Chapter 3
Moments of a Distribution

Expectation

We develop the expectation operator in terms of the Lebesgue integral.

• Recall that the Lebesgue measure $\lambda(A)$ for some set A gives the length/area/volume of the set A. If $A = (3; 7)$, then $\lambda(A) = |3 - 7| = 4$.

• The Lebesgue integral of f on $[a, b]$ is defined in terms of $\sum y_i \lambda(A_i)$, where $0 = y_1 \leq y_2 \leq ... \leq y_n$, $A_i = \{x: y_i \leq f(x) < y_{i+1}\}$, and $\lambda(A)$ is the Lebesgue measure of the set A.

• The value of the Lebesgue integral is the limit as the y_i's are pushed closer together. That is, we break the y-axis into a grid using $\{y_i\}$ and break the x-axis into the corresponding grid $\{A_i\}$ where

$$A_i = \{x: f(x) \in [y_i, y_{i+1})\}.$$
Taking expectations: Riemann vs Lebesgue

- Riemann's approach
 Partition the base. Measure the height of the function at the center of each interval. Calculate the area of each interval. Add all intervals.
- Lebesgue approach
 Divide the range of the function. Measure the length of each horizontal interval. Calculate the area of each interval. Add all intervals.

A Borel function (RV) \(f \) is integrable if and only if \(|f| \) is integrable.

For convenience, we define the integral of a measurable function \(f \) from \((\Omega, \Sigma, \mu)\) to \((\overline{\mathbb{R}}, \overline{\mathcal{B}})\), where \(\overline{\mathbb{R}} = \mathbb{R} \cup \{ -\infty, \infty \} \), \(\overline{\mathcal{B}} = \sigma(\mathcal{B} \cup \{\infty\}, \{-\infty\}) \).

Example: If \(\Omega = \mathbb{R} \) and \(\mu \) is the Lebesgue measure, then the Lebesgue integral of \(f \) over an interval \([a, b]\) is written as \(\int_{[a,b]} f(x) \, dx = \int_a^b f(x) \, dx \), which agrees with the Riemann integral when the latter is well defined.

However, there are functions for which the Lebesgue integrals are defined but not the Riemann integrals.

- If \(\mu = P \), in statistics, \(\int X \, dP = EX = E[X] \) is called the expectation or expected value of \(X \).
Expected Value

Consider our probability space \((\Omega, \Sigma, P)\). Take an event (a set \(A\) of \(\omega \in \Omega\)) and \(X\), a RV, that assigns real numbers to each \(\omega \in A\).

- If we take an observation from \(A\) without knowing which \(\omega \in A\) will be drawn, we may want to know what value of \(X(\omega)\) we should expect to see.

- Each of the \(\omega \in A\) has been assigned a probability measure \(P[\omega]\), which induces \(P[\alpha]\). Then, we use this to weight the values \(X(\omega)\).

- \(P\) is a probability measure: The weights sum to 1. The weighted sum provides us with a weighted average of \(X(\omega)\). If \(P\) gives the "correct" likelihood of \(\omega\) being chosen, the weighted average of \(X(\omega)\) – \(E[X]\) – tells us what values of \(X(\omega)\) are expected.

Expected Value

- Now with the concept of the Lebesgue integral, we take the possible values \(\{x_i\}\) and construct a grid on the \(y\)-axis, which gives a corresponding grid on the \(x\)-axis in \(A\), where
 \[A_i = \{\omega \in A: X(\omega) \in [x_i, x_{i+1})\} \].

Let the elements in the \(x\)-axis grid be \(A_i\). The weighted average is

\[
\sum_{i=1}^{n} x_i P[A_i] = \sum_{i=1}^{n} x_i P_X [X = x_i] = \sum_{i=1}^{n} x_i f_X (x_i)
\]

- As we shrink the grid towards 0, \(A\), becomes infinitesimal. Let \(d\omega\) be the infinitesimal set \(A\). The Lebesgue integral becomes:

\[
\lim_{n \to \infty} \sum_{i=1}^{n} x_i P[A_i] = \int_{-\infty}^{\infty} x P[d\omega] = \int_{-\infty}^{\infty} x P_X [X = x_i] = \int_{-\infty}^{\infty} x f_X (x_i) dx
\]
The Expectation of X: $E(X)$

The expectation operator defines the mean (or population average) of a random variable or expression.

Definition

Let X denote a discrete RV with probability function $p(x)$ (probability density function $f(x)$ if X is continuous) then the expected value of X, $E(X)$ is defined to be:

$$E(X) = \sum_{x} xp(x) = \sum_{i} x_{i} p(x_{i})$$

and if X is continuous with probability density function $f(x)$

$$E(X) = \int_{-\infty}^{\infty} xf(x) \, dx$$

Sometimes we use $E[.]$ as $E_{X}[.]$ to indicate that the expectation is being taken over $f_{X}(x) \, dx$.

Interpretation of $E(X)$

1. The expected value of X, $E(X)$, is the center of gravity of the probability distribution of X.
2. The expected value of X, $E(X)$, is the long-run average value of X. (To be discussed later: Law of Large Numbers)
Example: The Binomial distribution

Let X be a discrete random variable having the Binomial distribution -- i.e., X is the number of successes in n independent repetitions of a Bernoulli trial. Find the expected value of X, $E(X)$.

