

M-Estimation
An extremum estimator is one obtained as the optimizer of a criterion function, q(z, b).
Examples:
OLS: b = arg max {-∑_{i=1}^T e_i² = -e'e /T} MLE: b_{MLE} = arg max { ln L = ∑_{i=1}^T lnf(x_i, y_i, b) } GMM: b_{GMM} = arg max { -g(x_i, y_i, b)' W g(x_i, y_i, b)}
There are two classes of extremum estimators:
M-estimators: The objective function is a sample average or a sum.
Minimum distance estimators: The objective function is a measure of a *distance*.

M-Estimation

- The objective function is a sample average or a sum.
- We want to minimize a population (first) moment:

 $\min_{\mathbf{b}} \mathbb{E}[q(\mathbf{z}, \boldsymbol{\beta})]$

– Using the LLN, we move from the population first moment to the sample average:

$$\sum_{i=1}^{T} q(\mathbf{z}_i, \mathbf{b})/T \xrightarrow{p} \mathbb{E}[q(\mathbf{z}, \boldsymbol{\beta})]$$

- We want to obtain: $\mathbf{b} = \operatorname{argmin} \sum_{i=1}^{T} q(\mathbf{z}_i, \mathbf{b})$ (or divided by *T*) - In general, we solve the f.o.c. (or zero-score condition):

Zero-Score:
$$\sum_{i=1}^{T} \frac{\partial q(\mathbf{z}_i, \mathbf{b})}{\partial \mathbf{b}'} = \mathbf{0}$$

- To check the s.o.c., we define the (pd) Hessian:

$$\mathbf{H} = \sum_{i=1}^{T} \frac{\partial^2 q(\mathbf{z}^i, \mathbf{b})}{\partial \mathbf{b} \partial \mathbf{b}'}$$

M-Estimation

• If $\mathbf{s}(\mathbf{z}, \mathbf{b}) = \frac{\partial q(\mathbf{z}_i, \mathbf{b})}{\partial \mathbf{b}'}$ exists (almost everywhere), we solve $\sum_{i=1}^{T} s(\mathbf{z}_i, \mathbf{b})/T = 0 \quad (*)$

• If, in addition, $E_X[s(\mathbf{z}_i, \mathbf{b})] = \partial/\partial \mathbf{b}' E_X[q(\mathbf{z}, \boldsymbol{\beta})]$ –i.e., differentiation and integration are exchangeable–, then

$$\mathrm{E}_{\mathrm{X}}[\frac{\partial q(\boldsymbol{z}_{i},\boldsymbol{\beta})}{\partial \boldsymbol{\beta}'}] = \boldsymbol{0}.$$

• Under these assumptions the M-estimator is said to be of ψ -type (ψ = $\mathbf{s}(\mathbf{z}, \mathbf{b}) =$ score). Often, \mathbf{b}_{M} is taken to be the solution of (*) without checking whether it is indeed a minimum).

• Otherwise, the M-estimator is of ρ -type. ($\rho = q(\mathbf{z}_i, \mathbf{b})$).

M-Estimation: LS & ML • Least Squares $- DGP: \quad y_i = f(x_{1,i}, x_{2,i}, ..., x_{k,i}; \beta) + \varepsilon_i, \quad \mathbf{z} = [\mathbf{y}, \mathbf{x}]$ $- q(\mathbf{z}, \beta) = S(\beta) = \sum_{i=1}^T \varepsilon_i^2 = \sum_{i=1}^T (y_i - f(x_i, \beta))^2$ - Now, we move from population to sample moments $- q(\mathbf{z}, \mathbf{b}) = S(\mathbf{b}) = \sum_{i=1}^T e_i^2 = \sum_{i=1}^T (y_i - f(x_i, \mathbf{b})^2$ $- \mathbf{b}_{NLLS} = \operatorname{argmin} S(\mathbf{b})$ • Maximum Likelihood $- \operatorname{Let} f(x_i, \beta) \text{ be the pdf of the data.}$ $- L(\mathbf{x}, \beta) = \prod_{i=1}^T f(x_i, \beta)$ $- \ln L(\mathbf{x}, \beta) = \sum_{i=1}^T \ln f(x_i, \beta)$ $- \operatorname{Now, we move from population to sample moments}$ $- q(\mathbf{z}, \mathbf{b}) = -\ln L(\mathbf{x}, \mathbf{b})$ $- \mathbf{b}_{MLE} = \operatorname{argmin} \{-\ln L(\mathbf{x}, \mathbf{b})\}$

M-Estimation: Minimum L_p -estimators • Minimum L_p -estimators $-q(\mathbf{z}, \boldsymbol{\beta}) = (1/p) |\mathbf{x} - \boldsymbol{\beta}|^p$ for $1 \le p \le 2$ $-s(\mathbf{z}, \boldsymbol{\beta}) = |\mathbf{x} - \boldsymbol{\beta}|^{p\cdot 1}$ $\mathbf{x} - \boldsymbol{\beta} < 0$ $= -|\mathbf{x} - \boldsymbol{\beta}|^{p\cdot 1}$ $\mathbf{x} - \boldsymbol{\beta} > 0$ • Special cases: -p = 2: We get the sample mean (LS estimator for $\boldsymbol{\beta}$). $s(\mathbf{z}, \boldsymbol{\beta}) = \sum_{i=1}^{T} (\mathbf{x}_i - \mathbf{b}_M) = 0 \implies \mathbf{b}_M = \sum_{i=1}^{T} \mathbf{x}_i / T$ -p = 1: We get the sample median as the estimator with the least absolute deviation (LAD) for the median $\boldsymbol{\beta}$. (There is no unique solution if *T* is even.) Note: Unlike LS, LAD does not have an analytical solving method. Numerical optimization is not feasible. Linear programming is used.

