joint distribution of the default times of multiple obligors; capturing
this dependence requires a mechanism for linking the marginal default times of
the individual obligors. The likelihood of default for an individual obligor can
often be at least partly determined from the credit rating and yield spreads
on bonds it has issued, so capturing the dependence between obligors is the
primary challenge in modeling credit risk.

Using Equity Correlations

Direct estimation of dependence between default times using historical data is
difficult because defaults are rare. Whereas daily fluctuations in market prices
provide a nearly continuous flow of information about market risk, the time
to default for an investment-grade issue is measured in years.

The link between default and capital structure discussed in Section 9.4.1
provides a framework for translating information in equity prices to informa-
tion about credit risk. Taken literally, this approach would require building
a multivariate model of the dynamics of firm value for multiple obligors and
capturing the dependence in their default times through dependence in first-
passage times to multiple boundaries, each boundary determined by the cap-
ital structure of one of the obligors. In practice, this idea is used in a much
simpler way to build models of correlated defaults.

As a first example of this, we discuss the method of Gupton, Finger, and
Bhatia [163]. They model the occurrence or non-occurrence of default over a
fixed horizon (a year, for example) rather than the time to default. To model m
obligors they use a normally distributed random vector (X1, . . . , Xm). Each
Xi has a standard normal distribution, but the components are correlated.
The components are (loosely) interpreted as centered and scaled firm values
and the correlations are taken from the correlations in equity prices.

The ith obligor defaults within the fixed horizon if Xi < xi, with xi a
constant. In analogy with Merton’s [262] setting, the threshold xi measures
the firm’s debt burden. Gupton et al. [163] assume a known default probability
pi for each obligor and set xi = Φ−1(pi) so that

P (Xi < xi) = pi.

This calibrates the default indicator Yi = 1{Xi < xi} for each obligor. The
joint distribution of the default indicators Y1, . . . , Ym is implicitly determined
by the joint distribution of X1, . . . , Xm. The transformation from the Xi to
the Yi does not preserve linear correlations but, because it is monotone, it
does preserve rank correlations.

The setting considered by Gupton et al. [163] is richer than what we have
described in that it considers ratings transitions as well as default. For each
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obligor they partition the real line into intervals, each interval corresponding
to a credit rating (or default). Each interval is chosen so that its probabil-
ity (under the standard normal distribution) matches the probability that
the obligor will be in that ratings category at the end of the period. (These
probabilities are assumed known.) The intervals are defined using the same
steps used to define strata in Example 4.3.2. The correlations in the Xi thus
introduce dependence in the ratings transitions of the various obligors.

The use of equity price correlations for the Xi is not essential. As in Gupton
et al. [163], one could also model the Xi using a representation of the form

Xi = ai1Z1 + · · · + aikZk + biεi, i = 1, . . . , m, (9.40)

with Z1, . . . , Zk and εi independent N(0, 1) random variables and a2
i1 + · · ·+

a2
ik + b2

i = 1. The Zj represent factors affecting multiple obligors whereas εi

affects only the ith obligor. The common factors could, for example, represent
risks specific to an industry or geographical region or a market-wide factor
affecting all obligors.

Correlation and Intensities

As mentioned in Section 9.4.1 and demonstrated in Duffie [98], affine jump-
diffusion processes provide a convenient framework for modeling stochastic
intensities. Through a multivariate process of this form, one can specify the
joint dynamics of the intensities of multiple obligors together with the dynam-
ics of interest rates for various maturities while retaining some tractability,

To simulate default times in this framework, we can extend (9.38) and set

τi = inf{t ≥ 0 :
∫ t

0

λi(u) du = ξi}, i = 1, . . . , m,

with λi the default intensity for the ith obligor and ξ1, . . . , ξm are independent
unit-mean exponential random variables. Except in special cases, this would
require simulation of the paths of the intensities because the comparatively
simple expression in (9.39) for the marginal distribution of a default time does
not easily extend to sampling from the joint distribution of τ1, . . . , τm.

There are several ways of making the τi dependent in this framework. The
simplest mechanism uses correlated Brownian motions to drive the intensity
processes λi. This, however, introduces rather weak dependence among the
default times: if the intensities for two obligors are close, then their instanta-
neous default probabilities are close but the default times themselves can be
far apart because of the independence of the ξi.

An alternative defines the default intensities to be overlapping sums of
state variables. Consider a model driven by a d-dimensional state vector X(t)
with nonnegative components and suppose the default intensity for obligor i
is given by
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λi(t) =
∑
j∈Ai

Xj(t),

with Ai a subset of {1, . . . , d}. Interpret each Xj as an intensity process and
using the mechanism in (9.38), let Tj be the first arrival time generated by
this intensity. At Tj , obligor i defaults if it has not previously defaulted and if
j ∈ Ai. In this formulation, the Xj act like factors driving default and affecting
one or more obligors. A shortcoming of this approach is that it introduces
dependence by making defaults occur simultaneously.

A third approach introduces dependence through the exponential random
variables ξ1, . . . , ξm rather than through the intensities. This can provide
rather strong dependence between default times without requiring simulta-
neous defaults. Moreover, if the intensities of the obligors are independent
and if the marginal distributions of the τi admit tractable expressions Fi, as
in (9.39), then we may avoid simulating the intensities by setting

τi = F−1
i (Ui), Ui = 1 − exp(−ξi). (9.41)

Each Ui is uniformly distributed on the unit interval, but U1, . . . , Um inherit
dependence from ξ1, . . . , ξm. This reduces the problem of specifying depen-
dence among the default times to one of specifying a multivariate exponential
or multivariate uniform distribution, which we turn to next.

Normal Copula

A simple way to specify a multivariate uniform distribution starts from a
vector (X1, . . . , Xm) of correlated N(0, 1) random variables and sets

Ui = Φ−1(Xi), i = 1, . . . , m. (9.42)

The uniform random variables U1, . . . , Um can then be used to generate other
dependent random variables. For example, setting ξi = − log(1 − Ui), i =
1, . . . , m, makes ξ1, . . . , ξm dependent exponential random variables.

This mechanism for introducing dependence is called a normal copula. It
is implicit in the method of Gupton et al. [163] discussed above (set Yi =
1{Ui < pi}) and similar to the t-copula used in Section 9.3. This construction
is convenient because it captures dependence through the correlation matrix
of a normal random vector, though as we noted above, the transformation
from the Xi to other distributions does not in general preserve correlation.
For more on the correlation of the transformed variables, see Cario and Nelson
[77], Embrechts et al. [112], Ghosh and Henderson [137], and Li [236]. Shaw
[329], applying a method of Stein [337], combines a normal copula with Latin
hypercube sampling in estimating value-at-risk.

Other Copulas

We have thus far referred to normal copulas and t-copulas; we now define
copulas more generally. A copula is a function describing a multivariate dis-
tribution in terms of its marginals. A copula function with m arguments is a
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distribution function C on [0, 1]m with uniform marginals. The requirement
of uniform marginals means that C(u1, . . . , um) = ui if uj = 1 for all j = i;
the requirement that C be a distribution on [0, 1]m cannot be formulated so
succinctly. It implies, of course, that C is increasing in each argument for
all values of the other arguments and that C(0, . . . , 0) = 0, C(1, . . . , 1) = 1,
though these properties do not suffice. See Nelsen [276] for a detailed discus-
sion.

Given univariate distributions F1, . . . , Fm, a copula function C determines
a multivariate distribution on �m with the Fi as marginals through the defi-
nition

F (x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)). (9.43)

Conversely, given a multivariate distribution F with marginals F1, . . . , Fm,
setting

CF (u1, . . . , um) = F (F−1
1 (u1), . . . , F−1

m (um)) (9.44)

shows that every multivariate distribution admits the representation in (9.43).
Copulas therefore provide a natural framework for modeling dependence be-
tween default times: the marginal distribution of the time to default for each
obligor is at least in part determined by information specific to that obligor;
the goal of much credit risk modeling is to link these marginal distributions
into a multivariate distribution.

The specific constructions based on the t distribution in (9.22) and based
on the normal distribution in (9.42) are special cases of the general copula
representation in (9.43). If F is a multivariate normal distribution, CF in
(9.44) is a normal copula and if F is a multivariate t distribution, CF is
a t-copula. These copula functions can then be applied to other marginal
distributions to link those marginals using the dependence structure of the
multivariate normal or t.

For example, the generalized random t vector in (9.22) has as its joint
distribution the function

P (X̃1 ≤ x1, . . . , X̃m ≤ xm)
= P (Fν(X1) ≤ Fν1 (x1), . . . , Fν(Xm) ≤ Fνm(xm))
= Ctν (Fν1(x1), . . . , Fνm(xm)),

where we have written Ctν for the copula function of the multivariate t distri-
bution with ν degrees of freedom. Here and in (9.22) we apply a t-copula to
marginals that happen to be t distributions themselves, but this is not essen-
tial. We could replace Ctν with a normal copula (as Hosking et al. [188]) do),
and we could apply the t-copula to other marginal distributions. Mashal and
Zeevi [255], for example, apply a t-copula to empirical distributions of asset
returns.

A simple application of a normal copula can be used to generate depen-
dent default times with marginal distributions F1, . . . , Fm. Let X1, . . . , Xm be
correlated N(0, 1) random variables and set
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τi = F−1
i (Φ(Xi)), i = 1, . . . , m. (9.45)

This combines (9.41) and (9.42) and is among the methods discussed in Li
[236]. One might look to the correlations in equity returns to determine the
correlations between the Xi, though it is less clear how to make this trans-
lation here than in the fixed-horizon setting of Gupton et al. [163]. Finger
[120] compares the dependence between default times achieved through four
constructions (including (9.45)) calibrated to the same parameters and finds
that different mechanisms can give significantly different results.

Various types of copulas are surveyed with a view towards risk manage-
ment applications in Embrechts, McNeil, and Straumann [112], Hamilton,
James, and Webber [167], and Li [236]. Scönbucher and Schubert [321] ana-
lyze the combination of copulas with intensity-based modeling of marginals
defaults. Hamilton et al. [167] use historical default data to estimate a copula
empirically. In simulation, it is convenient to work with a copula associated
with a distribution from which it is easy to draw samples (like the normal
and t distributions). This facilitates the implementation of the type of mech-
anism in (9.45). Marshall and Olkin [252] define an interesting class of copula
functions that also lend themselves to simulation. Schönbucher [320] compares
credit-loss distributions under various members of this class.

9.4.3 Portfolio Credit Risk

The most basic problem in measuring portfolio credit risk is determining the
distribution of losses from default over a fixed horizon. This is the credit risk
counterpart of the market risk problem considered in Sections 9.1–9.3. For
credit risk, one usually considers a longer horizon — a year, for example.

Consider a fixed portfolio exposed to the credit risk of m obligors. Let

Yi = indicator that ith obligor defaults within the fixed horizon;
pi = P (Yi = 1) = marginal probability of default of the ith obligor;
ci = loss resulting from default of ith obligor;

L =
m∑

i=1

Yici = portfolio loss.

Estimating the distribution of the loss L often requires simulation, particularly
in a model that captures dependence among the default indicators Yi. In
estimating P (L > x) at large values of x, it is natural to apply importance
sampling. This section describes some initial steps in this direction based on
joint work with Jingyi Li.

Independent Obligors

We begin by considering the simple case of independent obligors. The loss ci

given default of the ith obligor could be modeled as a random variable but to
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further simplify, we take it to be a constant. These simplifications make L a
sum of independent random variables with moment generating function

E[eθL] =
m∏

i=1

E[eθYici ] =
m∏

i=1

(
pie

ciθ + (1 − pi)
)
,

finite for all θ ∈ �. Replacing θ with a purely imaginary argument yields the
characteristic function of L, which can be inverted numerically to find the
distribution of L. An alternative to exact inversion is a saddlepoint approxi-
mation, as applied in Martin, Thompson, and Browne [253].

Although simulation is unnecessary in this setting, it provides a convenient
starting point for developing variance reduction techniques. To simplify the
problem even further, suppose all obligors have the same default probabilities
pi ≡ p and exposures ci ≡ 1. Consider the effect of exponentially twisting
Yi, in the sense we encountered in Example 4.6.2 and Section 9.2.2. In other
words, define a change of probability measure through the likelihood ratio

exp(θYi − ψ(θ))

with
ψ(θ) = log

(
peθ + (1 − p)

)
and θ ∈ � a parameter. The default probability under the new distribution
is the probability that Yi = 1 and this is also the mean of Yi under the new
distribution. Using a standard property of exponential twisting, also used in
Examples 4.6.2–4.6.4 and (9.16), this mean is given by

p(θ) ≡ ψ′(θ) =
peθ

peθ + (1 − p)
.

By choosing θ > 0, we thus increase the probability of default.
Now apply this exponential twist to all the Yi. Because the Yi are indepen-

dent, the resulting likelihood ratio is the product of the individual likelihood
ratios and is thus given by

m∏
i=1

exp(θYi − ψ(θ)) = exp(θL − mψ(θ)).

In other words, in this simple setting, exponentially twisting every Yi defines
the same change of measure as exponentially twisting L itself. Write Pθ for
the new probability measure so defined and Eθ for expectation under this
measure. This provides the representation

P (L > x) = Eθ

[
e−θL+mψ(θ)1{L > x}

]
(9.46)

for the loss probability. The expression inside the expectation on the right
provides an unbiased estimator of the loss probability if sampled under the new
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probability measure. Sampling under Pθ is easy: it simply involves replacing
the original default probability p with p(θ).

It remains to choose the parameter θ. The argument leading to (9.15),
based on minimizing an upper bound on the second moment, similarly leads
here to the value of θx solving

ψ′(θx) = x/m,

which then also satisfies

Eθx [L] = Eθx

[
m∑

i=1

Yi

]
= mψ′(θx) = x. (9.47)

Thus, to estimate P (L > x) for large x, we increase the individual default
probabilities to make x the expected loss. It follows from more general results
on importance sampling (as in Bucklew, Ney, and Sadowsky [72] and Sadowsky
[315]) that this method is asymptotically optimal as x and m increase in a
fixed proportion.

