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Lecture 9
NLLS 

R. Susmel, 2022 (for private use, not to be posted/shared online).

M-Estimation

• An extremum estimator is one obtained as the optimizer of a 
criterion function, q(z, b).

Examples:

OLS: b = arg max {െ∑ 𝑒௜
்
௜ୀଵ

ଶ
= െ 𝒆’𝒆 /T}

MLE: bMLE = arg max { ln 𝐿 = ∑ 𝑙𝑛𝑓ሺ𝒙௜ ,  𝑦௜ , bሻ்
௜ୀଵ  ሽ

GMM: bGMM = arg max {– 𝑔ሺ𝒙௜ ,  𝑦௜ , bሻ′ W 𝑔ሺ𝒙௜ ,  𝑦௜ , bሻሽ

• There are two classes of extremum estimators: 

- M-estimators: The objective function is a sample average or a sum.

- Minimum distance estimators: The objective function is a measure 
of a distance.

• "M" stands for a maximum or minimum estimators –Huber (1967).
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• The objective function is a sample average or a sum. 

• We want to minimize a population (first) moment: 

minb E[𝑞ሺ𝒛, β)]

– Using the LLN, we move from the population first moment to the 
sample average:

∑ 𝑞ሺ𝒛௜ , bሻ/𝑇்
௜ୀଵ   

   ௣    
E[𝑞ሺ𝒛, β)] 

– We want to obtain:   b = argmin ∑ 𝑞ሺ𝒛௜ , bሻ்
௜ୀଵ (or divided by 𝑇)

– In general, we solve the f.o.c. (or zero-score condition):

Zero-Score: ∑ ௤ሺ𝒛೔, bሻ
b′

்
௜ୀଵ = 0

– To check the s.o.c., we define the (pd) Hessian: 

H = ∑ మ௤ሺ𝒛೔, bሻ
b b′

்
௜ୀଵ

M-Estimation

• If 𝐬ሺ𝒛, bሻ = 
௤ሺ𝒛೔, bሻ
b′ exists (almost everywhere), we solve 

∑ 𝑠ሺ𝒛௜ , bሻ/𝑇்
௜ୀଵ = 0 (*)

• If, in addition, EX[𝑠ሺ𝒛௜ , bሻ] = /b′ EX[𝑞ሺ𝒛, β)] –i.e., differentiation 
and integration are exchangeable–, then 

EX[
௤ሺ𝒛೔,βሻ
β′ ] = 0.

• Under these assumptions the M-estimator is said to be of ψ-type (ψ= 
s(z, b) = score). Often, bM is taken to be the solution of (*) without 
checking whether it is indeed a minimum).

• Otherwise, the M-estimator is of  ρ-type. (ρ = 𝑞ሺ𝒛௜ , bሻ).

M-Estimation
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• Least Squares
– DGP: 𝑦௜ = 𝑓ሺ𝑥ଵ,௜, 𝑥ଶ,௜, …, 𝑥௞,௜ ; βሻ + ε௜, z = [𝒚, 𝑥]

– 𝑞ሺ𝒛, β) = S() = ∑ ε௜
்
௜ୀଵ

ଶ
= ∑ ሺ𝑦௜ െ 𝑓ሺ𝑥௜ , ሻ்

௜ୀଵ ሻଶ

– Now, we move from population to sample moments 

– 𝑞ሺ𝒛, b) = S(b) = ∑ 𝑒௜
்
௜ୀଵ

ଶ
= ∑ ሺ𝑦௜ െ 𝑓ሺ 𝑥௜ , bሻ்

௜ୀଵ
ଶ

– bNLLS = argmin S(b)

• Maximum Likelihood
– Let 𝑓ሺ𝑥௜ , ሻ be the pdf of the data. 
– 𝐿ሺ𝒙, ሻ = ∏ 𝑓ሺ𝑥௜ , ሻ ்

௜ୀଵ

– ln 𝐿ሺ𝒙, ) = ∑ ln 𝑓ሺ𝑥௜ , ሻ்
௜ୀଵ

– Now, we move from population to sample moments
– 𝑞ሺ𝒛, b) = -ln 𝐿ሺ𝒙, b)
– bMLE = argmin { – ln 𝐿ሺ𝒙, b) }

M-Estimation: LS & ML

• Minimum Lp-estimators 
- 𝑞ሺ𝒛, β) = (1/p)|x – β|p for 1 ≤ p ≤ 2
- 𝒔ሺ𝒛, β) = |x – β|p-1 x – β < 0 

= -|x – β|p-1 x – β > 0 
• Special cases:
– p = 2 : We get the sample mean (LS estimator for β).