The Score Vector

• Let
$$X = \{X_1; X_2;...\}$$
 be *i.i.d.*
• If $s(z, b) = \partial q(z, \beta)/\partial b'$ exists, we solve
 $\sum_{i=1}^{T} s(z_i, b_M)/T = 0$ ($s(z_i, b)$ is a $kx1$ vector).
 $- E[s(z, b_0)] = E[\partial q(z, b)/\partial b'] = 0$
 $- Using the LLN: \sum_{i=1}^{T} s(z_i, b_M)/T \xrightarrow{p} E[s(z, b_0)] = 0$
 $- V = Var[s(z, b_0)] = E[s(z, b) * s(z, b)']$ (V is a kxk matrix).
 $= E[(\partial q(z, b)/\partial b') * (\partial q(z, b)/\partial b')']$
 $- Using the LLN: \sum_{i=1}^{T} [s(z_i, b_M) s(z_i, b_M)']/T \xrightarrow{p} Var[s(z, b_0)]$
 $- Using the Lindeberg-Levy CLT: \sum_{i=1}^{T} s(z_i, b)/\sqrt{T} \xrightarrow{d} N(0, V)$
Note: We have already shown these results for the ML case.

The Hessian Matrix

- $H(\mathbf{z}, \mathbf{b}) = E[\partial \mathbf{s}(\mathbf{z}, \mathbf{b})/\partial \mathbf{b}] = E[\partial^2 q(\mathbf{z}; \mathbf{b})/\partial \mathbf{b}\partial \mathbf{b}']$
- Using the LLN: $\sum_{i=1}^{T} [\partial \boldsymbol{s}(\boldsymbol{z}_i, \boldsymbol{b}_M) / \partial \mathbf{b}] / T \xrightarrow{p} \boldsymbol{H}(\mathbf{z}, \mathbf{b}_0)$

• In general, the Information (Matrix) Equality does not hold. That is, $H \neq V$. The equality only holds if the model is correctly specified.

The Asymptotic Theory

We have all the tools to derive the asymptotic distribution of b_M.
Recall the Mean Value Theorem:
f(x) = f(a) + f'(b) (x - a) a < b < x
Apply MVT to the score, with b₀ < b* < b_M:
Σ^T_{i=1} s(z_i, b_M) = Σ^T_{i=1} s(z_i, b₀) + Σ^T_{i=1} H(z_i, b*) (b_M - b₀)

$$2_{i=1} \mathbf{S}(\mathbf{z}_{i}, \mathbf{b}_{M}) = 2_{i=1} \mathbf{S}(\mathbf{z}_{i}, \mathbf{b}_{0}) + 2_{i=1} \mathbf{H}(\mathbf{z}_{i}, \mathbf{b}^{*}) (\mathbf{b}_{M} - \mathbf{b}_{0})$$

$$0 = \sum_{i=1}^{T} \mathbf{S}(\mathbf{z}_{i}, \mathbf{b}_{0}) + \sum_{i=1}^{T} \mathbf{H}(\mathbf{z}_{i}, \mathbf{b}^{*}) (\mathbf{b}_{M} - \mathbf{b}_{0})$$

$$\Rightarrow (\mathbf{b}_{M} - \mathbf{b}_{0}) = [\sum_{i=1}^{T} \mathbf{H}(\mathbf{z}_{i}, \mathbf{b}^{*})]^{-1} \sum_{i=1}^{T} \mathbf{S}(\mathbf{z}_{i}, \mathbf{b}_{0})$$

$$\Rightarrow \sqrt{T} (\mathbf{b}_{M} - \mathbf{b}_{0}) = [\sum_{i=1}^{T} \mathbf{H}(\mathbf{z}_{i}, \mathbf{b}^{*})]^{-1} \sum_{i=1}^{T} \mathbf{S}(\mathbf{z}_{i}, \mathbf{b}_{0}) / \sqrt{T}$$
The asymptotic distribution of \mathbf{b}_{M} is driven by $\sum_{i=1}^{T} \mathbf{S}(\mathbf{z}_{i}, \mathbf{b}_{0}) / \sqrt{T}$

