Lecture 9 NLLS

R. Susmel, 2022 (for private use, not to be posted/shared online).

M-Estimation

- An extremum estimator is one obtained as the optimizer of a criterion function, $q(\mathbf{z}, \mathbf{b})$.
Examples:

$$
\begin{aligned}
& \text { OLS: } \mathbf{b}=\arg \max \left\{-\sum_{i=1}^{T} e_{i}^{2}=-\boldsymbol{e} \boldsymbol{e} / T\right\} \\
& \text { MLE: } \mathbf{b}_{\mathrm{MLE}}=\arg \max \left\{\ln L=\sum_{i=1}^{T} \ln f\left(\boldsymbol{x}_{i}, y_{i}, \mathbf{b}\right)\right\} \\
& \text { GMM: } \mathbf{b}_{\mathrm{GMM}}=\arg \max \left\{-g\left(\boldsymbol{x}_{i}, y_{i}, \mathbf{b}\right)^{\prime} \mathbf{W} g\left(\boldsymbol{x}_{i}, y_{i}, \mathbf{b}\right)\right\}
\end{aligned}
$$

- There are two classes of extremum estimators:
- M-estimators: The objective function is a sample average or a sum.
- Minimum distance estimators: The objective function is a measure of a distance.
- "M" stands for a maximum or minimum estimators -Huber (1967).

M-Estimation

- The objective function is a sample average or a sum.
- We want to minimize a population (first) moment:

$$
\min _{b} \mathrm{E}[q(z, \beta)]
$$

- Using the LLN, we move from the population first moment to the sample average:

$$
\sum_{i=1}^{T} q\left(\mathbf{z}_{i}, \mathbf{b}\right) / T \xrightarrow{p} \mathrm{E}[q(\mathbf{z}, \boldsymbol{\beta})]
$$

- We want to obtain: $\quad \mathbf{b}=\operatorname{argmin} \sum_{i=1}^{T} q\left(\mathbf{z}_{i}, \mathbf{b}\right)($ or divided by $T)$
- In general, we solve the f.o.c. (or zero-score condition):

$$
\text { Zero-Score: } \quad \sum_{i=1}^{T} \frac{\partial q\left(\mathbf{z}_{i}, \mathbf{b}\right)}{\partial \mathbf{b}^{\prime}}=\mathbf{0}
$$

- To check the s.o.c., we define the (pd) Hessian:

$$
\mathbf{H}=\sum_{i=1}^{T} \frac{\partial^{2} q\left(z^{i}, \mathbf{b}\right)}{\partial \mathbf{b} \partial \mathbf{b}^{\prime}}
$$

M-Estimation

- If $\mathbf{s}(\boldsymbol{z}, \mathbf{b})=\frac{\partial q\left(\boldsymbol{z}_{i}, \mathbf{b}\right)}{\partial \mathbf{b}^{\prime}}$ exists (almost everywhere), we solve

$$
\begin{equation*}
\sum_{i=1}^{T} s\left(\mathbf{z}_{i}, \mathbf{b}\right) / T=0 \tag{}
\end{equation*}
$$

- If, in addition, $\mathrm{E}_{\mathrm{X}}\left[s\left(\mathbf{z}_{i}, \mathbf{b}\right)\right]=\partial / \partial \mathbf{b}^{\prime} \mathrm{E}_{\mathrm{X}}[q(\mathbf{z}, \boldsymbol{\beta})]$-i.e., differentiation and integration are exchangeable-, then

$$
\mathrm{E}_{\mathrm{X}}\left[\frac{\partial q\left(\boldsymbol{z}_{i}, \boldsymbol{\beta}\right)}{\partial \boldsymbol{\beta}^{\prime}}\right]=\mathbf{0}
$$

- Under these assumptions the M-estimator is said to be of ψ-type ($\psi=$ $\mathbf{s}(\mathbf{z}, \mathbf{b})=$ score $)$. Often, \mathbf{b}_{M} is taken to be the solution of $\left({ }^{*}\right)$ without checking whether it is indeed a minimum).
- Otherwise, the M-estimator is of ρ-type. $\left(\rho=q\left(\mathbf{z}_{i}, \mathbf{b}\right)\right)$.

M-Estimation: LS \& ML

- Least Squares
- DGP: $\quad y_{i}=f\left(x_{1, i}, x_{2, i}, \ldots, x_{k, i} ; \boldsymbol{\beta}\right)+\varepsilon_{i}, \quad \mathrm{z}=[\boldsymbol{y}, x]$
$-q(\mathbf{z}, \boldsymbol{\beta})=\mathrm{S}(\boldsymbol{\beta})=\sum_{i=1}^{T} \varepsilon_{i}{ }^{2}=\sum_{i=1}^{T}\left(y_{i}-f\left(x_{i}, \boldsymbol{\beta}\right)\right)^{2}$
- Now, we move from population to sample moments
$-q(\mathbf{z}, \mathbf{b})=\mathrm{S}(\mathbf{b})=\sum_{i=1}^{T} e_{i}{ }^{2}=\sum_{i=1}^{T}\left(y_{i}-f\left(x_{i}, \mathbf{b}\right)^{2}\right.$
$-\mathbf{b}_{\text {NLLS }}=\operatorname{argmin} \mathrm{S}(\mathbf{b})$
- Maximum Likelihood
- Let $f\left(x_{i}, \boldsymbol{\beta}\right)$ be the pdf of the data.
$-L(\boldsymbol{x}, \boldsymbol{\beta})=\prod_{i=1}^{T} f\left(x_{i}, \boldsymbol{\beta}\right)$
$-\ln L(\boldsymbol{x}, \boldsymbol{\beta})=\sum_{i=1}^{T} \ln f\left(x_{i}, \boldsymbol{\beta}\right)$
- Now, we move from population to sample moments
- $q(\mathbf{z}, \mathbf{b})=-\ln L(\boldsymbol{x}, \mathbf{b})$
$-\mathbf{b}_{\mathrm{MLE}}=\operatorname{argmin}\{-\ln L(\boldsymbol{x}, \mathbf{b})\}$

M-Estimation: Minimum L_{p}-estimators

- Minimum L_{p}-estimators

$$
\begin{array}{rlrl}
-q(\mathbf{z}, \boldsymbol{\beta})=(1 / p)|\boldsymbol{x}-\beta|^{p} & & \text { for } 1 \leq p \leq 2 \\
-\boldsymbol{s}(\mathbf{z}, \boldsymbol{\beta}) & =|\boldsymbol{x}-\beta|^{p-1} & & \boldsymbol{x}-\beta<0 \\
& =-|\boldsymbol{x}-\beta|^{p-1} & & \boldsymbol{x}-\beta>0
\end{array}
$$

- Special cases:
$-p=2$: We get the sample mean (LS estimator for β).

$$
\boldsymbol{s}(\mathbf{z}, \boldsymbol{\beta})=\sum_{i=1}^{T}\left(x_{i}-\mathbf{b}_{\mathrm{M}}\right)=0 \quad \Rightarrow \mathbf{b}_{\mathrm{M}}=\sum_{i=1}^{T} x_{i} / T
$$

$-p=1$: We get the sample median as the estimator with the least absolute deviation (LAD) for the median β. (There is no unique solution if T is even.)

Note: Unlike LS, LAD does not have an analytical solving method. Numerical optimization is not feasible. Linear programming is used.