𝒔ሺ𝒛, β) = ∑ ሺ𝑥௜െbM
்
௜ୀଵ ሻ = 0  bM = ∑ 𝑥௜/𝑇

்
௜ୀଵ

– p = 1 : We get the sample median as the estimator with the least 
absolute deviation (LAD) for the median β. (There is no unique 
solution if T is even.)

Note: Unlike LS, LAD does not have an analytical solving method. 
Numerical optimization is not feasible. Linear programming is used.

M-Estimation: Minimum Lp-estimators
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The Score Vector

• Let X = {X1; X2;... }be i.i.d.

• If 𝒔ሺ𝒛, 𝒃) = 𝑞ሺ𝒛, β)/b′ exists, we solve 

∑ 𝒔ሺ𝒛௜ ,𝒃ெሻ/𝑇
்
௜ୀଵ = 0 (𝒔ሺ𝒛௜ ,𝒃ሻ is a 𝑘x1 vector). 

– E[𝒔ሺ𝒛, 𝒃଴)] = E[ 𝑞ሺ𝒛, b)/b′] = 0

– Using the LLN:  ∑ 𝒔ሺ𝒛௜ ,𝒃ெሻ/𝑇
்
௜ୀଵ

   ௣    
E[𝒔ሺ𝒛, 𝒃଴)] = 0

– V = Var[𝒔ሺ𝒛, 𝒃଴)] = E[𝒔ሺ𝒛, 𝒃) ∗ 𝒔ሺ𝒛, 𝒃)′] (V is a 𝑘x𝑘 matrix).

= E[(𝑞ሺ𝒛, b)/b′) * (𝑞ሺ𝒛, b)/b′)′]

– Using the LLN:  ∑ ሾ𝒔 𝒛௜ ,𝒃ெ  𝒔 𝒛௜ ,𝒃ெ ᇱሿ/𝑇்
௜ୀଵ

   ௣    
Var[𝒔ሺ𝒛, 𝒃଴)]

– Using the Lindeberg-Levy CLT:    ∑ 𝒔 𝒛௜ , 𝑏
்
௜ୀଵ /T

   ௗ    
N(0,V ) 

Note: We have already shown these results for the ML case.

• H(z, b) =  E[s(z, b)/b] = E[2q(z; b)/bb′]

- Using the LLN: ∑ ሾ𝒔 𝒛௜ ,𝒃ெ /bሿ/𝑇்
௜ୀଵ   

   ௣    
H(z, b0)

• In general, the Information (Matrix) Equality does not hold. That is,  
H ≠ V.  The equality only holds if the model is correctly specified. 

The Hessian Matrix
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• We have all the tools to derive the asymptotic distribution of 𝒃ெ .

Recall the Mean Value Theorem:

𝑓ሺ𝑥ሻ = 𝑓ሺ𝑎ሻ + 𝑓′ሺ𝑏ሻ ሺ𝑥 – 𝑎) 𝑎 < 𝑏 < 𝑥

Apply MVT to the score, with 𝒃଴ < b* < 𝒃ெ:

∑ 𝒔ሺ𝒛௜ ,𝒃ெሻ
்
௜ୀଵ = ∑ 𝒔ሺ𝒛௜ ,𝒃଴ሻ

்
௜ୀଵ + ∑ 𝑯ሺ𝒛௜ , b∗)்

௜ୀଵ  (bM – b0)

0 = ∑ 𝒔ሺ𝒛௜ ,𝒃଴ሻ
்
௜ୀଵ + ∑ 𝑯ሺ𝒛௜ , b∗)்

௜ୀଵ  (bM – b0)

 (𝒃ெ – b0) = [∑ 𝑯ሺ𝒛௜ , b∗)]்
௜ୀଵ

-1 ∑ 𝒔ሺ𝒛௜ ,𝒃଴ሻ
்
௜ୀଵ

 T (𝒃ெ – b0)  = [∑ 𝑯ሺ𝒛௜ , b∗)]்
௜ୀଵ

-1 ∑ 𝒔ሺ𝒛௜ ,𝒃଴ሻ
்
௜ୀଵ /T

The asymptotic distribution of 𝒃ெ is driven by ∑ 𝒔ሺ𝒛௜ ,𝒃଴ሻ
்
௜ୀଵ /T 

The Asymptotic Theory

The Asymptotic Theory

• Theorem: Consistency of M-estimators

Let {X = X1; X2;... }be i.i.d. and assume

(1) b ∈ B, where B is compact. (“compact”)

