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Numerical Optimization

© RS 2023 (for private use, not to be posted/shared online).

• Let 𝑓ሺ. ሻ be a function such that

where b is a vector of unknown parameters. In many cases, b will not 
have a closed form solution. We will estimate b by minimizing some 
loss function.

• Popular loss function: A sum of squares. 

• Let {𝑦௜, 𝑥௜} be a set of measurements/constraints. That is, we fit 
𝑓ሺ. ሻ, in general a nice smooth function, to the data by solving:
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• When 𝑓ሺ. ሻ is twice differentiable, a local minima is characterized 
by:

1. f (bmin) = 0 (f.o.c.)

2. z’ H(bmin) z  ൒ 0 (s.o.c.)

Usual approach: Solve f (bmin) = 0 for bmin

Check H(bmin) is positive definitive.

• Sometimes, an analytical solution to  𝑓(bmin) = 0 is not possible or 
hard to find. 

• For these situations, a numerical solution is needed.

Notation: 𝑓ሺ. ሻ: gradient (of a scalar field). 
: Vector differential operator (“del”).

Finding a Minimum - Review

Finding a Univariate Minimum

• Finding an analytic minimum of a simple univariate sometimes is
easy given the usual f.o.c. and s.o.c.

Example: Quadratic Function
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Analytical solution (from f.o.c.): x* = 0.4.

The function is globally convex  x*=2/5 is a global minimum.

Note: To find x*, we find the zeroes of the first derivative function.
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Finding a Univariate Minimum

• Minimization in R:

We can use the popular R optimizer, optim, to find the minimum of
U(x) –in this case, not very interesting application!

Example: Code in R
> f <- function(x) (5*x^2-4*x+2)

> optim(10, f, method="Brent", lower=-10, upper=10)$par

[1] 0.4

> curve(f, from=-5, to=5)

• Straightforward transformations add little additional complexity:
245 2
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• Again, we get an analytical solution from the f.o.c.  x*=2/5.

Since U(.) is globally convex, x* = 2/5 is a global minimum.

• Usual Problems: Discontinuities, Unboundedness.

Finding a Univariate Minimum
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• Be careful of discontinuities. Need to restrict range for x.

Example:
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Finding a Univariate Minimum - Discontinuity
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• This function has a discontinuity at some point in its range. If we
restrict the search to points where x >-10, then the function is
defined at all points

• After restricting the range of x, we find an analytical solution as
usual –i.e., by finding the zeroes of f ′(x).

Finding a Univariate Minimum - Discontinuity
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Finding a Univariate Minimum - Unbounded
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Finding a Univariate Minimum – No analytical 
Solution

• So far, we have presented examples were an analytical solution or
close form solution was easy to obtain from the f.o.c.

• In many situations, finding an analytical solution is not possible or
impractical. For example:

• In these situations, we rely on numerical methods to find a solutions.
Most popular numerical methods are based on iterative methods.
These methods provide an approximation to the exact solution, x*.

• We will concentrate on the details of these iterative methods.
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Example: We want to minimize f(x) = x6 – 4 x5 – 2 x3+ 2 x + 40.

We use the R flexible minimizer, Optim.

• Optim offers many choices to do the iterative optimization. In our
example, we used the method Brent, a mixture of a bisection search
and a secant method. We will discuss the details of both methods in
the next slides.

> curve(f, from=-3, to=5)
> f  <- function(x) (x^6-4*x^5-2*x^3+2*x+40)
> optim(0.5, f, method="Brent", lower=-10, 
upper=10)$par
[1] 3.416556
> curve(f, from=-3, to=5)

We get the solution x*= 3.416556

Numerical solutions: Iterative algorithm

Numerical solutions: Iterative algorithm

• Old method: There is a Babylonian method.

• Iterative algorithms provide a sequence of approximations {𝑥଴, 𝑥ଵ, 
…, 𝑥௡} that  in the limit converge to the exact solution, 𝑥*.

• Computing 𝑥௞ାଵ from 𝑥௞ is called one iteration of the algorithm.

• Each iteration typically requires one evaluation of the objective 
function f (or f and f ′) evaluated at 𝑥௞.

• An algorithm needs a convergence criterion (or, more general, a stopping 
criterion). For example:  Stop algorithm if  

|f(𝑥௞ାଵ) - f(𝑥௞)| < pre-specified tolerance
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Iterative algorithm

• Goal of algorithm:
Produce a sequence {x}={𝑥଴, 𝑥ଵ, …, 𝑥௡} such that 

f(𝑥଴) > f(𝑥ଵ) > …> f(𝑥௡)

• Algorithm: Sketch
– Start at an initial position 𝑥଴, usually an initial guess.
– Generate a sequence {x}, which hopefully convergence to 𝑥*. 
– {x} is generated according to an iteration function g, such that 

𝑥௞ାଵ = g(𝑥௞).

• Algorithm: Speed

The speed of the algorithm depends on:

– the cost (in flops) of evaluating f(𝑥) (and, likely, f ′(𝑥)).

– the number of iterations.

Iterative algorithm

• Characteristics of algorithms:

- We need to provide a subroutine to compute f and, likely, f ′ at 𝑥.

- The evaluation of  f and f ′ can be expensive. For example, it may 
require a simulation or numerical integration.

• Limitations of algorithms

- There is no algorithm that guarantees finding all solutions.

- Most algorithms find at most one (local) solution.

- Need prior information from the user: an initial guess, an interval 
that contains a zero, etc.
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Speed of algorithm

• Suppose 𝑥௞ →  𝑥* with 𝑓ሺ𝑥*ሻ = 0  –i.e., we find the roots of f.

Q:  How fast does 𝑥௞ go to 𝑥*?

• Error after k iterations: 

- absolute error: |𝑥௞ - 𝑥*|

- relative error: |𝑥௞ - 𝑥*|/|𝑥*| (defined if 𝑥*് 0)

• The number of correct digits is given by: 

-log10 [|𝑥௞ - 𝑥*|/|𝑥*|]

(when it is well defined –i.e., 𝑥*് 0 and [|𝑥௞ - 𝑥*|/|𝑥*|] ൑ 1).

Speed of algorithm – Rates of Convergence

• Rates of convergence of a sequence 𝑥௞ with limit 𝑥*. 

- Linear convergence: There exists a 𝑐 ∈ (0, 1) such that

|𝑥௞ାଵ  െ 𝑥*| ≤ 𝑐 |𝑥௞ - 𝑥*| for sufficiently large k.

- R-linear convergence: There exists 𝑐 ∈ (0, 1), M > 0 such that

|𝑥௞ - 𝑥*| ≤ M 𝑐k for sufficiently large k.

- Quadratic convergence: There exists a 𝑐 > 0 such that

|𝑥௞ାଵ  െ 𝑥*| ≤ 𝑐 |𝑥௞ - 𝑥*|2 for sufficiently large k.

- Superlinear convergence: There exists a sequence 𝑐௞, with  𝑐௞ → 0 s.t.

|𝑥௞ାଵ  െ 𝑥*| ≤ 𝑐௞ |𝑥௞ - 𝑥*| for sufficiently large k.
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Speed of algorithm – Interpretation

• Assume 𝑥* ് 0. 

Let 𝑟௞ = -log10 [|𝑥௞ - 𝑥*|/|𝑥*|] – 𝑟௞ ≈ the number of 
correct digits at iteration 𝑘.

- Linear convergence: We gain roughly −log10 c correct digits per step:

𝑟௞ାଵ ≥ 𝑟௞− log10 𝑐

- Quadratic convergence: For sufficiently large 𝑘, the number of correct 
digits roughly doubles in one step:

𝑟௞ାଵ ≥ −log10(𝑐 | 𝑥*|) + 2 r𝑟௞

- Superlinear convergence: Number of correct digits gained per step

increases with k:

𝑟௞ାଵ െ 𝑟௞→ ∞

Speed of algorithm – Examples

• Let 𝑥* = 1. 