This approach extends easily to the case of unequal pi and ci. Set

ψi(θ) = log
(
pie

θci + (1 − pi)
)
,

and ψL = ψ1 + · · · + ψm. Then ψL is the cumulant generating function of L
and exponentially twisting L defines the change of measure

dPθ

dP
= exp(θL − ψL(θ)).

This has the same effect as exponentially twisting every Yici. Under Pθ, each
term Yici has mean ψ′

i(θ), which is to say that the ith obligor defaults with
probability pi(θ) = ψ′

i(θ)/ci. This can also be written as

pi(θ)
1 − pi(θ)

=
(

pi

1 − pi

)
eθci,

which shows that taking θ > 0 increases the odds ratio for every obligor, with
larger increases for obligors with larger exposures ci. Choosing θ as the root of
the equation ψ′

L(θ) = x again satisfies (9.47) and minimizes an upper bound
on the second moment of the estimator.

Dependent Defaults

We now turn to the more interesting case in which the Yi are dependent. Differ-
ent models of dependence entail different approaches to importance sampling;
we consider dependence introduced through a normal copula as discussed in
Section 9.4.2.

For each obligor i, let
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xi = Φ−1(1 − pi) (9.48)

so that the probability of default pi equals the probability that a standard
normal random variable exceeds xi. Construct default indicators by setting
Yi = 1{Xi > xi} with Xi ∼ N(0, 1). (We are free to choose the threshold xi

in the lower tail of the normal as in Section 9.4.2 or the upper tail as we do
here.) Link the random variables X1, . . . , Xm through a specification of the
form (9.40); in vector notation, this becomes

X = AZ + Bε, (9.49)

in which ε has the N(0, I) distribution in �m, Z has the N(0, I) distribution in
�k, and Z is independent of ε. The m×k matrix A determines the correlation
matrix of X , whose off-diagonal entries are given by those of AA�. The m×m
diagonal matrix B is chosen so that all diagonal entries of the covariance
matrix AA�+B2 equal 1, thus making the components of X standard normal
random variables. We think of the dimension k of the common factors as
substantially smaller than the number of obligors; for example, m could be in
the thousands and k as small as 1–10.

We apply importance sampling conditional on the common factors. Given
Z, the vector X is normally distributed with mean AZ and diagonal covariance
matrix B2. The conditional probability of default of the ith obligor is therefore

p̃i = P (Yi = 1|Z) = P (Xi > xi|Z) = 1 − Φ
(

xi − aiZ

bi

)
, (9.50)

where ai is the ith row of A and bi is the ith element on the diagonal of
B. Given Z, the portfolio loss L becomes a sum of m independent random
variables, the ith summand taking the values ci and 0 with probabilities p̃i

and 1 − p̃i.
Conditioning on Z thus reduces the problem to the independent case with

which we began this section. Define

ψL|Z(θ) = log E[eθL|Z] =
m∑

i=1

log
(
p̃ie

θci + (1 − p̃i)
)
; (9.51)

this is the cumulant generating function of the distribution of L given Z. Let
θ̃x solve

ψ′
L|Z(θ̃x) = x.

Define the conditional default probabilities

p̃i(θ̃x) =
p̃ie

θ̃xci

p̃ieθ̃xci + 1 − p̃i

, i = 1, . . . , m. (9.52)

Given Z, the default indicators Y1, . . . , Ym are independent and, under the
θ̃x-twisted distribution, Yi takes the value 1 with probability p̃i(θ̃x); these are
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therefore easy to generate. Setting L equal to the sum of the Yici yields the
estimator

e−θ̃xL+ψL|Z(θ̃x)1{L > x}; (9.53)

this is the conditional counterpart of the expression in (9.46). Its conditional
expectation is P (L > x|Z) and its unconditional expectation is therefore
P (L > x).

Factor Twisting

We can apply further importance sampling to the normally distributed factors
Z. To see why this might be useful, decompose the variance of the estimator
(9.53) as

E[Varθ̃x
[e−θ̃xL+ψL|Z(θ̃x)1{L > x}|Z]] + Var[P (L > x|Z)]. (9.54)

The second term is the variance of the conditional expectation of the estimator
given Z. Twisting the default indicators conditional on Z, as in (9.53), makes
the first term in this decomposition small but does nothing for the second
term. Because P (L > x|Z) is a function of Z, we can apply importance
sampling to Z to try to reduce the contribution of the second term to the
total variance.

The simplest application of importance sampling to an N(0, I) random
vector introduces a mean vector µ, as in Example 4.6.1 and Section 4.6.2.
The likelihood ratio for this change of measure is

exp(−µ�Z + 1
2µ�µ).

When multiplied by (9.53), this yields the estimator

exp(−µ�Z + 1
2µ�µ − θ̃xL + ψL|Z(θ̃x))1{L > x}, (9.55)

in which Z is sampled from N(µ, I) and then L is sampled from the θ̃x-twisted
distribution conditional on Z.

Importance Sampling Algorithm for Credit Losses

We now summarize the two-step importance sampling procedure in a single
algorithm. We assume that the matrices A and B in the factor representation
(9.49) and the thresholds xi in (9.48) have already been defined. We also
assume that a mean vector µ for the common factors has been selected; we
return to this point below.

1. Generate Z ∼ N(µ, I) in �k

2. Compute conditional default probabilities p̃i, i = 1, . . . , m, as in (9.50)
3. Define ψL|Z as in (9.51) and find θ solving ψ′

L|Z(θ) = x;



534 9 Applications in Risk Management

set θ̃x = max{0, θ}
4. Compute twisted conditional default probabilities p̃i(θ̃x), i = 1, . . . , m,

using (9.52)
5. For i = 1, . . . , m, let Yi = 1 with probability p̃i(θ̃x) and Yi = 0

otherwise. Calculate loss L = c1Y1 + · · · + cmYm

6. Return estimator (9.55).

These steps compute a single replication of the estimator (9.55), which is
an unbiased estimator of P (L > x). The steps can be repeated and the results
averaged over independent replications.

At some values of Z (large values, if all the coefficients in (9.40) are pos-
itive), the conditional default probabilities p̃i may be sufficiently large that
the expected loss given Z exceeds x; i.e., ψ′

L|Z(0) > x. In this case, the θ
calculated in Step 3 of the algorithm would be negative, and twisting by this
parameter would decrease the default probabilities. To avoid this, Step 3 sets
θ̃x = 0 if the root θ is negative.

Choice of Factor Mean

It remains to specify the new mean µ for the common factors Z. As noted in
the discussion surrounding (9.54), the conditional twist (9.53) reduces variance
in estimating P (L > x|Z) and the purpose of applying importance sampling
to Z is to reduce variance in estimating the expectation of P (L > x|Z), viewed
as a function of Z. We should therefore choose µ to minimize this variance or,
equivalently, the second moment

Eµ

[
e−2µ�Z+µ�µP (L > x|Z)2

]
. (9.56)

We have subscripted the expectation by µ to emphasize that it is computed
with Z having distribution N(µ, I).

At this point, we restrict attention to a very special case. We take all the
default probabilities pi to be equal and we take all ci = 1. This makes L the
number of defaults. We take Z to scalar and all Xi in (9.49) of the form

Xi = ρZ +
√

1 − ρ2εi,

with the same scalar ρ for all i = 1, . . . , m.
At ρ = 0, the default indicators Yi = 1{Xi > xi} become independent

and P (L > x|Z) equals P (L > x). Because Z drops out of the problem, the
optimal choice of µ in this case is simply µ = 0. At ρ = 1, all the default
indicators become identical and L takes only the values 0 and m. Assuming
0 < x < m, we thus have

P (L > x|Z) = 1{L > x} = 1{Yi = 1} = 1{Z > xi},

for any i = 1, . . . , m. If we make this substitution in (9.56) and follow the same
steps leading to (9.15)–(9.16), we arrive at the parameter value satisfying
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Eµ[Z] = xi; (9.57)

that is, µ = xi. The default threshold xi equals Φ−1(1 − p) where p is the
common value of the default probabilities pi. This argument therefore suggests
that µ should increase from 0 to Φ−1(1 − p) as ρ increases from 0 to 1.

The numerical results in Figure 9.7 support this idea. The results apply
to a portfolio with m = 1000 obligors, ci ≡ 1 and pi ≡ p = 0.002. The figure
plots variance reduction factors (relative to ordinary Monte Carlo) for the
estimator (9.55) as a function µ for ρ = 0.05, 0.10, 0.25, 0.50, and 0.80. Each
curve corresponds to a value of ρ. For each ρ, we choose x to make P (L > x)
close to 1%, though this is not always possible because L is integer-valued.
The values of x and the loss probabilities are as follows:

ρ : 0.05 0.10 0.25 0.50 0.80
x : 6 6 10 26 43

P (L > x) : 0.6% 1.0% 0.9% 0.9% 1.0%

The curves in Figure 9.7 indeed show that the optimal µ (the point at
which the variance reduction is greatest) tends to increase with ρ. Moreover,
a default probability of p = 0.002 corresponds to a threshold of xi = Φ−1(1−
0.002) = 2.88, and the argument leading to (9.57) asserts that this should be
close to the optimal µ for ρ close to 1. (Equation (9.57) defines the optimal µ
for ρ = 1 as xi → ∞, but for finite xi the optimal µ may not be exactly equal
to xi, even at ρ = 1.) The curves in the figure indicate that the limiting value
of 2.88 is close to optimal for ρ = 0.50 and ρ = 0.80, and is very effective
even at ρ = 0.25. We know that at ρ = 0 it would be optimal to take µ = 0,
but the figure shows that with a small increase in ρ to 0.05 there is already
substantial benefit to taking µ > 0. For the examples in the figure, we find
variance reduction factors in the range of 30–50 with µ chosen optimally for
loss probabilities near 1%. Greater variance reduction would be achieved at
smaller loss probabilities.

This example is simple enough that it does not require simulation — L has
a binomial distribution conditional on Z, so calculation of P (L > x) reduces
to a one-dimensional integral. It nevertheless shows the potential effectiveness
of importance sampling in estimating the tail of the loss distribution. The
dependence mechanisms used in credit risk models in turn pose interesting
new challenges for research on variance reduction.

9.5 Concluding Remarks

In this chapter, we have presented some applications of Monte Carlo simula-
tion to risk management. In our discussion of market risk, we have focused
on the problem of estimating loss probabilities and value-at-risk and detailed
the use of the delta-gamma approximation as a basis for variance reduction.
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Fig. 9.7. Variance reduction achieved through importance sampling as a function
of factor mean µ for various levels of ρ. The optimal µ increases with ρ and is close
to Φ−1(1 − p) = 0.288 at larger values of ρ.

In discussing credit risk, we have described some of the main modeling ap-
proaches and simulation issues, and described some initial steps in research
on efficient simulation for portfolio credit risk.

We have not attempted a comprehensive treatment of the use of simulation
in risk management — the topic is too broad to permit that here. Simulation
is widely used in areas of risk management not even touched on in this chapter
— pension planning and insurance, for example. This section provides some
additional references to relevant methods and applications.

In our discussion of market risk, we have focused on portfolios with assets
whose value must be computed rather than simply observed. This is appro-
priate for a portfolio of options but overly complicated for, e.g., a portfolio of
stocks. When time series of asset values are available, extreme value theory is
useful for quantile estimation. See Bassi, Embrechts, and Kafetzaki [39] for an
introduction to risk management applications and Embrechts, Klüppelberg,
and Mikosch [111] for the underlying theory.

Quasi-Monte Carlo is a natural tool to consider in calculating risk mea-
sures. Methods for improving uniformity are not, however, specifically suited
to estimating small probabilities or extreme quantiles.

Talay and Zheng [344] analyze the discretization error in using an Euler
approximation to estimate quantiles of the law of a diffusion, with applications
to value-at-risk. They show that the discretization error (like the variance in
the central limit theorem (9.7)) involves the reciprocal of the density at the
quantile and can therefore be very large at extreme quantiles.

Importance sampling for heavy-tailed distributions is an active area of
current research, motivated by applications in telecommunications and in in-
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surance risk theory. Work on this topic includes Asmussen and Binswanger
[22], Asmussen, Binswanger, and Højgaard [23], and Juneja and Shahabuddin
[206]. These papers address difficulties in extending importance sampling for
the classical ruin problem of Example 4.6.3 to the case of heavy-tailed claims.

At the interface of market and credit risk lies the problem of calculating
the evolution of credit exposures. The exposure is the amount that would be
lost if a counterparty defaulted and is thus the positive part of the net market
value of all contracts with that counterparty, irrespective of the probability
of default. The exposure in an interest rate swap, for example, is zero at
inception and at termination and reaches a maximum around a third or half
of the way into the life of the swap. Simulation is useful in estimating the path
of the mean exposure and a quantile of the exposure; see Wakeman [354], for
example.

Dynamic financial analysis refers to simulation-based techniques for risk
management of growing use in the insurance industry. These are primarily
long-term simulations of interest rates and other financial variables coupled
with insurance losses. See Kaufmann, Gadmer, and Klett [208] for an intro-
duction.

As noted in Section 9.4.1, interest rates and default intensities play for-
mally similar roles in the calculation of bond prices and survival probabilities.
This analogy leads to HJM-like models of intensities, as presented in Chap-
ters 13 and 14 of Bielecki and Rutkowski [46]. The simulation methods of
Sections 3.6 and 3.7 are potentially relevant to these models.

For more on credit risk modeling and the valuation of credit derivatives,
see the books by Bielecki and Rutkowski [46] and Duffie [98].