The Score Vector

- Let $\boldsymbol{X}=\left\{\mathrm{X}_{1} ; \mathrm{X}_{2} ; \ldots\right\}$ be i.i.d.
- If $\boldsymbol{s}(\mathbf{z}, \boldsymbol{b})=\partial q(\mathbf{z}, \boldsymbol{\beta}) / \partial \mathbf{b}^{\prime}$ exists, we solve

$$
\sum_{i=1}^{T} \boldsymbol{s}\left(\boldsymbol{z}_{i}, \boldsymbol{b}_{M}\right) / T=0 \quad\left(\boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}\right) \text { is a } k \times 1 \text { vector }\right)
$$

$-\mathrm{E}\left[\boldsymbol{s}\left(\boldsymbol{z}, \boldsymbol{b}_{0}\right)\right]=\mathrm{E}\left[\partial q(\boldsymbol{z}, \mathbf{b}) / \partial \mathbf{b}^{\prime}\right]=\mathbf{0}$

- Using the LLN: $\quad \sum_{i=1}^{T} \boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}_{M}\right) / T \xrightarrow{p} \mathrm{E}\left[\boldsymbol{s}\left(\mathbf{z}, \boldsymbol{b}_{0}\right)\right]=\mathbf{0}$
$-\boldsymbol{V}=\operatorname{Var}\left[\boldsymbol{s}\left(\mathbf{z}, \boldsymbol{b}_{0}\right)\right]=\mathrm{E}[\boldsymbol{s}(\mathbf{z}, \boldsymbol{b}) * \boldsymbol{s}(\mathbf{z}, \boldsymbol{b}) '] \quad\left(\boldsymbol{V}\right.$ is a $\boldsymbol{k}_{\mathrm{x}} k$ matrix $)$.

$$
=\mathrm{E}\left[\left(\partial q(\mathbf{z}, \mathbf{b}) / \partial \mathbf{b}^{\prime}\right) *\left(\partial q(\mathbf{z}, \mathbf{b}) / \partial \mathbf{b}^{\prime}\right)^{\prime}\right]
$$

- Using the LLN: $\sum_{i=1}^{T}\left[\boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}_{M}\right) \boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}_{M}\right)^{\prime}\right] / T \xrightarrow{p} \operatorname{Var}\left[\boldsymbol{s}\left(\mathbf{z}, \boldsymbol{b}_{0}\right)\right]$
- Using the Lindeberg-Levy CLT: $\quad \sum_{i=1}^{T} \boldsymbol{s}\left(\mathbf{z}_{i}, b\right) / \sqrt{ } T \xrightarrow{d} N(\mathbf{0}, \boldsymbol{V})$

Note: We have already shown these results for the ML case.

The Hessian Matrix

- $\boldsymbol{H}(\mathbf{z}, \mathbf{b})=\mathrm{E}[\partial \mathbf{s}(\mathbf{z}, \mathbf{b}) / \partial \mathbf{b}]=\mathrm{E}\left[\partial^{2} \mathrm{q}(\mathbf{z} ; \mathbf{b}) / \partial \mathbf{b} \partial \mathbf{b}^{\prime}\right]$
- Using the LLN: $\sum_{i=1}^{T}\left[\partial \boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}_{M}\right) / \partial \mathbf{b}\right] / T \xrightarrow{p} \boldsymbol{H}\left(\mathbf{z}, \mathbf{b}_{0}\right)$
- In general, the Information (Matrix) Equality does not hold. That is, $\boldsymbol{H} \neq \boldsymbol{V}$. The equality only holds if the model is correctly specified.

The Asymptotic Theory

- We have all the tools to derive the asymptotic distribution of \boldsymbol{b}_{M}.

Recall the Mean Value Theorem:

$$
f(x)=f(a)+f^{\prime}(b)(x-a) \quad a<b<x
$$

Apply MVT to the score, with $\boldsymbol{b}_{0}<\mathbf{b}^{*}<\boldsymbol{b}_{M}$:

$$
\begin{aligned}
& \sum_{i=1}^{T} \boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}_{M}\right)=\sum_{i=1}^{T} \boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}_{0}\right)+\sum_{i=1}^{T} \boldsymbol{H}\left(\mathbf{z}_{i}, \mathbf{b}^{*}\right)\left(\mathbf{b}_{\mathbf{M}}-\mathbf{b}_{\mathbf{0}}\right) \\
& 0=\sum_{i=1}^{T} \boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}_{0}\right)+\sum_{i=1}^{T} \boldsymbol{H}\left(\mathbf{z}_{i}, \mathbf{b}^{*}\right)\left(\mathbf{b}_{\mathbf{M}}-\mathbf{b}_{0}\right) \\
& \Rightarrow \quad\left(\boldsymbol{b}_{M}-\mathbf{b}_{0}\right)=\left[\sum_{i=1}^{T} \boldsymbol{H}\left(\mathbf{z}_{i}, \mathbf{b} *\right)\right]^{-1} \sum_{i=1}^{T} \boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}_{0}\right) \\
& \Rightarrow \sqrt{ } T\left(\mathbf{b}_{M}-\mathbf{b}_{0}\right)=\left[\sum_{i=1}^{T} \boldsymbol{H}\left(\mathbf{z}_{i}, \mathbf{b} *\right)\right]^{-1} \sum_{i=1}^{T} \boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}_{0}\right) / \sqrt{ } T
\end{aligned}
$$

The asymptotic distribution of \boldsymbol{b}_{M} is driven by $\sum_{i=1}^{T} \boldsymbol{s}\left(\boldsymbol{z}_{i}, \boldsymbol{b}_{0}\right) / \sqrt{ } T$

The Asymptotic Theory

- Theorem: Consistency of M-estimators

Let $\left\{\boldsymbol{X}=\mathrm{X}_{1} ; \mathrm{X}_{2} ; \ldots\right\}$ be i.i.d. and assume
(1) $\mathbf{b} \in \mathbf{B}$, where \mathbf{B} is compact. ("compact")
(2) $\left[\sum_{i} \mathrm{q}\left(\mathbf{X}_{\mathrm{i}} ; \mathbf{b}\right) / T\right] \xrightarrow{p} \mathrm{~g}(\mathbf{b})$ uniformly in \mathbf{b} for some continuous function $\mathrm{g}: \mathbf{B} \rightarrow \mathrm{R} \quad$ ("continuity")
(3) $g(\mathbf{b})$ has a unique global minimum at $\mathbf{b}_{\mathbf{0}}$. ("identification")

Then, $\quad \boldsymbol{b}_{M} \xrightarrow{p} \mathbf{b}_{\mathbf{0}}$
Remark: a) Since \boldsymbol{X} are i.i.d. by the LLN (without uniformity) it must hold $g(\mathbf{b})=\mathrm{E}_{\mathrm{X}}[\mathrm{q}(\boldsymbol{X} ; \mathbf{b})]$, thus $\mathrm{E}_{\mathrm{X}}\left[\mathrm{q}\left(\mathbf{z}, \mathbf{b}_{\mathbf{0}}\right)\right]=\min _{\mathbf{b} \in \mathbf{B}} \mathrm{E}_{\mathrm{X}}[\mathrm{q}(\mathbf{z} ; \boldsymbol{\beta})]$.
b) If \mathbf{B} is not compact, find a compact subset \mathbf{B}_{0}, with $\mathbf{b}_{0} \in \mathbf{B}_{0}$ and $\mathrm{P}\left[\mathrm{b}_{\mathrm{M}} \in \mathrm{B}_{0}\right] \rightarrow 1$.

