

© RS 2023 (for private use, not to be posted/shared online).

General Setup

• Let f(.) be a function such that

 $x \in \mathbb{R}^n \to f(\mathbf{b}, x) \in \mathbb{R}$

where **b** is a vector of unknown parameters. In many cases, **b** will not have a closed form solution. We will estimate **b** by minimizing some loss function.

• Popular loss function: A sum of squares.

• Let $\{y_i, x_i\}$ be a set of measurements/constraints. That is, we fit f(.), in general a nice smooth function, to the data by solving:

$$\min_{b} \{ S(\mathbf{b}) = \sum_{i=1}^{T} e_i^2 = \sum_{i=1}^{T} (y_i - f(x_i, \mathbf{b}))^2 \}$$

Finding a Minimum - Review • When f(.) is twice differentiable, a local minima is characterized by: $\nabla f(\boldsymbol{b_{min}}) = 0$ 1. (f.o.c.) $z'H(b_{min}) z \geq 0$ 2. (s.o.c.) Solve $\nabla f(\boldsymbol{b}_{min}) = 0$ for \boldsymbol{b}_{min} Usual approach: Check $H(b_{min})$ is positive definitive. • Sometimes, an analytical solution to $\nabla f(\boldsymbol{b}_{min}) = 0$ is not possible or hard to find. • For these situations, a numerical solution is needed. $\nabla f(.)$: gradient (of a scalar field). Notation: ∇ : Vector differential operator ("*del*")

Finding a Univariate Minimum

• Finding an analytic minimum of a simple univariate sometimes is easy given the usual f.o.c. and s.o.c.

Example: Quadratic Function

$$U(x) = 5x^{2} - 4x + 2$$

$$\frac{\partial U(x)}{\partial x} = 10x^{*} - 4 = 0 \implies x^{*} = \frac{2}{5}$$

$$\frac{\partial^{2} U(x)}{\partial x^{2}} = 10 > 0$$

Analytical solution (from f.o.c.): $x^* = 0.4$.

The function is globally convex $\Rightarrow x^*=2/5$ is a global minimum. <u>Note</u>: To find x^* , we find the zeroes of the first derivative function.

Finding a Univariate Minimum

• Straightforward transformations add little additional complexity:

$$U(x) = e^{5x^2 - 4x + 2}$$
$$\frac{\partial U(x)}{\partial x} = U(x^*) [10x^* - 4] = 0 \implies x^* = \frac{2}{5}$$

• Again, we get an analytical solution from the f.o.c. $\Rightarrow x^*=2/5$. Since U(.) is globally convex, $x^* = 2/5$ is a global minimum.

• Usual Problems: Discontinuities, Unboundedness.

Finding a Univariate Minimum - Discontinuity

• This function has a discontinuity at some point in its range. If we restrict the search to points where x > -10, then the function is defined at all points

$$\frac{\partial f(x)}{\partial x} = f'(x) = \frac{(10x^{*}-4)(x^{*}+10) - [5x^{*2}-4x^{*}+2]}{(x^{*}+10)^{2}} = 0$$
$$x^{*} = \frac{-100 + 2\sqrt{2710}}{10} = 0.411532 .$$

• After restricting the range of x, we find an analytical solution as usual –i.e., by finding the zeroes of f'(x).

Finding a Univariate Minimum – No analytical Solution

• So far, we have presented examples were an analytical solution or close form solution was easy to obtain from the f.o.c.

• In many situations, finding an analytical solution is not possible or impractical. For example:

$$f(x) = x^{6} - 4x^{5} - 2x^{3} + 2x + 40$$
$$f(x) = \sin(x) + (1/6)x^{4}$$

• In these situations, we rely on numerical methods to find a solutions. Most popular numerical methods are based on iterative methods. These methods provide an approximation to the exact solution, x^* .

• We will concentrate on the details of these iterative methods.

Iterative algorithm

• Goal of algorithm:

Produce a sequence $\{x\} = \{x_0, x_1, \dots, x_n\}$ such that $f(x_0) > f(x_1) > \dots > f(x_n)$

• Algorithm: Sketch

- Start at an initial position x_0 , usually an *initial guess*.

- Generate a sequence $\{x\}$, which hopefully convergence to x^* .

- {x} is generated according to an iteration function g, such that $x_{k+1} = g(x_k)$.

• Algorithm: Speed

The speed of the algorithm depends on:

- the cost (in flops) of evaluating f(x) (and, likely, f'(x)).
- the number of iterations.

Iterative algorithm

- Characteristics of algorithms:
- We need to provide a subroutine to compute f and, likely, f' at x.

- The evaluation of f and f' can be expensive. For example, it may require a simulation or numerical integration.

- Limitations of algorithms
- There is no algorithm that guarantees finding *all* solutions.
- Most algorithms find at most one (local) solution.

- Need prior information from the user: an initial guess, an interval that contains a zero, etc.

Speed of algorithm

• Suppose $x_k \to x^*$ with $f(x^*) = 0$ -i.e., we find the roots of f. Q: How fast does x_k go to x^* ?

- Error after k iterations:
- absolute error: $|x_k x^*|$
- relative error: $|x_k x^*| / |x^*|$ (defined if $x^* \neq 0$)

• The number of correct digits is given by: $-\log_{10} [|x_k - x^*| / |x^*|]$

(when it is well defined –i.e., $x^* \neq 0$ and $[|x_k - x^*| / |x^*|] \leq 1$).

Speed of algorithm – Rates of Convergence

- Rates of convergence of a sequence x_k with limit x^* .
- *Linear convergence*: There exists a $c \in (0, 1)$ such that

 $|x_{k+1} - x^*| \le c |x_k - x^*|$ for sufficiently large k.

- R-linear convergence: There exists $c \in (0, 1), M > 0$ such that $|x_k - x^*| \le M c^k$ for sufficiently large k.

- Quadratic convergence: There exists a c > 0 such that $|x_{k+1} - x^*| \le c |x_k - x^*|^2$ for sufficiently large k.

- Superlinear convergence: There exists a sequence c_k , with $c_k \to 0$ s.t. $|x_{k+1} - x^*| \le c_k |x_k - x^*|$ for sufficiently large k.

Speed of algorithm – Interpretation • Assume $x^* \neq 0$. Let $r_k = -\log_{10} [|x_k - x^*| / |x^*|]$ $-r_k \approx$ the number of correct digits at iteration k. - *Linear convergence:* We gain roughly $-\log_{10} c$ correct digits per step: $r_{k+1} \geq r_k - \log_{10} c$

- *Quadratic convergence*: For sufficiently large k, the number of correct digits roughly doubles in one step:

$$r_{k+1} \ge -\log_{10}(c \mid x^* \mid) + 2 r r_k$$

- *Superlinear convergence:* Number of correct digits gained per step increases with *k*:

 $r_{k+1} - r_k \rightarrow \infty$

Speed of algorithm – Examples

• Let $x^* = 1$.

The number of correct digits at iteration k, r_k , can be approximated by: $r_k = -\log_{10} [|x_k - x^*| / |x^*|]$

• We define 3 sequences for x_k with different types of convergence:

1. *Linear convergence:* $x_{k+1} = 1 + 0.5^k$

2. Quadratic convergence: $x_{k+1} = 1 + (0.5^2)^k$

- 3. Superlinear convergence: $x_{k+1} = 1 + (1/(k+1))^k$
- For each sequence we calculate x_k for k = 0, 1, ..., 10.

