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THE BOOTSTRAP
1. INTRODUCTION

The bootstrap is a method for estimating the distribution of an estimator or test statistic by
resampling one’ s data. It amounts to treating the data as if they were the population for the purpose
of evauating the distribution of interest. Under mild regularity conditions, the bootstrap yields an
approximation to the distribution of an estimator or test dtatistic that is at least as accurate as the
approximation obtained from first-order asymptotic theory. Thus, the bootstrap provides a way to
substitute computation for mathematical analysis if calculating the asymptotic distribution of an
estimator or gtatistic is difficult. The statistic developed by Hérdle et al. (1991) for testing positive-
definiteness of income-effect matrices, the conditional Kolmogorov test of Andrews (1997a),
Stute's (1997) specification test for parametric regresson models, and certain functions of time-
series data (Blanchard and Quah 1989, Runkle 1987, West 1990) are examples in which evaluating
the asymptotic distribution is difficult and bootstrapping has been used as an aternative.

In fact, the bootstrap is often more accurate in finite samples than first-order asymptotic
approximations but does not entail the algebraic complexity of higher-order expansions. Thus, it
can provide a practical method for improving upon first-order approximations. Such improvements
are caled asymptotic refinements. One use of the bootstrap’s ability to provide asymptotic
refinements is bias reduction. It is not unusual for an asymptotically unbiased estimator to have a
large finite-sample bias. This bias may cause the estimator’s finite-sample mean square error to
greatly exceed the mean-square error implied by its asymptotic distribution. The bootstrap can be
used to reduce the estimator’ s finite-sample bias and, thereby, its finite-sample mean-square error.

The bootstrap’s ability to provide asymptotic refinements is also important in hypothesis
testing. First-order asymptotic theory often gives poor approximations to the distributions of test
dtatistics with the sample sizes available in applications. As aresult, the nominal probability that a
test based on an asymptotic critical vaue rejects a true null hypothesis can be very different from

the true rejection probability (RP)." The information matrix test of White (1982) is a well-known



example of atest in which large finite-sample errors in the RP can occur when asymptotic critical
values are used (Horowitz 1994, Kennan and Neumann 1988, Orme 1990, Taylor 1987). Other
illugtrations are given later in this chapter. The bootstrap often provides a tractable way to reduce or
eliminate finite-sample errors in the RP s of Statistical tests.

The problem of obtaining critical vaues for test datistics is closdy related to that of
obtaining confidence intervals. Accordingly, the bootstrap can also be used to obtain confidence
intervals with reduced errors in coverage probabilities. That is, the difference between the true and
nomina coverage probabilities is often lower when the bootstrap is used than when first-order
asymptotic approximations are used to obtain a confidence interval.

The bootstrap has been the object of much research in dtatistics since its introduction by
Efron (1979). The results of this research are synthesized in the books by Beran and Ducharme
(1991), Davison and Hinkley (1997), Efron and Tibshirani (1993), Hall (1992a), Mammen (1992),
and Shao and Tu (1995). Hal (1994), Horowitz (1997), Maddala and Jeong (1996) and Vinod
(1993) provide reviews with an econometric orientation. This chapter covers a broader range of
topics than do these reviews. Topicsthat are treated here but only briefly or not at al in the reviews
include bootstrap consistency, subsampling, bias reduction, time-series models with unit roots,
semiparametric and nonparametric models, and certain types of non-smooth models. Some of these
topics are not treated in existing books on the bootstrap.

The purpose of this chapter is to explain and illustrate the usefulness and limitations of the
bootstrap in contexts of interest in econometrics. Particular emphasis is given to the bootstrap’s
ability to improve upon first-order asymptotic approximations. The presentation is informa and
expoditory. Its am is to provide an intuitive understanding of how the bootstrap works and a
feeling for its practical value in econometrics. The discussion in this chapter does not provide a
mathematically detailed or rigorous trestment of the theory of the bootstrap. Such treatments are
available in the books by Beran and Ducharme (1991) and Hall (1992a) as well asin journd articles

that are cited later in this chapter.



It should be borne in mind throughout this chapter that although the bootstrap often provides
smaller biases, smaler errorsin the RP s of tests, and smaller errors in the coverage probabilities of
confidence intervals than does first-order asymptotic theory, bootstrap bias estimates, RP's, and
confidence intervals are, nonetheless, approximations and not exact. Although the accuracy of
bootstrap approximations is often very high, thisis not aways the case. Even when theory indicates
that it provides asymptotic refinements, the bootstrap’s numerical performance may be poor. In
some cases, the numerical accuracy of bootstrap approximations may be even worse than the
accuracy of first-order asymptotic approximations. This is particularly likely to happen with
estimators whose asymptotic covariance matrices are “nearly singular,” as in instrumental -variables
estimation with poorly correlated instruments and regressors.  Thus, the bootstrap should not be
used blindly or uncritically.

However, in the many cases where the bootstrap works well, it essentially removes getting
the RP or coverage probability right as afactor in selecting atest statistic or method for constructing
a confidence interval. In addition, the bootstrap can provide dramatic reductions in the finite-
sample biases and mean-square errors of certain estimators.

The remainder of this chapter is divided into five sections. Section 2 explains the bootstrap
sampling procedure and gives conditions under which the bootstrap distribution of a tatistic is a
consistent estimator of the statistic’s asymptotic distribution. Section 3 explains when and why the
bootstrap provides asymptotic refinements. This section concentrates on data that are smple
random samples from a didtribution and statistics that are either smooth functions of sample
moments or can be approximated with asymptotically negligible error by such functions (the
smooth function model). Section 4 extends the results of Section 3 to dependent data and statistics
that do not satisfy the assumptions of the smooth function model. Section 5 presents Monte Carlo
evidence on the numerical performance of the bootstrap in a variety of settings that are relevant to

econometrics, and Section 6 presents concluding comments.



2. THE BOOTSTRAP SAMPLING PROCEDURE AND ITSCONSISTENCY
The bootstrap is a method for estimating the distribution of a statistic or a feature of the
distribution, such as a moment or a quantile. This section explains how the bootstrap is
implemented in simple settings and gives conditions under which it provides a consistent
estimator of a statistic's asymptotic distribution. This section also gives examples in which the
consistency conditions are not satisfied and the bootstrap is inconsistent.

The estimation problem to be solved may be stated as follows. Let the data be a random
sample of size n from a probability distribution whose cumulative distribution function (CDF) is Fo.
Denote the data by {X;: i =1, .., n}. Let Fy belong to a finite- or infinite-dimensiona family of
distribution functions, A. Let F denote a general member of A. If A is afinite-dimensiona family
indexed by the parameter q whose population value is go, Write Fo(X, qo) for P(X £ x) and F(x, q) for
a general member of the parametric family. Let T, = Ty(Xy, ..., X,) be adatigtic (that is, a function
of the data). Let Gy(t, Fg) © P(T, £ t) dencte the exact, finite-sample CDF of T, Let Gy(x F)
denote the exact CDF of T, when the data are sampled from the distribution whose CDF is F.
Usuadly, Gy(t, F) is a different function of t for different distributions F.  An exception occurs if
Gn(% F) does not depend on F, in which case T, is said to be pivotal. For example, thet statistic for
testing a hypothesis about the mean of a normal population is independent of unknown population
parameters and, therefore, ispivotal. The sameistrue of thet statistic for testing a hypothesis about
a dope coefficient in a normal linear regresson model. Pivotal statistics are not available in most
econometric applications, however, especially without making strong distributional assumptions
(eg., the assumption that the random component of a linear regresson modd is normaly
distributed). Therefore, G,(% F) usually depends on F, and G,(% Fo) cannot be calculated if, asis
usually the case in applications, Fy is unknown. The bootstrap is a method for estimating Gn(% Fo)

or features of G,(% Fg) such asits quantiles when Fq is unknown.



Asymptotic distribution theory is another method for estimating G,(% Fg). The asymptotic
distributions of many econometric statistics are standard normal or chi-square, possibly after
centering and normalization, regardiess of the distribution from which the data were sampled.
Such statistics are called asymptotically pivotal, meaning that their asymptotic distributions do
not depend on unknown population parameters. Let Gy (% Fo) denote the asymptotic distribution
of T,. Let Gy(% F) denote the asymptotic CDF of T, when the data are sampled from the
distribution whose CDF is F. If T, is asymptotically pivotal, then Gy(x F) © Gy (¥ does not
depend on F. Therefore, if n is sufficiently large, Gn(% Fo) can be estimated by Gy (¥ without
knowing Fo. This method for estimating Gn(% Fo) is often easy to implement and is widely used.
However, as was discussed in Section 1, G¢(¥ can be avery poor approximation to Gn(% Fg) with
samples of the sizes encountered in applications.

Econometric parameter estimators usually are not asymptoticaly pivotal (that is, their
asymptotic distributions usually depend on one or more unknown population parameters), but
many are asymptotically normaly distributed. If an estimator is asymptotically normally
distributed, then its asymptotic distribution depends on at most two unknown parameters, the
mean and the variance, that can often be estimated without great difficulty. The normal
distribution with the estimated mean and variance can then be used to approximate the unknown
Gn(% Fo) if nissufficiently large.

The bootstrap provides an alternative approximation to the finite-sample distribution of a
statistic Ty(Xy, ..., Xn). Whereas first-order asymptotic approximations replace the unknown
distribution function G, with the known function Gy, the bootstrap replaces the unknown
distribution function F with a known estimator. Let F, denote the estimator of F,. Two possible
choices of F, are;

(1) Theempirica distribution function (EDF) of the data:



F00= T8 106 £,
i=1

where | is the indicator function. It follows from the Glivenko-Cantelli theorem that Fn(x) ®
Fo(X) asn® ¥ uniformly over x almost surely.

(2) A parametric estimator of Fo. Suppose that Fo(® = F(% qo) for some finite-dimensional
o that is estimated consistently by q,. If F(% q) is a continuous function of g in a neighborhood
of go, then F(x, g,) ® F(X, go) asn ® ¥ at each x. The convergence is in probability or almost
sure according to whether g, ® g in probability or almost surely.
Other possible F,' s are discussed in Section 3.7.

Regardless of the choice of F, the bootstrap estimator of Gn(x Fo) is Gn(% Fy). Usualy,
Gn(% F) cannot be evaluated analyticaly. It can, however, be estimated with arbitrary accuracy by
carrying out a Monte Carlo smulation in which random samples are drawn from F,. Thus, the
bootstrap is usually implemented by Monte Carlo simulation. The Monte Carlo procedure for

estimating Gy(t, Fo) isasfollows

Monte Carlo Procedur e for Bootstrap Estimation of Gu(t, Fo)

Step 1: Generate a bootstrap sample of size n, {X*: i =1, ..., n}, by sampling the
distribution corresponding to F, randomly. If F, is the EDF of the estimation data set, then the
bootstrap sample can be obtained by sampling the estimation data randomly with replacement.

Step 2: Compute Tp* © To(X*, ..., X¥).

Step 3: Use the results of many repetitions of steps 1 and 2 to compute the empirical

probability of the event T,* £t (that is, the proportion of repetitions in which this event occurs).

Procedures for using the bootstrap to compute other statistical objects are described in Sections 3.1
and 3.3. Brown (1999) and Hall (1992a Appendix II) discuss smulation methods that take

advantage of techniques for reducing sampling variation in Monte Carlo simulation. The essential



characterigtic of the bootstrap, however, is the use of F, to approximate Fy in Gn(% Fg), not the
method that is used to evaluate G,(% Fy).

Since F, and F, are different functions, G,(% Fn) and Gn(% Fo) are aso different functions
unless T, is pivotal. Therefore, the bootstrap estimator Gy(% Fy) is only an approximation to the
exact finite-sample CDF of T, G,(% Fg). Section 3 discusses the accuracy of this approximation.
The remainder of this section is concerned with conditions under which Gn(x F,) satisfies the
minimal criterion for adequacy as an estimator of G,(% Fo), namely consistency. Roughly speaking,
Gn(% Fy) is consistent if it converges in probability to the asymptotic CDF of T, Gy (% Fo), asn ®
¥ . Section 2.1 defines consistency precisely and gives conditions under which it holds. Section 2.2
describes some resampling procedures that can be used to estimate G,(% Fo) when the bootstrap is

not consistent.

2.1 Consistency of the Bootstrap

Suppose that F, is a consistent estimator of Fo. This means that at each x in the support of
X, Fa(X) ® Fo(X) in probability or aimost surely asn ® ¥. If Fyis a continuous function, then it
follows from Polya's theorem that F, ® F, in probability or almost surely uniformly over x.
Thus, F, and Fo are uniformly close to one another if n is large. If, in addition, Gy(t, F)
considered as a functional of F is continuous in an appropriate sense, it can be expected that
Gi(t, Fp) isclose to Gy(t, Fo) when nislarge. On the other hand, if n is large, then G,(% Fo) is
uniformly close to the asymptotic distribution Gy (% Fo) if Gy(% Fg) is continuous. This suggests
that the bootstrap estimator G,(% F,) and the asymptotic distribution Gy (% Fg) should be
uniformly close if n is large and suitable continuity conditions hold. The definition of
consistency of the bootstrap formalizes this idea in a way that takes account of the randomness of

the function G,(x F,,). Let A denote the space of permitted distribution functions.



Definition 2.1: Let P, denote the joint probability distribution of the sample {X;: i =1,

..., N}. The bootstrap estimator G.(% F,) is consistent if for eacne>0and FoT A
lim P, flsuplG(t,F,) - Gy (t, )| >ef =0.
n® ¥ t

A theorem by Beran and Ducharme (1991) gives conditions under which the bootstrap
estimator is consistent. This theorem is fundamental to understanding the bootstrap. Let r
denote a metric on the space A of permitted distribution functions.

Theorem 2.1 (Beran and Ducharme 1991): G (% F,) isconsistent if for anye>0and Fo |

A: (i) I(i@nl P[r (F,,Fy) >e]=0; (ii) Gy(t, F) is a continuous function of t for each FT A; and
n
(iii) for any t and any sequence{H,} T A such that I(i@nl r (Hy,Fo) =0, Gu(t, Hy) ® Gy(t, Fo).
n

The following is an example in which the conditions of Theorem 2.1 are satisfied:
Example 2.1 (The distribution of the sample average): Let A be the set of distribution
functions F corresponding to populations with finite variances. Let X be the average of the

random sample {X;: i =1, ..., n}. Define T, =n”2()_(- m , where m= E(X). Let Gy(t, Fo) =

Pn[nﬂz()? -m£Et ] . Consider using the bootstrap to estimate G(t, Fo). Let F, be the EDF of

the data. Then the bootstrap analog of T, is T,* = n¥2(X *- X), where X* isthe average of a
random sample of size n drawn from F, (the bootstrap sample). The bootstrap sample can be
obtained by sampling the data { X;} randomly with replacement. T,* is centered at X because X

is the mean of the distribution from which the bootstrap sample is drawn. The bootstrap
estimator of Gi(t, Fo) is Ga(t, F) = Pn*[nﬂz(i*- )_()Et], where P,* is the probability
distribution induced by the bootstrap sampling process. Gy(t, F,) satisfies the conditions of

Theorem 2.1 and, therefore, is consistent. Let r be the Mallows metric.? The Glivenko-Cantelli

theorem and the strong law of large numbers imply that condition (i) of Theorem 2.1 is satisfied.



The Lindeberg-Levy central limit theorem implies that T, is asymptotically normally distributed.
The cumulative normal distribution function is continuous, so condition (ii) holds. By using
arguments similar to those used to prove the Lindeberg-Levy theorem, it can be shown that
condition (iii) holds. I

A theorem by Mammen (1992) gives necessary and sufficient conditions for the bootstrap
to consistently estimate the distribution of a linear functional of Fo when F, is the EDF of the
data. This theorem is important because the conditions are often easy to check, and many
estimators and test statistics of interest in econometrics are asymptotically equivaent to linear
functionals of some Fo. Hall (1990) and Gill (1989) give related theorems.

Theorem 2.2 (Mammen 1992): Let {X: i =1, ..., n} be a random sample from a

population. For a sequence of functions g, and sequences of numbers t, and s, define

On =n'1éin:lgn(xi) and T,=(9,- ty)/s,. For the bootstrap sample {X*: i =1, ..., n},

define g, =n'lé in:lgn(xi*) and T =(0,* -0,)/s . Let Gy(t) = P(To £1) and G*(t) =

P*(T,* £1), where P* is the probability distribution induced by bootstrap sampling. Then G.*(%3
consistently estimates G, if and only if T, ® ¢ N(0,1). I

If E[gn(X)] and Var[gn(X)] exist for each n, then the asymptotic normality condition of
Theorem 2.2 holds with t, = E(g,) and s2=Var(g,) or s2=n"2§ i”:l[gn(xi) - 9,]%. Thus,

consistency of the bootstrap estimator of the distribution of the centered, normalized sample
average in Example 2.1 follows trivialy from Theorem 2.2.

The bootstrap need not be consistent if the conditions of Theorem 2.1 are not satisfied and
isinconsistent if the asymptotic normality condition of Theorem 2.2 is not satisfied. In particular,
the bootstrap tends to be inconsistent if Fo is a point of discontinuity of the asymptotic
distribution function Gg(t, ® or a point of superefficiency. Section 2.2 describes resampling

methods that can sometimes be used to overcome these difficulties.



The following examples illustrate conditions under which the bootstrap is inconsistent.
The conditions that cause inconsistency in the examples are unusual in econometric practice. The
bootstrap is consistent in most applications. Nonetheless, inconsistency sometimes occurs, and it
is important to be aware of its causes. Donald and Paarsch (1996), Flinn and Heckman (1982),
and Heckman, Smith, and Clements (1997) describe econometric applications that have features
similar to those of some of the examples, though the consistency of the bootstrap in these
applications has not been investigated.

Example 2.2 (Heavy-tailed distributions): Let Fy be the standard Cauchy distribution and
{X} be arandom sample from this distribution. Set T, = X, the sample average. Then T, has
the standard Cauchy distribution. Let F, be the EDF of the sample. A bootstrap analog of T, is
T,* = X*- m,, where X* is the average of a bootstrap sample that is drawn randomly with
replacement from the data { X;} and m, is a median or trimmed mean of the data. The asymptotic
normality condition of Theorem 2.2 is not satisfied, and the bootstrap estimator of the distribution
of T, isinconsistent. Athreya (1987) and Hall (1990) provide further discussion of the behavior
of the bootstrap with heavy-tailed distributions. i

Example 2.3 (The distribution of the square of the sample average): Let {X: i=1, ..., n}
be a random sample from a distribution with mean mand variance s 2. Let X denotethe sample

average. Let F, be the EDF of the sample. Set T, =nV?(X?- n?) if m? 0 and T, =nX?
otherwise. T, is asymptotically normally distributed if m* O, but T, /s 2 is asymptotically chi-
square distributed with one degree of freedom if m=0. The bootstrap analog of T, is
T.*=n?[(X*)?- X?], wherea=1/2if m* 0 and a = 1 otherwise. The bootstrap estimator of

Gn(t, Fo) = P(Th £1) isGy(t, Fy) = P*(Ty* £1). If mt O, then T, is asymptotically equivalent to
a normalized sample average that satisfies the asymptotic normality condition of Theorem 2.2.

Therefore, Gn(% F,) consistently estimates Gy (% Fo) if m* 0. If m= 0, then T, is not a sample

10



average even asymptotically, so Theorem 2.2 does not apply. Condition (iii) of Theorem 2.1 is
not satisfied, however, if m= 0, and it can be shown that the bootstrap distribution G,(%F,) does
not consistently estimate Gy (% Fo) (Datta 1995). 1

The following example is due to Bickel and Freedman (1981).