A

Appendix: Convergence and Confidence
Intervals

This appendix summarizes basic convergence concepts and the application
of the central limit theorem to the construction of confidence intervals. The
results and definitions reviewed in this appendix are covered in greater detail
in many textbooks on probability and statistics.

A.1 Convergence Concepts

Random variables {Xn, n = 1, 2, . . .} on a probability space (Ω,F , P ) converge
almost surely (i.e., with probability 1) to a random variable X if

P
(

lim
n→∞

Xn = X
)

= 1,

meaning, more explicitly that the set{
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

}
has P -probability 1. The convergence holds in probability if, for all ε > 0,

P (|Xn − X | > ε) → 0

as n → ∞. It holds in p-norm, 0 < p < ∞, if all Xn and X have finite pth
moment and

E[|Xn − X |p] → 0.

Almost sure convergence implies convergence in probability. Convergence
in probability implies the existence of a deterministic subsequence {nk, k =
1, 2, . . .} through which Xnk

→ X almost surely (Chung [85], p.73). Con-
vergence in p-norm implies convergence in probability. Neither almost sure
convergence nor convergence in p-norm implies the other.

For random vectors, convergence in probability, in norm, or almost surely is
equivalent to the corresponding convergence of each component of the vector.
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A sequence of estimators {θ̂n, n ≥ 1} is consistent for a parameter θ if θ̂n

converges to θ in probability. The sequence is strongly consistent if conver-
gence holds with probability 1.

Convergence in Distribution

Random variables {Xn, n = 1, 2, . . .} with distribution functions Fn converge
in distribution to a random variable X with distribution F if

Fn(x) → F (x) for every x ∈ � at which F is continuous. (A.1)

The random variables X, X1, X2, . . . need not be defined on a common prob-
ability space. Convergence in distribution is denoted by the symbol “⇒”, as
in

Xn ⇒ X,

and is also called weak convergence. It is equivalent to the convergence of
E[f(Xn)] to E[f(X)] for all bounded continuous functions f : � → �. This
characterization is convenient in extending the definition of weak convergence
to random elements of more general spaces; in particular, we take it as the
definition of convergence in distribution for random vectors.

Convergence in distribution of random variables Xn to X is also equivalent
to pointwise convergence of their characteristic functions:

lim
n→∞

E
[
eitXn

]
= E

[
eitX

]
for all t ∈ �, with i =

√
−1. More precisely, Xn ⇒ X implies convergence

of the characteristic functions; and if the characteristic functions of the Xn

converge pointwise to a function continuous at zero, then this limit is the
characteristic function of a random variable to which the Xn then converge
in distribution.

Convergence in distribution is implied by convergence in probability, hence
also by almost sure convergence and by convergence in norm. If Xn ⇒ c with
c a constant, then the Xn converge to c in probability; this follows from (A.1)
when F (x) = 1{x ≥ c}.

Suppose random variables {Xn, n ≥ 1} and {Yn, n ≥ 1} are all defined on
a common probability space and that Xn ⇒ X and Yn ⇒ c, with c a constant.
Then

Xn + Yn ⇒ X + c and XnYn ⇒ Xc. (A.2)

The first assertion in (A.2) is sometimes called Slutsky’s Theorem.
The requirement that the limit of the Yn be constant is important. If

Xn ⇒ X and Yn ⇒ Y , it is not in general the case that Xn + Yn ⇒ X + Y
or XnYn ⇒ XY . These limits do hold under the stronger hypothesis that
(Xn, Yn) ⇒ (X, Y ). Indeed, any bounded continuous function of x+y or xy can
be written as a bounded continuous function of (x, y), and weak convergence
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of vectors is defined by convergence of expectations of all bounded continuous
functions.

Suppose {Nn, n = 1, 2, . . .} is a nondecreasing process taking positive in-
teger values and increasing to infinity with probability 1. Suppose Xn ⇒ X .
If {Nn, n = 1, 2, . . .} and {Xn, n = 1, 2, . . .} are independent sequences, then
XNn ⇒ X . This holds even without independence if Nn/n ⇒ c for some con-
stant c > 0, a result sometimes called Anscombe’s Theorem. We need this
result in (1.12). See also Theorem 7.3.2 of Chung [85].

Convergence of Moments

Because the mapping x �→ xr, r > 0, is unbounded, convergence in distri-
bution does not imply convergence of moments. Suppose Xn ⇒ X . Then a
necessary and sufficient condition for the convergence of E[|Xn|r] to E[|X |r] is
uniform integrability:

lim
c→∞

sup
n≥1

E [|X |r1{|X |r > c}] = 0. (A.3)

By the dominated convergence theorem, a simple sufficient condition is the
existence of an integrable random variable Y such that |Xn|r < Y for all n.
Another sufficient condition is

sup
n≥1

E
[
|Xn|r+ε

]
< ∞,

for some ε > 0.

A.2 Central Limit Theorem and Confidence Intervals

The elementary central limit theorem states the following: If X1, X2, . . . are
independent and identically distributed with expectation µ and variance σ2,
0 < σ < ∞, then the sample mean

X̄n =
1
n

n∑
i=1

Xi

satisfies
X̄n − µ

σ/
√

n
⇒ N(0, 1), (A.4)

with N(0, 1) denoting the standard normal distribution. This is proved by
showing that the characteristic function of the expression on the left converges
to the characteristic function of the standard normal distribution.

If X1, X2, . . . are i.i.d. random vectors with mean vector µ and covariance
matrix Σ, then
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√
n[X̄n − µ] ⇒ N(0, Σ),

where N(0, Σ) denotes the multivariate normal distribution with mean 0 and
covariance matrix Σ. This result can be deduced from (A.4) by considering
all linear combinations of the components of the vector X̄n.

By the definition of convergence in distribution, (A.4) means that for all
x ∈ �,

P

(
X̄n − µ

σ/
√

n
≤ x

)
→ Φ(x),

with Φ the standard cumulative normal distribution. From this it follows that
the probability that an interval of the form(

X̄n − a
σ√
n

, X̄n + b
σ√
n

)
,

0 ≤ a, b < ∞, covers µ approaches Φ(b)−Φ(−a) as n → ∞. We can choose a
and b so that this limiting probability is 1−δ, for any δ > 0. Among all choices
of a and b for which Φ(b) − Φ(−a) = 1 − δ, the values minimizing the length
of the interval (−a, b) are given by a = b = zδ/2, where 1 − Φ(zδ/2) = δ/2.
The interval

X̄n ± zδ/2
σ√
n

(A.5)

covers µ with probability approaching 1− δ as n → ∞ and is in this sense an
asymptotically valid confidence interval for µ.

Now let sn be any consistent estimator of σ, meaning that sn ⇒ σ. Because
σ > 0, we may modify sn so that it is always positive without affecting
consistency, and then we have σ/sn ⇒ 1. From (A.2) and (A.4) it follows that

X̄n − µ

sn/
√

n
⇒ N(0, 1),

and thus that
X̄n ± zδ/2

sn√
n

(A.6)

is also an asymptotically valid 1−δ confidence interval. Because σ is typically
unknown, this interval is of more practical use than (A.5); often,

sn =

√√√√ 1
n − 1

n∑
i=1

(Xi − X̄n)2,

the sample standard deviation of X1, . . . , Xn.
If the Xi are normally distributed, then the ratio in (A.4) has the standard

normal distribution for all n ≥ 1. It follows that in this case the interval (A.5)
covers µ with probability 1 − δ for all n ≥ 1. With sn the sample standard
deviation,



A.2 Central Limit Theorem and Confidence Intervals 543

X̄n − µ

sn/
√

n
∼ tn−1

for all n ≥ 2; i.e., the ratio on the left has the t distribution with n−1 degrees
of freedom. Accordingly, if we replace zδ/2 with tn−1,δ/2, the 1− δ/2 quantile
of the tn−1 distribution, the interval

X̄n ± tn−1,δ/2
sn√
n

covers µ with probability 1−δ. Even if the Xi are not normally distributed, this
produces a more conservative confidence interval because the t multiplier is
always larger than the corresponding z multiplier. But for even modest values
of n, the multipliers are nearly equal so we do not stress this distinction.

In addition to providing information about the precision of an estimator,
a confidence interval is useful in sample-size determination. From (A.5) we
find that the number of replications required to achieve a confidence interval
halfwidth of ε is

nε =
z2

δ/2σ
2

ε2
. (A.7)

If σ is unknown, a two-stage procedure uses an initial set of replications to
estimate it and then uses this estimate in (A.7) to estimate the total sample
size required.

Similar error bounds and procedures can be derived from Chebyshev’s
inequality, which states that

P

(
|X̄ − µ| ≤ σ√

δn

)
≥ 1 − δ,

for all δ > 0. This is valid for all n ≥ 1, but is more conservative than the
normal approximation.

In (A.4) we have presented only the most elementary form of the central
limit theorem. The sample mean and other estimators are asymptotically nor-
mal under more general conditions. The elementary result suffices whenever
we simulate independent and identically distributed replications. But more
general results are needed to handle other settings that arise in simulation;
we mention two.

◦ Variance reduction techniques often introduce dependence across replica-
tions. In some cases (e.g., control variates), the dependence becomes negli-
gible as the number of replications increases, but in others (e.g., stratified
sampling, Latin hypercube sampling) it does not. Simulating batches and
allowing dependence within batches but not across batches reduces the
problem to one of independent replications; but even without this limita-
tion a more general central limit theorem often applies. See, for example,
the discussion of output analysis in Section 4.4.
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◦ We are often interested in how the error in an estimator changes as some
parameter of a simulation changes along with an increase in the number
of replications. This applies, for example, when we discretize a model with
time step h. Rather than fixing h and letting the number of replications n
increase, we may want to analyze the convergence of an estimator as both
h → 0 and n → ∞. Because changing h changes the distribution from which
the replications are sampled, this setting requires a central limit theorem for
an array (as opposed to a sequence) of random variables. The Lindeberg-
Feller central limit theorem (as in, e.g., Chung [85], Section 7.2) is the key
result of this type.
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Appendix: Results from Stochastic Calculus

This appendix records some background results on stochastic integrals, sto-
chastic differential equations, martingales, and measure transformations. For
more comprehensive treatments of these topics see, e.g., Hunt and Kennedy
[191], Karatzas and Shreve [207], Øksendal [284], Protter [300], and Revuz
and Yor [306].

B.1 Itô’s Formula

Our starting point is a probability space (Ω,F , P ) with a filtration {Ft, t ≥ 0},
meaning a family of sub-σ-algebras of F with Fs ⊆ Ft whenever s ≤ t.
Depending on the context, t may range over all of [0,∞) or be restricted to
an interval [0, T ] for some fixed finite T . Some results require that the filtration
satisfy the “usual conditions,” so we assume these hold: F0 contains all subsets
of sets in F having P -probability 0, and each Fs is the intersection of all Ft

with t > s. A stochastic process {X(t), t ≥ 0} is adapted to the filtration
if X(t) ∈ Ft for all t ≥ 0, meaning that X(t) is Ft-measurable. We assume
that on this filtered probability space is defined a k-dimensional Brownian
motion W = (W1, . . . , Wk)� with respect to the filtration. In particular, W
is adapted and if t > s then W (t) − W (s) is independent of Fs. We denote
by {FW

t , t ≥ 0} the filtration generated by the Brownian motion with FW
0

augmented so that the usual conditions are satisfied.
For any vector or matrix a, let ‖a‖ denote the square root of the sum of

squared entries of a.
If {γ(t), 0 ≤ t ≤ T } is an �k-valued adapted process for which

P

(∫ T

0

‖γ(t)‖2 dt < ∞
)

= 1,

for some fixed T , then the Itô integral
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0

γ(u)� dW (u) (B.1)

is well-defined for all t in [0, T ]. This is not a routine extension of the ordinary
integral because the paths of W have infinite variation. See, e.g., Karatzas
and Shreve [207] or Øksendal [284] for a development of the Itô integral. We
can replace the integrand γ with an �d×k-valued process b by applying (B.1)
to each row of b; this produces a d-dimensional vector, each component of
which is a stochastic integral.

An �d-valued process {X(t), 0 ≤ t ≤ T } is an Itô process if it can be
represented as

X(t) = X(0) +
∫ t

0

a(u) du +
∫ t

0

b(u) dW (u), 0 ≤ t ≤ T, (B.2)

where X(0) is F0-measurable, a is an �d-valued adapted process satisfying

P

(∫ T

0

|ai(t)| dt < ∞
)

= 1, i = 1, . . . , d, (B.3)

and b is an �d×k-valued adapted process satisfying

P

(∫ T

0

‖b(u)‖2 dt < ∞
)

= 1. (B.4)

The notation
dX(t) = a(t) dt + b(t) dW (t) (B.5)

is shorthand for (B.2).

Theorem B.1.1 (Itô’s Formula). Let X be an �d-valued Itô process as in
(B.2) and let f : [0, T ] × �d → � be continuously differentiable in its first
argument and twice continuously differentiable in its second argument. Let
Σ(t) = b(t)b(t)�. Then Y (t) = f(t, X(t)) is an Itô process with

dY (t)

=
∂f

∂t
(t, X(t)) dt +

d∑
i=1

∂f

∂xi
(t, X(t)) dXi(t) + 1

2

d∑
i,j=1

∂2f

∂xi∂xj
(t, X(t))Σij(t) dt

=

∂f

∂t
(t, X(t)) +

d∑
i=1

∂f

∂xi
(t, X(t))ai(t) + 1

2

d∑
i,j=1

∂2f

∂xi∂xj
(t, X(t))Σij(t)

 dt

+
d∑

i=1

∂f

∂xi
(t, X(t))bi·(t) dW (t) (B.6)

with bi· the ith row of b; i.e.,
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Y (t) = f(0, X(0)) +
∫ t

0

∂f

∂t
(u, X(u)) +

d∑
i=1

∂f

∂xi
(u, X(u))ai(u)

+ 1
2

d∑
i,j=1

∂2f

∂xi∂xj
(u, X(u))Σij(u)

 du

+
∫ t

0

d∑
i=1

∂f

∂xi
(u, X(u))bi·(u) dW (u). (B.7)

This is the chain rule of stochastic calculus. It differs from the correspond-
ing result in ordinary calculus through the appearance of second derivatives
of f in the dt term.