The Asymptotic Theory

Theorem: Asymptotic Normality of M-estimators
Assumptions:
(1) $\boldsymbol{b}_{M} \xrightarrow{p} \boldsymbol{b}_{0}$ for some $\boldsymbol{b}_{0} \in \mathbf{B}$.
(2) \boldsymbol{b}_{M} is of ψ-yppe and \mathbf{s} is continuously (for almost all x) differentiable w.r.t. b.
(3) $\sum_{i=1}^{T}\left[\partial \boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}\right) / \partial \mathbf{b}\right] /\left.T\right|_{\mathbf{b}=\mathbf{b}^{*}} \xrightarrow{p} \boldsymbol{H}\left(\mathbf{z}, \boldsymbol{b}_{0}\right)$ for $\mathbf{b}^{*} \xrightarrow{p} \boldsymbol{b}_{0}$
(4) $\sum_{i=1}^{T} \boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}\right) / \sqrt{ } T \xrightarrow{d} N\left(\mathbf{0}, \boldsymbol{V}_{\mathbf{0}}\right) \quad \boldsymbol{V}_{\mathbf{0}}=\operatorname{Var}\left[\mathbf{s}\left(\mathbf{z}, \boldsymbol{b}_{0}\right)\right]<\infty$

Then, $\sqrt{ } T\left(\boldsymbol{b}_{M}-\mathbf{b}_{\mathbf{0}}\right)=\left[\sum_{i=1}^{T} \boldsymbol{H}\left(\mathbf{z}_{i}, \mathbf{b} *\right)\right]^{-1} \sum_{i=1}^{T} \boldsymbol{s}\left(\mathbf{z}_{i}, \boldsymbol{b}_{0}\right)$
$\Rightarrow \sqrt{ } T\left(\boldsymbol{b}_{M}-\boldsymbol{b}_{0}\right) \xrightarrow{d} N\left(\mathbf{0}, \boldsymbol{H}_{0}{ }^{-1} \boldsymbol{V}_{\mathbf{0}} \boldsymbol{H}_{0}{ }^{-1}\right)$

- $\boldsymbol{V}=\mathrm{E}\left[\mathbf{s}(\mathbf{z}, \mathbf{b}) \mathbf{s}(\mathbf{z}, \mathbf{b})^{\prime}\right]=\mathrm{E}\left[(\partial \mathrm{q}(\mathbf{z}, \mathbf{b}) / \partial \mathbf{b})^{\prime}(\partial \mathrm{q}(\mathbf{z}, \mathbf{b}) / \partial \mathbf{b})\right]$
$-\boldsymbol{H}=\partial \mathbf{s}(\mathbf{z}, \mathbf{b}) / \partial \mathbf{b}=\mathrm{E}\left[\partial^{2} \mathrm{q}(\mathbf{z}, \mathbf{b}) / \partial \mathbf{b} \partial \mathbf{b} \mathbf{b}^{\prime}\right]$

Asymptotic Normality

- Summary
$-\boldsymbol{b}_{M} \xrightarrow{p} \boldsymbol{b}_{0}$
$-\boldsymbol{b}_{M} \xrightarrow{a} N\left(\boldsymbol{b}_{0}, \operatorname{Var}\left[\boldsymbol{b}_{0}\right]\right)$
$-\operatorname{Var}\left[\boldsymbol{b}_{\boldsymbol{M}}\right]=(1 / T) \boldsymbol{H}_{\mathbf{0}}^{-1} \boldsymbol{V}_{\mathbf{0}} \boldsymbol{H}_{0}^{-1}$
- If the model is correctly specified: $-\mathbf{H}=\mathbf{V}$.

Then, $\operatorname{Var}[\mathbf{b}]=\boldsymbol{V}_{\mathbf{0}}$

- \mathbf{H} and \mathbf{V} are evaluated at $\mathbf{b}_{\mathbf{0}}$:
$-\mathbf{H}=\sum_{\mathrm{i}}\left[\partial^{2} \mathrm{q}\left(\mathbf{z}_{\mathbf{i}} ; \mathbf{b}\right) / \partial \mathbf{b} \partial \mathbf{b}^{\prime}\right]$
$-\mathbf{V}=\sum_{i}\left[\partial \mathrm{q}\left(\mathbf{z}_{\mathrm{i}} ; \mathbf{b}\right) / \partial \mathbf{b}\right]\left[\partial \mathrm{q}\left(\mathbf{z}_{\mathrm{i}} ; \mathbf{b}\right) / \partial \mathbf{b}^{\prime}\right]$

M-Estimation: Example

- DGP: $\quad \mathbf{y}=f\left(\mathbf{x}_{i} ; \boldsymbol{\beta}\right)+\boldsymbol{\varepsilon}=\exp (\mathbf{x} \boldsymbol{\beta})+\boldsymbol{\varepsilon}$,
- Objective function:

$$
q(\mathbf{X} ; \boldsymbol{\beta})=1 / 2 \boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon}=1 / 2[\mathbf{y}-\exp (\mathbf{X} \boldsymbol{\beta})]^{\prime}[\mathbf{y}-\exp (\mathbf{X} \boldsymbol{\beta})]
$$

Let $\mathbf{G}=\left[g_{\mathrm{i}}\right], \quad$ where $\mathrm{g}_{\mathrm{i}}=\partial f_{\mathrm{i}}(\mathbf{x} ; \boldsymbol{\beta}) / \partial \boldsymbol{\beta}_{\mathbf{k}}=\exp \left(\mathbf{x}_{\mathrm{i}}^{\prime} \boldsymbol{\beta}\right) \mathbf{x}_{\mathbf{k i}}$

- Score: $\mathbf{s}(\mathbf{z}, \boldsymbol{\beta})=\partial \mathrm{q}(\mathbf{z} ; \boldsymbol{\beta}) / \partial \boldsymbol{\beta}=\varepsilon^{\prime} \partial f\left(\mathbf{x}_{\mathrm{i}} ; \boldsymbol{\beta}\right) / \partial \boldsymbol{\beta}=\varepsilon^{\prime} \mathbf{G}$

$$
=-[\mathbf{y}-\exp (\mathbf{X} \boldsymbol{\beta})]^{\prime} \mathbf{G}=-\mathbf{y}^{\prime} \mathbf{G}+\exp (\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{G}
$$

$-\boldsymbol{V}=\operatorname{Var}[\mathbf{s}(\mathbf{z}, \boldsymbol{\beta})]=\mathrm{E}\left[\mathbf{G}^{\prime} \varepsilon \varepsilon^{\prime} \mathbf{G}\right]$

- $\boldsymbol{H}=\mathrm{E}\left[\partial^{2} \mathrm{q}(\mathbf{z}, \boldsymbol{\beta}) / \partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}\right]=\mathrm{E}\left[\partial f\left(\mathbf{x}_{\mathrm{i}} ; \boldsymbol{\beta}\right) / \partial \boldsymbol{\beta}^{\prime} \partial f\left(\mathbf{x}_{\mathrm{i}} ; \boldsymbol{\beta}\right) / \partial \boldsymbol{\beta}^{\prime}-\right.$

$$
\left.-\partial^{2} f\left(\mathbf{x}_{i} ; \boldsymbol{\beta}\right) / \partial \beta \partial \beta^{\prime} \varepsilon\right]=\mathrm{E}[\mathbf{G} \mathbf{G}-\partial \mathbf{G} / \partial \beta \varepsilon]
$$

$-\operatorname{Var}\left[\mathbf{b}_{\mathbf{M}}\right]=(1 / T) \boldsymbol{H}_{\mathbf{0}}{ }^{-1} \boldsymbol{V}_{\mathbf{0}} \boldsymbol{H}_{\mathbf{0}}{ }^{-1}$