Example 2.4: (Distribution of the maximum of a sample): Let {X: i =1, ...,n} bea
random sample from a distribution with absolutely continuous CDF Fq and support [0, go]. Let g5,
= max(Xy, ..., X,), and define T, =n(q,, - qo) - Let F, be the EDF of the sample. The bootstrap
analog of T, is T,* =n(gq,* - ,) , where q,* is the maximum of the bootstrap sample { Xi*} that
is obtained by sampling { X} randomly with replacement. The bootstrap does not consistently
estimate Gp(-t, Fo) = Py(To £ -t) (t 3 0). To seewhy, observethat P*(T,* =0)=1-(1-1/n)"®
1- elasn® ¥. |Itis easily shown, however, that the asymptotic distribution of T, is
Gy (-t,FRy)=1- exp[-tf(qy)], where f(x) = dF(x)/dx is the probability density function of X.
Therefore, P(T, = 0) ® 0, and the bootstrap estimator of Gn(% Fo) isinconsistent. I

Example 2.5 (Parameter on a boundary of the parameter space): The bootstrap does not
consistently estimate the distribution of a parameter estimator when the true parameter point is on

the boundary of the parameter space. To illustrate, consider estimation of the population mean m

subject to the constraint m3 0. Estimate mby m, = XI (X >0), where X is the average of the
random sample{X: i =1, ...,n}. Set T, = n”z(mn - m . Let F, bethe EDF of the sample. The

bootstrap analog of T, is T,* =n'?(m* - m,), where m* is the estimator of mthat is obtained
from a bootstrap sample. The bootstrap sample is obtained by sampling {X;} randomly with
replacement. If m> 0 and Var(X) < ¥, then T, is asymptoticaly equivalent to a normalized
sample average and is asymptotically normally distributed. Therefore, it follows from Theorem

2.2 that the bootstrap consistently estimates the distribution of T,. If m= 0, then the asymptotic

11



distribution of T, is censored normal, and it can be proved that the bootstrap distribution G,(% Fy)
does not estimate G, (% Fo) consistently (Andrews 1997b). 1
The next section describes resampling methods that often are consistent when the bootstrap

isnot. They provide consistent estimators of G,(% Fo) in each of the foregoing examples.

2.2 Alternative Resampling Procedures

This section describes two resampling methods whose requirements for consistency are
weaker than those of the bootstrap. Each is based on drawing subsamples of size m < n from the
origina data. In one method, the subsamples are drawn randomly with replacement. In the other,
the subsamples are drawn without replacement. These subsampling methods often estimate
Gn(% Fg) consistently even when the bootstrap does not. They are not perfect substitutes for the
bootstrap, however, because they tend to be less accurate than the bootstrap when the bootstrap is
consistent.

In the first subsampling method, which will be caled replacement subsampling, a
bootstrap sample is obtained by drawing m < n observations from the estimation sample {X: i =
1, ..., n}. In other respects, it is identical to the standard bootstrap based on sampling F,. Thus,
the replacement subsampling estimator of Gn(% Fo) is Gu(% Fn). Swanepoel (1986) gives
conditions under which the replacement bootstrap consistently estimates the distribution of T, in
Example 2.4 (the distribution of the maximum of a sample). Andrews (1997b) gives conditions
under which it consistently estimates the distribution of T, in Example 2.5 (parameter on the
boundary of the parameter space). Bickel, et al. (1997) provide a detailed discussion of the
consistency and rates of convergence of replacement bootstrap estimators. To obtain some
intuition into why replacement subsampling works, let Fn,, be the EDF of a sample of size n

drawn from the empirical distribution of the estimation data. Observethat if m® ¥, n® ¥, and

m/n ® O, then the random sampling error of F, as an estimator of F, is smaller than the random

12



sampling error of Fq, as an estimator of F,. This makes the subsampling method less sensitive
than the bootstrap to the behavior of Gn(% F) for F'sin a neighborhood of Fy and, therefore, less
sensitive to violations of continuity conditions such as condition (iii) of Theorem 2.1.

The method of subsampling without replacement will be caled non-replacement
subsampling. This method has been investigated in detail by Politis and Romano (1994), who
show that it consistently estimates the distribution of a statistic under very weak conditions. In
particular, the conditions required for consistency of the non-replacement subsampling estimator
are much weaker than those required for consistency of the bootstrap estimator. Politis et al.
(1997) extend the subsampling method to heteroskedastic time series.

To describe the non-replacement subsampling method, let t, = t,(Xy, ..., X,) be an
estimator of the population parameter g, and set T,, = r (n)(t, - g), where the normalizing factor
r(n) is chosen so that Gy(t, Fo) = P(T, £ t) converges to a nondegenerate limit Gy (t, Fo) at
continuity points of the latter. In example 2.1 (estimating the distribution of the sample average),

for instance, q is the population mean, t, = X, and r (n) = n"%. Let { Xij: j=1,...,m} be asubset

of m < n observations taken from the sample {X;: i = 1, ..., n}. Define Ny, = (”m) to be the total

number of subsets that can be formed. Let t;, « denote the estimator t,, evaluated at the K'th
subset. The non-replacement subsampling method estimates G(t, Fo) by

nm

a r (m)(tm - t)) £1].

nm k=1

1%

N

(21)  Gum(t)°

The intuition behind this method is as follows. Each subsample { Xij } is a random sample of

size m from the population distribution whose CDF is F,. Therefore, Gn(% Fo) is the exact
sampling distribution of r (m)(t, - g), and

(22)  Gy(t,Fo)=E{I[r (M(tn-q) £t]}.

13



The quantity on the right-hand side of (2.2) cannot be calculated in an application because F, and
g are unknown. Equation (2.1) is the estimator of the right-hand side of (2.2) that is obtained by
replacing the population expectation by the average over subsamples and g by t,. If nislarge but
nvn is small, then random fluctuations in t, are small relative to those in t,. Accordingly, the
sampling distributions of r (m)(tm - t,) and r (m)(t, - q) are close. Similarly, if Ny, is large, the
average over subsamples is a good approximation to the population average. These ideas are
formalized in the following theorem of Politis and Romano (1994).

Theorem 2.3: Assumethat Gy(t, Fo) ® Gy(t, Fg) asn® ¥ at each continuity point of the
latter function. Also assumethat r(m)/r(n) ® O, M® ¥,andmM/n® Oasn® ¥. Lett bea
continuity point of Gy (t, Fo). Then: (i) Gun(t) ® PGy(t, Fo); (ii) if Gy(% Fo) is continuous, then

Sup|Gnm(t)' G¥ (t 1FO)|® pO;
t

(iii) let c(1 - @) = inf{t : Gum(t) ® 1-a} andc(l- a, Fo) = inf{t : Gu(t, Fg) 2 1-a}. If
Gy (% Fo) is continuous at c(1 - a, Fg), then P[r(n)(t,-q)£c,(1-a)]® 1-a, and the
asymptotic coverage probability of the confidence interval [t, - r (N)"c,(1- &), ¥) is1- a.

Essentialy, this theorem states that if T, has a well-behaved asymptotic distribution, then
the non-replacement subsampling method consistently estimates this distribution. The non-
replacement subsampling method also consistently estimates asymptotic critical values for T, and
asymptotic confidence intervals for t,.

In practice, Ny, is likely to be very large, which makes G, hard to compute. This problem
can be overcome by replacing the average over al N, subsamples with the average over a
random sample of subsamples (Politis and Romano 1994). These can be obtained by sampling
thedata{X: i =1, ..., n} randomly without replacement.

It is not difficult to show that the conditions of Theorem 2.3 are satisfied in al of the

statistics considered in Examples 2.1, 2.2, 2.4, and 2.5. The conditions are also satisfied by the

14



statistic considered in Example 2.3 if the normalization constant is known. Bertail et al. (1995)
describe a subsampling method for estimating the normalization constant r (n) when it is
unknown and provide Monte Carlo evidence on the numerical performance of the non-
replacement subsampling method with an estimated normalization constant. In each of the
foregoing examples, the replacement subsampling method works because the subsamples are
random samples of the true population distribution of X, rather than an estimator of the population
distribution. Therefore, replacement subsampling, in contrast to the bootstrap, does not require
assumptions such as condition (iii) of Theorem 2.1 that restrict the behavior of G,(% F) for F'sin
a neighborhood of Fo.

The non-replacement subsampling method enables the asymptotic distributions of statistics
to be estimated consistently under very weak conditions. However, the standard bootstrap is
typically more accurate than non-replacement subsampling when the former is consistent.
Suppose that G,(% Fo) has an Edgeworth expansion through O(n"?), as is the case with the
distributions of most asymptotically normal statistics encountered in applied econometrics. Then,
aswill be discussed in Section 3, |G(t, Fn) - Gi(t, Fo)|, the error made by the bootstrap estimator
of Gu(t, Fo), isa most O(n’3) amost surely. In contrast, the error made by the non-replacement
subsampling estimator, |Ga(t) - Gn(t, Fo)|, is no smaler than Op(n'”3) (Politis and Romano
1994).3 Thus, the standard bootstrap estimator of G(t, Fo) is more accurate than the non-
replacement subsampling estimator in a setting that arises frequently in applications. Similar
results can be obtained for statistics that are asymptotically chi-square distributed. Thus, the
standard bootstrap is more attractive than the non-replacement subsampling method in most
applications in econometrics. The subsampling method may be used, however, if characteristics
of the sampled population or the statistic of interest cause the standard bootstrap estimator to be
inconsistent. Non-replacement subsampling may also be useful in situations where checking the

consistency of the bootstrap is difficult. Examples of this include inference about the parameters
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of certain kinds of structural search models (Flinn and Heckman 1982), auction models (Donald
and Paarsch 1996), and binary-response models that are estimated by Manski’s (1975, 1985)

maximum score method.

3. ASYMPTOTIC REFINEMENTS

The previous section described conditions under which the bootstrap yields a consistent
estimator of the distribution of a statistic. Roughly speaking, this means that the bootstrap gets
the statistic’s asymptotic distribution right, at least if the sample size is sufficiently large. Aswas
discussed in Section 1, however, the bootstrap often does much more than get the asymptotic
distribution right. In alarge number of situations that are important in applied econometrics, it
provides a higher-order asymptotic approximation to the distribution of a statistic. This section
explains how the bootstrap can be used to obtain asymptotic refinements. Section 3.1 describes
the use of the bootstrap to reduce the finite-sample bias of an estimator. Section 3.2 explains how
the bootstrap obtains higher-order approximations to the distributions of statistics. The results of
Section 3.2 are used in Sections 3.3 and 3.4 to show how the bootstrap obtains higher-order
refinements to the rejection probabilities of tests and the coverage probabilities of confidence
intervals. Sections 3.5-3.7 address additional issues associated with the use of the bootstrap to
obtain asymptotic refinements. It is assumed throughout this section that the data are a simple
random sample from some distribution. Methods for implementing the bootstrap and abtaining

asymptotic refinements with time-series data are discussed in Section 4.1.

3.1 Bias Reduction
This section explains how the bootstrap can be used to reduce the finite-sample bias of an
estimator. The theoretical results are illustrated with a smple numerical example. To minimize the
complexity of the discussion, it is assumed that the inferential problem is to obtain a point estimate

of a scalar parameter q that can be expressed as a smooth function of a vector of population
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moments. It isaso assumed that g can be estimated consistently by substituting sample momentsin
place of population moments in the smooth function. Many important econometric estimators,
including maximum-likelihood and generalized-method-of-moments estimators, are either functions
of sample moments or can be approximated by functions of sample moments with an approximation
error that approaches zero very rapidly as the sample size increases. Thus, the theory outlined in
this section applies to awide variety of estimators that are important in applications.

To be specific, let X be arandom vector, and set m= E(X). Assume that the true value of q

IS go = g(m, where g is a known, continuous function. Suppose that the data consist of a random

n

sample {X: i =1, .., n} of X. Define the vector )_(=n'1éi:l

X;. Then q is estimated

consistently by

31 9,=9(X).

If g, has afinite mean, then E(q,) = E[g(X)]. However, E[g(X)]* g(m) in generd unless g is

alinear function. Therefore, E(gn) * o, and g, is a biased estimator of g. In particular, E(g,) * qo if

gn isany of avariety of familiar maximum likelihood or generalized method of moments estimators.
To see how the bootstrap can reduce the bias of ¢, suppose that g is four times

continuoudly differentiable in a neighborhood of mand that the components of X have finite fourth

absolute moments. Let G; denote the vector of first derivatives of g and G, denote the matrix of

second derivatives. A Taylor series expansion of the right-hand side of (3.1) about X = m gives

(32 Go- do=GUMEX- M+ (X - MEGM(X- M+R,,

where R, is a remainder term that satisfies E(R,) = O(n). Therefore, taking expectations on both

sdesof (3.2) gives

(33) E@n- %F%E[(X- MG, (M(X - m]+0(n"?).
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The first term on the right-hand side of (3.3) has size O(n™). Therefore, through O(n™) the bias of
Onis
(34 B, =ZEI(X- MG, (m(X- m].

Now consider the bootstrap. The bootstrap samples the empirical distribution of the data.
Let { X#:i=1,...,n} be abootstrap sample that is obtained this way. Define X* = n'lé in: X*
to be the vector of bootstrap sample means. The bootstrap estimator of q is g =g(X*).

Conditiona on the data, the true mean of the distribution sampled by the bootstrap is X .

Therefore, X is the bootstrap analog of m and q,, = g(X) is the bootstrap analog of go. The

bootstrap analog of (3.2) is
(39 a5 - Gy =GR X)+ (K= QG (KUK - X)+ Ry,

where R* is the bootstrap remainder term. Let E* denote the expectation under bootstrap
sampling, that is, the expectation relative to the empirical distribution of the estimation data. Let
B.* © E*(g.* - gn) denote the bias of g,* as an estimator of q,. Taking E* expectations on both
sides of (3.5) shows that

(36) By =%E*[(>7*- X) &, (X)(X* - X)]+0(n"?)

amost surely. Because the distribution that the bootstrap samples is known, B,* can be computed
with arbitrary accuracy by Monte Carlo simulation. Thus, B,* is a feasible estimator of the bias of
On- The details of the simulation procedure are described below.

By comparing (3.4) and (3.6), it can be seen that the only differences between B, and the
leading term of B.* are that X replaces min B,* and the empirical expectation, E*, replaces the
population expectation, E. Moreover, E(B,*) = B, + O(n®) Therefore, through O(n™), use of the

bootstrap bias estimate B,* provides the same bias reduction that would be obtained if the infeasible
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population value B, could be used. Thisis the source of the bootstrap's ability to reduce the bias of
. The resulting bias-corrected estimator of ¢ isqn - By*. It satisfies E(q, - B,*) = O(n?). Thus,
the bias of the bias-corrected estimator is O(n?), whereas the bias of the uncorrected estimator g, is
o(n™.*

The Monte Carlo procedure for computing B,* is asfollows:

Monte Carlo Procedurefor Bootstrap Bias Estimation
B1l. Use the estimation datato compute gp,.
B2. Generate a bootstrap sample of size n by sampling the estimation data randomly with
replacement. Compute ;¥ = g(X*).
B3. Compute E*q,* by averaging the results of many repetitions of step B2. Set B,* =

E* qn* - O

To implement this procedure it is necessary to choose the number of repetitions, m, of step
B2. It usualy suffices to choose m sufficiently large that the estimate of E*q,* does not change
significantly if m is increased further. Andrews and Buchinsky (1997) discuss more formal
methods for choosing the number of bootstrap replications.”

The following ssimple numerical example illustrates the bootstrap's ability to reduce bias.
Examples that are more realistic but also more complicated are presented in Horowitz (1998a).

Example 3.1 (Horowitz 1998a): Let X~ N(0, 6) and n = 10. Let g(nm) = exp(m. Then qo =
1, and g, =exp(X) . B, and the bias of g, - B,* can be found through the following Monte Carlo
procedure:

MC1. Generate an estimation data set of size n by sampling from the N(0,6) distribution.
Use this data set to compute gp.

MC2. Compute B,* by carrying out steps B1-B3. Form g, - B,*.
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MC3. Estimate E(gn - o) and E(q, - B* - qo) by averaging the results of many repetitions of
steps MC1-MC2. Estimate the mean square errors of g, and g, - B,* by averaging the redlizations
of (n - Go)* and (G - B* - do)”.

The following are the results obtained with 1000 Monte Carlo replications and 100

repetitions of step B2 at each Monte Carlo replication:

Bias Mean-Square Error
On 0.356 1.994
On - By* -0.063 1.246

In this example, the bootstrap reduces the magnitude of the bias of the estimator of g by nearly a

factor of 6. The mean-square estimation error is reduced by 38 percent. Il

3.2 The Distributions of Satistics

This section explains why the bootstrap provides an improved approximation to the finite-
sample distribution of an asymptoticaly pivota statistic. As before, the data are a random sample
{Xi: 1 =1, ..., n} from a probability distribution whose CDF is Fo. Let T, = T(Xy, ..., X,) be a
datistic. Let Gy(t, Fo) = P(T, £ t) denote the exact, finite-sample CDF of T,. Aswas discussed in
Section 2, Gy(t, Fo) cannot be calculated analytically unless T, is pivotal. The objective of this
section isto obtain an approximation to G(t, Fo) that is applicable when T,, is not pivotal.

To obtain useful approximations to Gi(t, Fo), it is necessary to make certain assumptions
about the form of the function T,(Xy, ..., X;). It is assumed in this section that T, is a smooth

function of sample moments of X or sample moments of functions of X (the smooth function

model). Specificaly, T, =nY2[H(Z,,...,Z;) - H(my,,...,my, )] , where the scalar-valued function

H is smooth in a sense that is defined precisaly below, Zj =n'lé i”:lzj(xi) foreachj=1,...,J

and some nonstochastic function Z;, and my, = E(Z;). After centering and normalization, most
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estimators and test statistics used in applied econometrics are either smooth functions of sample
moments or can be approximated by such functions with an approximation error that is
asymptotically negligible® The ordinary least squares estimator of the slope coefficients in a linear
mean-regression model and the t dtatistic for testing a hypothesis about a coefficient are exact
functions of sample moments. Maximum-likelihood and generalized-method-of-moments
estimators of the parameters of nonlinear models can be approximated with asymptotically
negligible error by smooth functions of sample moments if the log-likelihood function or moment
conditions have sufficiently many derivatives with respect to the unknown parameters.

Some important econometric estimators and test statistics do not satisfy the assumptions of
the smooth function model. Quantile estimators, such as the least-absolute-deviations (LAD)
estimator of the dope coefficients of a median-regresson model do not satisfy the assumptions of
the smooth function model because their objective functions are not sufficiently smooth.
Nonparametric density and mean-regression estimators and semiparametric estimators that require
kernel or other forms of smoothing also do not fit within the smooth function model. Bootstrap
methods for such estimators are discussed in Section 4.3.

Now return to the problem of approximating Gy(t, Fo). First-order asymptotic theory
provides one approximation. To obtain this approximation, write H(Z,,...,Z;) = H(Z) , where Z
= (Z,....Z;)¢. Define m, =E(Z), TH(@=TH(2)/%z, and W=E[(Z- m,)(Z- m,)d
whenever these quantities exist. Assume that:

SFM: (i) Tn=n”2[H(Z)- H(m;)], where H(2) is 6 times continuoudy partially
differentiable with respect to any mixture of components of z in a neighborhood of m. (ii)
H(m,) 0. (iii) The expected value of the product of any 16 components of Z exists.”

Under assumption SFM, a Taylor series approximation gives

37) N’ [H(Z)- H(my)] = TH(m,)®0"*(Z - my) +0,(2) .

21



Application of the Lindeberg-Levy centra limit theorem to the right hand side of (3.7) shows that
nY2[H(Z)- H(m,)]® 9 N(O\V), where V = fH(m,)8MH(m,) . Thus, the asymptotic CDF of
Tais Gy (t,Fy) =F(t /V”Z) , where F isthe standard norma CDF. Thisisjust the usual result of
the delta method. Moreover, it follows from the Berry-Esséen theorem that

stjmen(t JFo) - Gy (t,Fp)l=0(n"Y?).

