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Lecture 13
Time Series: 

Stationarity, AR(p) & MA(q)

RS (for private use, not to be posted/shared online).

Time Series: Introduction

• A time series 𝑦௧ is a process observed in sequence over time, 

𝑡 = 1, ...., 𝑇  𝑌௧ = {𝑦ଵ, 𝑦ଶ , 𝑦ଷ, ..., 𝑦்}.

Examples: IBM monthly stock prices from 1973:January till 
2024:September (plot below); or USD/GBP daily exchange rates 
from February 15, 1923 to March 19, 1938.
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Time Series: Introduction

Examples (continuation): Different ways to do the plot in R:

• Using plot.ts, creating a time series object in R:
# the function ts creates a timeseries object, start = 1973,1 (start of sample), frequency = 
12(=monthly) 

ts_ibm <- ts(x_ibm, start=c(1973,1), frequency=12) 

plot.ts(ts_ibm,xlab="Time",ylab="IBM price", main="Time Series: IBM Stock Price")

• Using R package ggplot2
x_ibm <- SFX_da$IBM

x_date <- as.Date(SFX_da$Date, "%m/%d/%Y")

df <- data.frame(x_date, x_ibm)

ggplot(df, aes(x = x_date, y = x_ibm)) +

geom_line(color="blue") +

labs(x = "Date", y = "IBM Price", col = "blue", title = "Time Series: IBM Monthly Price",

subtitle = "Period:  1973 - 2024")

Time Series: Introduction – Categories

• Usually, time series models are separated into two categories: 

– Univariate (𝑦௧ ∊ R, it is a scalar)

Example: We are interested in the behavior of IBM stock 
prices as function of its past.

 Primary model: Autoregressions (ARs).

– Multivariate (𝑦௧ ∊ Rm, it is a vector-valued)

Example: We are interested in the joint behavior of IBM 
returns, 𝑟ூ஻ெ, & bond yields, 𝑏ூ஻ெ, as function of their past 

𝑦௧= 
𝑟ூ஻ெ,௧

𝑏ூ஻ெ,௧

 Primary model: Vector autoregressions (VARs). 
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Time Series: Introduction – Dependence

• Given the sequential nature of 𝑦௧, we expect 𝑦௧ & 𝑦௧ିଵ to be 
dependent. This is the main feature of time series: dependence. It 
creates statistical problems.

• In classical statistics, we usually assume we observe several i.i.d. 
realizations of 𝑦௧. We use 𝑦ത to estimate the mean. 

• With several independent realizations we are able to sample over the 
entire probability space and obtain a “good” –i.e., consistent or close 
to the population mean– estimator of the mean. 

• But, if the samples are highly dependent, then it is likely that 𝑦௧ is 
concentrated over a small part of the probability space. Then, the 
sample mean will not converge to the mean as the sample size grows. 

Time Series: Introduction – Dependence

Technical note: With dependent observations, the classical results 
(based on LLN & CLT) are not to valid. 

• We need new conditions in the DGP to make sure the sample 
moments (mean, variance, etc.) are good estimators population 
moments. The new assumptions and tools are needed: stationarity, 
ergodicity, CLT for martingale difference sequences (MDS CLT).

Roughly speaking, stationarity requires constant moments for 𝑦௧; 
ergodicity requires that the dependence is short-lived, eventually 𝑦௧
has only a small influence on 𝑦௧ା௞, when 𝑘 is relatively large.

Ergodicity describes a situation where the expectation of a random 
variable can be replaced by the time series expectation.
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Time Series: Introduction – Dependence

An MDS is a discrete-time martingale with mean zero. In particular, 
its increments, ε௧’s, are uncorrelated with any function of the available 
dataset at time 𝑡. To these ε௧’s we will apply a CLT.

• The amount of dependence in 𝑦௧ determines the ‘quality’ of the 
estimator. There are several ways to measure dependence. The most 
common measure: Covariance.

Cov 𝑦௧,𝑦௧ା௞ ൌ  𝐸ሾሺ𝑦௧௧ െμሻሺ𝑦௧ା௞െ μሻሿ

Note: When μ = 0, then Cov 𝑦𝑡,𝑦௧ା௞ ൌ 𝐸ሾ𝑦௧ 𝑦௧ା௞ሿ

Time Series: Introduction – Forecasting

• In a time series model, we describe how 𝑦௧ depends on past 𝑦௧’s. 
That is, the information set is 𝐼௧ = {𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, ....}

• The purpose of building a time series model: Forecasting.

• We estimate time series models to forecast out-of-sample. For 
example, the l-step ahead forecast: 𝑦ො்ା௟ = E௧[𝑦௧ା௟|𝐼௧]. 

Historical Note: In the 1970s it was found that very simple time series 
models out-forecasted very sophisticated (big) economic models. 

This finding represented a big shock to the big multivariate models 
that were very popular then. It forced a re-evaluation of these big 
models.
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• In general, we assume the error term, ε௧, is uncorrelated with 
everything, with mean 0 and constant variance, 𝜎ଶ. We call a process 
like this a white noise (WN) process. 

• We denote a WN process as

ε௧ ~ WN(0, 𝜎ଶ)

• White noise is the basic building block of all time series. It can be 
written as simple function of a WN(0, 1) process:

𝑧௧ = σ 𝑢௧, 𝑢௧ ~ i.i.d. WN(0, 1)  𝑧௧ ~ WN(0, 𝜎ଶ)

• The 𝑧௧’s are random shocks, with no dependence over time, 
representing unpredictable events. It represents a model of news.

Time Series: Introduction – White Noise

• We make a key distinction: Conditional & Unconditional moments. In
time series we model the conditional mean as a function of its past,
for example in an AR(1) process, we have:

𝑦௧ = 𝛼 + 𝛽 𝑦௧ିଵ + ε௧.

Then, the conditional mean forecast at time 𝑡, conditioning on 
information at time 𝐼௧ିଵ, is:

E௧[𝑦௧|𝐼௧ିଵ] = E௧[𝑦௧] = 𝛼 + 𝛽 𝑦௧ିଵ

Notice that the unconditional mean, μ, is given by: 
E[𝑦௧] = 𝛼 + 𝛽 E[𝑦௧ିଵ] =

ఈ

1 − ఉ
= μ = constant (𝛽 ≠ 1)

The conditional mean is time varying; the unconditional mean is not!

Key distinction: Conditional vs. Unconditional moments.

Time Series: Introduction – Conditionality 
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• Two popular models for E௧[𝑦௧|𝐼௧]:
– An autoregressive (AR) process models Et[𝑦௧|𝐼௧ିଵ] with lagged 
dependent variables:

E௧[𝑦௧|𝐼௧] = 𝑓ሺ𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, .... , 𝑦௧ି௣)

Example: AR(1) process, 𝑦௧ = 𝛼 + 𝛽 𝑦௧ିଵ + ε௧.

– A moving average (MA) process models E௧[𝑦௧|𝐼௧] with lagged 
errors, ε௧:

E௧[𝑦௧|𝐼௧] = 𝑓ሺε௧ିଵ, ε௧ିଶ, ε௧ିଷ, .... , ε௧ି௤)

Example: MA(1) process, 𝑦௧ = μ + θ1 ε௧ିଵ + ε௧

• There is a third model, ARMA, that combines lagged dependent 
variables and lagged errors.

Time Series: Introduction – AR and MA models

• We want to select an appropriate time series model to forecast 𝑦௧. 
In this class, we will use linear models, with choices: AR(𝑝), MA(𝑞) 
or ARMA(𝑝, 𝑞). 

• Steps for forecasting:

(1) Identify the appropriate model. That is, determine 𝑝, 𝑞.

(2) Estimate the model.

(3) Test the model.

(4) Forecast.

• In this lecture, we go over the statistical theory (stationarity, 
ergodicity), the main models (AR, MA & ARMA) and tools that will 
help us describe and identify a proper model.

Time Series: Introduction – Forecasting (again)



RS – EC2 - Lecture 13

7For private use only - Not to be shared/posted online without authorization.

CLM Revisited: Time Series Implications

• With autocorrelated data, we get dependent observations. For 
example, with autocorrelated errors:  

ε௧ =   ε௧ିଵ +  𝑢௧ ,

the independence assumption is violated. The LLN and the CLT 
cannot be easily applied in this context. We need new tools.

• We introduce the concepts of stationarity and ergodicity. The 
ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent 
variables, using new technical concepts: mixing and stationarity. Or 
we can rely on a new CLT: The MDS CLT. 

• We will not cover these technical points in detail.

• Consider the joint probability distribution of  the collection of  RVs:

𝐹 𝑦௧భ ,𝑦௧మ , … ,𝑦௧೅ ൌ 𝐹 𝑌௧భ ൑ 𝑦௧భ ,𝑌௧మ ൑ 𝑦௧మ , … ,𝑌௧೅ ൑ 𝑦௧೅

To do statistical analysis with dependent observations, we need extra 
assumptions. We need some form of  invariance on the structure of  
the time series. 

If  the distribution 𝐹 is changing with every observation, estimation 
and inference become very difficult. 

• Stationarity is an invariant property: The statistical characteristics of  
the time series do not change over time. 

• There different definitions of  stationarity, they differ in how strong is 
the invariance of  the distribution over time.

Time Series – Stationarity 
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• We say that a process is stationary of    

1st order if  𝐹 𝑦௧భ ൌ 𝐹 𝑦௧భశೖ for any 𝑡1, 𝑘

2nd order if 𝐹 𝑦௧భ ,𝑦௧మ ൌ 𝐹 𝑦௧భశೖ ,𝑦௧మశೖ for any 𝑡1, 𝑡2, 𝑘

Nth-order if 𝐹 𝑦௧భ , … ,𝑦௧೅ ൌ 𝐹 𝑦௧భశೖ , … ,𝑦௧೅శೖ for any 𝑡1, ..., 𝑡T, 𝑘

• Nth-order stationarity is a strong assumption (& difficult to verify in 
practice). 2nd order (weak) stationarity is weaker. Weak stationarity only 
considers means & covariances (easier to verify in practice).  

• Moments describe a distribution. We calculate moments as usual:  
Eሾ𝑌௧ሿ ൌ μ

Var 𝑌௧ ൌ σଶ ൌ 𝐸ሾሺ𝑌௧ െ μሻଶሿ

Covሺ𝑌௧భ ,𝑌௧మ ሻ ൌ  𝐸ሾሺ𝑌௧భ െ μሻሺ𝑌௧మെ μሻሿ = γሺ𝑡1 
−𝑡2ሻ

Time Series – Stationarity 

• Covሺ𝑌௧భ ,𝑌௧మ ሻ = γ 𝑡1 
−𝑡2 is called the auto-covariance function. It 

measures how 𝑦௧, measured at time 𝑡1, and 𝑦௧, measured at time 𝑡2, 
covary. 

Notes: γ 𝑡1 
− 𝑡2 is a function of  𝑘 = 𝑡1 

− 𝑡2

γሺ0ሻ is the variance.

• The autocovariance function is symmetric. That is, 
γ 𝑡1 

− 𝑡2 ൌ Covሺ𝑌௧భ ,𝑌௧మ ሻ = Covሺ𝑌௧మ ,𝑌௧భ ሻ = γ 𝑡2 
− 𝑡1

 γ 𝑘 ൌ γ െ𝑘

• Autocovariances are unit dependent. We have different values if  we 
calculate the autocovariance for IBM returns in % or in decimal terms.

Remark: The autocovariance measures the (linear) dependence between 
two 𝑌௧ ’s separated by 𝑘 periods.