The number of correct digits at iteration 𝑘, 𝑟௞, can be approximated 
by: 𝑟௞ = -log10 [|𝑥௞ െ 𝑥*|/|𝑥*|]

• We define 3 sequences for xk with different types of convergence:

1.  Linear convergence: 𝑥௞ାଵ = 1 + 0.5𝑘

2. Quadratic convergence: 𝑥௞ାଵ= 1 + (0.52)𝑘

3. Superlinear convergence: 𝑥௞ାଵ = 1 + (1/(𝑘+1))𝑘

• For each sequence we calculate 𝑥௞ for 𝑘 = 0, 1,..., 10.
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Speed of algorithm – Examples

• Sequence 1: we gain roughly -log10(𝑐) = 0.3 correct digits per step

|𝑥௞ାଵ െ 1|/|𝑥௞ – 1|= 2k/2k+1 = 0.5 ≤ 𝑐 (𝑐 =0.5)

• Sequence 2: 𝑟௞ almost doubles at each step

• Sequence 3: 𝑟௞ per step increases slowly but it gets up to speed later. 
|𝑥௞ାଵ െ 1|/|𝑥௞ – 1| = (k+ 1)k/ (k+2)k+1 → 0

Convergence Criteria 

• An iterative algorithm needs a stopping rule. Ideally, it is stopped 
because the solution is sufficiently accurate.

• Several rules to check for accuracy:

– X vector criterion: |𝑥௞ାଵ – 𝑥௞ | < tolerance
– Function criterion: |𝑓ሺ𝑥௞ାଵሻ  െ 𝑓ሺ𝑥௞ሻ| < tolerance

– Gradient criterion: |∇𝑓ሺ𝑥௞ାଵሻ| < tolerance

• If none of the convergence criteria is met, the algorithm will stop by 
hitting the stated maximum number of iterations. This is not a 
convergence!

• If a very large number of iterations is allowed, you may want to stop 
the algorithm if the solution diverges and or cycles.
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• Many methods rely on the first derivative: 𝑓′ሺ𝑥ሻ.  
Example: Newton’s method’s requires 𝑓′ሺ𝑥௞ሻ and 𝑓′′ሺ𝑥௞ሻ 
Newton’s method algorithm: 𝑥௞ାଵ = 𝑥௞ – 𝜆௞ 𝑓′ሺ𝑥௞ሻ / 𝑓′′ሺ𝑥௞ሻ

• It is best to use the analytical expression for 𝑓′ሺ𝑥ሻ.  But, it may not 
be easy to calculate and/or expensive to evaluate. In these situations it 
may be appropriate to approximate 𝑓′ሺ𝑥ሻ numerically by using the 
difference quotient: 

• Then, pick a small h and compute f ’ at xk using:
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Numerical Derivatives

• Approximation errors will occur. For example, using the traditional 
definition, we have that the secant line differs from the slope of the 
tangent line by an amount that is approximately proportional to h.  

Numerical Derivatives – Graphical View
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•  We can approximate 𝑓′ሺ𝑥௞ሻ with another two-point approximation: 

• Errors may cancel out on both sides. For small values of h this is a 
more accurate approximation to the tangent line than the one-sided 
estimation. 

• Q: What is an appropriate h?

Floating point considerations (and cancellation errors) point out to 
choose an h that’s not too small. On the other hand, if h is too large, 
the first derivative will be a secant line. A popular choice is sqrt(ε)x, 
where ε is of the order 10-16. If working with returns (in %), 
h=.000001 is fine.
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Numerical Derivatives – 2-point Approximation

Source of errors – Computation

• We use a computer to execute iterative algorithms. Recall that 
iterative algorithms provide a sequence of approximations that  in the 
limit converge to the exact solution, 𝑥*. Errors will occur.

(1) Round-off errors: A practical problem because a computer cannot  
represent all 𝑥 ∈ R exactly.  

Example: Evaluate two expression for same function at 𝑥=0.0002:

𝑓ሺ𝑥ሻ =  [1 – cos2(𝑥)]/𝑥2 &  𝑔ሺ𝑥ሻ = [sin2(𝑥)]/𝑥2

𝑓ሺ𝑥 ൌ 0.0002ሻ = 0.99999998 & 𝑔ሺ𝑥 ൌ 0.0002ሻ = 0.99999999

(2) Cancelation errors: a and b should be the same (or almost the same), 
but errors during the calculations makes them different. When we 
subtract them the difference is no longer zero. 
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Source of errors – Truncation and Propagation

(3) Truncation errors: They occurs when the iterative method is 
terminated, usually after a convergence criterion is met.

(4) Propagation of errors: Once an error is generated, it will propagate. 
This problem can arise in the calculation of standard errors, CI, etc. 

Example: When we numerically calculate a second derivative, we use 
the numerically calculated first derivate. We potentially have a 
compounded error: an approximation based on another 
approximation.

Source of errors – Data

• Ill-conditioned problem
This is a data problem. Any small error or change in the data produce 
a large error in the solution. No clear definition on what “large error” 
means (absolute or relative, norm used, etc.) 

Usually, the condition number of a function relative to the data (in 
general, a matrix X), κ(X), is used to evaluate this problem. A small 
κ(X), say close to 1, is good.

Example: A solution to a set of linear equations,  Ax = b
Now, we change b to (b + ∆b)  new solution is  (x + ∆x),
which satisfies A(x + ∆x)  = (b + ∆b)
- The change in x is ∆x = A-1 ∆b
- We say, the equations are well-conditioned if small ∆b results in small 
∆x.  (The condition of the solution depends on A.)
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Source of errors - Algorithm

• Numerical stability

It refers to the accuracy of an algorithm in the presence of small 
errors, say a round-off error. Again, no clear definition of “accurate” 
or “small.” 

Examples: A small error grows during the calculation and 
significantly affects the solution. A small change in initial values can 
produce a different solution.

• Line search techniques are simple optimization algorithms for one-
dimensional minimization problems.  

• Considered the backbone of non-linear optimization algorithms.

• Typically, these techniques search a bracketed interval.

• Often, unimodality is assumed.

• Usual steps:

- Start with bracket [𝑥L, 𝑥R] such that the minimum 𝑥* lies inside.

- Evaluate 𝑓ሺ𝑥ሻ at two points inside the bracket.

- Reduce the bracket in the descent direction (f ↓).

- Repeat the process.  

• Note: Line search techniques can be applied to any function and 
differentiability and continuity is not essential. 

Line Search
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• Basic Line Search (Exhaustive Search)

1. Start with a [𝑥L, 𝑥R] and divide it in T intervals. 

2. Evaluate 𝑓 in each interval (T evaluations of 𝑓 ).  Choose  the 
interval where 𝑓 is smaller. 

3. Set [𝑥L, 𝑥R] as the endpoints of the chosen interval => Back to 1. 

4. Continue until convergence.

• Key step: Sequential reduction in the brackets. The fewer evaluations 
of functions, the better for the line search algorithm.

- There are many techniques to reduce the brackets:

– Dichotomous  –i.e., divide in 2 parts- search

– Fibonacci series

– Golden section

Line Search

• The interval size after 1 iteration (& 2 f evaluations):

|b1 – a1 |= (1/2) |b0 – a0 + |

a bx1 x2



Line Search: Dichotomous Bracketing

• Very simple idea: Divide the bracket in half in each iteration.

• Start at the middle point of the interval [a, b]: (a+b)/2. Then evaluate
𝑓ሺ. ሻ at two points near the middle (x1 & x2). “Near”: േ 2.