Thus, under assumption SFM of the smooth function model, first-order asymptotic approximations
to the exact finite-sample distribution of T, make an error of size O(n™"?) 8

Now consider the bootstrap. The bootstrap approximation to the CDF T, is Gy(% Fn). Under
the smooth function model with assumption SFM, it follows from Theorem 3.2 that the bootstrap is
consistent. Indeed, it is possible to prove the stronger result that sup; |G, (t ,F,)- Gy (t,F)|® O
amost surely. This result insures that the bootstrap provides a good approximation to the
asymptotic distribution of T, if nis sufficiently large. It says nothing, however, about the accuracy
of Gy(% Fn) as an approximation to the exact finite-sample distribution function G,(% Fg). To
investigate this question, it is necessary to develop higher-order asymptotic approximations to
Gn(% Fo) and G,(% F,). The following theorem, which is proved in Hal (1992a), provides an
essential result.

Theorem 3.1: Let assumption S=M hold. Assume also that

(38) lim sup |E[exp(it@)] <1,
Jt|e ¥

wherei =«/-_1. Then

(39 Golt Fo) =Gy (1 Fo) ¥ &u(t Fo) + 8o (0 o) + 55 Ga(t o) +O( )

uniformly over t and

(B10)  Go(tFi) =Gy (0. F) + 5 Gu(t Fo) + 02 (L Fo) 575 0s(t Fy) +O( )
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uniformly over t almost surely. Moreover, g; and gs are even, differentiable functions of their first
arguments, g is an odd, differentiable, function of its first argument, and Gy, gi, g2, and g; are
continuous functions of their second arguments relative to the supremum norm on the space of
distribution functions.

If T, is asymptoticaly pivotal, then Gy is the standard norma distribution function.
Otherwise, Gy (% Fo) is the N(O,V) distribution function, and Gy (% F,) is the N(O,V,,) distribution
function, where V, is the quantity obtained from V by replacing population expectations and
moments with expectations and moments relative to F.

Condition (3.8) is cdled the Cramér condition. It is satisfied if the random vector Z has a
probability density with respect to L ebesgue measure.”

It is now possible to evaluate the accuracy of the bootstrap estimator Gy(t, Fn) as an

approximation to the exact, finite-sample CDF G(t, Fo). It followsfrom (3.9) and (3.10) that

(31D  Gy(t,Fy)- Gy(t,Fo) =[Gy (t,Fy)- Gyt ,Fo)]+n712[91(t 'Fa) - ai(t, o)l

+%[92(t F)- Golt, o)l +O(m ¥2)

amost surely uniformly over t. The leading term on the right-hand side of (3.11) is [G«(t, Fy) -

Gx(t, Fo)]. Thesizeof thistermis O(n™?) almost surely uniformly over t because F, - Fo = O(n™?)

almost surely uniformly over the support of Fo. Thus, the bootstrap makes an error of size O(n?)
amost surely, which is the same as the size of the error made by firs-order asymptotic
approximations. In terms of rate of convergence to zero of the approximation error, the bootstrap
has the same accuracy as first-order asymptotic approximations. In this sense, nothing is lost in
terms of accuracy by using the bootstrap instead of first-order approximations, but nothing is gained
either.

Now suppose that T, is asymptotically pivotal. Then the asymptotic distribution of T, is

independent of Fo, and Gy(t, Fn) = G (t,, Fo) for al t. Equations (3.9) and (3.10) now yield
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(312) Gy(t.Fy)- Gult,Fo) =n712[gl(t F)- ot Fo)l

+%[92(t Fa)- 0y(t, Fo)l + O(n ¥2)

amost surely. The leading term on the right-hand side of (3.12) is N4 gu(t, Fy) - ai(t, Fo)]. It
follows from continuity of g; with respect to its second argument that this term has size O(n™)
amost surely uniformly over t. Now the bootstrap makes an error of size O(n™), which is smaller
asn® ¥ than the error made by first-order asymptotic approximations. Thus, the bootstrap is more
accurate than first-order asymptotic theory for estimating the distribution of a smooth
asymptotically pivotal statistic.

If T, is asymptoticaly pivotal, then the accuracy of the bootstrap is even greater for
estimating the symmetrical distribution function P(|T,| £ t) = Gu(t, Fo) - Gn(-t, Fo). This quantity is
important for obtaining the RP' s of symmetrical tests and the coverage probabilities of symmetrical
confidence intervals. Let F denote the standard normal distribution function. Then, it follows from

(3.9) and the symmetry of g, g, and gs in their first arguments that

Gn(t,Fo)- Gn(-1,F) =[Gy (t,Fo)- Gy (-t 1Fo)]+§92(t Fo) +O(n"?)

(313) =2F(t)- 1+§gz(t ,Fp) +O(n"?).
n
Similarly, it follows from (3.10) that

Gn(t,F) - Ga(-t,Fy) =[Gy (t,Fy) - Gy (-t ,Fn)]+§92(t JFa) +O(n°%)

(314) =2F(t)- 1+§gz(t ,F.)+0(n"?)

amost surely. The remainder terms in (3.13) and (3.14) are O(n®) and not O(N¥?) because the

O(n*? term of an Edgeworth expansion, n¥ 2g3(t ,F) , is an even function that, like g;, cancels
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out in the subtractions used to obtain (3.13) and (3.14) from (3.9) and (3.10). Now subtract (3.13)

from (3.14) and use the fact that F, - Fo = O(n™Y?) almost surely to obtain

(3-15) [Gn(t 1Fn) - Gn('t 1Fn)] - [Gn(t 1FO) - Gn('t 1FO)]
= 2g,(t,F)- gt Fo)] +O(n'?)

= 0o(n"32)
amost surely if T, is asymptotically pivotal. Thus, the error made by the bootstrap approximation
to the symmetrical distribution function P(|T,| £ t) is O(n¥?) compared to the error of O(n™) made
by first-order asymptotic approximations.

In summary, when T,, is asymptotically pivotal, the error of the bootstrap approximation to a
one-sided distribution function is
(316) G, (t,F,)- G,(t,FR)=0(n"")

amost surely uniformly over t. The error in the bootstrap approximation to a symmetrical
distribution function is

(B17) [Gy(t.Fy) - Gy(-t,F)l- [Gy(t ., Fo) - Gy(-t. R) =0(n¥?)

amost surely uniformly over t. In contrast, the erors made by first-order asymptotic
approximations are O(n™%) and O(n™"), respectively, for one-sided and symmetrical distribution
functions. Equations (3.16) and (3.17) provide the basis for the bootstrap’s ability to reduce the
finite-sample errors in the RP's of tests and the coverage probabilities of confidence intervals.

Section 3.3 discusses the use of the bootstrap in hypothesis testing. Confidence intervals are

discussed in Section 3.4.

3.3 Bootstrap Critical Values for Hypothesis Tests
This section shows how the bootstrap can be used to reduce the errors in the RP's of

hypothesis tests relative to the errors made by first-order asymptotic approximations.
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Let T, be a statistic for testing a hypothesis Hy about the sampled population.  Assume that
under Ho, T, is asymptotically pivotal and satisfies assumptions SFM and (3.8). Consider a
symmetrical, two-tailed test of Ho. Thistest rejects Hg at the a level if [T,| > 2,42, Where z, 4, the
exact, finite-sample, a-level critica value, is the 1 - a/2 quantile of the distribution of T, The
critical value solves the equation
(318)  Gy(Zhas2:Fo) - Gn(-Zar2.Fo) =1-a.
Unless T, is exactly pivotal, however, equation (3.18) cannot be solved in an application because Fy
isunknown. Therefore, the exact, finite-sample critical value cannot be obtained in an application if
T, isnot pivotal.

First-order asymptotic approximations obtain a feasible version of (3.18) by replacing G,

with Gy. Thus, the asymptotic critical value, 2, 5, SOlves
(B19) Gy(z¢an Fo)- Gy(-z¢ap2.F0)=1-a.
Since Gy isthe standard normal distribution when T, is asymptotically pivotal, z, ,,» can be obtained

from tables of standard normal quantiles. Combining (3.13), (3.18), and (3.19) gives

[Gy (Zha/2:Fo) - Gy (- Zha/2,Fo)l - [Gy (2 a/2,Fo) - Gy (- 2¢ 472, Fo)l =0(nY),

which impliesthat z, a5 - Z a2 = O(n‘l). Thus, the asymptotic critical value approximates the exact
finite sample critica value with an error whose sizeis O(n™).

The bootstrap obtains a feasible verson of (3.18) by replacing Fo with F,. Thus, the
bootstrap critical value, z,,,,*, solves
(320)  Gy(Znai2* Fn) - Gnl- Zyare* Fp) =1-a ™
Equation (3.20) usually cannot be solved analyticaly, but z,,,* can be estimated with any desired
accuracy by Monte Carlo smulation. To illustrate, suppose, as often happens in applications, that
T, is an asymptotically normal, Studentized estimator of a parameter g whose value under Hy is .

That is,
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T =0 G0)
S

where q, is the estimator of g, n¥4(q, - go) ® “ N(0, s?) under Ho and s.2 is a consistent estimator of

s2. Then the Monte Carlo procedure for evaluating z, ,,* isasfollows:

Monte Carlo Procedure for Computing the Bootstrap Critical Value
T1. Usethe estimation data to compute g,
T2. Generate a bootstrap sample of size n by sampling the distribution corresponding to F,.
For example, if F, is the EDF of the data, then the bootstrap sample can be obtained by sampling
the data randomly with replacement. If F, is parametric so that F,(¥ = F(% q,) for some function F,
then the bootstrap sample can be generated by sampling the distribution whose CDF is F(% Q).

Compute the estimators of g and s from the bootstrap sample.  Call the results g,* and s,*. The
bootstrap version of T,is T,* =nY?(q* - q,,)/ 5.* .
T3. Use the results of many repetitions of T2 to compute the empirical distribution of [T,*|.

Set 7, 52" equa tothe 1 - a quantile of this distribution.

The foregoing procedure does not specify the number of bootstrap replications that should be
carried out in step T3. In practice, it often suffices to choose a value sufficiently large that further
increases have no important effect on z,,,*. Hal (1986a) and Andrews and Buchinsky (1997)
describe the results of forma investigations of the problem of choosing the number of bootstrap
replications. Repeatedly estimating g in step T2 can be computationally burdensome if g, is an
extremum estimator. Davidson and MacKinnon (1997a) and Andrews (1998) show that the
computational burden can be reduced by replacing the extremum estimator with an estimator that is
obtained by taking a small number of Newton or quasi-Newton steps from the ¢, value obtained in

step T1.
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To evaluate the accuracy of the bootstrap critical vaue z,,,* as an estimator of the exact

finite-sample critical vaue z, 5/, combine (3.13) and (3.18) to obtain
(B21)  2F (Zya)- 1+2 Goznars Fo) =1- 2 +O(N'?).
Similarly, combining (3.14) and (3.20) yields,

(2)  2F (e - 142 GylFmars Fa) =1- 2 +0(n)

amost surely. Equations (3.21) and (3.22) can be solved to yield Cornish-Fisher expansions for

Zyaz AN Z, 2% . Theresultsare (Hall 1992a, p. 111)

1 92(2¢ a/2,Fo)

3.23 = - = +0(n"?),
B2 Za2=%an N f(za) (n"°)

wheref isthe standard normal density function, and

192(2 a2:Fn)
B24)  Z4/2" =% a2 L

O(n-2
0 faa) )

amost surely. It follows from (3.23) and (3.24) that

(3825)  Zyasd =Znar +O(M¥?)
amost surely. Thus, the bootstrap critical value for a symmetrical, two-tailed test differs from the
exact, finite-sample critical value by O(n¥?) amost surely. The bootstrap critical value is more
accurate than the asymptotic critical value, z 5>, whose error is O(n‘l).

Now consider the rejection probability of the test based on T,, when Hg is true. With the
exact but infeasible a-level critical value, the RP is P(|T,| > z,a2) = a.. With the asympitotic critical

vaue, theRPis

P(lTn|> Z¥,a/2) =1- [Gn(z¥,a/21FO) - Gn(' Z¥,a/21 FO)]

(326) =a +0O(nY),

28



where the last line follows from setting t = 2, 52 in (3.13). Thus, with the asymptotic critical value,
the true and nominal RP’ s differ by O(n™).

Now consider the RP with the bootstrap critical value, P([T| 3 Z,a2*). Because z,,,* isa
random variable, P(|Ty| 3 Z,a2*) * 1 - [Gn(Zhare®, Fo) - Gn(-Zhars*, Fo)]. This fact complicates the
caculation of the difference between the true and nominal RP's with the bootstrap critical value.
The calculation is outlined in the Appendix of this chapter. Theresult isthat
(327)  P(T>20/5") =2 +O(n"%).

In other words, the nominal RP of a symmetrical, two-tailed test with a bootstrap critical value
differs from the true RP by O(n®) when the test statistic is asymptotically pivotal. In contrast, the
difference between the nominal and true RP'sis O(n™) when the asymptotic critical value is used.

The bootstrap does not achieve the same accuracy for one-tailed tests. For such tests, the
difference between the nominal and true RP's with a bootstrap critical value is usualy O(n™),
whereas the difference with asymptotic critical valuesis O(n™?). See Hall (1992a, pp. 102-103) for
details. There are, however, circumstances in which the difference between the nomina and true
RP's with a bootstrap critical value is O(n®?). Hall (1992a, pp. 178-179) shows that this is true for
aone-sided t test of a hypothesis about a dope (but not intercept) coefficient in a homoskedastic,
linear, mean-regression model. Davidson and MacKinnon (1997b) show that it is true whenever T,
is asymptoticaly independent of gu(z ai2,Fn). They further show that many familiar test Statistics
satisfy this condition.

Tests based on gsatistics that are asymptoticaly chi-square distributed behave like
symmetrical, two-tailed tests. Therefore, the differences between their nominal and true RP' s under
Ho are O(n™") with asymptotic critical values and O(n®) with bootstrap critical values.

Singh (1981), who considered a one-tailed test of a hypothesis about a population mean,
apparently was the first to show that the bootstrap provides a higher-order asymptotic

approximation to the distribution of an asymptotically pivotal statistic. Singh's test was based on
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the standardized sample mean. Early papers giving results on higher-order approximations for
Studentized means and for more general hypotheses and test statistics include Babu and Singh

(1983, 1984), Beran (1988) and Hall (1986b, 1988).

3.4 Confidence Intervals

Let q be a population parameter whose true but unknown value is qo. Let g, be a
n“2-consistent, asymptotically normal estimator of g, and let s, be a consistent estimator of the
standard deviation of the asymptotic distribution of n“)(q, - o). Then an asymptotic 1 - a
confidence interval for o iS O - Z¢ a5 £ Qo £ On + Z 22S,. Define T, = n”z(qn - Qo)/s,. Then the
coverage probability of the asymptotic confidence interval is P([Tn| £ z¢ ap). It follows from (3.26)
that the difference between the true coverage probability of the interval and the nomina coverage
probability, 1-a, isO(n™).

If T, satisfies the assumptions of Theorem 3.1, then the difference between the nomina and
true coverage probabilities of the confidence interval can be reduced by replacing the asymptotic
critical value with the bootstrap critical value z,,,*. With the bootstrap critical vaue, the
confidence interval ISy - Z,a2*Sh £ Qo £ O + Zhar2*Sh- The coverage probability of thisinterva is
P(ITal £ Znaz*). By (3.27), P(IT| £ z0a2*) = 1 - a + O(n®), so the true and nominal coverage
probabilities differ by O(n®) when the bootstrap critical value is used, whereas they differ by O(n™)
when the asymptotic critical valueis used.

Analogous results can be obtained for one-sided and equal-tailed confidence intervals. With
asymptotic critical values, the true and nominal coverage probabilities of these intervals differ by
O(n™?). With bootstrap critical values, the differences are O(n™). In special cases such as the Slope
coefficients of homoskedastic, linear, mean-regressions, the differences with bootstrap critical

values are O(n¥).
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The bootstrap’s ahility to reduce the differences between the true and nominal coverage
probabilities of a confidence interval is illustrated by the following example, which is an extension
of Example 3.1.

Example 3.2 (Horowitz 1998a): This example uses Monte Carlo smulation to compare the
true coverage probabilities of asymptotic and bootstrap nominal 95% confidence intervals for gg in
the model of Example 3.1. The Monte Carlo procedureis:

MC4: Generate an estimation data set of size n = 10 by sampling from the N(0O,6)
distribution. Use this data set to compute gp.

MCS5: Compute z,,,2* by carrying out steps T2-T3 of Section 3.3. Determine whether qq is
contained in the confidence intervals based on the asymptotic and bootstrap critical values.

MC6: Determine the empirical coverage probabilities of the asymptotic and bootstrap
confidence intervals from the results of 1000 repetitions of steps MC4-MC5.

The empirical coverage probability of the asymptotic confidence interval was 0.886 in this
experiment, whereas the empirical coverage probability of the bootstrap interval was 0.943. The
asymptotic coverage probability is statistically significantly different from the nominal probability

of 0.95 (p < 0.01), whereas the bootstrap coverage probability is not (p > 0.10). I

3.5 The Importance of Asymptotically Pivotal Statistics

The arguments in Sections 3.2-3.4 show that the bootstrap provides higher-order asymptotic
approximations to distributions, RP's of tests, and coverage probabilities of confidence intervals
based on smooth, asymptotically pivotal statistics. These include test statistics whose asymptotic
distributions are standard norma or chi-square and, thus, most statistics that are used for testing
hypotheses about the parameters of econometric models. Models that satisfy the required
smoothness conditions include linear and nonlinear mean-regresson models, error-components
mean-regression models for pand data, logit and probit models that have at least one continuoudly

distributed explanatory variable, and tobit models. The smoothness conditions are also satisfied by
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parametric sample-selection models in which the selection equation is a logit or probit model with
a least one continuoudy distributed explanatory variable. Asymptoticaly pivotal statistics based
on median-regression models do not satisfy the smoothness conditions. Bootstrap methods for such
satistics are discussed in Section 4.3. The ability of the bootstrap to provide asymptotic
refinements for smooth, asymptotically pivotal statistics provides a powerful argument for using
them in applications of the bootstrap.

The bootstrap may a so be applied to statistics that are not asymptotically pivotal, but it does
not provide higher-order approximations to their distributions. Estimators of the structural
parameters of econometric models (e.g., dope and intercept parameters, including regression
coefficients; standard errors, covariance matrix elements, and autoregressive coefficients) usually
are not asymptotically pivotal. The asymptotic distributions of centered structural parameter
estimators are often normal with means of zero but have variances that depend on the unknown
population distribution of the data. The errors of bootstrap estimates of the distributions of Statistics
that are not asymptotically pivotal converge to zero at the same rate as the errors made by first-order
asymptotic approximations.”

Higher-order approximations to the distributions of datistics that are not asymptotically
pivotal can be obtained through the use of bootstrap iteration (Beran 1987, 1988; Hall 1992a) or
bias-correction methods (Efron 1987). Bias correction methods are not applicable to symmetrical
tests and confidence intervals. Bootstrap iteration is discussed in Section 4.4. Bootstrap iteration is
highly computationally intensive, which makes it unattractive when an asymptotically pivotal

satistic is available.

3.6 The Parametric Versus the Nonparametric Bootstrap
The size of the error in the bootstrap estimate of a RP or coverage probability is determined
by the size of F, - Fo. Thus, F, should be the most efficient available estimator. If Fy belongsto a

known parametric family F(% ), F(% g,) should be used to generate bootstrap samples, rather than
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the EDF. Although the bootstrap provides asymptotic refinements regardless of whether F(x g,) or
the EDF is used, the results of Monte Carlo experiments have shown that the numerical accuracy of
the bootstrap tends to be much higher with F(x q,) than with the EDF. If the objectiveisto test a
hypothesis Hy about g, further gains in efficiency and performance can be obtained by imposing the
congtraints of Hp when obtaining the estimate qgp.