Time Series – Stationarity & Autocovariances
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• From the autocovariances, we derive the autocorrelations:

Corr 𝑌௧భ ,𝑌௧మ ൌ ρ 𝑌௧భ ,𝑌௧మ ൌ ஓሺ௧1 
−௧2ሻ 

஢೟భ஢೟మ
ൌ ஓሺ௧1 

−௧2ሻ 
ஓ(0)

the last step takes assumes: σ௧భ ൌ σ௧మൌ γሺ0ሻ

• Corr 𝑌௧భ ,𝑌௧మ ൌ ρ 𝑌௧భ ,𝑌௧మ is called the auto-correlation function 
(ACF), –think of  it as a function of  𝑘 = 𝑡2 

− 𝑡1. The ACF is also 
symmetric.

• Unlike autocovoriances, autocorrelations are not unit dependent. It is 
easier to compare dependencies across different time series.

• Stationarity requires all these moments to be independent of  time. If  
the moments are time dependent, we say the series is non-stationary.

Time Series – Stationarity & Autocorrelations 

Time Series – Stationarity & Constant Moments 

• For a strictly stationary process (constant moments), we need:
μ௧ ൌ μ
σ௧ ൌ σ

because 𝐹 𝑦௧భ ൌ 𝐹 𝑦௧భశೖ  μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ

Then, 
𝐹 𝑦௧భ ,𝑦௧మ ൌ 𝐹 𝑦௧భశೖ ,𝑦௧మశೖ  Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

 ρ 𝑡ଵ, 𝑡ଶ ൌ ρ 𝑡ଵା௞ , 𝑡ଶା௞

Let 𝑡ଵ ൌ 𝑡 െ 𝑘  & 𝑡ଶ ൌ 𝑡 
 ρ 𝑡ଵ, 𝑡ଶ ൌ ρ 𝑡 െ 𝑘, 𝑡 ൌ ρ 𝑡, 𝑡 െ 𝑘 = ρ 𝑘  = ρ௞

The correlation between any two RVs depends on the time difference. 
Given the symmetry, we have ρ 𝑘 = ρ െ𝑘 .
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Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ

Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ
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Time Series – Weak Stationary 

• A Covariance stationary process (or 2nd -order weakly stationary) has:
- constant mean, μ
- constant variance, 𝜎ଶ

- covariance depends on time difference, 𝑘, between two RVs, γ 𝑘

That is, 𝑍௧ is covariance stationary if:

E 𝑍௧ = constant = μ 

Var 𝑍௧ = constant = 𝜎ଶ 

Cov 𝑍௧భ ,𝑍௧మ ൌ γሺ𝑘 ൌ 𝑡ଵെ 𝑡ଶሻ

Remark: Covariance stationarity is only concerned with the covariance 
of  a process, only the mean, variance and covariance are time-invariant. 

Example: Assume 𝑦௧ follows an AR(1) process:

𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, with ε௧ ~ WN(0, 𝜎ଶ).

•  Mean
Taking expectations on both side:

E[ 𝑦௧] = 𝜙 E[𝑦௧ିଵ] + E[ε௧] 
μ = 𝜙 μ + 0
E[ 𝑦௧ ] = μ = 0 (assuming 𝜙 ≠ 1)

•  Variance
Applying the variance on both side:

Var[𝑦௧] = γ 0 ൌ 𝜙ଶ Var[𝑦௧ିଵ] + Var[𝜀௧] 

γሺ0ሻ = 𝜙ଶ γሺ0ሻ + 𝜎ଶ

γሺ0ሻ =
ఙమ

ଵ ି థమ
(assuming |𝜙 |< 1)

Time Series – Stationarity: Example 
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Example (continuation):  𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, ε௧ ~ WN(0, 𝜎ଶሻ

•  Covariance
γሺ1ሻ = Cov[𝑦௧, 𝑦௧ିଵ] = E[𝑦௧ 𝑦௧ିଵ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଵ] 

= 𝜙 E[𝑦௧ିଵ 𝑦௧ିଵ] + E[ ε௧ 𝑦௧ିଵ] 
= 𝜙 E[𝑦௧ିଵ2] 
= 𝜙 Var[𝑦௧ିଵ2] 
= 𝜙 γሺ0ሻ

γሺ2ሻ = Cov[𝑦௧, 𝑦௧ିଶ] = E[𝑦௧ 𝑦௧ିଶ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଶ] 
= 𝜙 E[𝑦௧ିଵ 𝑦௧ିଶ] 
= 𝜙 Cov[𝑦௧, 𝑦௧ିଵ] 
= 𝜙 γሺ1ሻ
= 𝜙2 γሺ0ሻ

⋮

γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

Time Series – Stationarity: Example 

Example (continuation):  𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, ε௧ ~ WN(0, 𝜎ଶሻ

•  Covariance
γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

 If  |𝜙|< 1, 𝑦௧ process is covariance stationary: mean, variance, 
and covariance are constant.

Remark: To establish stationarity, we need to impose conditions on 
the AR parameters. (Conditions are not needed for MA processes.) 

Note: From the autocovariance function, we derive ACF:

ρ 𝑘 ൌ ஓሺ௞ሻ 
ஓ(0) ൌ

థೖ ஓሺ଴ሻ
ஓ(0) ൌ 𝜙௞

If  |𝜙 |< 1, autocovariance function & ACF show exponential decay.

Time Series – Stationarity: Example 
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Example: Assume 𝑦௧ follows a Random Walk with drift process:

𝑦௧ = 𝜇 ൅  𝑦௧ିଵ + ε௧, with ε௧ ~ WN(0, σ2).

Doing backward substitution:
𝑦௧ = 𝜇 + (μ + 𝑦௧ିଶ + ε௧ିଵ) + ε௧

= 2 * μ + 𝑦௧ିଶ + ε௧ + ε௧ିଵ
= 2 * μ + (μ + 𝑦௧ିଷ + ε௧ିଶ) + ε௧ + ε௧ିଵ
= 3 * μ + 𝑦௧ିଷ + ε௧ + ε௧ିଵ+ ε௧ିଶ

 𝑦௧ = μ  𝑡 + ∑ ε௧ି௝
௧ିଵ
௝ୀ଴ + 𝑦଴

•  Mean & Variance
E[𝑦௧] = μ  𝑡 + 𝑦଴
Var[𝑦௧] = γሺ0ሻ = ∑ σ2௧ିଵ

௝ୀ଴ = σ2 𝑡

 the process 𝑦௧ is non-stationary: moments are time dependent.

Time Series – Non-Stationarity: Example 

Stationary Series: Examples

Examples: Assume ε௧ ~ WN(0, σ2). 
𝑦௧ ൌ 0.08 ൅ 𝜀௧ ൅ 0.4 𝜀௧ିଵ - MA(1) process
𝑦௧ ൌ 0.13 𝑦௧ିଵ ൅ 𝜀௧  - AR(1) process
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Non-Stationary Series: Examples

Examples: Assume ε௧ ~ WN(0, σ2).

𝑦௧ ൌ 𝜇 𝑡 ൅ 𝜙ଵ 𝑦௧ିଵ ൅ 𝜙ଶ 𝑦௧ିଶ ൅ 𝜀௧ - AR(2) with deterministic trend
𝑦௧ ൌ 𝜇 ൅ 𝑦௧ିଵ ൅ 𝜀௧     - Random Walk with drift

• Main characteristic of  time series: Observations are dependent.

• If  we have non-stationary series (say, mean or variance are changing 
with each observation), it is not possible to make inferences.  

• Stationarity is an invariant property: the statistical characteristics of  
the time series do not vary over time.

• If  IBM is weak stationary, then, the returns of  IBM may change 
month to month or year to year, but the average return and the variance 
in two equal-length time intervals will be more or less the same.

Time Series – Stationarity: Remarks
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• In the long run, say 100-200 years, the stationarity assumption may 
not be realistic. After all, technological change has affected the return 
of  IBM over the long run. But, in the short-run, stationarity seems 
likely to hold.

• In general, time series analysis is done under the stationarity 
assumption.

Time Series – Stationarity (Again)

• We want to estimate the mean of  the process {𝑍௧}, 𝜇ሺ𝑍௧ሻ. But, we 
need to distinguishing between ensemble average (with 𝑚 observations) 
and time average (with 𝑇 observations):

- Ensemble Average:  𝑧̿ ൌ
∑ ௓೔
೘
೔సభ

௠

- Time Series Average:  𝑧 ൌ
∑ ௓೟
೅
೟సభ

்

Q: Which estimator is the most appropriate? 
A: Ensemble Average. But, it is impossible to calculate for a time series. 
We only observe one 𝑍௧ , with dependent observations.

• Q: Under which circumstances we can use the time average (with only 
one realization of  {𝑍௧})? Is the time average an unbiased and consistent 
estimator of  the mean? The Ergodic Theorem gives us the answer.

Time Series – Ergodicity of  the Mean 
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• Intuition behind Ergodicity:
We go to a casino to play a game with 20% return, but on average, one 
gambler out of  100 goes bankrupt. If  100 gamblers play the game, 
there is a 99% chance of  winning and getting a 20% return. This is the 
ensemble scenario. Suppose that gambler 35 is the one that goes bankrupt. 
Gambler 36 is not affected by the bankruptcy of  gamble 35.

Suppose now that instead of  100 gamblers you play the game 100 times. 
This is the time series scenario. You win 20% every day until day 35 when 
you go bankrupt. There is no day 36 for you (dependence at work!).

Result: The probability of  success from the group (ensemble scenario) 
does not apply to one person (time series scenario). 

Ergodicity describes a situation where the ensemble scenario outcome 
applies to the time series scenario.

Time Series – Ergodicity

• Recall the sufficient conditions for consistency of  an estimator: the 
estimator is asymptotically unbiased and its variance asymptotically 
collapses to zero.

1. Q: Is the time average is asymptotically unbiased? Yes.

E[𝑧ሿ ൌ
∑ ாሾ௓೟ሿ
೅
೟సభ

்
ൌ

∑ ఓ೅
೟సభ

்
ൌ 𝜇

2. Q: Is the variance going to zero as T grows? It depends.

varሾ 𝑧 ሿ ൌ varሾ ሺ𝑧ଵ൅ 𝑧ଶ ൅ ⋯൅ 𝑧்ሻ/𝑇ሿ ൌ

ൌ
∑ ∑ ஼௢௩ሾ௓೟,௓ೞ

೅
ೞసభ ሿ೅

೟సభ

்మ
ൌ ఊబ

்మ
∑ ∑ 𝜌௧ି௦்

௦ୀଵ
்
௧ୀଵ

ൌ ఊబ
்మ
∑ ሼ𝜌௧ିଵ ൅ 𝜌௧ିଶ ൅ ⋯൅ 𝜌௧ି்்
௧ୀଵ ሽ

ൌ ఊబ
்మ
ሼ 𝜌଴ ൅ 𝜌ଵ ൅⋯൅ 𝜌்ିଵ ൅⋯൅ 𝜌்ିଵ ൅ 𝜌்ିଶ ൅ ⋯൅ 𝜌଴ ሽ

ൌ ఊబ
்మ
∑ ሺ𝑇 െ 𝑘 ሻ𝜌௞
்ିଵሻ
௞ୀଵ ൌ ఊబ

்
 ∑ ሺ1 െ ௞

்
ሻ𝜌௞௞

Time Series – Ergodicity of  the Mean 
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varሾ 𝑧 ሿ  ൌ ఊబ
்

 ∑ ሺ1 െ ௞

்
ሻ𝜌௞௞

lim
்→ஶ

varሾ 𝑧 ሿ ൌ lim
்→ஶ

ఊబ
்

 ∑ ሺ1 െ ௞

்
ሻ𝜌௞௞

   ?   
 0

• If  the 𝑍௧ were uncorrelated, the variance of  the time average would 

be 𝑂ሺଵ
்
ሻ. Since independent random variables are necessarily 

uncorrelated (but not vice versa), we have just recovered a form of  the 
LLN for independent data. 

