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Chapter 3

Moments of a Distribution

(for private use, not to be posted/shared online)

Expectation
We develop the expectation operator in terms of the Lebesgue integral.

* Recall that the Lebesgue measure A(A) for some set 4 gives the
length/area/volume of the set A. If A = (3; 7), then A(A) =|3-7|= 4.

* The Lebesgue integral of / on [4,] is defined in terms of X; y;, A(A),
where 0 =y, < 9, < .. <y, A, = {x:9,= /() <y}, and A(A) is the

7

Lebesgue measure of the set A,

* The value of the Lebesgue integral is the limit as the y/s are pushed
closer together. That is, we break the y-axis into a grid using {y,} and
break the x-axis into the corresponding grid {4} where

A= f(9) € s -
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Taking expectations: Riemann vs Lebesgue

* Riemann’s approach

Partition the base. Measure the height of the function at the center of
each interval. Calculate the area of each interval. Add all intervals.

* Lebesgue approach

Divide the range of the function. Measure the length of each
horizontal interval. Calculate the area of each interval. Add all
intervals.

Taking expectations: Riemann vs Lebesgue

* A Borel function (RV) fis zntegrable if and only if |f] is integrable.

* For convenience, we define the integral of a measurable function f
from (©2, %, p) to ( R, B),where R=RU {-o0, 0}, B=0(B
U{{o}, {=0}}).

Example: If Q = Rand p is the Lebesgue measure, then the
Lebesgue integral of f over an interval [a, b] is written as
Jam ) de = [2 1) dx,

which agrees with the Riemann integral when the latter is well defined.

However, there are functions for which the Lebesgue integrals are
defined but not the Riemann integrals.

e If u=P, in statistics, [XdP=EX= E[X] is called the expectation or
expected value of X.
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Expected Value

Consider our probability space (€2, 2, P) . Take an event (a set 4 of v €
Q) and X, a RV, that assigns real numbers to each v € A.

* If we take an observation from .4 without knowing which w e 4 will
be drawn, we may want to know what value of X(w) we should expect to
see.

* Bach of the w € 4 has been assigned a probability measure P|w],
which induces P[x]. Then, we use this to weight the values X(w).

* P is a probability measure: The weights sum to 1. The weighted sum
provides us with a weighted average of X (w). If P gives the "correct”
likelihood of w being chosen, the weighted average of X(w) —E[X]—
tells us what values of X(w) are expected.

Expected Value

* Now with the concept of the Lebesgue integral, we take the possible
values {x;} and construct a grid on the y-axis, which gives a
corresponding grid on the x-axis in A, where

A; = {w e A: X(w) € x5 x:40) -

Let the elements in the x-axis grid be .4, The weighted average is

n n n

z x; P[4;]= z X Py[X =x;]= z X [x (%)

i=l i=1 i=1
* As we shrink the grid towards 0, .4, becomes infinitesimal. Let dw be
the infinitesimal set A. The Lebesgue integral becomes:

0 0 o0

lim Zn:x,.P[A,.]: pr[dm]zijX[X = x,]= J'fo(x,.)dx
"N

—00 —00 —00
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The Expectation of X: E(X)

The expectation operator defines the mean (or population average) of
a random variable or expression.

Definition

Let X denote a discrete RV with probability function p(x) (probability
density function fx) if X is continnous), then the expected value of X
E(X) is defined to be:

E(X)=2 xp(x)=2 xp(x)
and if X'is continuons with probability density function £x)
E(X)= [ af (x)dx

Sometimes we use E[.] as Ex].] to indicate that the expectation is being
taken over f(x) dx.

Interpretation of E(X)

1. The expected value of X, E(X), is the center of gravity of the
probability distribution of X.

2. The expected value of X, E(X), is the long-run average value of X.
(To be discussed later: Law of Large Numbers)

0.4 q
0.3
0.2

0.1 4
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Example: The Binomial distribution

Let X be a discrete random variable having the Binomial distribution --
L.e., X = the number of successes in # independent repetitions of a
Bernoulli trial. Find the expected value of X, E(X).

P(x){gpx(l—p)""‘ x=0,1,2,3,....n
E(X)=X xp(x)= ZHZX(ZJPX(I—p)H

Example: Solution

E(X) Z Zx(j (1-p)

Zix(njpx(l_l’)ﬂ
S -

% ey 0

n! n!