Toillustrate, consider testing the hypothesis Hy: b; = 0 in the Box-Cox regression model
328) YO =b,+b;X+U,
where Y is the Box-Cox (1964) transformation of Y, X is an observed, scalar explanatory variable,
U is an unobserved random variable, and b and b, are parameters. Suppose that U ~ N(0,s 2) .2
Then bootstrap sampling can be carried out in the following ways:

1 Sample (Y, X) pairs from the data randomly with replacement.

2. Estimate | , by, and b, in (3.28) by maximum likelihood, and obtain residuals U.

Generate Y valuesfrom Y =[l (b, +b, X +U*) +1]¥' »  wherel , by, and b, are the estimates of | ,

bo, and b,; and U* is sampled randomly with replacement from the U.

3. Same as method 2 except U* is sampled randomly from the distribution N(O, s,%),
where s,2 is the maximum likelihood estimate of s 2,

4. Estimatel , bg, and s 2 in (3.28) by maximum likelihood subject to the constraint b,
=0. Then proceed asin method 2.

5. Estimate| , bg, and s 2 in (3.28) by maximum likelihood subject to the constraint b,

=0. Then proceed asin method 3.

In methods 2-5, the values of X may be fixed in repeated samples or sampled independently

of U from the empirical distribution of X.
Method 1 provides the least efficient estimator of F, and typically has the poorest numerical

accuracy. Method 5 has the greatest numerical accuracy. Method 3 will usualy have greater

33



numerical accuracy than method 2. If the distribution of U is not assumed to belong to a known
parametric family, then methods 3 and 5 are not available, and method 4 will usually have greater
numerical accuracy than methods 1-2. Of course, parametric maximum likelihood cannot be used
to estimate by, by, and | if the distribution of U is not specified parametrically.

If the objective is to abtain a confidence interval for b, rather than to test a hypothesis,
methods 4 and 5 are not available. Method 3 will usualy provide the greatest numerical accuracy if
the distribution of U is assumed to belong to a known parametric family, and method 2 if not.

One reason for the relatively poor performance of method 1 is that it does not impose the
condition E(U¥X = x) = 0. This problem is discussed further in Section 5.2, where heteroskedastic

regression models are considered.

3.7 Recentering

The bootstrap provides asymptotic refinements for asymptotically pivota statistics because,
under the assumptions of the smooth function model, sup. |Gq(t, F) - Gn(t, Fo)| converges to zero
asn® ¥ more rapidly than sup. [Gx(t, Fo) - Gn(t, Fg)|- One important situation in which this does
not necessarily happen is generalized method of moments (GMM) estimation of an overidentified
parameter when F,, isthe EDF of the sample.

To see why, let go be the true value of a parameter q that is identified by the moment
condition Eh(X, q) = 0. Assume that dim(h) > dim(q). If, asis often the case in applications, the
distribution of X is not assumed to belong to a known parametric family, the EDF of X is the most
obvious candidate for F,. The sample analog of Eh(X, q) isthen

E*h(X.0) =4 h(X,.a)

Mz
where E* denotes the expectation relative to F,. The sample analog of qq is gn, the GMM estimator

of g. In genera, E*h(X, g,) * 0 in an overidentified model, so bootstrap estimation based on the



EDF of X implements a moment condition that does not hold in the population the bootstrap
samples. As a result, the bootstrap estimator of the distribution of the datistic for testing the
overidentifying redtrictions is inconsistent (Brown et al. 1997). The bootstrap does consistently
estimate the distributions of n"*(qg, - o) (Hahn 1996) and the t statistic for testing a hypothesis about
a component of g. However, it does not provide asymptotic refinements for the RP of the t test or
the coverage probability of a confidence interval.

This problem can be solved by basing bootstrap estimation on the recentered moment
condition E*h* (X, g,) = 0, where
829 X =h(Xa)- 8 nX a).

i=1
Hall and Horowitz (1996) show that the bootstrap with recentering provides asymptotic refinements
for the RP's of t tests of hypotheses about components of q and the test of overidentifying
restrictions. The bootstrap with recentering also provides asymptotic refinements for confidence
intervals. Intuitively, the recentering procedure works by replacing the misspecified moment
condition E*h(X, g) = 0 with the condition E*h*(X, g) = 0, which does hold in the population that
the bootstrap samples.

Freedman (1981) recognized the need for recentering residuas in regression models without
intercepts. See, aso, Efron (1979).

Brown et al. (1997) propose an aternative approach to recentering. Instead of replacing h
with h* for bootstrap estimation, they replace the empirical distribution of X with an empirica
likelihood estimator that is constructed so that EXh(X, g,) = 0. The empirical likelihood estimator
assigns a probability mass py; to observation X (i =1, ..., n). The py’'s are determined by solving

the problem
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maximize: g logp
pnl """ pnn i=1

n n
subjecttor  § ph(Xi,0n)=0 & Pn=L pu30
i=1 i=1

In genera, the solution to this problem yields p,; * n™, so the empirical likelihood estimator of the
distribution of X is not the same as the empirical distribution. Brown et al. (1997) implement the
bootstrap by sampling {X} with probability weights p, instead of randomly with replacement.
They argue that the bootstrap is more accurate with empirical-likelihood recentering than with
recentering by (3.29) because the empirical-likelihood estimator of the distribution of X is
asymptotically efficient under the moment conditions Eh(X,q) = 0. With ether method of
recentering, however, the differences between the nomina and true RP's of symmetrical tests and
between the nominal and true coverage probabilities of symmetrical confidence intervals are O(n).
Thus, the differences between the errors made with the two recentering methods are likely to be
small with samples of the sizes typically encountered in applications.

Brown et al. (1997) develop the empirica-likelihood recentering method only for smple
random samples. Kitamura (1997) has shown how to carry out empirical-likelihood estimation with
dependent data. It is likely, therefore, that empirical-likelihood recentering can be extended to
GMM estimation with dependent data. The recentering method based on (3.29) requires no
modification for use with dependent data (Hall and Horowitz 1996). Section 4.1 provides further

discussion of the use of the bootstrap with dependent data.

4. EXTENSIONS
This section explains how the bootstrap can be used to obtain asymptotic refinements in
certain stuations where the assumptions of Section 3 are not satisfied. Section 4.1 treats dependent
data. Section 4.2 treats kernel density and nonparametric mean-regression estimators. Section 4.3

shows how the bootstrap can be applied to certain non-smooth estimators.  Section 4.4 describes
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how bootstrap iteration can be used to obtain asymptotic refinements without an asymptoticaly
pivotal statistic. Section 4.5 discusses additional special problems that can arise in implementing
the bootstrap. Section 4.6 discusses the properties of bootstrap critical values for testing a

hypothesis that isfalse.

4.1 Dependent Data

With dependent data, asymptotic refinements cannot be obtained by using independent
bootstrap samples.  Bootstrap sampling must be carried out in a way that suitably captures the
dependence of the data-generation process. This section describes several methods for doing this.
It aso explains how the bootstrap can be used to obtain asymptotic refinementsin GMM estimation
with dependent data. At present, higher-order asymptotic approximations and asymptotic
refinements are available only when the data-generation process is stationary and strongly
geometrically mixing. Except when stated otherwise, it is assumed here that this requirement is

satisfied. Non-stationary data-generation processes are discussed in Section 4.1.3.

4.1.1 Methods for Bootstrap Sampling with Dependent Data

Bootstrap sampling that captures the dependence of the data can be carried out relatively
eadily if there is a parametric model, such as an ARMA modd, that reduces the data-generation
process to a transformation of independent random variables. For example, suppose that the series
{ X} isgenerated by the stationary, invertible, finite-order ARMA model
(41) A(L,a)X, =B(L,b)U,
where A and B are known functions, L is the backshift operator, a and b are vectors of parameters,
and {Uy} is a sequence of independently and identically distributed (iid) random variables. Let a,
and b, be n"*-consistent, asymptotically normal estimators of a and b, and let {Ut} be the centered

residuals of the estimated model (4.1). Then abootstrap sample { X;*} can be generated as

A(L,a,)X* = B(L,b,)U*,
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where {U¢*} is a random sample from the empirical distribution of the residuals {Ut}. If the

distribution of U, is assumed to belong to a known parametric family (e.g., the norma distribution),
then {U;*} can be generated by independent sampling from the estimated parametric distribution.
Bose (1988) provides a rigorous discussion of the use of the bootstrap with autoregressons. Bose
(1990) treats moving average models.

When there is no parametric model that reduces the data-generation process to independent
sampling from some probability distribution, the bootstrap can be implemented by dividing the data
into blocks and sampling the blocks randomly with replacement. The block bootstrap is important
in GMM estimation with dependent data, because the moment conditions on which GMM
estimation is based usually do not specify the dependence structure of the GMM residuals. The
blocks may be non-overlapping (Carlstein 1986) or overlapping (Hall 1985, Kiinsch 1988, Politis
and Romano 1994). To describe these blocking methods more precisdly, let the data consist of
observations { Xi: i =1, ..., n}. With non-overlapping blocks of length I, block 1 is observations
{X:j=1,...,1}, block 2 isobservations{ X +j: j =1, ..., I}, and so forth. With overlapping blocks
of length I, block 1isobservations{X: j =1, ...,1}, block 2 isobservations{X;.1: j=1, ..., 1}, and
so forth. The bootstrap sample is obtained by sampling blocks randomly with replacement and
laying them end-to-end in the order sampled. It is also possible to use overlapping blocks with
lengths that are sampled randomly from the geometric distribution (Politis and Romano 1994). The
block bootstrap with random block lengths is also caled the stationary bootstrap because the
resulting bootstrap data series is stationary, wheress it is not with overlapping or non-overlapping
blocks of fixed (non-random) lengths.

Regardless of the blocking method that is used, the block length (or average block length in
the Stationary bootstrap) must increase with increasing sample size n to make bootstrap estimators
of moments and distribution functions consistent. The asymptoticaly optimal block length is

defined as the one that minimizes the asymptotic mean-square error of the block bootstrap
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estimator. The asymptotically optima block length and its rate of increase with increasing n
depend on what is being estimated. Hall et al. (1995) showed that with either overlapping or non-
overlapping blocks with non-random lengths, the asymptoticaly optimal block-length is | ~ n,
wherer = 1/3 for estimating bias or variance, r = 1/4 for estimating a one-sided distribution function
(e.g., P(Th £1)), and r = 1/5 for estimating a two-sided distribution function (e.g., P(|T,| £ t)). Hall
et al. (1995) also show that overlapping blocks provide somewhat higher estimation efficiency than
non-overlapping ones. The efficiency differenceis likely to be very small in applications, however.
For estimating a two-sided distribution function, for example, the root-mean-square estimation error

(RMSE) with either blocking method is O(n®?). The numerical difference between the RMSE's

can be illustrated by considering the case of a normalized sample average. Let T, =(X - m)/s ,
where X is the sample average of observations {X}, m=E(X), and s 2 =Var(X). Then the

results of Hall, et al. (1995) imply that for estimating P(|T,| £ t), the reduction in asymptotic RMSE
from using overlapping blocks instead of nonoverlapping onesis less than 10 percent.

Lahiri (1997) has investigated the asymptotic efficiency of the stationary bootstrap. He
showed that the asymptotic relative efficiency of the stationary bootstrap compared to the block
bootstrap with non-random block lengths is always less than one and can be arbitrarily close to zero.
More precisely, let RMSEg and RMSEg, respectively, denote the asymptotic RMSE's of the
stationary bootstrap and the block bootstrap with overlapping or non-overlapping blocks with non-
random lengths. Then RMSE\w/ RMSEg < 1 aways and can be arbitrarily close to zero. Thus, at
least in terms of asymptotic RMSE, the stationary bootstrap is unattractive relative to the block
bootstrap with fixed-length blocks.

Implementation of the block bootstrap in an application requires a method for choosing the
block length with afinite sample. Hall, et al. (1995) describe a subsampling method for doing this
when the block lengths are non-random. The idea of the method is to use subsamples to create an

empirical analog of the mean-square error of the bootstrap estimator of the quantity of interest. Let
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y denote this quantity (e.g., atwo-sided distribution function). Lety , be the bootstrap estimator of
y that is obtained using a preliminary block-length estimate. Let m<n. Lety (19 (i=1,...,n-
m) denote the bootstrap estimates of y that are computed using al the n - m runs of length min the

data and block length I¢ Let I, be the value of I¢that minimizes éi[y mil)-y n]2. The

estimator of the asymptotically optimal block length is (n/m)'l,,, where r = 1/3 for estimating bias or
variance, r = 1/4 for estimating a one-sided distribution function, and r = 1/5 for estimating a two-
sided distribution function

Buhlmann (1997) has proposed an dternative to blocking for use when the data-generation
process can be represented as an infinite-order autoregression. In this method, called the sieve
bootstrap, the infinite-order autoregression is replaced by an approximating autoregression with a
finite-order that increases at a suitable rate as n ® ¥. The coefficients of the finite-order
autoregression are estimated, and the bootstrap is implemented by sampling the centered residuals
from the estimated finite-order model. Buhlmann (1997) gives conditions under which this
procedure yields consistent estimators of variances and distribution functions. Bihlmann (1998)
shows that the sieve bootstrap provides an asymptotic refinement for estimating the CDF of the t
datigtic for testing a one-sided hypothesis about the trend function in an AR(¥) process with a

deterministic trend.

4.1.2 Asymptotic Refinements in GMM Estimation with Dependent Data

This section discusses the use of the block bootstrap to obtain asymptotic refinements in
GMM estimation with dependent data. Lahiri (1992) showed that the block bootstrap provides
asymptotic refinements through O(n™?) for normalized sample moments and for a Studentized
sample moment with m-dependent data. Hall and Horowitz (1996) showed that the block bootstrap
provides asymptotic refinements through O(n™) for symmetrical tests and confidence intervals

based on GMM egtimators. Their methods can also be used to show that the bootstrap provides
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refinements through O(n™?) for one-sided tests and confidence intervals. Hall and Horowitz (1996)
do not assume that the data-generation process is m-dependent™.

Regardiess of whether overlapping or nonoverlapping blocks are used, block bootstrap
sampling does not exactly replicate the dependence structure of the original data-generation process.
For example, if nonoverlapping blocks are used, bootstrap observations that belong to the same
block are deterministically related, whereas observations that belong to different blocks are
independent. This dependence structure is unlikely to be present in the original data-generation
process. As a result, the finite-sample covariance matrices of the asymptotic forms of parameter
estimators obtained from the origina sample and from the bootstrap sample are different. The
practical consequence of this difference is that asymptotic refinements through O(n™) cannot be
obtained by applying the “usual” formulae for test statistics to the block-bootstrap sample. It is
necessary to develop special formulae for the bootstrap versions of test statistics. These formulae
contain factors that correct for the differences between the asymptotic covariances of the original-
sample and bootstrap versions of test statistics without distorting the higher-order terms of
asymptotic expansions that produce refinements.

Lahiri (1992) derived the bootstrap version of a Studentized sample mean for m-dependent
data. Hall and Horowitz (1996) derived formulae for the bootstrap versions of the GMM
symmetrical, two-tailed t statistic and the statistic for testing overidentifying restrictions.  As an
illustration of the form of the bootstrap datistics, consder the GMM t datistic for testing a
hypothesis about a component of a parameter q that is identified by the moment condition Eh(X, q)
= 0. Hall and Horowitz (1996) showed that the corrected formula for the bootstrap version of the

GMM t stetistic is
T = (S /ST,
where 'ﬁ, is the “usual” GMM t datistic applied to the bootstrap sample, S, is the “usuad” GMM

standard error of the estimate of the component of g that is being tested, and S, is the exact standard
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deviation of the asymptotic form of the bootstrap estimate of this component. S, is computed from
the original estimation sample, not the bootstrap sample. Hansen (1982) gives formulae for the
usual GMM t statistic and standard error. S, can be calculated because the process generating
bootstrap data is known exactly. An analogous formulais available for the bootstrap version of the
dtatistic for testing overidentifying restrictions but is much more complicated algebraically than the
formulafor thet statistic. See Hall and Horowitz (1996) for details.

At present, the block bootstrap is known to provide asymptotic refinements for symmetrical
tests and confidence intervals based on GMM estimators only if the residuals {h(X, qo): i =1,2,...}
at the true parameter point, o, are uncorrelated after finitely many lags. That is,

(42)  E[h(X;,q0)n(X;,q0)]=0 if]i- j|>M

for some M < ¥.*® This restriction is not equivalent to m-dependence because it does not preclude
correlations among higher powers of components of h that persst a arbitrarily large lags (e.g.,
stochastic voldtility). Although the restriction is satisfied in many econometric applications (see,
e.g., Hansen 1982, Hansen and Singleton 1982), there are others in which relaxing it would be
useful. The main problem in doing so is that without (4.2), it is necessary to use a kernel-type
estimator of the GMM covariance matrix (see, e.g., Newey and West 1987, 1994; Andrews 1991,
Andrews and Monahan 1992). Kernel-type estimators are not functions of sample moments and
converge at rates that are sower than 2. However, present results on the existence of asymptotic
expansions that achieve O(n™) accuracy with dependent data apply only to functions of sample
moments that have N2 rates of convergence (Gétze and Hipp 1983, 1994). It will be necessary to
extend existing theory of asymptotic expansions with dependent data before (4.2) can be relaxed for
symmetrical tests and confidence intervals.

Condition (4.2) is not needed for one-sided tests and confidence intervas, where the
bootstrap provides only O(n™"? refinements. Gotze and Kiinsch (1996) and Lahiri (1996) give

conditions under which the moving-block-bootstrap approximation to the distribution of a statistic
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that is Studentized with a kernel-type variance estimator is accurate through Op(n'”z). When the

conditions are satisfied,

(43) suplP(T,£t)- P*(Tx £)|=0,(n""?),
t

where T,* is the bootstrap analog of the Studentized statistic T,, and the moving block bootstrap is
used to generate bootstrap samples. In Gotze and Kiinsch (1996), T, is the Studentized form of a
smooth function of sample moments. In Lahiri (1996), T, is a Studentized statistic for testing a
hypothesis about a dope coefficient in a linear mean-regression model. Achieving the result (4.3)
requires, among other things, use of a suitable kernel or weight function in the variance estimator.
Gotze and Kiinsch (1996) show that (4.3) holds with arectangular or quadratic kernel but not with a

triangular one.

4.1.3 The Bootstrap with Non-Sationary Processes

The foregoing results assume that the data-generation process is stationary. Most research to
date on using the bootstrap with non-stationary data has been concerned with establishing
consistency of bootstrap estimators of digtribution functions, not with obtaining asymptotic
refinements.  An exception is Lahiri (1992), who gives conditions under which the bootstrap
estimator of the distribution of the normalized sample average of non-stationary data differs from
the true distribution by o(n™?) aimost surely. Thus, under Lahiri’s conditions, the bootstrap is more
accurate than first-order asymptotic approximations. Lahiri’s result requires a priori knowledge of
the covariance function of the data and does not apply to Studentized sample averages. Moreover
Lahiri assumes the existence of the covariance function, so his result does not apply to unit-root
processes.

The consistency of the bootstrap estimator of the distribution of the dope coefficient or
Studentized slope coefficient in a smple unit-root model has been investigated by Basawa et al.