(2) [∑i q(Xi; b)/T] 
   ௣    

g(b) uniformly in b for some continuous 
function g: B  → R (“continuity”)

(3) g(b) has a unique global minimum at b0. (“identification”)

Then,  𝒃ெ 
   ௣    

b0

Remark: a) Since X are i.i.d. by the LLN (without uniformity) it

must hold g(b) = EX[q(X; b)], thus EX[q(z, b0)] = minbЄB EX[q(z; β)].

b) If B is not compact, find a compact subset B0, with b0 ∈ B0

and P[bM∈ B0] → 1.
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Theorem: Asymptotic Normality of M-estimators
Assumptions:

(1)  𝒃ெ
   ௣    

𝒃଴ for some 𝒃଴ Є B.

(2)  𝒃ெ is of ψ-type and s is continuously (for almost all 𝑥) 
differentiable w.r.t. b.

(3) ∑ ሾ𝒔ሺ𝒛௜ ,𝒃ሻ்
௜ୀଵ /b]/T|b=b*

   ௣    
H(z, 𝒃଴)   for b*

   ௣    
𝒃଴

(4) ∑ 𝒔ሺ𝒛௜ ,𝒃ሻ
்
௜ୀଵ /T  

   ௗ    
N(0,V0) V0 = Var[s(z, 𝒃଴)] <∞

Then, T ( 𝒃ெ – b0) = [∑ 𝑯ሺ𝒛௜ , b∗)]்
௜ୀଵ

-1 ∑ 𝒔ሺ𝒛௜ ,𝒃଴ሻ
்
௜ୀଵ

 T ( 𝒃ெ – 𝒃଴) 
   ௗ    

N(0, H0
-1V0 H0

-1)

- V = E[s(z,b) s(z,b)′] = E[(q(z,b)/b)′ (q(z,b)/b)]

- H = s(z,b)/b = E[2q(z,b)/bb′]

The Asymptotic Theory

Asymptotic Normality

• Summary

-  𝒃ெ
   ௣    

𝒃଴

-  𝒃ெ
   ௔    

N(𝒃଴,Var[𝒃଴])

- Var[ 𝒃ெ] = (1/T) H0
-1V0 H0

-1

- If the model is correctly specified: -H = V. 

Then, Var[b] = V0

– H and V are evaluated at b0:

- H = ∑i [2q (zi; b)/bb′]

- V = ∑i [q(zi; b)/b][q(zi; b)/b′]
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• DGP: y = f(xi;β) + ε = exp(xβ) + ε, 
- Objective function:

q(X; β) = ½ ε′ ε = ½ [y – exp(Xβ)]′ [y – exp(Xβ)]

Let G = [gi], where gi = fi (x; β)/βk = exp(xi′β) xki

- Score: s(z, β) = q(z; β)/β = ε′ f(xi; β)/β = ε′ G
= - [y – exp(Xβ)]′ G = - y′G + exp(Xβ)′ G

- V = Var[s(z,β)] = E[G′ε ε′G]

- H = E[2q(z, β)/ββ′] = E[f(xi;β)/β′ f(xi; β)/β′ –
– 2f(xi; β)/ββ′ ε] = E[G′G – G/β ε]

- Var[bM] = (1/T) H0
-1V0 H0

-1

M-Estimation: Example

• Var[ 𝒃ெ] = (1/T) H0
-1V0 H0

-1

• We approximate (“estimate”)

Var[𝒃ெ] = (1/T) {∑i [s(zi, 𝒃ெ)/b]}-1 [∑i s(zi, 𝒃ெ) s(zi, 𝒃ெ)′] 

{∑i [s(zi, 𝒃ெ)/b]}-1

s(zi, 𝒃ெ) = - [exp(xi′ 𝒃ெ)xi]′ [yi – exp(xi′ 𝒃ெ)] = - xi′ exp(xi′ 𝒃ெ)′ ei

M-Estimation: Example



RS - Econometrics I - Lecture 9 (NLLS)

© Do not share/post online without written authorization 8

• Sometimes, nonlinear models depend not only on our parameter of 
interest β, but nuisance parameters or unobserved variables in some 
way. It is common to estimate β using a “two-step” procedure:

1st-stage: y2 = g(w; γ) + ν  we estimate γ, say c

2nd-stage y = f(x; β,c) + ε  we estimate β, given c.

