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• Class: 
– Tuesdays (11:00-1:00 and 2:00-4:00)
– Wednesdays (8:00-10:00) 

• Attendance is mandatory.Attendance is mandatory.
• Homework each week.
• At the end of week 4, project proposal is due.
• At the end of course, project is due.

• TA: 



Class Policyy
• There is no midterm
• But there is:• But there is:

– Homework
– Final Project
– Final ExamFinal Exam

• Work in groups of no more than 4 people.
• Homework, assigned at the end of each class, is due before Tue next 

week, 12am, in my and the TA’s email. Absolutely no delays allowed! , , y y y
• Project Proposal and Project: From beginning of class, start thinking of 

possible projects. I have a list of about 5 VERY INTERESTING 
projects, on topics that are of current research interest.

• A finished paper is expected by the end of class. The paper must 
contain original work and be of quality publishable in a good empirical 
journal. 



E i i l M th d i FiEmpirical Methods in Finance

•Empirical Finance/Economics has always been at the 
forefront of research

•The empirical tools are very useful, since:

•We want to capture features of the data (descriptive)

•We have to test hypotheses/models

•Models are approximations of reality

•We cannot conduct controlled experiments

•We want to conduct exploratory work (data mining)We want to conduct exploratory work (data mining)



•The empirical methods in finance have evolved to capture the 
“peculiarities’’ of financial data. If you have done work in 
probability statistics or engineering you will be familiar withprobability, statistics, or engineering, you will be familiar with 
some of the notions, but their use in finance might be different 
(e.g. estimation, forecasting, Kalman filtering). 

•There is a huge demand for capable econometricians on Wall 
Street. The ability to synthesize information into a few, easy to 
interpret statistics is an invaluable analytical tool.

•We will emphasize solid foundations and important 
li tiapplications.



In this class:

1. Basics of Probability and Statistics
2. Basics of Econometrics
3. Intro to Time Series
4. Time Series Linear Regression Models
5. Elements of Linear Algebra



1 Basics of Probability and Statistics

• The collection of all possible outcomes (ω) of a
random experiment is called a sample space and is
denoted by Ω.
– EX: Tossing a die, or Ω = {one spot, two spots, three spots

• Let event A be a subset of Ω, and let z be a
collection of all such subsets, such that z is a
σ-algebra
– EX: Let A be the event that we have at least three

spots, then A = {three spots, ..., six spots}
• Let’s define P (A) , the probability that A will occur,

such that
– P (A) ≥ 0 for every A ∈ z
– P (Ω) = 1

– If A1, A2, ... is a countable sequence of events
from z and Ai∩Aj is the null set for all i 6= j, then
P (∪∞i=1Ai) =

P∞
i=1P (Ai)

• Note the triple (Ω,z, P ) is a probability space

• We will work with random variables instead of
events.



• A random variable X is a real valued function
defined on Ω such that the set {ω : X (ω) ≤ x} is a
member of z for every real number x.

• Note: A random variable is discrete if the set of
outcomes is either finite or is countably infinite (EX:
number of trades in a given time period)

• Note: A random variable is continuous if the set of
outcomes is infinitely divisible.

• Example: The simple return Rt of an asset (any
asset) is defined as:

Rt =
Pt +Dt − Pt−1

Pt−1
Pt−1 (1 +Rt) = Pt +Dt

where Pt is the price at time t, Pt−1 is the price at
time t− 1, Dt is the dividend at time t.
– Rt, Pt, and Dt are random variables.
– Q: Continuous or discrete?



• If we denote fX(x) = PX (X = x) where X is a
discrete variable, then it can be shown that:
– 0 ≤ fX (x) ≤ 1
–
P

x f(xi) = 1

• For a continuous variable Y, fY (y) = 0, but
PY (a < y < b) =

R b

a fY (y) dy ≥ 0. Also PY (−∞ < y <∞) =R∞
−∞ fY (y) dy = 1.