${k}$	$1 + 0.5^{k}$	$1 + 0.5^{2^k}$	$1 + (1/(k+1)^k)$
0	2.000000000000000	1.5000000000000000000000000000000000000	2.000000000000000000000000000000000000
1	1.5000000000000000000000000000000000000	1.25000000000000000000000000000000000000	1.5000000000000000000000000000000000000
2	1.25000000000000000000000000000000000000	1.06250000000000	1.1111111111111111
3	1.125000000000000	1.00390625000000	1.01562500000000
4	1.06250000000000	1.00001525878906	1.0016000000000000000000000000000000000
5	1.03125000000000	1.0000000023283	1.00012860082305
6	1.01562500000000	1.000000000000000000000000000000000000	1.00000849985975
7	1.00781250000000	1.000000000000000000000000000000000000	1.00000047683716
8	1.00390625000000	1.000000000000000000000000000000000000	1.0000002323057
9	1.00195313125000	1.000000000000000000000000000000000000	1.0000000100000
10	1.00097656250000	1.000000000000000000000000000000000000	1.0000000003855
Sequ	sence 1: we gain rough $ x_{k+1} - 1 / x_k $	ghly $-log_{10}(c) = 0.3$ co $-1 \mid = 2^k/2^{k+1} = 0.5$	correct digits per state $5 \le c$ ($c = 0.5$)
Soci	ience 2: r. almost de	hibles at each sten	

• An iterative algorith because the solution i	m needs a stopping rule. Ideally, it is stopped is sufficiently accurate.
• Several rules to chec	ck for accuracy:
– X vector criterion:	$ x_{k+1} - x_k < \text{tolerance}$
– Function criterion:	$ f(x_{k+1}) - f(x_k) < \text{tolerance}$
– Gradient criterion:	$ \nabla f(x_{k+1}) < \text{tolerance}$
• If none of the convention of the conversion of the stated max convergence!	ergence criteria is met, the algorithm will stop by timum number of iterations. This is not a
• If a very large numb the algorithm if the so	per of iterations is allowed, you may want to stop plution diverges and or cycles.

Numerical Derivatives

• Many methods rely on the first derivative: f'(x). **Example**: Newton's method's requires $f'(x_k)$ and $f''(x_k)$ Newton's method algorithm: $x_{k+1} = x_k - \lambda_k f'(x_k) / f''(x_k)$

• It is best to use the analytical expression for f'(x). But, it may not be easy to calculate and/or expensive to evaluate. In these situations it may be appropriate to approximate f'(x) numerically by using the difference quotient:

$$f'(x_k) = \frac{f(x_{k,2}) - f(x_{k,1})}{x_{k,2} - x_{k,1}} = \frac{f(x_k + h) - f(x_k)}{h}$$

• Then, pick a small *b* and compute *f* ' at x_k using:

$$f'(x_k) = \frac{f(x_k + h) - f(x_k)}{h}$$

Numerical Derivatives – 2-point Approximation

• We can approximate $f'(x_k)$ with another two-point approximation:

$$f'(x_k) = \frac{[f(x_k+h) - f(x_k)] + [f(x_k) - f(x_k-h)]}{2h} = \frac{f(x_k+h) - f(x_k-h)}{2h}$$

• Errors may cancel out on both sides. For small values of h this is a more accurate approximation to the tangent line than the one-sided estimation.

• Q: What is an appropriate *h*?

Floating point considerations (and cancellation errors) point out to choose an *b* that's not too small. On the other hand, if *b* is too large, the first derivative will be a secant line. A popular choice is sqrt(ε)*x*, where ε is of the order 10⁻¹⁶. If working with returns (in %), *b*=.000001 is fine.

Source of errors - Computation

• We use a computer to execute iterative algorithms. Recall that iterative algorithms provide a sequence of approximations that in the limit converge to the exact solution, x^* . Errors will occur.

(1) *Round-off errors:* A practical problem because a computer cannot represent all $x \in R$ exactly.

Example: Evaluate two expression for same function at x = 0.0002:

$f(x) = [1 - \cos^2(x)]/x^2$	&	$g(x) = [\sin^2(x)]/x^2$
f(x = 0.0002) = 0.99999998	&	g(x = 0.0002) = 0.99999999999999999999999999999999999

(2) *Cancelation errors: a* and *b* should be the same (or almost the same), but errors during the calculations makes them different. When we subtract them the difference is no longer zero.

Source of errors – Truncation and Propagation

(3) *Truncation errors*: They occurs when the iterative method is terminated, usually after a convergence criterion is met.

(4) *Propagation of errors*: Once an error is generated, it will propagate. This problem can arise in the calculation of standard errors, CI, etc.

Example: When we numerically calculate a second derivative, we use the numerically calculated first derivate. We potentially have a compounded error: an approximation based on another approximation.

Source of errors - Data

• Ill-conditioned problem

This is a data problem. Any small error or change in the data produce a large error in the solution. No clear definition on what "large error" means (absolute or relative, norm used, etc.)

Usually, the *condition number* of a function relative to the data (in general, a matrix \mathbf{X}), $\kappa(\mathbf{X})$, is used to evaluate this problem. A small $\kappa(\mathbf{X})$, say close to 1, is good.

Example: A solution to a set of linear equations, Ax = b

Now, we change **b** to $(\mathbf{b} + \Delta \mathbf{b}) \implies$ new solution is $(\mathbf{x} + \Delta \mathbf{x})$, which satisfies $\mathbf{A}(\mathbf{x} + \Delta \mathbf{x}) = (\mathbf{b} + \Delta \mathbf{b})$

- The change in \mathbf{x} is $\Delta \mathbf{x} = \mathbf{A}^{-1} \Delta \mathbf{b}$

- We say, the equations are *well-conditioned* if small $\Delta \mathbf{b}$ results in small $\Delta \mathbf{x}$. (The condition of the solution depends on **A**.)

Source of errors - Algorithm

• Numerical stability

It refers to the accuracy of an algorithm in the presence of small errors, say a round-off error. Again, no clear definition of "accurate" or "small."

Examples: A small error grows during the calculation and significantly affects the solution. A small change in initial values can produce a different solution.

Line Search

- Line search techniques are simple optimization algorithms for onedimensional minimization problems.
- Considered the backbone of non-linear optimization algorithms.
- Typically, these techniques search a bracketed interval.
- Often, unimodality is assumed.
- Usual steps:
 - Start with *bracket* $[x_{\rm L}, x_{\rm R}]$ such that the minimum x^* lies inside.
 - Evaluate f(x) at two points inside the bracket.
 - Reduce the bracket in the *descent direction* $(f \downarrow)$.
 - Repeat the process.
- <u>Note</u>: Line search techniques can be applied to any function and differentiability and continuity is not essential.

Line Search

- Basic Line Search (Exhaustive Search)
 - 1. Start with a $[x_L, x_R]$ and divide it in *T* intervals.
 - 2. Evaluate f in each interval (T evaluations of f). Choose the interval where f is smaller.
 - 3. Set $[x_{\rm L}, x_{\rm R}]$ as the endpoints of the chosen interval => Back to 1.
 - 4. Continue until convergence.
- <u>Key step</u>: Sequential reduction in the brackets. The fewer evaluations of functions, the better for the line search algorithm.
 - There are many techniques to reduce the brackets:
 - Dichotomous -i.e., divide in 2 parts- search
 - Fibonacci series
 - Golden section

Line Search: Fibonacci numbers

• Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... That is , the sum of the last 2 numbers: $F_n = F_{n-1} + F_{n-2}$ ($F_0 = F_1 = 1$)

• The Fibonacci sequence becomes the basis for choosing sequentially N points such that the discrepancy $x_{k+1} - x_{k-1}$ is minimized.