Q: How can we make the remaining part, the sum over the upper 
triangle of  the covariance matrix, go to zero as well? 
A: We need to impose conditions on 𝜌௞. Conditions weaker than "they 
are all zero;" but, strong enough to exclude the sequence of  identical 
copies. 

Time Series – Ergodicity of  the Mean 

• Definition: A covariance-stationary process is ergodic for the mean if
plim 𝑧 ൌ 𝐸ሾ𝑍௧ሿ ൌ 𝜇

Ergodicity Theorem: Then, a sufficient condition for ergodicity for 
the mean is 

ρ௞ → 0, as 𝑘→ ∞

• We use two inequalities to put upper bounds on the variance of  the 
time average: 

∑ ∑ 𝜌௄
்ି௧
௞ୀଵ

்ିଵ
௧ୀଵ ൑ ∑ ∑ |𝜌௄|்ିଵ

௞ୀଵ
்ିଵ
௧ୀଵ ൑ ∑ ∑ |𝜌௄|ஶ

௞ୀଵ
ஶ
௧ୀଵ

Covariances can be negative, so we upper-bound the sum of  the actual 
covariances by the sum of  their magnitudes. Then, we extend the 
inner sum so it covers all lags. This might of  course be infinite 
(sequence-of-identical-copies). 

Time Series – Ergodicity of  the Mean 
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• A sufficient condition to ensure ergodicity for second moments is:
∑ |𝜌௄|்ି௧
௞ୀଵ ൏ ∞

A process which is ergodic in the first and second moments is usually 
referred as ergodic in the wide sense.

• Ergodicity under Gaussian Distribution
If  {𝑍௧}is a stationary Gaussian process, ∑ |𝜌௄|்ି௧

௞ୀଵ ൏ ∞

is sufficient to ensure ergodicity for all moments.

Note: Recall that only the first two moments are needed to describe 
the normal distribution.

Time Series – Ergodicity of  2nd Moments 

• We state two essential theorems to the analysis of   stationary time 
series. Difficult to prove in general. 

Theorem I
If  𝑦௧ is strictly stationary & ergodic and 𝑥௧ = 𝑓ሺ𝑦௧, 𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, 
....) is a RV, then 𝑥௧ is strictly stationary and ergodic.

Theorem II (Ergodic Theorem)
If  𝑦௧ is strictly stationary & ergodic and E[𝑦௧] < ∞; then as 𝑇 →  ∞;

ଵ

்
 ∑ 𝑦௧

்
௜ୀଵ

   ௣   
E[𝑦௧ሿ

• These results allow us to consistently estimate parameters using 
time-series moments. 

Time Series – Ergodicity – Theorems  
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• Definition: ε௧ is a martingale difference sequence (MDS) if

E[ε௧|𝐼௧ିଵ] =0.

• Regression errors are naturally a MDS. Some time-series processes 
may be a MDS as a consequence of optimizing behaviour. For 
example, most asset pricing models imply that asset returns should be 
the sum of a constant plus a MDS.

• Useful property:  ε௧ is uncorrelated with any function of the lagged 
information 𝐼௧ିଵ. Then, for 𝑘 > 0  E[𝑦௧ି௞ ε௧] = 0.

Time Series - MDS

Theorem (MDS CLT)

If 𝑢௧ is a strictly stationary and ergodic MDS and E(𝑢௧𝑢௧′) = Ω < ∞; 
then as T→ ∞;

ଵ

்
 ∑ 𝑢௧

்
௜ୀଵ

ௗ
→  𝑁ሺ0,Ωሻ

• Application: Let 𝑥௧ ={𝑦ଵ, 𝑦ଶ ,𝑦ଷ, ..., 𝑦்}, a vector of lagged 𝑦௧’s.
Then (𝑥௧ε௧) is a MDS. We can apply the MDS CLT Theorem. Then,

ଵ

்
 ∑ 𝒙௧′ ௧்

௜ୀଵ
ௗ
→  𝑁ሺ0,Ωሻ Ω = E[𝒙௧𝒙௧′ ௧2]

• Like in the derivation of asymptotic distribution of OLS, the above 
result is the key to establish the asymptotic distribution in a time series 
context.  

Time Series – MDS CLT
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Define the operator L as
L௞ 𝑧௧ = 𝑧௧ି௞.

• It is usually called Lag operator. But it can produce lagged or forward 
variables (for negative values of  𝑘). For example:

Lିଷ 𝑧௧ = 𝑧௧ାଷ.

• Also note that if  𝑐 is a constant  L 𝑐 = 𝑐.

• Sometimes the notation for L when working as a lag operator is B 
(backshift operator), and when working as a forward operator is F.

• Important application: Differencing
Δ 𝑧௧ = (1 െ L) 𝑧௧ = 𝑧௧ െ 𝑧௧ିଵ.
Δଶ 𝑧௧ = (1 െ L)ଶ 𝑧௧ = 𝑧௧ െ 2𝑧௧ିଵ ൅ 𝑧௧ିଶ.

Time Series – Lag Operator

• The function  𝑓ሺ𝑥ሻ ൌ ሺ1 െ 𝑥ሻିଵ can be written as an infinite 
geometric series (use a Maclaurin series around 𝑐 =0):

𝑓 𝑥 ൌ  ଵ

ଵ ି ௫
 ൌ 1 ൅ 𝑥 ൅ 𝑥ଶ ൅ 𝑥ଷ ൅ 𝑥ସ ൅ . . .ൌ ∑ 𝑥௡ஶ

௡ୀ଴

• If  we multiply 𝑓ሺ𝑥ሻ by a constant, 𝑎:

∑ 𝑎𝑥௡ஶ
௡ୀ଴ ൌ ௔

ଵ ି ௫
→  ∑ 𝑎𝑥௡ஶ

௡ୀଵ ൌ  𝑎 ଵ

ଵ ି ௫
െ 1

Example: In Finance we have many applications of  the above results.
- A stock price, 𝑃, equals the discounted some of  all futures dividends. 
Assume dividends are constant, 𝑑, and the discount rate is 𝑟. Then:

𝑃௧ = ∑ ௗ

ሺଵ ା ௥ሻ೟
ൌ 𝑑ሺ ଵ

ଵ ି 
భ

భ శ ೝ

ஶ
௧ୀଵ െ 1) = 𝑑ሺ ଵ

భ శ ೝ షభ
భ శ ೝ

െ 1ሻ = 
ௗ

௥

where 𝑥 ൌ  ଵ

ଵ ା ௥

Time Series – Useful Result: Geometric Series
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• We will use this result when, under certain conditions, we invert a lag 
polynomial (say, θሺLሻ) to convert an AR (MA) process into an infinite 
MA (AR) process.

Example: Suppose we have an MA(1) process:

𝑦௧ = 𝜇 ൅ θ1 ε௧ିଵ+ ε௧ = 𝜇 + θሺLሻ ε௧ – θሺLሻ = (1 ൅ θ1L)

Recall,

𝑓 𝑥 ൌ ଵ

ଵ ି ௫
ൌ 1 ൅ 𝑥 ൅ 𝑥ଶ ൅ 𝑥ଷ ൅ 𝑥ସ൅ . . .ൌ ∑ 𝑥௡ஶ

௡ୀ଴

Let 𝑥 = −θ1L. Then, assuming that 𝜃 𝐿 ିଵ is well defined,

𝜃 𝐿 ିଵ = 
ଵ

ଵ ିሺ−θ1Lሻ
ൌ 1 ൅ ሺ−θ1Lሻ ൅ ሺ−θ1Lሻଶ൅ ሺ−θ1Lሻଷ ൅ ሺ−θ1Lሻସ ൅ ...

ൌ ∑ ሺെθ1Lሻ௡
ஶ
௡ୀ଴ ൌ 1 െ θ1L ൅ θ1

ଶLଶ െ θ1
ଷLଷ ൅ θ1

ସLସ ൅ ⋯ 

Time Series – Useful Result: Application 

Example (continuation):

𝜃 𝐿 ିଵ ൌ ∑ ሺെθ1 
𝐿ሻ௡ஶ

௡ୀ଴ = 1 െ θ1 
L ൅ θ1

ଶLଶ െ θ1
ଷLଷ ൅ θ1

ସLସ ൅ ⋯ 

Now, we multiply 𝜃 𝐿 ିଵon both sides of  the MA process
𝑦௧ = 𝜇 + θሺLሻ 𝜀௧.

Then,

𝜃 𝐿 ିଵ 𝑦௧ = 𝜃 𝐿 ିଵ𝜇 + 𝜃 𝐿 ିଵθሺLሻ 𝜀௧ = 𝜇* + 𝜀௧

𝜃 𝐿 ିଵ 𝑦௧ = 𝑦௧ െ θ1𝑦௧ିଵ ൅  θଵ
ଶ 𝑦௧ିଶെ  θଵ

ଷ 𝑦௧ିଷ൅  θଵ
ସ 𝑦௧ିସ൅⋯

=  𝜇* + 𝜀௧

Then, solving for 𝑦௧:
𝑦௧ ൌ 𝜇∗ ൅ θ1𝑦௧ିଵ െ θଵ

ଶ 𝑦௧ିଶ ൅ θଵ
ଷ  𝑦௧ିଷെ θଵ

ସ  𝑦௧ିସ൅ ⋯൅ 𝜀௧

That is, we get an AR(∞)!

Time Series – Useful Result: Application 
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Autoregressive (AR) Process

• We model the conditional expectation of 𝑦௧, E௧[𝑦௧|𝐼௧ିଵ], as a 
function of its past history. We assume 𝜀௧ ~ WN(0, σ2).

• The most common models are AR models. An AR(1) model 
involves a single lag, while an AR(𝑝) model involves 𝑝 lags. Then, the 
AR(𝑝) process is given by:

𝑦௧ = 𝜇 + 𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ +... + 𝜙௣ 𝑦௧ି௣ + 𝜀௧, 𝜀௧ ~ WN.

Using the lag operator we write the AR(𝑝) process:

𝜙(𝐿) 𝑦௧ = 𝜀௧

with 𝜙(𝐿ሻ ൌ 1 െ 𝜙ଵ 𝐿 െ 𝜙ଶ 𝐿ଶ െ …െ 𝜙௣ 𝐿௣

Note: Inverting 𝜙(𝐿ሻ delivers 𝑦௧ ൌ 𝜙(𝐿ሻିଵ 𝜀௧ (an MA(∞)!).

• We can analyze the stability from the point of view of the roots of 
the lag polynomial. For the AR(1) process

𝜙(z) = 1 െ 𝜙1 z = 0  |z| = 
ଵ

|థ1|
> 1 

That is, the AR(1) process is stable if the root of 𝜙(z) is greater than 
one (also said as “the roots lie outside the unit circle”).

This result generalizes to AR(p) process. For the AR(3) process 

𝑦௧ = 𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ + 𝜙3 𝑦௧ିଷ + 𝜀௧ ,

where 𝜙(𝑧) = 1 െ 𝜙ଵ 𝑧 െ 𝜙ଶ 𝑧ଶ െ 𝜙ଷ 𝑧ଷ

 the roots, 𝑧ଵ, 𝑧ଶ & 𝑧ଷ, should lie outside the unit circle.

For an AR(𝑝), we need the roots of 𝜙(𝑧)to be outside the unit circle

AR Process – AR(1): Stability



RS – EC2 - Lecture 13

23For private use only - Not to be shared/posted online without authorization.