M-Estimation: Example

- $\operatorname{Var}\left[\boldsymbol{b}_{M}\right]=(1 / T) \boldsymbol{H}_{\mathbf{0}}{ }^{-1} \boldsymbol{V}_{\mathbf{0}} \boldsymbol{H}_{0}{ }^{-1}$
- We approximate ("estimate")

$$
\begin{aligned}
\operatorname{Var}\left[\boldsymbol{b}_{M}\right]= & \left.(1 / T)\left\{\sum_{\mathrm{i}}\left[\partial \mathbf{s}\left(\mathbf{z}_{\mathrm{i}}, \boldsymbol{b}_{M}\right) / \partial \mathbf{b}\right]\right\}^{-1}\left[\sum_{\mathrm{i}} \mathbf{s} \mathbf{(} \mathbf{z}_{\mathrm{i}}, \boldsymbol{b}_{M}\right) \mathbf{s}\left(\mathbf{z}_{\mathrm{i}}, \boldsymbol{b}_{M}\right)^{\prime}\right] \\
& \left\{\sum_{\mathrm{i}}\left[\partial \mathbf{s}\left(\mathbf{z}_{\mathrm{i}}, \boldsymbol{b}_{M}\right) / \partial \mathbf{b}\right]\right\}^{-1} \\
\mathbf{s}\left(\mathbf{z}_{\mathrm{i}}, \boldsymbol{b}_{M}\right)= & -\left[\exp \left(\mathbf{x}_{\mathrm{i}}^{\prime} \boldsymbol{b}_{M}\right) \mathbf{x}_{\mathrm{i}}{ }^{\prime}\left[\mathrm{y}_{\mathrm{i}}-\exp \left(\mathbf{x}_{\mathrm{i}}^{\prime} \boldsymbol{b}_{M}\right)\right]=-\mathbf{x}_{\mathrm{i}}^{\prime} \exp \left(\mathbf{x}_{\mathrm{i}}^{\prime} \boldsymbol{b}_{M}\right)^{\prime} \mathbf{e}_{\mathrm{i}}\right.
\end{aligned}
$$

Two-Step M-Estimation

- Sometimes, nonlinear models depend not only on our parameter of interest β, but nuisance parameters or unobserved variables in some way. It is common to estimate β using a "two-step" procedure:

$$
\begin{array}{lll}
1^{\text {st_stage: }} & \mathbf{y}_{2}=g(\mathbf{w} ; \boldsymbol{\gamma})+\nu & \Rightarrow \text { we estimate } \boldsymbol{\gamma} \text {, say } \mathbf{c} \\
2^{\text {nd }} \text { _stage } & \mathbf{y}=f(\mathbf{x} ; \boldsymbol{\beta}, \mathbf{c})+\boldsymbol{\varepsilon} & \Rightarrow \text { we estimate } \boldsymbol{\beta}, \text { given } \mathbf{c} .
\end{array}
$$

- The objective function: $\quad \min _{\beta}\left\{\sum_{\mathrm{i}} \mathrm{q}(\mathbf{x} ; \boldsymbol{\beta}, \mathbf{c})=\varepsilon^{\prime} \varepsilon\right\}$
- Examples:
(i) DHW Test for endogeneity
(ii) Weighted NLLS: $\min _{\boldsymbol{\beta}}\left\{\sum_{\mathrm{i}}[\mathbf{y}-f(\mathbf{x} ; \boldsymbol{\beta})]^{2} / g(\mathbf{z} ; \mathbf{c})\right.$
(iii) Selection Bias Model: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\delta} \hat{\mathrm{h}}+\boldsymbol{\varepsilon} \quad \hat{\mathrm{h}}=\mathrm{G}(\mathbf{z}, \mathbf{c})$.

Two-Step M-Estimation

- Properties --Pagan $(1984,1986)$, generated regressors:
- Consistency. We need to apply a uniform weak LLN.
- Asymptotic normality: We need to apply CLT.
- Two interesting results:
- The 2 S estimator can be consistent even in some cases where $g(\mathbf{z} \boldsymbol{z} \boldsymbol{\gamma})$ is not correctly specified -i.e., situations where \mathbf{c} may be inconsistent. - The S.E. -i.e., $\operatorname{Var}\left[\mathbf{b}_{2 s}\right]$ - needs to be adjusted by the $1^{\text {st }}$ stage estimation, in most cases.

Two-Step M-Estimation

- Recall $\quad \sqrt{ } T\left(\boldsymbol{b}_{M}-\mathbf{b}_{0}\right)=\boldsymbol{H}_{0}{ }^{-1}\left[-\sum_{\mathrm{i}} \mathbf{s}\left(\mathbf{z}_{\mathrm{i}} ; \mathbf{b}_{\mathbf{0}}, \mathbf{c}\right) / \sqrt{ } T\right]+o(1)$

The question is weather the following equation holds:

$$
\begin{equation*}
\sum_{\mathrm{i}} \mathbf{s}\left(\mathbf{z}_{\mathrm{i}} ; \mathbf{b}_{0}, \mathbf{c}\right) / \sqrt{ } T=\sum_{\mathrm{i}} \mathbf{s}\left(\mathbf{z}_{\mathrm{i}} ; \mathbf{b}_{0}, \mathbf{c}_{0}\right) / \sqrt{ } T+o(1) \tag{**}
\end{equation*}
$$

where c_{0} is the true value of γ.
If this equality holds, $\mathbf{b}_{\mathbf{M}}$ would be consistent.

- Let's do a $1^{\text {st }}$ order Taylor expansion:

$$
\begin{equation*}
\sum_{i} \mathbf{s}\left(\mathbf{z}_{\mathrm{i}} ; \mathbf{b}_{0}, \mathbf{c}\right) / \sqrt{ } T \approx \sum_{\mathrm{i}} \mathbf{s}\left(\mathbf{z}_{\mathrm{i}} ; \mathbf{b}_{0}, \mathbf{c}_{0}\right) / \sqrt{ } T+\boldsymbol{F}_{\mathbf{0}}\left(\mathbf{c}-\mathbf{c}_{0}\right) / \sqrt{ } T \tag{***}
\end{equation*}
$$

where $\boldsymbol{F}_{0}=\partial \mathrm{s}\left(\mathbf{z} ; \mathrm{b}_{0}, \mathbf{c}\right) / \partial \gamma$
Note: If $\mathbf{c}=\mathbf{c}_{\mathbf{0}}$ or $\boldsymbol{F}_{\mathbf{0}}=0$, then $\left({ }^{* *}\right)$ holds.