(19914, 1991b), Datta (1996), and Ferretti and Romo (1996). The modd is
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(44) X =bX_,+U;; i=12,...,n,
where X, = 0and { U} isan iid sequencewith E(U;) =0 and E(U?) =s 2<¥ . Let b, denote the

ordinary least squares estimator of b in (4.4):

n
o]

a XXy
45 b=

[}
a X¢.
i=1

Let by denote the true but unknown value of b. Consider using the bootstrap to estimate the
sampling distribution of (b, - bg) or thet statistic for testing Ho: b = bg. 1t turns out that when by =
1 ispossible, the consistency of the bootstrap estimator is much more sensitive to how the bootstrap
sample is drawn than when it is known that |bg| < 1.
Basawa et al. (19914) investigate the consistency of a bootstrap estimator of the distribution

of thet dtatistic in the special casethat U ~N(0,1). Inthiscase, thet statisticis

N 12
46) 1, =§é’1 xiﬂ& (b, - bo).

i=1
In Basawa et al. (19914), the bootstrap sample { Xi*: i =1, ..., n} is generated recursively from the
estimated model
(47 X =h X & +U,
where Xo* = 0 and {U*} is an independent random sample from the N(O,1) distribution. The

bootstrap version of thet statistic is

1/2

(Xi.7)?R (o - by),

tr =

gora

1

where b,* is obtained by replacing X with X* in (4.5). Basawa et al. (1991a) show that the
bootstrap distribution function P.* (t* £ t) does not consistently estimate the population distribution

function Py(t £t). Thisresult isnot surprising. The asymptotic distribution of t is discontinuous at



by = 1. Therefore, condition (iii) of Theorem 2.1 is not satisfied if the set of data-generation
processes under consideration includes ones with and without by = 1.

This problem can be overcome by specifying that by = 1, thereby removing the source of the
discontinuity. Basawa et al. (1991b) investigate the consistency of the bootstrap estimator of the
distribution of the statistic Z, © n(b, - 1) for testing the unit-root hypothesisHo: bo=11in (4.4). The
bootstrap sample is generated by the recursion
(48)  X* =X +Up,
where Xp* = 0 and {U;i*} is a random sample from the centered residuals of (4.4) under Ho. The
centered residuals are U, = X, - X, ;- U, where U =n"1gQ in:l(Xi - X;.1). The bootstrap
analog of Z, isZ,* = n(b,* - 1), where b,* is obtained by replacing X; with X* in (4.5). Basawa et
al. (1991b) show that if Hp istrue, then |P* (Z,* £ 2) - Po(Z, £ 2)| = 0y(1) uniformly over z.

The discontinuity problem can be overcome without the restriction by = 1 by using bootstrap
samples consisting of m < n observations (Datta 1996). This approach has the advantage of
yidlding a confidence interval for by that is valid for any by T (-¥, ¥). Consider model (4.4) with

the additional assumption that E|U;f "¢ < ¥ for some d > 0. Let b, be the ordinary least squares

_10 n

estimator of b, and definet, asin (4.6). Let Ui =X -b,X.1-n ai:l(Xi -b,Xi.q) (1=1, ..,
n) denote the centered residuals from the estimated model, and let {Ui*: i =1, ..., m} bearandom
sample of {Ui} for some m< n. The bootstrap sample is generated by the recursion (4.7) but with i

=1, ..., mingead of i =1, ..., n. Let b,* denote the ordinary least squares estimator of b that is

obtained from the bootstrap sample. Define the bootstrap version of t, by

m 1/2
t =lA (X.2)2R (o - by) -
i=1

Datta (1996) proves that if [m(log log n)’/n ® 0asn® ¥, then [Py* (tn* £ t) - Py(ty £ t)] = 0(1)

admost surely asn ® ¥ uniformly over zfor any by (-¥, ¥).
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Ferretti and Romo consider atest of Ho: bg = 1in (4.4). Let b, be the ordinary least squares

estimator of b, and let

(X; - byXi_1)%.

Qo5

(49) s2=

Sl

i=1

Thetest statisticis

n 12
(.10 i;=si§é’1 xiﬂ& v D).

nili=1
The bootstrap sample is generated from the centered residuals of the estimated model by using the
recursion (4.8). Let b,* denote the ordinary least squares estimator of b that is obtained from the
bootstrap sample. The bootstrap version of the test statistic, t,*, is obtained by replacing X; and b,
with X* and b* in (49 and (4.10). Ferretti and Romo (1996) show that
|IP*(t* £1)- P,(t,£t)|=0(1) amost surely asn ® ¥. Ferretti and Romo (1996) also show
how this result can be extended to the case in which {U;} in (4.4) follows an AR(1) process.

The results of Monte Carlo experiments (Li and Maddala 1996, 1997) suggest that the
differences between the true and nominal RP's of tests of hypotheses about integrated or
cointegrated data-generation processes are smaller with bootstrap-based critical values than with
asymptotic ones. At present, however, there are no theoretical results on the ability of the bootstrap
to provide asymptotic refinements for tests or confidence intervals when the data are integrated or

cointegrated.

4.2 Kernel Density and Regression Estimators
This section describes the use of the bootstrap to carry out inference about kerne
nonparametric density and mean-regression estimators. These are not smooth functions of sample
moments, even approximately, so the results of Section 3 do not apply to them. In particular, kernel

density and mean-regression estimators converge more slowly than n’2, and their distributions have
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unconventional asymptotic expansions that are not in powers of N2, Consequently, the sizes of the
asymptotic refinements provided by the bootstrap are also not powers of N2, Sections 4.2.1-4.2.3
discuss bootstrap methods for nonparametric density estimation. Nonparametric mean regression is

discussed in Section 4.2.4.

4.2.1 Nonparametric Density Estimation

Let f denote the probability density function (with respect to Lebesgue measure) of the scalar
random variable X. The problem addressed in this section isinferring f from a random sample of X,
{X: i =1, .., n}, without assuming that f belongs to a known, finite-dimensional family of
functions. Point estimation of f can be carried out by the kernel method. The kernel estimator of

f(x) is

f =L & KFX' Xié,
g o

where K is a kernd function with properties that are discussed below and {h,: n=1,2, ...} isa
strictly positive sequence of bandwidths.
The properties of kernel density estimators are described by Silverman (1986), among others.

To state the properties that are relevant here, let r 3 2 be an even integer. Assume that f has r
bounded, continuous derivatives in a neighborhood of x. Let K be a bounded function that is
symmetrical about 0 and has support [-1,1]."" In addition, let K satisfy

1if j=0
(4.11) Z_llqu(u)du= 0if 1EjEr-1

ActOif j=r.
Define

1
By =Z_1K(u)2du.

Also define by(X) = E[fy(x) - f(x)] and s 2(x) =Var[ f,(x)] . Then
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() = i 2 £ 009 + off)
and

2 — BK
4.12) s2(x) oy f(x).

Moreover, if nh?*! isbounded asn ® ¥, then

Zn(X)O fn(x)' f(X)- bn(x)

sn(X)

(413) = f”(x)s' '(E)[()f”(x)] ® 9 N(0J).

The fastest possible rate of convergence of f,(x) to f(x) is achieved by setting h, p "™ * 9. When
this happens, f,(x) - f(x) = Q[ * Y], by(x) u N Y, and s ,(x) p N™@*",

A Studentized statistic that is asymptotically pivotal and can be used to test a hypothesis
about f(x) or form a confidence interval for f(x) can be obtained from (4.13) if suitable estimators of

S ﬁ(x) and by(x) are available. The need for estimating an asymptotic variance is familiar. An

estimator of s ﬁ(x) can be formed by replacing f(x) with f,(X) on the right-hand side of (4.12).
However, the asymptotic expansions required to obtain asymptotic refinements are simpler if
S ﬁ(x) is estimated by a sample analog of the exact, finite-sample variance of f,(X) instead of a

sample analog of (4.12), which is the variance of the asymptotic distribution of f,(x). A sample

analog of the exact finite-sample variance of f,(x) is given by

£0=—1 & Kﬁx'x"lz- fm09”

G el BT S
If b ® Oand nh, ® ¥ asn® ¥, then (h,)[s5(X)- SA(X)]=0,(1) asn ® ¥. Define the

Studentized form of Z, by
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(414) t = fn(X) 3 E[ fn(x)] )
" $(%)

Then t, is the asymptotic t statistic for testing a hypothesis about E[f,(x)] or forming a confidence
interva for E[f,(X)]. The asymptotic distribution of t, is N(0,1). However, unless the asymptotic

bias b,(X) is negligibly smal, t, cannot be used to test a hypothesis about f(x) or form a confidence
interval for f(x). Because s ;,l(x) = O[(nhy)"} and s;l(x) = Op[(nhn)”z], bn(X) is negligibly small
only if (nhy)*?b,(X) = 0(1) asn® ¥. The problem of asymptotic bias cannot be solved by replacing
E[f.(X)] with f(X) on the right-hand side of (4.14) because the asymptotic distribution of the resulting

version of t, is not centered at O unless b,(x) is negligibly small. Section 4.2.2 discusses ways to

deal with asymptotic bias.

4.2.2 Asymptotic Bias and Methods for Controlling It

Asymptotic bias is a characteristic of nonparametric estimators that is not shared by
estimators that are smooth functions of sample moments. As has just been explained, asymptotic
bias may prevent t, from being suitable for testing a hypothesis about f(x) or constructing a
confidence interval for f(x). Asymptotic bias also affects the performance of the bootstrap. To see
why, let {X*: i =1, ..., n} be a bootstrap sample that is obtained by sampling the data {Xi}

randomly with replacement. Then the bootstrap estimator of fis

414)  f*(x) = ié pr'h:(i* &
i=1

The bootstrap analog of s2(x) is

18 x-Xi*llz_fn*(x)z
S”(X)_(nhh)zi"i‘lKﬁ h 7 n

Define the bootstrap analog of t, by

_ (- (9
SF()

.
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Itisclear from (4.14) that E*[f,*(X) - f,(X)] = 0. Thus, f,*(X) an unbiased estimator of f,(x) in afinite
sample as well as asymptotically, whereas f(X) is an asymptotically biased estimator of f(x). It can
be shown that the bootstrap distribution of t,* convergesin probability to N(0,1). Therefore, despite
the unbiasedness of f,*(x), t,* is a bootstrap t dtatistic for testing a hypothesis about E[f,(X)] or
forming a confidence interval for E[f,(X)]. It is not a bootstrap t statistic for testing a hypothesis
about f(x) or forming a confidence interval for f(x) unless b,(x) is negligibly small.

There are two ways to overcome the difficulties posed by asymptotic bias so that t, and t,*
become statistics for testing hypotheses about f(x) and forming confidence intervals for f(x) instead

of E[f,(X)]. One is the method of explicit bias removal. It consists of forming an estimator of

b,(X) , say Bh(x) , that can be subtracted from f,(x) to form the asymptotically unbiased estimator

fr(X) - Bh(x). The other method is undersmoothing. This consists of setting h, g n™* with k >

1/(2r + 1). With undersmoothing, (nh,)"?b,(X) = 0p(1) asn ® ¥, o that by(X) is asymptotically
negligible. Neither method is compatible with achieving the fastest rate of convergence of a point-

estimator of f(x). With undersmoothing, the rate of convergence of f,(x) isthat of s ,(x). Thisis

e+ D Explicit bias removal with h, p @ * Y and rate of

n® - %2 which is dower than n
convergence n™@ * Y for f,(x) requires f(X) to have more than r derivatives. When f(X) has the
required number of derivatives, the fastest possible rate of convergence of () isn“®*? for some
s>r. Thisrate is achieved with h, p n/®* 3 but the resulting estimator of f(x) is asymptotically
biased. Thus, regardless of the method that is used to remove asymptotic bias, testing a hypothesis
about f(x) or forming a confidence interval requires using a bandwidth sequence that converges
more rapidly than the one that maximizes the rate of convergence of a point estimator of f(x).
Nonparametric point estimation and nonparametric interval estimation or testing of hypotheses are
different tasks that require different degrees of smoothing.

Hal (1992b) compares the errors in the coverage probabilities of bootstrap confidence

intervals with undersmoothing and explicit bias removal. He shows that when the number of
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derivatives of f(x) is held constant, undersmoothing achieves a smaller error in coverage probability
than does explicit bias remova. This conclusion also applies to the reection probabilities of
hypothesis tests, the difference between true and nomina regjection probabilities can be made
smaller with undersmoothing than with explicit bias removal. Thus, undersmoothing is the better
method for handling asymptotic bias when the aim is to minimize differences between true and
nominal rejection and coverage probabilities of bootstrap-based hypothesis tests and confidence

intervas. Accordingly, undersmoothing is used for bias removal in the remainder of this section.

4.2.3 Asymptotic Refinements

The argument showing that the bootstrap provides asymptotic refinements for tests of
hypotheses and confidence intervals in nonparametric density estimation is similar to that made in
Section 3 for the smooth function model. The main step is proving that the distributions of t, and
t,* have Edgeworth expansions that are identical up to a sufficiently small remainder. The result is
stated in Theorem 4.1, which is proved in Hall (1992a, pp. 268-282).

Theorem 4.1: Assume that f hasr bounded, continuous derivatives in a neighborhood of x.
Let h, ® Oand (nh,)/(logn) ® ¥ asn® ¥. Let K be a bounded function that is symmetrical about
0, has support [-1,1], and satisfies (4.11) for somer 3 2. Also, assume that there is a partition of
[-1,1], up=-1<u; < ... <uy=1such that K¢exists, is bounded, and is either strictly positive or
strictly negative on each interval (u;, u;+ ;). Then there are even functions g, and g; and an odd

function g, such that

_ 1 h 1 2.1
(415) Pl £)=F()+ o Sqran(t) + hnqz(t)+ ds(t) +Of(nh,) ¥ +n°Y

uniformly over t. Moreover, there are even functions g,; and gn3 and an odd function g, such that

On(t) - gi(t) ® Oasn® ¥ uniformly over t almost surely (j =1, ..., 3), and

2
PHEED =FO* S h:)m O (t) + hhqnz(tﬁw Oha(t) + Ol(nhy) 2 +n7"]
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uniformly over t almost surely.
Hall (19924, pp. 211-216) gives explicit expressions for the functions g; and qy.

To see the implications of Theorem 4.1, consider a symmetrical test of a hypothesis about
f(x). The results that will be obtained for this test aso apply to symmetrical confidence intervals.
Let the hypothesis be Hy: f(X) = fo. A symmetrical test rgects Ho if [fo(X) - ol is large. Suppose that
nhy *'® Oasn® ¥. Thisrate of convergence of h, insures that the asymptotic bias of f,(x) has
a negligibly small effect on the error made by the higher-order approximation to the distribution
of t, that is used to obtain asymptotic refinements.’® It also makes the effects of asymptotic bias
sufficiently small that t, can be used to test Ho. Reecting Ho if [fo(X) - fo| is large is then
equivalent to rejecting Ho if [t,] islarge, thereby yielding a symmetrical t test of H.

Now suppose that the critical value of the symmetrical t test is obtained from the
asymptotic distribution of t,, which is N(0,1). The asymptotic a-level critical value of the
symmetrical t test is z,,, the 1 - a/2 quantile of the standard normal distribution. Theorem 4.1
shows that P(jt,| > za2) = a + O[(nhy,)™]. In other words, when the asymptotic critical value is
used, the difference between the true and nominal rejection probabilities of the symmetrical t test
is O[(nhy)™].

Now consider the symmetrical t test with a bootstrap critical value. The bootstrap a-level

critical value, z, %, satisfies P*(|t,*| 2 z,2*) = a. By Theorem 4.1,

(416)  P*(Ity|>t) - P(ty]>t) =o(nh,)™"]

amost surely uniformly over t. It can also be shown that P(|tn] > z,a2*) = a + o[(nh,)™"]. Thus,
with the bootstrap critical value, the difference between the true and nomina rejection
probabilities of the symmetrical t test is o[(nh,)™]. The bootstrap reduces the difference between
the true and nominal rejection probabilities because it accounts for the effects of the O[(nh,)™]
term of the Edgeworth expansion of the distribution of t,. First-order asymptotic approximations

ignore this term. Thus, the bootstrap provides asymptotic refinements for hypothesis tests and

52



confidence intervals based on a kernel nonparametric density estimator provided that the
bandwidth h, converges sufficiently rapidly to make the asymptotic bias of the density estimator
negligibly small.

The conclusion that first-order asymptotic approximations make an error of size O[(nh,)™]
assumes that nh,y ! ® 0. |If this condition is not satisfied, the error made by first-order
approximations is dominated by the effect of asymptotic bias and is larger than O[(nh,)™"] This
result is derived at the end of this section.

The bootstrap can also be used to obtain asymptotic refinements for one-sided and equal-
tailed tests and confidence intervals. For one-sided tests and confidence intervals with bootstrap
critical values, the differences between the true and nominal rejection and coverage probabilities
are O[(nh,) ™ + (nhy)¥?h,"]. These are minimized by setting h, g n¥® * 9, in which case the errors
are O[n?"@*3] . For equal-tailed tests and confidence intervals with bootstrap critical values, the
differences between the true and nominal rejection probabilities and coverage probabilities are
O[(nhy)™ +nh,2 ** + h,']. These are minimized by setting h, p N * 3, in which case the errors

D In contrast, the error made by first-order asymptotic approximationsis O[(nh,) ™4

areQ[n
in both the one-sided and equal-tailed cases. Hall (1992a, pp. 220-224) provides details and a
discussion of certain exceptional cases in which smaller errors can be achieved. In contrast to the
situation with the smooth function model, the orders of refinement achievable in nonparametric
density estimation are different for one-sided and equal-tailed tests and confidence intervals.

The Error Made by First-Order Asymptotics when nh,” ** Does Not Converge to 0:

The effects of having h, ® 0 too slowly are most easily seen by assuming that s ,(x) is known

so that t, isreplaced by

2 =09 T09- by

sn(X)

A symmetrical test of Ho rejectsif [fn(X) - fol/sn(X) islarge. If Hoistrue, then
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PF Fa(X) - fOEZk:PFZHEZ_ bn(x)k

Sn(X) Sn(X)
for any z, and
(4.17) PM””(X)_ f°|EZB=PMZn£z- b”(X)B- pMan_z_ b, (X) B
S n(x) sn(X) s ,(X)

Each term on the right-hand side of (4.17) has an asymptotic expansion of the form (4.15) except
without the g term and the O(n™*) remainder term, which arise from random sampling error in

s4(X). Specifically,

(418) PMMEJB:FMZ - MB_ FM_Z bn(X)B

5 09
plhz sn(x)%

1 b 0f b B an
*HMZ sn(x)a pzhz sn<x)8$+o“”““) !

where p; is an even function and p; is an odd function. Hall (1992a, p. 212) provides a proof and

the details of p; and p,. A Taylor series expansion of the right-hand side of (4.18) combined with

ba(X) = O(hy") and s x(X) =O[(nhy) 7] yields

(419) PM””(X)' f°'£z8=F(z)- F (-2) + 0[N, +(nh)h? +(nh,) 1],

Sn(X)
The remainder term on the right-hand side of (4.19) is dominated by h,", which is the effect of
asymptotic bias, unless nh,” ** ® 0. Thus, the error made by first-order asymptotic
approximations exceeds O[(nh,)"] unless f,(X) is sufficiently undersmoothed to make the

asymptotic bias b,(x) negligible, which is equivalent to requiring nh, "' ® Oasn® ¥.



4.2.4 Kernel Nonparametric Mean Regression

In nonparametric mean-regression, the am is to infer the mean of a random variable Y
conditiona on a covariate X without assuming that the conditional mean function belongs to a
known finite-dimensional family of functions. Define G(x) = E(Y]X = X) to be the conditional mean
function. Let X be a scalar random variable whose distribution has a probahility density function f.
This section explains how the bootstrap can be used to obtain asymptotic refinements for tests of
hypotheses about G(x) and confidence intervals that are based on kernel estimation of G..