• Q: How is the interval reduced? Start at final interval, after K iterations and go backwards: $|b_{K-1} - a_{K-1}| = 2|b_K - a_K|$;

$$|\mathbf{b}_{K-2} - \mathbf{a}_{K-2}| = 3 |\mathbf{b}_{K} - \mathbf{a}_{K}|; ...; |\mathbf{b}_{K-1} - \mathbf{a}_{K-1}| = \mathbf{F}_{J+1} |\mathbf{b}_{K} - \mathbf{a}_{K}|$$

$$\Rightarrow |\mathbf{b}_{k} - \mathbf{a}_{k}| = |\mathbf{b}_{k-2} - \mathbf{a}_{k-2}| - |\mathbf{b}_{K-1} - \mathbf{a}_{K-1}|$$

Pure Line Search - Remarks

- Since only f is evaluated, a line search is also called 0^{th} order method.
- Line searches work best for unimodal functions.
- Line searches can be applied to any function. They work very well for discontinuous and non-differentiable functions.
- Very easy to program.
- Robust.
- They are less efficient than higher order methods –i.e., methods that evaluate f' and f''
- Golden section is very simple and tends to work well (in general, fewer evaluations than most line search methods).

Line Search: Bisection

• The bisection method involves shrinking an interval [a, b] known to contain the root (zero) of the function, using $f' \implies a 1^{st}$ order method).

• Bisection: Interval is replaced by either its left or right half at each k.

• Method:

- Start with an interval [a, b] that satisfies f'(a) f'(b) < 0. Since f is continuous, the interval contains at least one solution of f(x) = 0.

- In each iteration, evaluate f' at the midpoint of the interval [a, b], f'((a + b)/2).

- Reduce interval: Depending on the sign f', we replace a or b with the midpoint value, (a + b)/2. (The new interval still satisfies f'(a) f'(b) < 0.)

• <u>Note</u>: After each iteration, the interval [*a*, *b*] is halved:

 $|a_{k} - b_{k}| = (1/2)^{k} |a_{0} - b_{0}|$

	Lower	Upper	Midpoint	Gradient	Replace
C	-8.0000	20.0000	6.0000	2.8828	Upper
1	-8.0000	6.0000	-1.0000	-1.6914	Lower
2	-1.0000	6.0000	2.5000	1.5312	Upper
3	-1.0000	2.5000	0.7500	0.3099	Upper
4	-1.0000	0.7500	-0.1250	-0.5581	Lower
5	-0.1250	0.7500	0.3125	-0.0965	Lower
6	0.3125	0.7500	0.5313	0.1130	Upper
7	0.3125	0.5313	0.4219	0.0099	Upper
8	0.3125	0.4219	0.3672	-0.0429	Lower
ç	0.3672	0.4219	0.3945	-0.0164	Lower
10	0.3945	0.4219	0.4082	-0.0032	Lower
11	0.4082	0.4219	0.4150	0.0034	Upper
12	0.4082	0.4150	0.4116	0.0001	Upper
13	0.4082	0.4116	0.4099	-0.0016	Lower
14	0.4099	0.4116	0.4108	-0.0007	Lower

Descent Methods

• Typically, the line search pays little attention to the direction of change of the function –i.e., f'(x).

• Given a starting location, x_0 , examine f(x) and move in the *downhill* direction to generate a new estimate, $x_1 = x_0 + \delta x$.

Steepest (Gradient) descent Basic algorithm: Start at an initial position x₀ Until convergence Find minimizing step δx_k, which will be a function of f'(x). x_{k+1} = x_k + δx_k In general, it pays to multiply the direction δx_k by a constant, λ, called *step-size*. That is, x_{k+1} = x_k + λ δx_k To determine the direction δx_k, note that a small change proportional to f'(x)multiplied by (-1) decreases f(x). That is, x_{k+1} = x_k - λ f'(x)

Steepest descent – Theorem

• **Theorem**: Given a function $f: \mathbb{R}^n \to \mathbb{R}$, differentiable at \mathbf{x}_0 , the direction of steepest descent is the vector $-\nabla f(\mathbf{x}_0)$.

Proof: Consider the function

 $\chi(\lambda) = f(\mathbf{x}_0 + \lambda \mathbf{u}) \qquad (\mathbf{u}: \text{ unit vector } \| \mathbf{u} \| = 1)$

By chain rule:

$$z'(\lambda) = \frac{\partial f}{\partial x_1} \frac{dx_1}{\partial \lambda} + \frac{\partial f}{\partial x_2} \frac{dx_2}{\partial \lambda} + \dots + \frac{\partial f}{\partial x_n} \frac{dx_n}{\partial \lambda}$$
$$= \frac{\partial f}{\partial x_1} u_1 + \frac{\partial f}{\partial x_2} u_2 + \dots + \frac{\partial f}{\partial x_n} u_n = \nabla f(\mathbf{x}_0 + \lambda \mathbf{u}) \cdot \mathbf{u}$$
$$z'(0) = \nabla f(\mathbf{x}_0) \cdot \mathbf{u} = \| \nabla f(\mathbf{x}_0) \| \| \mathbf{u} \| \cos(\theta) \text{ (dot product)}$$

Thus,

 $= \| \nabla f(\mathbf{x}_0) \| \cos(\theta) \quad (\theta: \text{ angle between } \nabla f(\mathbf{x}_0) \& \mathbf{u})$ Then, $\chi'(0)$ is minimized when $\theta = \pi \quad \Rightarrow \chi'(0) = - \| \nabla f(\mathbf{x}_0) \|$. Since \mathbf{u} is a unit vector $(\| \mathbf{u} \| = 1) \quad \Rightarrow \mathbf{u} = - \nabla f(\mathbf{x}_0) / \| \nabla f(\mathbf{x}_0) \|$

Steepest descent – Algorithm

Since *u* is a unit vector ⇒ *u* = -∇*f*(*x*₀)/ ||∇*f*(*x*₀) || ⇒ The method becomes the *steepest descent*, due to Cauchy (1847).
The problem of minimizing a function of *N* variables can be reduced to a single variable minimization problem, by finding the minimum of *x*(λ) for this choice of *u*: ⇒ Find λ that minimizes *z*(λ) = *f*(*x*_k - λ ∇*f*(*x*_k))
Algorithm: 1. Start with *x*₀. Evaluate ∇*f*(*x*₀). 2. Find λ₀ and set *x*₁ = *x*₀ - λ₀ ∇*f*(*x*₀). 3. Continue until convergence.
Sequence for {*x*}: *x*_{k+1} = *x*_k - λ_k ∇*f*(*x*_k)

Steepest descent – Algorithm

<u>Note</u>: Two ways to determine λ_k , in the general $\mathbf{x}_{k+1} = \mathbf{x}_k - \lambda_k \nabla f(\mathbf{x}_k)$

1. Optimal λ_k . Select λ_k that minimizes $g(\lambda_k) = f(\mathbf{x}_k - \lambda_k \nabla f(\mathbf{x}_k))$.

2. Non-optimal $\boldsymbol{\lambda}_k$ can be calculated using line search methods.

• <u>Good property</u>: The method of steepest descent is guaranteed to make at least some progress toward x^* during each iteration. (Show that z'(0) < 0, which guarantees there is a $\lambda > 0$, such that $z(\lambda) < z(0)$.)

• It can be shown that the steepest descent directions from \mathbf{x}_{k+1} and \mathbf{x}_k are orthogonal, that is $\nabla f(\mathbf{x}_{k+1}) \cdot \nabla f(\mathbf{x}_k) = 0$.

For some functions, this property makes the method to "*zig-zag*" (or *ping pong*) from x_0 to x^* .

Steepest descent - Limitations

• Limitations:

- In general, a global minimum is not guaranteed. (This issue is also a fundamental problem for the other methods).

- Steepest descent can be relatively slow close to the minimum: going in the steepest downhill direction is not efficient. Technically, its asymptotic rate of convergence is inferior to many other methods.

- For poorly conditioned convex problems, steepest descent increasingly 'zigzags' as the gradients point nearly orthogonally to the shortest direction to a minimum point.

Steepest descent – Example (Wikipedia)

• Steepest descent has problems with pathological functions such as the Rosenbrock function.