• Then, evaluate the function at x1 and x2 .. Move the interval in the
direction of the lower value of the function.
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• Steps:

0) Assume an interval [a,b]

1) Find x1 = a + (b – a)/2 – 2

x2 = a+(b – a)/2 + /2 ( is the resolution)

2) Compare 𝑓ሺ𝑥ଵሻ and 𝑓ሺ𝑥ଶሻ

3) If 𝑓ሺ𝑥ଵሻ < 𝑓ሺ𝑥ଶሻ then eliminate 𝑥 > 𝑥ଶ and set b = 𝑥ଶ
If 𝑓ሺ𝑥ଵሻ > 𝑓ሺ𝑥ଶሻ then eliminate 𝑥 < 𝑥ଵ and set a = 𝑥ଵ
If 𝑓ሺ𝑥ଵሻ = 𝑓ሺ𝑥ଶሻ then pick another pair of points

4) Continue until interval < 2  (tolerance)

a b𝑥ଵ 𝑥ଶ



Line Search: Dichotomous Bracketing - Steps

• Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... That is , the sum of
the last 2 numbers: Fn = Fn-1 + Fn-2 (F0 = F1= 1)

• The Fibonacci sequence becomes the basis for choosing sequentially 
N points such that the discrepancy 𝑥௞ାଵ− 𝑥௞ିଵ is minimized.

a bxL xR

L2

L2

L3



Line Search: Fibonacci numbers

L1

• Q: How is the interval reduced? Start at final interval, after K
iterations and go backwards: |bK-1 – aK-1 |= 2|bK – aK|;

|bK-2 – aK-2 |= 3|bK – aK|; ... ; |bK-J – aK-J |= FJ+1 |bK – aK|

 |bk – ak |= |bk-2 – ak-2 | – |bK-1 – aK-1|
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a b𝑥L 𝑥R

L2

L2

L3

Let  = b – a. Then, evaluate f(x) at

𝑥L = a + Fk-2 (b – a) / Fk and 𝑥R = a + Fk-1 (b – a) / Fk

We keep the smaller functional value and its corresponding opposite
end–point.

Line Search: Fibonacci numbers

L1

Example: f(x) = x/(1+x2), x ϵ [-0.6, 0.75]

xL =-.6+(.75+.6)*1/3= -0.15  ƒ1=-0.1467

xR =-.6+(.75+.6)*2/3= 0.30  ƒ2= 0.2752

New x ϵ [-0.6, 0.30]

xL =-.6+(.3+.6)*2/5=-0.24  ƒ1=-0.2267

xR =-.6+(.3+.6)*3/5=-0.06  ƒ2=-0.0598

New x ϵ [-.6, -0.06]

Continue until bracket < tolerance.

x* = -0.59997.

Search methods - Examples

xL

xU

xL

xU

xL
xR

xL

xU

xL

xR

xL
xU

1  2  3      5           8

xL
xU

1  2  3      5           8

xL xU

1  2  3      5           8

xL xU

1  2  3      5           8

xL
xR

1  2  3      5           8

Dichotomous

Fibonacci: 1 1 2 3 5 8 …
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a

a

b

b

a – b

• In Golden Section, you try to have b/(a – b) = a/b,

 b*b = a*a – ab

Solving gives a = (b ± b* sqrt(5))/2

 a/b = -0.618 or 1.618 (Golden Section ratio)

• Note that 1/1.618 = 0.618

Note: limn→∞ Fn-2 /Fn = .382 and limn→∞ Fn-1 /Fn = .618

• Golden section method uses a constant interval reduction ratio: 0.618.

Discard

Line Search: Golden Section

a bx1 x2

Initialize:

x1 = a + (b – a) * 0.382

x2 = a + (b – a) * 0.618

f1 = ƒ(x1)

f2 = ƒ(x2)

Loop:

if f1 > f2 then

a = x1; x1 = x2; f1 = f2

x2 = a + (b – a) * 0.618

f2 = ƒ(x2)

else

b = x2; x2 = x1; f2 = f1

x1 = a + (b – a) * 0.382

f1 = ƒ(x1)

endif

Line Search: Golden Section - Example

.382
.618

Example: f(x) = x/(1+x2), x ϵ [-0.6, 0.75]

xL=-.6+(.75+.6)*.382=-0.0843  ƒ1=-0.0837

xR =-.6+(.75+.6)*.618=0.2343  ƒ2=0.2221

New x ϵ [-0.6, 0.234]

xL =-.6+(.2343+.6)*.382=-0.2813  ƒ1=-0.2607

xR =-.6+(.2343+.6).*618=-0.0844  ƒ2=-0.0838

New x ϵ [-.6, -0.0844]

Continue until bracket < tolerance.

x* = -0.59997.



RS – Num Opt

19

• Since only 𝑓 is evaluated, a line search is also called 0th order method.

• Line searches work best for unimodal functions.

• Line searches can be applied to any function. They work very well 
for discontinuous and non-differentiable functions.

• Very easy to program.

• Robust.

• They are less efficient than higher order methods –i.e., methods that 
evaluate 𝑓′ and 𝑓"

• Golden section is very simple and tends to work well (in general, 
fewer evaluations than most line search methods).

Pure Line Search - Remarks

Line Search: Bisection

• The bisection method involves shrinking an interval [𝑎, 𝑏] known to
contain the root (zero) of the function, using 𝑓′ ( a 1st order method).

• Bisection: Interval is replaced by either its left or right half at each k.

• Method:
- Start with an interval [𝑎, b] that satisfies 𝑓′ሺ𝑎ሻ 𝑓′ሺ𝑏ሻ < 0. Since 𝑓 is 

continuous, the interval contains at least one solution of  𝑓 𝑥 ൌ 0.
- In each iteration, evaluate 𝑓′ at the midpoint of  the interval [𝑎, 𝑏], 

𝑓′ሺሺ𝑎 ൅ 𝑏ሻ/2ሻ. 
- Reduce interval: Depending on the sign 𝑓′, we replace 𝑎 or 𝑏 with 

the midpoint value, ሺ𝑎 ൅ 𝑏ሻ/2. (The new interval still satisfies 𝑓′ሺ𝑎ሻ
𝑓ᇱ 𝑏 ൏ 0.) 

• Note: After each iteration, the interval [𝑎, 𝑏] is halved:

|𝑎k – 𝑏k |= (1/2)k |𝑎0 – 𝑏0 |
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Line Search: Bisection - Example

Example:

- We restrict the range of x to x >-10.

- Steps:

(1) Start with interval [𝑎 ൌ െ8, 𝑏 ൌ 20]. The bisection of that
interval is 6. At 𝑥 ൌ 6, 𝑓′ 𝑥 ൌ 6 ൌ 2.882 > 0  𝑓 increasing.

(1a) Exclude subinterval [6, 20] from search: New interval [𝑎 ൌ െ8,
𝑏 ൌ6]. Bisection at -1.

(2) New interval [-8, 6]. At 𝑓′ 𝑥 ൌ െ1 =-1.6914 < 0  𝑓 decreasing

(3) New interval becomes [𝑎 ൌ െ1, 𝑏 ൌ6]. Bisection at 2.5.

- Continue until interval <  (tolerance)

• Since at each iteration, the interval is halved. Then, 

|𝑥k – 𝑥*| ≤  (1/2)k | 𝑎0 – 𝑏0|  R-linear convergence. 

f x
x x

x
( )

 


5 4 2

10

2

Line Search : Bisection – Example

• Graph of  following function:

f x
x x

x
( )

 


5 4 2

10

2
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Lower Upper Midpoint Gradient Replace
0 -8.0000 20.0000 6.0000 2.8828 Upper
1 -8.0000 6.0000 -1.0000 -1.6914 Lower
2 -1.0000 6.0000 2.5000 1.5312 Upper
3 -1.0000 2.5000 0.7500 0.3099 Upper
4 -1.0000 0.7500 -0.1250 -0.5581 Lower
5 -0.1250 0.7500 0.3125 -0.0965 Lower
6 0.3125 0.7500 0.5313 0.1130 Upper
7 0.3125 0.5313 0.4219 0.0099 Upper
8 0.3125 0.4219 0.3672 -0.0429 Lower
9 0.3672 0.4219 0.3945 -0.0164 Lower

10 0.3945 0.4219 0.4082 -0.0032 Lower
11 0.4082 0.4219 0.4150 0.0034 Upper
12 0.4082 0.4150 0.4116 0.0001 Upper
13 0.4082 0.4116 0.4099 -0.0016 Lower
14 0.4099 0.4116 0.4108 -0.0007 Lower