• Cumulative distribution function (cdf) in discrete
case: FX(x) = P (X ≤ x) =

P
X≤x f(x)

• Cumulative distribution function (cdf) in continuous
case: FY (y) = P (Y ≤ y) =

R x

−∞ f(t)dt

• It can be shown that:
– 0 ≤ FX (x) ≤ 1
– If x > y, then FX (x) > FX(y).
– FX (+∞) = 1 and FX(−∞) = 0
– PX (a < x ≤ b) = FX(b)− FX(a)



• Expectation:
– The expected value of a discrete random variable
X is E (X) =

P
x xfX(x)

– The expected value of a continuous random
variable Y is E (Y ) =

R
y yfY (y)dy

– We usually denote the expectation of a variable,
also called its first moment, by µ. It is a “weighted
average” of the values taken by X, where the
weights are the respective probabilities.

• Let g(.) be a function of x. Then
– E (g(X)) =

P
x g(x)fX(x), if X is a discrete r.v.

– E (g(X)) =
R
x g(x)fX(x)dx, if X is a continuous

r.v.

• Using the above results, it is easy to see that if
g(x) = a + bx, then E (g(x)) = a + bE(x).



• Examples:
(a) Difference between expected return, E(Rt), and

realized return, Rt.
∗ Never to confuse one for the other!
∗ We model E(Rt)

∗ Rt is usually hard to forecast
(b) Portfolio Returns: Value-Weighted and Equally-

Weighted Portfolio Returns.
– ∗ Suppose we have two stocks with returns,

R1t and R2t , respectively. A portfolio return is
Rp

t = w1R1t + w2R2t , s.t. w1 + w2 = 1.

∗ E (Rp
t ) = w1E

¡
R1t
¢
+ w2E

¡
R2t
¢
.

∗ Suppose that w1 = w2 = 1/2. Both stocks are
equally weighted. This portfolio is called equally
weighted!
∗ Suppose that the market value of company 1

is 1 and that of company 2 is 3. Suppose we
define w1 = 1/4 and w2 = 3/4. This portfolio is
called value-weighted.



∗ Ex: The market portfolio is a value-weighted
portfolio.

• The variance of a discrete random variable X is
V ar (x) = E

h
(x− µx)

2
i
=
P

x (x− µx)
2 fx (x)

• The variance of a continuous random variable Y is
V ar (y) = E

h¡
y − µy

¢2i
=
R
y

¡
y − µy

¢2
fy (y) dy

• Note: The variance of a random variable X, usually
denoted by σ2x or V ar(x), is positive.

• Note: V ar(x) = E
h
(x− µx)

2
i
= E

£
x2 − 2xµx + µ2x

¤
=

E
£
x2
¤
− (E [x])2

• Note: Recall that E [x] was called the first moment
of X. Similarly, E

£
x2
¤

is called the second moment
of X.

• Note: V ar(x) = E
£
x2
¤
− (E [x])2 is called the

second centered moment of X.

• Let g() be a function of x. Then
– V ar(g(x)) =

P
x (g(x)−E [g (x)])2 fX(x), if X is a

discrete r.v.
– V ar(g(x)) =

R
x (g(x)−E [g (x)])2 fX(x)dx, if X is

a continuous r.v.

• Let g(x) = a + bx. Using the above results, we can
show that V ar (g(x)) = b2V ar(x).



• Two other useful moments:
– Skewness: E

h
(x− µx)

3
i

is used as a measure
of the asymmetry of a distribution. Note that for
a distribution that is symmetric around the mean,
we have fX (µ− x) = fX (µ + x) . Therefore, is
such a case, we can show that E

h
(x− µx)

3
i
= 0.

Skewness it the third centered moment of X.

– Kurtosis: E
h
(x− µx)

4
i

is used as a measure of
the “thickness” of the tails of a distribution.

• Note: It is not true that E (g(x)) = g(E(x)) for any
function g().

• Useful heuristics: g(x) ≈ g(x̃) + g0 (x̃) (x− x̃)
(Taylor’s expansion). But here we are working
we random variables. Let x̃ = µx. Then g(x) ≈
g(µx) + g0(µx) (x− µx) . Then,
– E (g(x)) ≈ g(µx)

– V ar(g(x)) ≈ [g0(µx)]2 V ar(x)



• Tremendously useful densities
– Normal density: fX (x) = 1√

2πσ2
e−

(x−µx)2
2σ2 . The usual

notation is X ∼ N(µx, σ
2).

∗ It is important to note that if X has a normal
distribution, it is characterized by its first two
moments. I.e. if we know µx and σ2, we know
the entire distribution of X.