Let the data consist of arandom sample, {Y;, X: i = ., N}, of the joint distribution of (Y,
X). The kerndl nonparametric estimator of G(x) is

G B & x-Xié,
()= hhf(x)"’_l Fm

where

f =L & KFX' Xié,
nh, 2, h,

K isakerne function and { h,} a sequence of bandwidths. The properties of G,(x) are discussed by
Hérdle (1990). To dtate the ones that are relevant here, let r 3 2 be an even integer. Assumethat G
and f each have r bounded, continuous derivatives in a neighborhood of x. Let K be a bounded
function that is symmetrical about 0, has support [-1,1], and satisfies (4.11). Define B and A¢ asin
Section 4.2.1. Set V(2) = Var(Y|X = 2), and assume that this quantity is finite and continuous in a

neighborhood of z=x. Also define
by () =y, T (x )¥F[G(x)f(x)] f(r)(x)w

Bk V(¥
nh, f(x)’

and

(420) s2(x)=

If nh?"*! isbounded asn® ¥, then
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The fastest possible rate of convergence of G(X) to G(X) is achieved by setting h, p @ * 2. When
this happens, Gy(x) - G(x) = Oy * V], by(x) u "V, and s ,(x) p n"@* Y,

The issues involved in converting Z, into an asymptotically pivota statistic that can be used
to test a hypothesis about G(x) or form a confidence interva for G(x) are the same as in kernel

density estimation. It is necessary to replace s ,(x) with a suitable estimator and to remove the
asymptotic bias b,(x). Asinkernel density estimation, asymptotic bias can be removed to sufficient
order by undersmoothing. Undersmoothing for a symmetrical test or confidence interval consists of
choosing h, sothat nh, **® Oasn® ¥.*

Now consider estimation of s ﬁ(x) . One possibility is to replace f(x) with f,(X) and V(x)
with a consistent estimator on the right-hand side of (4.20). The higher-order asymptotics of Gn(x)
are smpler, however, if s ﬁ(x) is estimated by a sample analog of the exact finite-sample variance
of the asymptotic form of G,(X) - G(X). With asymptotic bias removed by undersmoothing, the
asymptotic form of G,(x) - G(X) is

X & +0,() .

421) G,(X)- G Y - G(X)]K
(4.21)  G,(x)- G(x) = hnf()a[ (X)]F

The variance of the first term on the right-hand side of (4.21) is then estimated by the following

sample analog, which will be used here to estimate s 2(x) %

2= 1 2ng Kﬁx X& .
$(¥) = [nh f (x )]2a[. n ()] h
Now define
_Gh(¥) - G(x)
" $00
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With asymptatic bias removed through undersmoothing, t, is asymptotically distributed as N(0,1)
and is an asymptotically pivotal statistic that can be used to test a hypothesis about G(x) and to form
aconfidence interval for G(x). The bootstrap version of t, is

_ G (%) - Gy(¥)
5 ()

t*

where G,*(x) is obtained from G(x) by replacing the sample {;, X} with the bootstrap sample
{Y*, X*}, and ;*(X) is obtained from s,(x) by replacing the sample with the bootstrap sample, f,(x)
with f.* (), and G,(x) with G,* (x).*

The Edgeworth expansions of the distributions of t, and t,* are Smilar in structure to those of
the analogous datistic for kernel density estimators. The result for symmetrical tests and

confidence intervals can be stated as follows. Let E(Y#|X = 2) be finite and continuous for al zin

aneighborhood of x. Let K satisfy the conditions of Theorem 4.1. Then there are functions gand g,

such that g, - g=0(1) uniformly and amost surely asn® ¥,

(422)  P(tpEt)=2F(t)- 1+ﬁq(t ) +ol(nh,) "]

uniformly over t, and
P*(It,*[Et) = 2F (t)- 1+ﬁqn(t ) +0o[(nh,)"]

uniformly over t almost surely. It follows that the bootstrap estimator of the distribution of |t,| is
accurate through O[(nh,)™], wheress first-order asymptotic approximations make an error of this
size. Let z,,,* bethe bootstrap a-leve critical value of for testing the hypothesis Hy: G(X) = Go.
Then P*(|t.*| > z,a12*) = @, and it can be shown that P([ty| > Z,a*) = a + o[(nhy)™]. Hall (1992,
Section 4.5) discusses the mathematical details. Thus, with the bootstrap critical value, the true
and nominal rejection probabilities of a symmetrical t test of Ho differ by o[(nh,)™]. In contrast, it

follows from (4.22) that the difference is O[(nh,)™] if first-order asymptotic approximations are
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used to obtain the critical value. The same conclusions hold for the coverage probabilities of

symmetrical confidence intervals for G(x).

4.3 Non-Smooth Estimators

Some estimators are obtained by maximizing or minimizing a function that is
discontinuous or whose first derivative is discontinuous. Two important examples are Manski’'s
(1975, 1985) maximum-score (MS) estimator of the slope coefficients of a binary-response model
and the least-absolute deviations (LAD) estimator of the slope coefficients of a linear median-
regression model. The objective function of the MS estimator and the first derivative of the
objective function of the LAD estimator are step functions and, therefore, discontinuous. The
LAD and MS estimators cannot be approximated by smooth functions of sample moments, so
they do not satisfy the assumptions of the smooth function model. Moreover, the Taylor-series
methods of asymptotic distribution theory do not apply to the LAD and MS estimators, which
greatly complicates the analysis of their asymptotic distributional properties. As a consequence,
little is known about the ability of the bootstrap to provide asymptotic refinements for hypothesis
tests and confidence intervals based on these estimators. Indeed it is not known whether the
bootstrap even provides a consistent approximation to the asymptotic distribution of the MS
estimator.

This section explains how the LAD and MS estimators can be smoothed in a way that
greatly simplifies the analysis of their asymptotic distributional properties. The bootstrap
provides asymptotic refinements for hypothesis tests and confidence intervals based on the
smoothed LAD and MS estimators. In addition, smoothing accel erates the rate of convergence of
the MS estimator and ssimplifies even its first-order asymptotic distribution. Smoothing does not
change the rate of convergence or first-order asymptotic distribution of the LAD estimator. The

LAD estimator istreated in Section 4.3.1, and the M S estimator is treated in Section 4.3.2
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4.3.1 The LAD Estimator for a Linear Median-Regression Model

A linear median-regression model has the form
(423) Y=Xb+U,
where Y is an observed scalar, X is an observed 1° q vector, b isa g 1 vector of constants, and U
is an unobserved random variable that satisfies median(U[X = x) = 0 almost surely. Let {Y;, X;: i
=1, ..., n} bearandom sample from the joint distribution of (Y, X) in (4.23). The LAD estimator
of b, 6;1 , 0lves

= 14
minimize H,(b)° = [Y - Xb
imzeH®)° LA - Xb

(¥ - X;b)[21 (¥ - X;b>0)- 1],

Qo5

(4.24)

S

i=1

where B is the parameter set and 1(® is the indicator function. Bassett and Koenker (1978) and

Koenker and Bassett (1978) give conditions under which the LAD estimator is n”*consistent and
nY2(b, - b) isasymptotically normal.
ﬁn (b) has cusps and, therefore, a discontinuous first derivative, at points b such that Y; =

Xib for somei. This non-smoothness causes the Edgeworth expansion of the LAD estimator to be

non-standard and very complicated (De Angelis et al. 1993). The bootstrap is known to estimate
the distribution of nm(ﬁn - b) consistently (De Angelis et al. 1993, Hahn 1995), but it is not
known whether the bootstrap provides asymptotic refinements for hypothesis tests and confidence

intervals based on by, .22

Horowitz (1998b) suggests removing the cuspsin ﬁn by replacing the indicator function

with a smooth function, thereby producing a modified objective function whose derivatives are
continuous. The resulting smoothed LAD (SLAD) estimator is first-order asymptotically

equivalent to the unsmoothed LAD estimator but has much simpler higher-order asymptotics.
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Specificaly, let K be a bounded, differentiable function satisfying K(v) = 0if v£ -1 and K(v) =1
if v3 1. Let {h,} be a sequence of bandwidths that convergesto 0O asn ® ¥. The SLAD

estimator solves

o128 o Y - Xbi
(4.25) mlrg)lirrgalze.Hn(b) Eia:l(\q X,b)MZKF h é ]E

K is analogous to the integral of a kernel function for nonparametric density estimation. K is not
akernel function itself.

Let b, be a solution to (4.25). Horowitz (1998b) gives conditions under which

nm(bn - 51) =0,() . Thus, the smoothed and unsmoothed LAD estimators are first-order

asymptotically equivalent. It follows from this asymptotic equivalence and the asymptotic
normality of LAD estimators that n“4 b, - b) ® ° N(0,V), where V = D'E(X¢X)D?, D =
2E[XXf(O[x)], and f(¥x) is the probability density function of U conditional on X = x.

A t dtatistic for testing a hypothesis about a component of b or forming a confidence
interval can be constructed from consistent estimators of D and E(XdX). D can be estimated

consistently by Dy(by), where

(4.26) D,(b)= %éﬂ XX Ktﬁ A 'hhxibé .
i=1

E(X&) can be estimated consistently by the sample average of X¢X. However, the asymptotic
expansion of the distribution of the t statistic is smpler if E(X{X) is estimated by the sample

analog of the exact finite-sample variance of Hn(b)/flb a b =b. This estimator is T,(b,), where

ol s sl

It is not difficult to show that V is estimated consistently by Vi, © Dy(br) *Tr(b,)Dn(bn) ™. Now let

@2) T,0=-4

n
o
i=1

by and b;, respectively, be the j’th components of b, and b (j = 1, ..., ). Let V, be the (j, j)
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component of V,. Thet statistic for testing Ho: bj = byo is t, = n"(by - bio)/Viy Y2 If Hy is true,
thent, ® ¢ N(0,1), so t, isasymptotically pivotal.

To obtain a bootstrap version of t,, let {Y;*, X*: i =1, ..., n} be abootstrap sample that
is obtained by sampling the data{Y;, X} randomly with replacement. Let b,* be the estimator of
b that is obtained by solving (4.25) with { Yi*, Xi*} in place of {Y;, X}. Let Vy* be the version of
Vy that is obtained by replacing b, and {Y;, X}, respectively, with b,* and {Y*, Xi*} in (4.26) and
(4.27). Then the bootstrap analog of t, isty* = n"*(by* - by)/(Vi*)"2

By using methods similar to those used with kernel density and mean-regression
estimators, it can be shown that under regularity conditions, t, and t,* have Edgeworth
expansions that are identical almost surely through O[(nh,)™]. Horowitz (1998b) gives the details
of the argument. In addition, reasoning similar to that used in Section 4.2.3 shows that the
bootstrap provides asymptotic refinements for hypothesis tests and confidence intervals based on
the SLAD estimator. For example, consider a symmetrical t test of Ho. Let z,,,* be the
bootstrap a-level critical value for thistest. That is, Z,,,,* satisfies P*(Jt,*| > z,22*) = a. Then
P(lta] > Znar*) = a + o[(nhy) ™. In contrast, first-order asymptotic approximations make an error
of size O[(nh,)™]. This is because first-order approximations ignore a term in the Edgeworth
expansion of the distribution of |t,| whose size is O[(nh,)™], whereas the bootstrap captures the
effects of this term.

The conditions under which this result holds include: (1) for ailmost every x and every u
in a neighborhood of 0O, f(u|x) isr -1 times continuoudly differentiable with respect to u; (2) K
satisfies (4.11) and has four bounded, Lipschitz continuous derivatives everywhere; and (3) h, 1
n*, where 2/(2r + 1) < k < 1/3. Complete regularity conditions are given in Horowitz (1998b).
Condition (3) impliesthat r 3 4. Therefore, the size of the refinement obtained by the bootstrap is

O(n°), where 7/9 < c < 1.
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The bootstrap aso provides asymptotic refinements for one-sided tests and confidence
intervals and for asymptotic chi-square tests of hypotheses about several components of b. In
addition, it is possible to construct a smoothed version of Powell’s (1984, 1986) censored LAD
estimator and to show that the bootstrap provides asymptotic refinements for tests and confidence
intervals based on the smoothed censored LAD estimator. Horowitz (1998b) provides details, a
method for choosing h;, in applications, and Monte Carlo evidence on the numerical performance

of the t test with bootstrap critical values.

4.3.2 The Maximum Score Estimator for a Binary-Response Model

The most frequently used binary-response model has the form Y =1(Xb +U 3 0), where

X is an observed random vector, b is a conformable vector of constants, and U is an unobserved
random variable. The parameter vector b isidentified only up to scale, so a scale normalization is

needed. Here, scale normalization will be accomplished by assuming that |b,| = 1, where b, isthe

first component of b. Let b and b denote the vectors consisti ng of all components of b and b

except the first. The maximum-score estimator of b, by, © (bn116nd’) ¢, solves

(4.28) maximize H,(b) =1é’1n (2Y - DI(X;b3 0),
bl B ni:l

where{Y,, X;: i =1, ..., n} isarandom sample from the joint distribution of (Y, X), and B is a
compact parameter set in which the scale normalization holds
Manski (1975, 1985) shows that if median(U[X = x) = O amost surely, the first

component of X is continuously distributed with a non-zero coefficient, and certain other
conditions are satisfied, then (bnl,ﬁn"r)d: ® b amost surely. Because by, = +1, by, convergesto by
faster than any power of n. Cavanagh (1987) and Kim and Pollard (1990) show that 6;1

converges in probability at the rate n™® and that n”3(E);1 - 5) has a complicated, non-normal
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asymptotic distribution. The MS estimator is important despite its slow rate of convergence and
complicated limiting distribution because it is semiparametric (that is, it does not require the
distribution of U to belong to a known, finite-dimensional family) and it permits the distribution
of U to have arbitrary heteroskedasticity of unknown form provided that the centering assumption
median(U[X = x) = 0 holds.

The asymptotic distribution of the MS estimator is too complex for use in testing
hypotheses about b or constructing confidence intervals. Manski and Thompson (1986)
suggested using the bootstrap to estimate the mean-square error of the MS estimator and
presented Monte Carlo evidence suggesting that the bootstrap works well for this purpose.
However, it is not known whether the bootstrap consistently estimates the asymptotic distribution
of the MS estimator.

The MS estimator converges slowly and has a complicated limiting distribution because
it is obtained by maximizing a step function. Horowitz (1992) proposed replacing the indicator
function on the right-hand side of (4.28) by a differentiable function. The resulting estimator is

called the smoothed maximum score (SMS) estimator. It solves

(429)  maximize H, (b) =%é’1 (2Y, - DKF%& :

i=1
where K is a bounded, differentiable function satisfying K(v) = 0if v£ -1 and K(v) = 1if v3 1,
and { hy} is asequence of bandwidths that convergesto0asn® ¥. Asin SLAD estimation, K is

analogous to the integral of a kernel function. Let b again be the vector of al components of b
but the first. Let b,° (bn116nd’)¢ be the SMS estimator of (bl,Bcgd:. Horowitz (1992) gives
conditions under which (nh.)Y2(b, - b- W1 )®9 N(OV), where r 3 2 is an integer that is

related to the number of times that the CDF of U and the density function of Xb are continuously

differentiable, nh,Z **isbounded asn ® ¥, 1 isan asymptotic bias, and V is a covariance matrix.
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The rate of convergence of the SMS estimator of b isat least n?° and can be arbitrarily close to

n"2 if the CDF of U and density function of Xb have sufficiently many derivatives. Thus,
smoothing increases the rate of convergence of the MS estimator.

To obtain an asymptotically pivota t statistic for testing a hypothesis about a component
of b or forming a confidence interval, it is necessary to remove the asymptotic bias of 6;1 and
construct a consistent estimator of V. Asymptotic bias can be removed by undersmoothing. For
first-order asymptotic approximations, undersmoothing consists of choosing h, so that nh,” ** ®
Oasn® ¥. However, for the reasons explained in the discussion of equation (4.19), the stronger
condition nh," ** ® 0 is needed to obtain asymptotic refinements through O[(nh,)™]. V can be

estimated consistently by V,, = Qu(b) "Dn(b,)Qn(bn)*, wherefor any b1 B

=1 2 ov- pRe K P
(430) Qb= e a (2 - DX, Kﬂ% nm& ,

i=1

n 2
(4.31) Dn(b)=ié Xi&‘MKtﬁxﬁbéa :
i=1

and X consistsof all components of X but the first.

Now let an and Bj , respectively, be the j’th components of 6;1 and b. Let Vy be the
(i, j) component of Vi, Thet statistic for testing Ho: b =b o is t, = (nh))2(by - b o) / Vi Y2

If Hoistrue, thent, ® ¢ N(0,1), so t, is asymptotically pivotal.

To obtain a bootstrap version of t,, let {Yi*, X*: i =1, ..., n} be abootstrap sample that
is obtained by sampling the data{Y;, X} randomly with replacement. Let b,* be the estimator of
b that is obtained by solving (4.29) with { Yi*, Xi*} in place of {Y;, Xi}. Let Vy* be the version of
V, that is obtained by replacing b, and {Y;, X}, respectively, with b,* and {Y*, Xi*} in (4.30) and

(4.31). Then the bootstrap analog of t, is t* = (nm)ﬂz(gnj* - an)/(vnj*)ﬂz.



By using methods similar to those used with kernd density and mean-regression
estimators, it can be shown that t, and t,* have Edgeworth expansions that are identical almost
surely through O[(nh,)™]. See Horowitz (1998c) for the details of the argument. It follows that
the bootstrap provides asymptotic refinements for hypothesis tests and confidence intervals based
on the SMS estimator. For a symmetrical t test or confidence interval, the true and nomina
rejection or coverage probabilities differ by o[(nh,)™"] when bootstrap critical values are used,
whereas they differ by O[(nh,)™] when first-order asymptotic critical values are used. First-order
approximations ignore a term in the Edgeworth expansion of the distribution of [t,| whose size is
O[(nhy) "], whereas the bootstrap captures the effects of this term.

The conditions under which this result holds include: (1) the CDF of U conditiona on X
and the density of Xb conditional on X have sufficiently many derivatives, (2) K satisfies (4.11)
for somer 3 8; and (3) h, pu n*, where 1/(r + 1) < k < 1/7. Complete regularity conditions are
given in Horowitz (1998c). Conditions (2) and (3) imply that the size of the refinement obtained
by the bootstrap is O(n°), where 6/7 < c < 1. The bootstrap also provides asymptotic refinements

for one-sided tests and confidence intervals and for asymptotic chi-square tests of hypotheses
about several components of b. Horowitz (1998c) discusses methods for choosing h, in

applications and gives Monte Carlo evidence on the numerical performance of the t test with

bootstrap critical values.

4.4 Bootstrap Iteration
The discussion of asymptotic refinements in this chapter has emphasized the importance of
applying the bootstrap to asymptoticaly pivota statistics. This section explains how the bootstrap
can be used to create an asymptotic pivot when oneis not available. Asymptotic refinements can be
obtained by applying the bootstrap to the bootstrap-generated asymptatic pivot. The computational
procedure is called bootstrap iteration or prepivoting because it entails drawing bootstrap samples

from bootstrap samples as well as using the bootstrap to create an asymptoticaly pivotal datistic.

65



The discussion here concentrates on the use of prepivoting to test hypotheses (Beran 1988). Beran
(1987) explains how to use prepivoting to form confidence regions. Hall (1986b) describes an
alternative approach to bootstrap iteration.

Let T, be a dtatistic for testing a hypothesis Hq about a sampled population whose CDF is F.
Assume that under Ho, T, satisfies assumptions SFM and (3.8) of the smooth function model.
Define F = Fy if Hp is true, and define F to be the CDF of a distribution that satisfies Hy otherwise.

Let G,(t,F)° P=(T,£t) denote the exact, finite-sample CDF of T, under sampling from the

population whose CDF is F. Suppose that Ho is rejected if T, is large. Then the exact a-leve
critical value of Ty, Z, iIsthe solution to Gn(Z,, F) =1 - a under Hy. An exact a-level test based on
T, can be obtained by rejecting Ho if Go(T,, F) >1-a. Thus, if F were known, g, © Gy(T,, F) could
be used as a datistic for testing Ho. Prepivoting is based on the idea of using g, asatest statistic.

A test based on g, cannot be implemented in an application unless T, is pivotal because F
and, therefore, g, are unknown. A feasible test statistic can be obtained by replacing F with an
estimator F, that imposes the restrictions of Hyo and is nY2-consistent for F, if H, is true.
Replacing F with F,, produces the bootstrap statistic g,* = Gn(Tn, Fr). Gn(% Fn) and, therefore,
Gn(Tn, Fn) can be estimated with arbitrary accuracy by carrying out a Monte Carlo simulation in

which random samples are drawn from F,. Given any t, let H,(t,F)=F (g, £t) =
P [Gn(Th, Fy) £t]. An exact test based on gq* rejects Ho at the a level if Hq(gn*, Fo) >1 - a.