If f has no explicit dependence on t (so that Y (t) = f(X(t))), equation
(B.6) simplifies to

dY (t) =

 d∑
i=1

∂f

∂xi
(X(t))ai(t) + 1

2

d∑
i,j=1

∂2f

∂xi∂xj
(X(t))Σij(t)

 dt

+
d∑

i=1

∂f

∂xi
(X(t))bi·(t) dW (t). (B.8)

If X , a, and b are scalar processes, it becomes

dY (t) =
(
f ′(X(t))a(t) + 1

2f ′′(X(t))b2(t)
)

dt + f ′(X(t))b(t) dW (t). (B.9)

By applying Theorem B.1.1 to the mapping (x, y) �→ xy we obtain the
following useful special case:

Corollary B.1.1 (Product Rule). Let (X, Y ) be an Itô process on �2,

d

(
X(t)
Y (t)

)
=
(

aX(t)
aY (t)

)
dt +

(
bX(t)�

bY (t)�

)
dW (t),

with aX , aY scalar valued, bX , bY taking values in �k, and W a k-dimensional
Brownian motion. Then

d(X(t)Y (t)) = X(t) dY (t) + Y (t) dX(t) + bX(t)�bY (t) dt (B.10)
= [X(t)aY (t) + Y (t)aX(t) + bX(t)�bY (t)] dt

+ [X(t)bY (t) + Y (t)bX(t)]� dW (t).

This result can be interpreted as an integration-by-parts formula for Itô
calculus because (after rearranging terms) it relates X dY to Y dX .
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B.2 Stochastic Differential Equations

Most models used in financial engineering can be described through a sto-
chastic differential equation (SDE) of the form

dX(t) = a(X(t), t) dt + b(X(t), t) dW (t), X(0) = X0, (B.11)

with W a k-dimensional Brownian motion, a mapping �d × [0,∞) into �d, b
mapping �d× [0,∞) into �d×k, and X0 a random d-vector independent of W .
In what sense do the functions a and b and the initial condition X0 determine
a process X?

A strong solution to (B.11) on an interval [0, T ] is an Itô process {X(t), 0 ≤
t ≤ T } for which P (X(0) = X0) = 1 and

X(t) = X(0) +
∫ t

0

a(X(u), u) du +
∫ t

0

b(X(u), u) dW (u), 0 ≤ t ≤ T.

The requirement that X be an Itô process imposes conditions (B.3) and (B.4)
on the processes {a(X(t), t), 0 ≤ t ≤ T } and {b(X(t), t), 0 ≤ t ≤ T }. We now
state the main result on strong solutions to SDEs.

Theorem B.2.1 (Existence and Uniqueness of Solutions). Suppose E[‖X0‖2]
is finite and that there is a constant K for which the following conditions are
satisfied:

(i) ‖a(x, t) − a(y, t)‖ + ‖b(x, t) − b(y, t)‖ ≤ K‖x− y‖ (Lipschitz condition)
(ii) ‖a(x, t)‖ + ‖b(x, t)‖ ≤ K(1 + ‖x‖) (Linear growth condition)

for all t ∈ [0, T ] and all x, y ∈ �d. Then the SDE (B.11) admits a strong
solution X. This solution is unique in the sense that if X̃ is also a solution,
then P (X(t) = X̃(t)∀t ∈ [0, T ]) = 1. For all t ∈ [0, T ], the solution satisfies
E[‖X(t)‖2] < ∞.

Proofs of this result can be found, e.g., Hunt and Kennedy [191], Karatzas
and Shreve [207], and Øksendal [284].

In the definition of a strong solution, the probability space and driving
Brownian motion W are specified as part of the SDE together with the func-
tions a and b. If we ask for just a weak solution, we are free to define a different
probability space supporting its own Brownian motion on which (B.11) holds.
For modeling purposes we are generally only concerned about the law of a
process, so there is little reason to insist on a particular probability space.
The most relevant issue is whether a, b, and the distribution of X0 uniquely
determine the law of any weak solution to (B.11). The strong uniqueness im-
plied by Theorem B.2.1 is more than enough to ensure this, but the simplicity
of the conditions on a and b make this a particularly convenient result.

The square-root function is not Lipschitz continuous, so Theorem B.2.1
does not apply to the square-root diffusion of Section 3.4. A result covering
that model appears in Karatzas and Shreve [207], p.291. See also Krylov [216]
for existence and uniqueness results under conditions weaker than those in
Theorem B.2.1.
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Markov Property

The form of the SDE (B.11) suggests that X(t) provides a complete descrip-
tion of the state of the system modeled by X : the dynamics of X in (B.11) do
not depend on the past evolution of X except through its current value X(t).
This is the intuitive content of the Markov property, which is made precise
through the requirement that

E[f(Xt)|Fs] = E[f(Xt)|Xs] (B.12)

for all 0 ≤ s ≤ t ≤ T and all bounded Borel functions f : �d → �. The process
X is a strong Markov process if (B.12) continues to hold with s replaced by any
stopping time (with respect to {Ft}) taking values in [0, T ]. This property is
confirmed by the following result, proved in, for example, Hunt and Kennedy
[191] and Øksendal [284]:

Theorem B.2.2 (Markov property). Under the conditions of Theorem B.2.1,
the solution X of (B.11) is a strong Markov process.

The Gaussian Case

An �d-valued process {ξ(t), t ∈ [0, T ]} is called Gaussian if for all n = 1, 2, . . .
and all t1, . . . , tn ∈ [0, T ], the vector formed by concatenating ξ(t1), . . . , ξ(tn)
has a multivariate normal distribution. Brownian motion is an example of a
Gaussian process. A Gaussian process need not be Markovian and the solution
to an SDE need not be Gaussian. But the next result tells us that in the case
of a linear SDE the solution is indeed Gaussian:

Theorem B.2.3 (Linear SDE). Let A, c, and D be bounded measurable func-
tions on [0, T ] taking values in �d×d, �d, and �d×k, respectively. Let X0 be
normally distributed on �d independent of the k-dimensional Brownian mo-
tion W . Then the solution of the SDE

dX(t) = (A(t)X(t) + c(t)) dt + D(t) dW (t), X(0) = X0 (B.13)

is a Gaussian process.

For a proof see Karatzas and Shreve [207], Problem 5.6.2 (solution in-
cluded).

The law of a Gaussian process is completely specified by its first- and
second-order moments. These can be given fairly explicitly in the case of
(B.13). We consider only the case of constant A(t) ≡ A; for the general case
see, e.g., Karatzas and Shreve [207].

Proposition B.2.1 If A(t) ≡ A in Theorem B.2.3, then

X(t) = eAtX(0) +
∫ t

0

eA(t−u)c(u) du +
∫ t

0

eA(t−u)D(u) dW (u). (B.14)
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The mean m(t) = E[X(t)] is given by

m(t) = eAtm(0) +
∫ t

0

eA(t−u)c(u) du

and the covariance by

E[(X(t) − m(t))(X(s) − m(s))�] =
∫ min(s,t)

0

eA(t−u)D(u)D(u)�eA�(t−u) du.

That the process in (B.14) satisfies (B.13) can be verified using Itô’s for-
mula. The expressions for the moments of X then follow from simple rules for
calculating means and covariances of stochastic integrals with deterministic
integrands, which we now make more explicit. If σ : [0, T ] → �k satisfies∫ T

0

‖σ(u)‖2 du < ∞, (B.15)

then

E

[∫ T

0

σ(u)� dW (u)

]
= 0, (B.16)

and

Var

[∫ T

0

σ(u)� dW (u)

]
=
∫ T

0

‖σ(u)‖2 du. (B.17)

If σ1, σ2 both satisfy (B.15), then for any s, t ∈ [0, T ]

Cov

[∫ t

0

σ1(u)� dW (u),
∫ s

0

σ2(u)� dW (u)
]

=
∫ min(s,t)

0

σ1(u)�σ2(u) du.

B.3 Martingales

This section summarizes some results relating stochastic integrals and mar-
tingales.

A real-valued adapted process {X(t), t ≥ 0} is a martingale if

(i) E[|Xt|] < ∞ for all t ≥ 0;
(ii) E[Xt|Fs] = Xs for all 0 ≤ s < t < ∞.

Define a martingale on [0, T ] by restricting t and s to this interval. Throughout
most of this book, we implicitly assume the integrability property (i) in calling
a process a martingale.

The process X is a local martingale if there exists a sequence of stopping
times {τn, n = 1, 2, . . .} with τn ↑ ∞ for which each process Xn(t) ≡ X(t∧τn)
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is a martingale. All martingales are local martingales, but the converse does
not hold. If, however, X is a local martingale and

E

[
sup

0≤t≤T
|X(t)|

]
< ∞,

then X is in fact a martingale on [0, T ]. This follows from the dominated
convergence theorem, as demonstrated in Protter [300], Theorem I.47.

It is common in applied work to assume that the solution to an SDE with
no drift term (a in (B.11)) is a martingale and, more generally, that any
process of the form

X(t) = X(0) +
∫ t

0

γ(u)� dW (u), X(0) ∈ F0, (B.18)

is a martingale. We make this assumption in several places throughout this
book, usually to derive implications for asset price dynamics from the absence
of arbitrage. But the process in (B.18) is not automatically a martingale with-
out additional hypotheses. The following result gives some indication of what
we are leaving out in assuming the martingale property holds.

Theorem B.3.1 (Stochastic integrals as martingales). Let X be as in (B.18)
with ∫ t

0

‖γ(u)‖2 du < ∞, a.s., for all t, (B.19)

then (i) X is a local martingale. (ii) If X(t) ≥ 0, a.s., for all t, then

E[Xt|Fs] ≤ Xs, 0 ≤ s ≤ t;

i.e., X is a supermartingale. If E[Xt] is constant then X is a martingale. (iii)
If E[X(0)2] < ∞ and if for all t > 0,

E

[∫ t

0

‖γ(u)‖2 du

]
< ∞, (B.20)

then X is a martingale and

E[X(t)2] = E[X(0)2] + E

[∫ t

0

‖γ(u)‖2 du

]
.

From (i) we see that a “driftless” process is a local martingale but not
necessarily a martingale. Property (ii) follows from the fact (Revuz and Yor
[306], p.123) that every nonnegative local martingale is a supermartingale and
any supermartingale with constant expectation is a martingale. Property (iii)
states that as long as we restrict ourselves to integrands satisfying (B.20),
stochastic integrals are indeed martingales and in fact square-integrable mar-
tingales. This is a special case of general results on stochastic integration with
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respect to martingales; for example, Proposition 3.2.10 of Karatzas and Shreve
[207].

We frequently work with processes of the form

Y (t) = Y (0) exp
(
− 1

2

∫ t

0

‖γ(u)‖2 du +
∫ t

0

γ(u)� dW (u)
)

. (B.21)

If (B.19) holds, then

X(t) = − 1
2

∫ t

0

‖γ(u)‖2 du +
∫ t

0

γ(u)� dW (u) (B.22)

is an Itô process and hence (by Theorem B.1.1) Y is too. An application of
Itô’s formula shows that Y satisfies

dY (t) = Y (t)γ(u)� dW (u),

so Y is at least a local martingale. If Y (0) is nonnegative and if E[Y (t)]
is constant, then we see from part (ii) of Theorem B.3.1 that Y is in fact a
martingale—an exponential martingale. In the special case that γ is determin-
istic and bounded on finite intervals, X is a Gaussian process; with Y (0) ≡ 1
we have

E[Y (t)] = E[exp(X(t))]
= exp

(
E[X(t)] + 1

2Var[X(t)]
)

= exp
(
− 1

2

∫ t

0

‖γ(u)‖2 du + 1
2

∫ t

0

‖γ(u)‖2 du

)
= 1,

using (B.16) and (B.17). This verifies that Y is a martingale.
Theorem B.3.1 states that under appropriate additional conditions, sto-

chastic integrals are martingales. The next result may be paraphrased as stat-
ing that if Brownian motion is the only source of uncertainty, then all martin-
gales are stochastic integrals. To make this precise, let FW

t be the σ-algebra
generated by {W (u), 0 ≤ u ≤ t} augmented to include all subsets of null sets.
We now specialize to the filtration {FW

t }.

Theorem B.3.2 (Martingale representation theorem). If X is a local mar-
tingale with respect to {FW

t }, then there exists a process γ such that (B.18)
holds. If X is a square-integrable martingale, then γ satisfies (B.20).

The second part is proved on pp.182-184 of Karatzas and Shreve [207]; a
proof of the first part is provided in Hunt and Kennedy [191], p.113.

A simple consequence of this result is that any integrable random variable
ξ ∈ FW

T has a representation of the form

ξ = E[ξ] +
∫ T

0

γ(u)� dW (u). (B.23)
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This follows by applying Theorem B.3.2 to the martingale X(t) = E[ξ|Ft].
Equation (B.23) says that we can synthesize the “payoff” ξ−E[ξ] by “trading”
in the underlying Brownian motion W .

A further consequence of Theorem B.3.2 is that any strictly positive local
martingale (with respect to {FW

t }) has a representation of the form (B.21).
More precisely, suppose Y is strictly positive and Ỹ (t) = Y (t)/Y (0) is a local
martingale. From Theorem B.3.2, we get a representation of the form

Ỹ (t) =
∫ t

0

γ̃(u)� dW (u).