The Asymptotic Theory • **Theorem**: Consistency of M-estimators Let $\{X = X_1; X_2;...\}$ be *i.i.d.* and assume (1) $\mathbf{b} \in \mathbf{B}$, where \mathbf{B} is compact. ("compact") (2) $[\sum_i q(\mathbf{X}_i; \mathbf{b})/T] \xrightarrow{p} g(\mathbf{b})$ uniformly in \mathbf{b} for some continuous function $g: \mathbf{B} \to R$ ("continuity") (3) $g(\mathbf{b})$ has a unique global minimum at \mathbf{b}_0 . ("*identification*") Then, $\mathbf{b}_M \xrightarrow{p} \mathbf{b}_0$ <u>Remark</u>: a) Since \mathbf{X} are *i.i.d.* by the LLN (without uniformity) it must hold $g(\mathbf{b}) = E_X[q(\mathbf{X}; \mathbf{b})]$, thus $E_X[q(\mathbf{z}, \mathbf{b}_0)] = \min_{\mathbf{b} \in \mathbf{B}} E_X[q(\mathbf{z}; \boldsymbol{\beta})]$. b) If \mathbf{B} is not compact, find a compact subset \mathbf{B}_0 , with $\mathbf{b}_0 \in \mathbf{B}_0$ and $P[\mathbf{b}_M \in \mathbf{B}_0] \to 1$.

The Asymptotic Theory

Theorem: Asymptotic Normality of M-estimators Assumptions: (1) $\boldsymbol{b}_{M} \xrightarrow{p} \boldsymbol{b}_{0}$ for some $\boldsymbol{b}_{0} \in \mathbf{B}$. (2) \boldsymbol{b}_{M} is of ψ -type and \mathbf{s} is continuously (for almost all \boldsymbol{x}) differentiable w.r.t. \mathbf{b} . (3) $\sum_{i=1}^{T} [\partial \boldsymbol{s}(\boldsymbol{z}_{i}, \boldsymbol{b})/\partial \mathbf{b}]/T|_{\mathbf{b}=\mathbf{b}^{*}} \xrightarrow{p} \boldsymbol{H}(\mathbf{z}, \boldsymbol{b}_{0}) \text{ for } \mathbf{b}^{*} \xrightarrow{p} \boldsymbol{b}_{0}$ (4) $\sum_{i=1}^{T} \boldsymbol{s}(\boldsymbol{z}_{i}, \boldsymbol{b})/\sqrt{T} \xrightarrow{d} N(\mathbf{0}, V_{0}) \qquad V_{0} = \operatorname{Var}[\mathbf{s}(\mathbf{z}, \boldsymbol{b}_{0})] < \infty$ Then, $\sqrt{T} (\boldsymbol{b}_{M} - \mathbf{b}_{0}) = [\sum_{i=1}^{T} \boldsymbol{H}(\boldsymbol{z}_{i}, \mathbf{b}^{*})]^{-1} \sum_{i=1}^{T} \boldsymbol{s}(\boldsymbol{z}_{i}, \boldsymbol{b}_{0})$ $\Rightarrow \sqrt{T} (\boldsymbol{b}_{M} - \boldsymbol{b}_{0}) \xrightarrow{d} N(\mathbf{0}, \boldsymbol{H}_{0}^{-1} V_{0} \boldsymbol{H}_{0}^{-1})$ $- V = \operatorname{E}[\mathbf{s}(\mathbf{z}, \mathbf{b}) \, \mathbf{s}(\mathbf{z}, \mathbf{b})'] = \operatorname{E}[(\partial q(\mathbf{z}, \mathbf{b})/\partial \mathbf{b})' (\partial q(\mathbf{z}, \mathbf{b})/\partial \mathbf{b})]$ $- H = \partial \mathbf{s}(\mathbf{z}, \mathbf{b})/\partial \mathbf{b} = \operatorname{E}[\partial^{2}q(\mathbf{z}, \mathbf{b})/\partial \mathbf{b}d\mathbf{b}']$

Asymptotic Normality • Summary • $\boldsymbol{b}_{M} \xrightarrow{p} \boldsymbol{b}_{0}$ • $\boldsymbol{b}_{M} \xrightarrow{a} N(\boldsymbol{b}_{0}, \operatorname{Var}[\boldsymbol{b}_{0}])$ • $\operatorname{Var}[\boldsymbol{b}_{M}] = (1/T) \boldsymbol{H}_{0}^{-1} \boldsymbol{V}_{0} \boldsymbol{H}_{0}^{-1}$ • If the model is correctly specified: $-\mathbf{H} = \mathbf{V}$. Then, $\operatorname{Var}[\mathbf{b}] = \boldsymbol{V}_{0}$ • \mathbf{H} and \mathbf{V} are evaluated at \mathbf{b}_{0} : • $\mathbf{H} = \sum_{i} [\partial^{2}q(\mathbf{z}_{i}; \mathbf{b})/\partial \mathbf{b}\partial \mathbf{b}']$ • $\mathbf{V} = \sum_{i} [\partial q(\mathbf{z}_{i}; \mathbf{b})/\partial \mathbf{b}][\partial q(\mathbf{z}_{i}; \mathbf{b})/\partial \mathbf{b}']$