∗ If X ∼ N(µx, σ
2), and Y = a + bX, then

Y ∼ N(a+ bµx, b
2σ2).

∗ Let Z = a + bX where a = −µx/σ and b = 1/σ.
Then Z ∼ N(0, 1). We say that Z has a standard
normal distribution, denoted by N (0, 1) . Note
that the standard normal distribution does not
depend on any parameters. In other words,
fZ (z) =

1√
2π
e−

z2

2 can be plotted.



– Chi-squared (χ2) distribution: If Z ∼ N(0, 1) and
X = Z2, then X ∼ χ2 (1) , i.e. X has a chi-squared
distribution with 1 degree of freedom.

– If X1, X2, ... Xn are n independent χ2 (1) variables
and Y =

Pn
i=1Xi, then Y ∼ χ2 (n) , i.e. Y

has a chi-squared distribution with n degrees of
freedom.
∗ Note: The χ2 distribution is characterized by its

degree of freedom (so, if we want to plot the
chi-squared distribution, we have to do so for
each value of n).
∗ Note: The mean and variance of a chi-squared

variable with n degrees of freedom are n and
2n, respecively. In other words, E (Y ) = n and
V ar (Y ) = 2n.

∗ Note: If Z1, Z2, ... Zn are n independent
standard normal r.v’s, then Y =

Pn
i=1Z

2
i ∼

χ2 (n)

∗ If Y1 and Y2 are two independent chi-squared
r.v’s with n1 and n2 degrees of freedom, then
Y1 + Y2 ∼ χ2 (n1 + n2)

∗ Note: Many statistical tests will have a chi-
squared distribution, because they will be
constructed by taking squares of standard
normal variables.



– F distribution: If X1 and X2 are two independent
chi-squared variables with degree of freedom
parameters n1 and n2, respectively. Then, the
ratio

Y =
X1/n1
X2/n2

has an F distribution with (n1, n2) degrees of
freedom.
∗ Note: The F distribution is characterized by its

two degrees of freedom (so, if we want to plot
the F distribution, we have to do so for each pair
(n1, n2)).
∗ Note: Many statistical tests will have a F

distribution, because they will be constructed by
taking ratios of chi-squared variables.
∗ Note: The independence assumption is crucial.



– t distribution: If Z ∼ N(0, 1) and Y ∼ χ2(n), then

T =
Zp
Y/n

has a t distribution with n degrees of freedom.
∗ Note: The t distribution is characterized by its

degree of freedom (so, if we want to plot the
chi-squared distribution, we have to do so for
each value of n).
∗ The t-distribution “looks” like the normal dis-

tribution but has thicker tails. It is used in
empirical finance to model the distribution of
stock returns.
∗ Note: T 2 = Z2/1

Y/n has what distribution?
∗ Note: T (n → ∞) has a standard normal

distribution.



– Lognormal distribution
∗ Suppose that X ∼ N(µ, σ2) and Y = eX, then Y

has a lognormal distribution if ln(Y ) ∼ N(µ, σ2).

∗ E (Y ) = eµ+σ
2/2

∗ V ar(Y ) =
³
eσ

2 − 1
´
e2µ+σ

2.

∗ In the above definition, we started with a
standard normal variable and derived the
moments of the lognormal variable. But the
other way around also works. If Y is a lognormal
distribution with mean θ and variance λ2, then
ln(Y ) ∼ N(µ, σ2), where µ = ln θ2−12 ln

¡
θ2 + λ2

¢
and σ2 = ln

¡
1 + λ2/θ2

¢
.



– Use of lognormality in finance: Let

1 +Rt =
Pt +Dt

Pt−1
where Rt is the simple return between periods
t − 1 and t, Pt is the price at time t, Dt is the
dividend at time t. (1 +Rt) is called the gross
simple return between periods t − 1 and t. Let
rt be the continuously compounded one-period
return (between t− 1 and t). We define rt as:

Pt−1 (1 + rt∆)
1/∆ = Pt +Dt

as ∆→ 0. But lim∆→0 (1 + rt∆)
1/∆ = ert. Assume

Dt = 0 for all t. Therefore
Pt−1e

rt = Pt

Similarly, the 2-period continuously compounded
return (between t− 2 and t) is

Pt−2e
rt−2,t = Pt

– It is even easier in logs:
lnPt−1 + rt = lnPt

lnPt − lnPt−1 = rt
The log (or continuously compounded) return is

the first difference of log prices.