Two-Step M-Estimation

- We can also write

$$
\begin{aligned}
\sqrt{T\left(\mathbf{c}-\mathbf{c}_{0}\right)} & =\boldsymbol{H}_{\mathrm{c} 0}{ }^{-1}\left[-\sum_{\mathrm{i}} \mathbf{s}\left(\mathbf{w}_{\mathrm{i}}, \mathbf{c}\right) / \sqrt{ } T\right]+o(1) \\
& =\sum_{\mathrm{i}} \mathbf{h}\left(\mathbf{w}_{\mathrm{i}}, \mathbf{c}\right) / \sqrt{ } T+o(1)
\end{aligned}
$$

- Then, substituting back in $\left({ }^{* * *)}\right.$ and then in $(*)$, we have

$$
\sqrt{ } T\left(\boldsymbol{b}_{M}-\mathbf{b}_{0}\right)=\boldsymbol{H}_{0}{ }^{-1}\left[-\sum_{\mathrm{i}} \mathbf{r}\left(\mathbf{z}_{\mathrm{i}} ; \mathbf{b}_{0}, \mathbf{c}_{\mathbf{0}}\right) / \sqrt{ } T\right]+o(1), \quad(* * * *)
$$

where $\mathbf{r}\left(\mathbf{z}_{\mathrm{i}} ; \mathrm{b}_{0}, \mathbf{c}_{0}\right)=\mathbf{s}\left(\mathbf{z}_{\mathrm{i}} ; \mathrm{b}_{0}, \mathbf{c}_{0}\right)+\boldsymbol{F}_{0} \mathbf{h}\left(\mathbf{w}_{\mathrm{i}}, \mathrm{c}_{0}\right)$

Note: Difference between $(*)$ and $(* * * *): \mathbf{r}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{b}_{0}, \mathbf{c}_{0}\right)$ replaces $\mathbf{s}\left(\mathbf{z}_{\mathrm{i}}, \mathbf{b}_{0}, \mathbf{c}\right)$. The second term in $\mathbf{r}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{b}_{0}, \mathbf{c}_{0}\right)$ reflects the $1^{\text {st }}$-stage adjustment.
$\cdot \operatorname{Var}\left[\boldsymbol{b}_{M}\right]=(1 / T) \boldsymbol{H}_{0}{ }^{-1} \operatorname{Var}\left[\mathbf{r}\left(\mathbf{z}_{\mathbf{i}} ; \mathbf{b}_{0}, \mathbf{c}_{0}\right)\right] \boldsymbol{H}_{0}{ }^{-1}$

Applications

- Heteroscedastity Autocorrelation Consistent (HAC) VarianceCovariance Matrix
- Non-spherical disturbances in NLLS
- Quasi Maximum Likelihood (QML)
- Misspecified density assumption in ML
- Information Equality may not hold

Special case of M-estimation: NL Regression

- We start with a regression model: $y_{i}=f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)+\varepsilon_{i}$
- Q : What makes a regression model nonlinear?
- Recall that OLS can be applied to nonlinear functional forms. But, for OLS to work, we need intrinsic linearity -i.e., the model linear in the parameters.

Example: A nonlinear functional form, but intrinsic linear:

$$
y_{i}=\exp \left(\beta_{1}\right)+\beta_{2} * x_{i}+\beta_{3} * x_{i}^{2}+\varepsilon_{i}
$$

Example: A non intrinsic linear model:

$$
y_{i}=f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}^{0}\right)+\varepsilon_{i}=\beta_{0}+\beta_{1} x_{i}^{\beta_{2}}+\varepsilon_{i}
$$

Nonlinear Least Squares

- Least squares:

$$
\operatorname{Min}_{\beta}\left\{S(\boldsymbol{\beta})=1 / 2 \sum_{i=1}^{T}\left[y_{i}-f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)\right]^{2}=1 / 2 \sum_{i=1}^{T} \varepsilon_{i}^{2}\right\}
$$

F.o.c.:

$$
\begin{aligned}
& \partial\left\{1 / 2 \sum_{i=1}^{T}\left[y_{i}-f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)\right]^{2}\right\} / \partial \boldsymbol{\beta} \\
& \quad=1 / 22 \sum_{i=1}^{T}\left[y_{i}-f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)\right]^{2} \partial f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right) / \partial \boldsymbol{\beta}=-\sum_{i=1}^{T} e_{i} \boldsymbol{x}_{i}{ }^{0} \\
& \Rightarrow \quad-\sum_{i=1}^{T} e_{i} \boldsymbol{x}_{i}{ }^{0}=\mathbf{0}, \quad \text { we solve for } \mathbf{b}_{\mathrm{NLLS}} .
\end{aligned}
$$

In general, there is no explicit solution, like in the OLS case:

$$
\mathbf{b}=g(\mathbf{X}, \mathbf{y})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}
$$

- In this case, we have a nonlinear model: the f.o.c. cannot be solved explicitly for $\mathbf{b}_{\text {NLLs }}$. That is, the nonlinearity of the f.o.c. defines a nonlinear model.

Nonlinear Least Squares: Example

- Q: How to solve this kind of set of equations?

Example: $\operatorname{Min}_{\beta}\left\{\mathrm{S}(\boldsymbol{\beta})=1 / 2 \sum_{i=1}^{T}\left[y_{i}-f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)\right]^{2}=1 / 2 \sum_{i=1}^{T} \varepsilon_{i}{ }^{2}\right\}$

$$
y_{i}=f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)+\varepsilon_{i}=\beta_{0}+\beta_{1} x_{i}^{\beta_{2}}+\varepsilon_{i} .
$$

f.o.c.:
$\partial\left[1 / 2 \sum_{i=1}^{T} e_{i}{ }^{2}\right] / \partial \beta_{0}=\Sigma_{\mathrm{i}}(-1)\left(y_{i}-\beta_{0}+\beta_{1} x_{i}{ }^{\beta 2}\right) 1=0$
$\partial\left[1 / 2 \sum_{i=1}^{T} e_{i}{ }^{2}\right] / \partial \beta_{1}=\Sigma_{\mathrm{i}}(-1)\left(y_{i}-\beta_{0}+\beta_{1} x_{i}{ }^{\beta 2}\right) x_{i}{ }^{\beta 2}=0$
$\partial\left[1 / 2 \sum_{i=1}^{T} e_{i}^{2}\right] / \partial \beta_{2}=\Sigma_{\mathrm{i}}(-1)\left(y_{i}-\beta_{0}+\beta_{1} x_{i}{ }^{\beta 2}\right) \beta_{1} x_{i}{ }^{\beta 2} \ln \left(x_{i}\right)=0$

- Nonlinear equations require a nonlinear solution. This defines a nonlinear regression model: the f.o.c. are not linear in $\boldsymbol{\beta}$.

Note: If $\beta_{2}=1$, we have a linear model.

Nonlinear Least Squares: Example

Example: $\operatorname{Min}_{\beta} \mathrm{S}(\boldsymbol{\beta})=\left\{1 / 2 \sum_{i=1}^{T}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}^{\beta_{2}}+\varepsilon_{i}\right)\right]^{2}\right\}$

- From the f.o.c., we cannot solve for $\boldsymbol{\beta}$ explicitly. But, using some steps, we can still minimize RSS to obtain estimates of $\boldsymbol{\beta}$.
- Nonlinear regression algorithm:

1. Start by guessing a plausible values for $\boldsymbol{\beta}$, say $\boldsymbol{\beta}^{0}$.
2. Calculate RSS for $\boldsymbol{\beta}^{0} \quad \Rightarrow$ get $\operatorname{RSS}\left(\boldsymbol{\beta}^{0}\right)$
3. Make small changes to $\boldsymbol{\beta}^{0} \quad \Rightarrow \operatorname{get} \boldsymbol{\beta}^{1}$.
4. Calculate RSS for $\boldsymbol{\beta}^{1} \quad \Rightarrow$ get $\operatorname{RSS}\left(\boldsymbol{\beta}^{1}\right)$
5. If $\operatorname{RSS}\left(\boldsymbol{\beta}^{1}\right)<\operatorname{RSS}\left(\boldsymbol{\beta}^{0}\right) \quad \Rightarrow \boldsymbol{\beta}^{1}$ becomes the new starting point.
6. Repeat steps 3-5 until you $\operatorname{RSS}(\boldsymbol{\beta})$ cannot be lowered. \Rightarrow get $\boldsymbol{\beta}$.
$\Rightarrow \boldsymbol{\beta}^{i}$ is the (nonlinear) least squares estimates.