Example: $f(x_1, x_2) = (1 - x_1)^2 + 100 (x_2 - x_1^2)^2$

This function has a narrow curved valley, which contains x^* . The bottom of the valley is very flat. Because of the curved flat valley the optimization zig-zags slowly with small step-sizes towards $x^*=(1, 1)$.

Newton-Raphson Method (Newton's method)

• It is a method to iteratively find roots of functions (or a solution to a system of equations, $f(\mathbf{x}) = \mathbf{0}$).

• <u>Idea</u>: Approximate $f(\mathbf{x})$ near the current guess \mathbf{x}_k by a function $f_k(\mathbf{x})$ for which the system of equations $f_k(\mathbf{x})=0$ is easy to solve. Then use the solution as the next guess x_{k+1} .

• A good choice for $f_k(\mathbf{x})$ is the linear approximation of $f(\mathbf{x})$ at \mathbf{x}_k : $f_{k}(\mathbf{x}) \approx f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k}) (\mathbf{x} - \mathbf{x}_{k}).$

• Solve the equation $f_k(\mathbf{x}_{k+1})=0$, for the next \mathbf{x}_{k+1} . Setting $f_k(\mathbf{x})=0$: $0 = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k) (\mathbf{x}_{k+1} - \mathbf{x}_k).$ $\mathbf{x}_{k+1} = \mathbf{x}_k - |\nabla f(\mathbf{x}_k)|^{-1} f(\mathbf{x}_k)$

Or

(NR iterative method)

Newton-Raphson Method – History

• History:

- Heron of Alexandria (10-70 AD) described a method (called Babylonian method) to iteratively approximate a square root.

- François Viète (1540-1603) developed a method to approximate roots of polynomials.

- Isaac Newton (1643–1727) in 1669 (published in 1711) improved upon Viète's method. A simplified version of Newton's method was published by Joseph Raphson (1648–1715) in 1690. Though, Newton (and Raphson) did not see the connection between his method and calculus.

- The modern treatment is due to Thomas Simpson (1710–1761).

Newton-Raphson Method – Minimization

• We can use NR method to minimize a function.

• Recall that $f'(x^*) = 0$ at a minimum or maximum, thus stationary points can be found by applying NR method to the derivative. The iteration becomes:

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

• We need $f''(x_k) \neq 0$; otherwise the iterations are undefined. Usually, we add a step-size, λ_k , in the updating step of x:

$$x_{k+1} = x_k - \lambda_k \frac{f'(x_k)}{f''(x_k)}$$

• <u>Note</u>: NR uses information from the second derivative. This information is ignored by the *steepest descent* method. But, it requires more computations.

NR Method – Properties

• If $\mathbf{H}(\mathbf{x}_k)$ is pd, the critical point is also guaranteed to be the unique strict global minimizer of $f_k(\mathbf{x})$.

• For quadratic functions, NR method applied to $f(\mathbf{x})$ converges to \mathbf{x} in one step; that is, $\mathbf{x}_{k=1} = \mathbf{x}^{*}$.

• If $f(\mathbf{x})$ is not a quadratic function, then NR method will generally not compute a minimizer of $f(\mathbf{x})$ in one step, even if its $\mathbf{H}(\mathbf{x}_k)$ is pd. But, in this case, NR method is guaranteed to make progress.

• Under certain conditions, the NR method has quadratic convergence, given a sufficiently close initial guess.

NR Method – Example • Calculate f'(x) $f(x) = x^{3} - 0.165 x^{2} + 3.993 \times 10^{-4}$ $f'(x) = 3x^{2} - 0.33 x$ • Iterations: $x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})} = x_{k} - \frac{x_{k}^{3} - 0.165 x_{k}^{2} + 3.993 \times 10^{-4}}{3x_{k}^{2} - 0.33 x_{k}}$ 1) <u>Iteration 1</u>(x_{0} = .05) $x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})} = 0.05 - \frac{(0.05)^{3} - 0.165 (0.05)^{2} + 3.993 \times 10^{-4}}{3(0.05)^{2} - 0.33 (0.05)}$ $= 0.05 - \frac{1.118 \times 10^{-4}}{-9 \times 10^{-3}} = 0.05 - (-0.01242) = 0.06242$

NR Method – Example

2) Iteration 2
$$(x_1 = .06242)$$

 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.06242 - \frac{(0.06242)^3 - 0.165(0.06242)^2 + 3.993 \times 10^{-4}}{3(0.06242)^2 - 0.33(0.06242)}$
 $= 0.06242 - \frac{-3.97781 \times 10^{-7}}{-8.90973 \times 10^{-3}} = 0.06242 - (4.4646 \times 10^{-5}) = 0.06238$
Asolute relative approximate error $|\varepsilon_{\alpha}|$ at the end of Iteration 2 is:
 $|\varepsilon_{\alpha}| = \left|\frac{x_2 - x_1}{x_2}\right| \times 100 = \left|\frac{0.06238 - 0.06242}{0.06238}\right| \times 100 = 0.0716$ %
Number of significant digits at least correct: 2.

NR Method – Example
3) Iteration 3
$$(x_2 = .06238)$$

 $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$
 $= 0.06238 - \frac{(0.06238)^3 - 0.165(0.06238)^2 + 3.993 \times 10^{-4}}{3(0.06238)^2 - 0.33(0.06238)}$
 $= 0.06238 - \frac{4.44 \times 10^{-11}}{-8.91171 \times 10^{-3}}$
 $= 0.06238 - (-4.9822 \times 10^{-9}) = 0.06238$
Absolute relative approximate error $|\varepsilon_{\alpha}|$ at the end of Iteration 3 is:
 $|\varepsilon_{\alpha}| = \left|\frac{x_2 - x_1}{x_2}\right| \times 100 = \left|\frac{0.06238 - 0.06238}{0.06238}\right| \times 100 = 0\%$
Number of significant digits at least correct: 4. $(|\varepsilon_{\alpha}| < .05\% \Rightarrow \text{stop})$.

NR Method: Limitations - Inflection Points

• Divergence at inflection points

Selection of x_0 or an iteration value of the root that is close to the inflection point of the function f(x) may start diverging away from the root in the Newton-Raphson method.

Example: Find the root of the equation: $f(x) = (x-1)^3 + 0.512 = 0$

The NR method reduces to $x_{i+1} = x_i - \frac{(x_i^3 - 1)^3 + 0.512}{3(x_i - 1)^2}$

The root starts to diverge at Iteration 6 because the previous estimate of 0.92589 is close to the inflection point of x = 1.

<u>Note</u>: After k > 12, the root converges to the root of $x^* = 0.2$.

NR Method: Limitations – Oscillations

• Oscillations near local maximum and minimum

Results obtained from the Newton-Raphson method may oscillate about the local maximum or minimum without converging on a root but converging on the local maximum or minimum.

Eventually, it may lead to division by a number close to zero and may diverge.

Example: $f(x) = x^2 + 2 = 0 \implies$ the equation has no real roots.

NR Method: Limitations – Oscillations

<u>Note</u>: Let's add a step-size, λ_k , in the updating step of x:

$$x_{k+1} = x_k - \lambda_k \frac{f'(x_k)}{f''(x_k)}$$

$$\lambda_k = (.8, .9, 1, 1.1, 1.2)$$

	Iteration	x _k	$x_i(\lambda_k)$	$f(\mathbf{x}_{\mathbf{k}})$	$f(\mathbf{x}_{i}(\lambda_{k}))$	$ \varepsilon_{\alpha} $	
	1	0.5	0.2	2.25	2.04	300	
	2	-4.9	-3.88	26.01	17.0544	104.0816	
	3	-1.68227	-1.2427	4.8300	3.5444	130.641	
	4	0.183325	0.04072	2.0336	2.0016	777.8805	
	5	-24.5376	-19.6219	604.0944	387.0207	100.1659	
	6	-9.76001	-7.787	97.2578	62.6471	101.0443	
	7	-3.7654	-2.9610	16.17825	10.7673	106.8205	
	8	-1.14275	-0.7791	3.3058	2.6070	159.108	
	9	0.893963	0.5593	2.7992	2.3128	187.1523	
	10	-1.50812	-1.094	4.2744	3.1982	137.0891	
⇒T	\Rightarrow The step-size improves the value of function!						