M-Estimation: Example

M-Estimation: Example

• Var[
$$\boldsymbol{b}_{M}$$
] = (1/T) $\boldsymbol{H}_{0}^{-1} \boldsymbol{V}_{0} \boldsymbol{H}_{0}^{-1}$

• We approximate ("estimate")

$$Var[\boldsymbol{b}_{M}] = (1/T) \left\{ \sum_{i} \left[\partial \mathbf{s}(\mathbf{z}_{i}, \boldsymbol{b}_{M}) / \partial \mathbf{b} \right] \right\}^{-1} \left[\sum_{i} \mathbf{s}(\mathbf{z}_{i}, \boldsymbol{b}_{M}) \mathbf{s}(\mathbf{z}_{i}, \boldsymbol{b}_{M})' \right] \\ \left\{ \sum_{i} \left[\partial \mathbf{s}(\mathbf{z}_{i}, \boldsymbol{b}_{M}) / \partial \mathbf{b} \right] \right\}^{-1}$$

$$\mathbf{s}(\mathbf{z}_i, \mathbf{b}_M) = -\left[\exp(\mathbf{x}_i' \mathbf{b}_M)\mathbf{x}_i\right]' \left[\mathbf{y}_i - \exp(\mathbf{x}_i' \mathbf{b}_M)\right] = -\mathbf{x}_i' \exp(\mathbf{x}_i' \mathbf{b}_M)' \mathbf{e}_M$$

Two-Step M-Estimation

• Sometimes, nonlinear models depend not only on our parameter of interest β , but nuisance parameters or unobserved variables in some way. It is common to estimate β using a "two-step" procedure:

1st-stage: $\mathbf{y}_2 = g(\mathbf{w}; \boldsymbol{\gamma}) + \boldsymbol{\nu}$ \Rightarrow we estimate $\boldsymbol{\gamma}$, say \mathbf{c} 2nd-stage $\mathbf{y} = f(\mathbf{x}; \boldsymbol{\beta}, \mathbf{c}) + \boldsymbol{\varepsilon}$ \Rightarrow we estimate $\boldsymbol{\beta}$, given \mathbf{c} .

• The objective function: $\min_{\beta} \{\sum_{i} q(\mathbf{x}; \boldsymbol{\beta}, \mathbf{c}) = \boldsymbol{\varepsilon}^* \boldsymbol{\varepsilon}\}$

• Examples:

- (i) DHW Test for endogeneity
- (ii) Weighted NLLS: $\min_{\beta} \{\sum_{i} [\mathbf{y} f(\mathbf{x}; \boldsymbol{\beta})]^2 / g(\mathbf{z}; \mathbf{c}) \}$
- (iii) Selection Bias Model: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\delta} \hat{\mathbf{h}} + \boldsymbol{\varepsilon}$ $\hat{\mathbf{h}} = \mathbf{G}(\mathbf{z}, \mathbf{c}).$

Two-Step M-Estimation

- Properties -- Pagan (1984, 1986), generated regressors:
 - Consistency. We need to apply a uniform weak LLN.
 - Asymptotic normality: We need to apply CLT.

• Two interesting results:

The 2S estimator can be consistent even in some cases where g(z;γ) is not correctly specified –i.e., situations where c may be inconsistent.
The S.E. –i.e., Var[b_{2S}]– needs to be adjusted by the 1st stage estimation, in most cases.

Two-Step M-Estimation

• We can also write $\sqrt{T(\mathbf{c} - \mathbf{c_0})} = H_{\mathbf{c0}^{-1}}[-\sum_i \mathbf{s}(\mathbf{w}_i, \mathbf{c})/\sqrt{T}] + o(1)$ = $\sum_i \mathbf{h}(\mathbf{w}_i, \mathbf{c})/\sqrt{T} + o(1)$

• Then, substituting back in (***) and then in (*), we have $\sqrt{T} (\boldsymbol{b}_M - \mathbf{b}_0) = \boldsymbol{H}_0^{-1} [-\sum_i \mathbf{r}(\mathbf{z}_i; \mathbf{b}_0, \mathbf{c}_0) / \sqrt{T}] + o(1), \quad (****)$

where $\mathbf{r}(\mathbf{z}_i; \mathbf{b}_0, \mathbf{c}_0) = \mathbf{s}(\mathbf{z}_i; \mathbf{b}_0, \mathbf{c}_0) + \mathbf{F}_0 \mathbf{h}(\mathbf{w}_i, \mathbf{c}_0)$

<u>Note</u>: Difference between (*) and (****): $\mathbf{r}(\mathbf{z}_i, \mathbf{b}_0, \mathbf{c}_0)$ replaces $\mathbf{s}(\mathbf{z}_i, \mathbf{b}_0, \mathbf{c})$. The second term in $\mathbf{r}(\mathbf{z}_i, \mathbf{b}_0, \mathbf{c}_0)$ reflects the 1st-stage adjustment.