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x} \quad x = 0, 1, 2, 3, \ldots, n$$

$$E(X) = \sum_{x=0}^{n} xp(x) = \sum_{x=0}^{n} x \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=1}^{n} x \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=1}^{n} x \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$= \sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} (1-p)^{n-x}$$

$$E(X) = p(1-p)^{n-1} + \frac{n!}{1!(n-2)!} p^2 (1-p)^{n-2} + \frac{n!}{2!(n-3)!} p^3 (1-p)^{n-3} \ldots + \frac{n!}{(n-1)!1!} p^n + \frac{n!}{n!0!} p^n$$

Example: Solution

$$E(X) = \sum_{x=0}^{n} xp(x) = \sum_{x=0}^{n} x \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=0}^{n} \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$= \sum_{x=1}^{n} \frac{n!}{x!(n-x)!} (1-p)^{n-x}$$

$$E(X) = p(1-p)^{n-1} + \frac{n!}{1!(n-2)!} p^2 (1-p)^{n-2} + \frac{n!}{2!(n-3)!} p^3 (1-p)^{n-3} \ldots + \frac{n!}{(n-1)!1!} p^n + \frac{n!}{n!0!} p^n$$
Example: Solution

\[np \left[\frac{(n-1)!}{0!(n-1)!} p^0 (1-p)^{n-1} + \frac{(n-1)!}{1!(n-2)!} p^1 (1-p)^{n-2} + \right. \]
\[\left. \cdots + \frac{(n-1)!}{(n-2)!} p^{n-2} (1-p) + \frac{(n-1)!}{(n-1)!} p^{n-1} \right] \]
\[= np \left[\begin{pmatrix} n-1 \\ 0 \end{pmatrix} p^0 (1-p)^{n-1} + \begin{pmatrix} n-1 \\ 1 \end{pmatrix} p^1 (1-p)^{n-2} + \right. \]
\[\left. \cdots + \begin{pmatrix} n-1 \\ n-2 \end{pmatrix} p^{n-2} (1-p) + \begin{pmatrix} n-1 \\ n-1 \end{pmatrix} p^{n-1} \right] \]
\[= np \left[p + (1-p) \right]^{n-1} = np \left[1 \right]^{n-1} = np \]

Example: Exponential Distribution

Let \(X \) have an exponential distribution with parameter \(\lambda \). The probability density function of \(X \) is:

\[f(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases} \]

The expected value of \(X \) is:

\[E(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{0}^{\infty} x \lambda e^{-\lambda x} \, dx \]

We will determine \(\int x \lambda e^{-\lambda x} \, dx \)
\[\int u \, dv = uv - \int v \, du \]
Example: Exponential Distribution

We will determine \(\int x \lambda e^{-\lambda x} \, dx \) using integration by parts.

In this case \(u = x \) and \(dv = \lambda e^{-\lambda x} \, dx \)

Hence \(du = dx \) and \(v = -e^{-\lambda x} \)

Thus \(\int x \lambda e^{-\lambda x} \, dx = -xe^{-\lambda x} + \int e^{-\lambda x} \, dx = -xe^{-\lambda x} - \frac{1}{\lambda} e^{-\lambda x} \)

\[E(X) = \int_0^\infty x \lambda e^{-\lambda x} \, dx = -xe^{-\lambda x} \bigg|_0^\infty - \frac{1}{\lambda} e^{-\lambda x} \bigg|_0^\infty \]

\[= (-0 + 0) - \left(0 - \frac{1}{\lambda} \right) = \frac{1}{\lambda} \]

Summary: If \(X \) has an exponential distribution with parameter \(\lambda \), then:

\[E(X) = \frac{1}{\lambda} \]

Example: The Uniform distribution

Suppose \(X \) has a uniform distribution from \(a \) to \(b \).

Then:

\[f(x) = \begin{cases} \frac{1}{b-a} & a \leq x \leq b \\ 0 & x < a, x > b \end{cases} \]

The expected value of \(X \) is:

\[E(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \int_a^b x \frac{1}{b-a} \, dx \]

\[= \left[\frac{1}{b-a} x^2 \right]_a^b = \frac{b^2 - a^2}{2(b-a)} = \frac{a + b}{2} \]
Example: The Normal distribution

Suppose X has a Normal distribution with parameters μ and σ.

Then:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The expected value of X is:

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx$$

Make the substitution:

$$z = \frac{x-\mu}{\sigma}$$

$$dz = \frac{1}{\sigma} \, dx \quad \text{and} \quad x = \mu + z\sigma$$

Hence

$$E(X) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} (\mu + z\sigma) e^{-\frac{z^2}{2}} \, dz$$

$$= \mu \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz + \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ze^{-\frac{z^2}{2}} \, dz$$

Now

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz = 1$$

and

$$\int_{-\infty}^{\infty} ze^{-\frac{z^2}{2}} \, dz = 0$$

Thus

$$E(X) = \mu$$
Example: The Gamma distribution

Suppose X has a Gamma distribution with parameters α and λ. Then:

$$f(x) = \begin{cases} \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases}$$

Note:

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{\infty} \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \, dx = 1 \quad \text{if} \quad \lambda > 0, \alpha \geq 0.$$

This is a very useful formula when working with the Gamma distribution.

\[\text{Example: The Gamma distribution}\]

The expected value of X is:

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{0}^{\infty} x \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \, dx$$

$$= \frac{\lambda^\alpha}{\Gamma(\alpha)} \int_{0}^{\infty} x^\alpha e^{-\lambda x} \, dx$$

$$= \frac{\lambda^\alpha \Gamma(\alpha + 1)}{\Gamma(\alpha) \lambda^{\alpha+1}} \int_{0}^{\infty} \frac{\lambda^{\alpha+1}}{\Gamma(\alpha + 1)} x^{\alpha} e^{-\lambda x} \, dx$$

$$= \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha) \lambda} = \frac{\alpha \Gamma(\alpha)}{\Gamma(\alpha) \lambda} = \frac{\alpha}{\lambda}$$

This is now equal to 1.
Example: The Gamma distribution

Thus, if X has a Gamma (α, λ) distribution, the expected value of X is:

$$E(X) = \frac{\alpha}{\lambda}$$

Special Cases: (α, λ) distribution then the expected value of X is:

1. **Exponential (λ) distribution:** $\alpha = 1$, λ arbitrary

 $$E(X) = \frac{1}{\lambda}$$

2. **Chi-square (ν) distribution:** $\alpha = \nu/2$, $\lambda = 1/2$.

 $$E(X) = \frac{\nu}{2} \cdot \frac{1}{2} = \nu$$

![Example: The Gamma distribution](image-url)
The Exponential distribution

\[E(X) = \frac{1}{\lambda} \]

The Chi-square (\(\chi^2 \)) distribution

\[E(X) = \nu \]
Expectation of a function of a RV

• Let X denote a discrete RV with probability function $p(x)$ (or pdf $f(x)$ if X is continuous) then the expected value of $g(X)$, $E[g(X)]$, is defined to be:

$$E[g(X)] = \sum_x g(x) p(x) = \sum_i g(x_i) p(x_i)$$

and if X is continuous with probability density function $f(x)$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) \, dx$$

• Examples:
 - $g(x) = (x - \mu)^2 \Rightarrow E[g(x)] = E[(x - \mu)^2]$
 - $g(x) = (x - \mu)^k \Rightarrow E[g(x)] = E[(x - \mu)^k]$

Expectation of a function of a RV

Example: Suppose X has a uniform distribution from 0 to b. Then:

$$f(x) = \begin{cases} \frac{1}{b} & 0 \leq x \leq b \\ 0 & x < 0, x > b \end{cases}$$

Find the expected value of $A = X^2$.

If X is the length of a side of a square (chosen at random from 0 to b) then A is the area of the square

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) \, dx = \int_0^b x^2 \frac{1}{b} \, dx = \left[\frac{1}{b} \cdot \frac{x^3}{3} \right]_0^b = \frac{b^3}{3} - \frac{0^3}{3(b)} = \frac{b^3}{3}$$

$$= 1/3 \text{ the maximum area of the square}$$
Median: An alternative central measure

• A median is described as the numeric value separating the higher half of a sample, a population, or a probability distribution, from the lower half.

Definition: Median
The median of a random variable X is the unique number m that satisfies the following inequalities:

$$P(X \leq m) \geq \frac{1}{2} \quad \text{and} \quad P(X \geq m) \geq \frac{1}{2}.$$

For a continuous distribution, we have that m solves:

$$\int_{-\infty}^{m} f_X(x) dx = \int_{m}^{\infty} f_X(x) dx = \frac{1}{2}.$$

Median: An alternative central measure

• Calculation of medians is a popular technique in summary statistics and summarizing statistical data, since it is simple to understand and easy to calculate, while also giving a measure that is more robust in the presence of outlier values than is the mean.

An optimality property
A median is also a central point which minimizes the average of the absolute deviations. That is, a value of c that minimizes

$$E(|X - c|)$$

is the median of the probability distribution of the random variable X.
Example I: Median of the Exponential Distribution

Let X have an exponential distribution with parameter λ. The probability density function of X is:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases}$$

The median m solves the following integral of X:

$$\int_{m}^{\infty} f_X(x) dx = \frac{1}{2}$$

$$\int_{m}^{\infty} \lambda e^{-\lambda x} dx = \lambda \int_{m}^{\infty} e^{-\lambda x} dx = -e^{-\lambda x} \bigg|_{m}^{\infty} = e^{-\lambda m} = \frac{1}{2}$$

That is, $m = \ln(2)/\lambda$.

Example II: Median of the Pareto Distribution

Let X follow a Pareto distribution with parameters α (scale) and x_s (shape, usually notated x_m). The pdf of X is:

$$f(x) = \begin{cases} \frac{\alpha x_s^{\alpha}}{x^{\alpha+1}} & x \geq x_s > 0 \\ 0 & x < 0 \end{cases}$$

The median m solves the following integral of X:

$$\int_{m}^{\infty} f_X(x) dx = \frac{1}{2}$$

$$\int_{m}^{\infty} \frac{\alpha x_s^{\alpha}}{x^{\alpha+1}} dx = \alpha x_s^{\alpha} \int_{m}^{\infty} x^{-(\alpha+1)} dx = \alpha x_s^{\alpha} \frac{x^{-(\alpha+1)+1}}{-(\alpha + 1) + 1} + C$$

$$= -x_s^{\alpha} x^{-\alpha} + C \bigg|_{m}^{\infty} = x_s^{\alpha} m^{-\alpha} = \frac{1}{2} \Rightarrow m = x_s 2^{1/\alpha}$$

Note: The Pareto distribution is used to describe the distribution of wealth.
Moments of a Random Variable

The moments of a random variable X are used to describe the behavior of the RV (discrete or continuous).

Definition: Kth Moment

Let X be a RV (discrete or continuous), then the kth moment of X is:

$$
\mu_k = E \left(X^k \right) = \begin{cases}
\sum_{x} x^k p(x) & \text{if } X \text{ is discrete} \\
\int_{-\infty}^{\infty} x^k f(x) \, dx & \text{if } X \text{ is continuous}
\end{cases}
$$

- The first moment of X, $\mu = \mu_1 = E(X)$ is the center of gravity of the distribution of X.
- The higher moments give different information regarding the shape of the distribution of X.

Moments of a Random Variable

Definition: Central Moments

Let X be a RV (discrete or continuous). Then, the kth central moment of X is defined to be:

$$
\mu_k^0 = E \left[(X - \mu)^k \right] = \begin{cases}
\sum_{x} (x - \mu)^k p(x) & \text{if } X \text{ is discrete} \\
\int_{-\infty}^{\infty} (x - \mu)^k f(x) \, dx & \text{if } X \text{ is continuous}
\end{cases}
$$

where $\mu = \mu_1 = E(X) = \text{the first moment of } X$.