• For an AR(𝑝), we need the roots of 𝜙(𝑧) to be outside the unit 
circle. 

• For the AR(2), 𝑦௧ = 𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ .

we need the roots of 𝜙(𝑧) to be outside the unit circle.

The characteristic polynomial of the AR(2) can be written as: 

𝜙(𝑧) = 1 – (𝜆1+ 𝜆2) 𝑧 – 𝜆1 
𝜆2  𝑧ଶ = (1 – 𝜆1 

𝑧) (1 – 𝜆2 
𝑧) = 0 

where 

𝜙ଵ = 𝜆1+ 𝜆2, & 𝜙ଶ= 𝜆1 
𝜆2. (𝜆1 & 𝜆2 = eigenvalues/characteristic roots.)

AR Process – AR(1): Stability

• Summary:

We say the process is globally (asymptotically) stable if the solution of 
the associated homogenous equation tends to 0, as 𝑡 → ∞.

Theorem

A necessary and sufficient condition for global asymptotical stability 
of a 𝑝th order deterministic difference equation with constant 
coefficients is that all roots of the associated lag polynomial equation 
𝜙(z)=0 have moduli strictly more than 1.

(For the case of real roots, moduli means “absolute values.”)

AR Process – AR(1): Stability
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• An AR(1) model: 
𝑦௧ = 𝜙1 𝑦௧ିଵ + 𝜀௧, 𝜀௧~ WN.

Recall that in a previous example, under the stationarity condition 
|𝜙ଵ|< 1, we derived the mean, variance and auto-covariance function:

E[𝑦௧] = μ = 0 (assuming 𝜙ଵ≠ 1)

Var[𝑦௧] = γሺ0ሻ = 𝜎ଶ/(1 െ 𝜙ଵ
ଶ) (assuming |𝜙ଵ|< 1)

γሺ𝑘ሻ = 𝜙ଵ
௞ γሺ0ሻ 

• We also derived the autocorrelations: 

ρ 𝑘 ൌ  ஓሺ௞ሻ 
ஓሺ଴ሻ

ൌ  𝜙ଵ
௞

Remark: When |𝜙ଵ|< 1, the autocorrelations do not explode as 𝑘
increases. There is an exponential decay towards zero.

AR(1) Process – Stationarity & ACF

• ACF for an AR(1) process: 

ρ 𝑘 ൌ  ஓሺ௞ሻ 
ஓሺ଴ሻ

ൌ  𝜙ଵ
௞

Then, the autocorrelogram –i.e., plot of  ρ 𝑘 against 𝑘– shows
– when    0 ൏ 𝜙ଵ ൏ 1  All autocorrelations are positive.
– when  െ1 ൏  𝜙ଵ ൏ 0  The sign of  ρ 𝑘 shows an alternating 

pattern beginning with a negative value.
– when 𝜙ଵ = 1  AR(1) is non-stationary, ρ 𝑘 ൌ 1, for all 𝑘.

Present & past are always correlated!

AR(1) Process – Stationarity & ACF
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• Let’s compute moments of  𝑦௧ using the infinite sum (set 𝜇 ൌ 0):
𝐸 𝑦௧ ൌ 𝜙ሺ𝐿ሻିଵ 𝐸 𝜀௧ ൌ 0 ( 𝜙ሺ𝐿ሻ ് 0ሻ
𝑉𝑎𝑟 𝑦௧ ൌ 𝜙ሺ𝐿ሻିଶ 𝑉𝑎𝑟 𝜀௧ ൌ 0 ( 𝜙ሺ𝐿ሻିଶ ൐ 0ሻ
𝐸 𝑦௧,𝑦௧ି௝ ൌ 𝛾ሺ𝑡 െ 𝑗ሻ ൌ 𝜙ଵ 𝛾 𝑗 െ 1 ൅⋯൅ 𝜙௣ 𝛾 𝑗 െ 𝑝

Using the fundamental theorem of  algebra, 𝜙ሺ𝑧ሻ can be factored as 

𝜙ሺ𝑧ሻ ൌ ሺ1 െ 𝑟ଵିଵ𝑧ሻ ሺ1 െ 𝑟ଶିଵ𝑧ሻ… ሺ1 െ 𝑟௣ିଵ𝑧ሻ

where the 𝑟ଵ, ...., 𝑟௣ ∈C are the roots of 𝜙(𝑧ሻ. If  𝜙ଵ′𝑠 coefficients are 
all real, the roots are either real or come in complex conjugate pairs.

Theorem: The linear AR(p) process is strictly stationary and ergodic 
if  and only if  |𝑟௝|>1 for all j, where |𝑟௝| is the modulus of  the 
complex number 𝑟௝ .

• We usually say “all roots lie outside the unit circle.”

AR Process – Stationarity

• We usually say “all roots lie outside the unit circle.”

Note: If  one of  the 𝑟௝′s equals 1, 𝜙ሺ𝐿ሻ (& 𝑦௧) has a unit root –i.e., 
𝜙 𝐿 ൌ 1 ൌ 0. This is a special case of  non-stationarity.

• Recall 𝜙ሺ𝐿ሻିଵproduces an infinite sum on the 𝜀௧ି௝ ’s. If  this sum 
does not explode, we say the process is stable. 

• If  the process is stable, we can calculate 
δ௬೟
δఌ೟షೕ

.

δ௬೟
δఌ೟షೕ

= How much 𝑦௧ is affected today by an innovation (a shock) 

𝑡 െ 𝑗 periods ago. When expressed as a function of  𝑗, we call this the 
impulse response function (IRF).

AR Process – Stationarity
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Example: AR(1) process
𝑦௧ = 𝜙ଵ𝑦௧ିଵ + 𝜀௧, 𝜀௧~ WN.

E[𝑦௧] = 𝜇 = 0  𝜙ଵ ് 1 ሺ𝑟ଵ ് 0)

Var[𝑦௧] = γሺ0ሻ = 𝜎ଶ/ሺ1 െ 𝜙ଵ
ଶ)  |𝜙ଵ| ൏ 1 ሺ𝑟ଵ > 1)

ଵ

ଵି థభ೔
ൌ  ∑ 𝜙ଵ

௜௝ஶ
௜ୀ଴ 𝑖 ൌ 1, 2

Note: These infinite sums will not explode (stable process) if  
|𝜙ଵ| ൏ 1  stationarity condition.

Under this condition, we can calculate the impulse response function:
δ௬೟శೕ
δఌ೟

 = 
δ௬೟
δఌబ

= ϕ௝ .

AR Process – Example: AR(1)

• The autocovariance function for an AR(𝑝) process is:
𝛾ሺ𝑡 െ 𝑗ሻ ൌ 𝐶𝑜𝑣 𝑦௧,𝑦௧ି௝ ൌ 𝜙ଵ 𝛾 𝑗 െ 1 ൅⋯൅ 𝜙௣ 𝛾 𝑗 െ 𝑝

For the AR(1) process:
𝛾ሺ𝑘ሻ ൌ 𝜙ଵ 𝛾 𝑘 െ 1

• There is a recursive formula for 𝛾 𝑘 :
γሺ𝑘ሻ = 𝜙ଵ

௞ γሺ0ሻ 

• Again, when |𝜙ଵ| ൏ 1, the autocovariance do not explode as 𝑘
increases. There is an exponential decay towards zero.

AR Process – Example: AR(1)
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• Note: γሺ𝑘ሻ = 𝜙ଵ
௞ γሺ0ሻ 

– when 0 ൏ 𝜙ଵ ൏ 1  All autocovariances are positive.
– when െ1 ൏  𝜙ଵ ൏ 0  The sign of γሺ𝑘ሻ shows an alternating 

pattern beginning a negative value.

• The AR(1) process has the Markov property: 
The distribution of  𝑦௧ given {𝑦௧ିଵ, 𝑦௧ିଶ, …} is the same as the 
distribution of  𝑦௧ given {𝑦௧ିଵ}.

AR Process – Example: AR(1)

Example: AR(2) process
𝑦௧ = 𝜇 ൅ 𝜙ଵ 𝑦௧ିଵ ൅ 𝜙ଶ 𝑦௧ିଶ ൅ 𝜀௧ ⇒ ሺ1 െ1 𝐿 െ ଶ𝐿ଶሻ𝑦௧ ൌ 𝜇 ൅ 𝜀௧

We can invert (1 െ 𝜙ଵ𝐿 െ 𝜙ଶ 𝐿ଶ) to get the MA(∞) process.

• Stationarity Check
– Eሾ𝑦௧ሿ ൌ  𝜇/ሺ1 െϕଵ െ 𝜙ଶሻ = 𝜇*  𝜙ଵ ൅ 𝜙ଶ ് 1.
– Varሾ𝑦௧ሿ ൌ 𝜎ଶ/ሺ1 െ 𝜙ଵ

ଶ െ 𝜙ଶ
ଶ ሻ  𝜙ଵ

ଶ ൅ 𝜙ଶ
ଶ ൏ 1

Stationarity condition: |𝜙ଵ ൅ 𝜙ଶ| ൏ 1

• Things can be simpler by rewriting the AR(2) in matrix AR(1) form:

𝑦௧
𝑦௧ିଵ

ൌ
𝜇
0 ൅ ଵ ଶ

1 0
𝑦௧ିଵ
𝑦௧ିଶ

൅
𝜀௧
0      𝑦෤௧ ൌ 𝜇෤ ൅ 𝐴𝑦෤௧ିଵ ൅ 𝜀௧̃

Note: Now, we check [𝐈 െ 𝑨௜] (𝑖 ൌ 1, 2) for stationarity conditions

AR Process – Example: AR(2)
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• We can derived a matrix lag polynomial A(L):
𝑦෤௧ ൌ 𝜇෤ ൅ 𝑨 𝑦෤௧ିଵ ൅ 𝜀௧̃  𝐴 𝐿 𝑦෤௧ ൌ 𝐼 െ 𝐴𝐿  𝑦෤௧ൌ 𝜀௧̃

Note: Recall

Checking that [I – 𝑨𝐿] is not singular, same as checking that  𝑨௜ does 
not explode. The stability of  the system can be determined by the  
eigenvalues of  𝑨. That is, get the 𝜆௜’s and check if  |𝜆௜|<1 for all 𝑖.

𝑨 ൌ 𝜙ଵ 𝜙ଶ
1 0

⇒ 𝑨െ 𝜆𝐼 ൌ det 𝜙ଵ  െ 𝜆 𝜙ଶ
1 െ𝜆

ൌ

ൌ െሺ𝜙ଵ െ  𝜆ሻ𝜆 െ 𝜙ଶ ൌ 𝜙ଶ െ 𝜙ଵ𝜆 ൅  𝜆ଶ

• Solution to quadratic equation:  𝜆௜ = 
1 േ 1

మିସ2 

ଶ

• If  |𝜆௜| ൏ 1 for all 𝑖 =1, 2, 𝑦௧ is stable (not explode) & stationary. 

AR(2) Process – Stationarity & VAR 

    .2

0

1 ..FFIFFI
j

j  






• If  |𝜆௜| ൏ 1 for all 𝑖 =1, 2, 𝑦௧ is stable (not explode) & stationary. 