• The objective function: minβ {∑i q(x; β,c) = ε’ ε}

• Examples: 

(i) DHW Test for endogeneity

(ii) Weighted NLLS: minβ {∑i [y – f(x; β)]2/ g(z; c) 

(iii) Selection Bias Model: y = Xβ + δ ĥ + ε ĥ = G(z, c).

Two-Step M-Estimation

• Properties --Pagan (1984, 1986), generated regressors:

- Consistency. We need to apply a uniform weak LLN.

- Asymptotic normality: We need to apply CLT. 

• Two interesting results:

- The 2S estimator can be consistent even in some cases where g(z;γ) 
is not correctly specified –i.e., situations where c may be inconsistent.

- The S.E. –i.e., Var[b2S]– needs to be adjusted by the 1st stage 
estimation, in most cases. 

Two-Step M-Estimation
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• Recall T ( 𝒃ெ – b0) = H0
-1[-∑i s(zi; b0,c)/T] + o(1) (*)

The question is weather the following equation holds:

∑i s(zi; b0,c )/T = ∑i s(zi; b0,c0)/T + o(1) (**)

where c0 is the true value of γ.

If this equality holds, bM would be consistent.

• Let’s do a 1st order Taylor expansion:

∑i s(zi; b0,c)/T ≈  ∑i s(zi; b0,c0)/T + F0 (c – c0)/T (***)

where F0 = s(z; b0,c)/γ

Note: If c = c0 or F0 = 0, then (**) holds.

Two-Step M-Estimation

• We can also write T (c – c0) = Hc0
-1[-∑i s(wi, c)/T] + o(1)

= ∑i h(wi, c )/T + o(1)

• Then, substituting back in (***) and then in (*), we have

T ( 𝒃ெ – b0) = H0
-1[-∑i r(zi; b0,c0 )/T] + o(1), (****)

where r(zi; b0,c0 ) = s(zi; b0,c0) + F0  h(wi, c0)

Note: Difference between (*) and (****): r(zi, b0,c0) replaces s(zi,b0,c). 
The second term in r(zi, b0,c0) reflects the 1st-stage adjustment.

• Var[ 𝒃ெ] = (1/T) H0
-1 Var[r(zi; b0,c0)] H0

-1

Two-Step M-Estimation
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Applications

• Heteroscedastity Autocorrelation Consistent (HAC) Variance-
Covariance Matrix

– Non-spherical disturbances in NLLS

• Quasi Maximum Likelihood (QML)

– Misspecified density assumption in ML

– Information Equality may not hold

Special case of M-estimation: NL Regression

• We start with a regression model: 𝑦௜ = 𝑓ሺ𝒙௜ , )  +  ε௜

• Q: What makes a regression model nonlinear?

• Recall that OLS can be applied to nonlinear functional forms. But, 
for OLS to work, we need intrinsic linearity –i.e., the model linear in the 
parameters.

Example: A nonlinear functional form, but intrinsic linear:

𝑦௜ = exp(ଵ) + ଶ * 𝑥௜ + ଷ * 𝑥௜2 + ε௜

Example: A non intrinsic linear model:  

𝑦௜ = 𝑓ሺ𝒙௜ , 0) + ε௜ = 0 + ଵ 𝑥௜
మ+ ε௜
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• Least squares: 

Min  { S() = ½ ∑ [𝑦௜ – 𝑓ሺ𝒙௜ , )]்
௜ୀଵ

2 = ½ ∑ ε௜
்
௜ୀଵ

ଶ
}

F.o.c.: 

{½∑ [𝑦௜ – 𝑓ሺ𝒙௜ , )]்
௜ୀଵ

2}/
= ½ 2∑ [𝑦௜ – 𝑓ሺ𝒙௜ , )]்

௜ୀଵ
2 𝑓ሺ𝒙௜ , )/ = െ∑ 𝑒௜

்
௜ୀଵ 𝒙௜0

 െ∑ 𝑒௜
்
௜ୀଵ 𝒙௜0 = 0, we solve for bNLLS.

In general, there is no explicit solution, like in the OLS case:

b = g(X, y) = (X′X)-1X′ 𝒚

• In this case, we have a nonlinear model: the f.o.c. cannot be solved 
explicitly for bNLLS. That is, the nonlinearity of the f.o.c. defines a 
nonlinear model.

Nonlinear Least Squares

• Q: How to solve this kind of set of equations?