NR Method: Numerical Derivatives

• NR algorithm: $x_{k+1} = x_k - \lambda_k \frac{f(x_k)}{f'(x_k)}$ It requires $f'(x_k)$ and $f''(x_k)$. We can use the quotient ratio as a starting point, which delivers a 1-point approximation: $f'(x_k) = \frac{f(x_{k,2}) - f(x_{k,1})}{x_{k,2} - x_{k,1}} = \frac{f(x_k + h) - f(x_k)}{h}$ • We can use a 2-point approximation of $f'(x_k)$ (errors may cancel): $f'(x_k) = \frac{[f(x_k + h) - f(x_k)] + [f(x_k) - f(x_k - h)]}{h} = \frac{f(x_k + h) - f(x_k - h)}{h}$ • This approximation produces the *secant method formula* for x_{k+1} : $x_{k+1} = x_k - \frac{f(x_k)}{h} = x_k - \frac{f(x_k)}{h} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{h}$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{f(x_k)}{\frac{f(x_k) - f((x_{k-1}))}{x_k - x_{k-1}}} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f((x_{k-1}))}$$

with a slower convergence than NR method (1.618 relative to 2).

NR Method: Numerical Derivatives

• We also need $f''(x_k)$. A similar approximation for the second derivative $f''(x_k)$ is also done. Let's suppose we use a one-point approximation:

$$f''(x_k) = \frac{f'(x_{k,2}) - f'(x_{k,1})}{x_{k,2} - x_{k,1}} = \frac{f'(x_k + h) - f'(x_k)}{h}$$

• The approximation problems for the 2nd derivative become more serious: The approximation of the 1st derivative is used to approximate the 2nd derivative. A typical propagation of errors situation.

Example: In the previous R code, we can use:

> # num derivatives

> df1<-function(x,h=0.001){

+ return((f(x+h)-f(x))/h);

+ }

Multivariate Case - Example • N-variate NR-method iteration: $x_{k+1} = x_k - H^{-1} \nabla f(x_k)$ **Example:** $\max_{x} x_1^2 x_2^3 x_3^4 x_4^1$ s.t. $x_1 + 2x_2 + 3x_3 + x_4 = 100$ $\Rightarrow \max_{x} x_2^3 x_3^4 (100 - 2x_2 - 3x_3 - x_4)^2 x_4^1$ • Starting with $x_0 = (1, 1, 1)$ $\nabla_x f(x) = (.7337 . .9766 . .2428)$ $\nabla_{xx}^2 f(x) = \begin{pmatrix} -.5275 . .2885 . .0717 \\ .2885 . .6085 . .0954 \\ .0717 . .0954 . .2244 \end{pmatrix}$ $x_{t+1} = (1 . 1 . 1) - \nabla_x f(x) (\nabla_{xx}^2 f(x))^{-1} = (5.3559 . 5.3479 . 5.3226)$ • Solution $\mathbf{x}^* = (15.000593 . 13.333244 . 9.998452)$

Multivariate Case – Example in R library(numDeriv) f <- function(z) {y <- -((100-2*z[1]-3*z[2]-z[3])^.2*z[1]^.3*z[2]^.4*z[3]^.1) return(y) } if (abs(f(x.new) - f(x)) < tol) break x <- c(1,1,1) $x \leq -x new$ # numerical gradient & hessian } # df1 <- grad(f, x, method="Richardson")</pre> return(p[1:(i-1),]) # d2f1 <- hessian(f, x, method="complex")</pre> } max_ite = 10; tol=.0001 NR_num(f,tol,x,max_ite) # NR [,1] [,2] [,3] [,4] NR_num <- function(f,tol,x,N) { [1,] 5.355917 5.347583 5.322583 -8.890549 i <- 1; x.new <- x [2,] 16.499515 16.238509 15.464327 -11.441345 p <- matrix(1,nrow=N,ncol=4) [3,] 18.145527 15.038933 12.965833 -12.877825 while(i<N) { [4,] 16.732599 15.097816 10.829738 -13.982991 df1 <- grad(f, x, method="Richardson") [5,] 15.764754 13.970439 10.555647 -14.473775 d2f1 <- hessian(f, x, method="complex") [6,] 15.118464 13.442423 10.074552 -14.553002 x.new <- x - solve(d2f1)%*%df1 [7,] 15.002920 13.335869 10.002014 -14.554887 p[i,] <- rbind(x.new,f(x.new)) [8,] 15.000002 13.333335 10.000001 -14.554888 i <- i + 1

Multivariate Case – Example in R

<u>Note</u>: $H(x_k)^{-1}$ can create problems. If we change the calculation method to the *Richardson extrapolation*, with $x_0 = (1,1,1)$, we get a NaN result for x.new after 3 iterations $\Rightarrow H(x_k)^{-1}$ is not pd! > d2f1 <- hessian(f, x, method="Richardson")

But, if we use the Richardson extrapolation, with x_0 =(2,2,2), we get [,1] [,2] [,3] [,4] [1,] 9.51400 9.480667 9.380667 -12.83697 [2,] 16.24599 15.461114 13.168466 -13.52119 [3,] 16.42885 14.464135 10.247566 -14.32000 [4,] 15.30370 13.624640 10.268205 -14.54030 [5,] 15.02318 13.353077 10.012483 -14.55482 [6,] 15.00010 13.333421 10.000072 -14.55489

• Lots of computational tricks are devoted to deal with these situations.

Multivariate Case – Computational Drawbacks • Basic N-variate NR-method iteration: $x_{k+1} = x_k - H(x_k)^{-1} \nabla f(x_k)$ As illustrated before, $H(x_k)^{-1}$ can be difficult to compute. In general, the inverse of H is time consuming. (In addition, in the presence of many parameters, evaluating H can be impractical or costly.) • In the basic algorithm, it is better not to compute $H(x_k)^{-1}$. Instead, solve $H(x_k) (x_{k+1} - x_k) = -\nabla f(x_k)$ • Each iteration requires: • Evaluation of $\nabla f(x_k)$ • Computation of $H(x_k)^{-1}$ • Solution of a linear system of equations, with coefficient matrix $H(x_k)$ and RHS matrix $-\nabla f(x_k)$.

Multivariate Case – H Matrix

• In practice, $H(x_k)$ can be difficult to calculate. Many times, $H(x_k)$ is just not pd. There are many tricks to deal with this situation.

• A popular trick is to add a matrix, E_k (usually, δI), where δ is a constant, that ensures $H(x_k)$ is pd. That is,

$$H(\boldsymbol{x}_k) \approx \nabla^2 f(\boldsymbol{x}_k) + \boldsymbol{E}_k.$$

• The algorithm can be structured to take a different step when $H(x_k)$ is not pd, for example, the steepest descent. That is, $H(x_k) \approx I$.

<u>Note</u>: Before using the Hessian to calculate standard errors, make sure it is pd. This can be done by computing the eigenvalues and checking they are all positive.

Multivariate Case – H Matrix

• NR method is computationally expensive. The structure of the NR algorithm does not help (there is no re-use of data from one iteration to the other).

• To avoid computing the Hessian –i.e., second derivatives-, we'll approximate. Theory-based approximations:

- Gauss-Newton:
$$H(x_k) = \left| E\left[\frac{\partial^2 L}{\partial x \partial x'}\right] \right|_{x_k} = \left| \left[\frac{\partial f(x)'}{\partial x} \frac{\partial f(x)}{\partial x}\right] \right|_{x_k}$$

- BHHH: $H(x_k) = -\left| \sum_{t=1}^T \frac{\partial L_t}{\partial x} \frac{\partial L_t}{\partial x'} \right] \right|_{x_k}$

<u>Note</u>: In the case we are doing MLE, for each algorithm, $-H(x_k)$ can serve as an estimator for the asymptotic covariance matrix for the maximum likelihood estimator of x_k .