• Var[
$$\boldsymbol{b}_{M}$$
] = (1/T) \boldsymbol{H}_{0}^{-1} Var[$\mathbf{r}(\mathbf{z}_{i}; \mathbf{b}_{0}, \mathbf{c}_{0})$] \boldsymbol{H}_{0}^{-1}

Applications

- Heteroscedastity Autocorrelation Consistent (HAC) Variance-Covariance Matrix
 - Non-spherical disturbances in NLLS
- Quasi Maximum Likelihood (QML)
 - Misspecified density assumption in ML
 - Information Equality may not hold

Special case of M-estimation: NL Regression

- We start with a regression model: $y_i = f(x_i, \beta) + \varepsilon_i$
- Q: What makes a regression model nonlinear?

• Recall that OLS can be applied to nonlinear functional forms. But, for OLS to work, we need *intrinsic linearity*—i.e., the model linear in the parameters.

Example: A nonlinear functional form, but intrinsic linear:

 $y_i = \exp(\beta_1) + \beta_2 * x_i + \beta_3 * x_i^2 + \varepsilon_i$

Example: A non intrinsic linear model:

 $y_i = f(\mathbf{x}_i, \mathbf{\beta}^0) + \varepsilon_i = \beta_0 + \beta_1 x_i^{\beta_2} + \varepsilon_i$

Nonlinear Least Squares

• Least squares:

Min
$$_{\beta} \{ S(\beta) = \frac{1}{2} \sum_{i=1}^{T} [y_i - f(x_i, \beta)]^2 = \frac{1}{2} \sum_{i=1}^{T} \varepsilon_i^2 \}$$

F.o.c.:

$$\partial \{ \frac{1}{2} \sum_{i=1}^{T} [y_i - f(\mathbf{x}_i, \mathbf{\beta})]^2 \} / \partial \mathbf{\beta}$$

= $\frac{1}{2} 2 \sum_{i=1}^{T} [y_i - f(\mathbf{x}_i, \mathbf{\beta})]^2 \partial f(\mathbf{x}_i, \mathbf{\beta}) / \partial \mathbf{\beta} = -\sum_{i=1}^{T} e_i \mathbf{x}_i^0$
 $\Rightarrow -\sum_{i=1}^{T} e_i \mathbf{x}_i^0 = \mathbf{0}, \text{ we solve for } \mathbf{b}_{\text{NLLS}}.$

In general, there is no explicit solution, like in the OLS case:

$$\mathbf{b} = g(\mathbf{X}, \mathbf{y}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \mathbf{y}$$

• In this case, we have a *nonlinear* model: the f.o.c. cannot be solved explicitly for \mathbf{b}_{NLLS} . That is, the nonlinearity of the f.o.c. defines a nonlinear model.

Nonlinear Least Squares: Example • Q: How to solve this kind of set of equations? **Example:** Min_β { $S(\beta) = \frac{1}{2} \sum_{i=1}^{T} [y_i - f(x_i, \beta)]^2 = \frac{1}{2} \sum_{i=1}^{T} \varepsilon_i^2$ } $y_i = f(x_i, \beta) + \varepsilon_i = \beta_0 + \beta_1 x_i^{\beta_2} + \varepsilon_i$. f.o.c.: $\partial [\frac{1}{2} \sum_{i=1}^{T} e_i^2] / \partial \beta_0 = \sum_i (-1) (y_i - \beta_0 + \beta_1 x_i^{\beta_2}) 1 = 0$ $\partial [\frac{1}{2} \sum_{i=1}^{T} e_i^2] / \partial \beta_1 = \sum_i (-1) (y_i - \beta_0 + \beta_1 x_i^{\beta_2}) x_i^{\beta_2} = 0$ $\partial [\frac{1}{2} \sum_{i=1}^{T} e_i^2] / \partial \beta_2 = \sum_i (-1) (y_i - \beta_0 + \beta_1 x_i^{\beta_2}) \beta_1 x_i^{\beta_2} \ln(x_i) = 0$ • Nonlinear equations require a nonlinear solution. This defines a nonlinear regression model: the f.o.c. are *not* linear in β . <u>Note</u>: If $\beta_2 = 1$, we have a linear model.

NLLS: Linearization

• We start with a nonlinear model: $y_i = f(\mathbf{x}_i, \mathbf{\beta}) + \varepsilon_i$

• We expand the regression around some point, **β**⁰:

$$f(\mathbf{x}_{i}, \mathbf{\beta}) \approx f(\mathbf{x}_{i}, \mathbf{\beta}^{0}) + \sum_{j=1}^{k} \left[\partial f(\mathbf{x}_{i}, \mathbf{\beta}^{0}) / \partial \beta_{j}^{0} \right] * (\beta_{j} - \beta_{j}^{0})$$

= $f(\mathbf{x}_{i}, \mathbf{\beta}^{0}) + \sum_{j=1}^{k} \mathbf{x}_{i}^{0} * (\beta_{j} - \beta_{j}^{0})$
= $\left[f(\mathbf{x}_{i}, \mathbf{\beta}^{0}) - \sum_{j=1}^{k} \mathbf{x}_{i}^{0} * \beta_{j}^{0} \right] + \sum_{j=1}^{k} \mathbf{x}_{i}^{0} * \beta_{j}$
= $f_{i}^{0} + \sum_{j=1}^{k} \mathbf{x}_{i}^{0} * \beta_{j} = f_{i}^{0} + \mathbf{x}_{i}^{0} \cdot \mathbf{\beta}$

where

$$f_i^0 = f(\mathbf{x}_i, \mathbf{\beta}^0) - \mathbf{x}_i^{0*} \mathbf{\beta}^0 \qquad (f_i^0 \text{ does not depend on unknowns})$$