Line Search : Bisection – Example

• We can calculate the required k for convergence, say with  = 0.002: 

log[(𝑎0 – 𝑏0)|/ )] [1/log(2)] = log(28/.002)/log(2) = 13.773 ൎ 14  

Line Search : Bisection – Example in R

bisect <- function(fn, lower, upper, tol=.0002, ...) {
f.lo <- fn(lower, ...)
f.hi <- fn(upper, ...)
feval <- 2
if  (f.lo * f.hi > 0) stop("Root is not bracketed in the specified interval\n")
chg <- upper - lower

while (abs(chg) > tol) {
x.new <- (lower + upper) / 2
f.new <- fn(x.new, ...)
if  (abs(f.new) <= tol) break
if  (f.lo * f.new < 0) upper <- x.new
if  (f.hi * f.new < 0) lower <- x.new
chg <- upper - lower
feval <- feval + 1 }

list(x = x.new, value = f.new, fevals=feval)
}

# Example => function to minimize = (a*x^2-4*x+2)/(x+10)
# first derivative => fn1= (2*a*x-4)/(x+10)-(a*x^2-4*x+2)/(x+10)^2
fn1 <- function(x, a) {
(2*a*x-4)/(x+10)-(a*x^2-4*x+2)/(x+10)^2 }
bisect(fn1, -8, 20, a=5)
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• Typically, the line search pays little attention to the direction of 
change of the function –i.e., 𝑓′ 𝑥 . 

• Given a starting location, 𝑥଴, examine 𝑓 𝑥 and move in the downhill 
direction to generate a new estimate, 𝑥ଵ = 𝑥଴ + δ𝑥.

• Q: How to determine the step size δ𝑥? Use the first derivative: 𝑓′ 𝑥 . 

Descent Methods

• Basic algorithm:
1. Start at an initial position 𝑥଴
2. Until convergence
– Find minimizing step δ𝑥௞, which will be a function of 𝑓′ 𝑥 .
– 𝑥௞ାଵ = 𝑥௞ + δ𝑥௞

• In general, it pays to multiply the direction δ𝑥௞ by a constant, λ, 
called step-size. That is,

𝑥௞ାଵ = 𝑥௞+ λ δ𝑥௞

• To determine the direction δ𝑥௞, note that a small change 
proportional to 𝑓′ 𝑥 multiplied by (-1) decreases 𝑓 𝑥 . That is,

𝑥௞ାଵ = 𝑥௞– λ 𝑓′ 𝑥

Steepest (Gradient) descent 
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• Theorem: Given a function f: Rn → R, differentiable at x0, the 
direction of steepest descent is the vector -f (x0).

Proof:  Consider the function

z(λ) = f(x0 + λ u) (u: unit vector ║u║=1)

By chain rule: 

Thus, z’(0) = f(x0) · u = ║f (x0)║ ║u║ cos(θ) (dot product)

= ║f (x0)║cos(θ) (θ: angle between f (x0) & u)

Then, z’(0) is minimized when θ=𝜋  z’(0) = - ║f (x0)║.

Since u is a unit vector (║u║=1)  u = - f (x0)/║f (x0)║

Steepest descent – Theorem
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Steepest descent – Algorithm 

• Since u is a unit vector  u  = - f (x0)/║f (x0)║ 

 The method becomes the steepest descent, due to Cauchy (1847).

• The problem of minimizing a function of N variables can be reduced 
to a single variable minimization problem, by finding the minimum of 
z(λ) for this choice of  u:

 Find λ that minimizes z(λ) = f(xk – λ f (xk))

• Algorithm: 1. Start with x0 . Evaluate f (x0).

2. Find λ0 and set  x1 = x0 – λ0 f (x0)

3. Continue until convergence.

• Sequence for {x}: xk+1 = xk – λk f (xk)



RS – Num Opt

24

Steepest descent – Algorithm 

Note: Two ways to determine λk, in the general xk+1 = xk – λk f (xk) 

1. Optimal λk. Select λk that minimizes g(λk) = f (xk – λk f (xk)).

2. Non-optimal λk can be calculated using line search methods.

• Good property: The method of steepest descent is guaranteed to 
make at least some progress toward x* during each iteration.  (Show 
that z’(0) <0, which guarantees there is a λ>0, such that z(λ)<z(0).)

• It can be shown that the steepest descent directions from xk+1 and xk

are orthogonal, that is f (xk+1) · f (xk)=0.

For some functions, this property makes the method to “zig-zag" (or 
ping pong) from x0 to x*.  

1kx

kx

1x

2x
minx

 kf x

Steepest descent – Graphical Example
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Steepest descent – Limitations 

• Limitations:

- In general, a global minimum is not guaranteed. (This issue is also a 
fundamental problem for the other methods).

- Steepest descent can be relatively slow close to the minimum: going 
in the steepest downhill direction is not efficient. Technically, its 
asymptotic rate of convergence is inferior to many other methods.  

- For poorly conditioned convex problems, steepest  descent 
increasingly 'zigzags' as the gradients point nearly orthogonally to the 
shortest direction to a minimum point. 

-

Steepest descent – Example (Wikipedia)

• Steepest descent has problems with pathological functions such as 
the Rosenbrock function.

Example:  f(x1, x2) = (1 – x1)2 + 100 (x2 – x1
2)2

This function has a narrow curved valley, which contains x*. The 
bottom of the valley is very flat. Because of the curved flat valley the 
optimization zig-zags slowly with small step-sizes towards x*=(1, 1).
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• It is a method to iteratively find roots of  functions (or a solution to 
a system of  equations, f(x) = 0). 

• Idea: Approximate f(x) near the current guess xk by a function fk(x) 
for which the system of  equations fk(x)=0 is easy to solve. Then use 
the solution as the next guess xk+1.

• A good choice for fk(x) is the linear approximation of  f(x) at xk: 

fk(x) ≈ f(xk) + f(xk) (x – xk).

• Solve the equation fk(xk+1)=0, for the next xk+1. Setting fk(x)=0:

0 = f(xk) + f(xk) (xk+1 – xk).

Or xk+1 = xk – |f(xk)|-1 f(xk) (NR iterative method)

Newton-Raphson Method (Newton’s method)

• History: 

- Heron of  Alexandria (10–70 AD) described a method (called 
Babylonian method) to iteratively approximate a square root. 

- François Viète (1540-1603) developed a method to approximate 
roots of  polynomials.

- Isaac Newton (1643–1727) in 1669 (published in 1711) 
improved upon Viète’s method. A simplified version of  Newton’s 
method was published by Joseph Raphson (1648–1715) in 1690. 
Though, Newton (and Raphson) did not see the connection between 
his method and calculus. 

- The modern treatment is due to Thomas Simpson (1710–1761).

Newton-Raphson Method – History
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Newton-Raphson Method – Univariate Version

• Alternative derivation:

Note: At each step, we need to evaluate f and f ′.

• Iterations:  Starting at x0 “inscribe triangles” along f(x) = 0.

Newton-Raphson Method – Graphical View
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• We can use NR method to minimize a function. 

• Recall that 𝑓′ሺ𝑥∗) = 0 at a minimum or maximum, thus stationary 
points can be found by applying NR method to the derivative. The 
iteration becomes: 

𝑥௞ାଵ ൌ 𝑥௞ െ
௙ᇱሺ௫ೖሻ

௙ᇱᇱሺ௫ೖሻ

• We need 𝑓′′ሺ𝑥௞ሻ ് 0; otherwise the iterations are undefined. 
Usually, we add a step-size, λ௞, in the updating step of  𝑥 :

𝑥௞ାଵ ൌ 𝑥௞ െ λ௞
௙ᇱሺ௫ೖሻ

௙ᇱᇱሺ௫ೖሻ

• Note: NR uses information from the second derivative. This 
information is ignored by the steepest descent method. But, it requires 
more computations.

Newton-Raphson Method – Minimization

0x

 xf 𝑓ሺ𝑥଴ ൅  δ𝑥 ) = 𝑓ሺ𝑥଴ሻ + 𝑓′ሺ𝑥଴ሻ δ𝑥 + ½ 𝑓"ሺ𝑥଴ሻ (δ𝑥)2

• When used for minimization, the NR method approximates 𝑓ሺ𝑥ሻ by 
its quadratic approximation near 𝑥௞.