Modified Newton Methods

The Modified Newton method for finding an extreme point is

 $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{S}_k \nabla \mathbf{y}(\mathbf{x}_k)$

Note that:

if $S_k = I$, then we have the method of steepest descent if $S_k = H^{-1}(x_k)$ and $\alpha = 1$, then we have the "pure" Newton method

if $y(\mathbf{x}) = 0.5 \mathbf{x}^{T} \mathbf{Q} \mathbf{x} - \mathbf{b}^{T} \mathbf{x}$, then $\mathbf{S}_{k} = \mathbf{H}^{-1}(\mathbf{x}_{k}) = \mathbf{Q}$ (quadratic case)

Classical Modified Newton's Method:

 $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{H}^{-1}(\mathbf{x}_0) \nabla \mathbf{y}(\mathbf{x}_k)$

Note that the Hessian is only evaluated at the initial point \mathbf{x}_0 .

Quasi-Newton Methods

• Central idea underlying *quasi-Newton methods* (a variable metric method) is to use an approximation of the inverse Hessian (H^{-1}) .

• By using approximate partial derivatives, there is a slightly slower convergence resulting from such an approximation, but there is an improved efficiency in each iteration.

• <u>Idea</u>: Since $H(x_k)$ consists of the partial derivatives evaluated at an element of a convergent sequence, intuitively Hessian matrices from consecutive iterations are "close" to one another.

• Then, it should be possible to cheaply update an approximate $H(x_k)$ from one iteration to the other. With an NxN matrix **D**:

 $D = A + A^{u}$, A^{u} : update, usually of the form uv^{T} .

Quasi-Newton Methods

• Or $\boldsymbol{D}_{k+1} = \boldsymbol{A}_k + \boldsymbol{A}_k^{u}$, \boldsymbol{A}_k^{u} : update, usually of the form $\mathbf{u}\mathbf{v}^T$,

where **u** and **v** are Nx1 given vectors in \mathbb{R}^n . (This modification of **A** to obtain **D** is called a *rank-one update*, since \mathbf{uv}^T has rank one.)

• In quasi-Newton methods, instead of the true Hessian, an initial matrix H_0 is chosen (usually, $H_0 = I$), which is subsequently updated by an update formula:

 $H_{k+1} = H_k + H_k^u$, where H_k^u is the update matrix.

• Since in the NR method, we really care about H^1 , not H. The updating is done for H^1 . Let $\mathbf{B} = H^1$; then the updating formula for H^1 is also of the form:

$$\mathbf{B}_{k+1} = \mathbf{B}_k + \mathbf{B}_k^{u}$$

Quasi-Newton Methods – Conjugate Gradient

• Conjugate Method for Solving **Ax** = **b**

- Two non-zero vectors \mathbf{u} and \mathbf{v} are conjugate (with respect to \mathbf{A}) if $\mathbf{u}^{\mathrm{T}}\mathbf{A}\mathbf{v} = 0$ ($\mathbf{A}=\mathbf{H}$ symmetric and $\mathrm{pd} \Rightarrow \langle \mathbf{u}, \mathbf{A}\mathbf{v} \rangle = \mathbf{u}^{\mathrm{T}}\mathbf{A}\mathbf{v}$).

- Suppose we want to solve Ax=b. We have *n* mutually conjugate directions, **P** (a basis of R^n). Then, $x^* = \Sigma \alpha_i p_i$.

- Thus, $\mathbf{b} = \mathbf{A}\mathbf{x}^* = \Sigma \alpha_i \mathbf{A} \mathbf{p}_i$.

- For any $\mathbf{p}_{\mathrm{K}} \in \mathbf{P}$,

$$\mathbf{p}_{\mathrm{K}}^{\mathrm{T}} \mathbf{b} = \mathbf{p}_{\mathrm{K}}^{\mathrm{T}} \mathbf{A} \mathbf{x}^{*} = \Sigma \alpha_{\mathrm{i}} \mathbf{p}_{\mathrm{K}}^{\mathrm{T}} \mathbf{A} \mathbf{p}_{\mathrm{i}} = \boldsymbol{\alpha}_{\mathrm{K}} \mathbf{p}_{\mathrm{K}}^{\mathrm{T}} \mathbf{A} \mathbf{p}_{\mathrm{K}}$$

Or

$$\boldsymbol{\alpha}_{\mathrm{K}} = \boldsymbol{p}_{\mathrm{K}}^{\mathrm{T}} \, \boldsymbol{b} \, / \, \boldsymbol{p}_{\mathrm{K}}^{\mathrm{T}} \, \boldsymbol{A} \boldsymbol{p}_{\mathrm{K}}$$

• Method for solving Ax = b: Find a sequence of *n* conjugate directions, and then compute the coefficients α_{K} .

Quasi-Newton Methods – **Conjugate Gradient** • Conjugate Gradient Methods - Conjugate gradient methods "build" up information on H. - From our standard starting point, we take a Taylor series expansion around the point $x_k + s_k$: $\nabla_x f(x_k + s_k) = \nabla_x f(x_k) + \nabla_{xx}^2 f(x_k) s_k$ $\nabla_x f(x_k + s_k) - \nabla_x f(x_k) = H(x_k) s_k$ $s_k' [\nabla_x f(x_k + s_k) - \nabla_x f(x_k)] = s_k' H(x_k) s_k$ Or $\mathbf{s_K}^T \mathbf{Q_K} = \mathbf{s_K}^T \mathbf{H}(\mathbf{x}_k) \mathbf{s_K}$ Note: $\mathbf{H}(\mathbf{x}_k)$, scaled by s_k , can be approximated by the change in the gradient:

$$q_k = \nabla f(\boldsymbol{x}_{k+1}) - \nabla f(\boldsymbol{x}_k)$$

Hessian Matrix Updates

• Define $g_k = \nabla f(x_k)$ $p_k = x_{k+1} - x_k$ and $q_k = g_{k+1} - g_k$ Then, $q_k = g_{k+1} - g_k \approx H(x_k) p_k$ (secant condition). If the Hessian is constant: $H(x_k) = H \implies q_k = H p_k$ If H is constant, then the following condition would hold as well $H_k^{-1} q_i = p_i \qquad 0 \le i \le k$ This is called the *quasi-Newton condition* (also, *inverse secant condition*). Let $\mathbf{B} = H^1$, then the quasi-Newton condition becomes: $p_i = \mathbf{B}_k q_i \qquad 0 \le i \le k.$

Update Formulas: Rank One

• Simple approach: Add new information to the current \boldsymbol{B}_k . For example, using a *rank one* update: $\boldsymbol{B}_k^u = \boldsymbol{B}_{k+1} - \boldsymbol{B}_k = \mathbf{u}\mathbf{v}^{\mathrm{T}}$

$$\Rightarrow \mathbf{p}_{i} = (\mathbf{B}_{k} + \mathbf{u}\mathbf{v}^{T}) \mathbf{q}_{i}$$

$$\Rightarrow \mathbf{p}_{i} - \mathbf{B}_{k} \mathbf{q}_{i} = \mathbf{u}\mathbf{v}^{T} \mathbf{q}_{i}$$

$$\Rightarrow \mathbf{u} = [1/(\mathbf{v}^{T}\mathbf{q}_{i})] (\mathbf{p}_{i} - \mathbf{B}_{k} \mathbf{q}_{i})$$

$$\Rightarrow \mathbf{B}_{k+1} = \mathbf{B}_{k} + [1/(\mathbf{v}^{T}\mathbf{q}_{i})] (\mathbf{p}_{i} - \mathbf{B}_{k} \mathbf{q}_{i})\mathbf{v}^{T}$$

Set $\mathbf{v}^{T} = (\mathbf{p}_{i} - \mathbf{B}_{k}\mathbf{q}_{i})$

$$\Rightarrow \mathbf{B}_{k+1} = \mathbf{B}_{k} + [1/((\mathbf{p}_{i} - \mathbf{B}_{k}\mathbf{q}_{i})^{T}\mathbf{q}_{i})] (\mathbf{p}_{i} - \mathbf{B}_{k}\mathbf{q}_{i})(\mathbf{p}_{i} - \mathbf{B}_{k}\mathbf{q}_{i})^{T}$$

• No systems of linear equations need to be solved during an

• No systems of linear equations need to be solved during an iteration; only matrix-vector multiplications are required, which are computationally simpler.