Now,
$$f(\mathbf{x}_i, \mathbf{p})$$
 is (approximately) linear in the parameters! That is,
 $y_i = f_i^0 + \mathbf{x}_i^{0"} \mathbf{\beta} + \varepsilon_i^0$ ($\varepsilon_i^0 = \varepsilon_i$ + linearization error i)
 $\Rightarrow y_i^0 = y_i - f_i^0 = \mathbf{x}_i^{0"} \mathbf{\beta} + \varepsilon_i^0$

NLLS: Linearization

• We can also compute the asymptotic covariance matrix for the NLLS estimator as usual, using the pseudo regressors and the RSS:

Est. Var $[\mathbf{b}_{\text{NLLS}} | \mathbf{X}^0] = s_{\text{NLLS}}^2 (\mathbf{X}^0 | \mathbf{X}^0)^{-1}$ $s_{\text{NLLS}}^2 = [\mathbf{y} - f(\mathbf{x}_i, \mathbf{b}_{\text{NLLS}})]' [\mathbf{y} - f(\mathbf{x}_i, \mathbf{b}_{\text{NLLS}})]/(T - k).$

• Since the results are asymptotic, we do not need a degrees of freedom correction. However, a *df* correction is usually included.

Note: To calculate s_{NLLS}^2 , we calculate the residuals from the nonlinear model, not from the linearized model (linearized regression).

Gauss-Newton Algorithm

- Recall that \mathbf{b}_{NLLS} depends on $\boldsymbol{\beta}^0$. That is, $\mathbf{b}_{\text{NLLS}} (\boldsymbol{\beta}^0) = (\mathbf{X}^{0} \mathbf{X}^{0})^{-1} \mathbf{X}^{0} \mathbf{y}^{0}$
- We use a *Gauss-Newton algorithm* to find the **b**_{NLLS}. Recall GN:

$$\boldsymbol{\beta}_{k+1} = \boldsymbol{\beta}_k + (\mathbf{J}^T \, \mathbf{J})^{-1} \, \mathbf{J}^T \, \boldsymbol{\epsilon}$$

- $-\mathbf{J}: \text{Jacobian} = \delta f(x_i; \boldsymbol{\beta}) / \delta \boldsymbol{\beta}.$
- Given a \mathbf{b}_{NLLS} at step *j*, $\mathbf{b}(j)$, we find the \mathbf{b}_{NLLS} for step *j*+1 by: $\mathbf{b}(j+1) = \mathbf{b}(j) + [\mathbf{X}^0(j)'\mathbf{X}^0(j)]^{-1}\mathbf{X}^0(j)'\mathbf{e}^0(j)$

Columns of $\mathbf{X}^{0}(j)$ are the derivatives: $\partial f(\mathbf{x}_{i}, \mathbf{b}(j)) / \partial \mathbf{b}(j)'$ $\mathbf{e}^{0}(j) = \mathbf{y} - f[\mathbf{x}, \mathbf{b}(j)]$

• The *update* vector is the slopes in the regression of the residuals on **X**⁰. The update is zero when they are orthogonal. (Just like OLS)

Box-Cox Transformation

• It's a simple transformation that allows non-linearities in the CLM.

$$y_{i} = f(\boldsymbol{x}_{i}, \boldsymbol{\beta}) + \varepsilon_{i} = \sum_{j=1}^{k} \boldsymbol{x}_{i,j} {}^{(\lambda)} \boldsymbol{\beta}_{j} + \varepsilon_{i}$$
$$\boldsymbol{x}_{k} {}^{(\lambda)} = (\boldsymbol{x}_{k}{}^{\lambda} - 1)/\lambda \qquad \lim_{\lambda \to 0} (\boldsymbol{x}_{k}{}^{\lambda} - 1)/\lambda = \ln \boldsymbol{x}_{k}$$

• For a given λ , OLS can be used. An iterative process can be used to estimate λ . OLS standard errors have to be corrected. Probably, not a very efficient method.

- NLLS or MLE will work fine.
- We can have a more general Box-Cox transformation model: $y_i^{(\lambda 1)} = \sum_{i=1}^k x_{i,i}^{(\lambda 2)} \beta_i + \varepsilon_i$

Testing non-linear restrictions

• Testing linear restrictions as before.

• Non-linear restrictions introduce slight modification to the usual tests. We want to test:

 $\mathbf{H}_0: \mathbf{R}(\boldsymbol{\beta}) = 0$

where $R(\boldsymbol{\beta})$ is a non-linear function, with rank $[\partial R(\boldsymbol{\beta})/\partial \boldsymbol{\beta} = \mathbf{G}(\boldsymbol{\beta})] = J$.