For the AR(2) process, we derive relations between 𝜆௜′s & 𝜙௜’s:

𝜆ଵ𝜆ଶ ൌ 𝜙ଶ ⇒ 𝜆ଵ𝜆ଶ ൌ 𝜙ଶ ൏ 1
𝜆ଵ ൅ 𝜆ଶ ൌ1 ⇒ 𝜆ଵ ൅ 𝜆ଶ ൌ 𝜙ଵ ൏ 2

• We derived autocovariance function, 𝛾ሺ𝑘ሻ, before, getting a recursive 
formula. Let’s write the first autocovariances:
(𝑘 ൌ 0) 𝛾ሺ0ሻ = 𝜙ଵ 𝛾ሺ1ሻ ൅  𝜙ଶ𝛾 2 ൅ 𝜎ଶ

(𝑘 ൌ 1) 𝛾ሺ1ሻ = 
థభ

ଵିథమ
𝛾ሺ0ሻ

(𝑘 ൌ 2) 𝛾ሺ2ሻ = [
థభ

మ

ଵିథమ
൅ 𝜙ଶ] 𝛾ሺ0ሻ

With 𝜙ଶ ൏ 1, we get well defined 𝛾ሺ1ሻ, 𝛾ሺ2ሻ & 𝛾ሺ0ሻ .

AR(2) Process – Stationarity & VAR 
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• The AR(2) in matrix AR(1) form is called Vector AR(1) or VAR(1). 

Nice property: The VAR(1) is Markov -i.e., forecasts depend only on 
today’s data. 

• It is straightforward to apply the VAR formulation to any AR(𝑝) 
processes. We can also use the same eigenvalue conditions to check 
the stationarity of  AR(𝑝ሻ processes.

AR(2) Process – Stationarity & VAR 

• An AR(2) model: 
𝑦௧ ൌ 𝜇 ൅ 𝜙ଵ 𝑦௧ିଵ ൅ 𝜙ଶ 𝑦௧ିଶ ൅ 𝜀௧, 𝜀௧ ~ 𝑊𝑁.

• Moments: (𝜇 =0)
E[𝑦௧] = 

ఓ

(1ି థభି థమ)
= 0 (assuming 𝜙ଵ ൅ 𝜙ଶ ് 1)

Var[𝑦௧] = 
ఙమ

(ଵ ି థభ
మ ି థమ

మ) (assuming  𝜙ଵ
ଶ ൅ 𝜙ଶ

ଶ ൏ 1)

• Autocovariance function 
γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = E[(𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ + 𝜀௧) 𝑦௧ି௞]

= 𝜙ଵ E[𝑦௧ିଵ 𝑦௧ି௞] + 𝜙ଶ E[𝑦௧ିଶ 𝑦௧ି௞] + E[𝜀௧ 𝑦௧ି௞] 

= 𝜙ଵ γሺ𝑘 െ 1ሻ + 𝜙ଶ γሺ𝑘 െ 2ሻ + E[𝜀௧ 𝑦௧ି௞] 

We have a recursive formula.

AR(2) Process – Stationarity & ACF
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• Recursive formula: γሺ𝑘ሻ = 𝜙1 γ 𝑘 െ 1 ൅ 𝜙ଶ γሺ𝑘 െ 2ሻ ൅ E[𝜀௧ 𝑦௧ି௞] 

(𝑘=0) γሺ0ሻ ൌ 𝜙ଵ γሺെ1ሻ ൅ 𝜙ଶ γ െ2 ൅  E[𝜀௧ 𝑦௧] 
ൌ 𝜙ଵ γሺ1ሻ ൅  𝜙ଶ γሺ2ሻ ൅ 𝜎ଶ

(𝑘=1) γሺ1ሻ ൌ 𝜙ଵ γ 0  ൅  𝜙ଶ γ 1 ൅ E[𝜀௧ 𝑦௧ିଵ] 
ൌ 𝜙ଵ γ 0  ൅ 𝜙ଶ  γ 1 ൅ 0

 γሺ1ሻ = [𝜙ଵ/ሺ1 െ  𝜙ଶሻ] γሺ0ሻ

(𝑘=2) γሺ2ሻൌ 𝜙ଵ γሺ1ሻ + 𝜙ଶ γሺ0ሻ ൅ E[𝜀௧ 𝑦௧ିଶ] 
ൌ 𝜙ଵ γሺ1ሻ + 𝜙ଶ γ 0 ൅ 0

 γ 2 ൌ [
థభ
మ

ଵି థమ
 ൅ 𝜙ଶ] γሺ0ሻ

Replacing γሺ1ሻ and γሺ2ሻ back to γሺ0ሻ:

γሺ0ሻ = [𝜙ଵ
ଶ/ሺ1 െ  𝜙ଶ)] γሺ0ሻ + [𝜙ଶ 𝜙ଵ

ଶ/ 1 െ  𝜙ଶ ൅ 𝜙ଶ
ଶ] γሺ0ሻ + 𝜎ଶ

= 
ఙమ(1 − థ2)

(1 − థ2) ି థభ
మ (1 + థ2) + థమమ (1 − థ2)

 |𝜙ଶ| ൏ 1

AR(2) Process – Stationarity & ACF

• Dividing the recursive formula for γሺ𝑘ሻ by γሺ0ሻ, we get the ACF:

ρሺ𝑘ሻ ൌ ஓሺ௞ሻ

ஓሺ଴ሻ
= 𝜙ଵ ρ 𝑘 െ 1  ൅ 𝜙ଶ ρ 𝑘 െ 2  ൅

E[ఌ೟ ௬೟షೖ]
ஓሺ଴ሻ

(𝑘=0) ρሺ0ሻ ൌ 1

(𝑘=1) ρ 1 ൌ 𝜙ଵ/ሺ1 െ  𝜙ଶሻ

(𝑘=2) ρሺ2ሻ ൌ 𝜙ଵ ρ 1 ൅ 𝜙ଶ ρሺ0ሻ = 𝜙ଵ
ଶ/ሺ1 െ 𝜙ଶሻ ൅ 𝜙ଶ

(𝑘=3) ρ 3 ൌ 𝜙ଵ ρሺ2ሻ ൅ 𝜙ଶ ρ 1 ൌ

ൌ 𝜙ଵ
ଷ/ሺ1 െ 𝜙ଶሻ ൅ 𝜙ଵ 𝜙ଶ ൅ 𝜙ଶ 𝜙ଵ/ሺ1 െ 𝜙ଶ)

Remark: Again, we see exponential decay in the ACF.

From the work above, for stationarity, we need: 𝜙ଵ ൅ 𝜙ଶ ് 1.
𝜙ଵ
ଶ + 𝜙ଶ

ଶ < 1.
|𝜙ଶ|< 1.

AR(2) Process – Stationarity & ACF
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• The AR(𝑝) model: ϕሺ𝐿ሻ𝑦௧ ൌ 𝜇 ൅ 𝜀௧, 𝜀௧ ~ 𝑊𝑁.

where 𝜙ሺ𝐿ሻ ൌ 1 െ 𝜙ଵ𝐿ଵ െ 𝐿ଶ𝜙ଶെ. . . .െ𝜙௣𝐿௣

Then, 𝑦௧ ൌ ϕሺ𝐿ሻିଵሺ𝜇 ൅ 𝜀௧ሻ,  an MA(∞) process!

• But, we need to make sure that we can invert the polynomial 𝜙 𝐿 . 
When 𝜙 𝐿 ≠ 0, we say the process yt is causal (strictly speaking, a 
causal function of {𝜀௧}).

Definition: A linear process {𝑦} is causal if  there is a 

𝜓 𝐿 ൌ 1 ൅ 𝜓ଵ𝐿 ൅ 𝜓ଶ𝐿ଶ ൅⋯
∑ 𝜓௝ 𝐿
ஶ
௝ୀ଴ ൏ ∞

𝑦௧ ൌ 𝜓ሺ𝐿ሻ𝜀௧ .

AR Process – Causality

Example: AR(1) process:
ሺ𝐿ሻ𝑦௧ ൌ 𝜇 ൅ 𝜀௧ ,    where ሺ𝐿ሻ ൌ 1 െ 𝜙ଵ𝐿

Then, 𝑦௧ is causal if  and only if: 
|𝜙ଵ| ൏ 1 (same condition as stationarity)

or
the root 𝑟ଵ of  the polynomial (𝑧) = 1 െ 𝜙ଵ𝑧 satisfies |𝑟ଵ| ൐ 1.

Question: How do we calculate the  𝜓௜′s coefficients for an ARሺ𝑝ሻ? 
A: Matching coefficients (𝜇 =0):

𝑌௧ ൌ  ଵ

ଵ ି థభ௅
𝜀௧ ൌ⏞

భ ழଵ
∑ 1

௜𝐿௜𝜀௧
ஶ
௜ୀ଴

ൌ 1 ൅ 𝜙ଵ 𝐿 ൅ 𝜙ଵ
ଶ𝐿ଶ ൅ ⋯  𝜀௧   ⇒ 𝜓௜ ൌ 𝜙ଵ

௜ ,   𝑖 ൒ 0

AR Process – Causality
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Example: AR(2) - Calculating the 𝜓௜’s by matching coefficients.

𝜓଴ ൌ 1
𝜓ଵ ൌ 𝜙ଵ
𝜓ଶ ൌ 𝜙ଵ

ଶ ൅ 𝜙ଶ
𝜓ଷ ൌ 𝜙ଵ

ଷ ൅ 2𝜙ଵ𝜙ଶ
𝜓௝ ൌ 𝜙ଵ𝜓௝ିଵ ൅ 𝜙ଶ 𝜓௝ିଶ 𝑗 ൒ 2.

We can solve these linear difference equations in several ways:
- Numerically
- Guess the form of  a solution and using an inductive proof
- Using the theory of  linear difference equations.

AR Process – Calculating the 𝜓௜’s 

 
 

      11 2
21 



LLyLL tt

L


  

• Define

𝒙௧ ൌ 1 𝑦௧ିଵ 𝑦௧ିଶ … .𝑦௧ି௣
𝜷 ൌ ሺ𝜇 𝜙ଵ 𝜙ଶ . . . . 𝜙௣ሻ

• Then the model can be written as 𝑦௧ ൌ 𝒙௧′𝜷 ൅ 𝜀௧

• The OLS estimator is 𝐛 ൌ ሺ𝑿′𝑿ሻିଵ𝑿′𝒚

• Recall 𝑢௧ ൌ 𝑥௧ε௧ is a MDS. It is also strictly stationary & ergodic.
ଵ

்
 ∑ 𝑢௧

்
௜ୀଵ ൌ ଵ

்
 ∑ 𝒙௧′௧்

௜ୀଵ
  ௗ  

 𝑁ሺ0,𝛀ሻ 𝛀 ൌ 𝐸ሾ𝒙୲𝒙୲ ′௧2]

• The vector 𝑥௧is strictly stationary and ergodic, and by Theorem I so 
is 𝒙௧𝒙௧′. Then, by the Ergodic Theorem

ଵ

்
 ∑ 𝒙௧𝒙௧′

்
௜ୀଵ

    ௣   
Eሾ𝒙୲𝒙୲′ሿ ൌ 𝑸

AR Process – Estimation and Properties
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• Consistency

Putting together the previous results, the OLS estimator can be 
rewritten as: 

𝐛 ൌ (XX)-1X𝒚 ൌ 𝜷 ൅ ∑ 𝒙௧𝒙௧′
்
௜ୀଵ

ିଵ
∑ 𝒙௧′௧்
௜ୀଵ

Then,

𝐛 ൌ 𝜷 ൅ ∑ 𝒙௧𝒙௧′
்
௜ୀଵ

ିଵ
∑ 𝒙௧′௧்
௜ୀଵ

    ௣   
𝜷 ൅ 𝑸ିଵ𝟎 ൌ 𝜷

 the OLS estimator is consistent.