- The central moments describe how the probability distribution is distributed about the center of gravity, μ.

Moments of a Random Variable – 1st and 2nd

The first central moments is given by:

\[\mu_1^0 = E[X - \mu] \]

The second central moment depends on the spread of the probability distribution of \(X \) about \(\mu \). It is called the variance of \(X \) and is denoted by the symbol \(\text{var}(X) \).

\[\mu_2^0 = E[(X - \mu)^2] = \text{2nd central moment.} \]

\[\sqrt{\mu_2^0} = \sqrt{E[(X - \mu)^2]} \]

is called the standard deviation of \(X \) and is denoted by the symbol \(\sigma \).

\[\text{var}(X) = \mu_2^0 = E[(X - \mu)^2] = \sigma^2 \]

Moments of a Random Variable – Skewness

• The third central moment \(\mu_3^0 = E[(X - \mu)^3] \)

contains information about the skewness of a distribution.

• A popular measure of skewness: \(\gamma_1 = \frac{\mu_3^0}{\sigma^3} = \frac{\mu_3^0}{(\mu_2^0)^{3/2}} \)

• Distribution according to skewness:

1) Symmetric distribution

\[\mu_3^0 = 0, \gamma_1 = 0 \]
Moments of a Random Variable – Skewness

2) Positively skewed distribution

\[\mu_3^0 > 0, \gamma_1 > 0 \]

3) Negatively skewed distribution

\[\mu_3^0 < 0, \gamma_1 < 0 \]

Moments of a Random Variable – Skewness

- Skewness and Economics
 - Zero skew means symmetrical gains and losses.
 - Positive skew suggests many small losses and few rich returns.
 - Negative skew indicates lots of minor wins offset by rare major losses.

- In financial markets, stock returns at the firm level show positive skewness, but at stock returns at the aggregate (index) level show negative skewness.

- From horse race betting and from U.S. state lotteries there is evidence supporting the contention that gamblers are not necessarily risk-lovers but skewness-lovers: Long shots are overbet (positive skewness loved!).
Moments of a Random Variable – Kurtosis

• The fourth central moment \(\mu_4^0 = E\left[(X - \mu)^4 \right] \)

It contains information about the *shape* of a distribution. The property of shape that is measured by this moment is called *kurtosis*.

• The measure of (excess) kurtosis: \(\gamma_2 = \frac{\mu_4^0}{\sigma^4} - 3 = \frac{\mu_4^0}{(\mu_2^0)^2} - 3 \)

• Distributions:
 1) Mesokurtic distribution

\[\gamma_2 = 0, \mu_4^0 \text{ moderate in size} \]

Moments of a Random Variable – Kurtosis

2) Platykurtic distribution

\[\gamma_2 < 0, \mu_4^0 \text{ small in size} \]

3) Leptokurtic distribution

\[\gamma_2 > 0, \mu_4^0 \text{ large in size} \]
Moments of a Random Variable

Example: The uniform distribution from 0 to 1

\[f(x) = \begin{cases}
1 & 0 \leq x \leq 1 \\
0 & x < 0, x > 1
\end{cases} \]

Finding the moments

\[\mu_k = \int_{-\infty}^{\infty} x^k f(x) \, dx = \int_{0}^{1} x^k \, dx = \left[\frac{x^{k+1}}{k+1} \right]_{0}^{1} = \frac{1}{k+1} \]

Finding the central moments:

\[\mu_k^0 = \int_{-\infty}^{\infty} (x - \mu)^k f(x) \, dx = \int_{0}^{1} (x - \frac{1}{2})^k \, dx \]

Moments of a Random Variable

Finding the central moments (continuation):

\[\mu_k^0 = \int_{-\infty}^{\infty} (x - \mu)^k f(x) \, dx = \int_{0}^{1} (x - \frac{1}{2})^k \, dx \]

making the substitution \(w = x - \frac{1}{2} \)

\[\mu_k^0 = \int_{-\frac{1}{2}}^{\frac{1}{2}} w^k \, dw = \left[\frac{w^{k+1}}{k+1} \right]_{-\frac{1}{2}}^{\frac{1}{2}} = \left(\frac{1}{2} \right)^{k+1} - \left(-\frac{1}{2} \right)^{k+1} \]

\[= \frac{1 - (-1)^{k+1}}{2^{k+1} (k+1)} = \begin{cases}
\frac{1}{2^k (k+1)} & \text{if } k \text{ even} \\
0 & \text{if } k \text{ odd}
\end{cases} \]
Moments of a Random Variable

Hence \(\mu_2^0 = \frac{1}{2^2} \left(\frac{3}{3} \right) = \frac{1}{12} \), \(\mu_3^0 = 0 \), \(\mu_4^0 = \frac{1}{2^4} \left(\frac{5}{5} \right) = \frac{1}{80} \)

Thus, \(\text{var}(X) = \mu_2^0 = \frac{1}{12} \)

The standard deviation \(\sigma = \sqrt{\text{var}(X)} = \sqrt{\mu_2^0} = \frac{1}{\sqrt{12}} \)

The measure of skewness \(\gamma_1 = \frac{\mu_3^0}{\sigma^3} = 0 \)

The measure of kurtosis \(\gamma_1 = \frac{\mu_4^0}{\sigma^4} - 3 = \frac{1/80}{(1/12)^2} - 3 = -1.2 \)

Alternative measures of dispersion

When the median is used as a central measure for a distribution, there are several choices for a measure of variability:

- The range — the length of the smallest interval containing the data
- The interquartile range — the difference between the 3rd and 1st quartiles.
- The mean absolute deviation — \((1/n) \sum_i |x_i - \text{central measure}(X)| \)
- The median absolute deviation (MAD) — \(\text{MAD} = m_i(|x_i - m(X)|) \)

These measures are more robust (to outliers) estimators of scale than the sample variance or standard deviation.