_ 11_ n-1 2 1_ n-2
TCE T rr LA S

n! _ n!

~1)l0!
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Example: Solution

Sl e T TR e T

(n=1) . (n-1)!
TR TILA A ey e }

B ”p{[ngljpo(l—p)"_l+[n1_1jp1(1—p)”‘2 +
e

=np [p +(1- p)]n_l =np [1]"71 =np

Example: Exponential Distribution

Let X have an exponential distribution with parameter A. The
probability density function of X is:

f(x)={

e ™ x>0

0 x<0

The expected value of X is:

E(X) = ]O xf(x)dx = Tx/ie_“dx

—00

We will determine I xAe dx

using integration by parts J udv=uv— Ivdu
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Example: Exponential Distribution

We will determine J‘xﬂe_“dx using zntegration by parts.

In this case u =x and dv = Ae *dx

Hence du=dx and v=—-e*

-Ax _ —Ax —-Ax _ —Ax _ 1 —-Ax
Thus J‘xﬂ,e dx =—xe " + Ie dx =—xe 7 e
_ T —Ax _ —ax|® 1 —Ax N
E(X)—Ixie dx = —xe O_Ie

0

:(-mo)-(o-ﬂz%

Summary: If X has an exponential distribution with parameter 4, then:

E(X)=%

Example: The Uniform Distribution

Suppose X has a uniform distribution from « to 4.

Then:
L a<x<b
f(x):{b(_)a x<a,x>b
The expected valne of X is:
E(X)= [ of (x)dv= [ v de
I, x_z}b_ b -d® _a+h
2| 2(b-a) 2
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Example: The Normal Distribution

Suppose X has a Normal distribution with parameters g and o
Then:

)

e 202

1
f(x)=
N2mo
The expected value of X is:
(x—-n)?

E(X)= Txf(x)dx:Tx ! e 7 dx

N2mo

Make the substitution:

A dz=ldx andx=u+zo
o o

Z =

Example: The Normal Distribution

Hence E(X): J‘%(/J+20)efdz
S N2m
—yj\/_e 2a’z+\/_J.zeZ;a’z
Now j e_%dz=1 and Ize_%dz:o

The second integral is an example of an odd function. Recall that an
odd function gives:

f(=x) = —f(x). Then, f_aaf(x)dx =0.

Thus E(X )= u
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Example: The Gamma Distribution

Suppose X has a Gamma distribution with parameters ¢ and A.

Then:

If(x)dx:_[ A x* e Mdx =1 if 1>0,a>0.

This is a very useful formula when working with the Gamma

distribution.

Example: The Gamma Distribution

The expected value of X is:

E(X)= z xf (x)dx = Tx%x“"le"“dx

0

29 % —
= x%e “dx This is now
F (@)1
_ A F(a+1)J— Fras Adx
F(a) A7 iT(a+1)

equal to 1.

_T(a+1l) al(a) «a

F(a)d T(a)d 2
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Example: The Gamma Distribution

Thus, if X has a Gamma (& ,4) distribution, the expected value of X
1s:

EX)=a/d

Special Cases: (« ,A) distribution then the expected value of Xis:
1. Exponential (1) distribution: & = 1, 4 arbitrary

1

E(X)=—
()=
2. Chi-square (V) distribution: o = "/, A = 5.

E(X)%év
2

Example: The Gamma Distribution

0.3
0.25
0.2
0.15
0.1 1

0.05
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Example: The Gamma Distribution - Exponential
025
02 1
0.15

0.1

0057 \

Example: The Gamma Distribution - Chi-square

0.14
0.12 A
0.1
0.08
0.06
0.04

0.02

11
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Expectation of a function of a RV

* Let X denote a discrete R17 with probability function p(x), then the
expected value of g(X), E[g(X)], is defined to be:

E[g(X)]=Xg(x)p(x)=X g(x)p(x)
and if X'is continuons with probability density function £x)

E[g(X)]zIog(x)f(x)dx

Examples:  g() = (x— W)? = E[g()] = E[(x— w7
&) = (x=W* = E[gx)] = E[(x— w4

Expectation of a function of a RV

Example: Suppose X has a uniform distribution from 0 to 4. Then:

L 0<x<bh
f(x)={b S

0 x<0,x>b

Find the expected valne of A = X2 .