– This is convenient, because:
Pt−2e

rt−1 = Pt−1
Pt−1e

rt = Pt

and then
Pt−2e

rt−1ert = Pt−2e
rt−1+rt = Pt−2e

rt−2,t = Pt

– Similarly in logs:
rt−2,t = lnPt−lnPt−2 = (lnPt − lnPt−1)+(lnPt−1 − lnPt−2) = r

– Punchline: The two-period continuously com-
pounded return is equal to the sum of the
one-period continuously compounded returns, or
rt−2,t = rt + rt−1.

– The same argument would carry through for
a k-period continuously compounded return
rt−k,t = rt−k+1 + ... + rt



– Q: What does this have to do with lognormality?
Pt−1 (1 +Rt) = Pt

Pt−1e
rt = Pt

Then,
Rt = ert − 1

∗ Assume that rt ∼ N(µ, σ2), then Rt has a
lognormal distribution.
E (Rt) = eµ+σ

2/2 − 1
V ar(Rt) = e2µ+σ

2
³
eσ

2 − 1
´

∗ Alternatively, if we assume that the mean and
variance of the simple return Rt are θ and λ2,
then
E (rt) = ...
V ar(rt) = ...
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– Plot of rt for the market portfolio.



– Multivariate: The joint distribution of X and Y,
denoted by fX,Y (x, y) is defined so that

– P (a < x < b, c < y < d) =
R b

a

R d

c fX,Y (x, y) dydx,
for continuous X and Y.

– P (a < x < b, c < y < d) =
P

a<x<b

P
c<y<d

fX,Y (x, y) dydx, for discrete X and Y.

– The cumulative distribution function FX,Y (x, y) =
P (X ≤ x, Y ≤ y)

– Also, FX,Y (−∞,−∞) = 0 and FX,Y (∞,∞) = 1,
etc.

– Marginal density:
∗ The marginal density of X, fX(x) =

R
y fX,Y (x, y) dy,

if y is continuous
∗ The marginal density of X, fX(x) =

P
y fX,Y (x, y) ,

if y is discrete
∗ Similarly for fY (y) .

– Independence: Two random variables X and Y
are statistically independent if and only if

fX,Y (x, y) = fX (x) fY (y)

– Alternatively, two random variables X and Y are
statistically independent if and only if

FX,Y (x, y) = FX (x)FY (y)



– Note that the above calculations and definitions
are still true:
∗ EX: E (X) =

R
x xfX (x) dx =

R
x

R
y xfX,Y (x, y) dydx

∗ Similarly for variances, etc.
– For any function g(., .), E (g (., .)) =

P
x

P
y g (x, y) fX,Y (x, y

– The covariance is a special case, for g (x, y) =
(x− µx)

¡
y − µy

¢
.

Cov(X,Y ) = σx,y = E
¡
(x− µx)

¡
y − µy

¢¢
= E (xy)− µxµy

– If X and Y are independent, then

σx,y =

Z
x

Z
y

(x− µx)
¡
y − µy

¢
fX,Y (x, y) dydx

=

Z
x

Z
y

(x− µx)
¡
y − µy

¢
fX (x) fY (y) dydx

=

Z
x

(x− µx) fX (x) dx

Z
y

¡
y − µy

¢
fY (y) dy

= E (x− µx)E
¡
y − µy

¢
= 0



– IMPORTANT: The other way is not true.
∗ Example: corr_sim.m

– Correlation:
ρx,y =

σX,Yp
σ2X
p
σ2Y

– Conclusion: Covariances and correlations are
appropriate measures of DEPENDENCE only
when we have LINEAR relationships.



– Conditioning: We can ask, what is the distribution
of Y , given that X is a certain number. In other
words, we want

fY |X (y|x) =
fX,Y (x, y)

fX (x)
Similarly,

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

– If X and Y are statistically independent, then
fY |X (y|x) = fY (y) and fX|Y (x|y) = fX (x) .



2 Basics of Econometrics

• Conditional Mean–Regression (regression function)
– Suppose that X and Y have a joint distribution
fX,Y (x, y) . Then E (y|x) =

R
y yfY |X (y|x) dy is

called the regression of y on x.