They especially behave better with distributions without a mean or variance, such as the Cauchy distribution.
Rules for Expectations

\[E[g(X)] = \begin{cases}
\sum_{x} g(x) p(x) & \text{if } X \text{ is discrete} \\
\int_{-\infty}^{\infty} g(x) f(x) \, dx & \text{if } X \text{ is continuous}
\end{cases} \]

• Rules:

1. \(E[c] = c \) where \(c \) is a constant

Proof:

if \(g(X) \equiv c \) then \(E[g(X)] = E[c] = \int_{-\infty}^{\infty} cf(x) \, dx = c \int_{-\infty}^{\infty} f(x) \, dx = c \)

The proof for discrete random variables is similar.

Rules for Expectations

2. \(E[aX + b] = aE[X] + b \) where \(a, b \) are constants

Proof

if \(g(X) \equiv aX + b \) then \(E[aX + b] = \int_{-\infty}^{\infty} (ax + b) f(x) \, dx \)

\[= a \int_{-\infty}^{\infty} xf(x) \, dx + b \int_{-\infty}^{\infty} f(x) \, dx \]

\[= aE(X) + b \]

The proof for discrete random variables is similar.
Rules for Expectations

3. \(\text{var}(X) = \mu_2 - \mu_1^2 = E[(X - \mu)^2] = E(X^2) - [E(X)]^2 \)

Proof:

\[
\text{var}(X) = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx \\
= \int_{-\infty}^{\infty} (x^2 - 2x\mu + \mu^2) f(x) \, dx \\
= \int_{-\infty}^{\infty} x^2 f(x) \, dx - 2\mu \int_{-\infty}^{\infty} xf(x) \, dx + \mu^2 \int_{-\infty}^{\infty} f(x) \, dx \\
= E(X^2) - 2\mu [E(X)] + \mu^2 = \mu_2 - \mu_1^2
\]

The proof for discrete random variables is similar.

Rules for Expectations

4. \(\text{var}(aX + b) = a^2 \text{var}(X) \)

Proof:

\[
\mu_{aX+b} = E[aX + b] = aE[X] + b = a\mu + b \\
\text{var}(aX + b) = E\left((aX + b - \mu_{aX+b})^2\right) \\
= E\left((aX + b - [a\mu + b])^2\right) \\
= E\left[a^2 (X - \mu)^2\right] \\
= a^2 E\left((X - \mu)^2\right) = a^2 \text{var}(X)
\]
Definition: Moment Generating Function (MGF)

Let X denote a random variable. Then, the moment generating function of X, $m_X(t)$, is defined by:

$$m_X(t) = E[e^{itX}] = \begin{cases}
\sum_x e^{itx} p(x) & \text{if } X \text{ is discrete} \\
\int_{-\infty}^{\infty} e^{itx} f(x) \, dx & \text{if } X \text{ is continuous}
\end{cases}$$

Moment generating functions

The expectation of a function $g(X)$ is given by:

$$E[g(X)] = \begin{cases}
\sum_x g(x) p(x) & \text{if } X \text{ is discrete} \\
\int_{-\infty}^{\infty} g(x) f(x) \, dx & \text{if } X \text{ is continuous}
\end{cases}$$
MGF: Examples

1. The Binomial distribution (parameters p, n)

$$p(x) = \binom{n}{x} p^x (1 - p)^{n-x} \quad x = 0, 1, 2, K, n$$

The MGF of $X, m_X(t)$ is:

$$m_X(t) = E\left[e^{tX}\right] = \sum_x e^{tx} p(x)$$

$$= \sum_{x=0}^{n} e^{tx} \binom{n}{x} p^x (1 - p)^{n-x}$$

$$= \sum_{x=0}^{n} \binom{n}{x} (e^t p)^x (1 - p)^{n-x} = \sum_{x=0}^{n} \binom{n}{x} a^x b^{n-x}$$

$$= (a + b)^n = (e^t p + 1 - p)^n$$

MGF: Examples

2. The Poisson distribution (parameter λ)

$$p(x) = \frac{\lambda^x}{x!} e^{-\lambda} \quad x = 0, 1, 2, K$$

The MGF of $X, m_X(t)$ is:

$$m_X(t) = E\left[e^{tX}\right] = \sum_x e^{tx} p(x)$$

$$= \sum_{x=0}^{\infty} e^{tx} \frac{\lambda^x}{x!} e^{-\lambda}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^t)^x}{x!} = e^{-\lambda} e^{\lambda e^t} \quad \text{using} \quad e^u = \sum_{x=0}^{\infty} \frac{u^x}{x!}$$

$$= e^{\lambda (e^t - 1)}$$
MGF: Examples

3. The Exponential distribution (parameter λ)

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases}$$

The MGF of X, $m_X(t)$ is:

$$m_X(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x) \, dx = \int_{0}^{\infty} e^{tx} \lambda e^{-\lambda x} \, dx$$

$$= \int_{0}^{\infty} \lambda e^{(t-\lambda)x} \, dx = \left[\frac{\lambda e^{(t-\lambda)x}}{t-\lambda} \right]_{0}^{\infty}$$

$$= \begin{cases} \frac{\lambda}{\lambda - t} & t < \lambda \\ \text{undefined} & t \geq \lambda \end{cases}$$

MGF: Examples

4. The Standard Normal distribution ($\mu = 0, \sigma = 1$)

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

The MGF of X, $m_X(t)$ is:

$$m_X(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x) \, dx$$

$$= \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{tx^2}{2}} \, dx$$
MGF: Examples