AR Process – Estimation and Properties

• Asymptotic Normality

We apply the MDS CLT to 𝒙௧ε௧. Then, it is straightforward to derive 
the asymptotic distribution of the estimator (similar to the OLS case):

Theorem If the AR(𝑝) process 𝑦௧ is strictly stationary and ergodic

and E[𝑦௧4], then as 𝑇→ ∞;

𝑇ሺ𝐛 െ 𝜷ሻ  
    ௗ   

 Nሺ0, 𝜎ଶ𝑸ିଵ𝛀 𝑸ିଵሻ 𝛀 = 𝐸ሾ𝒙୲𝒙୲′௧2]

• Identical in form to the asymptotic distribution of OLS in cross-
section regression  asymptotic inference is the same. 

• The asymptotic covariance matrix is estimated just as in the cross-
section case: The sandwich estimator.

AR Process – Asymptotic Distribution
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• So far, we constructed the bootstrap sample by randomly resampling 
from the data values (𝑦௧, 𝒙௧). This created an i.i.d bootstrap sample.

• This is inappropriate for time-series, since we have dependence. 

• There are two popular methods to bootstrap time series.

(1) Model-Based (Parametric) Bootstrap

(2) Block Resampling Bootstrap

AR Process – Bootstrap

(1) Model-Based (Parametric) Bootstrap

1. Estimate 𝐛 and residuals 𝒆:  

2. Fix an initial condition {𝑦௧ି௞ାଵ, 𝑦௧ି௞ାଶ,𝑦௧ି௞ାଷ, ..., 𝑦଴} 

3. Simulate i.i.d. draws 𝒆* from the empirical distribution of the 
residuals {𝑒ଵ, 𝑒ଶ , 𝑒ଷ, ..., 𝑒்}.

4. Create the bootstrap series 𝑦௧ by the recursive formula

Pros: Simple. Similar to the usual bootstrap. 

Cons: This construction imposes homoskedasticity on the errors 𝒆* ; 
which may be different than the properties of the actual 𝒆. It also 
imposes the AR(𝑝) as the DGP.

AR Process – Bootstrap

**ˆ....*ˆ*ˆˆ* 2211 tptpttt yyyy  



RS – EC2 - Lecture 13

35For private use only - Not to be shared/posted online without authorization.

(2) Block Resampling

1. Divide the sample into 𝑇/𝑚 blocks of length 𝑚.

2. Resample complete blocks. For each simulated sample, draw 𝑇/𝑚
blocks. 

3. Paste the blocks together to create the bootstrap time-series 𝑦௧*.

Pros: It allows for arbitrary stationary serial correlation, 
heteroskedasticity, and for model misspecification.

Cons: It may be sensitive to the block length, and the way that the 
data are partitioned into blocks. May not work well in small samples.

AR Process – Bootstrap

• An MA process models E௧[𝑦௧|𝐼௧ିଵ] with lagged error terms. An 
MA(𝑞) model involves 𝑞 lags. 

• We keep the white noise assumption for 𝜀௧: 𝜀௧ ~ WN(0, 𝜎ଶ)

Example: A linear MA(𝑞) model: 
𝑦௧ ൌ μ + θଵ 𝜀௧ିଵ + θଶ 𝜀௧ିଶ + ... + θ௤ 𝜀௧ି௤ + 𝜀௧ = 𝜇 + θሺLሻ 𝜀௧,

where
𝜃 𝐿 = 1 ൅ θଵ L ൅ θଶ Lଶ ൅ θଶ Lଷ ൅ …൅ θ௤  L௤

• In time series, the constant does not affect the properties of  AR and 
MA process. It is usually removed (think of  the data analyzed as 
demeaned). Thus, in this situation we say “without loss of  
generalization”, we assume 𝜇 = 0.

Moving Average Process  
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Example: MA(1) process:

𝑦௧ = θଵ 𝜀௧ିଵ + 𝜀௧ = 𝜇 + θሺLሻ 𝜀௧, with 𝜃 𝐿 ൌ ሺ1 ൅  θଵ𝐿ሻ

•  Mean 
E[𝑦௧] = 0

•  Variance

Var[𝑦௧] = γሺ0ሻ = 𝜎ଶ+ θଵ
ଶ 𝜎ଶ= 𝜎ଶ ሺ1 ൅ θଵ

ଶሻ

•  Covariance
Cov[𝑦௧, 𝑦௧ିଵ] = γሺ1ሻ = E[𝑦௧ 𝑦௧ିଵ] 

= E[(θ1𝜀௧ିଵ + 𝜀௧)*(θଵ𝜀௧ିଶ + 𝜀௧ିଵ)] = θଵσ2 

Cov[𝑦௧, 𝑦௧ିଶ] = γሺ2ሻ = E[𝑦௧ 𝑦௧ିଶ] 
= E[(θ1𝜀௧ିଵ + 𝜀௧) * (θଵ 𝜀௧ିଷ+ 𝜀௧ିଶ)] = 0

MA Process – MA(1): Stationarity

Example (continuation): MA(1) process:

•  Covariance
Cov[𝑦௧, 𝑦௧ିଵ] = γሺ1ሻ = E[𝑦௧ 𝑦௧ିଵ] 

= E[(θ1𝜀௧ିଵ + 𝜀௧)*(θଵ𝜀௧ିଶ + 𝜀௧ିଵ)] = θଵσ2 

Cov[𝑦௧, 𝑦௧ିଶ] = γሺ2ሻ = E[𝑦௧ 𝑦௧ିଶ] 
= E[(θ1𝜀௧ିଵ + 𝜀௧) * (θଵ 𝜀௧ିଷ+ 𝜀௧ିଶ)] = 0

⋮

γሺ𝑘ሻ = E[𝑦௧ 𝑦௧ି௞] = E[(θ1𝜀௧ିଵ+𝜀௧) * (θଵ𝜀௧ିሺ௞ାଵሻ+𝜀௧ି௞)] = 0 (for 𝑘>1)

That is, for |𝑘| > 1, γሺ𝑘ሻ = 0.

 MA(1) is always stationary –i.e., independent of  values of  θଵ.

Remark: The MA(𝑞=1) process has γሺ𝑞ሻ = 0, for 𝑞 > 1. This result  
generalizes to MA(𝑞) process: after lag q , the autocovariances are 0.

MA Process – MA(1): Stationarity
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Example (continuation): To get the ACF, we divide the 
autocovariances by γ 0 . Then, the autocorrelation function (ACF):

ρ 0 ൌ γሺ0ሻ/γ 0 = 1 

ρ 1 ൌ γሺ1ሻ/γሺ0ሻ = 
θభ ఙమ

ఙమ (1 + θభమ)
= 

θభ 

 (1 + θభమ)
⋮
ρሺ𝑘ሻ ൌ γሺ𝑘ሻ/γሺ0ሻ = 0 (for 𝑘 > 1)

Remark: The autocovariance function is zero after lag 1. Similarly, the 
ACF is also zero after lag 1, that is, 𝑦௧ is correlated with itself  (𝑦௧) and 
𝑦௧ିଵ, but not 𝑦௧ିଶ, 𝑦௧ିଷ, ... Contrast this with the AR(1) model, 
where the correlation between 𝑦௧ and 𝑦௧ି௞ is never zero.

The ACF is usually shown in a plot, the autocorrelogram. When we 
plot ρ 𝑘 against 𝑘, we plot also ρ 0 which is 1.

MA(1) Process – ACF

Example (continuation): 

ρ 1  = 
θభ 

 (1 + θభమ)
 

Note that |ρ 1 | ≤ 0.5. 

When θ1 = 0.5  ρ 1 = 0.4.

θ1 = -0.9  ρ 1 = -0.497238. 

θ1 = -2  ρ 1 = -0.4.

θ1 = 2  ρ 1 = 0.4. (same ρ 1 for θଵ & 
1

 θభ
.)

Note: Both MA(1) processes, with θଵ = 0.5 and θଵ = 2, have the same 
ACF. That is, ACFs are not unique. This is a problem: we deduce the 
order and the coefficients through the ACF, which is what we observe.

MA(1) Process – ACF
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• Q: Is MA(𝑞) stationary? Check the moments (assume 𝜇 = 0).
𝑦௧ = 𝜀௧ ൅ θଵ 𝜀௧ିଵ + θଶ 𝜀௧ିଶ + ... + θ௤ 𝜀௧ି௤

•  Mean
E[𝑦௧] = E[𝜀௧] + θଵ E[𝜀௧ିଵ] + θ2 E[𝜀௧ିଶ] + ... + θ௤ E[𝜀௧ି௤] = 0

•  Variance
Var[𝑦௧ሿ ൌ Var[𝜀௧ሿ ൅ 𝜃ଵ

ଶ Var[𝜀௧ିଵሿ ൅ 𝜃ଶ
ଶ Var[𝜀௧ିଶ] + ... + 𝜃௤

ଶ Var[𝜀௧ି௤] 

ൌ ሺ1 ൅ 𝜃ଵ
ଶ ൅ 𝜃ଶ

ଶ ൅ ... ൅ 𝜃௤
ଶሻ 𝜎ଶ.

To get a positive variance, we require
(1 ൅ 𝜃ଵ

ଶ ൅ 𝜃ଶ
ଶ ൅ ... ൅ 𝜃௤

ଶ) > 0. (always positive)
• Covariance
It can shown (check book) for the 𝑘 autocovariance:

γሺ𝑘ሻ = 𝜎ଶ ∑ 𝜃௝  𝜃௝ି௞
௤
௝ୀ௞ for | 𝑘 | ൑ q (where 𝜃଴= 1)

γሺ𝑘ሻ = 0 for | 𝑘 | ൐ q

MA Process – MA(𝒒): Stationarity

• Covariance
γሺ𝑘ሻ = 𝜎ଶ ∑ 𝜃௝  𝜃௝ି௞

௤
௝ୀ௞ for | 𝑘 | ൑ q (where 𝜃଴ ൌ 1)

γሺ𝑘ሻ = 0 for | 𝑘 | ൐ q

Remark: After lag q, the autocovariances are 0. 

Applying formula:

γሺ1ሻ = σଶ ∑ 𝜃௝  𝜃௝ିଵ
௤
௝ୀଵ

= σଶ θ1 + 𝜎ଶ θଶ θ1 + σଶ θ3 θଶ + ... + σଶθ௤ θ௤ିଵ 

γሺ2ሻ = σଶ ∑ 𝜃௝  𝜃௝ିଶ
௤
௝ୀଶ

= σଶ θଶ + 𝜎ଶ θ3 θଵ + σଶ θ4 θଶ + ... + σଶθ௤ θ௤ିଶ
⋮

γሺ𝑞ሻ = σଶ ∑  𝜃௝ି௤
௤
௝ୀ௤ = σଶ𝜃௤ 

MA Process – MA(𝒒): Stationarity
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• In general, for the 𝑘 autocovariance:
γሺ𝑘ሻ = 𝜎ଶ ∑ 𝜃௝  𝜃௝ି௞

௤
௝ୀ௞ for | 𝑘 | ൑ q (where 𝜃଴ ൌ 1)

γሺ𝑘ሻ = 0 for | 𝑘 | ൐ q

• It is easy to verify that the sums ∑ 𝜃௝  𝜃௝ି௞
௤
௝ୀ௞ are finite. Then, mean, 

variance and covariance are constant. 
 MA(q) is always stationary –i.e., independent of  values of  θ௝ ’s.

• Check for MA(1): 
𝑘 = 0 γሺ0ሻ = 𝜎ଶ ∑ 𝜃௝  𝜃௝ି଴

ଵ
௝ୀ଴ ൌ 𝜎ଶ(1 + θଵ

ଶ)
𝑘 = 1 γሺ1ሻ = 𝜎ଶ ∑ 𝜃௝  𝜃௝ିଵ

ଵ
௝ୀଵ ൌ 𝜎ଶ𝜃ଵ

𝑘 ൐ 1 γሺ𝑘ሻ = 0 

Remark: After lag q ൌ 1 , the autocovariances of  an MA(1) are 0.