– Why is this a useful relationship?
∗ Any variable Y can be written as:

y = E (y|x) + {y −E (y|x)}
= E (y|x) + ε

∗ The first term is called the systematic part of y.
∗ Note that the regression E (y|x) is a function of
x.



• Important: In finance, some of the most important
models are linear
– Example: the CAPM
∗ The return of asset i, Ri is a random variable.

The risk free rate is denoted by rf.

∗ RM is the return of the entire market and it is
also a random variable
∗ Suppose we can write

Ri = rf + βi(RM − rf) + εi

∗ Suppose that E (εi|RM) = Ri −E (Ri|RM) = 0

∗ Then, the conditional mean is:
E (Ri|RM) = rf + βi

¡
RM − rf

¢
∗ Also, note that the unconditional mean is

(assuming E (εi) = 0):
E (Ri) = rf + βiE

¡
RM − rf

¢
∗ Can you see the difference between the

conditional and the unconditional mean?
∗ The CAPM is usually written in terms of excess

returns, i.e.
E
¡
Ri − rf

¢
= αi + βiE

¡
RM − rf

¢



• Conditional Variance–Scedasticity (scedastic func-
tion)
– Suppose that X and Y have a joint distribution
fX,Y (x, y) . Then V ar (y|x) =

R
y (y −E (Y |X))2 fY |X (y|x) d

is called the conditional variance of y.
– We can simply write V ar (y|x) = E

¡
y2|x

¢
−

(E (y|x))2

– Before we can compute V ar (y|x) , we have to
know E (y|x)

– Note: Scedasticity is a function of x. People are
used to assume V ar (y|x) = V ar(y). In such
a case, y is homoskedastic. Otherwise, it is
heteroskedastic. In finance, the homoskedasticity
is not a tenable assumption (for returns).

– Example: GARCH (Generalized Autoregressive
Conditional Heteroskedasticity)
∗ I.e., The variance today depends on the

variance yesterday ( the “auto-regressive” part)
and it changes over time (the “conditional
heteroskedastic” part).



– Relationship between Marginal and Conditional
Moments: Law of Iterated Expectations

E (y) = Ex (E (y|x))
∗ Note: The first expectation is the conditional

expectation, taken with respect to fY |X (y|x) . It
produces the regression, a function of x.
∗ Note: The second expectation is taken with

respect to fX (x) . The result is a number.
∗ This result is very useful and will be used

repeatedly in this class.



• Law of Iterated Expectations: Precise formulation
of the Efficient Markets Hypothesis
– Suppose that It denotes the information at time
t. Similarly It+1 denotes the information at time
t + 1.

– Let It ⊂ It+1 (we don’t forget, and we learn extra
stuff)

– We value a certain asset with fundamental value
V. Then, we can write the price at time t (today):

Pt = E (V |It) = Et (V )

– At time t + 1 (tomorrow), similarly
Pt+1 = E (V |It+1) = Et+1 (V )

• Q: Can we forecast changes in prices? Well,
Et (Pt+1 − Pt) = Et (E (V |It+1))−Et (Pt)

= E (E (V |It+1) |It)−E (V |It)
= E (V |It)−E (V |It)
= 0

• In other words, EtPt+1 = Pt. Such a process is
called m_____le.

• If we define a process et+1 = Pt+1 − Pt, then
et is called a martingale difference sequence if
E(et|et−1,et−2, ....) = 0



• – Example of Conditional Expectations: Linear
regression.

y = E (y|x) + ε

Thus far, we have said nothing about E (y|x)
except that it is a function of x.
∗ Suppose that E (y|x) = α + βx.

∗ Then, using the law of iterated expectations
α = E (y)− βE (x)

∗ To get β, we note that
Cov (x, y) = cov (x,E (y|x))

= cov (x, α + βx)

= βV ar(x)

∗ Therefore,

β =
Cov (x, y)

V ar(x)



– Decomposition of Variance (ANOVA):
∗ Another useful trick:

V ar(y) = V arx (E (y|x)) + Ex (V ar (y|x))
In other words, the variance of y can be
decomposed into
· Variance of the conditional expectation (vari-

ance of the regression)
· Expected value of the variance around the

conditional mean (residual variance)
∗ We can write:

1 =
V arx (E (y|x))

V ar(y)
+
Ex (V ar (y|x))

V ar(y)



– Sample: Collection of observations.
– Random sample: A sample of n observations

denoted by {xi}ni=1 is a random sample if the n
observations are drawn independently from the
same population, or density fθ (x) , where θ are
the parameters of the distribution

– We will estimate the population parameters, such
as µ and σ2 using their sample analogues.