NLLS: Linearization

- We start with a nonlinear model: $y_{i}=f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)+\varepsilon_{i}$
- We expand the regression around some point, $\boldsymbol{\beta}^{0}$:

$$
\begin{aligned}
f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right) & \approx f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}^{0}\right)+\sum_{j=1}^{k}\left[\partial f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}^{0}\right) / \partial \beta_{j}^{0}\right] *\left(\beta_{j}-\beta_{j}^{0}\right) \\
& =f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}^{0}\right)+\sum_{j=1}^{k} \boldsymbol{x}_{i}^{0} *\left(\beta_{j}-\beta_{j}^{0}\right) \\
& =\left[f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}^{0}\right)-\sum_{j=1}^{k} \boldsymbol{x}_{i}^{0} * \beta_{j}^{0}\right]+\sum_{j=1}^{k} \boldsymbol{x}_{i}^{0} * \beta_{j} \\
& =f_{i}^{0}+\sum_{j=1}^{k} \boldsymbol{x}_{i}^{0} * \beta_{j}=f_{i}^{0}+\boldsymbol{x}_{i}{ }^{0} \boldsymbol{\beta}
\end{aligned}
$$

where

$$
f_{i}^{0}=f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}^{0}\right)-\boldsymbol{x}_{i}^{00} \boldsymbol{\beta}^{0} \quad\left(f_{i}^{0} \text { does not depend on unknowns }\right)
$$

Now, $f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)$ is (approximately) linear in the parameters! That is,

$$
\begin{aligned}
& y_{i}=f_{i}^{0}+\boldsymbol{x}_{i}{ }^{0 r} \beta+\varepsilon_{i}^{0} \quad\left(\varepsilon_{i}^{0}=\varepsilon_{i}+\text { linearization error } i\right) \\
& \Rightarrow y_{i}{ }^{0}=y_{i}-f_{i}^{0}=\boldsymbol{x}_{i}{ }^{00} \beta+\varepsilon_{i}{ }^{0} \\
& \hline
\end{aligned}
$$

NLLS: Linearization

- We linearized $f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)$ to get:

$$
\begin{array}{rlr}
\boldsymbol{y} & =\boldsymbol{f}^{0}+\mathbf{X}^{0} \boldsymbol{\beta}+\boldsymbol{\varepsilon}^{0} & \left(\boldsymbol{\varepsilon}^{0}=\boldsymbol{\varepsilon}+\text { linearization error }\right) \\
\Rightarrow \boldsymbol{y}^{0} & =\boldsymbol{y}-\boldsymbol{f}^{0}=\mathbf{X}^{0} \boldsymbol{\beta}+\boldsymbol{\varepsilon}^{0} &
\end{array}
$$

- Now, we can do OLS:

$$
\mathbf{b}_{\mathrm{NLLS}}=\left(\mathbf{X}^{01} \mathbf{X}^{0}\right)^{-1} \mathbf{X}^{01} \boldsymbol{y}^{0}
$$

Note: \mathbf{X}^{0} are called p seudo-regressors.

- In general, we get different $\mathbf{b}_{\text {NLLS }}$ for different $\boldsymbol{\beta}^{0}$. An algorithm can be used to get the best $\mathbf{b}_{\text {NLLS }}$.
- We will resort to numerical optimization to find the $\mathbf{b}_{\text {NLLS }}$.

NLLS: Linearization

- We can also compute the asymptotic covariance matrix for the NLLS estimator as usual, using the pseudo regressors and the RSS:

$$
\begin{gathered}
\text { Est. } \operatorname{Var}\left[\mathbf{b}_{\mathrm{NLLS}} \mid \mathbf{X}^{0}\right]=s_{\mathrm{NLLS}}^{2}\left(\mathbf{X}^{01} \mathbf{X}^{\boldsymbol{0}}\right)^{-1} \\
s_{\mathrm{NLLS}}^{2}=\left[\boldsymbol{y}-\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}, \mathbf{b}_{\mathrm{NLLS}}\right)\right]^{\prime}\left[\boldsymbol{y}-\boldsymbol{y}\left(\boldsymbol{x}_{i}, \mathbf{b}_{\mathrm{NLLS}}\right)\right] /(T-k) .
\end{gathered}
$$

- Since the results are asymptotic, we do not need a degrees of freedom correction. However, a $d f$ correction is usually included.

Note: To calculate s^{2} NLLS , we calculate the residuals from the nonlinear model, not from the linearized model (linearized regression).

NLLS: Linearization - Example

- Nonlinear model: $\quad y_{i}=f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}^{0}\right)+\varepsilon_{i}=\beta_{0}+\beta_{1} x_{i}^{\beta_{2}}+\varepsilon_{i}$
- Linearize the model to get:

$$
\boldsymbol{y}^{0}=\boldsymbol{y}-\boldsymbol{f}^{0}=\mathbf{X}^{0} \boldsymbol{\beta}+\boldsymbol{\varepsilon}^{0}, \quad \text { where } f_{i}^{0}=f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}^{0}\right)-\boldsymbol{x}_{i}{ }^{0 \boldsymbol{0}} \boldsymbol{\beta}^{0}
$$

Get $\boldsymbol{x}_{i}{ }^{0}=\partial f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right) /\left.\partial \beta\right|_{\beta=\beta 0}$
$\partial f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right) / \partial \boldsymbol{\beta}_{0}=1$
$\partial f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right) / \partial \beta_{1}=x_{i}^{\beta_{2}}$ $\partial f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right) / \partial \beta_{2}=\beta_{1} x_{i}^{\beta_{2}} \ln \left(x_{i}\right)$

$$
f_{i}^{0}=\beta_{0}^{0}+\beta_{1}^{0} x_{i}^{\beta_{2}^{0}}-\left\{\beta_{0}^{0}+\beta_{1}^{0} x_{i}^{\beta_{2}^{0}}+\beta_{2}^{0} \beta_{1}^{0} x_{i}^{\beta_{2}^{0}} \ln \left(x_{i}\right)\right\} \boldsymbol{x}^{\beta_{2}^{0}}
$$

$$
y_{i}^{0}=\beta_{0}+\beta_{1} x_{i}^{\beta_{2}^{0}}+\beta_{2} \beta_{1}^{0} x_{i}^{\beta_{2}^{0}} \ln \left(x_{i}\right)+\varepsilon_{i}^{0}
$$

To get $\mathbf{b}_{\text {NLLS }}$, regress \boldsymbol{y}^{0} on a constant, $\boldsymbol{x}^{\beta_{2}^{0}}$, and $\beta_{1}^{0} x^{\beta_{2}^{0}} \ln (\boldsymbol{x})$.