Because Ỹ is strictly positive, we can define X(t) = log Ỹ and Itô’s formula
shows that X satisfies (B.22) with γ = γ̃/Ỹ . But Ỹ (t) = exp(X(t)) and
Y (t) = Y (0) exp(X(t)), so Y has the representation in (B.21).

B.4 Change of Measure

Let X be a nonnegative random variable on (Ω,F , P ) with E[X ] = 1. Define
Q : F → [0, 1] by setting

Q(A) = E[1AX ] =
∫

A

X(ω) dP (ω), A ∈ F , (B.24)

with 1A the indicator function of the set A. It is easy to verify that the set
function Q is a probability measure on (Ω,F). It is absolutely continuous with
respect to P , meaning that

Q(A) > 0 ⇒ P (A) > 0

for every A ∈ F . The Radon-Nikodym Theorem states that all such measures
arise in this way: if P and Q are probability measures on (Ω,F) and if Q is
absolutely continuous with respect to P , then there exists a random variable
X such that (B.24) holds. Moreover, X is unique in the sense that if (B.24)
holds for all A ∈ F for some other random variable X ′, then P (X = X ′) = 1.
Because Q is a probability, we must have P (X ≥ 0) = 1 and∫

Ω

X(ω) dP (ω) = 1.

The random variable X is commonly written as dQ/dP and called the Radon-
Nikodym derivative or likelihood ratio of Q with respect to P .

If P is also absolutely continuous with respect to Q, then P and Q are
equivalent . Equivalent measures agree about which events have probability
zero. If P and Q are equivalent, then

dP

dQ
=
(

dQ

dP

)−1

.
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To illustrate these ideas, suppose the random variable Z on (Ω,F) has a
density g under probability measure P ; i.e.,

P (Z ≤ z) =
∫ z

−∞
g(x) dx

for all z ∈ �. Let f be another probability density on � with the property
that g(z) = 0 ⇒ f(z) = 0 and define a new probability measure Q on (Ω,F)
by setting

Q(A) = EP

[
1A

f(Z)
g(Z)

]
;

we have subscripted the expectation to emphasize that it is taken with respect
to P . Interpret f(z)/g(z) to be 1 whenever both numerator and denominator
are 0. Clearly, P (f(Z)/g(Z) ≥ 0) = 1 and∫

Ω

f(Z(ω))
g(Z(ω))

dP (ω) =
∫ ∞

−∞

f(x)
g(x)

g(x) dx = 1.

Under the new measure, the event {Z ≤ z} has probability

Q(Z ≤ z) =
∫
{ω:Z(ω)≤z}

f(Z(ω))
g(Z(ω))

dP (ω)

=
∫ z

−∞

f(x)
g(x)

g(x) dx

=
∫ z

−∞
f(x) dx.

Thus, under Q, the random variable Z has density f .
As a special case, let g be the standard normal density and let f be the

normal density with mean µ and variance 1. Then f(x)/g(x) = exp(µx−µ2/2).
If Z has the standard normal distribution under P and if we define Q by setting

dQ

dP
= e−

1
2µ2+µZ ,

then Z has mean µ under Q and Z − µ has the standard normal distribution
under Q.

A similar calculation shows that if, under some probability measure Pn,
the random variables Z1, . . . , Zn are independent with densities g1, . . . , gn,
and if we define Qn by setting

dQn

dPn
=

n∏
i=1

fi(Zi)
gi(Zi)

,

then under Qn, the Zi are independent with densities fi. In particular, if the
Zi are independent standard normals under Pn and we set
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dQn

dPn
= exp

(
− 1

2

n∑
i=1

µ2
i +

n∑
i=1

µiZi

)
, (B.25)

then
Z1 − µ1, Z2 − µ2, . . . , Zn − µn (B.26)

are independent standard normals under Qn.
Consider, now, what happens in this example as n becomes large. For

each n, the support of the multivariate normal vector (Z1, . . . , Zn) is all of
�n regardless of its mean and the measures Pn and Qn are equivalent by
construction. Suppose that under P the random variables Z1, Z2, . . . are inde-
pendent standard normals, and suppose there is another measure Q on (Ω,F)
such that the Zi are independent normals with mean µ and variance 1 under
Q. Then

P

(
lim

n→∞
1
n

n∑
i=1

Zi = 0

)
= 1,

whereas if µ = 0 this event has Q-probability zero. Not only do P and Q
fail to be equivalent, they live on entirely different sets. The mutual absolute
continuity that holds for each n through (B.25) breaks down in the limit as
n → ∞.

Our main interest in measure transformations lies in changes of measure
that have the effect of adding a drift to a Brownian motion. This may be
viewed as an extension of (B.25) and (B.26). In discussing measure trans-
formations for continuous-time processes we restrict ourselves to finite time
intervals, just as the transformation in (B.25) is feasible only for finite n.

Girsanov’s Theorem

We now generalize the basic transformation in (B.24). For the filtration {Ft}
of (Ω,F , P ), let Pt denote the restriction of P to Ft. Let {X(t), t ∈ [0, T ]}
be a nonnegative martingale with respect to {Ft} and suppose E[X(T )] = 1.
Define a probability measure Qt on Ft by setting

Qt(A) = EP [1AX(t)] = EPt [1AX(t)], A ∈ Ft;

i.e., for each t ∈ [0, T ],
dQt

dPt
= X(t).

Then Qt is the restriction of QT to Ft because for any A ∈ Ft,

QT (A) = EP [1AX(T )] = EP [1AEP [X(T )|Ft]] = EP [1AX(t)] = Qt(A).

In this sense, the measures {Qt, t ∈ [0, T ]} are consistent. If X is strictly
positive, then Qt and Pt are equivalent for all t. To replace [0, T ] with [0,∞)
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and still have all Qt consistent, we would need to add the requirement that
the martingale X be uniformly integrable (see (A.3).

Suppose, now, that P and Q are equivalent probability measures on (Ω,F)
with Radon-Nikodym derivative dQ/dP . Define(

dQ

dP

)
t

= EP

[
dQ

dP
|Ft

]
, t ∈ [0, T ].

We claim that (dQ/dP )t is a martingale and equals the Radon-Nikodym deriv-
ative of the restriction of Q to Ft with respect to the restriction of P to Ft.
The martingale property is immediate from the definition. For the second
claim, observe that for any A ∈ Ft,

EP

[
1A

(
dQ

dP

)
t

]
= EP

[
EP

[
1A

dQ

dP
|Ft

]]
= EP

[
1A

dQ

dP

]
= Q(A).

We may summarize this discussion by saying that a nonnegative, unit-
mean martingale defines a consistent (with respect to {Ft, t ∈ [0, T ]}) family
of probability measures, and, conversely, the Radon-Nikodym derivatives for
such a family define a unit-mean, nonnegative martingale.

The following simple rule for applying a change of measure to conditional
expectations arises frequently in mathematical finance, most notably in ap-
plying a change of numeraire:

Proposition B.4.1 If P and Q are equivalent and EQ[|X |] < ∞, then

EQ [X |Ft] =
(

dQ

dP

)−1

t

EP

[
X

dQ

dP
|Ft

]
.

This follows immediately from the definition of (dQ/dP )t; for an explicit
proof, see Musiela and Rutkowski [275], p.458.

We can now state Girsanov’s Theorem. In the following, let {W (t), t ∈
[0, T ]} denote a standard k-dimensional Brownian motion on (Ω,F , P ) and
let {FW

t , t ∈ [0, T ]} denote the filtration generated by W augmented to include
all subsets of sets having P -probability 0.

Theorem B.4.1 (Girsanov Theorem). (i) Let γ be an �k-valued process
adapted to {FW

t } satisfying (B.19) for t ∈ [0, T ] and let

X(t) = exp
(
− 1

2

∫ t

0

‖γ(u)‖2 du +
∫ t

0

γ(u) dW (u)
)

. (B.27)

If EP [X(T )] = 1, then {X(t), t ∈ [0, T ]} is a martingale and the measure Q
on (Ω,FW

T ) defined by
dQ

dP
= X(T )

is equivalent to P . Under Q, the process
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WQ(t)
�
= W (t) −

∫ t

0

γ(u) du, t ∈ [0, T ]

is a standard Brownian motion with respect to {FW
t }. (ii) Conversely, if Q

is a probability measure on (Ω,FW
T ) equivalent to the restriction of P to FW

T ,
then (dQ/dP )t admits the representation in (B.27) for some γ and WQ is a
standard Brownian motion under Q.

Thus, the change of measure associated with a change of “drift” in a
Brownian motion over a finite horizon is an absolutely continuous change of
measure, and every absolutely continuous change of measure for Brownian
motion is of this type.

There are several different results, applicable at different levels of gen-
erality, known as Girsanov’s Theorem. The formulation given here is more
precisely Girsanov’s Theorem for Brownian motion and is closest to the one
proved in Section 5.2.2 of Hunt and Kennedy [191]. See Revuz and Yor [306]
for historical remarks as well as a more general formulation. Usually, only part
(i) of this result is called Girsanov’s Theorem. Part (ii) is a consequence of
the Martingale Representation Theorem: as a positive unit-mean martingale,
(dQ/dP )t must be of the form (B.27) and then Q and P must be related
as in part (i). We have included the converse because of its importance in
the theory of derivative pricing. It assures us that when we change from the
objective probability measure to an equivalent martingale measure, the drifts
in asset prices may change but their volatilities may not.

The requirement that EP [X(T )] = 1 in part (i) of Theorem B.4.1 is needed
to ensure that X is a martingale and not merely a local martingale; see Theo-
rem B.3.1. The Novikov condition is a widely cited sufficient condition for this
requirement (see, e.g., Section 3.5 of Karatzas and Shreve [207] for a proof):

Proposition B.4.2 (Novikov condition). If

E

[
exp

(
1
2

∫ T

0

‖γ(u)‖2 du

)]
< ∞,

then X in (B.27) is a martingale on [0, T ].



C

Appendix: The Term Structure of Interest
Rates

The term structure of interest rates refers to the dependence of interest rates
on maturity. There are several equivalent ways of recording this relationship.
This appendix reviews terminology used for this purpose and describes some
of the most important interest rate derivative securities.

C.1 Term Structure Terminology

A unit of account (e.g., a dollar) invested at a continuously compounded rate
R grows to a value of eRT over the interval from time 0 to T . If instead the
investment earns simple interest over [0, T ], the value grows to 1 + RT over
this interval. The discount factors associated with continuous compounding
and simple interest are thus e−RT and 1/(1 + RT ), respectively.

Many fixed income securities (including US Treasury bonds) follow an
intermediate convention in determining how interest accrues: an interest rate
is quoted on an annual basis with semi-annual compounding. In this case, an
initial investment of 1 grows to a value of 1+(R/2) at the end of half a year, to
a value of (1+(R/2))2 at the end of one year, and so on. A bit more generally,
if we let δ denote the fraction of a year over which interest is compounded
(with δ = 1/2 and δ = 1/4 the most important cases), the interest accrued
over nδ years is (1 + δR)n − 1. Depending on what day-count convention is
used, the exact lengths of nominally equal six-month or three-month intervals
may vary; if we therefore generalize to allow unequal fractions δ1, δ2, . . ., then
at the end of n periods, an initial investment of 1 grows to a value of

n∏
i=1

(1 + δiR).

The associated discount factor is the reciprocal of this expression.
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Bonds, Yields, and Forward Rates

Let B(t, T ) denote the price at time t of a security making a single payment
of 1 at time T , T ≥ t. This is a zero-coupon (or pure-discount) bond with
maturity T . A coupon bond makes payments at multiple dates and may be
viewed as a portfolio of zero-coupon bonds. A coupon bond paying ci at Ti,
i = 1, . . . , n, and a principal payment of 1 at Tn has a value prior to maturity
of

Bc(t) = B(t, Tn) +
n∑

i=	(t)

ciB(t, Ti), (C.1)

with �(t) the index of the next coupon date, defined by

T	(t)−1 < t ≤ T	(t).

In a world with a constant continuously compounded interest rate, an
investor could replicate a zero-coupon bond with maturity T by investing
e−RT in an interest bearing account at time 0 and letting it grow to a value
of 1 at time T . It follows that B(0, T ) = e−RT in this setting.

More generally, if the continuously compounded rate at time t (the short
rate) is given by a stochastic process r(t), an investment of 1 at time 0 grows
to a value of

β(t) = exp
(∫ t

0

r(u) du

)
at time t. As explained in Chapter 1, the price of a bond is given by

B(0, T ) = E

[
exp

(
−
∫ T

0

r(t) dt

)]
, (C.2)

the expectation taken under the risk-neutral measure. This is the only identity
in this section that involves probability.

The yield of a bond may be interpreted as the interest rate implied by the
price of the bond; the yield therefore depends on the compounding convention
assumed for the implied interest rate. The continuously compounded yield
Y (t, T ) for a zero-coupon bond maturing at T is defined by

B(t, T ) = e−Y (t,T )(T−t) or Y (t, T ) = − 1
T − t

log B(t, T ). (C.3)

The continuously compounded yield Yc(t) for the bond in (C.1) is defined by
the condition

Bc(t) = e−Yc(t)(Tn−t) +
n∑

i=	(t)

cie
−Yc(t)(Ti−t).

Yields are more commonly quoted on a semi-annual basis. The yield Yδ(t, T )
associated with a compounding interval δ solves the equation
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B(t, T ) =
1

(1 + δYδ(t, T ))n
,

when n = (T − t)/δ is an integer. This extends to arbitrary t ∈ (0, T ) through
the convention that interest accrues linearly between compounding dates. The
yield of a coupon bond is similarly defined by discounting the coupons as well
as the principal payment.