– The estimate of µ is: x =
Pn

i=1 xi
1
n.

– The estimate of σ2 is s2 =
Pn

i=1 (xi − x)2 1
n−1

– Note: If we have a truly random sample, then
everything is easy, but we don’t....



– We will distinguish between three (non-random)
samples:
∗ a cross section is a sample drawn at the same

point in time (prices of stocks at the close of
market today).
∗ a time series is a sample drawn from the same

observational unit at various points in time
(price of the stock market everyday for the last
30 years).
∗ a panel data is a sample of many observations,

followed at various points in time. (daily prices
of all stocks for the past 30 years)

– This distinction is necessary because the samples
present different issues to deal with.

– Note that if we know the exact distribution
fθ (x) (functional form and θ), then we know the
properties of x. However, we don’t know fθ (x) .

– However, we observe a sample of a finite number
of observations and want to infer the properties of
X (its mean, variance, and entire distribution).



• A time series will be denoted by {rt} , t = 1, ..., T
• A cross section will be denoted by {qi} , i = 1, ..., N
• Note: In finance, we don’t have random samples

and herein lies the problem.

• Note: The samples of stock and bond returns were
examples of two time series

• Together, they constitute a (small) panel dataset.

• We will devote most of our time at studying time
series processes.



3 Intro to Time Series

• Suppose we have a sample of size T of inde-
pendent and identically distributed (iid) variables
{εt}Tt=1 . Then εt is called a white noise.

• If we add the assumption the the distribution of
(all εt) is Normal, then εt is called a Gaussian (or
Normal) white noise.

• Suppose we have observed a sample of size T of
some random variable, Yt: {yt}Tt=1

• Supoose we observe another sample of Yt, denoted
by
©
y1t
ªT
t=1

.

• Then we observe another, and another and another
sample of Yt, denoted by

©
yit
ªT
t=1

, i = 1, ..., I.

• Let’s suppose that the samples are independent.



• The variable Yt has some density, fYt (yt) and
expectation E (Yt) =

R
yt fYt (yt) dyt = µt

• We approximate E (Yt) ≈ 1
I

PI
i=1 y

i
t = yt

• Similarly, V ar(Yt) =
R
(yt − µt)

2 fYt (yt) dyt = γt (0)

• We approximate V ar (Yt) ≈ 1
I

PI
i=1

¡
yit − yt

¢2
=

γ̂t (0)

• Define: Cov (Yt, Yt−j) = γt (j) =
R R

...
R
(yt − µt)

¡
yt−j − µt−

fYt,Yt−1,...Yt−j (yt, yt−1, ..., yt−j) dytdyt−1...dyt−j

• Note: Cov (εtεt−j) = 0 for j 6= 0.
• Note: We can compute γt (j) for all j. This is called

the autocovariance function of Yt. It captures the
time-dependence between Yt and Yt−j for various
j0s.



• Covariance stationarity: If neither µt nor γt (j)
depend on t, then the process Yt is said to be
covariance stationary (or weakly stationary). In
other words
– E (Yt) = µ, for all t.
– E (Yt − µ) (Yt−j − µ) = γ (j) , for all t and any j.

• Example. Suppose that Yt = βt + εt, where εt is
gaussian white noise. Is Yt covariance stationary?
Why?

• Example: Suppose that Yt = εt, where εt is
gaussian white noise. Is Yt covariance stationary?
Why?

• Note: For a covariance stationary process
E (Yt − µ) (Yt−j − µ) = E (Yt − µ) (Yt+j − µ) = γ (j)

• Strict stationarity: The joint distribution of (Yt+j1, Yt+j2,...,Yt+jk)
depends only on the intervals separating the dates
(j1, j2, ...jk) and not on the date t itself.

• We will work mostly with covariance stationarity.



• So far so good, but we usually have only one
observation of a series. Think of stock market. Or,
we do not have many independent observations of
a time series.