We will now use the fact that
\[\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi a}} e^{-\frac{(x-b)^2}{2a}} \, dx = 1 \text{ for all } a > 0, b \]

We have completed the square

\[m_X(t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx = e^{\frac{t^2}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-t)^2}{2}} \, dx \]
\[= e^{\frac{t^2}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx = e^{\frac{t^2}{2}} \]

This is 1

MGF: Examples

4. The Gamma distribution (parameters \(\alpha, \lambda \))

\[f(x) = \begin{cases} \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases} \]

The MGF of \(X \), \(m_X(t) \) is:

\[m_X(t) = E\left[e^{itX} \right] = \int_{-\infty}^{\infty} e^{itx} f(x) \, dx \]
\[= \int_{0}^{\infty} e^{itx} \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \, dx \]
\[= \int_{0}^{\infty} \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t)x} \, dx \]
MGF: Examples

We use the fact

\[\int_0^\infty b^a x^{\alpha-1} e^{-bx} dx = 1 \text{ for all } a > 0, b > 0 \]

\[
m_X(t) = \int_0^\infty \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t)x} dx
\]

\[
= \frac{\lambda^\alpha}{(\lambda-t)^\alpha} \int_0^\infty \frac{(\lambda-t)^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t)x} dx = \left(\frac{\lambda}{\lambda-t} \right)^\alpha
\]

Equal to 1

The Chi-square distribution with degrees of freedom \(v = \nu / \alpha, \lambda = \nu / 2 \):

\[m_X(t) = (1 - 2t)^{\nu / 2} \]

MGF: Properties

1. \(m_{X(0)} = 1 \)

\[m_X(t) = E(e^{itX}), \text{ hence } m_X(0) = E(e^{0X}) = E(1) = 1 \]

Note: The MGFs of the following distributions satisfy the property \(m_{X(0)} = 1 \)

i) Binomial Dist'n \(m_X(t) = (e^{t}p + 1-p)^n \)

ii) Poisson Dist'n \(m_X(t) = e^{\lambda(e^{t}-1)} \)

iii) Exponential Dist'n \(m_X(t) = \left(\frac{\lambda}{\lambda-t} \right) \)

iv) Std Normal Dist'n \(m_X(t) = e^{\frac{t^2}{2}} \)

v) Gamma Dist'n \(m_X(t) = \left(\frac{\lambda}{\lambda-t} \right)^\alpha \)
2. We use the expansion of the exponential function:

\[e^u = 1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + \cdots + \frac{u^k}{k!} + \cdots \]

\[m_X(t) = E(e^{tx}) \]

\[= E\{1 + tx + \frac{t^2x^2}{2!} + \frac{t^3x^3}{3!} + \cdots + \frac{t^kx^k}{k!} + \cdots \} \]

\[= 1 + tE[X] + \frac{t^2E[X^2]}{2!} + \frac{t^3E[X^3]}{3!} + \cdots + \frac{t^kE[X^k]}{k!} + \cdots \]

\[= 1 + \mu_1 t + \frac{\mu_2 t^2}{2!} + \frac{\mu_3 t^3}{3!} + \cdots + \frac{\mu_k t^k}{k!} + \cdots \]

MGF: Properties

3. \[m_X^{(k)}(0) = \frac{d^k}{dt^k} m_X(t) \bigg|_{t=0} = \mu_k \]

Now

\[m_X(t) = 1 + \mu_1 t + \frac{\mu_2 t^2}{2!} + \frac{\mu_3 t^3}{3!} + \cdots + \frac{\mu_k t^k}{k!} + \cdots \]

\[m_X'(t) = \mu_1 + \frac{\mu_2}{2!} t + \frac{\mu_3}{3!} t^2 + \cdots + \frac{\mu_k}{k!} t^{k-1} + \cdots \]

\[= \mu_1 + \frac{\mu_2}{2!} t + \frac{\mu_3}{3!} t^2 + \cdots + \frac{\mu_k}{(k-1)!} t^{k-1} + \cdots \]

and \(m_X'(0) = \mu_1 \)

\[m_X''(t) = \mu_2 + \frac{\mu_3}{2!} t + \frac{\mu_4}{2!} t^2 + \cdots + \frac{\mu_k}{(k-2)!} t^{k-2} + \cdots \]

and \(m_X''(0) = \mu_2 \)

continuing we find \(m_X^{(k)}(0) = \mu_k \)
MGF: Applying Property 3 – Binomial

Property 3 is very useful in determining the moments of a RV X.

Examples:

i) Binomial Dist'n $m_X(t) = (e^t p + 1 - p)^n$

\[m_X'(t) = n(e^t p + 1 - p)^{n-1}(pe^t) \]

\[m_X(0) = n(e^0 p + 1 - p)^{n-1}(pe^0) = np = \mu_1 = \mu \]

\[m_X''(t) = np \left[(n-1)(e^t p + 1 - p)^{n-2}(e^t p) e^t + (e^t p + 1 - p)^{n-1} e^t \right] \]

\[= np e^t (e^t p + 1 - p)^{n-2} \left[(n-1)(e^t p) + (e^t p + 1 - p) \right] \]

\[= np e^t (e^t p + 1 - p)^{n-2} \left[ne^t p + 1 - p \right] \]

\[m_X'''(0) = np[np + 1 - p] = np[np + q] = n^2 p^2 + npq = \mu_2 \]