Example:  Min  { S() = ½ ∑ [𝑦௜ – 𝑓ሺ𝒙௜ , )]்
௜ୀଵ

2 = ½ ∑ ε௜
்
௜ୀଵ

ଶ
}

𝑦௜ = 𝑓ሺ𝒙௜ , ) + ε௜ = 0 + ଵ 𝑥௜
మ+ ε௜.

f.o.c.:

[ ½∑ 𝑒௜
்
௜ୀଵ

ଶ
]/0 = i (-1) (𝑦௜ – 0 + 1 𝑥௜2)  1                =  0

[ ½∑ 𝑒௜
்
௜ୀଵ

ଶ
]/1 = i (-1) (𝑦௜ – 0 + 1 𝑥௜2) 𝑥௜2 =  0

[ ½∑ 𝑒௜
்
௜ୀଵ

ଶ
]/2 = i (-1) (𝑦௜ – 0 + 1 𝑥௜2) 1𝑥௜2 ln(𝑥௜) =  0

• Nonlinear equations require a nonlinear solution. This defines a 
nonlinear regression model: the f.o.c. are not linear in .

Note: If 2 = 1, we have a linear model. 

Nonlinear Least Squares: Example
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Nonlinear Least Squares: Example

Example:  Min  S() = { ½ ∑ [𝑦௜ – (0 + ଵ 𝑥௜
మ+ ε௜)]2

்
௜ୀଵ  } 

• From the f.o.c., we cannot solve for  explicitly. But, using some 
steps, we can still minimize RSS to obtain estimates of  . 

• Nonlinear regression algorithm:

1. Start by guessing a plausible values for  , say 0.

2. Calculate RSS for 0  get RSS(0) 

3. Make small changes to 0  get 1.  

4. Calculate RSS for 1  get RSS(1) 

5. If  RSS(1) < RSS(0)  1 becomes the new starting point.

6. Repeat steps 3-5 until you RSS(j) cannot be lowered.  get j. 

 j is the (nonlinear) least squares estimates.

• We start with a nonlinear model:    𝑦௜ = 𝑓ሺ𝒙௜ , ) + ε௜

• We expand the regression around some point, 0:

𝑓ሺ𝒙௜ , )  𝑓ሺ𝒙௜ , 0) + ∑ [𝑓ሺ𝒙௜ , 0)/௝
଴] ∗ (௝  – ௝

଴) ௞
௝ୀଵ

= 𝑓ሺ𝒙௜ , 0) + ∑ 𝒙௜
଴ ∗ (௝  – ௝

଴) ௞
௝ୀଵ

= [𝑓ሺ𝒙௜ , 0) – ∑ 𝒙௜
଴ ∗௝

଴௞
௝ୀଵ ሿ + ∑ 𝒙௜

଴ ∗ ௝ ௞
௝ୀଵ

=  𝑓௜
଴ + ∑ 𝒙௜

଴ ∗ ௝ ௞
௝ୀଵ = 𝑓௜

଴ + 𝒙௜0′ 

where 

𝑓௜
଴= 𝑓ሺ𝒙௜ , 0) – 𝒙௜0′ 0 (𝑓௜

଴ does not depend on unknowns)

Now, 𝑓ሺ𝒙௜ , ) is (approximately) linear in the parameters! That is,

𝑦௜ = 𝑓௜
଴ + 𝒙௜0′  + ε௜

଴ (ε௜
଴ = ε௜ + linearization error 𝑖)

  𝑦௜0 = 𝑦௜ – 𝑓௜
଴ = 𝒙௜0′  +  ε௜0

NLLS: Linearization
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• We linearized 𝑓ሺ𝒙௜ , ) to get: 

𝒚 = 𝒇0 + X0  +  0 (0 =  + linearization error)

 𝒚0 = 𝒚 – 𝒇0 = X0  + 0

• Now, we  can do OLS:

bNLLS = (X0′ X0)-1 X0′ 𝒚0

Note: X0 are called pseudo-regressors.

• In general, we get different bNLLS for different 0. An algorithm can 
be used to get the best bNLLS. 

• We will resort to numerical optimization to find the bNLLS.

NLLS: Linearization

• We can also compute the asymptotic covariance matrix for the 
NLLS  estimator as usual, using the pseudo regressors and the RSS:

Est. Var[bNLLS|X0] = s2
NLLS (X0′ X0)-1 

s2
NLLS = [𝒚 – 𝑓ሺ𝒙௜ , bNLLS)] [𝒚 – 𝑓ሺ𝒙௜ , bNLLS)]/(T – k).

• Since the results are asymptotic, we do not need a degrees of 
freedom correction. However, a df correction is usually included.

Note: To calculate s2
NLLS, we calculate the residuals from the 

nonlinear model, not from the linearized model (linearized 
regression).