• A Wald test can be based on $\mathbf{m} = \mathbf{R}(\mathbf{b}_{\text{NLLS}}) - \mathbf{0}$: $W = \mathbf{m'}(\text{Var}[\mathbf{m} | \mathbf{X}])^{-1}\mathbf{m} = \mathbf{R}(\mathbf{b}_{\text{NLLS}})'(\text{Var}[\mathbf{R}(\mathbf{b}_{\text{NLLS}}) | \mathbf{X}])^{-1}\mathbf{R}(\mathbf{b}_{\text{NLLS}})$

<u>Problem</u>: We do not know the distribution of $R(\mathbf{b}_{NLLS})$, but we know the distribution of \mathbf{b}_{NLLS} .

Solution: Linearize $R(\mathbf{b}_{NLLS})$ around $\boldsymbol{\beta}$ $R(\mathbf{b}_{NLLS}) \approx R(\boldsymbol{\beta}) + \mathbf{G}(\mathbf{b}_{NLLS}) (\mathbf{b}_{NLLS} - \boldsymbol{\beta})$ **Testing non-linear restrictions** • Linearize $R(\mathbf{b}_{NLLS})$ around $\boldsymbol{\beta} (= \mathbf{b}_0)$ $R(\mathbf{b}_{NLLS}) \approx R(\boldsymbol{\beta}) + \mathbf{G}(\mathbf{b}_{NLLS}) (\mathbf{b}_{NLLS} - \boldsymbol{\beta})$ • Recall $\sqrt{T} (\mathbf{b}_{\mathbf{M}} - \mathbf{b}_0) \xrightarrow{d} N(\mathbf{0}, \operatorname{Var}[\mathbf{b}_0])$ where $\operatorname{Var}[\mathbf{b}_0] = H(\boldsymbol{\beta})^{-1} V(\boldsymbol{\beta}) H(\boldsymbol{\beta})^{-1}$ $\Rightarrow \sqrt{T} [R(\mathbf{b}_{NLLS}) - R(\boldsymbol{\beta})] \xrightarrow{d} N(\mathbf{0}, \mathbf{G}(\boldsymbol{\beta}) \operatorname{Var}[\mathbf{b}_0] \mathbf{G}(\boldsymbol{\beta})')$ $\Rightarrow \operatorname{Var}[R(\mathbf{b}_{NLLS})] = (1/T) \mathbf{G}(\boldsymbol{\beta}) \operatorname{Var}[\mathbf{b}_0] \mathbf{G}(\boldsymbol{\beta})'$ • Then, $W = T R(\mathbf{b}_{NLLS})' \{ \mathbf{G}(\mathbf{b}_{NLLS}) \operatorname{Var}[\mathbf{b}_{NLLS}] \mathbf{G}(\mathbf{b}_{NLLS})' \}^{-1} R(\mathbf{b}_{NLLS})$ $\Rightarrow W \xrightarrow{d} \chi_J^2$

User Define	d Optimizatio	n			
Nonlinear	least squar	es regression			
LHS=Y	Mean	=	4.00633		
	Standard de	viation =	1.23398	3	
	Number of o	bservs. =	6	5	
Model size	Parameters	=	3	3	
	Degrees of	freedom =	3	3	
Residuals	Sum of squa	res =	.00121		
	Standard er	ror of e =	.02010)	
Fit .	R-squared	=	.99984	l	
Variable C	oefficient	Standard Error	b/St.Er.	P[Z >z]	
B0	54559**	.22460	-2.429	.0151	
B1	1.08072***	.13698	7.890	.0000	
B2	3.37287***	.17847	18.899	.0000	

110 p	X20	X30	iuais at the sol	unon are.
	$x^{\beta 2}$	$\beta_1 x^{\beta_2} \ln x$	e 0	
	2.47983	0.721624	.0036	
	3.67566	1.5331	0058	
	3.83826	1.65415	0055	
	4.52972	2.19255	0097	
	4.99466	2.57397	.0298	
	5.75358	3.22585	0124	

Application 2: NL Model Specification (Greene) • Nonlinear Regression Model $y = \exp(\mathbf{X}\boldsymbol{\beta}) + \varepsilon$ **X** = one, age, health_status, married, educ., household_income, nkids nlsq;lhs=docvis;start=0,0,0,0,0,0,0;labels=k b;fcn=exp(b1'x);maxit=25;out... Begin NLSQ iterations. Linearized regression. Iteration= 1; Sum of squares= 1014865.00 ; Gradient= 257025.070 Iteration= 2; Sum of squares= .130154610E+11; Gradient= .130145942E+11 Iteration= 3; Sum of squares= .175441482E+10; Gradient= .175354986E+10 Iteration= 4; Sum of squares= 235369144. ; Gradient= 234509185. Iteration= 5; Sum of squares= 31610466.6 ; Gradient= 30763872.3 Iteration= 6; Sum of squares= 4684627.59 ; Gradient= 3871393.70 Iteration= 7; Sum of squares= 1224759.31 ; Gradient= 467169.410 Iteration= 8; Sum of squares= 778596.192 ; Gradient= 33500.2809 Iteration= 9; Sum of squares= 746343.830 ; Gradient= 450.321350 Iteration= 10; Sum of squares= 745898.272 ; Gradient= .287180441 Iteration= 11; Sum of squares= 745897.985 ; Gradient= .929823308E-03 Iteration= 15; Sum of squares= 745897.984 ; Gradient= .188041512E-10