A forward rate is an interest rate set today for borrowing or lending at
some date in the future. Consider, first, the case of a forward rate based on
simple interest, and let F (t, T1, T2) denote the forward rate fixed at time t for
the interval [T1, T2], with t < T1 < T2. An investor entering into an agreement
at time t to borrow 1 at time T1 and repay the loan at time T2 pays interest
at rate F (t, T1, T2). More explicitly, the investor receives 1 at T1 and pays
1 + F (t, T1, T2)(T2 − T1) at T2; no other payments are exchanged.

An arbitrage argument shows that forward rates are determined by bond
prices. At time t, an investor could buy a zero-coupon bond maturing at T1,
funding the purchase by issuing bonds maturing at T2. If the number of bonds
k is chosen to satisfy

kB(t, T2) = B(t, T1),

there is no net cashflow at time t. The investor will receive 1 at T1 and pay k
at T2. To preclude arbitrage, the amount paid at T2 in this transaction must
be the same as the amount paid in the forward rate transaction, so

k = 1 + F (t, T1, T2)(T2 − T1).

But k = B(t, T1)/B(t, T2), so we conclude that

F (t, T1, T2) =
1

T2 − T1

(
B(t, T1) − B(t, T2)

B(t, T2)

)
. (C.4)

For much of the financial industry, the most important benchmark interest
rates are the London Inter-Bank Offered Rates or LIBOR. LIBOR is calcu-
lated daily through an average of rates offered by select banks in London.
Separate rates are quoted for different maturities (e.g., three months and six
months) and different currencies. LIBOR is quoted as a simple annualized
interest rate. A forward LIBOR rate is a special case of (C.4) with a fixed
length δ = T2 − T1 for the accrual period, typically with δ = 1/2 or δ = 1/4.
Thus, the δ-year forward LIBOR rate at time t with maturity T is

L(t, T ) = F (t, T, T + δ) =
1
δ

(
B(t, T ) − B(t, T + δ)

B(t, T + δ)

)
. (C.5)

In taking forward LIBOR rates as a special case of (C.4), we are ignoring
credit risk. The discussion leading to (C.4) assumes that bonds always make
their scheduled payments, that issuers never default. But the banks whose
rates set LIBOR may indeed default and this risk is presumably reflected in
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the rates they offer. Equation (C.5) ignores this feature. It is a convenient
simplification often used in practice.

In deriving (C.4) we assumed a simple forward rate, but we could just
as well have used a continuously compounded forward rate f(t, T1, T2). The
interest paid must be the same regardless of the compounding convention, so
we must have

exp (f(t, T1, T2)(T2 − T1)) − 1 = F (t, T1, T2)(T2 − T1).

With (C.4), this implies

f(t, T1, T2) =
log B(t, T1) − log B(t, T2)

T2 − T1

for the continuously compounded forward rate for the accrual interval [T1, T2].
Now define f(t, T ) to be the continuously compounded forward rate fixed

at t for the instant T . This is the limit (assuming it exists) of f(t, T, T + h)
as h approaches 0, and is thus given by

f(t, T ) = − ∂

∂T
log B(t, T ).

Inverting this relationship and using B(T, T ) = 1, we get

B(t, T ) = exp

(
−
∫ T

t

f(t, u) du

)
.

Thus, the forward curve f(t, ·) is characterized by the property that discount-
ing along this curve reproduces time-t bond prices.

Comparison with (C.3) reveals that

Y (t, T ) =
1

T − t

∫ T

t

f(t, u) du;

i.e., that yields are averages over forward rates. This suggests that forward
rates are more fundamental quantities than yields and thus potentially a more
attractive starting point in building models of term structure dynamics.

Swaps and Swap Rates

In a standard interest rate swap, two parties agree to exchange payments tied
to a notional principal, one party paying interest at a floating rate, the other
at a fixed rate. The principal is notional in the sense that it is never paid by
either party; it is merely used to determine the magnitudes of the payments.

Fix a period δ (e.g., half a year) and a set of dates Tn = nδ, n =
0, 1, . . . , M + 1. Consider a swap with payment dates T1, . . . , TM+1 on a no-
tional principal of 100. At each Tn, the fixed-rate payer pays 100Rδ: this is the
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simple interest accrued on a principal of 100 over an interval of length δ at an
annual rate of R. Denote by Ln−1(Tn−1) the simple annualized interest rate
fixed at Tn−1 for the interval [Tn−1, Tn]. (Thus, Ln−1(Tn−1) = L(Tn−1, Tn−1)
in (C.5), the δ-year LIBOR rate fixed at Tn−1.) The floating-rate payer pays
100Ln−1(Tn−1)δ at each Tn. The exchange of payments terminates at TM+1.

Consider the value of the swap from the perspective of the party paying
floating to receive fixed; the value to the other party has the same magnitude
but opposite sign. Although no principal is ever exchanged in the swap, valu-
ation is simplified if we pretend that each party pays the other 100 at TM+1.
These two fictitious payments cancel each other and thus have no effect on
the value of the swap. With this modification, each party’s payments look like
those of a bond with a face value of 100, one bond having a fixed coupon
rate of R, the other having a floating coupon. The value of the swap is the
difference between the values of the two bonds.

At time T0 = 0, the value of the fixed rate bond is (see (C.1))

100Rδ
M+1∑
i=1

B(0, Ti) + 100B(0, TM+1).

To value the floating rate bond, we argue that it can be replicated with an
initial investment of 100. Over the interval [0, T1], the initial investment earns
100δL0(0) in interest, precisely enough to pay the first coupon of the floating
rate bond. The remaining 100 can then be invested at rate L1(T1) until T2

to fund the next coupon while preserving the original 100. This reinvestment
process can be repeated until TM+1 when the 100 is used to pay the bond’s
principal. Because the cashflows of the floating rate bond can be replicated
with an initial investment of 100, we conclude that the value of the floating
rate bond must itself be 100. From the perspective of the floating-for-fixed
party, the value of the swap is the difference

100Rδ

M+1∑
i=1

B(0, Ti) + 100B(0, TM+1) − 100 (C.6)

between the fixed and floating rate bonds.
By definition, the swap rate at time 0 (for payments at T1, . . . , TM+1) is

the fixed rate R that makes the value of the swap (C.6) equal to zero. Both
parties would willingly enter into a swap at this rate without either party
having to make an additional payment to the other—the swap is costless.
From (C.6), we find that the swap rate is

S0(0) =
1 − B(0, TM+1)

δ
∑M+1

i=1 B(0, Ti)
.

We have subscripted the swap rate by 0 to indicate that this is the rate for a
swap beginning at time 0 with payments at T1, . . . , TM+1. The same derivation
shows that the rate at Tn for a swap with payments at Tn+1, . . . , TM+1 is



564 C Appendix: The Term Structure of Interest Rates

Sn(Tn) =
1 − B(Tn, TM+1)

δ
∑M+1

i=n+1 B(Tn, Ti)
.

The forward swap rate at time t < Tn for a swap with payment dates
Tn+1, . . . , TM+1 is

Sn(t) =
B(t, Tn) − B(t, TM+1)

δ
∑M+1

i=n+1 B(t, Ti)
. (C.7)

An extension of the argument leading to (C.6) shows that this is the rate
that makes a swap with payment dates Tn+1, . . . , TM+1 costless at time t.
The forward swap rate for a single period (M = n) coincides with the forward
LIBOR rate L(t, Tn); see (C.5).

C.2 Interest Rate Derivatives

The relationships among forward rates, swap rates, and bonds in Section C.1
are purely algebraic and independent of any stochastic assumptions about
interest rates. These relationships follow from static no-arbitrage arguments
that must hold at each valuation date t irrespective of the dynamics of the
term structure. This is not generally true of the value of interest rate futures
and options. The relationship between these interest rate derivatives and the
underlying term structure variables ordinarily depends on how one models
term structure dynamics.

Futures

We describe a slightly simplified version of Eurodollar futures, which are
among the most actively traded contracts in any market. The futures con-
tract has a settlement value of

100 · (1 − L(T, T ))

at the expiration date T , where L(T, T ) is the δ-year LIBOR rate in (C.5).
Through an argument detailed in Section 8.D of Duffie [98], the time-t fu-
tures price associated with a futures contract is the risk-neutral conditional
expectation of the settlement value. Define

L̂T (t) = E[L(T, T )|Ft] = E

[
1
δ

(
1

B(T, T + δ)
− 1
)
|Ft

]
, (C.8)

with Ft the history of market prices up to time t, and the expectation taken
under the risk-neutral measure. The Eurodollar futures price at time t (for
settlement at T ) is then 100(1 − L̂T (t)). The futures contract commits the
holder to making or receiving payments as the futures price fluctuates through
a process called resettlement or marking to market . In the idealized case of
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continuous resettlement, each increment dL̂T triggers a payment of 100dL̂T by
the holder of the contract, with a negative payment interpreted as a dividend.

The relationship (C.8) between the futures rate L̂T and bond prices de-
pends on stochastic elements of a model of the dynamics of the term structure,
whereas the relationship between forward rates and bond prices is essentially
algebraic and independent of the choice of model. The futures rate L̂T (t) is a
martingale under the risk-neutral measure; the forward rate L(t, T ) is a mar-
tingale under the forward measure for date T . The two processes coincide at
t = T .

Caps and Floors

An interest rate cap is a portfolio of options that serve to limit the interest paid
on a floating rate liability over a set of consecutive periods. Each individual
option in the cap applies to a single period and is called a caplet. Because
the value of a cap is simply the sum of the values of its component caplets, it
suffices to discuss valuation of caplets.

Consider, then, a caplet for the interval [T, T + δ]. A party with a floating
rate liability over this interval would pay interest equal to δL(T, T ) times the
principal at the end of the interval, with L(T, T ) the δ-year rate in (C.5). A
security designed to limit the interest rate paid to some fixed level K refunds
the difference δ(L(T, T )−K) (per unit of principal) if this difference is positive
and pays nothing otherwise. Thus, the payoff of a caplet is

δ(L(T, T )− K)+, (C.9)

and this payment is made at T + δ. This can also be written as([
exp

(∫ δ

0

f(T, T + u)

)
− 1

]
− δK

)+

,

using the curve f(T, ·) of instantaneous forward rates at time T .
A floor similarly sets a lower limit on interest payments. A single-period

floor (a floorlet) for the interval [T, T + δ] pays δ(K − L(T, T ))+ at T + δ.
The caplet payoff (C.9) is received at time T +δ but fixed at time T ; there

is no uncertainty in the payoff over the interval [T, T + δ]. Hence, a security
paying (C.9) at time T + δ is equivalent to one paying

δ

1 + δL(T, T )
(L(T, T ) − K)+ = δB(T, T + δ)(L(T, T )− K)+ (C.10)

at time T .
The payoff of a caplet (or floorlet) can be replicated by trading in two un-

derlying assets, the bonds maturing at T and T + δ. Valuing a caplet entails
determining the initial cost of this trading strategy or, more directly, comput-
ing the expected present value of the caplet’s payoff. This requires specifying
a model of the dynamics of the term structure.
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By market convention, caplet prices are quoted through Black’s formula,
after Black [49]. This formula equates the time-t price of the caplet to

δB(t, T + δ)
(

L(t, T )Φ
(

log(L(t, T )/K) + σ2(T − t)/2
σ
√

T − t

)
−KΦ

(
log(L(t, T )/K)− σ2(T − t)/2

σ
√

T − t

))
,

with Φ the standard cumulative normal distribution. This expression is what
one would obtain for the expectation of δB(t, T + δ)(L(T, T )−K)+ if L(·, T )
satisfied

dL(t, T )
L(t, T )

= σ dW (t),

though this does not necessarily correspond to a price in the sense of the
theory of derivatives valuation. In practice, the Black formula is typically used
in reverse, to extract the “implied volatility” parameter σ from the market
prices of caps. An obvious modification of the formula above produces the
Black formula for a floor.

Swaptions

A swaption is an option to enter into a swap. A “2 × 5” or “2-into-5” swaption
is a two-year option to enter into a five-year swap. A bit more generically,
consider an option expiring at Tn to enter into a swap with payment dates
Tn+1, . . . , TM+1. Suppose the option grants the holder the right to pay fixed
and receive floating on a notional principal of 1. Denote by R the fixed rate
specified in the underlying swap. At the expiration date Tn, the value of the
underlying swap is then

V (Tn) = 1 − Rδ

M+1∑
i=n+1

B(Tn, Ti) − B(Tn, TM+1),

by the argument used to derive (C.6). The holder of the option exercises if
the swap has positive value and otherwise lets the option expire worthless.
We may therefore think of the swaption as an instrument that pays [V (Tn)]+

at Tn.
Using (C.7), we find that

[V (Tn)]+ = δ

M+1∑
i=n+1

B(Tn, Ti)(Sn(Tn) − R)+. (C.11)

Hence, the swaption looks like a call option on a swap rate. This formulation
is convenient because modeling the dynamics of forward swap rates is more
natural than modeling the dynamics of swap values, just as modeling the
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dynamics of forward interest rates is more natural than modeling bond prices.
Furthermore, this representation makes it evident that a caplet is a special
case of a swaption by taking M = n and comparing with (C.10).

A swaption can be replicated by trading in bonds maturing at Tn, Tn+1,
. . . , TM+1. Valuing a swaption entails determining the initial cost of this
trading strategy or, more directly, computing the expected present value of
the swaption payoff. This requires specifying a model of the dynamics of the
term structure.

By market convention, swaption prices are quoted through a version of
Black’s formula. This formula equates the time-t price of the swaption to

δ

M+1∑
i=n+1

B(t, Ti)
(

Sn(t)Φ
(

log(Sn(t)/K) + σ2(Tn − t)/2
σ
√

Tn − t

)
−KΦ

(
log(Sn(t)/K) − σ2(Tn − t)/2

σ
√

Tn − t

))
.

This expression is what one would obtain for the expectation of

δ
M+1∑

i=n+1

B(t, Ti)(Sn(Tn) − K)+

if the forward swap rate satisfied

dSn(t)
Sn(t)

= σ dW (t).