If X is the length of a side of a square (chosen at random form 0 to b)
then A4 is the area of the square

o0

BOC)= [ opde= [ s =|

—0o0

TR

SHES

2T roo v
3

=1/3 the maximum area of the square

12
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Median: An alternative central measure

* A median is described as the numeric value separating the higher half
of a sample, a population, or a probability distribution, from the lower
half.

Definition: Median
The median of a random variable X'is the unique number 7 that satisfies

the following inequalities:
P(X<m) =" and PX = m) = Y-

For a continuous distribution, we have that 7 solves:

fo(x)dx = fo(x)dx =1/2

Median: An alternative central measure

¢ Calculation of medians is a popular technique in summary statistics
and summarizing statistical data, since it is simple to understand and
easy to calculate, while also giving a measure that is more robust in the
presence of outlier values than is the mean.

An optimality property
A median is also a central point which minimizes the average of the
absolute deviations. That is, a value of ¢ that minimizes
E(]X —¢[)
is the median of the probability distribution of the random variable X

13
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Example I: Median of the Exponential Distribution

Let X have an exponential distribution with parameter A. The
probability density function of Xis:

{/16_“ x>0

=10 o

The median  solves the following integral of X:

J.fX(x)dx=1/2

I/l e_de:lJ‘e_de: —e M [P=e™=1/2

m

That is, m = In(2)/\.

Example II: Median of the Pareto Distribution

Let X follow a Pareto distribution with parameters a (scale) and x,
(shape, usually notated x,). The pdf of Xis:

f(x) = % if x2x, >0
0 if x<0

The median 7 solves the following integral of X: .[ fy(x)dx =1/2

m

0 a 0 —(a+1)+1
ax _ X

_[ ——dx = ax] Ix @Dy = x* ———

nX . —(a+1D)+1

=—xx"+C[l=x"m“=1/2 =>m=x2""

Note: The Pareto distribution is used to describe the distribution of

wealth.

14
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Moments of a Random Variable

The moments of a random variable X are used to describe the behavior
of the RV (discrete or continuous).

Definition: k”” Moment

Let X be a RV (discrete or continuous), then the k? moment of X is:
> xp(x) if X is discrete

mo=E(X*) =1.
I x"f(x)dx if X is continuous

-00

* The first moment of X, i = 1, = E(X) is the center of gravity of the
distribution of X.

¢ The higher moments give different information regarding the shape of
the distribution of X.

Moments of a Random Variable

Definition: Central Moments

Let X be a RV (discrete or continuous). Then, the £ central moment of
X is defined to be:

Z(x—,u)k p(x) if X is discrete
w=El(x-u) | =10
J.(x—,u) f(x)dx if X is continuous

where = g, = E(X) = the first moment of X .

* The central moments describe how the probability distribution is

distributed about the center of gravity, z.

15
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Moments of a Random Variable — 15t and 24

The first central moments is given by:
p' =E [X —H ]

The second central moment depends on the gpread of the
probability distribution of X about . It is called the variance of X
and is denoted by the symbol var(X).

2
u, = E [(X - /U) } = 2" central moment.

0 _ 2 is called the standard deviation of X and
M, =4|E (X - U ) .
is denoted by the symbol o

var(X) =l = E| (X - ) | =0’

Moments of a Random Variable — Skewness

* The third central moment: ,ug = E[(X — u)3]

13 contains information about the séewness of a distribution.

0

0
¢ A popular measure of skewness: =85
I) I) )/1 o3 3
(13)?

* Distribution according to skewness:
1) Symmetric distribution

Density for Simulated Data with Zero Skew

02 03 04

Density

00 01

T T T T T
-4 2 o 2 4

Simulated Data

16
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Moments of a Random Variable — Skewness

2) Positively skewed distribution

Density for Simulated Data with Positive Skew

S 0
z puz >0,y,>0
E =~
> ) o ; > s 4
Simulated Data
3) Negatively skewed distribution
Density for Simulated Data with Negative Skew
1 9<0,y,<0
n Us V1

Darsity
Q a1 02 a3 4
|

Simulated Data

Moments of a Random Variable — Skewness

e Skewness and Economics
- Zero skew means symmetrical gains and losses.
- Positive skew suggests many small losses and few rich returns.