• Q: What to do? How can we estimate E (Yt)?

• In practice, we have
¡
y1t
¢T
t=1

• It is tempting to estimate y = 1
T

PT
t=1 y

1
t , but is it true

that y ≈ E(Yt) = µ.

• Definition: A covariance stationary process is said
to be ergodic for the mean if

p lim
T→∞

1

T

TX
t=1

y1t = µ

• If Yt is covariance stationary, it is sufficient that
Σ∞j=0 |γ (j)| < ∞ for the process to be ergodic for
the mean. The above condition is called absolute
summability.



• Definition: A covariance stationary process is said
to be ergodic for the second moments if

p lim
T→∞

1

T − k

TX
t=1

¡
y1t − µ

¢ ¡
y1t−k − µ

¢
= γ (k)

• In the special case where Yt is Gaussian (station-
ary) process, then absolute summability is enough
to insure ergodicity for all moments.



An interesting time series process: Autoregres-
sive process of order 1 (AR(1))

Yt = c + φYt−1 + εt
where {εt} is a white noise sequence (uncorre-

lated, with mean zero and variance σ2).
• Note: The parameter φ is very important.

– If φ = 0, Yt = εt.

– If φ = 1, Yt is non-stationary.

• Suppose |φ| < 1. Then E (Yt) =
c
1−φ

• Similarly, γ(0) = σ2

1−φ2

• Also, γ(j) = σ2

1−φ2φ
j

• The autocorrelation function ρ (j) = γ(j)/ γ(0) = φj.



• Note that, Pt = Pt−1 + εt is an example of an
autoregressive process with φ = 1.

• Q: Is Pt stationary? Why? (Hint: Think second
moments)

• Q: Suppose that rt the (continuously compounded)
return. Suppose that rt = c + φrt−1 + εt, where εt is
white noise. Under the efficient market hypothesis,
what is the magnitude of φ? Should c be equal to
zero?

• Q: What is E (rt) =?

• Q: What is Et−1 (rt) =?

• Q: What is the difference?



The process
Yt = c + φYt−1 + εt

is governed by the parameter φ. How do we
estimate φ? Are there other parameters to estimate?
How do we estimate those parameters?
• Idea: Treat Yt as the left hand side variable in a

regression and Yt−1 as the right hand side variable.

• Q: Is this legitimate?



4 Time Series Linear Regression Models

yt = xtβ + εt
• Given the observations (yt, xt) , the ordinary least

squares estimate of β, denoted by β̂
ols
, or simply β̂,

is the value of β that minimized the residual sum of
squares, or

β̂
ols
= argmin

b
ΣT
t=1 (yt − xtβ)

2

• The solution is
β̂ =

¡
ΣT
t=1xtxt

¢−1 ¡
ΣT
t=1xtyt

¢
• Recall (β = cov/var)

• Note that
β̂ =

¡
ΣT
t=1xtxt

¢−1 ¡
ΣT
t=1xtyt

¢
=
¡
ΣT
t=1xtxt

¢−1 ¡
ΣT
t=1xt (xtβ + εt)

¢
=
¡
ΣT
t=1xtxt

¢−1 ¡
ΣT
t=1xtxt

¢
β +

¡
ΣT
t=1xtxt

¢−1
ΣT
t=1xtεt

= β +
¡
ΣT
t=1xtxt

¢−1
ΣT
t=1xtεt



• Note:
β̂ − β =

¡
ΣT
t=1xtxt

¢−1
ΣT
t=1xtεt

• If β̂ is a good estimate of β, it better be the case
that

¡
ΣT
t=1xtxt

¢−1
ΣT
t=1xtεt is small. In fact, we can

argue that this piece is “small” and “decreases” as
T →∞. For that, we need that E (xtεt) = 0. Then,
we can argue that plimT→∞

1
TΣ

T
t=1xtεt = E (xtεt) = 0

and that 1TΣ
T
t=1xtxt converges to a finite number.

• Next class, we will discuss the properties of β̂ in
details.

• Now, we want to build some intuition: simpleregres-
sion.m and simpleregression2.m



• But we have not answered whether it is legitimate
to run the regression

Yt = c + φYt−1 + εt

• When I say “legitimate,” I mean would we get
consistent estimates of the parameters of interest.