MA Process – MA(𝒒): Stationarity

• As mentioned above, the autocovariances are non-unique. 

Example: Two MA(1) processes that produce the same γ 𝑘 :
𝑦௧ = 𝜀௧ + 0.2 𝜀௧ିଵ, 𝜀௧ ~ i.i.d. N(0, 25)
𝑧௧ = υ௧ + 5 υ௧ିଵ, υ௧ ~ i.i.d. N(0; 1)

We only observe the time series, 𝑦௧ or 𝑧௧, and not the noise, 𝜀௧ or υ௧.
We cannot distinguish between the models using the autocovariances. 

We want to select one process to forecast: We select the model with an 
AR(∞) representation. That is, we select the process that is invertible.

• Assuming 𝜃 𝐿 ≠ 1, we invert 𝜃 𝐿 : 

𝑦௧ = μ ൅  𝜃 𝐿  𝜀௧  𝜃 𝐿 ିଵ 𝑦௧ = Πሺ𝐿ሻ 𝑦௧ = μ* + 𝜀௧.
 𝑦௧ = 𝜇∗ ൅∑ 𝜋௝  𝑦௧ି௝  ஶ

௝ୀଵ ൅ 𝜀௧

MA Process – Invertibility  
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• We convert an MA(q) into an AR(∞):
𝑦௧ ൌ 𝜇∗ ൅∑ 𝜋௝  𝑦௧ି௝  ஶ

௝ୀଵ ൅ 𝜀௧

We need to make sure that Πሺ𝐿ሻ = 𝜃 𝐿 ିଵ is defined: We require 
𝜃 𝐿 ≠0. When this condition is met, we can write 𝜀௧ as a causal 
function of 𝑦௧. We say the MA is invertible. For this to hold, we require:

∑ |𝜋௝ 𝐿 |ஶ
௝ୀ଴ ൏ ∞

Technical note: An invertible MA(q) is typically required to have roots 
of  the lag polynomial equation 𝜃 𝑧 = 0 greater than one in absolute 
value (outside the unit circle). In the MA(1) case, 

𝜃 𝑧 ൌ 1 ൅ 𝜃ଵ 𝑧 ൌ 0  root: 𝑧 ൌ െ ଵ

ఏభ
( |𝜃ଵ|< 1)

In the previous example, we select the model with 𝜃ଵ ൌ 0.2. 

MA Process – Invertibility  

Simulated Example: We simulate with R function arima.sim (& plot)
three MA(1) processes, with standard normal 𝜀௧ -i.e., 𝜇 = 0 & 𝜎ଶ = 1: 

𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ
𝑦௧ = 𝜀௧ െ 0.9 𝜀௧ିଵ
𝑦௧ = 𝜀௧ െ 2 𝜀௧ିଵ

R script to plot 𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ with 200 simulations
> plot(arima.sim(list(order=c(0,0,1), ma = 0.5), n = 200), ylab="ACF",
main=(expression(MA(1)~~~theta==+.5)))

MA(1) Process – ACF: Simulations 
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Simulated Example (continuation): 

Note: The process 𝜃ଵ > 0 is smoother than the ones with 𝜃ଵ < 0. 

MA(1) Process – ACF: Simulations 

Simulated Example (continuation): Below, we compute and plot the 
ACF for the 3 simulated process.
1) 𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ
sim_ma1_5 <- arima.sim(list(order=c(0,0,1), ma = 0.5), n = 200) 
acf_ma1_5 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_ma1_5

Autocorrelations of  series ‘sim_ma1_5’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000  0.438 0.069  0.014  0.103  0.173  0.107  0.015 -0.080 -0.054  0.011 -0.006  0.041  0.000 

14 15 16 17 18 19  20 21 22 23 
-0.094 -0.147 -0.129 -0.082 -0.150 -0.196 -0.251 -0.235 -0.021  0.110 

MA(1) Process – ACF: Simulations 
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Simulated Example (continuation): 
2) 𝑦௧ = 𝜀௧ - 0.9 𝜀௧ିଵ
sim_ma1_9 <- arima.sim(list(order=c(0,0,1), ma = -0.9), n = 200) 
acf_ma1_9 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_ma1_9

Autocorrelations of  series ‘sim_ma1_9’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.584  0.093  0.061 -0.132  0.147 -0.181  0.122 -0.013 -0.023  0.014 -0.012  0.092 -0.199  
14 15 16 17 18 19  20 21 22 23 
0.193 -0.155  0.143 -0.107  0.014  0.174 -0.244  0.196 -0.154  0.105

MA(1) Process – ACF: Simulations 

Simulated Example (continuation):
3) 𝑦௧ = 𝜀௧ - 2 𝜀௧ିଵ
sim_ma1_2 <- arima.sim(list(order=c(0,0,1), ma = -2), n = 200) 
acf_ma1_2 <- acf(sim_ma1_2, main=(expression(MA(1)~~~theta==-2)))
> acf_ma1_2

Autocorrelations of  series ‘sim_ma1_2’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.524  0.150 -0.064  0.006 -0.014  0.022 -0.070  0.068 -0.015 -0.002  0.054 -0.121  0.055 
14 15 16 17 18 19  20 21 22 23 
-0.029  0.026 -0.054  0.121 -0.156  0.106 -0.009  0.037 -0.080  0.104 

MA(1) Process – ACF: Simulations 
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Simulated Example (continuation):

– Invertibility: If  |𝜃ଵ|< 1, we can write ሺ1 ൅ 𝜃ଵ𝐿ሻିଵ  𝑦௧ + 𝜇* = 𝜀௧

 1 െ θଵ L ൅ θଶ Lଶ െ θଶ Lଷ ൅ …൅ θ௤ L௤ ൅ ⋯  𝑦௧൅ 𝜇* ൌ
 ൌ 𝜇∗ ൅ ∑ 𝜋 ௜ሺ𝐿ሻ

ஶ 
௜ୀଵ  𝑦௧ ൌ 𝜀௧

That is, 𝜋௜ = 𝜃ଵ
௜ .

The simulated process with 𝜃ଵ ൌ -2 is non-invertible, the infinite sum 
of 𝜋௜ would explode. We would select the MA(1) with 𝜃ଵ ൌ -.5.

MA Process – Example: MA(1)

• MA processes are more complicated to estimate. Consider an MA(1): 
𝑦௧ = 𝜀௧ + 𝜃ଵ 𝜀௧ ିଵ

We cannot do OLS, since we do not observe 𝜀௧ ିଵ. But, based on the 
ACF, we estimate 𝜃ଵ.

• The auto-correlation of  order one is:
ρ 1 ൌ  𝜃ଵ/ሺ1 ൅ 𝜃ଵ

ଶሻ

Then, we can use the Method of  Moments (MM), which sets the 
theoretical moment equal to the estimated sample moment ρ 1 , 𝑟ଵ. 
Then, we solve for the parameter of  interest, 𝜃ଵ:

• A nonlinear solution and difficult to solve.

MA Process – Estimation 

𝑟ଵ ൌ
𝜃෠ଵ

ሺ1 ൅ 𝜃෠ଵ
ଶ
ሻ

 ⇒   𝜃ଵ ൌ
1 േ 1 െ 4𝑟ଵ

ଶ

2𝑟ଵ
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• Alternatively, if  𝜃ଵ ൏ 1, we can invert the MA(1) process. Then, 
based on the AR representation, we can try finding 𝑎 ∈(-1; 1):

𝜀௧ 𝑎  = 𝑦௧ + 𝑎 𝑦௧ିଵ + aଶ 𝑦௧ିଶ + aଷ 𝑦௧ିଷ + ….

and look (numerically) for the least-square estimator

θ෠ = arg minθ {S(𝒚; θ) ൌ ∑ ε௧ሺ𝑎ሻ்
௧ୀଵ

ଶ
ሽ

where a௧= θ1
௧ .

MA Process – Estimation 

Theorem - Wold (1938).
Any covariance stationary {𝑦௧} has infinite order, moving-average 
representation:

𝑦௧ ൌ 𝑆௧+ 𝜅௧ ,
where 
𝜅௧ is a deterministic term –i.e., completely predictable. For example, 
𝜅௧= μ or a linear combination of  past (known) values of  𝜅௧.
𝑆௧ ൌ ∑ 𝜓௝

ஶ
௝ୀ଴ 𝜀௧ି௝ (= 𝜓 𝐿 ε௧ , with 𝜓 𝐿 = infinite lag polynomial)

∑ 𝜓௝
ଶஶ

௝ୀ଴ < ∞ (for stability of  polynomial, square summability)
𝜓௝ only depend on 𝑗 (weights of  innovations are not time dependent)
𝜓଴ = 1 (a convenient assumption)
𝜀௧ ~ WN(0, 𝜎ଶ) (𝜀௧ independent and uncorrelated with 𝑆௧)

• 𝑦௧ is a linear combination of  innovations over time plus a 
deterministic part.

The Wold Decomposition 
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• A stationary process can be represented as an MA(∞) plus a 
deterministic “trend.”

𝑦௧ ൌ ∑ 𝜓ஶ
௝ୀ଴ 𝐿௝𝜀௧ି௝+ 𝜅௧ , 𝜓଴ = 1

Example:
Let 𝑥௧ = 𝑦௧ – 𝜅௧. (𝑥௧ = MA(∞) part) Then, check moments:

𝑥௧ is a covariance stationary process.

The Wold Decomposition 
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• The Wold theorem is the backbone of  time series analysis. We will 
approximate the Wold infinite lag polynomial 𝜓ሺ𝐿ሻ with a ratio of  two 
finite lag polynomials. This approximation is the basis of  ARMA 
modeling.

• A combination of  AR(𝑝) and MA(𝑞) processes produces an 
ARMA(𝑝, 𝑞) process:

𝑦௧ ൌ 𝜇 ൅ ଵ 𝑦௧ିଵ ൅ ଶ 𝑦௧ିଶ ൅ . . .൅ ௣ 𝑦௧ି௣
൅ 𝜀௧ െ 𝜃ଵ 𝜀௧ିଵ െ 𝜃ଶ  𝜀௧ିଶ െ  …െ  𝜃௤ 𝜀௧ି௤

ൌ 𝜇 ൅ ∑ ௜
௣
௜ୀଵ 𝑦௧ି௜ െ ∑ 𝜃௜𝐿௜𝜀௧

௤
௜ୀଵ ൅ 𝜀௧

 ሺ𝐿ሻ𝑦௧ ൌ 𝜇 ൅ 𝜃ሺ𝐿ሻ𝜀௧

• Usually, we insist that ሺ𝐿ሻ ≠ 0, 𝜃ሺ𝐿ሻ ≠ 0 & that the polynomials 
ሺ𝐿ሻ, 𝜃ሺ𝐿ሻ have no common factors. This implies it is not a lower 
order ARMA model.

ARMA Process
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An ARMA(𝑝, 𝑞) model with common factors has a lower order 
ARMA model. That is, a lower 𝑝 and 𝑞.