• Expand 𝑓ሺ𝑥ሻ locally using a 2nd-order Taylor series:

𝑓ሺ𝑥 ൅ δ𝑥 ) = 𝑓ሺ𝑥ሻ + 𝑓′ሺ𝑥ሻ δ𝑥 + ½ 𝑓"ሺ𝑥ሻ (δ𝑥)2 + o(δ𝑥2)

• Find the δ𝑥 which minimizes this local quadratic approximation:

δ𝑥 = – 𝑓′ሺ𝑥ሻ / 𝑓′′ሺ𝑥ሻ 

• Update 𝑥 : 𝑥௞ାଵ ൌ 𝑥௞ െ λ௞
௙ᇱሺ௫ೖሻ

௙ᇱᇱሺ௫ೖሻ

NR Method – As a Quadratic Approximation
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• The N-variate version of the NR method is based on the 1st-order
Taylor series expansion of f (x) = 0:

  )()()(

0)()()()(

*1*2*

**2*

xfxfxx

xxxfxfxf

xxx

xxxx






  )()()( 112
1 txttxtxxtt xfHxxfxfxx  
Then,

• It is always convenient to add a step-size λk.

• Algorithm: 1. Start with x0. Evaluate f(x0) and H(x0).

2. Get x1 = x0 – H(x0)-1 f(x0)  f(x1, λ=1)

3. Add λ, x1(λ) = x0 – λH(x0)-1 f(x0)  f(x1, λ)

Pick λ, say λ1, that min f(x1, λ).  x0 = x1(λ1)

4. Continue until convergence.

NR Method – N-variate Version

1kx

kx

1x

2x
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kk ff

2

1


NR Method – Bivariate Version - Graph 
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• If  H(xk) is pd, the critical point is also guaranteed to be the unique 
strict global minimizer of  fk(x).

• For quadratic functions, NR method applied to f(x) converges to x
in one step; that is, xk=1 = x *. 

• If  f(x) is not a quadratic function, then NR method will generally 
not compute a minimizer of  f(x) in one step, even if  its H(xk) is pd. 
But, in this case, NR method is guaranteed to make progress. 

• Under certain conditions, the NR method has quadratic 
convergence, given a sufficiently close initial guess.

NR Method – Properties

Find the roots for the following function:

  423 1099331650 -.+x.-xxf 

Set x0=.05. 
Use the Newton’s method of  
finding roots of  equations to find 
a) The root. 
b) The absolute relative approximate 
error at the end of  each iteration. 
c) The number of  significant digits 
at least correct at the end of  each 
iteration.

NR Method – Example
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 
  x-xxf

.+x.-xxf -

33.03'

1099331650
2

423





1) Iteration 1( x0 = .05) 

• Calculate  f ’(x)

 
 

   
   

  06242.001242.0
109

10118.1

05.033.005.03

10305.0165.005.0
05.0

3

4

2

423

0

0
01


















0.05 0.05     

.993

' xf

xf
xx

NR Method – Example

 
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33.03

1099331650
2

423

1


 ' 

• Iterations:

Estimate of  the root and abs relative error for the first iteration.

The absolute relative 
approximate error |εα at the end 
of  Iteration 1 is

%90.19

100
06242.0

05.006242.0

100
1

01












x

xx
a

Number of  significant digits at 
least correct: 0. (Suppose we use 
as stopping rule |εα| < 0.05%).

NR Method – Example
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 
 

   
   

  06238.0104646.406242.0
1090973.8

1097781.3
06242.0

06242.033.006242.03

10306242.0165.006242.0
06242.0
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NR Method – Example

2) Iteration 2 ( x1 = .06242) 

%0716.0100
06238.0

06242.006238.0
100

2

12 

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
x

xx
a

Number of  significant digits at least correct: 2. 

Asolute relative approximate error |εα| at the end of  Iteration 2 is:

 
 
   

   

  06238.0109822.406238.0 

1091171.8

1044.4
06238.0     

06238.033.006238.03

10.993306238.0165.006238.0
06238.0
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NR Method – Example

3) Iteration 3 ( x2 = .06238) 

Number of  significant digits at least correct: 4. (|εα|<.05%  stop). 

Absolute relative approximate error |εα| at the end of  Iteration 3 is:

%0100
06238.0

06238.006238.0
100

2

12 
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x

xx
a
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65

NR Method – Example (Code in R)

> # Newton Raphson Method
> 
> f1<-function(x){
+   return(x^3 - .165*x^2 + .0003993);
+ }
> 
> df1<-function(x){
+   return(3*x^2-.33*x+.0003993);
+ }
> NR.method<-function(func,dfunc,x){
+   if  (abs(dfunc(x))<.000001){
+     return (x);
+     }else{
+     return(x - func(x)/dfunc(x));
+ }
+ }
> curve(f1, -.05,.15)
> 
> iter=20;
> xn <- NULL;
> xn[1] = .05;
> n = 1;
> 

> while(n<iter){
+   n = n+1
+   xn<-c(xn,NR.method(f1,df1,xn[n-1]));
+   if(abs(xn[n]-xn[n-1])<.000001) break;
+ }
> xn
[1] 0.05000000 0.06299894 0.06234727 0.06237900 
0.06237751 0.06237758

Mean Value theorem truncates
Taylor series

But by Newton definition
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Subtracting (*) from above:

2
1 * 1 * 2

2
 ( ) [ ( )] ( )( )k k kdf d f

x x x x x x
dx d x

   

Then, solving for (xk+1- x*):

2*
2
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xdf kk
k
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NR Method – Convergence

• Under certain conditions, the NR method has quadratic 
convergence, given a sufficiently close initial guess.
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 Convergence is quadratic.

2
1

2

21 * *

Let  [ ( )] ( )
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x x x x x x
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   • From

• Local Convergence Theorem

If

Then, NR method converges given a sufficiently close initial guess (and 
convergence is quadratic).
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NR Method – Convergence

x

𝑓ሺ𝑥ሻ

• Convergence Check
Check 𝑓 𝑥 to avoid false convergence. Check more than one 
criterion.

     kk ff xx 1

1kx kx

   kk xx 1

*x

NR Method – Convergence

  1kf x
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demo2

• Local Convergence 
Convergence depends on initial values. Ideally, select x0 close to x*.

Note: Inflection point or flat regions can create problems. 

NR Method – Convergence

• For  x0 = 0.05, 
> xn
[1] 0.05000000 0.06299894 0.06234727 

0.06237900 0.06237751 0.06237758

• For  x0 = 0.15, 
> xn
[1] 0.1500000 0.1466412 0.1463676 

0.1463597 0.1463595. 

• For  x0 = -0.05, 
> xn
[1] -0.05000000 -0.04433590 -0.04375361 -

0.04373741 -0.04373709

NR Method: Limitations – Local results

  423 1099331650 -.+x.-xxf 

• Multiple roots: Different initial values take us to different roots. 

Example:
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courtesy Alessandra Nardi UCB            

x

f(x)

0x

1x

• Division by zero. During the iteration we get xk such that f(xk)=0.
• When f(xk)ൎ 0 (flat region of  f), the algorithm diverges. 

• Both problems can be solved by using different x0 (popular solution)

2x1x 0x

NR Method – Limitations f(xk)=0 or f(xk)ൎ 0 

• Division by zero
For the equation

the NR method reduces to

For  x0 = 0, or x0 = 0.2, the 
denominator will equal zero.

  0104.203.0 623  xxxf

ii

ii
ii xx

xx
xx

06.03

104.203.0
2

623

1 







NR Method: Limitations – Division by zero
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• Divergence at inflection points
Selection of  x0 or an iteration value of  the root that is close to the 
inflection point of  the function f(x) may start diverging away from the 
root in the Newton-Raphson method.

Example: Find the root of  the equation:                                   .

The NR method reduces to                                       .