NLLS: Linearization
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• Nonlinear model:    𝑦௜ = 𝑓ሺ𝒙௜ , 0) + ε௜ = 0 + ଵ𝑥௜
మ+ ε௜

• Linearize the model to get:

𝒚0 = 𝒚 – 𝒇0 = X0  + 0, where 𝑓௜
଴ = 𝑓ሺ𝒙௜ , 0) – 𝒙௜0′ 0 

Get 𝒙௜0 = 𝑓ሺ𝒙௜ , )/|=0

𝑓ሺ𝒙௜ , )/0 = 1          

𝑓ሺ𝒙௜ , )/ଵ = 𝑥௜
మ

𝑓ሺ𝒙௜ , )/ଶ = ଵ𝑥௜
మ ln(𝑥௜)

𝑓௜
଴ = ଴଴ + ଵ଴ 𝑥௜

మబ – {଴଴ + ଵ଴ 𝑥௜
మబ+ ଶ଴ ଵ଴ 𝑥௜

మబ ln(𝑥௜)} 𝒙మ
బ

𝑦௜0 = 0 + ଵ 𝑥௜
మబ+ ଶ ଵ 

଴ 𝑥௜
మబ ln(𝑥௜) + ε௜0

To get bNLLS, regress 𝒚0 on a constant, 𝒙మ
బ
, and ଵ

଴ 𝒙మ
బ

ln(𝒙). 

NLLS: Linearization – Example

Gauss-Newton Algorithm

•  Recall that bNLLS depends on 0. That is,
bNLLS (0) = (X0′ X0)-1 X0′ 𝒚0

• We use a Gauss-Newton algorithm to find the bNLLS. Recall GN:

βk+1 = βk + (JT J)-1 JT ε – J: Jacobian = δf(xi;β)/δβ.

• Given a bNLLS at step j, b(j), we find the bNLLS for step j+1 by:
b(j+1) = b(j) + [X0(j)X0(j)]-1X0(j)e0(j)

Columns of X0(j) are the derivatives:   f(xi,b(j))/b(j)
e0(j) = 𝒚 – f[x,b(j)]

•  The update vector is the slopes in the regression of the residuals on 
X0.  The update is zero when they are orthogonal. (Just like OLS)



RS - Econometrics I - Lecture 9 (NLLS)

© Do not share/post online without written authorization 15

Box-Cox Transformation

• It’s a simple transformation that allows non-linearities in the CLM.

𝑦௜ = 𝑓ሺ𝒙௜ , ) +  ε௜ = ∑ 𝒙௜,௝ (λ) ௝௞
௝ୀଵ +  ε௜

𝒙௞ (λ) = (𝒙௞λ – 1)/λ limλ→0 (𝒙௞λ – 1)/λ = ln 𝒙௞

• For a given λ, OLS can be used. An iterative process can be used to 
estimate λ. OLS standard errors have to be corrected.  Probably, not a 
very efficient method.  

• NLLS or MLE will work fine.

• We can have a more general Box-Cox transformation model:

𝑦௜ (λ1) = ∑ 𝒙௜,௝ (λ2) ௝௞
௝ୀଵ +  ε௜

• Testing linear restrictions as before.

• Non-linear restrictions introduce slight modification to the usual 
tests. We want to test:

H0: R() = 0

where R() is a non-linear function, with rank[R()/ = G()] = J. 

• A Wald test can be based on m = R(bNLLS) – 0: 
W =m(Var[m|X])-1m = R(bNLLS)(Var[R(bNLLS)|X])-1 R(bNLLS)

Problem: We do not know the distribution of R(bNLLS), but we know 
the distribution of bNLLS.

Solution: Linearize R(bNLLS) around 
R(bNLLS)  R()  + G(bNLLS) (bNLLS – )

Testing non-linear restrictions



RS - Econometrics I - Lecture 9 (NLLS)

© Do not share/post online without written authorization 16

Testing non-linear restrictions

• Linearize R(bNLLS) around  (= b0)
R(bNLLS)  R()  + G(bNLLS) (bNLLS – )

• Recall T (bM – b0)
   ௗ    

N(0, Var[b0])

where Var[b0] = H()-1V () H()-1

 T [R(bNLLS) – R()]
   ௗ    

N(0, G() Var[b0] G()′ )

 Var[R(bNLLS)] = (1/T) G() Var[b0] G()′ 
• Then, 

W = T R(bNLLS){G(bNLLS) Var[bNLLS] G(bNLLS)′}-1 R(bNLLS)