- Negative skew indicates lots of minor wins offset by rare major losses.

¢ In financial markets, stock returns at the firm level show positive
skewness, but at stock returns at the aggregate (index) level show
negative skewness.

* From horse race betting and from U.S. state lotteries there is evidence
supporting the contention that gamblers are not necessarily risk-lovers
but skewness-lovers: Long shots are overbet (positve skewness loved!).

17
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Moments of a Random Variable — Kurtosis

* The fourth central moment: u3 = E[(X — u)*]

1Y is a measure of the shape of a distribution. The property of shape

0
measured by this moment is called &xrtoszs, usually estimated by kK = %.
i i
* The measure of (excess) kurtosis: V2= 0—: —-3= (#04)2 -3
2

¢ Distributions:

1) Mesokurtic distribution (Y, = 0 or k=3, like the normal distribution)

Density for Simulated Data with Excess Kurt > 0

| N\

03

Density
22

"

[}

! | '
-4

Simulated Data

Moments of a Random Variable — Kurtosis
2) Platykurtic distribution (y, < 0, u3 small in size)

Density for Simulated Data with Excess Kurt < 0

P04 08

Dersity

LA B
I
4\\\
AN

Simulated Data

3) Leptokurtic distribution (y, > 0, u3 large in size, usual shape)

Density for Simulated Data with Excess Kurt > 0

Distributions

Dansy
00 0f 02 03 04 05

18
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Moments of a Random Variable — Kurtosis

* Typical financial returns series has y, > 0. Below, I simulate a series
with u=0, =1, y1=0 & kurtosis = 6 (y,=3), overlaid with a standard
normal distribution. Fat tails are seen on both sides of the distribution.

Histogram for Data with Kurtosis = 6

50

fat tail | Jat tail

40

Frequency
30

xe

37

Moments of a Random Variable

Example: The uniform distribution from 0 to 1

1 0<x<1

f(x)={0

x<0,x>1

Finding the moments

o0

1 k+1 1
B r N | x 1
M, = Ix f(x)dx—'(').x 1dx_{k+ll_k+l

—00

Finding the central moments:
1

u, = ]i(x—u)k f(x)dx = J‘(x—%)k ldx

0

19
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Moments of a Random Variable
Example (continuation): Finding the central moments (continuation)
© 1
k k
,u,?zj(x—,u) f(x)dxz.[(x—;—) ldx
—w 0

making the substitution w=x—1
1\k+1

¥ k+1 7T 171‘*1_ 1
0 _ kdw = | 2 _ (2) 2
e _LW v {k+l}l k+1
1—(—1)k+1 ! if k even
- =12 (k+1)
2"“(k+1) ,
0 if £ odd

Moments of a Random Variable

1
Hence u, = 22—(3): e

Var(X): Uy = B

0_1_
a=\/var()():\/,u2 _\/ﬁ

Thus,

The standard deviation

0
The measure of skewness: Y1 = Zi =0
. ud 1/80
The measure of kurtosis: V2= 42— 3= vl 3=-1.2
12
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Alternative measures of dispersion

When the median is used as a central measure for a distribution, there are
several choices for a measure of variability:

- The range —the length of the smallest interval containing the data

- The interquartile range -the difference between the 3*4 and 1%t quartiles.
- The mean absolute deviation — (1/ 1) 2 | x,— central measure(X)|

- The median absolute deviation (MAD) — MAD= mi( | X - m(X)|)

These measures are more robust (to outliers) estimators of scale than the
sample variance or standard deviation.

They especially behave better with distributions without a mean or
variance, such as the Cauchy distribution.

Review — Rules for Expectations

* We will derive the rules for the continuous case, with X has a pdf
f (x). Proof are similar for the discrete case. That is, we define E[X] as

Elg()] = [7., g()f (x)dx

-Rule 1. E[c] = ¢,  where ¢is a constant.