The root starts to diverge at Iteration 6 because the previous estimate 
of  0.92589 is close to the inflection point of  x = 1.       . 

Note: After k > 12, the root converges to the root of  x* = 0.2.

    0512.01 3  xxf

 
 2

33

1
13

512.01





i

i
ii

x

x
xx

NR Method: Limitations – Inflection Points

Iteration 
Number

xi

0 5.0000

1 3.6560

2 2.7465

3 2.1084

4 1.6000

5 0.92589

6 −30.119

7 −19.746

18 0.2000

    0512.01 3  xxf• Divergence near inflection point for:

NR Method: Limitations – Inflection Points
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• It is possible that f(xk) and f(xk+1) have opposite values (or close 
enough) and the algorithm becomes lock in an infinite loop. Again, 
different x0 can help to move the algorithm away from this problem.

NR Method: Limitations – Oscillations

Results obtained from the Newton-Raphson method may oscillate 
about the local maximum  or minimum without converging on a root 
but converging on the local maximum or minimum. 

Eventually, it may lead to division by a number close to zero and may 
diverge.

Example:  the equation has no real roots.  02 2  xxf

• Oscillations near local maximum and minimum

NR Method: Limitations – Oscillations
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-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3

f(x)

x

 3

 4

 2

 1

 -1.75  -0.3040 0.5 3.142

Oscillations around local minima 
for   2 2  xxf

Iteration 
Number xi (λk) f (xk)

|εα|

0
1
2
3
4
5
6
7
8
9

–1.0000
0.5

–1.75
–0.30357

3.1423
1.2529

–0.17166
5.7395
2.6955 

0.97678

3.00
2.25
5.063 
2.092
11.874
3.570
2.029

34.942
9.266
2.954 

-
300.00
128.571
476.47
109.66
150.80
829.88
102.99
112.93
175.96

• Oscillations near local maxima and minima in NR method.

NR Method: Limitations – Oscillations

 The step-size improves the value of  function!

Note: Let’s add a step-size, λ௞, in the updating step of  𝑥:

𝑥௞ାଵ ൌ 𝑥௞ െ λ௞
௙ᇱሺ௫ೖሻ

௙ᇱᇱሺ௫ೖሻ
λ௞ = (.8, .9, 1, 1.1, 1.2)

NR Method: Limitations – Oscillations

Iteration xk xi (λk) f (xk) f (xi(λk)) |εα|
1 0.5 0.2 2.25 2.04 300

2 -4.9 -3.88 26.01 17.0544 104.0816

3 -1.68227 -1.2427 4.8300 3.5444 130.641

4 0.183325 0.04072 2.0336 2.0016 777.8805

5 -24.5376 -19.6219 604.0944 387.0207 100.1659

6 -9.76001 -7.787 97.2578 62.6471 101.0443

7 -3.7654 -2.9610 16.17825 10.7673 106.8205

8 -1.14275 -0.7791 3.3058 2.6070 159.108

9 0.893963 0.5593 2.7992 2.3128 187.1523

10 -1.50812 -1.094 4.2744 3.1982 137.0891
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• Root Jumping
In some cases where the function f(x) is oscillating and has a number 
of  roots, one may choose x0 close to a root. However, the guesses 
may jump and converge to some other root.

Example:

Choose 

It will converge to x = 0, not to -1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4 6 8 10

x

f(x)

 -0.06307 0.5499 4.461  7.539822

  0 sin  xxf

539822.74.20  x

283185.62  x Root jumping from intended 
location of  root for   0 sin  xxf

NR Method: Limitations – Root Jumping

• Advantages
- Converges fast (quadratic convergence), if it converges.  
- Requires only one guess.

• Drawbacks
- Initial values are important.
- If f(𝒙௞) =0, algorithm fails. 
- Inflection points are a problem.

- If 𝑓′ሺ𝑥௞ሻ is not continuous the method may fail to converge. 
- It requires the calculation of first and second derivatives. 
- Not easy to compute H(𝒙௞).
- No guarantee of global minimum.

NR Method: Advantages and Drawbacks
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•  NR algorithm: 𝑥௞ାଵ ൌ 𝑥௞ െ λ௞
௙ሺ௫ೖሻ

௙ᇱሺ௫ೖሻ

It requires 𝑓′ሺ𝑥௞ሻ and 𝑓"ሺ𝑥௞ሻ. We can use the quotient ratio as a 
starting point, which delivers a 1-point approximation:

• We can use a 2-point approximation of 𝑓ᇱ 𝑥௞  (errors may cancel):

• This approximation produces the secant method formula for 𝑥௞ାଵ:

𝑥௞ାଵ ൌ 𝑥௞ െ
௙ሺ௫ೖሻ

௙ᇱሺ௫ೖሻ
= 𝑥௞ െ

௙ሺ௫ೖሻ
೑ ೣೖ ష೑ሺ ೣೖషభ

ೣೖ ష ೣೖషభ

= 𝑥௞ െ
௙ሺ௫ೖሻሺ௫ೖ ି ௫ೖషభሻ

௙ ௫ೖ ି௙ሺ ௫ೖషభ

with a slower convergence than NR method (1.618 relative to 2).

NR Method: Numerical Derivatives
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•  We also need 𝑓′′ሺ𝑥௞ሻ. A similar approximation for the second 
derivative 𝑓′′ሺ𝑥௞ሻ is also done. Let’s suppose we use a one-point 
approximation:

• The approximation problems for the 2nd derivative become more 
serious: The approximation of the 1st derivative is used to approximate 
the 2nd derivative.  A typical propagation of errors situation.

Example: In the previous R code, we can use:
> #   num derivatives

> df1<-function(x,h=0.001){

+    return((f(x+h)-f(x))/h);

+  }

NR Method: Numerical Derivatives

       
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Multivariate Case - Example

• Starting with x0=(1,1,1)

 
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• N-variate NR-method iteration: 𝒙௞ାଵ ൌ 𝒙௞ െ 𝑯ିଵ𝑓ሺ𝒙௞ሻ
Example:

• Solution x* = (15.000593 13.333244  9.998452)

Multivariate Case – Example in R
library(numDeriv)

f <- function(z) {y <- -((100-2*z[1]-3*z[2]-z[3])^.2*z[1]^.3*z[2]^.4*z[3]^.1)

return(y)

}

x <- c(1,1,1)

# numerical gradient & hessian

# df1 <- grad(f, x, method="Richardson")

# d2f1 <- hessian(f, x, method="complex")

max_ite = 10; tol=.0001

# NR

NR_num <- function(f,tol,x,N) {

i <- 1; x.new <- x

p <- matrix(1,nrow=N,ncol=4)

while(i<N) {

df1 <- grad(f, x, method="Richardson")

d2f1 <- hessian(f, x, method="complex")

x.new <- x - solve(d2f1)%*%df1

p[i,] <- rbind(x.new,f(x.new))

i <- i + 1

if (abs(f(x.new) - f(x)) < tol) break

x <- x.new

}

return(p[1:(i-1),])

}

NR_num(f,tol,x,max_ite)

[,1] [,2] [,3] [,4]

[1,] 5.355917 5.347583 5.322583 -8.890549

[2,] 16.499515 16.238509 15.464327 -11.441345

[3,] 18.145527 15.038933 12.965833 -12.877825

[4,] 16.732599 15.097816 10.829738 -13.982991

[5,] 15.764754 13.970439 10.555647 -14.473775

[6,] 15.118464 13.442423 10.074552 -14.553002

[7,] 15.002920 13.335869 10.002014 -14.554887

[8,] 15.000002 13.333335 10.000001 -14.554888
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Multivariate Case – Example in R

Note: 𝑯ሺ𝒙௞ሻିଵcan create problems. If  we change the calculation 
method to the Richardson extrapolation, with x0=(1,1,1), we get a NaN
result for x.new after 3 iterations  𝑯ሺ𝒙௞ሻିଵ is not pd!
> d2f1 <- hessian(f, x, method=“Richardson")

But, if  we use the Richardson extrapolation, with x0=(2,2,2), we get
[,1]      [,2]      [,3]      [,4]

[1,]  9.51400  9.480667  9.380667 -12.83697

[2,] 16.24599 15.461114 13.168466 -13.52119

[3,] 16.42885 14.464135 10.247566 -14.32000

[4,] 15.30370 13.624640 10.268205 -14.54030

[5,] 15.02318 13.353077 10.012483 -14.55482

[6,] 15.00010 13.333421 10.000072 -14.55489

• Lots of  computational tricks are devoted to deal with these 
situations.