MGF: Applying Property 3 – Poisson

ii) Poisson Dist'n $m_X(t) = e^{\lambda(e^t - 1)}$

\[m_X'(t) = e^{\lambda(e^t - 1)} \left[\lambda e^t \right] = \lambda e^{\lambda(e^t - 1) + t} \]

\[m_X''(t) = \lambda e^{\lambda(e^t - 1) + t} \left[\lambda e^t + 1 \right] = \lambda^2 e^{\lambda(e^t - 1) + 2t} + \lambda e^{\lambda(e^t - 1) + t} \]

\[m_X'''(t) = \lambda^2 e^{\lambda(e^t - 1) + 2t} \left[\lambda e^t + 2 \right] + \lambda e^{\lambda(e^t - 1) + t} \left[\lambda e^t + 1 \right] \]

\[= \lambda^2 e^{\lambda(e^t - 1) + 2t} \left[\lambda e^t + 3 \right] + \lambda e^{\lambda(e^t - 1) + t} \]

\[= \lambda^3 e^{\lambda(e^t - 1) + 3t} + 3\lambda^2 e^{\lambda(e^t - 1) + 2t} + \lambda e^{\lambda(e^t - 1) + t} \]
MGF: Applying Property 3 – Poisson

To find the moments we set \(t = 0 \).

\[
\mu_1 = m'_X(0) = \lambda e^{\frac{t}{\lambda}} = \lambda \\
\mu_2 = m''_X(0) = \lambda^2 e^{\frac{2t}{\lambda}} + \lambda e^{\frac{t}{\lambda}} = \lambda^2 + \lambda \\
\mu_3 = m'''_X(0) = \lambda^3 e^{0} + 3\lambda^2 e^{0t} + \lambda e^{0} = \lambda^3 + 3\lambda^2 + \lambda
\]

MGF: Applying Property 3 – Exponential

iii) Exponential Dist'n \(m_X(t) = \left(\frac{\lambda}{\lambda - t} \right) \)

\[
m'_X(t) = \frac{d}{dt} \left(\frac{\lambda}{\lambda - t} \right) = \lambda \frac{d}{dt} \left(\frac{\lambda - t^{-1}}{\lambda - t} \right) = \lambda (-1)(\lambda - t)^{-2} (-1) = \lambda (\lambda - t)^{-2}
\]

\[
m''_X(t) = \lambda (-2)(\lambda - t)^{-3} (-1) = 2\lambda (\lambda - t)^{-3}
\]

\[
m'''_X(t) = 2\lambda (-3)(\lambda - t)^{-4} (-1) = 2(3)\lambda (\lambda - t)^{-4}
\]

\[
m^{(4)}_X(t) = 2(3)\lambda (-4)(\lambda - t)^{-5} (-1) = (4!)\lambda (\lambda - t)^{-5}
\]

\[
m^{(k)}_X(t) = (k!)\lambda (\lambda - t)^{-k-1}
\]
MGF: Applying Property 3 – Exponential

Thus,
\[\mu_1 = \mu = m'_X(0) = \lambda (\lambda)^{-2} = \frac{1}{\lambda} \]
\[\mu_2 = m''_X(0) = 2\lambda (\lambda)^{-3} = \frac{2}{\lambda^2} \]
\[\mu_k = m^{(k)}_X(0) = (k!)\lambda (\lambda)^{-k-1} = \frac{k!}{\lambda^k} \]

We can calculate the following popular descriptive statistics:
- \(\sigma^2 = \mu^2 - \mu^2 = (2/\lambda^2) - (1/\lambda)^2 = (1/\lambda)^2 \)
- \(\gamma_1 = \mu^3 / \sigma^3 = (2/\lambda^3) / [(1/\lambda)^2]/2 = 2 \)
- \(\gamma_2 = \mu^4 / \sigma^4 - 3 = (9/\lambda^4) / [(1/\lambda)^4] - 3 = 6 \)

Note: the moments for the exponential distribution can be calculated in an alternative way. This is done by expanding \(m_X(t) \) in powers of \(t \) and equating the coefficients of \(t^k \) to the coefficients in:

\[m_X(t) = 1 + \mu_1 t + \frac{\mu_2 t^2}{2!} + \frac{\mu_3 t^3}{3!} + \cdots + \frac{\mu_k t^k}{k!} + \cdots \]

Equating the coefficients of \(t^k \) we get:

\[\frac{\mu_k}{k!} = \frac{1}{\lambda^k} \quad \text{or} \quad \mu_k = \frac{k!}{\lambda^k} \]
MGF: Applying Property 3 – Normal

iv) Standard normal distribution \(m_X(t) = \exp(t^2/2) \)

We use the expansion of \(e^u \).

\[
e^u = 1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + \cdots + \frac{u^k}{k!} + \cdots
\]

\[
e^u = 1 + \left(\frac{t^2}{2} \right) + \frac{\left(\frac{t^2}{2} \right)^2}{2!} + \frac{\left(\frac{t^2}{2} \right)^3}{3!} + \cdots + \frac{\left(\frac{t^2}{2} \right)^k}{k!} + \cdots
\]

\[
e^u = 1 + \frac{1}{2} t^2 + \frac{1}{2^2 2!} t^4 + \frac{1}{2^3 3!} t^6 + \cdots + \frac{1}{2^k k!} t^{2k} + \cdots
\]

We now equate the coefficients \(\mu \) in:

\[
m_X(t) = 1 + \mu_1 t + \frac{\mu_2 t^2}{2!} + \frac{\mu_3 t^3}{3!} + \cdots + \frac{\mu_k t^k}{k!} + \cdots + \frac{\mu_{2k} t^{2k}}{(2k)!} + \cdots
\]

MGF: Applying Property 3 – Normal

If \(k \) is odd: \(\mu_k = 0 \).

For even \(2k \):

\[
\frac{\mu_{2k}}{(2k)!} = \frac{1}{2^k k!}
\]

or \(\mu_{2k} = \frac{(2k)!}{2^k k!} \)

Thus \(\mu_1 = 0, \mu_2 = \frac{2!}{2} = 1, \mu_3 = 0, \mu_4 = \frac{4!}{2^2 (2!)} = 3 \)
The log of Moment Generating Functions

Let \(l_X(t) = \ln m_X(t) \) = the log of the MGF.