	Nonlinear		least square	es regress	ion			I	
	LHS=DOCVI	S	Mean		=	3.1835	525	1	
			Standard de	eviation	=	5.6896	590	1	
	WTS=none		Number of d	bservs.	=	273	326	1	
	Model siz	e	Parameters		=		7	1	
			Degrees of	freedom	=	273	819	- I	
	Residuals	5	Sum of squa	ares	=	745898	3.0	- I	
			Standard en	ror of e	=	5.2245	584	1	
	Fit		R-squared		=	.15677	78	- I	
			Adjusted R-	squared	=	.15680)87	1	
	Info crit	er.	LogAmemiya	Prd. Crt.	=	3.3070	06		
			Akaike Info	o. Criter.	=	3.3072	263		
	Not using	J OLS	5 or no cons	stant. Rsq	d&	F may k	be < 0	•	
+	+							+	
-	+ Variable			Standard	 Frr	+-		+ P[7 >7]	-+
-	+					+		+	-+
	в1		2.37667859	.069	7258	2 34	1.086	.0000	
	В2		.00809310	.000	8849	0 9	9.146	.0000	
	в3		21721398	.003	1399	2 -69	9.178	.0000	
	B4		.00371129	.020	5114	7	.181	.8564	
	В5		01096227	.004	3560	1 -2	2.517	.0118	
	В6		26584001	.056	6447	3 -4	.693	.0000	
	В7		09152326	.021	2805	3 -4	1.301	.0000	

Asymptotic Variance of the Slope Estimator (Greene) $\hat{\delta} = \text{ estimated partial effects } = \frac{\partial \hat{E}[y|\mathbf{x}]}{\partial \mathbf{x}} | (\mathbf{x} = \overline{\mathbf{x}})$ To estimate Asy.Var[$\hat{\delta}$], we use the delta method: $\hat{\delta} = \exp(\overline{\mathbf{x}}'\hat{\beta}) \hat{\beta}$ $\hat{\mathbf{G}} = \frac{\partial \hat{\delta}}{\partial \hat{\beta}} = \exp(\overline{\mathbf{x}}'\hat{\beta}) \mathbf{I} + \hat{\beta}\exp(\overline{\mathbf{x}}'\hat{\beta})\overline{\mathbf{x}}'$ Est.Asy.Var[$\hat{\delta}$]= $\hat{\mathbf{G}}$ Est.Asy.Var[$\hat{\beta}$] $\hat{\mathbf{G}}'$

Computing the Slopes (Greene)

calc;k=col(x)\$
nlsq;lhs=docvis;start=0,0,0,0,0,0,0
;labels=k_b;fcn=exp(b1'x);
matr;xbar=mean(x)\$
calc;mean=exp(xbar'b)\$
matr;me=b*mean\$
matr;g=mean*iden(k)+mean*b*xbar'\$
matr;vme=g*varb*g'\$
matr;stat(me,vme)\$

Number of	observations i	n current sample	= 2732	26
Number of	parameters com	puted here	= 0721	7
Number of	aegrees of fre	eaom	= 2/3	.9
Variable	Coefficient	Standard Error	b/St.Er	P[Z >2
Constant	6.48148***	.20680	31.342	2.0000
AGE	.02207***	.00239	9.216	5.0000
HSAT	59241***	.00660	-89.740	.000
MARRIED	.01005	.05593	.180	.8574
EDUC	02988**	.01186	-2.519	.0118
HHNINC	72495***	.15450	-4.692	.000
HHKIDS	24958***	.05796	-4.306	5.0000

What About Just Using LS? (Greene)					
++ Variable	Coefficient	Standard Error	-+ b/St.Er.	+	+ Mean of
++ Least Squa	res Coefficient	Estimates	-+	+	-+
Constant	9.12437987	.25731934	35.459	.0000	
AGE	.02385640	.00327769	7.278	.0000	43.525689
NEWHSAT	86828751	.01441043	-60.254	.0000	6.7856620
MARRIED	02458941	.08364976	294	.7688	.7586181
EDUC	04909154	.01455653	-3.372	.0007	11.320631
HHNINC	-1.02174923	.19087197	-5.353	.0000	.3520836
HHKIDS	38033746	.07513138	-5.062	.0000	.4027300
Estimated	Partial Effects				
ME 1	Constant t	erm, marginal e	ffect not	computed	
ME_2	.02207102	.00239484	9.216	.0000	
ME_3	59237330	.00660118	-89.737	.0000	
ME_4	.01012122	.05593616	.181	.8564	
ME_5	02989567	.01186495	-2.520	.0117	
ME_6	72498339	.15449817	-4.693	.0000	
ME_7	24959690	.05796000	-4.306	.0000	