Example: Common factors. 
Suppose we have the following ARMA(2, 3) model

𝑦௧ = 0.6 𝑦௧ିଵ - 0.3 𝑦௧ିଶ + 𝜀௧ െ 1.4 𝜀௧ିଵ ൅ 0.9 𝜀௧ିଶ + 0.3 𝜀௧ିଷ
with

ሺ𝐿ሻ ൌ 1 െ .6𝐿 ൅ .3𝐿ଶ

𝜃ሺ𝐿ሻ ൌ 1 െ 1.4𝐿 ൅ .9𝐿ଶ െ .3𝐿ଷ ൌ ሺ1 െ .6𝐿 ൅ .3𝐿ଶሻሺ1 െ 𝐿ሻ

This model simplifies to: 𝑦௧ ൌ ሺ1 െ 𝐿ሻ𝜀௧ 
ൌ 𝜀௧ െ 𝜀௧ିଵ  an MA(1) process.

• Simplify the common factors and keep the simpler representation.

ARMA Process – Common Factors

• ARMA(𝑝, 𝑞) model:
ሺ𝐿ሻ 𝑦௧ െ 𝜇 ൌ 𝜃ሺ𝐿ሻ𝜀௧

• Cases:

Pure AR Representation: Π 𝐿 𝑦௧ െ 𝜇 ൌ 𝜀௧ ⇒ Π 𝐿 ൌ
೛ ௅

ఏ೜ ௅

Pure MA Representation: 𝑦௧ െ 𝜇 ൌ Ψ 𝐿 𝜀௧ ⇒ Ψ 𝐿 ൌ
ఏ೜ ௅

೛ ௅

Special cases: – 𝑝 = 0: MA(𝑞)
– 𝑞 = 0: AR(𝑝).

ARMA Process – Representation
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• For an ARMA(1, 1) we have:.
𝑦௧ = 𝜇 + 𝜙ଵ 𝑦௧ିଵ+ θଵ 𝜀௧ିଵ + 𝜀௧, 𝜀௧ ~ WN.

• Moments: (𝜇 = 0)
E[𝑦௧] = 𝜇 / (1 െ 𝜙ଵ) = 0 (assuming 𝜙ଵ ≠ 1)

Var[𝑦௧] = σ2 (1 ൅ θଵ
ଶ ) / (1 െ ϕଵ

ଶ) (assuming |𝜙ଵ|< 1)

• Autocovariance function (𝜇 = 0)
γሺ𝑘ሻ = Cov[𝑦௧,  𝑦௧ି௞]

ൌ 𝐸 𝜙ଵ 𝑦௧ିଵ ൅ θଵ  𝜀௧ିଵ൅ 𝜀௧  𝑦௧ି௞
ൌ 𝜙ଵ 𝐸 𝑦௧ିଵ 𝑦௧ି௞ ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞ ൅ 𝐸 𝜀௧ 𝑦௧ି௞
= 𝜙ଵ γ 𝑘 െ 1  ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞ ൅ 𝐸 𝜀௧ 𝑦௧ି௞

• Again, we have a recursive formula.
γሺ𝑘ሻ = 𝜙ଵ γ 𝑘 െ 1  ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞ ൅ 𝐸 𝜀௧ 𝑦௧ି௞

ARMA(1, 1) – Stationarity & ACF

• We have a recursive formula:
γ 𝑘 ൌ  𝜙1 

γ 𝑘 െ 1 ൅ 𝐸 𝜀௧ 𝑦௧ି௞ ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞

It can be shown, after a lot of  algebra: 

For 𝑘 = 0,
γ 0 ൌ 𝜙ଵ γ 1 ൅ σ2 

൅ θଵ 𝜙1 σ2 ൅ θ1σ2

For 𝑘 = 1, 
γ 1 ൌ  𝜙1 

γ 0 ൅ θଵ γ 1

For 𝑘 = 2, 
γ 2 ൌ  𝜙1 γ 1

For 𝑘, 
γ 𝑘 ൌ 𝜙ଵ

௞ିଵ γሺ1ሻ,  𝑘 ൐ 1 

 If |𝜙1|<1, exponential decay.

ARMA(1, 1) – Stationarity & ACF
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• Two equations for γሺ0ሻ and γ 1 :

γ 0 ൌ 𝜙ଵ γ 1 ൅ 𝜎ଶ ൅ θଵ 𝜙1𝜎
ଶ ൅ θ1𝜎

ଶ

γ 1 ൌ 𝜙ଵ γ 0 ൅ θଵ γ 1

Solving for γ 0 & γ 1 :

γ 0 ൌ σ2 ଵ ା ఏభ
మ ା ଶ థభఏభ

ଵ ି థభ
మ

γ 1 ൌ σ2 ଵ ା థଵఏభ  
∗ థభାఏభ

ଵ ି థభ
మ

⋮
γ 𝑘 ൌ 𝜙ଵ

௞ିଵ γሺ1ሻ,  𝑘 ൐ 1  If  |𝜙1|<1, exponential decay.

Note: If  stationary, ARMA(1,1) & AR(1) show exponential decay. 
Difficult to distinguish one from the other through autocovariances.

ARMA(1, 1) – Stationarity & ACF

Theorem: If  (L) and θ(L) have no common factors, a (unique) 
stationary solution to  ሺ𝐿ሻ𝑦௧ ൌ 𝜃ሺ𝐿ሻ𝜀௧ exists if  and only if

𝑧 ൑ 1 ⇒ሺ𝑧ሻ ൌ 1 െ ଵ 𝑧 െ ଶ 𝑧ଶെ. . .െ௣  𝑧௣ ് 0. 

(i.e., roots of   𝑧 ൌ 0 need to be outside the unit circle, 𝑧 ൐ 1.)

This ARMA(𝑝, 𝑞) model is causal if  and only if  
|𝑧| ൑ 1 ⇒ሺ𝑧ሻ ൌ 1 െ ଵ𝑧 െ ଶ𝑧ଶെ. . .െ ௣𝑧௣ ് 0.

This ARMA(𝑝, 𝑞) model is invertible if  and only if

|𝑧| ൑ 1 ⇒ 𝜃ሺ𝑧ሻ ൌ 1 ൅ 𝜃ଵ𝑧 െ 𝜃ଶ𝑧ଶ൅. . .൅𝜃௣𝑧௣ ് 0.

Note: Real data cannot be exactly modeled using a finite number of  
parameters. We choose 𝑝, 𝑞 to create a good approximated model.

ARMA: Stationarity, Causality and Invertibility
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• Consider the ARMA(𝑝, 𝑞) model:
𝜙 𝐿  𝑥௧ ൌ 𝜃 𝐿  𝜀௧

Let  𝑥௧ ൌ  𝑦௧ െ 𝜇 &  𝑤௧ൌ 𝜃 𝐿

Then, 𝑥௧ ൌ 𝜇 ൅ 𝜙ଵ 𝑥௧ିଵ ൅ 𝜙ଶ 𝑥௧ିଶ ൅ ⋯൅ 𝜙௣ 𝑥௧ି௣ ൅ 𝑤௧,

  𝑥௧ is a 𝑝 -th-order linear stochastic difference equation (SDE).

Example: 1st-order SDE (AR(1)): 𝑥௧ =𝜙 𝑥௧ିଵ + 𝜀௧,

Recursive solution (Wold form): 

𝑥௧ ൌ 𝜙௧ାଵ 𝑥ିଵ ൅ ∑ 𝜙௝ஶ
௝ୀ଴ 𝜀௧ି௝ ൌ 𝜙௧ାଵ 𝑥ିଵ ൅ ∑ 𝜓௜

ஶ
௝ୀ଴ 𝜀௧ି௝

where 𝑥ିଵ is an initial condition.

ARMA Process – SDE Representation

• The dynamic multiplier measurers the effect of  𝜀௧ on subsequent 
values of  𝑥௧: That is, the first derivative on the Wold representation:

δ𝑥௧ା௝/δ𝜀௧ = δ𝑥௝/δ𝜀଴= 𝜓௝ .

For an AR(1) process: 

δ𝑥௧ା௝/δ𝜀௧ = δ𝑥௝/δ𝜀଴ ൌ ௝

• That is, the dynamic multiplier for any linear SDE depends only on 
the length of  time 𝑗, not on time 𝑡. 

ARMA Process – Dynamic Multiplier
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• The impulse-response function (IRF) gives a sequence of  dynamic 
multipliers as a function of  time from the one time change in the 
innovation, 𝜀௧. 

• Usually, IRF are represented with a graph, that measures the effect 
of  the innovation, 𝜀௧, on 𝑦௧ over time:
δ𝑦௧ା௝/δ𝜀௧+ δ𝑦௧ା௝ାଵ/δ𝜀௧ + δ𝑦௧ା௝ାଶ/δ𝜀௧+... = 𝜓௝ ൅ 𝜓௝ାଵ ൅ 𝜓௝ାଶ ൅

• Once we estimate the ARMA coefficients, it is easy to draw an IRF.

ARMA Process – Impulse Response Function

• Q: We add two ARMA process, what order do we get?

• Adding MA processes
 𝑥௧ ൌ 𝐴 𝐿  𝜀௧
 𝑧௧ ൌ 𝐶 𝐿  𝑢௧
 𝑦௧ ൌ  𝑥௧ ൅ 𝑧௧ ൌ 𝐴 𝐿  𝜀௧ ൅ 𝐶 𝐿  𝑢௧

- Under independence: 

- Then, γ 𝑗 ൌ 0 for 𝑗 ൐ Max(𝑞௫, 𝑞௭)  𝑦௧ is ARMA(0, max(𝑞௫, 𝑞௭))

- Implication: MA(2) + MA(1) = MA(2)
𝜙 𝐿  𝑥௧ ൌ 𝜃 𝐿  𝜀௧

ARMA Process – Addition
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• Q: We add two ARMA process, what order do we get? 

• Adding AR processes
ሺ1 െ 𝐴 𝐿 ሻ  𝑥௧ ൌ 𝜀௧
ሺ1 െ 𝐶 𝐿 ሻ 𝑧௧ ൌ 𝑢௧
 𝑦௧ ൌ  𝑥௧ ൅ 𝑧௧ ൌ ?

- Rewrite system as: 
1 െ 𝐶 𝐿 ሺ1 െ 𝐴 𝐿 ሻ  𝑥௧ ൌ ሺ1 െ 𝐶 𝐿 ሻ𝜀௧
1 െ 𝐴 𝐿 ሺ1 െ 𝐶 𝐿 ሻ 𝑧௧ ൌ ሺ1 െ 𝐴 𝐿 ሻ𝑢௧

1 െ 𝐴 𝐿 ሺ1 െ 𝐶 𝐿 ሻ 𝑦௧ ൌ  𝑥௧ ൅ 𝑧௧ ൌ ሺ1 െ 𝐶 𝐿 ሻ𝜀௧ ൅ ሺ1 െ 𝐴 𝐿 ሻ𝑢௧ 
ൌ  𝜀௧ ൅  𝑢௧െ ሾ𝐶 𝐿  𝜀௧൅ 𝐴 𝐿 ሻ𝑢௧ሿ

- Then, 𝑦௧ is ARMA(𝑝௫ ൅ 𝑝௭), maxሺ𝑝௫, 𝑝௭ሻ.

ARMA Process – Addition

• We defined the ARMA(𝑝, 𝑞) model:
𝜙ሺ𝐿ሻሺ𝑦௧ െ 𝜇ሻ ൌ 𝜃ሺ𝐿ሻ𝜀௧  

The mean does not affect the order of  the ARMA. Then, if  𝜇്0 , we 
demean the data: 𝑥௧ ൌ 𝑦௧ െ 𝜇.

Then, 𝜙 𝐿  𝑥௧ ൌ 𝜃 𝐿  𝜀௧   𝑥௧ is a demeaned ARMA process. 

• Next lecture, we will study:
- Identification of  𝑝, 𝑞.
- Estimation of  ARMA(𝑝, 𝑞)

ARMA Process: Identification and Estimation