• From the above discussion we need that E (Yt−1εt) =
0.

• Note that we can write
Yt−1 = c + φYt−2 + εt−1

= c + φ [c + φYt−3 + εt−2] + εt−1
= c + φc + φ2Yt−3 + εt−1 + φεt−2

=
c

1− φ
+
∞X
i=0

φiεt−1−i

• Hence, we need

E

Ã" ∞X
i=0

φiεt−1−i

#
εt

!
= 0

• In other words, we need the ε0ts to be serially
uncorrelated.

• If we have serially correlated ε0s, we have to take
that correlation into account.



• Let’s look at the bivariate forecasting relation:
yt = xt−1β + εt

• Note, xt−1 forecasts (lags) yt.

• This is not a contemporaneous relation.

• We need that E (xt−1εt) = 0.

• Suppose that
xt = φxt−1 + ut

• In other words, xt is an autoregressive process.

• We will need that E (εtut−j) = 0 all j0s.

• If this is not the case, we will have problems!

• The problems will be more severe for more persis-
tent xt.

• Aside: How can we define persistence?

• All this will become intuitive.



5 Elements of Linear Algebra

• – We are almost there! Now we have to sprint
through linear algebra.

– A k-dimentional vector µ is defined as µ =

⎡⎢⎢⎣
µ1
µ1
:
µk

⎤⎥⎥⎦ .

– A k by k matrix Σ is defined as
P
=

⎡⎢⎢⎣
σ211 σ212 σ21k
σ221 σ222

σ211 σ2kk

⎤⎥⎥⎦
– We all know what is a symmetric, diagonal,

triangular and an identity matrix.
– Idempotent matrix: If M is idempotent, then
MM =M.

– Idempotent symmetric matrix: M 0M =M.



– A matrix M is invertible if there exist a matrix M−1

such that MM−1 =M−1M = I

– Linear form: let r and w be two k dimentional
vectors. Then R = r0w is a linear form.

– Quadratic form: If A is a symmetric matrix, then
Q = w0Qw is a quadratic form.
∗ If Q > (≥) for all non-zero w, then A is positive

definite (semidefinite)
∗ If Q < (≤) for all non-zero w, then A is negative

definite (semidefinite)



– Suppose that the return on stocks is r1 and the
return on bonds is r2.

– Let E (r1) = µ1 and E (r2) = µ2.

– Let V ar(r1) = σ21, V ar(r2) = σ22, and Cov(r1, r2) =
σ12.

– Supose that we invest w of our wealth in stocks
and the rest, 1 − w, in bonds. The return from
such a portfolio is rp = wr1 + (1− w) r2

– The expected return from the portfolio is: E (rp) =

[w (1− w)]

∙
µ1
µ2

¸
= wµ1 + (1− w)µ2.

– The variance of such a portfolio is: V ar(rp) = [w

(1− w)]

∙
σ21 σ12
σ12 σ22

¸ ∙
w

1− w

¸
= w0Σw



• – In finance, matrix algebra is very useful when we
work with portfolios.

– Portfolio choice problems: What fraction of your
wealth shoud be invested in stocks and how much
in bonds, given that you want a certain level of
return from the portfolio?

– Mean Variance: Portfolio p is a minimum variance
portfolio of all portfolios with mean return µp if
its portfolio weights vector is the solution to the
following problem:

min
w

w0Σw

subject to
w0µ = µp
w0e = 1

– You should know by now what is the solution to
this problem.

– One of the most unrealistic assumptions of the
above setup is the homoskedasticity assumption.
There is ample evidence that variances vary over
time. Modelling such variations is one of the goals
of this class.



– Before we can solve the minimization problem
above, we have to know what Σ and µ are, i.e.
we have to know the mean and the variance-
covariance of the return vector.

– Since we don’t know what the true mean is, we
have to estimate it.

– Hence, we are faced with two problems, or rather
one problem that must be approached in two
steps:
∗ Step1: Estimate Σ and µ

∗ Step2: Given the estimates of Σ and µ, say Σ̂
and µ̂, we solve the minimization problem.

– In practice, step 2 is very heavily influenced
by small errors in the estimation of Σ and µ.
Therefore, one must have good estimators of
those parameters. But this is not always possible
if we have, say 10,000 returns.