Gauss-Newton Algorithm

- Recall that $\mathbf{b}_{\text {NLLS }}$ depends on $\boldsymbol{\beta}^{0}$. That is,

$$
\mathbf{b}_{\mathrm{NLLS}}\left(\boldsymbol{\beta}^{0}\right)=\left(\mathbf{X}^{01} \mathbf{X}^{0}\right)^{-1} \mathbf{X}^{01} \boldsymbol{y}^{\mathbf{0}}
$$

- We use a Gauss-Newton algorithm to find the $\mathbf{b}_{\text {NLLs }}$. Recall GN:

$$
\boldsymbol{\beta}_{\mathrm{k}+1}=\boldsymbol{\beta}_{\mathrm{k}}+\left(\mathbf{J}^{\mathrm{T}} \mathbf{J}\right)^{-1} \mathbf{J}^{\mathrm{T}} \boldsymbol{\varepsilon} \quad-\mathbf{J}: \text { Jacobian }=\delta f\left(x_{\mathrm{i}} ; \boldsymbol{\beta}\right) / \delta \boldsymbol{\beta}
$$

- Given a $\mathbf{b}_{\text {NLLS }}$ at step $j, \mathbf{b}(j)$, we find the $\mathbf{b}_{\text {NLLS }}$ for step $j+1$ by: $\left.\mathbf{b}(j+1)=\mathbf{b}(j)+\left[\mathbf{X}^{0}(j)\right)^{\prime} \mathbf{X}^{0}(\lambda)\right]^{-1} \mathbf{X}^{0}(\lambda)^{\prime} \boldsymbol{e}^{0}(\lambda)$

Columns of $\mathbf{X}^{0}(\gamma)$ are the derivatives:

$$
\begin{aligned}
& \partial f\left(\left(_{i}, \mathbf{b}(\lambda)\right) / \partial \mathbf{b}(j)^{\prime}\right. \\
& \mathbf{e}^{0}(\jmath)=\boldsymbol{y}-f[\mathbf{x}, \mathbf{b}(\lambda)]
\end{aligned}
$$

- The $u p d a t e$ vector is the slopes in the regression of the residuals on \mathbf{X}^{0}. The update is zero when they are orthogonal. (Just like OLS)

Box-Cox Transformation

- It's a simple transformation that allows non-linearities in the CLM.

$$
\begin{gathered}
y_{i}=f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)+\varepsilon_{i}=\sum_{j=1}^{k} \boldsymbol{x}_{i, j}^{(\lambda)} \beta_{j}+\varepsilon_{i} \\
\boldsymbol{x}_{\boldsymbol{k}}{ }^{(\lambda)}=\left(\boldsymbol{x}_{\boldsymbol{k}}^{\lambda}-1\right) / \lambda
\end{gathered}
$$

- For a given λ, OLS can be used. An iterative process can be used to estimate λ. OLS standard errors have to be corrected. Probably, not a very efficient method.
- NLLS or MLE will work fine.
- We can have a more general Box-Cox transformation model:

$$
y_{i}^{(\lambda 1)}=\sum_{j=1}^{k} \boldsymbol{x}_{i, j}{ }^{(22)} \beta_{j}+\varepsilon_{i}
$$

Testing non-linear restrictions

- Testing linear restrictions as before.
- Non-linear restrictions introduce slight modification to the usual tests. We want to test:

$$
\mathrm{H}_{0}: \mathrm{R}(\boldsymbol{\beta})=0
$$

where $\mathrm{R}(\boldsymbol{\beta})$ is a non-linear function, with $\operatorname{rank}[\partial \mathrm{R}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}=\mathbf{G}(\boldsymbol{\beta})]=\mathrm{J}$.

- A Wald test can be based on $\mathbf{m}=\mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right)-\mathbf{0}$:

$$
W=\mathbf{m}^{\prime}(\operatorname{Var}[\mathbf{m} \mid \mathbf{X}])^{-1} \mathbf{m}=\mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right)^{\prime}\left(\operatorname{Var}\left[\mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right) \mid \mathbf{X}\right]\right)^{-1} \mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right)
$$

Problem: We do not know the distribution of $\mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right)$, but we know the distribution of $\mathbf{b}_{\text {NLLS }}$.

Solution: Linearize $\mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right)$ around $\boldsymbol{\beta}$

$$
\mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right) \approx \mathrm{R}(\boldsymbol{\beta})+\mathbf{G}\left(\mathbf{b}_{\mathrm{NLLS}}\right)\left(\mathbf{b}_{\mathrm{NLLS}}-\boldsymbol{\beta}\right)
$$

Testing non-linear restrictions

- Linearize $\mathrm{R}\left(\mathbf{b}_{\text {NLLS }}\right)$ around $\boldsymbol{\beta}\left(=\mathbf{b}_{\mathbf{0}}\right)$

$$
\mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right) \approx \mathrm{R}(\boldsymbol{\beta})+\mathbf{G}\left(\mathbf{b}_{\mathrm{NLLS}}\right)\left(\mathbf{b}_{\mathrm{NLLS}}-\boldsymbol{\beta}\right)
$$

- Recall $\quad \sqrt{ } T\left(\mathbf{b}_{\mathbf{M}}-\mathbf{b}_{\mathbf{0}}\right) \xrightarrow{d} N\left(\mathbf{0}, \operatorname{Var}\left[\mathbf{b}_{\mathbf{0}}\right]\right)$
where $\operatorname{Var}\left[\mathbf{b}_{0}\right]=\boldsymbol{H}(\boldsymbol{\beta})^{-1} \boldsymbol{V}(\boldsymbol{\beta}) \boldsymbol{H}(\boldsymbol{\beta})^{-1}$

$$
\begin{aligned}
& \Rightarrow \sqrt{ } T\left[\mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right)-\mathrm{R}(\boldsymbol{\beta})\right] \xrightarrow{d} N\left(\mathbf{0}, \boldsymbol{G}(\boldsymbol{\beta}) \operatorname{Var}\left[\mathbf{b}_{\mathbf{0}}\right] \boldsymbol{G}(\boldsymbol{\beta})^{\prime}\right) \\
& \Rightarrow \operatorname{Var}\left[\mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right)\right]=(1 / T) \boldsymbol{G}(\boldsymbol{\beta}) \operatorname{Var}\left[\mathbf{b}_{\mathbf{0}}\right] \boldsymbol{G}(\boldsymbol{\beta})^{\prime}
\end{aligned}
$$

- Then,

$$
\begin{aligned}
& W=T \mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right)^{\prime}\left\{\boldsymbol{G}\left(\mathbf{b}_{\mathrm{NLLS}}\right) \operatorname{Var}\left[\mathbf{b}_{\mathrm{NLLS}}\right] \boldsymbol{G}\left(\mathbf{b}_{\mathrm{NLLS}}\right)^{\prime-1} \mathrm{R}\left(\mathbf{b}_{\mathrm{NLLS}}\right)\right. \\
& \Rightarrow W \xrightarrow{d} \chi_{J}^{2}
\end{aligned}
$$

NLLS - Application: A NIST Application (Greene)

Y	X	
2.138	1.309	
3.421	1.471	
3.597	1.490	$\mathrm{y}=\beta_{0}+\beta_{1} \mathrm{x}^{\beta 2}+\varepsilon$.
4.340	1.565	
4.882	1.611	$\mathrm{x}_{\mathrm{i}}^{0}=\left[1, \mathrm{x}^{\beta 2}, \beta_{1} \mathrm{x}^{\beta 2} \log \mathrm{x}\right]$
5.660	1.680	

NLLS - Application: Iterations (Greene)

```
NLSQ; LHS=Y;
FCN=b0+B1*X^B2;
LABELS = b0, B1, B2;
MAXIT=500; TLF; TLB; OUTPUT=1; DFC;
START=0,1,5 $
```

Begin NLSQ iterations. Linearized regression.
Iteration $=1$; Sum of squares $=149.719219$; Gradient $=149.718223$
Iteration $=2$; Sum of squares $=5.04072877$; Gradient $=5.03960538$
Iteration= 3; Sum of squares $=.137768222 \mathrm{E}-01$; Gradient $=.125711747 \mathrm{E}-01$
Iteration $=4$; Sum of squares $=.186786786 \mathrm{E}-01$; Gradient $=.174668584 \mathrm{E}-01$
Iteration $=5$; Sum of squares $=.121182327 \mathrm{E}-02$; Gradient $=.301702148 \mathrm{E}-08$
Iteration $=6$; Sum of squares $=.121182025 \mathrm{E}-02$; Gradient $=.134513256 \mathrm{E}-15$
Iteration $=7$; Sum of squares $=.121182025 \mathrm{E}-02$; Gradient $=.644990175 \mathrm{E}-20$
Convergence achieved

$$
\text { Gradient }=\left[\mathbf{e}^{0} \mathbf{X}^{0}\right]^{1}\left[\mathbf{X}^{0} \mathbf{X}^{0}\right]^{-1} \mathbf{X}^{0} \mathbf{e}^{0}
$$

