Rauli Susmel Econometrics 1

Homework 5

1. Apply the Method of Steepest Descent to the function $f(x_1; x_2) = 4 x_1^2 - 4 x_1 x_2 + 2 x_2^2$ with initial guess $x_0 = (2; 3)$. Compute the first three iterations.

- 2. Using the Newton-Raphson method, find the roots of the following function: $y = f(x) = x^4 - 2^*x^2 - x - 5$,
- 1. Find the roots using the Newton-Raphson method
- 2. Do initial values matter? Try $x_0=0$, $x_0=1$ and $x_0=3$.
- 3. Use a step-size, λ , in the updating step. Does this improve convergence?

3. Propose a Gauss-Newton algorithm to estimate the following non-linear model $q_t = \mu + \alpha q_{t-1} + \beta q_{t-1} [1 - exp \{-\lambda (q_{t-d} - \mu)^2\}] + \varepsilon_t$

where μ , α , β , λ are the unknown parameters, q_t is our series of interest –say, abnormal returns relative to the market- and d is a delay factor. This model is called the ESTAR(1,d) model.

4. Go to Ken French's website to download the Average Value Weighted Returns for the 6 portfolios formed on size and book-to-market (2 x 3). You are going to use monthly returns. Also, download the Fama-French Factors –i.e., returns on excess market portfolio, SMB, HML- and the risk-free rate. Use a Gauss-Newton algorithm to estimate the following non-linear CAPM model:

R_{i,t} - $R_{f,t} = \alpha + \beta_i (R_{m,t} - R_{f,}) + \delta_i [|HML_t|^{\lambda} - 1]/\lambda + \varepsilon_t \ 0 \le \lambda \le 1$ (*) where α , β , δ and λ are the unknown parameters. You are using a Box-Cox transformation.

(i) Estimate α , β , δ and λ for the six portfolios. Calculate standard errors –use delta method when needed.

(ii) Test H₀: λ =1 against H₁: $\lambda \neq$ 1. Does the CAPM hold?

<u>Note</u>: If you want to experiment a bit more, estimate the following model instead of (*): R_{i,t} - $R_{f,t} = \alpha + \beta_i (R_{m,t} - R_{f,t}) + \delta_i [|HML|^{\lambda} - 1]/\lambda + \gamma_1 SMB_t + \gamma_2 HML_t + \varepsilon_t, 0 \le \lambda \le 1$