As with the Black formula for caplets, this does not necessarily correspond to
a price in the sense of the theory of derivatives valuation (but see Jamshidian
[197] for a setting in which it does). In practice, the Black formula is used to
extract an implied volatility for swap rates.
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110. Eichenauer-Herrmann, J., Herrmann, E., and Wegenkittl, S. (1998) A survey
of quadratic and inversive congruential pseudorandom numbers, pp.66–97 in
Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing 1996,
P. Hellekalek, G. Larcher, H. Niederreiter, and P. Zinterhof, eds., Springer-
Verlag, Berlin.
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125. Fournié, E., Lasry, J.M., and Touzi, N. (1997) Monte Carlo methods for sto-
chastic volatility models, pp.146–164 in Numerical Methods in Finance, L.C.G.
Rogers and D. Talay, eds., Cambridge University Press, Cambridge, UK.

126. Fox, B.L. (1986) Algorithm 647: Implementation and relative efficiency of qua-
sirandom sequence generators, ACM Transactions on Mathematical Software
12:362–376.

127. Fox, B.L. (1999) Strategies for Quasi-Monte Carlo, Kluwer Academic Publish-
ers, Boston, Mass.

128. Fox, B.L., and Glynn, P.W. (1989) Replication schemes for limiting expecta-
tions, Probability in the Engineering and Information Sciences 3:299–318.

129. Fox, B.L., and Glynn, P.W. (1989) Simulating discounted costs, Management
Science 35:1297–1315.

130. Frolov, A.S., and Chentsov, N.N. (1963) On the calculation of definite inte-
grals dependent on a parameter by the Monte Carlo method, USSR Journal of
Computational Mathematics and Mathematical Physics (English translation)
4:802–808.

131. Fu, M.C., and Hu, J.-Q. (1995) Sensitivity analysis for Monte Carlo simula-
tion of option pricing, Probability in the Engineering and Information Sciences
9:417–446.

132. Gaines, J.G., and Lyons, T.J. (1994) Random generation of stochastic area
integrals, SIAM Journal on Applied Mathematics 54:1132–1146.

133. Gaines, J.G., and Lyons, T.J. (1997) Variable step size control in the numerical
solution of stochastic differential equations, SIAM Journal on Applied Mathe-
matics 57:1455–1484.



576 References

134. Garcia, D. (2003) Convergence and biases of Monte Carlo estimates of Amer-
ican option prices using a parametric exercise rule, Journal of Economic Dy-
namics and Control 27:1855–1879.

135. Geman, H., and Yor, M. (1993) Bessel processes, Asian options and perpetu-
ities, Mathematical Finance 3:349–375.

136. Gentle, J.E. (1998) Random Number Generation and Monte Carlo Methods,
Springer-Verlag, New York.

137. Ghosh, S., and Henderson, S.G. (2002) Properties of the NORTA method in
higher dimensions, pp.263–269 in Proceedings of the Winter Simulation Con-
ference, IEEE Press, New York.

138. Glasserman, P. (1991) Gradient Estimation via Perturbation Analysis, Kluwer
Academic Publishers, Norwell, Mass.

139. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (1999) Asymptotically
optimal importance sampling and stratification for path-dependent options,
Mathematical Finance 9:117–152.

140. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (1999) Importance
sampling in the Heath-Jarrow-Morton framework, Journal of Derivatives
6:(Fall)32–50.

141. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (1999) Stratification is-
sues in estimating value-at-risk, pp.351–358 in Proceedings of the Winter Sim-
ulation Conference, IEEE Press, New York.

142. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000) Importance sam-
pling and stratification for value-at-risk, pp.7–24 in Computational Finance
1999 (Proceedings of the Sixth International Conference on Computational Fi-
nance), Y.S. Abu-Mostafa, B. LeBaron, A.W. Lo, and A.S. Weigend, eds., MIT
Press, Cambridge, Mass.

143. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000) Variance re-
duction techniques for estimating value-at-risk, Management Science 46:1349–
1364.

144. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2002) Portfolio value-
at-risk with heavy-tailed risk factors, Mathematical Finance 12:239–269.

145. Glasserman, P., and Merener, N. (2003) Numerical solution of jump-diffusion
LIBOR market models, Finance and Stochastics 7:1–27.

146. Glasserman, P., and Staum, J. (2001) Conditioning on one-step survival in
barrier option simulations, Operations Research 49:923–937.

147. Glasserman, P., and Yu, B. (2002) Large sample properties of weighted Monte
Carlo, Working Paper DRO-2002-07, Columbia Business School, New York.

148. Glasserman, P., and Yu, B. (2003) Pricing American options by simulation:
regression now or regression later?, to appear in Monte Carlo and Quasi-Monte
Carlo Methods 2002, H. Niederreiter, ed., Springer-Verlag, Berlin.

149. Glasserman, P., and Wang, H. (2000) Discretization of deflated bond prices,
Advances in Applied Probability 32:540–563.

150. Glasserman, P., and Zhao, X. (1999) Fast Greeks by simulation in forward
LIBOR models, Journal of Computational Finance 3:5–39.

151. Glasserman, P., and Zhao, X. (2000) Arbitrage-free discretization of lognormal
forward LIBOR and swap rate models, Finance and Stochastics 4:35–68.

152. Glynn, P.W. (1987) Likelihood ratio gradient estimation: an overview, pp.366–
374 in Proceedings of the Winter Simulation Conference, IEEE Press, New
York.



References 577

153. Glynn, P.W. (1989) Optimization of stochastic systems via simulation, pp.90–
105 in Proceedings of the Winter Simulation Conference, IEEE Press, New
York.

154. Glynn, P.W. (1996) Importance sampling for Monte Carlo estimation of quan-
tiles, pp.180–185 in Mathematical Methods in Stochastic Simulation and Ex-
perimental Design: Proceedings of the Second St. Petersburg Workshop on Sim-
ulation, St. Petersburg University Press, St. Petersburg, Russia.

155. Glynn, P.W., and Heidelberger, P. (1990) Bias properties of budget constrained
simulations, Operations Research 38:801–814.

156. Glynn, P.W., and Iglehart, D.L. (1988) Simulation methods for queues: an
overview, Queueing Systems: Theory and Applications 3:221-256.

157. Glynn, P.W., and Iglehart, D.L. (1989) Importance sampling for stochastic
simulations, Management Science 35:1367–1392.

158. Glynn, P.W., and L’Ecuyer, P. (1995) Likelihood ratio gradient estimation for
regenerative stochastic recursions, Advances in Applied Probability 27:1019–
1053.

159. Glynn, P.W., and Whitt, W. (1989) Indirect estimation via L = λW , Opera-
tions Research 37:82–103.

160. Glynn, P.W., and Whitt, W. (1992) The efficiency of simulation estimators,
Operations Research 40:505–520.

161. Gobet, E., and Munos, R. (2002) Sensitivity analysis using Itô-Malliavin cal-
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variance decomposition, 207
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likelihood ratio method, 405
on multiple assets, 105
pathwise method, 393, 395, 400
random computing time, 11
using Latin hypercube sampling, 242
using quasi-Monte Carlo, 334
with importance sampling, 264

base-b expansion, 285
batching, 543

and control variates, 202
and moment matching, 246
and stratified sampling, 216

Beasley-Springer-Moro approximation,
67

Bermudan option, 423
Bessel process, 132, 373
beta distribution, 59, 229
bias, 5

from discretization, 339–376
in American option pricing, 427–428,

433, 435–436, 443, 446–448, 450,
462, 472

in control variates, 191, 200, 278
in finite-difference estimators,

378–379
in likelihood ratio method, 407
in moment matching, 245
in pathwise method, 393
in ratio estimators, 234
sources of, 12–16

bias-variance tradeoff, 16–19, 365–366,
381–383, 456

binomial lattice, 230
Latin hypercube sampling, 238
simulating paths, 231
terminal stratification, 231–232

Black formula, 566, 567
for cap, 173

Black-Scholes formula, 5
as risk-neutral expectation, 31
as solution to PDE, 25
for geometric average option, 100
in jump-diffusion option pricing, 137
with dividends, 32

Black-Scholes PDE, 25
bonds, 560

as control variates, 190
as numeraire, 34, 116, 131, 154, 171
in CIR model, 128
in Gaussian short rate models,

111–118
in HJM framework, 151, 163
in LIBOR market model, 166
in LIBOR market model simulation,

177
in Vasicek model, 113–114
second-order discretization, 358
subject to default, 520

Box-Muller method, 65
and radial stratification, 227

Brownian bridge, 83
maximum of, 56, 367

Brownian bridge construction, 82–86
algorithm, 84
and quasi-Monte Carlo, 333–334, 337
and stratified sampling, 221
continuous limit, 89
in multiple dimensions, 91

Brownian motion
covariance matrix, 82
definition, 79
Latin hypercube sampling of, 238
maximum of, 56, 360, 367
multivariate, 90
stratified sampling of, 221

cap, 274, 416, 565–566
and calibration, 180
delta, 399
discretization error, 371
in HJM framework, 163
in LIBOR market model, 172, 180
with importance sampling, 275
with stratified sampling, 225

caplet, 565
central limit theorem, 9, 541–544

contrasted with Koksma-Hlawka
bound, 289

for finite-difference estimators, 382
for poststratified estimators, 235
for quantile estimator, 490
for ratio estimators, 234
using delta method, 204
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with antithetic sampling, 206
with control variates, 196
with discretization error, 366
with Latin hypercube sampling, 241
with nonlinear controls, 204
with random number of replications,

12, 541
with stratified sampling, 216

central-difference estimator, 378
change of measure, 255, 553–557

and conditional expectation, 556
and risk measurement, 483, 521
as change of drift, 557
as change of intensity, 523
for risk-neutral pricing, 28
in American option pricing, 450
in heavy-tailed model, 279, 515–516,

537
in HJM framework, 154
in LIBOR market model, 171
in Vasicek model, 117
through change of numeraire, 33
through delta-gamma approximation,

495
through geometric Brownian motion,

106
through weighted Monte Carlo, 253

characteristic function
delta-gamma approximation, 487
indirect delta-gamma approximation,

513
inversion integral, 488
stable laws, 148

Chebyshev’s inequality, 289, 543
chi-square χ2

ν , 122, 125, 227, 392, 509
moment generating function, 514

Cholesky factorization, 72, 486
for Brownian motion, 82

CIR model, 120, 128, 524
delta, 392

combined random number generators,
50

commutativity condition, 353
conditional excess, 483, 506, 519
conditional Monte Carlo, 279, 369, 399

for barrier options, 267
conditional sampling

in stratified sampling, 211, 214,
502–504

using acceptance-rejection, 61
using inverse transform, 57

confidence interval, 6, 541–544
combining high and low estimators,

431, 434, 437
for American option, 431, 434, 437
through batching, 216, 242, 246, 543
with antithetic sampling, 206
with control variates, 196, 198
with Latin hypercube sampling, 241
with moment matching, 246
with stratified sampling, 216

constant diffusion transformation, 373
constant elasticity of variance (CEV),

133
continuation values, 426
control variates, 185–205, 277, 420, 440

and moment matching, 245, 246, 249
and price sensitivities, 418
and weighted Monte Carlo, 199, 254
biased, 278
compared with stratified sampling,

220
confidence intervals, 195–196, 198
delta estimation, 417
delta-gamma approximation, 493
for quantile estimation, 493–494
in stochastic mesh, 457
loss factor, 201
optimal coefficient, 186, 197
score function, 411
variance decomposition, 198

convergence
modes of, 539–541

convergence in distribution, 540
convergence order, 344–348
copula, 511, 527, 529
credit rating, 524
credit risk, 520–535

variance reduction techniques,
529–535

cumulant generating function
after change of measure, 501
conditional, 532
definition, 260
figure, 264, 265, 498
of delta-gamma approximation, 487
of indirect delta-gamma approxima-

tion, 515
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of portfolio credit losses, 531

default, 121, 520
and LIBOR, 166

default intensity, 522–524
deflator, 26
delta, 23, 377, 485

Black-Scholes, 388, 403
cap, 399
finite-difference estimators, 383
likelihood ratio method, 403, 404,

406, 414
mixed estimator, 417
numerical comparison, 412
path-dependent options, 389, 404
pathwise, 388, 389, 391
square-root diffusion, 391
stochastic volatility, 414

delta hedging, 23, 377
and control variates, 194

delta method, 203, 234
delta-gamma approximation, 485–488

and importance sampling, 495–500,
515–517

as a control variate, 493–494
cumulant generating function, 487
in heavy-tailed model, 512–514
indirect, 513–515
with stratified sampling, 500–504,

517–518
depth-first processing, 437
digital nets, 314
dimension (of integration problem), 3,

62, 282, 285, 324, 327, 337
discounting, 4, 559

by stochastic discount factor, 26
in LIBOR market model, 168
in stochastic short rate model, 108

discrepancy, 283–285
extreme, 284
isotropic, 284, 290
L2, 290
star, 284

discretization error, 8, 110, 115, 159,
339–376

and change of variables, 371–375
and control variates, 191
and likelihood ratio method, 414
and path adjustment, 250

and path-dependence, 357–360,
366–370

and pathwise method, 396
as example of bias, 13
bias-variance tradeoff, 365–366
in barrier options, 368–370
in cap deltas, 399
in caplet pricing, 180
in discounted bonds, 157
in forward curve, 155
in jump-diffusion processes, 363–364
in LIBOR market model, 174
in option payoff, 14
in quantile estimation, 536
second-order methods, 348–357

dividends, 31, 96
and American options, 423, 469

dual formulation of American option
pricing, 470–478

connection with regression, 476–478
optimal martingale, 472

dynamic financial analysis, 537
dynamic programming, 424, 426

empirical martingale method, 245
equivalent martingale measure, 28
error function (Erf), 70
Euler approximation, 7, 81, 121,