Then \(l_X(0) = \ln m_X(0) = \ln 1 = 0 \)

\[
l'_X(t) = \frac{1}{m_X(t)} m'_X(t) = \frac{m'_X(t)}{m_X(t)} \quad l'_X(0) = \frac{m'_X(0)}{m_X(0)} = \mu_1 = \mu
\]

\[
l''_X(t) = \frac{m''_X(t)m_X(t) - [m'_X(t)]^2}{[m_X(t)]^2}
\]

\[
l''_X(0) = \frac{m''_X(0)m_X(0) - [m'_X(0)]^2}{[m_X(0)]^2} = \mu_2 - [\mu_1]^2 = \sigma^2
\]

Thus \(l_X(t) = \ln m_X(t) \) is very useful for calculating the mean and variance of a random variable

1. \(l'_X(0) = \mu \)
2. \(l''_X(0) = \sigma^2 \)
Log of MGF: Examples – Binomial

1. The Binomial distribution (parameters p, n)

$$m_X(t) = \left(e^t p + 1 - p\right)^n = \left(e^t p + q\right)^n$$

$$l_X(t) = \ln m_X(t) = n \ln \left(e^t p + q\right)$$

$$l'_X(t) = n \frac{1}{e^t p + q} e^t p$$

$$\mu = l'_X(0) = n \frac{1}{p + q} p = np$$

$$l''_X(t) = n \frac{e^t p (e^t p + q) - e^t p (e^t p)}{(e^t p + q)^2}$$

$$\sigma^2 = l''_X(0) = n \frac{p (p + q) - p (p)}{(p + q)^2} = npq$$

Log of MGF: Examples – Poisson

2. The Poisson distribution (parameter λ)

$$m_X(t) = e^{\lambda (e^t - 1)}$$

$$l_X(t) = \ln m_X(t) = \lambda (e^t - 1)$$

$$l'_X(t) = \lambda e^t$$

$$\mu = l'_X(0) = \lambda$$

$$l''_X(t) = \lambda e^t$$

$$\sigma^2 = l''_X(0) = \lambda$$
Log of MGF: Examples – Exponential

3. The Exponential distribution (parameter λ)

\[
m_X(t) = \begin{cases}
\frac{\lambda}{\lambda - t} & t < \lambda \\
\text{undefined} & t \geq \lambda
\end{cases}
\]

\[
l_X(t) = \ln m_X(t) = \ln \lambda - \ln(\lambda - t) \quad \text{if} \quad t < \lambda
\]

\[
l'_X(t) = \frac{1}{\lambda - t} = (\lambda - t)^{-1}
\]

\[
l''_X(t) = -1(\lambda - t)^{-2}(-1) = \frac{1}{(\lambda - t)^2}
\]

Thus $\mu = l'_X(0) = \frac{1}{\lambda}$ and $\sigma^2 = l''_X(0) = \frac{1}{\lambda^2}$

Log of MGF: Examples – Normal

4. The Standard Normal distribution ($\mu = 0, \sigma = 1$)

\[
m_X(t) = e^{\frac{t^2}{2}}
\]

\[
l_X(t) = \ln m_X(t) = \frac{t^2}{2}
\]

\[
l'_X(t) = t, \quad l''_X(t) = 1
\]

Thus $\mu = l'_X(0) = 0$ and $\sigma^2 = l''_X(0) = 1$
Log of MGF: Examples – Gamma

5. The Gamma distribution (parameters α, λ)

\[
m_X(t) = \left(\frac{\lambda}{\lambda - t}\right)^\alpha
\]

\[
l_X(t) = \ln m_X(t) = \alpha \left[\ln \lambda - \ln (\lambda - t) \right]
\]

\[
l'_X(t) = \alpha \left[\frac{1}{\lambda - t} \right] = \frac{\alpha}{\lambda - t}
\]

\[
l''_X(t) = \alpha (-1)(\lambda - t)^{-2}(-1) = \frac{\alpha}{(\lambda - t)^2}
\]

Hence $\mu = l'_X(0) = \frac{\alpha}{\lambda}$ and $\sigma^2 = l''_X(0) = \frac{\alpha}{\lambda^2}$

Log of MGF: Examples – Chi-squared

6. The Chi-square distribution (degrees of freedom ν)

\[
m_X(t) = (1-2t)^{-\nu/2}
\]

\[
l_X(t) = \ln m_X(t) = -\frac{\nu}{2} \ln (1-2t)
\]

\[
l'_X(t) = -\frac{\nu}{2} \frac{1}{1-2t}(-2) = \frac{\nu}{1-2t}
\]

\[
l''_X(t) = \nu(-1)(1-2t)^{-2}(-2) = \frac{2\nu}{(1-2t)^2}
\]

Hence $\mu = l'_X(0) = \nu$ and $\sigma^2 = l''_X(0) = 2\nu$
Characteristic functions

Definition: Characteristic Function
Let \(X \) denote a random variable. Then, the characteristic function of \(X \), \(\varphi_X(t) \) is defined by:

\[
\varphi_X(t) = E(e^{itx})
\]

Since \(e^{ix} = \cos(xt) + i\sin(xt) \) and \(\| e^{ix} \| \leq 1 \), then \(\varphi_X(t) \) is defined for all \(t \). Thus, the characteristic function always exists, but the MGF need not exist.

Relation to the MGF: \(\varphi_X(t) = m_X(t) = m_X(it) \)

Calculation of moments:
\[
\frac{\partial^k \varphi_X(t)}{\partial t} \bigg|_{t=0} = i^k \mu_k
\]