 W  
   ௗ    

χ௃
ଶ

NLLS - Application: A NIST Application (Greene)

Y              X
2.138        1.309
3.421        1.471
3.597        1.490 y  =  0 + 1x2 + .
4.340        1.565
4.882        1.611 xi

0 =  [1,  x2, 1x2logx ]
5.660        1.680
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NLLS - Application: Iterations (Greene)

NLSQ; LHS=Y; 
FCN=b0+B1*X^B2; 
LABELS = b0, B1, B2; 
MAXIT=500; TLF; TLB; OUTPUT=1; DFC ; 
START=0,1,5  $

Begin NLSQ iterations. Linearized regression.
Iteration=  1; Sum of squares=  149.719219        ; Gradient= 149.718223
Iteration=  2; Sum of squares=  5.04072877        ; Gradient= 5.03960538
Iteration=  3; Sum of squares=  .137768222E-01; Gradient= .125711747E-01
Iteration=  4; Sum of squares=  .186786786E-01; Gradient= .174668584E-01
Iteration=  5; Sum of squares=  .121182327E-02; Gradient= .301702148E-08
Iteration=  6; Sum of squares=  .121182025E-02; Gradient= .134513256E-15
Iteration=  7; Sum of squares=  .121182025E-02; Gradient= .644990175E-20
Convergence achieved

0 1 0Gradient [ ' ] '[ ' ] ' 0 0 0 0e X X X X e

NLLS - Application: Results (Greene)

-----------------------------------------------------------
User Defined Optimization.........................
Nonlinear    least squares regression ............
LHS=Y        Mean                 =        4.00633

Standard deviation   =        1.23398
Number of observs.   =              6

Model size   Parameters           =              3
Degrees of freedom   =              3

Residuals    Sum of squares       =         .00121
Standard error of e  =         .02010

Fit          R-squared            =         .99984
--------+--------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]
--------+--------------------------------------------------

B0|    -.54559**        .22460       -2.429   .0151
B1|    1.08072***       .13698        7.890   .0000
B2|    3.37287***       .17847       18.899   .0000

--------+--------------------------------------------------
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NLLS – Application: Solution (Greene)

The pseudo regressors and residuals at the solution are:
X10 X20 X30
1  x2 1x2 lnx         e0
1 2.47983 0.721624 .0036
1 3.67566 1.5331 -.0058
1 3.83826 1.65415 -.0055
1 4.52972 2.19255 -.0097
1 4.99466 2.57397 .0298
1 5.75358 3.22585 -.0124

X0e0  = .3375078D-13
.3167466D-12
.1283528D-10

Application 2: Doctor Visits (Greene)

• German Individual Health Care data: N = 27,236

• Model for number of visits to the doctor

• Explanatory variables: Income, health, marital status, education, etc.
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Application 2: Conditional Mean and Projection

Notice the problem with the linear approach. Negative predictions.

Most of the 
data are in 
here This area is 

outside the range 
of the data 

• Plot: Number of visits to the doctor against household income:

Application 2: NL Model Specification (Greene)

• Nonlinear Regression Model   y = exp(Xβ) + ε

X  = one, age, health_status, married, educ., household_income, nkids
• nlsq;lhs=docvis;start=0,0,0,0,0,0,0;labels=k_b;fcn=exp(b1'x);maxit=25;out...

Begin NLSQ iterations. Linearized regression.

Iteration=  1; Sum of squares=  1014865.00    ; Gradient=  257025.070

Iteration=  2; Sum of squares=  .130154610E+11; Gradient=  .130145942E+11

Iteration=  3; Sum of squares=  .175441482E+10; Gradient=  .175354986E+10

Iteration=  4; Sum of squares=  235369144.    ; Gradient=  234509185.

Iteration=  5; Sum of squares=  31610466.6    ; Gradient=  30763872.3

Iteration=  6; Sum of squares=  4684627.59    ; Gradient=  3871393.70

Iteration=  7; Sum of squares=  1224759.31    ; Gradient=  467169.410

Iteration=  8; Sum of squares=  778596.192    ; Gradient=  33500.2809

Iteration=  9; Sum of squares=  746343.830    ; Gradient=  450.321350

Iteration= 10; Sum of squares=  745898.272    ; Gradient=  .287180441

Iteration= 11; Sum of squares=  745897.985    ; Gradient=  .929823308E-03

Iteration= 15; Sum of squares=  745897.984    ; Gradient=  .188041512E-10



RS - Econometrics I - Lecture 9 (NLLS)