This test cannot be implemented because Fq is unknown. If the bootstrap is consistent, however,
the asymptotic distribution of g.* isuniform on [0,1]. Therefore, Hy is rejected at the asymptotic
a leve if gi* > 1-a. Now observe that g.,* is asymptotically pivotal even if T, is not; the
asymptotic distribution of g.,* is U[0,1] regardless of Fo. This suggests that asymptotic
refinements can be obtained by carrying out a second stage of bootstrap sampling in which the

bootstrap is used to estimate the finite-sample distribution of g,*.
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The second stage of bootstrapping consists of drawing samples from each of the first-stage
bootstrap samples that are used to compute g,*. Suppose that there are M first-stage samples.
The m'th such sample yields a bootstrap version of T, say T,y and an estimator F, of F, that is
consistent with Ho. F,n can be sampled repeatedly to obtain G,(% F.m), the EDF of T, under
sampling from Fym, and gnm © Ga(Tom, Frm)- Now estimate Hi(% Fo) by Ha(% F,), which is the EDF
of gm (M=1, ..., M). Theiterated bootstrap test rejectsHo at thea level if Hy(g*, F,) >1-a.

Beran (1988) shows that when prepivoting and bootstrap iteration are applied to a statistic
T,, the true and nominal probabilities of rejecting a correct null hypothesis differ by o(n?) for a
one-sided test and o(n™) for a symmetrical test even if T, is not asymptotically pivotal. By
creating an asymptotic pivot in the first stage of bootstrapping, prepivoting and bootstrap iteration
enable asymptotic refinements to be obtained for a non-asymptotically-pivotal T,. The same
conclusions apply to the coverage probabilities of confidence intervals. Beran (1988) presents the
results of Monte Carlo experiments that illustrate the numerical performance of this procedure.

The computational procedure for carrying out prepivoting and bootstrap iteration is given
by Beran (1988) and is as follows:

1. Obtain T, and F, from the estimation data{X;: i =1, ..., n}, which are assumed to be a
random sample of a possibly vector-valued random variable X.

2. Letcy, ..., cy be M bootstrap samples of size n that are drawn from the population
whose distribution is F,,. Let F,, denote the estimate of F, that is obtained from ¢,,. Let T, be
the version of T, that is obtained from c,,. The EDF of { T, m=1, ..., M} estimates G,(% Fy).

10 M
St gr =M, 1 (TmET).

3. Foreachm, let ¢y, ..., Cmk be K further bootstrap samples of size n, each drawn from

the population whose CDF is Fny,. Let Tk be the version of T, that is obtained from cny. Set

G, (Tom Fam) = K'lé sz1| (Tork £ Tom) - Each of the Go(Tom, Fom) (M =1, ..., n} is a second-
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stage estimate of g,. Estimate Hy(9.*, Fo) by H, (9, F,) = M'lé :::ll[Gn(Tnm,an)E o] .

Reject Hp at thea level if Hy(gn*, Fr) > 1- a.

45 Special Problems

The bootstrap provides asymptotic refinements because it amounts to a one-term Edgeworth
expansion. The bootstrap cannot be expected to perform well when an Edgeworth expansion
provides a poor approximation to the distribution of interest. An important case of this is
instrumental -variables estimation with poorly correlated instruments and regressors. It is well
known that first-order asymptotic approximations are especially poor in this situation (Hillier 1985,
Nelson and Startz 1990ab, Phillips 1983). The bootstrap does not offer a solution to this problem.
With poorly correlated instruments and regressors, Edgeworth expansions of estimators and test
dtatistics involve denominator terms that are close to zero. As aresult, the higher-order terms of the
expansions may dominate the lower-order ones for a given sample size, in which case the bootstrap
may provide little improvement over first-order asymptotic approximations. Indeed, with small
samples the numerical accuracy of the bootstrap may be even worse than that of first-order
asymptotic approximations.

The bootstrap aso does not perform wel when the variance estimator used for
Studentization has a high variance itself. This problem can be especially severe when the
parameters being estimated or tested are variances or covariances of a distribution. This happens,
for example, in estimation of covariance structures of economic processes (Abowd and Card 1987,
1988; Behrman et al. 1994; Griliches 1979; Hall and Mishkin 1982). In such cases Studentization
is carried out with an estimator of the variance of an estimated variance. Imprecise estimation of a
variance aso affects the finite-sample performance of asymptotically efficient GMM estimators
because the asymptotically optima weight matrix is the inverse of the covariance matrix of the

GMM residuas. The finite-sample mean-square error of the asymptoticaly efficient estimator can
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greatly exceed the mean-square error of an asymptotically inefficient estimator that is obtained with
a non-stochastic weight matrix. Horowitz (1998a) shows that in the case of estimating covariance
structures, this problem can be greatly mitigated by using a trimmed version of the covariance
estimator that excludes “outlier” observations. See Horowitz (1998a) for details. Section 5.5

presents a numerical illustration of the effects of trimming.

4.6 The Bootstrap when the Null Hypothesisis False

To understand the power of a test based on a bootstrap critical value, it is necessary to
investigate the behavior of the bootstrap when the null hypothesis being tested, Ho, is fase
Suppose that bootstrap samples are generated by a model that satisfies a false Hy and, therefore, is
misspecified relative to the true data-generation process. If Hg is smple, meaning that it completely
specifies the data-generation process, then the bootstrap amounts to Monte Carlo estimation of the
exact finite-sample critical value for testing Hy against the true data-generation process. Indeed, the
bootstrap provides the exact critical value, rather than a Monte Carlo estimate, if G(% F,) can be
caculated anaytically. Tests of smple hypotheses are rarely encountered in econometrics,
however.

In most applications, Hy is composite. That is, it does not specify the value of a finite- or
infinite-dimensiona “nuisance” parameter y . In the remainder of this section, it is shown that a test
of a composite hypothesis using a bootstrap-based critical value is a higher-order approximation to
a certain exact test. The power of the test with a bootstrap critical value is a higher-order
approximation to the power of the exact test.

Except in the case of atest based on a pivotal Statistic, the exact finite-sample distribution of
the test datistic depends ony . Therefore, except in the pivota case, it is necessary to specify the
value of y to obtain exact finite-sample critical values. The higher-order approximation to power

provided by the bootstrap applies to a value of y that will be caled the pseudo-true value. To

define the pseudo-true value, let y, be an estimator of y that is obtained under the incorrect
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assumption that Hp istrue. Under regularity conditions (see, e.g., Amemiya 1985, White 1982), y ,
convergesin probability to alimity *, and n"*(y , -y *) = Oy(1). y* isthe pseudo-truevalueof y .
Now let T, be a statistic that is asymptotically pivotal under Ho. Suppose that its exact CDF
with an arbitrary value of y is Gn(xy ), and that under Hy its asymptotic CDF is Go(¥. Suppose that
bootstrap sampling is carried out subject to the constraints of Ho. Then the bootstrap generates
samples from a model whose parameter value is y,, so the exact didtribution of the bootstrap
verson of T, isGq(%Yyn). Under Hy and subject to regularity conditions, G,(% y ) has an asymptotic
expansion of the form
(432)  Gy(zy n) =Go(2) +n"?gj(zy *) +0,(n"1"?)
uniformly over z, wherej = 1 or 2 depending on the symmetry of T,. Usualy j =1if T, isastatistic
for aone-tailed test and j = 2 if T, is a statistic for a symmetrical, two-tailed test. Gy (z y*) has an
expansion identical to (4.32) through O(n"?). Therefore, through O,(n"), bootstrap sampling when
Ho isfalse is equivalent to generating data from a model that satisfies Ho with pseudo-true values of
the parameters not specified by Ho. It follows that when Hg is false, bootstrap-based critical values
are equivaent through Op(n'i’z) to the critical values that would be obtained if the model satisfying
Ho with pseudo-true parameter values were correct. Moreover, the power of a test of Hp using a
bootstrap-based critical value is equal through O(n*?) to the power against the true data-generation
process that would be obtained by using the exact finite-sample critical value for testing Ho with

pseudo-true parameter values.

5. MONTE CARLO EXPERIMENTS
This section presents the results of some Monte Carlo experiments that illustrate the
numerical performance of the bootstrap as a means of reducing differences between the true and

nominal rejection probabilities of tests of statistical hypotheses.
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5.1 The Information-Matrix Test

White's (1982) information-matrix (IM) test is a specification test for parametric models
estimated by maximum likelihood. It tests the hypothesis that the Hessian and outer-product forms
of the information matrix are equal. Rejection implies that the model is misspecified. The test
datistic is asymptotically chi-sguare distributed, but Monte Carlo experiments carried out by many
investigators have shown that the asymptotic distribution is a very poor approximation to the true,
finite-sample distribution.  With sample sizes in the range found in applications, the true and
nominal probabilities that the IM test with asymptotic critical values rejects a correct model can
differ by a factor of 10 or more (Horowitz 1994, Kennan and Neumann 1988, Orme 1990, Taylor
1987).

Horowitz (1994) reports the results of Monte Carlo experiments that investigate the ability of
the bootstrap to provide improved finite-sample critical values for the IM test, thereby reducing the
distortions of RP's that occur with asymptotic critical values. Three forms of the test were used:
the Chesher (1983) and Lancaster (1984) form, White's (1982) origina form, and Orme's (1990)
ws. The Chesher-Lancaster form is relatively easy to compute because, in contrast to the other
forms, it does not require third derivatives of the log-density function or analytic expected values of
derivatives of the log-density. However, first-order asymptotic theory gives an especially poor
approximation to its finite-sample distribution. Orme (1990) found through Monte Carlo
experimentation that the distortions of RP' s are smaller with w; than with many other forms of the
IM test statistic. Orme's ws uses expected values of third derivatives of the log-density, however,
so it isrelatively difficult to compute.

Horowitz's (1994) experiments consisted of applying the three forms of the IM test to Tobit
and binary probit models. Each mode had either one or two explanatory variables X that were
obtained by sampling either the N(0,1) or the U[0,1] distribution. There were 1000 replications in

each experiment. Other details of the Monte Carlo procedure are described in Horowitz (1994).
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Table 1 summarizes the results of the experiments. As expected, the differences between empirical
and nominal RP's are very large when asymptotic critical values are used. This is especialy true
for the Chesher-Lancaster form of the test. When bootstrap critical values are used, however, the
differences between empirical and nomina RP's are very smal. The bootstrap essentially

diminates the distortions of the RP’ s of the three forms of the IM test.

5.2 Thet Test in a Heter oskedastic Regression Model

In this section, the heteroskedasticity-consistent covariance matrix estimator (HCCME) of
Eicker (1963,1967) and White (1980) is used to carry out at test of a hypothesis about b in the
model
(51 Y=Xb+U.

In this model, U is an unobserved random variable whose probability distribution is unknown and
that may have heteroskedagticity of unknown form. It is assumed that E(U¥X = x) = 0 and
Var(U¥X =x) <¥ for all xin the support of X.

Let b, be the ordinary least squares (OLS) estimator of b in (5.1), b, and b; be the i'th
components of b, and b, and s, be the square root of the (i,i) element of the HCCME. Thet dtatistic
for testing Ho: by = bip is T, = (b - big)/sy. Under regularity conditions, T, ® d N0l asn® ¥.
However, Chesher and Jewitt (1987) have shown that s> can be serioudy biased downward.
Therefore, the true RP of atest based on T, is likely to exceed the nominal RP. Asis shown later in
this section, the differences between the true and nominal RP' s can be very large when n is small.

The bootstrap can be implemented for model (5.1) by sampling observations of (Y,X)
randomly with replacement. The resulting bootstrap sample is used to estimate b by OLS and
compute T,*, the t statistic for testing Ho*: by = by. The empirical distribution of T,* is obtained by
repeating this process many times, and the a-level bootstrap critical value for T,* is estimated from

this distribution. Since U may be heteroskedastic, the bootstrap cannot be implemented by
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resampling OLS residuals independently of X. Similarly, one cannot implement the bootstrap by
sampling U from a parametric model because (5.1) does not specify the distribution of U or the
form of any heteroskedadticity.

Randomly resampling (Y,X) pairs does not impose the restriction E(U¥X = x) = 0 on the
bootstrap sample. Aswill be seen later in this section, the numerical performance of the bootstrap
can be improved greatly through the use of an aternative resampling procedure, caled the wild
bootstrap, that imposes this restriction. The wild bootstrap was introduced by Liu (1988) following
asuggestion of Wu (1986). Mammen (1993) establishes the ability of the wild bootstrap to provide
asymptotic refinements for the model (5.1). Cao-Abad (1991), Hardle and Mammen (1993), and
Hérdle and Marron (1991) use the wild bootstrap in nonparametric regression.

To describe the wild bootstrap, write the estimated form of (5.1) as

Y = Xb,+U,; i=12,..,n
whereY; and X; arethei’th observed values of Y and X, and U,; isthei’'th OLS residual. For each i

=1, .., n, let F; be the unique 2-point distribution that satisfies E(Z|F) =0, E(Z?|F)=Uz2, and

E(z%F)=U2 , where Z is a random variable with the CDF F.. Then, Z =(1- +/5)U,, /2 with

ni »
probability (1++/5)/(25), and Z =(1++/5)U,; /2 with probability 1- (1++/5)/(24/5). The
wild bootstrap isimplemented as follows:

1. Foreachi=1, ..., n sample U* randomly from F;. Set Yi* = Xib, + Ui*.

2. Estimate (5.1) by OLS using the bootstrap sample {Yi*, Xi: i = 1, ..., n}. Compute the
resulting t statistic, Tp*.

3. Obtain the empirica distribution of the wild-bootstrap version of T,* by repeating steps 1
and 2 many times. Obtain the wild-bootstrap critical value of T,* from the empirical distribution.

Horowitz (1997) reports the results of a Monte Carlo investigation of the ability of the
bootstrap and wild bootstrap to reduce the distortions in the RP of a symmetrical, two-tailed t test

that occur when asymptotic critical values are used. The bootstrap was implemented by resampling
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(Y,X) pairs, and the wild bootstrap was implemented as described above. The experiments also
investigate the RP of thet test when the HCCME is used with asymptotic critical values and when a
jackknife version of the HCCME is used with asymptotic critical values (MacKinnon and White
1985). MacKinnon and White (1985) found through Monte Carlo experimentation that with the
jackknife HCCME and asymptotic critical values, thet test had smaller distortions of RP than it did
with several other versions of the HCCME.

The experiments use n = 25. X congsts of an intercept and either 1 or 2 explanatory
variables. In experiments in which X has an intercept and one explanatory variable, b = (1, 0)¢ In
experiments in which X has an intercept and two explanatory variables, b = (1,0,1)¢ The hypothesis
tested in al experiments is Hy: b, = 0. The components of X were obtained by independent
sampling from a mixture of normal distributions in which N(0,1) was sampled with probability 0.9
and N(2,9) was sampled with probability 0.1. The resulting distribution of X is skewed and
leptokurtotic. Experiments were carried out using homoskedastic and heteroskedastic U's. When
U was homoskedastic, it was sampled randomly from N(0,1). When U was heteroskedastic, the U
value corresponding to X = x was sampled from N(O,W), where W, = 1 + x* or W, = 1 + X + X%,
depending on whether X consists of 1 or 2 components in addition to an intercept. W is the

covariance matrix of U corresponding to the random-coefficients modd Y = Xb + Xd +V , where

V and the components of d are independently distributed as N(0,1). There were 1000 Monte Carlo
replicationsin each experiment.

Table 2 shows the empirica RP's of nomina 0.05-level t tests of Ho. The differences
between the empirical and nominal RP' s using the HCCME and asymptatic critical values are very
large. Using the jackknife version of the HCCME or critica values obtained from the bootstrap
greatly reduces the differences between the empirical and nomina RP's, but the empirica RP s are

dtill 2-3 times the nominal ones. With criticadl values obtained from the wild bootstrap, the
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differences between the empirical and nominal RP' s are very small. In these experiments, the wild

bootstrap essentially removes the distortions of RP that occur with asymptotic critical values.

5.3 Thet Test in a Box-Cox Regression Model

Thet datistic for testing a hypothesis about a dope coefficient in a linear regression model
with a Box-Cox (1964) transformed dependent variable is not invariant to changes in the
measurement units, or scale, of the dependent variable (Spitzer 1984). The numerical value of thet
datistic and the finite-sample RP' s of the t test with asymptotic critical values vary according to the
measurement units or scale that is used. As a result, the finite-sample RP's of the t test with
asymptotic critical vaues can be far from the nominal RP's. The bootstrap provides a better
approximation to the finite-sample distribution and, therefore, better finite-sample critical values.

Horowitz (1997) reports the results of a Monte Carlo investigation of the finite-sample RP of
a symmetrical t test of a hypothesis about a dope coefficient in a linear regresson model with a

Box-Cox transformed dependent variable. The model generating the datais

Y =p,+b, X +U

where Y!') isthe Box-Cox transformed value of the dependent variable Y, U ~ N(O,s 2), bo=2,b;=
0 and s=0.0625. X was sampled from N(4,4) and was fixed in repeated samples. The hypothesis
being tested isHq: b; = 0. Thevalue of | is either 0.01 or 1, depending on the experiment, and the
scaleof Ywas 0.2, 1, or 5. The sample szeswere n = 50 and 100. There were 1000 replicationsin
each experiment.

The results of the experiments are summarized in Table 3. The empirica critical value of the
t test tends to be much smaller than the asymptotic critical value of 1.96, especidly in the
experiments with a scale factor of 5. As a result, the empirical RP of the t test is usualy much

smaller than its nominal RP. The mean bootstrap critical values, however, are very close to the
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empirical critical values, and the RP's based on bootstrap critical values are very close to the

nomina ones.

5.5 Estimation of Covariance Structures

In estimation of covariance structures, the objective is to estimate the covariance matrix
of ak’ 1 vector X subject to restrictions that reduce the number of unique, unknown elements to r
< k(k + 1)/2. Estimates of the r unknown elements can be obtained by minimizing the weighted
distance between sample moments and the estimated population moments. Weighting all sample
moments equally produces the equally-weighted minimum distance (EWMD) estimator, whereas
choosing the weights to maximize asymptotic estimation efficiency produces the optimal
minimum distance (OMD) estimator.

The OMD estimator dominates the EWMD estimator in terms of asymptotic efficiency,
but it has been found to have poor finite-sample properties in applications (Abowd and Card
1989). Altonji and Segal (1994, 1996) carried out an extensive Monte Carlo investigation of the
finite-sample performance of the OMD estimator. They found that the estimator is badly biased
with samples of the sizes often found in applications and that its finite-sample root-mean-square
estimation error (RMSE) often greatly exceeds the RMSE of the asymptoticaly inefficient
EWMD estimator. Altonji and Segal also found that the true coverage probabilities of asymptotic
confidence intervals based on the OMD estimator tend to be much lower than the nominal
coverage probabilities. Thus, estimation and inference based on the OMD estimator can be
highly misleading with finite samples.

Horowitz (1998a) reports the results of a Monte Carlo investigation the ability of the
bootstrap to reduce the bias and RMSE of the OMD estimator and reduce the differences between
true and nomina coverage probabilities of nominal 95% confidence intervals based on this
estimator. The data-generation processes used in the Monte Carlo experiments were taken from

Altonji and Sega (1994). In each experiment, X has 10 components, and the sample sizeisn =
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500. The j’th component of X, X (j = 1, ..., 10) is generated by X; = (Z + rZ . )/(1 + r%)"?,
where Z;, ..., Z;; areiid random variables with means of 0 and variancesof 1, andr = 0.5. The
Z's are sampled from five different distributions depending on the experiment. These are U[0,1],
N(0,1), Student t with 10 degrees of freedom, exponential, and lognormal. Itisassumedthat r is
known and that the components of X are known to be identically distributed and to follow MA(1)
processes. The estimation problem is to infer the scalar parameter q that is identified by the
moment conditions Var(X) = q (j = 1, ..., 10) and Cov(X;, X - 1) =rg/(1 + r?) (j = 2, ..., 10).
Experiments were carried out with the EWMD and OMD estimators as well as a version of the
OMD estimator that uses a trimmed estimator of the asymptotically optimal weight matrix. See
Horowitz (1998a) for an explanation of the trimming procedure.