NLLS - Application: Results (Greene)

User Defined Nonlinear LHS $=Y$	Optimizatio				
	least squar	s regression			
	Mean	=	4.00633		
	Standard de	viation =	1.23398		
	Number of	bservs.	6		
Model size	Parameters	=	3		
	Degrees of	freedom =	3		
Residuals	Sum of squa	res =	. 00121		
	Standard er	ror of $e=$. 02010		
Fit	R -squared	=	. 99984		
Variable\| Coefficient		Standard Error	b/St.Er. P [\|Z	>z]	
B01	-. 54559**	. 22460	-2.429	. 0151	
B1 \|	1.08072***	. 13698	7.890	. 0000	
B2 1	3.37287***	. 17847	18.899	. 0000	

NLLS - Application: Solution (Greene)

The pseudo regressors and residuals at the solution are:

X10	X20	X30	
1	$\mathrm{x}^{\beta 2}$	$\beta_{1} \mathrm{x}^{\beta 2} \ln \mathrm{x}$	e 0
1	2.47983	0.721624	.0036
1	3.67566	1.5331	-.0058
1	3.83826	1.65415	-.0055
1	4.52972	2.19255	-.0097
1	4.99466	2.57397	.0298
1	5.75358	3.22585	-.0124

$\mathrm{X}^{\prime}{ }^{\prime} \mathrm{e} 0=.3375078 \mathrm{D}-13$
.3167466D-12
.1283528D-10

Application 2: Doctor Visits (Greene)

- German Individual Health Care data: $\mathrm{N}=27,236$
- Model for number of visits to the doctor
- Explanatory variables: Income, health, marital status, education, etc.

Application 2: Conditional Mean and Projection

- Plot: Number of visits to the doctor against household income:

Notice the problem with the linear approach. Negative predictions.

Application 2: NL Model Specification (Greene)

- Nonlinear Regression Model $y=\exp (\mathbf{X} \boldsymbol{\beta})+\varepsilon$
$\mathbf{X}=$ one, age, health_status, married, educ., household_income, nkids

Begin NLSQ iterations. Linearized regression.
Iteration $=1$; Sum of squares $=1014865.00$; Gradient $=257025.070$
Iteration $=2$; Sum of squares $=.130154610 \mathrm{E}+11$; Gradient $=.130145942 \mathrm{E}+11$
Iteration $=3$; Sum of squares $=.175441482 \mathrm{E}+10$; Gradient $=.175354986 \mathrm{E}+10$
Iteration $=4$; Sum of squares $=235369144 . \quad$; Gradient $=234509185$.
Iteration $=5$; Sum of squares $=31610466.6$; Gradient $=30763872.3$
Iteration $=6$; Sum of squares $=4684627.59$; Gradient $=3871393.70$
Iteration $=7$; Sum of squares $=1224759.31$; Gradient $=467169.410$
Iteration $=8$; Sum of squares $=778596.192$; Gradient $=33500.2809$
Iteration $=9$; Sum of squares $=746343.830$; Gradient $=450.321350$
Iteration=10; Sum of squares= 745898.272 ; Gradient= 287180441
Iteration $=11$; Sum of squares $=745897.985$; Gradient $=.929823308 \mathrm{E}-03$
Iteration $=\mathbf{1 5}$; Sum of squares $=745897.984$; Gradient $=.188041512 \mathrm{E}-10$

Application 2: NL Regression Results (Greene)

Partial Effects in the Nonlinear Model (Greene)

What are the slopes?
Conditional Mean Function $=E[y \mid \mathbf{x}]=\exp \left(\beta^{\prime} \mathbf{x}\right)$
Derivatives of the conditional mean are the partial effects
$\frac{\partial E[y \mid \mathbf{x}]}{\partial \mathbf{x}}=\exp \left(\boldsymbol{\beta}^{\prime} \mathbf{x}\right) \times \boldsymbol{\beta}$
= a scaling of the coefficients that depends on the data
Usually computed using the sample means of the data.

Asymptotic Variance of the Slope Estimator (Greene)

$\hat{\delta}=$ estimated partial effects $\left.=\frac{\partial \hat{E}[y \mid \mathbf{x}]}{\partial \mathbf{x}} \right\rvert\,(\mathbf{x}=\overline{\mathbf{x}})$
To estimate Asy.Var[$\hat{\delta}]$, we use the delta method:
$\hat{\delta}=\exp \left(\overline{\mathbf{x}}^{\prime} \hat{\beta}\right) \hat{\beta}$
$\hat{\mathbf{G}}=\frac{\partial \hat{\delta}}{\partial \hat{\beta}}=\exp \left(\overline{\mathbf{x}}^{\prime} \hat{\beta}\right) I+\hat{\beta} \exp \left(\overline{\mathbf{x}}^{\prime} \hat{\beta}\right) \overline{\mathbf{x}}^{\prime}$
Est.Asy. $\operatorname{Var}[\hat{\delta}]=\hat{\mathbf{G}}$ Est.Asy. $\operatorname{Var}[\hat{\beta}] \hat{\mathbf{G}}^{\prime}$

Computing the Slopes (Greene)

```
calc;k=col(x)$
nlsq;lhs=docvis;start=0,0,0,0,0,0,0
    ;labels=k_b;fcn=exp(b1'x);
matr;xbar=mean(x)$
calc;mean=exp(xbar'b)$
matr;me=b*mean$
matr;g=mean*iden(k)+mean*b*xbar'$
matr;vme=g*varb*g'$
matr;stat(me,vme)$
```


Partial Effects at the Means of X (Greene)

What About Just Using LS? (Greene)

| \|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Least Squares Coefficient Estimates | | | | | |
| Constant | 9.12437987 | . 25731934 | 35.459 | . 0000 | |
| AGE | . 02385640 | . 00327769 | 7.278 | . 0000 | 43.5256898 |
| NEWHSAT | -. 86828751 | . 01441043 | -60.254 | . 0000 | 6.78566201 |
| MARRIED | -. 02458941 | . 08364976 | -. 294 | . 7688 | . 75861817 |
| EDUC | -. 04909154 | . 01455653 | -3.372 | . 0007 | 11.3206310 |
| HHNINC | -1.02174923 | . 19087197 | -5.353 | . 0000 | . 35208362 |
| HHKIDS | -. 38033746 | . 07513138 | -5.062 | . 0000 | . 40273000 |
| Estimated Partial Effects | | | | | |
| ME_1 | Constant t | marginal e | ect not | mputed | |
| ME_2 | . 02207102 | . 00239484 | 9.216 | . 0000 | |
| ME_3 | -. 59237330 | . 00660118 | -89.737 | . 0000 | |
| ME_4 | . 01012122 | . 05593616 | . 181 | . 8564 | |
| ME_5 | -. 02989567 | . 01186495 | -2. 520 | . 0117 | |
| ME_6 | -. 72498339 | . 15449817 | -4.693 | . 0000 | |
| ME_7 | -. 24959690 | . 05796000 | -4.306 | . 0000 | |