As illustrated before, 𝑯ሺ𝒙௞ሻିଵ can be difficult to compute. In general,
the inverse of H is time consuming. (In addition, in the presence of
many parameters, evaluating H can be impractical or costly.)

• In the basic algorithm, it is better not to compute 𝑯ሺ𝒙௞ሻିଵ.

Instead, solve 𝑯ሺ𝒙௞ሻ (𝒙௞ାଵ – 𝒙௞ሻ = -𝑓ሺ𝒙௞ሻ
• Each iteration requires:

- Evaluation of 𝑓ሺ𝒙௞ሻ
- Computation of 𝑯ሺ𝒙௞ሻିଵ

- Solution of a linear system of equations, with coefficient matrix 
𝑯ሺ𝒙௞ሻ and RHS matrix -𝑓ሺ𝒙௞ሻ.

Multivariate Case – Computational Drawbacks

• Basic N-variate NR-method iteration:
𝒙௞ାଵ ൌ 𝒙௞ െ 𝑯ሺ𝒙௞ሻିଵ 𝑓ሺ𝒙௞ሻ
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Multivariate Case – H Matrix

• In practice, 𝑯 𝒙௞  can be difficult to calculate. Many times,
𝑯ሺ𝒙௞ሻis just not pd. There are many tricks to deal with this situation.

• A popular trick is to add a matrix, Ek (usually, δI), where δ is a
constant, that ensures 𝑯ሺ𝒙௞ሻis pd. That is,

𝑯 𝒙௞ ൎ ∇2𝑓 𝒙௞ + Ek.

• The algorithm can be structured to take a different step when H(xk)
is not pd, for example, the steepest descent. That is, 𝑯ሺ𝒙௞ሻൎ I.

Note: Before using the Hessian to calculate standard errors, make
sure it is pd. This can be done by computing the eigenvalues and
checking they are all positive.

Multivariate Case – H Matrix

• NR method is computationally expensive. The structure of the NR
algorithm does not help (there is no re-use of data from one iteration
to the other).

• To avoid computing the Hessian –i.e., second derivatives-, we'll
approximate. Theory-based approximations:

- Gauss-Newton:

- BHHH:

Note: In the case we are doing MLE, for each algorithm, -H(xk) can
serve as an estimator for the asymptotic covariance matrix for the
maximum likelihood estimator of xk.
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Modified Newton Methods

The Modified Newton method for finding an extreme point is

xk+1 = xk -  Sk y(xk)

Note that:
if Sk = I, then we have the method of steepest descent
if Sk = H-1(xk) and  = 1, then we have the “pure” Newton method

if y(x) = 0.5 xTQx - bT x , then Sk = H-1(xk) = Q (quadratic case)

Classical Modified Newton’s Method:

xk+1 = xk -  H-1(x0) y(xk)

Note that the Hessian is only evaluated at the initial point x0.

• Central idea underlying quasi-Newton methods (a variable metric method) is
to use an approximation of the inverse Hessian (H-1).

• By using approximate partial derivatives, there is a slightly slower
convergence resulting from such an approximation, but there is an
improved efficiency in each iteration.

• Idea: Since 𝑯 𝒙௞ consists of the partial derivatives evaluated at an 
element of a convergent sequence, intuitively Hessian matrices from 
consecutive iterations are “ close" to one another. 

• Then, it should be possible to cheaply update an approximate 
𝑯 𝒙௞ from one iteration to the other. With an NxN matrix D:

D = A + Au, Au: update, usually of the form uvT.

Quasi-Newton Methods
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• Or Dk+1 = Ak + Ak
u, Ak

u: update, usually of the form uvT,

where u and v are Nx1 given vectors in Rn. (This modification of A to
obtain D is called a rank-one update, since uvT has rank one.)

• In quasi-Newton methods, instead of the true Hessian, an initial
matrix H0 is chosen (usually, H0 = I), which is subsequently updated
by an update formula:

Hk+1 = Hk + Hk
u, where Hk

u is the update matrix.

• Since in the NR method, we really care about H-1, not H. The
updating is done for H-1. Let B = H-1; then the updating formula for
H-1 is also of the form:

Bk+1 = Bk + Bk
u

Quasi-Newton Methods

• Conjugate Method for Solving Ax = b

- Two non-zero vectors u and v are conjugate (with respect to A) if
uTAv = 0 (A=H symmetric and pd  <u,Av>= uTAv).

- Suppose we want to solve Ax=b. We have n mutually conjugate
directions, P (a basis of Rn). Then, x* = Σ αipi.

- Thus, b = Ax* = Σ αiApi.

- For any pK ∈ P,

pK
T b = pK

T Ax*= Σ αi pK
T Api= αK pK

T ApK

Or

αK = pK
T b / pK

T ApK

• Method for solving Ax = b: Find a sequence of n conjugate
directions, and then compute the coefficients αK.

Quasi-Newton Methods – Conjugate Gradient
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• Conjugate Gradient Methods

- Conjugate gradient methods “build” up information on H.

- From our standard starting point, we take a Taylor series expansion 
around the point 𝑥௞ ൅ 𝑠௞ :

Or

sK
T QK = sK

T𝑯 𝒙௞ sK

Quasi-Newton Methods – Conjugate Gradient
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Note: 𝑯 𝒙௞ , scaled by 𝑠௞ , can be approximated by the change in the
gradient:

𝑞௞ = 𝑓ሺ𝒙௞ାଵሻ – 𝑓ሺ𝒙௞ሻ

Hessian Matrix Updates

• Define 𝒈௞ = 𝑓ሺ𝒙௞ሻ

𝒑௞ = 𝒙௞ାଵ – 𝒙௞ and 𝒒௞ = 𝒈௞ାଵ – 𝒈௞

Then, 𝒒௞ = 𝒈௞ାଵ – 𝒈௞ ≈ 𝑯 𝒙௞ 𝒑௞ (secant condition).

If the Hessian is constant: 𝑯 𝒙௞ = H  qk = H pk

If H is constant, then the following condition would hold as well

𝑯௞
-1 qi = pi 0 ≤ 𝑖 ≤ 𝑘

This is called the quasi-Newton condition (also, inverse secant condition).

Let B = H-1, then the quasi-Newton condition becomes:

pi = 𝑩௞ qi 0 ≤ 𝑖 ≤ 𝑘.



RS – Num Opt

48

Rank One and Rank Two Updates

• Substitute the updating formula 𝑩௞ାଵ = 𝑩௞ + 𝑩௞
௨ and we get:

𝒑௜ = 𝑩௞ 𝒒௜ + 𝑩௞
௨𝒒௜ (1)

(remember: 𝒑௜ = 𝑥௜ାଵ െ 𝑥௜ & 𝒒௜ = 𝑔௜ାଵ െ 𝑔௜)

Note: There is no unique solution to finding the update matrix 𝑩௞
௨ .

• A general form is 𝑩௞
௨ = a uuT + b vvT

where a & b are scalars, & u and v are vectors satisfying condition (1).

Note: a uuT & b vvT are symmetric matrices of (at most) rank one.

Quasi-Newton methods that take b = 0 are using rank one updates.

Quasi-Newton methods that take b ≠ 0 are using rank two updates.

Note that b ≠ 0 provides more flexibility.