The results of the experiments are summarized in Table 4. The OMD estimator, gnomp iS
biased and its RMSE exceeds that of the EWMD estimator, gnewvp for al distributions of Z
except the uniform. Moreover, the coverage probabilities of confidence intervals based on g, omp
with asymptotic critical values are far below the nominal value of 0.95 except in the experiment
with uniform Z's. Bootstrap bias reduction greatly reduces both the bias and RMSE of ¢nomp. In
addition, the use of bootstrap critical values greatly reduces the errors in the coverage
probabilities of confidence intervals based on gnomp. N the experiments with normal, Student t,
or uniform Z's, the bootstrap essentially eliminates the bias of gqn,omp and the errors in the
coverage probabilities of the confidence intervals. Moreover, the RMSE of the bias-corrected
Onomp 1N these experiments is 12-50% less than that of g, ewvp-

When Z is exponential or lognormal, the bootstrap reduces but does not eliminate the bias
of gnovwp @nd the errors in the coverage probabilities of confidence intervals. Horowitz (1998a)
shows that the poor performance of the bootstrap in these cases is caused by imprecise estimation
of the OMD weight and covariance matrices. This problem is largely eliminated through the use

of the trimmed estimator of these matrices. With trimming, g, omp With exponentia or lognormal
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Z's has a RMSE that is the same as or less than that of the EWMD estimator, and the empirical

coverage probabilities of confidence intervals are close to the nominal values.

6. CONCLUSIONS

The bootstrap consistently estimates the asymptotic distributions of econometric
estimators and test statistics under conditions that are sufficiently general to accommodate most
applications. Subsampling methods usually can be used in place of the standard bootstrap when
the latter is not consistent. Together, the bootstrap and subsampling methods provide ways to
substitute computation for mathematical analysis if analytical calculation of the asymptotic
distribution of an estimator or test statistic is difficult or impossible.

Under conditions that are stronger than those required for consistency but still general
enough to accommodate a wide variety of econometric applications, the bootstrap reduces the
finite-sample biases of estimators and provides a better approximation to the finite-sample
distribution of an estimator or test statistic than does first-order asymptotic theory. The
approximations of first-order asymptotic theory are often quite inaccurate with samples of the
sizes encountered in applications. Asaresult, the true and nominal probabilities that a test rejects
a correct hypothesis can be very different when critical values based on first-order
approximations are used. Similarly, the true and nominal coverage probabilities of confidence
intervals based on asymptotic critical values can be very different. The bootstrap can provide
dramatic reductions in the differences between true and nominal rejection and coverage
probabilities of tests and confidence intervals. In many cases of practical importance, the
bootstrap essentially eliminates finite-sample errors in rejection and coverage probabilities.

This chapter has also emphasized the need for care in applying the bootstrap. The
importance of asymptotically pivotal statistics for obtaining asymptotic refinements has been
stressed.  Proper attention also must be given to matters such as recentering, correction of test

statistics in the block bootstrap for dependent data, smoothing, and choosing the distribution from
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which bootstrap samples are drawn. These qudlifications do not, however, detract from the

importance of the bootstrap as a practical tool for improving inference in applied econometrics.

APPENDIX: Informal Derivation of (3.27)

To derive (3.27), write P(|Tn| 3 Z,4/2*) in theform

(AL P(Ta>205/5") =1- [P(Th £ Z3a/5") - P(Tn £-210/5)]

=1- {P[Tn - (Zn,alz* - Z¥.a/2) £ Z¥,a/2] - P[Tn +(Zn,a/2* - Z¥,a/2) £- Z¥,a/2]}-
With an error whose size is almost surely O(n®), (z.a/2* - 2« ar2) On the right-hand side of (A.1) can
be replaced with a Cornish-Fisher expansion that retains terms through O(n*?). This expansion can

be obtained by applying the delta method to the difference between (3.23) and (3.24). Theresultis

192(Z¥,a/21|:0)+ 1

N f(zan) nslz”ﬂzrs(z)’“o(”-z)’
al2

(A2 Za0" - Zyap=-

where r3 is a smooth function, r;(m,) =0, and n”2r3(2) =0,(D) asn® ¥. Substituting (A.2)
into (A.1) yields

(A3 P(TI>Z,a/2) =1- {PIT, - 0 ¥nY215(Z) £ 24 40 + 17 15 (24 212)]

- PIT, +0 ¥ 2 (Z) £- 24 o jp - N (2 42)1 +O(N72).
where

92(2¢ 472 Fo)
f (2 a/2)

(A4) (2 =-
The next step is to replace the right-hand side of (A.3) with an Edgeworth approximation. To do
this, it is necessary to provide a detailed specification of the function g in (3.9) and (3.13). Let kj,

denote the j’th cumulant of T, Under assumption SFM, k;,, can be expanded in a power series.

For a tatistic such as T, whose asymptotic distribution has a variance of 1,

kip kig -5/2
kl,n - nJJ2 + n3/2 +0(n )
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Kon=1+52 +O(M2)
' n

k k
_ K1 32 -5/2
k3,n - nl2 + n¥2 +0(n )

and
Kan="81+0(n),
' n
where the coefficients ki are functions of moments of products of components of Z. The function
gz isthen
1 1 1
(A5) ot Fo) =t o (kep + ki2) + 7 (Kay + Akiokar)(t * - 9 +—kay(t * - 100 +15)f (t).
See Hall (1992a, pp. 46-56) for details. Denote the quantity on the right-hand side of (A.5) by
0,(t ko), where ko denotes the ki coefficients that are associated with cumulants of the
distribution of T,. Let Kn denote the ky coefficients that are associated with cumulants of
T, +n ¥2nY2r,(Z), and let §,(t K ) denote the version of @, that is obtained by replacing k o
with K,,. Now replace gut, Fo) in (3.13) with @,(t,K,). Also, replace t with
Zygpp TN lr2(z¥’a /2) 1N (3.13). Substituting the result into the right-hand side of (A.3) gives the

following Edgeworth approximationto P(|T,|> z,,,2*) :

(AB)  P(T>Zyass*) =21~ Flzy 0y +0 (2 02)1}

- 207Gl 2y a2 + N (2 a12) K ] +O(N72).
A Taylor-series expansion of the right-hand side of (A.6) combined with (A.4) and the fact that

2[1-F(z.ap)] =agives

(A-7) P(lTn|> Zn,alz*) =a +%[§2(Z¥.a/21k0) - §2(2¥.a/21kAn)] +O(n-2) .
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It is not difficult to show that T, (¢ 472K o) - T2(Z¢ a/2.K ) =o(n'Y). (Roughly speaking, thisis

because n lr3(Z) =o(n"!) amost surely.) Therefore, the second term on the right-hand side of

(A.7) iso(n?), which yields (3.27).
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FOOTNOTES

! There is not general agreement on the name that should be given to the probability that a test
rejects a true null hypothesis (that is, the probability of a Type | error). The source of the
problem is that if the null hypothesis is composite, then the rejection probability can be different
for different probability distributionsin the null. Hall (1992, p. 148) uses the word level to denote
the rejection probability at the distribution that was, in fact, sasmpled. Beran (1988, p. 696)
defines level to be the supremum of regjection probabilities over all distributions in the null
hypothesis. Other authors (Lehmann 1959, p. 61; Rao 1973, p. 456) use the word size for the
supremum. Lehmann defines level as a number that exceeds the rejection probability at all
distributions in the null hypothesis. In this chapter, the term rejection probability or RP will be
used to mean the probability that a test rejects a true null hypothesis with whatever distribution
generated the data. The RP of atest isthe same as Hall’ s definition of level. The RP is different

from the size of atest and from Beran’s and Lehmann'’s definitions of level.

2 The Mallows metric is defined by r (P,Q)% =inf{E|}Y - X||2: Y ~P, X ~Q}. Theinfimumis
over al joint distributions of (Y, X) whose marginalsare P and Q. . Weak convergence of a
sequence of distributions in the Mallows metric implies convergence of the corresponding

sequences of first and second moments. See Bickel and Freedman (1981) for a detailed discussion

of this metric.

® Hall and Jing (1996) show how certain types of asymptotic refinements can be obtained

through non-replacement subsampling. The rate of convergence of resulting error is, however,

slower than the rate achieved with the standard bootstrap.

* If E(qy) does not exist, then the “bias reduction” procedure described here centers a higher-

order approximation to the distribution of g, - qo.

® |t is not difficult to show that the bootstrap provides bias reduction even if m= 1. However, the
bias-corrected estimator of g may have a large variance if m is too small. The asymptotic
distribution of the bias-corrected estimator is the same as that of the uncorrected estimator if m

increases sufficiently rapidly as nincreases. See Brown (1996) for further discussion.

® The meaning of asymptotic negligibility in this context may be stated precisely as follows. Let
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T, =T (Xq,....,X,,) be asatistic, and let T, =nY2[H(Z,...,Z,)- H(Myy,....,m;)]. Then the
error made by approximating 'ﬁ, with T, is asymptotically negligible if there is a constant ¢ > 0

suchthat n2P[n?[T, - T,|>c]=0(1) asn® ¥.

" The proof that the bootstrap provides asymptotic refinements is based on an Edgeworth

expansion of a sufficiently high-order Taylor-series approximation to T,. Assumption SFM
insures that H has derivatives and Z has moments of sufficiently high order to obtain the Taylor
series and Edgeworth expansions that are used to obtain a bootstrap approximation to the
distribution of T, that has an error of size O(n®. . SFM may not be the weakest condition
needed to obtain this result. It certainly assumes the existence of more derivatives of H and
moments of Z than needed to obtain less accurate approximations. For example, asymptotic
normality of T, can be proved if H has only one continuous derivative and Z has only two
moments. See Hall (19923, pp. 52-56 and 238-259) for a statement of the regularity conditions
needed to obtain various levels of asymptotic and bootstrap approximations.

® Some gatistics that are important in econometrics have asymptotic chi-square distributions.

Such statistics often satisfy the assumptions of the smooth function model but with TH(m,) =0
and ‘ITZH(z)/ ﬂ2ﬂ2¢z=@ 1 0. Versions of the results described here for asymptotically normal

dtatistics are also available for asymptotic chi-square statistics.  First-order asymptotic
approximations to the finite-sample distributions of asymptotic chi-square statistics typically
make errors of size O(n™"). Chandra and Ghosh (1979) give a formal presentation of higher-order
asymptotic theory for asymptotic chi-square statistics.

® More generaly, (3.8) is satisfied if the distribution of Z has a non-degenerate absolutely
continuous component in the sense of the Lebesgue decomposition. There are aso circumstances
in which (3.8) is satisfied even when the distribution of Z does not have a non-degenerate
absolutely continuous component. See Hall (1992a, pp. 66-67) for examples. In addition, (3.8)
can be modified to deal with econometric models that have a continuoudly distributed dependent
variable but discrete covariates. See Hall (19923, p. 266).

1 Another form of two-tailed test is the equal-tailed test. An equal tailed test rgjects Hy if T, >
Znar OF T < Zy(1-ar2), Where z, i - ap) is the a/2-quantile of the finite-sample distribution of T,. If

the distribution of T, is symmetrical about O, then equal-tailed and symmetrical tests are the same.
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Otherwise, they are different. Most test statistics used in econometrics have symmetrical
asymptotic distributions, so the distinction between equal-tailed and symmetrical tests is not
relevant when the RP is obtained from first-order asymptotic theory. Many test statistics have
asymmetrical finite-sample distributions, however.  Higher-order approximations to these
distributions, such as the approximation provided by the bootstrap, are also asymmetrical.
Therefore, the distinction between equal-tailed and symmetrical tests is important in the analysis
of asymptotic refinements. Note that “symmetrical” in a symmetrical test refers to the way in
which the critical value is aobtained, not to the finite-sample distribution of T, which is

asymmetrical in general.

' The empirical distribution of the data is discrete, so (3.20) may not have a solution if F, is the
EDF of the data. However, Hall (1992a, pp. 283-286) shows that there is a solution at a point a,
whose difference from a decreases exponentially fast asn ® ¥. The error introduced into the
analysis by ignoring the difference between a, and a is o(n® and, therefore, negligible for

purposes of the discussion in this chapter.

2" Under mild regularity conditions, the constant the multiplies the rate of convergence of the
error of the bootstrap estimate of the distribution function of a non-asymptotically-pivotal statistic
is smaller than the constant that multiplies the rate of convergence of the error that is made by the
normal approximation. This need not happen, however, with the errors in the RP's of tests and

coverage probabilities of confidence intervals. See Beran (1982) and Liu and Singh (1985).

13 Strictly speaking, U cannot be normally distributed unless| = 0 or 1, but the error made by

assuming normality is negligibly small if the right-hand side of the modd has a negligibly small
probability of being negative. Amemiya and Powell (1981) discuss ways to avoid assuming

normality.

¥ The empirical-likelihood estimator is one of a larger class of estimators of F that are described
by Brown et al. (1997) and that impose the restriction E¥Xh(X, g,) = 0. All estimators in the class
are asymptotically efficient.

> The regularity conditions required to achieve asymptotic refinements in GMM estimation with
dependent data include the existence of considerably more higher-order moments than are needed
with iid data as well as a modified version of the Cramér condition that takes account of the

dependence. See Hall and Horowitz (1996) for a precise statement of the conditions.



1® Tests and confidence regions based on asymptotic chi-square statistics, including the test of
overidentifying restrictions, are symmetrical. Therefore, restriction (4.2) also applies to them.

" The results stated in this section do not require assuming that r is even or that K is a

symmetrical function, but these assumptions simplify the exposition and are not highly restrictive

in applications.

8 The asymptotic bias contributes a term of size [(nhy)Y?by(¥)]* = O(nh.Z * %) to the Edgeworth
expansion of the distribution of [t)|. Because t,* is unbiased, this term is not present in the
expansion of the distribution of |t,*|. Therefore, the expansions of the distributions of |t,| and [t,*|
agree through O[(nh,)™] only if nh,"**® O0asn® ¥.

¥ 1t is also possible to carry out explicit bias removal in kernel mean-regression. Héardle et al
(1995) compare the methods of explicit bias removal and undersmoothing for a one-sided
confidence interval. They show that for a one-sided interval, there are versions of the bootstrap
and explicit bias removal that give better coverage accuracy than the bootstrap with

undersmoothing.

% Hall (1992a, p. 226) proposes an estimator of s2(x) that is n“2-consistent when Y is

homoskedastic (that is, Var(Y]X = x) is independent of x). The estimator used here is consistent

(but not n?-consistent) when Y has heteroskedasticity of unknown form.

1 The discussion here assumes that the bootstrap sample is obtained by randomly sampling the
empirical distribution of (Y, X). If V(2) isaconstant (that is, the model is homoskedastic), then
bootstrap sampling can also be carried out by sampling centered regression residual s conditional
on the observed values of X. See Hall (19923, Section 4.5).

Z Janas (1993) shows that a smoothed version of the bootstrap provides asymptotic refinements
for asymmetrical t test of a hypothesis about a population median (no covariates).

% The cumulants of a distribution are coefficients in a power-series expansion of the logarithm of
its characteristic function. The first three cumulants are the mean, variance, and third moment
about the mean. The fourth cumulant is the fourth moment about the mean minus three times the

square of the variance.
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TABLE 1

EMPI RI CAL REJECTI ON PROBABI LI TI ES OF NOM NAL 0. 05- LEVEL | NFORVATI ON- MATRI X TESTS OF PROBI T AND TOBI T MODELS!

RP Usi ng RP Usi ng
Distr. Asynptotic Oritical Values Boot strap-Based Crit. Val ues
N of X Wiite  Chesh. -Lan. O ne Wiite  Chesh.-Lan. O ne

Bi nary Probit Model s

50 N(O, 1) 0. 385 0. 904 0. 006 0. 064 0. 056 0. 033
U-2,2) 0. 498 0. 920 0. 017 0. 066 0. 036 0. 031

100 N(O, 1) 0.589 0. 848 0. 007 0. 053 0. 059 0. 054
U-2,2) 0. 632 0. 875 0. 027 0. 058 0. 056 0. 049

Tobit Mdel s

50 N(O, 1) 0.112 0. 575 0. 038 0. 083 0. 047 0. 045
U-2,2) 0.128 0. 737 0.174 0. 051 0. 059 0. 054

100 N(O, 1) 0. 065 0. 470 0. 167 0. 038 0. 039 0. 047
U-2,2) 0. 090 0. 501 0. 163 0. 046 0. 052 0. 039

! Source: Horowitz (1994).
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TABLE 2
EMPI R CAL REJECTI ON PRCBABI LI TTES OF t TESTS USI NG HETEROSKEDASTI Cl TY-
CONSI STENT COVARI ANCE MATRI X ESTI MATORS!

n =25

Enpirical RP at Nominal 0.05 Level

1-Vari abl e 1-Vari abl e 2-Vari abl e 2-Vari abl e

For m of Honmoskedasti ¢ Random Coef f. Honoskedasti c Random Coef f.

Test Model Model Model Model
Asynptotic 0. 156 0. 306 0. 192 0. 441
Jackkni f e 0. 096 0. 140 0.081 0. 186

Boot strap 0. 100 0. 103 0.114 0.124
(Y, X) Pairs

Wld 0. 050 0. 034 0. 062 0. 057

Boot st rap

1 Source: Horowitz (1997).
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TABLE 3!
EMPI RI CAL REJECTI ON PROBABI LI TIES OF t TESTS FOR BOX- COX REGRESSI ON MODEL!

Nom nal RP = 0. 05

RP Usi ng
Crit. Val. from Mean
Scal e Enpi ri cal Boot strap
n I Fac. Asynp. Boot . Crit. Val. Cit. Val.
50 0.01 0.2 0. 048 0. 066 1.930 1. 860
1.0 0. 000 0. 044 0.911 0. 909
5.0 0. 000 0. 055 0. 587 0.571
100 0.01 0.2 0. 047 0. 053 1.913 1.894
1.0 0. 000 0. 070 1.201 1. 165
5.0 0. 000 0. 056 0. 767 0. 759
50 1.0 0.2 0. 000 0. 057 1.132 1.103
1.0 0. 000 0. 037 0. 625 0. 633
5.0 0. 000 0. 036 0. 289 0. 287
100 1.0 0.2 0. 000 0. 051 1. 364 1. 357
1.0 0. 000 0. 044 0. 836 0. 835
5.0 0. 000 0. 039 0. 401 0.391

! Source: Horowitz (1997).
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TABLE 4: RESULTS OF MONTE CARLO EXPERI MENTS W TH ESTI MATORS OF COVARI ANCE STRUCTURES!

Tri mred
EWWD OVD wi t hout Bootstrap OVD with Bootstrap __ OV with Bootstrap_
Cover age Cover age Cover age
Prob. with Prob. with Prob. with
Asynptotic Boot strap Boot strap
Critical Critical Critical
Distr. RVBE Bi as RVBE Val ue Bi as RVBE Val ue Bi as RVSE Val ue
Uni form 0. 019 0. 005 0. 015 0.93 0. 002 0.014 0. 96
Nor mal 0.024 0. 016 0. 025 0. 85 0.0 0. 021 0.95
St udent t 0. 029 0.024 0.034 0.79 0. 002 0. 026 0.95
Exponential 0.042 0. 061 0.073 0.54 0.014 0.048 0.91 0.004 0.042 0. 96
Lognor nal 0.138 0.274 0.285 0.03 0.136 0.173 0.76 0. 046 0.126 0.91

L Sour ce:

Horowitz (1998a). Nomi nal

coverage probability is 0.95.
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