Proof: g(x) =c¢

Then, Elg(X)] =E[c]=J" cf(x)dx=c [ f(x)dx=c
-Rule 2. E[c +dX] =c +d E[X], where ¢ & dare constants.
Proof: g(x) = c +dX

Then, E[g(X)] = E[c +dX] = [". (c + dx) f(x)dx

= cffooof(x)dx +d ffoooxf(x)dx
= c+dE[X]

21



RS - Chapter 3 - Moments

Review — Rules for Expectations

- Rule 3. Var[X] = p3 = E[(X —)?] = E[X?] - [E(X)]? = pp — i

Proof: g(x) = (x — u)?
Var[X] = E[(X — w)?] = [ (x — w)?f (x)dx
= 2 (® — 2xp + p®)f (x)dx
= [% x2f(odx — [ 2xuf (o)dx +[% p?f (x)dx

= [2x?f0dx = 2u [ xf ()dx +u? [2 f(0)dx
=E[X?] = 2p E(X) + p® = o — pf

Rules for Expectations

- Rule 4. Var(aX + b) = a? Var(X)

Proof:

Hugry = E[aX +b]=aE[X]|+b=au+b

var (aX +b) = E| (aX +b-p,,, ) |
=E[(aX+b—[a,u+b])2}
~E|a*(X-pu) |

= azE[(X—,u)z} =a’ Var(X)

22
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Rules for Expectations for Vectors & Matrices

* Let Z be a random vector of k random variables: Z1, Z5, ..., Z;. We
have a similar definition for W

- Expected value of Z:

E[Z4]
E[Z] = :
E[Zy]

- Expected value of a linear function of random vectors. Let a & b be
non-random scalars. Then:

E[aZ + bW] = a E[Z] + b E[W]

- Variance of Z: Var[Z] = E[Z Z'| - E[Z] E|Z] (k x k)

Rules for Expectations for Vectors & Matrices

- Variance of linear function of Z:

Vat[a + bZ] = b? Var|Z)]

- Variance of linear function of Z, with a comformable non-random
matrix A:

Var[A Z] = A Var[Z] A’

- Expected value of a quadratic form Z' A Z:
E[Z'AZ] = E|Z]' AE|Z] — trace(A Var|Z)) (1x1)

Derivation: Use properties of trace and expectations:
E[Z'AZ] = E[tr(AZZ")] = tr(E[(AZZ"))
= tr(AE[ZZ"]) = tr(A (Var|Z] + E[Z] E[Z])
= (A (Var|Z]) + tx(E[Z] A E[Z])
= tr(A (Var|Z]) + E[Z]' AE[Z]

23
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Moment generating functions

The expectation of a function g(X) is given by:
Z g (x)p (x) if X is discrete

E[g(X)] - T g(x)f(x)dx if X is continuous

Definition: Moment Generating Function (MGF)

Let X denote a random variable. Then, the moment generating function of X,
7 (9), is defined by:

D e“p(x) if X is discrete

m,(t)=E|e" |=1 =
! [ ] J.e”‘f(x)dx if X is continuous

—0o0

24
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MGF: Examples
1. The Binomial distribution (parameters p, 7)
n n—x
p(x):[ )px(l—p) x=0,12,---,n
X

The MGF of X, m(J) is:

mX [ Zetxp

—Ze“( J
-3 (i) ;(zla%“

:(a+b ” =(ep+1—p)

MGF: Examples

2. The Poisson distribution (parameter A)

p(x)="e

e x=0,1,2,.
The MGF of X, m,(J) is:

mX(t)=E|:etX:|=Zetxp(X) _ - ezx/;tc_):e—z

x!

25
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MGF: Examples

3. The Exponential distribution (parameter A)

e x>0
f(x)_{ 0 x<0

The MGF of X, m(J) is:

00 oo}

(=3

—00

— t< A
= A—t

undefined > A

m, (1) = E[e’X} = J e f(x)dx = J.etx/ie_“dx

MGF: Examples

1 2
f(x):\/ﬂe 2

The MGF of X, m(J) is:

m, (1) :E[e[X} :_]ie’xf(x)dx

o0
— I elx
—o0

p—

2

e *dx

]

4. The Standard Normal distribution (¢ = 0, o= 1)

26
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MGF: Examples

We will now use the fact that

© 1 (xb?
I e > dx=1 foralla>0,b |Wehave
oV 2ra completed
/ the square
° 1 % < x 2rv+t
my (t) = j 27[ j dx

t

This is 1

MGF: Examples

4. The Gamma distribution (parameters «, A)

S(x)=1T(a)