• Simple approach: Add new information to the current 𝑩௞. For
example, using a rank one update: 𝑩௞

௨ = 𝑩௞ାଵ െ 𝑩௞= uvT

pi = (𝑩௞+ uvT ) qi

pi - 𝑩௞ qi = uvT qi

 u = [1/(vTqi)] (pi – 𝑩௞ qi )

 Bk+1= 𝑩௞ + [1/(vTqi)] (pi – 𝑩௞ qi )vT

Set vT= (pi – 𝑩௞qi )

 𝑩௞ାଵ= 𝑩௞+ [1/((pi – 𝑩௞qi)Tqi)] (pi – 𝑩௞qi )(pi – 𝑩௞qi )T

• No systems of  linear equations need to be solved during an 
iteration; only matrix-vector multiplications are required, which are 
computationally simpler.  

Update Formulas: Rank One
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• Rank one updates are simple, but have limitations. It is difficult to
ensure that the approximate H is pd.

• Rank two updates are the most widely used schemes, since it is
easier to get the approximate H to be pd.

• Two popular rank two update formulas:

- Davidon -Fletcher-Powell (DFP) formula

- Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula.

Rank One and Rank Two Updates

Davidon-Fletcher-Powel (DFP) Formula

• Earliest (and one of the most clever) schemes for constructing the inverse
Hessian, H-1, was originally proposed by Davidon (1959) and later
developed by Fletcher and Powell (1963).

• It has the nice property that, for a quadratic objective, it simultaneously
generates the directions of the conjugate gradient method while
constructing H-1 (or B).

• Sketch of derivation:

- Rank two update for B: Bk+1 = Bk + a uuT + b vvT (*)

- Recall Bk+1 must satisfy the Inverse Secant Condition: Bk+1 qk = pk

- Post-multiply (*) by qk: pk - Bk qk =a uuT qk + b vvT qk (=0!)

- The RHS must be a linear combination of pk and Bk qk , and it is already a 
linear combination of u and v . Set u= pk & v=Bk qk .

- This makes a uTqk = 1,  & b vTqk = -1
- DFP update formula:

Bk+1 = Bk +  
pkpkT

pkTqk
    –  

BkqkqkTBk
qkTBkqk
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DFP Formula - Remarks

• It can be shown that if pk is a descent direction, then each Bk is pd. 

• The DFP Method benefits from picking an arbitrary pd B0, instead 
of evaluating H(x0)-1, but in this case the benefit is greater because 
computing an inverse matrix is very expensive. 

• If you select B0 = I, we use the steepest descent direction. 

• Once Bk is computed, the DFP Method computes 

𝒙௞ାଵ = 𝒙௞ - λk Bk  𝑓ሺ𝒙௞ሻ
where λk >0 is chosen to make sure 𝑓ሺ𝒙௞ାଵሻ < 𝑓ሺ𝒙௞ሻ (use an 
optimal search or line search.)

Broyden–Fletcher–Goldfarb–Shanno Formula

  Hk+1 = Hk +  
qkqkT

qkTpk
    –  

HkpkpkTHk
pkTHkpk

    

 
By taking the inverse, the BFGS update formula for Bk+1 is obtained: 

 Bk+1 = Bk +  (
1 + qkTBkqk

qkTpk
  )  

pkpkT

pkTqk
   –  

pkqkTBk + BkqkpkT

 qkTpk
    

• Remember secant condition: qi = Hk+1 pi and B-1
k+1 qi = pi 0≤i≤k.

Both equations have exactly the same form, except that qi and pi are 
interchanged and H is replaced by B (Bk=Hk ) (or vice versa).

Observation: Any update formula for B can be transformed into a 
corresponding complimentary formula for H by interchanging the roles 
of  B and H and of  q and p. The reverse is also true.

• BFGS formula update of  Hk: Take complimentary formula of  DFP: 
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Some Comments on Broyden Methods

• BFGS formula is more complicated than DFP, but straightforward
to apply.

• Under BFGS, if Bk is psd, then Bk+1 is also psd.

• BFGS update formula can be used exactly like DFP formula.

• Numerical experiments have shown that BFGS formula's
performance is superior over DFP formula.

• Both DFP and BFGS updates have symmetric rank two corrections
that are constructed from the vectors pk and Bkqk. Weighted
combinations of these formulae will therefore also have the same
properties.

• This observation leads to a whole collection of updates, know as the
Broyden family, defined by:

Bf = (1 – w ) BDFP + w BBFGS

where w is a parameter that may take any real value.

Quasi-Newton Algorithm

Note: You do have to calculate the vector of first order derivatives g
for each iteration.

1. Input x0, B0 (say, I), termination criteria.

2. For any k, set Sk = – Bkgk.

3. Compute a step size λ (e.g., by line search on f(xk + λ Sk)) and

set xk+1 = xk + λ Sk.

4. Compute the update matrix Bu
k according to a given formula (say,

DFP or BFGS) using the values qk = gk+1 – gk , pk = xk+1 – xk , and
Bk.

5. Set Bk+1 = Bk + Bu
k.

6. Continue with next k until termination criteria are satisfied.
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Some Closing Remarks

• Both DFP and BFGS methods have theoretical properties that
guarantee superlinear (fast) convergence rate and global convergence
under certain conditions.

• However, both methods could fail for general nonlinear problems. In
particular:

– DFP is highly sensitive to inaccuracies in line searches.

– Both methods can get stuck on a saddle-point. In NR method, a
saddle-point can be detected during modifications of the (true)
Hessian. Therefore, search around the final point when using quasi-
Newton methods.

– Update of Hessian becomes "corrupted" by round-off and other
inaccuracies.

• All kind of "tricks" such as scaling and preconditioning exist to boost
the performance of the methods.

Iterative approach

• In economics and finance, many maximization problems involve, 
sums of squares:

where x is a known data set and β is a set of unknown parameters. 

• The above problem can be solved by many nonlinear optimization 
algorithms:

- Steepest descent

- Newton-Raphson

- Gauss-Newton
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Gauss-Newton Method

• Gauss-Newton takes advantage of the quadratic nature of the 
problem. 

Algorithm:

Step 1: Initialize β = β0

Step 2: Update the parameter β. Determine optimal update, Δβ.
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Taylor series expansion

Note: This is a quadratic function of  Δβ. Straightforward solution.

where J is the Jacobian of f(β). Setting the gradient equal to zero:

Δβ =(JT J)-1 JT ε  LS solution!

• Notice the setting looks like the familiar linear model:
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Or, J Δβ = ε (A linear system of TxN equations)

Gauss-Newton Method
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• From the LS solution, the updating step involves an OLS regression:

βk+1 = βk + (JT J)-1 JT ε

A step-size, λk, can be easily added:

βk+1 = βk + λk (JT J)-1 JT ε

Note: The Guass-Newton method can be derived from the Newton-
Raphson’s method.

N-R’s updating step: βk+1 = βk – λk H-1 f (βk)

where H ≈ 2(JT J) –i.e., second derivatives are ignored

f (βk) = 2 JT ε

Gauss-Newton Method

• Non-Linear Least Squares (NLLS) framework:

yi = h (xi ; β) + εi

- Minimization problem:

- Iteration: bNLLS,k+1 = bNLLS,k + λk (JT J)-1 JT ε

where JT ε = –2 Σi δh(xi ; β)/δβk εi

(JTJ)-1 = –2 Σi δh(xi ; β)/δβk x δh(xi ; β)/δβk

Note: (JTJ)-1 ignored the term {– δ2h(xi ; β)/δβkδβk
T εi}.

Or, bNLLS,k+1 = bNLLS,k + λk (x0T x0)-1 x0T ε0 –x0= J(bNLLS,k)
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Gauss-Newton Method - Application
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• The most popular optimizers are optim and nlm: 

- optim gives you a choice of  different algorithms including Newton, 
quasi-Newton, conjugate gradient, Nelder-Mead and simulated 
annealing. The last two do not need gradient information, but tend 
to be slower. (The option method="L-BFGS-B“ allows for 
parameter constraints.)

- nlm uses a Newton algorithm. This can be fast, but if  f(xk) is far 
from quadratic, it can be slow or take you to a bad solution. (nlminb
can be used in the presence of  parameter constraints).

• Both optim and nlm have an option to calculate the Hessian, which is 
needed to calculate standard errors.

General Purpose Optimization Routines in R