© Do not share/post online without written authorization 20

Application 2: NL Regression Results (Greene)

| Nonlinear   least squares regression               |
| LHS=DOCVIS   Mean                 =   3.183525     |
|              Standard deviation   =   5.689690     |
| WTS=none     Number of observs.   =      27326     |
| Model size   Parameters           =          7     |
|              Degrees of freedom   =      27319     |
| Residuals    Sum of squares       =   745898.0     |
|              Standard error of e  =   5.224584     |
| Fit          R-squared            =   .1567778     |
|              Adjusted R-squared   =   .1568087     |
| Info criter. LogAmemiya Prd. Crt. =   3.307006     |
|              Akaike Info. Criter. =   3.307263     |
| Not using OLS or no constant. Rsqd & F may be < 0. |
+----------------------------------------------------+
+---------+--------------+----------------+--------+---------+
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] |
+---------+--------------+----------------+--------+---------+
B1            2.37667859      .06972582    34.086   .0000
B2             .00809310      .00088490     9.146   .0000
B3            -.21721398      .00313992   -69.178   .0000
B4             .00371129      .02051147      .181   .8564
B5            -.01096227      .00435601    -2.517   .0118
B6            -.26584001      .05664473    -4.693   .0000
B7            -.09152326      .02128053    -4.301   .0000

Partial Effects in the Nonlinear Model (Greene)

What are the slopes?
Conditional Mean Function = E[y| ] =exp( ' )
Derivatives of the conditional mean are the partial effects
E[y| ] exp( ' ) 

            = a scaling of the coefficients that depends


 



x x

x x
x



 

 
               on the data
Usually computed using the sample means of the data.



RS - Econometrics I - Lecture 9 (NLLS)

© Do not share/post online without written authorization 21

Asymptotic Variance of the Slope Estimator (Greene)


  




   


    


 

Ê[y| ]ˆ  estimated partial effects = | ( )

ˆTo estimate Asy.Var[ ], we use the delta method:
ˆ ˆ ˆexp( ) 

ˆˆ ˆ ˆ ˆexp( ) I +  exp( )ˆ
ˆ ˆˆ ˆEst.Asy.Var[ ]= Est.Asy.Var[ ]

x x x
x

x'

G x' x' x'

G  G'

Computing the Slopes (Greene)

calc;k=col(x)$
nlsq;lhs=docvis;start=0,0,0,0,0,0,0

;labels=k_b;fcn=exp(b1'x); 
matr;xbar=mean(x)$
calc;mean=exp(xbar'b)$
matr;me=b*mean$
matr;g=mean*iden(k)+mean*b*xbar'$
matr;vme=g*varb*g'$
matr;stat(me,vme)$
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Partial Effects at the Means of X (Greene)

---------------------------------------------------------
Number of observations in current sample =   27326
Number of parameters computed here       =       7
Number of degrees of freedom             =   27319
--------+-------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]
--------+------------------------------------------------
Constant|    6.48148***       .20680       31.342   .0000

AGE|     .02207***       .00239        9.216   .0000
HSAT|    -.59241***       .00660      -89.740   .0000

MARRIED|     .01005          .05593         .180   .8574
EDUC|    -.02988**        .01186       -2.519   .0118

HHNINC|    -.72495***       .15450       -4.692   .0000
HHKIDS|    -.24958***       .05796       -4.306   .0000

--------+------------------------------------------------

What About Just Using LS? (Greene)

+---------+--------------+----------------+--------+---------+----------+
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X|
+---------+--------------+----------------+--------+---------+----------+
Least Squares Coefficient Estimates
Constant      9.12437987      .25731934    35.459   .0000
AGE            .02385640      .00327769     7.278   .0000    43.5256898
NEWHSAT       -.86828751      .01441043   -60.254   .0000    6.78566201
MARRIED       -.02458941      .08364976     -.294   .7688     .75861817
EDUC          -.04909154      .01455653    -3.372   .0007    11.3206310
HHNINC       -1.02174923      .19087197    -5.353   .0000     .35208362
HHKIDS        -.38033746      .07513138    -5.062   .0000     .40273000
Estimated Partial Effects
ME_1           Constant term, marginal effect not computed
ME_2           .02207102      .00239484     9.216   .0000
ME_3          -.59237330      .00660118   -89.737   .0000
ME_4           .01012122      .05593616      .181   .8564
ME_5          -.02989567      .01186495    -2.520   .0117
ME_6          -.72498339      .15449817    -4.693   .0000
ME_7          -.24959690      .05796000    -4.306   .0000