0 x<0

x>0

The MGF of X, () is:

o0

mX(z‘):E[etX]: J‘e”‘ (x)dx

27
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MGF: Examples

We use the fact

a

I

x“'e™dx =1 forall a>0,b>0

m, (1) = J‘—xa_le*(m)xdx
0

_ A T(z—t)“ Lt 1) dx:( e )

(A1) T(a)

Equalto 1

—~

The Chi-square distribution with degrees of freedom v (a="/,, A="):

my (1)=(1-2¢)"

MGTF: Properties

1. m(0)=1
m,y(1)= E(e’X), hence m, (0)= E(e”): E(1)=1
Note: The MGFs of the following distributions satisfy the property
mx(0) =1
i) Binomial Distn m, (Z)z(e’p+1—p)n

/I(e'—l)

ii) Poisson Distn m, (1)=e

iii) Exponential Distn m, (¢)= (%j
iv) Std Normal Distn m, (1)= eT
v) Gamma Distn mX(z):(%j

28
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MGF: Properties
Hpt?  pst? it"

2. ,uX(t)=1+,ult+T+ TR

+ ..

We use the expansion of the exponential function:

u2 u3 uk
e“=1+u+i+§+---+ﬂ+-..
mX(t)zE(e’X)
t2x? t3x3 thxk
= E(L+ X +——+ ot t o)
B t?E[X?] t3E[X3] tkE[XK]
=1+ tEX|+——+——+ -t ——+
B ipt?  pst? wict®
—1+u1t+T+T+...+T+...
MGTF: Properties
dk
3. mgfk)(o):dtk my (1) =y
Now . t=03 .
pat= Uzt Uyt
my(t) =1+t + ol +T "'+T+
¢k
m'x(t) = py +‘u—22t+&3t2+---+‘uk—(k_1)tk—1+...
2! 3! k!
k
= Hz Hs.2 . Hit k-1 ...
= e e gt
and m', (0)= g,
k
v(t) = Hs o Hap Mt ks
mx(t)—u2+1!t+2!t + +(k—2)!t +

and m} (0)= u,

continuing we find mgf) (0) = U,

29
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MGTF: Applying Property 3 — Binomial

Property 3 is very useful in determining the moments of a RV X.

Examples:

i) Binomial Distn m, (¢)= (e’p +1- p)n
m' (1) = n(e’p+1—p)nil(pet)
my (0)=n(e'p+1-p) (pe’)=np=u =u
mh (t)= np[(n—1)(e'p+l—p)n_2 (e’p)e’ +(e'p+1—p)n_l et}
=npe' (e"p+1—p)w2 [(n—l)(etp)+(e’p+1—p)}
= npe' (e“p+l—p)n_2 [ne'p+1—p}

my (0)=np[np +1— pl=np[np +ql=n’p> +npq = p,

MGTF: Applying Property 3 — Poisson
l(e'fl)

ii) Poisson Distn m, (t)=e
my (1) =" 2] = 2
ml (1) = 2" e 1] = 22T L e
m (6)= 22 e+ 2]+ 2 [2ef 1]
= 22 e 4 3]+ M

e’71)+21 e'fl)ﬂ

= 2361(571%% + 31262( + ﬁ,el(
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MGTF: Applying Property 3 — Poisson
To find the moments we set = 0.

A(e°f1)+0

w=m', (0)=Je =1

e°—1)+0

P Y LI

py=my (0)=2°e" +32%" + 2" = A +34° + 4

MGTF: Applying Property 3 — Exponential

1i1) Exponential Distn m (t) = (%j

w2t A U0

AN ()= 2 (- 1)
mi ()= 2(-2)(2-0)" (1) =22 (A1)
w7 (1) =24(-3)(2=0)" (1) =2(3) (2 1)
mi (1)=2(3)A(=4)(2-1)" (-1)=(4)A(2~1)"

()= (k)2 (2 1)
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MGF: Applying Property 3 — Exponential

Thus,
, o1
==y (0)=2(4) =
14 2
My, =my (0):21(1) ’ :?
. (k) . ' —k-1 . k'
p =m (0)=(k!)A(A) =%

We can calculate the following popular descriptive statistics:
S62= 0, = - 12 = (202) — (1A = (/W)