Davidon-Fletcher-Powel (DFP) Formula

• Earliest (and one of the most clever) schemes for constructing the inverse Hessian, H^1 , was originally proposed by Davidon (1959) and later developed by Fletcher and Powell (1963).

• It has the nice property that, for a quadratic objective, it simultaneously generates the directions of the conjugate gradient method while constructing H^1 (or **B**).

- Sketch of derivation:
- Rank two update for **B**: $\mathbf{B}_{k+1} = \mathbf{B}_k + a \mathbf{u}\mathbf{u}^{\mathrm{T}} + b \mathbf{v}\mathbf{v}^{\mathrm{T}}$
- Recall \mathbf{B}_{k+1} must satisfy the Inverse Secant Condition: $\mathbf{B}_{k+1} \mathbf{q}_k = \mathbf{p}_k$
- Post-multiply (*) by \mathbf{q}_k : $\mathbf{p}_k \mathbf{B}_k \mathbf{q}_k = a \mathbf{u} \mathbf{u}^T \mathbf{q}_k + b \mathbf{v} \mathbf{v}^T \mathbf{q}_k$ (=0!)

- The RHS must be a linear combination of \mathbf{p}_k and $\mathbf{B}_k \mathbf{q}_k$, and it is already a linear combination of \mathbf{u} and \mathbf{v} . Set $\mathbf{u} = \mathbf{p}_k \& \mathbf{v} = \mathbf{B}_k \mathbf{q}_k$.

- This makes
$$a \mathbf{u}^{\mathrm{T}} \mathbf{q}_{\mathrm{k}} = 1$$
, & $b \mathbf{v}^{\mathrm{T}} \mathbf{q}_{\mathrm{k}} = -1$

- DFP update formula:

 $\mathbf{B}_{k+1} = \mathbf{B}_k + \frac{\mathbf{p}_k \mathbf{p}_k T}{\mathbf{p}_k T \mathbf{q}_k} - \frac{\mathbf{B}_k \mathbf{q}_k \mathbf{q}_k T \mathbf{B}_k}{\mathbf{q}_k T \mathbf{B}_k \mathbf{q}_k}$

(*)

DFP Formula - Remarks

• It can be shown that if \mathbf{p}_k is a descent direction, then each \mathbf{B}_k is pd.

• The DFP Method benefits from picking an arbitrary pd \mathbf{B}_0 , instead of evaluating $H(\mathbf{x}_0)^{-1}$, but in this case the benefit is greater because computing an inverse matrix is very expensive.

• If you select $\mathbf{B}_0 = \mathbf{I}$, we use the steepest descent direction.

• Once \mathbf{B}_k is computed, the DFP Method computes $\mathbf{x}_{k+1} = \mathbf{x}_k - \lambda_k \mathbf{B}_k \nabla f(\mathbf{x}_k)$

where $\lambda_k > 0$ is chosen to make sure $f(\boldsymbol{x}_{k+1}) < f(\boldsymbol{x}_k)$ (use an optimal search or line search.)

Broyden-Fletcher-Goldfarb-Shanno Formula

• Remember secant condition: $\mathbf{q}_i = \mathbf{H}_{k+1} \mathbf{p}_i$ and $\mathbf{B}^{-1}_{k+1} \mathbf{q}_i = \mathbf{p}_i$ $0 \le i \le k$. Both equations have exactly the same form, except that \mathbf{q}_i and \mathbf{p}_i are interchanged and \mathbf{H} is replaced by $\mathbf{B} (\mathbf{B}_k = \mathbf{H}_k)$ (or vice versa).

<u>Observation</u>: Any update formula for **B** can be transformed into a corresponding *complimentary formula* for **H** by interchanging the roles of **B** and **H** and of **q** and **p**. The reverse is also true.

• BFGS formula update of \mathbf{H}_k : Take complimentary formula of DFP:

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \frac{\mathbf{q}_k \mathbf{q}_k^{\mathrm{T}}}{\mathbf{q}_k^{\mathrm{T}} \mathbf{p}_k} - \frac{\mathbf{H}_k \mathbf{p}_k \mathbf{p}_k^{\mathrm{T}} \mathbf{H}_k}{\mathbf{p}_k^{\mathrm{T}} \mathbf{H}_k \mathbf{p}_k}$$

By taking the inverse, the BFGS update formula for \mathbf{B}_{k+1} is obtained:

 $\mathbf{B}_{k+1} = \mathbf{B}_k + \ (\frac{1 + \mathbf{q}_k^T \mathbf{B}_k \mathbf{q}_k}{\mathbf{q}_k^T \mathbf{p}_k} \) \ \frac{\mathbf{p}_k \mathbf{p}_k^T}{\mathbf{p}_k^T \mathbf{q}_k} \ - \ \frac{\mathbf{p}_k \mathbf{q}_k^T \mathbf{B}_k + \mathbf{B}_k \mathbf{q}_k \mathbf{p}_k^T}{\mathbf{q}_k^T \mathbf{p}_k}$

Some Comments on Broyden Methods

• BFGS formula is more complicated than DFP, but straightforward to apply.

- Under BFGS, if \mathbf{B}_k is psd, then \mathbf{B}_{k+1} is also psd.
- BFGS update formula can be used exactly like DFP formula.

• Numerical experiments have shown that BFGS formula's performance is superior over DFP formula.

• Both DFP and BFGS updates have symmetric rank two corrections that are constructed from the vectors \mathbf{p}_k and $\mathbf{B}_k \mathbf{q}_k$. Weighted combinations of these formulae will therefore also have the same properties.

• This observation leads to a whole collection of updates, know as the Broyden family, defined by:

$$\mathbf{B}^{\mathrm{f}} = (1 - w) \mathbf{B}^{\mathrm{DFP}} + w \mathbf{B}^{\mathrm{BFGS}}$$

where *w* is a parameter that may take any real value.

Quasi-Newton Algorithm

- 1. Input x_0 , \mathbf{B}_0 (say, I), termination criteria.
- 2. For any k, set $\mathbf{S}_k = -\mathbf{B}_k \mathbf{g}_k$.

3. Compute a step size λ (e.g., by line search on $f(x_k + \lambda \mathbf{S}_k)$) and

set $x_{k+1} = x_k + \lambda \mathbf{S}_k$.

- 4. Compute the update matrix \mathbf{B}^{u}_{k} according to a given formula (say, DFP or BFGS) using the values $q_{k} = g_{k+1} g_{k}$, $p_{k} = x_{k+1} x_{k}$, and B_{k} .
- 5. Set $\mathbf{B}_{k+1} = \mathbf{B}_k + \mathbf{B}_k^u$.
- 6. Continue with next k until termination criteria are satisfied.

<u>Note</u>: You do have to calculate the vector of first order derivatives g for each iteration.

Some Closing Remarks

• Both DFP and BFGS methods have theoretical properties that guarantee superlinear (fast) convergence rate and global convergence under certain conditions.