339–340
and likelihood ratio method, 414
and pathwise method, 396
convergence order, 345–347
deterministic volatility function, 103
in LIBOR market model, 175
in square-root diffusion, 124
in Vasicek model, 110

exercise region, 422, 425
for max option, 464
parametric approximation, 426

experimental design, 385
exponential family, exponential twisting,

exponential change of measure,
260, 262, 264, 278, 407

and default indicators, 530
and delta-gamma approximation,

495, 498
and indirect delta-gamma, 515

exponential tail, 508
extreme value theory, 536
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factor loading, 75
Faure generator matrices, 298

algorithm, 301
Faure net, 300

cyclic property, 300, 331
Faure sequence, 297–303

algorithm, 302
as (t, d)-sequence, 300
implementation, 300–303
numerical examples, 325–330
plateaus, 328
starting point, 302, 325, 327, 329

filtration, 545
finite-difference estimators, 378–386

bias-variance tradeoff, 381–383
forward measure

defined, 34
in CIR model, 131
in HJM framework, 154, 159
in LIBOR market model, 171–172
in Vasicek model, 117–118

forward price, 98
as input to simulation, 102

forward rate, 560–562
continuous compounding, 149
factors, 273
simple compounding, 165

forward-difference estimator, 378
Fundamental Theorem of Asset Pricing,

27
futures price, 97, 564

gamma, 378, 485
central-difference estimator, 384
likelihood ratio method, 411–413
pathwise method, 392

gamma distribution, 125–127, 143, 508,
516

exponential family, 261
sampling algorithm, 126, 127

gamma process, 143–144
Gaussian short rate models, 108–120

multifactor, 118
generalized Faure sequences, 316, 323
generalized feedback shift register

methods, 52
generalized Niederreiter sequences, 316
geometric Brownian motion, 93–107

as numeraire, 106

derivation of SDE, 93
Girsanov theorem, 29, 35, 37, 107, 117,

131, 155, 171, 409, 523, 555–557
Gray code, 307, 313

in base b, 308
Greeks, 377

Halton sequence, 293–297
discrepancy, 294
implementation, 296–297
in high dimensions, 295
leaped, 295

Hammersley points, 294
Hardy-Krause variation, 287

of an indicator function, 290
Heath-Jarrow-Morton (HJM) frame-

work, 150–155
discretized, 374
simulation algorithm, 160–162
with importance sampling, 273–276
with path adjustment, 250

heavy-tailed distributions, 148, 279,
506–511

Heston model, 121
likelihood ratio method, 414
pathwise method, 392
second-order discretization, 356

high estimator, 432–434, 446–447, 472
and duality, 478

HJM drift
and control variates, 191
discretized, 158, 160
forward measure, 155
risk-neutral measure, 152

Ho-Lee model, 109, 111
in HJM framework, 154

hyperbolic model, 146

importance sampling, 255–276, 278
and likelihood ratio method, 407
and stochastic mesh methods, 450
asymptotic optimality, 264, 270,

499–500, 517
combined with stratified sampling,

271–273, 500–504, 517–518
deterministic change of drift, 267
for credit risk, 529–535
for knock-in option, 264
for path-dependent options, 267–271
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optimal drift, 269, 274
optimal path, 269–271
through log-linear approximation,

268–269
using delta-gamma approximation,

495–500, 515–517
with heavy-tailed distributions, 279,

515–516, 537
zero-variance estimator, 256

independent-path construction, 444
infinitely divisible distribution, 143–145

stable distribution, 148
insurance risk, 262, 279, 537
intensity, 140, 141, 364, 522, 523
interleaving estimator, 449, 461
inverse Gaussian distribution, 144

sampling algorithm, 146
inverse transform method, 54–58, 67,

127, 128, 231, 367, 490, 502, 511,
524

and antithetics, 205
and Latin hypercube sampling, 237
and stratified sampling, 212
avoiding zero, 294
for conditional sampling, 57
for Poisson distribution, 128
in quasi-Monte Carlo, 331

inversive congruential generator, 52
Itô’s formula, 545–547

in operator notation, 348
Itô-Taylor expansions, 362–363

jump-diffusion process, 134, 524
discretization, 363–364

Karhounen-Loève expansion, 89
Koksma-Hlawka inequality, 288

generalizations, 289
Korobov rules, 317, 329
kurtosis, 134, 507

Lévy area, 344
Lévy construction of Brownian motion,

90
Lévy process, 142–149, 364
Latin hypercube sampling, 236–243, 278

and normal copula, 527
confidence intervals for, 241
in a binomial lattice, 238

in quantile estimation, 490
in random tree method, 439
of Brownian paths, 238
variance reduction, 240

lattice rules, 316–320, 325
extensible, 319
integration error, 318–319
Korobov, 317
rank, 316

LIBOR, 166, 561
LIBOR market model, 166–174

Bermudan swaption, 429
commutativity condition, 354
control variate for, 192
discretization error, 364, 371
likelihood ratio method, 415–416
pathwise method, 398–399
stratified sampling, 224
transition density, 415, 457

likelihood ratio, 256–259, 553
for change of mean and covariance in

normal family, 497
for change of mean in normal family,

260, 533
for change of numeraire, 33
for conditional process, 369
for delta-gamma approximation, 496
for increased default probability, 530
for indirect delta-gamma, 515
geometric Brownian motion, 106
in Vasicek model, 117
over long horizon, 259, 409
over random horizon, 258
relating objective and risk-neutral

measures, 28
skewness, 260
weights in stochastic mesh, 450–456,

466, 468
likelihood ratio method, 401–418

and regression, 418
combined with pathwise method, 412,

416–417
for barrier option, 405
for general diffusion processes,

413–415
for LIBOR market model, 415–416
for square-root diffusion, 406
gamma, 411–413
limitations, 407
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variance, 407–411
vega, 405
with stochastic volatility, 414

linear congruential generator, 40, 43–49,
317

local martingale, 550
lognormal distribution, 94, 508

moments, 95
lookback option, 101

discretization error, 360, 367
loss factor (for control variates), 201
low discrepancy, 285
low estimator, 428, 434–437, 443,

447–448, 450, 462

Marsaglia-Bray method, 66
martingale, 550–553

and duality, 471
and moment matching, 245
and stochastic intensity, 522
control variate, 188
deflated bond, 169
discounted asset price, 26, 29
discounted bond price, 151
discrete discounted bond prices, 156
exponential, 117, 151, 552
from approximate value function, 473
from Poisson process, 137
from stochastic integral, 551
from stopping rule, 474
futures price, 98
geometric Brownian motion, 96
local, 550
optimal, 472
score, 410

martingale discretization, 158, 160,
374–375

in LIBOR market model, 176–180
martingale representation theorem, 36,

522, 552
Milstein schemes, 343, 347, 351
mixed (iterated) Brownian integrals,

344
mod operation, 41
moment generating function

chi-square distribution, 514
delta-gamma approximation, 487
failure with heavy tails, 512
normal distribution, 65, 95

portfolio loss, 530
moment matching, 244–254, 277

compared with control variates, 246
multifactor Gaussian models, 118
multiple recursive generator (MRG), 50

in C, 51

N(µ, σ2), 63
N(µ, Σ), 64
net, 291
Niederreiter sequences, 314
Niederreiter-Xing sequences, 316
noncentral chi-square χ′2

ν (λ), 122, 123,
130, 133, 392, 406, 414, 487

nonlinear control variates, 202–205
normal distribution, 63–77

acceptance-rejection method, 60
conditioning formula, 65
copula, 527
for change of variables, 372
inverse of, 67
mixture, 507, 509
multivariate, 64, 71
numerical approximation, 69
sampling methods, 60, 65–69

normal inverse Gaussian process,
144–147

numeraire, 19, 32, 255
and importance sampling, 267
bond in HJM framework, 154, 160
bond in LIBOR market model, 171
for spot measure, 169
geometric Brownian motion, 106
in CIR model, 131
in Gaussian short rate model, 116

obligor, 520
optimal allocation of samples, 217–218
Ornstein-Uhlenbeck process, 108, 132

parametric value function, 430
pathwise method, 386–401

combined with likelihood ratio
method, 412, 416–417

conditions for unbiasedness, 393–396
for general diffusion processes,

396–397
for LIBOR market model, 398–399
limitations, 392, 396
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smoothing, 399–401

Poisson distribution, 123, 127–128
exponential family, 261
inverse transform method, 128

Poisson process, 56, 136, 138, 363, 524
and stratified sampling, 228–229

inhomogeneous, 140–141
of insurance claims, 262

poststratification, 232–235

and control variates, 494
and quantile estimation, 494
asymptotic variance, 235

compared with stratified sampling,
235

of delta-gamma approximation, 504

predictor-corrector method, 372, 373
pricing kernel, 26

primitive polynomials
defined, 304
tables of, 305

principal components, 74
and value-at-risk, 492
of discretely observed Brownian

motion, 88
of forward rates, 184

optimality of, 75
principal components construction,

86–89

and quasi-Monte Carlo, 334, 337
in multiple dimensions, 92

put-call parity, 245

quantile (fractile, percentile), 55, 347,
483

control variates for, 493–494
discretization error, 536
estimation, 279, 490–491

estimation with importance sampling,
500, 519

in stratified sampling, 212

quanto options, 105
quasi-Monte Carlo, 281–337

and Brownian bridge construction,
333

and principal components, 334

and stratified sampling, 333
integration, 282
numerical comparisons, 323–330

radial stratification, 227
radical inverse, 286, 315
Radon-Nikodym derivative, 28, 33, 256,

553
Radon-Nikodym theorem, 553
random permutation, 237
random tree methods, 430–441, 478

depth-first processing, 437
pruning, 438
variance reduction, 439

random walk construction of Brownian
motion, 81, 91

randomized quasi-Monte Carlo, 320–323
ratio estimator

as example of bias, 12
central limit theorem for, 234

ratio-of-uniforms method, 125
Rayleigh distribution, 56, 367
regression

and control variates, 187, 197, 200
and likelihood ratio method, 418
and price sensitivities, 418
and weighted Monte Carlo, 200, 254
in American option pricing, 459–470
residuals and duality, 476

Richardson extrapolation, 360, 364, 375
risk management, 481–492, 520–535
risk-neutral measure, 4

defined, 28
risk-neutral pricing, 27
Romberg extrapolation, 360
Runge-Kutta methods, 351

score function, 403–406, 408, 419
as control variate, 411
generalized for second derivatives,

411
variance increase, 410

scrambled nets, 322
second-order discretization, 348–357

multidimensional, 351–357
of Heston model, 356
simplified, 355–357

seed, random number, 41, 50
self-financing trading strategy, 22
simple interest, 165, 559
Sobol’ generator matrices, 304

algorithm, 313
Sobol’ sequence, 303–314



Index 595

algorithm, 314

as (t, d)-sequence, 312

discrepancy, 312

implementation, 313–314

initialization, 309–312
numerical examples, 325–330

quality of coordinates, 312, 331

starting point, 325, 327, 329

Sobol’s Property A, 309

spectral test, 48, 319

spot measure, 168–171
spread option, 105

square-root diffusion, 120–134

algorithm, 124

and CEV process, 133

as model of default intensity, 523

degrees of freedom, 122, 133
delta, 391, 406

discretization, 121, 356, 373

existence and uniqueness, 548

likelihood ratio method, 406

noncentrality parameter, 122

pathwise method, 391
stationary distribution, 122

squared Gaussian models, 132

stable laws, 147, 508

stable processes, 147–149

star discrepancy, 284

stochastic differential equation (SDE),
339, 548–550

existence and uniqueness, 548

for general system of assets, 21
for geometric Brownian motion, 4

stochastic mesh methods, 443–459,
465–470, 478

computational costs, 456, 466, 478

high estimator, 446–447

independent-path construction, 444

likelihood ratio weights, 450–456

low estimator, 447–448

with regression weights, 459, 465
stochastic volatility, 121, 278, 356, 392,

400

and control variate, 192
stopping rules (for American options),

425, 428, 443, 447–448, 450, 474

stratified sampling, 209–235, 237, 277
and American option pricing, 443

and delta-gamma approximation,
500–504, 517–518

and quasi-Monte Carlo, 333, 335
compared with control variates, 220
confidence intervals for, 216
in stochastic mesh, 454
of Brownian motion, 221
optimal allocation, 217–218
optimal directions, 226, 271
variance reduction, 218–220

strong error criterion, 344
subordinator, 143
swap, 164, 562

in LIBOR market model, 173
swaption, 566–567

and calibration, 180
Bermudan, 429
in HJM framework, 164
in LIBOR market model, 173
with stratified sampling, 225

systematic sampling, 208, 321

t distribution, 509–511
copula, 511
in confidence interval, 6, 543
multivariate, 510

(t, d)-sequence, 291
terminal stratification, 220–222,

230–232
thinning, 141, 364
(t, m, d)-net, 291
transition density, 415

and score function, 410
in stochastic mesh, 450–453, 457
of geometric Brownian motion, 404,

455
of square-root diffusion, 121

uniform distribution, Unif[0,1], 54
uniform integrability, 16, 19, 393, 395

definition, 541
unit hypercube, 214

open versus closed, 282

value-at-risk (VAR), 483–492, 520
Van der Corput sequences, 285–287
variance gamma process, 144
Vasicek model, 108, 113

in HJM framework, 154
stationary distribution, 110
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vega, 378
Asian option, 409
Black-Scholes, 389, 404
likelihood ratio method, 404, 405
path-dependent options, 390
pathwise, 389, 390

weak convergence, 540
weak error criterion, 344

weighted Monte Carlo, 251–254, 277

and American option pricing, 253,
459

and calibration, 252

and control variates, 199–200, 254

and price sensitivities, 418

yield, 560
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