= 1 J6d = (20 / [(AAPPR =2

- = po/e* =3 =AY/ [(1/N)*]-3=6

MGF: Applying Property 3 — Exponential

Note: The moments for the exponential distribution can be calculated
in an alternative way. This is done by expanding 7y (?) in powers of 7
and equating the coefficients of #to the coefficients in:
2 k
pat®  ust’ it

7T TR T

px(t) =1+ pt +

A 1

my (1)= 2= -
x A -t 1_% 1-u

=l+u+u’+u’+-

Equating the coefficients of # we get:

1 k!
&—_ or ‘le:_

k' Ak
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MGF: Applying Property 3 — Normal
iv) Standard normal distribution my(f) = exp(P/2)

We use the expansion of ¢”.
u2 u3 uk
e¥ = 1+u+§+§+'”+m+"'
AN Y t?
2.5, .G

t2
u _— i B Sl AN TP T Sl A
e 1+(2)+ TR TR i Ty

k

1 1 1
U — 14 _¢2 4 6 4 ... D2k .
e +2t +222!t +233!t + +2"’k! +
We now equate the coefficients # in:
= Hot® | pat? et et
my(t) =1+ p it + TRt vt 2]
MGTF: Applying Property 3 — Normal
If £isodd: = 0.
For even 24: Hok  _ 1
(2k)!  2"k!
3 2k)!
or Hyp = 2kk'
21 41
Thus =0, =—=1, =0, =——=3
Hy H, 5 Hs Hy 2 (2!)
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The log of Moment Generating Functions

Let /() = In m(?) = the log of the MGF.
Then [/, (0)=Ilnm,(0)=Inl1=0

1 () =— (1) =2 gy 2 (0)

me () T () Y T o)
1 (o)< (1)~ 0]
[y (1)]
L (0)my (0)~[ml (0)] _
Iy (0)= 2 =H 1] =0
(0) e (0)] o =[14]

The Log of Moment Generating Functions

Thus /(7)) = In my(J) 1s very useful for calculating the mean and
variance of a random variable

Lo L(0)=u
2. Iy(0)=0

2
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Log of MGF: Examples — Binomial
1. The Binomial distribution (parameters p, #)
m, (t)z(etp+1—p)n =(etp+q)n
I, (t)=Inm, (1)= nln(e’p+q)

1 |
() = ' =0,(0)= =
lx(t) ne[p-i-qep H X() np+qp np
4 etp(etp+q)_etp(etp)
V(t)=n t )
(¢'p+a)
62:l)”((O):np(p+q)_2p(p):npq
(p+a)

Log of MGF: Examples — Poisson

2. The Poisson distribution (parameter A)
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Log of MGF: Examples — Exponential

3. The Exponential distribution (parameter 4)
A t<A
m, (z‘) = A—t
undefined >4
I, (t)=Inm, (t)=InA-In(A—t) if t<A

1 (1) == (1)

B (e)==1(2-1)"(-1)=

I
(A=1)
I

Thus ﬂ:z;((o):% and o* =17 (0)=;

Log of MGF: Examples — Normal

4. The Standard Normal distribution (¢ = 0, o= 1)

2
— p2

m,(t)=e

2

L (t)=lnm, (t)=%
L ()=t, I} (¢)=1

Thus |u=1,,(0)=0 and o’ =/} (0)=1
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Log of MGEF: Examples — Gamma

5. The Gamma distribution (parameters @, A)
ﬂ/ [24
m(0)=(75)
I (t)=Inmy(t)=a[InA-In(1-1)]
1 o
I'(t)= =
x (1) O{A—t} A—t

() =a()(A-0) (1) =2

(1)

(94

Hence ,u=l}((0)=% and 02:1;(0):?

Log of MGF: Examples — Chi-squared
6. The Chi-square distribution (degrees of freedom V)
my (1)=(1-21)"

L (t)zlnmX(z‘):—%ln(l—Zt)

Hence|u =1, (0)=v and o’ =1} (0)=2v
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Characteristic functions

Definition: Characteristic Function

Let X denote a random variable. Then, the characteristic function of X,
¢~ () is defined by:

oy ()= E(e"™)
Since ¢ = cos(xh) + isin(x) and ||| < 1, then py (2 is defined for all

t. Thus, the characteristic function always exists, but the MGF need not
exist.

Relation to the MGF: ¢\ (7) = m;($) = my(#)

k
Calculation of moments: M | =i*
=0 Hy

ot
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