• However, both methods could fail for general nonlinear problems. In particular:

- DFP is highly sensitive to inaccuracies in line searches.

– Both methods can get stuck on a saddle-point. In NR method, a saddle-point can be detected during modifications of the (true) Hessian. Therefore, search around the final point when using quasi-Newton methods.

- Update of Hessian becomes "corrupted" by round-off and other inaccuracies.

• All kind of "tricks" such as scaling and preconditioning exist to boost the performance of the methods.

Iterative approach

• In economics and finance, many maximization problems involve, sums of squares:

$$\arg \min_{\beta} \left\{ S(\beta) = \sum_{i} \left[y_{i} - f_{i}(x;\beta) \right]^{2} = \sum_{i} \varepsilon_{i}^{2} \right\}$$

where x is a known data set and β is a set of unknown parameters.

• The above problem can be solved by many nonlinear optimization algorithms:

- Steepest descent
- Newton-Raphson
- Gauss-Newton

Gauss-Newton Method • Gauss-Newton takes advantage of the quadratic nature of the problem. Algorithm: Step 1: Initialize $\beta = \beta_0$ Step 2: Update the parameter β . Determine optimal update, $\Delta\beta$. $\arg \min_{\Delta\beta} \sum_{i} [y_i - f_i(\beta_k + \Delta\beta)]^2$ $\approx \arg \min_{\Delta\beta} \sum_{i} [y_i - (f_i(\beta_k) + \frac{\partial f_i}{\partial \beta_k} \Delta\beta)]^2$ Taylor series expansion $= \arg \min_{\Delta\beta} \left\{ \sum_{i} [(y_i - f_i(\beta_k)) - \frac{\partial f_i}{\partial \beta_k} \Delta\beta]^2 = \sum_{i} [\varepsilon_i(\beta_k) - \frac{\partial f_i}{\partial \beta_k} \Delta\beta]^2 \right\}$ Note: This is a quadratic function of $\Delta\beta$. Straightforward solution.

$\begin{aligned} & \text{Gauss-Newton Method} \\ & \arg \min_{\Delta\beta} \left\{ \sum_{i} \left[\varepsilon_{i}(\beta_{k}) - \frac{\partial f_{i}}{\partial \beta_{k}} \Delta \beta \right]^{2} = (\varepsilon - \mathbf{J}\Delta \beta)^{T} (\varepsilon - \mathbf{J}\Delta \beta) \right\} \\ & \text{where } \mathbf{J} \text{ is the Jacobian of } f(\boldsymbol{\beta}). \text{ Setting the gradient equal to zero:} \\ & \Delta \beta = (\mathbf{J}^{T} \mathbf{J})^{-1} \mathbf{J}^{T} \varepsilon \qquad \Rightarrow \text{LS solution!} \end{aligned}$ • Notice the setting looks like the familiar linear model: $\begin{aligned} & \left| \frac{\partial f_{1}}{\partial \beta_{1}} \quad \frac{\partial f_{1}}{\partial \beta_{2}} \quad \cdots \quad \frac{\partial f_{1}}{\partial \beta_{K}} \right| \\ & \left| \frac{\partial f_{2}}{\partial \beta_{1}} \quad \frac{\partial f_{2}}{\partial \beta_{2}} \quad \cdots \quad \frac{\partial f_{2}}{\partial \beta_{K}} \right| \cdot \left| \frac{\Delta \beta_{1}}{\Delta \beta_{2}} \right| = \left| \varepsilon_{1} \\ & \varepsilon_{2} \\ & \varepsilon_{1} \\ & \varepsilon_{1} \\ & \varepsilon_{2} \\ & \varepsilon_{1} \\ & \varepsilon_{1} \\ & \varepsilon_{2} \\ & \varepsilon_{1} \\ & \varepsilon_{1} \\ & \varepsilon_{2} \\ & \varepsilon_{1} \\ & \varepsilon_{1} \\ & \varepsilon_{2} \\ & \varepsilon_$

Gauss-Newton Method

• From the LS solution, the updating step involves an OLS regression:

 $\boldsymbol{\beta}_{k+1} = \boldsymbol{\beta}_k + (\boldsymbol{J}^T \boldsymbol{J})^{\text{--}1} \boldsymbol{J}^T \boldsymbol{\epsilon}$

A step-size, λ_k , can be easily added:

$$\boldsymbol{\beta}_{k+1} = \boldsymbol{\beta}_k + \lambda_k (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \boldsymbol{\epsilon}$$

<u>Note</u>: The Guass-Newton method can be derived from the Newton-Raphson's method.

N-R's updating step: $\boldsymbol{\beta}_{k+1} = \boldsymbol{\beta}_k - \lambda_k \boldsymbol{H}^{\dagger} \nabla f (\boldsymbol{\beta}_k)$

where $H \approx 2(\mathbf{J}^{\mathrm{T}} \mathbf{J})$ –i.e., second derivatives are ignored

 $\nabla f(\mathbf{\beta}_k) = 2 \mathbf{J}^{\mathrm{T}} \mathbf{\epsilon}$

Gauss-Newton Method - Application

• Non-Linear Least Squares (NLLS) framework: $y_{i} = h(x_{i}; \boldsymbol{\beta}) + \boldsymbol{\epsilon}_{i}$ - Minimization problem: $\arg \min_{\boldsymbol{\beta}} \left\{ S(\boldsymbol{\beta}) = \sum_{i} [y_{i} - h(x_{i}; \boldsymbol{\beta})]^{2} = \sum_{i} {\varepsilon_{i}}^{2} \right\}$ - Iteration: $\mathbf{b}_{\text{NLLS},k+1} = \mathbf{b}_{\text{NLLS},k} + \lambda_{k} (\mathbf{J}^{\text{T}} \mathbf{J})^{-1} \mathbf{J}^{\text{T}} \mathbf{\epsilon}$ where $\mathbf{J}^{\text{T}} \mathbf{\epsilon} = -2 \sum_{i} \delta h(x_{i}; \boldsymbol{\beta}) / \delta \boldsymbol{\beta}_{k} \mathbf{\epsilon}_{i}$ $(\mathbf{J}^{\text{T}} \mathbf{J})^{-1} = -2 \sum_{i} \delta h(x_{i}; \boldsymbol{\beta}) / \delta \boldsymbol{\beta}_{k} \mathbf{x} \delta h(x_{i}; \boldsymbol{\beta}) / \delta \boldsymbol{\beta}_{k}$ Note: $(\mathbf{J}^{\text{T}} \mathbf{J})^{-1}$ ignored the term $\{-\delta^{2} h(x_{i}; \boldsymbol{\beta}) / \delta \boldsymbol{\beta}_{k} \delta \boldsymbol{\beta}_{k}^{T} \mathbf{\epsilon}_{i}\}$. Or, $\mathbf{b}_{\text{NLLS},k+1} = \mathbf{b}_{\text{NLLS},k} + \lambda_{k} (\mathbf{x}^{0\text{T}} \mathbf{x}^{0})^{-1} \mathbf{x}^{0\text{T}} \mathbf{\epsilon}^{0} - \mathbf{x}^{0} = \mathbf{J}(\mathbf{b}_{\text{NLLS},k})$

General Purpose Optimization Routines in R

- The most popular optimizers are optim and nlm:
- *optim* gives you a choice of different algorithms including Newton, quasi-Newton, conjugate gradient, Nelder-Mead and simulated annealing. The last two do not need gradient information, but tend to be slower. (The option method="L-BFGS-B" allows for parameter constraints.)
- *nlm* uses a Newton algorithm. This can be fast, but if $f(\mathbf{x}_k)$ is far from quadratic, it can be slow or take you to a bad solution. (*nlminb* can be used in the presence of parameter constraints).
- Both *optim* and *nlm* have an option to calculate the Hessian, which is needed to calculate standard errors.