RS - Econometrics I - Lecture 9 (NLLS)

Lecture 9
NLLS

R. Susmel, 2022 (for private use, not to be posted/shared online).

M-Estimation

* An extremum estimator is one obtained as the optimizer of a
criterion function, q(z, b).

Examples:
OLS: b = arg max {— Y1_, el-Z: —ee/T}
MLE: by, = argmax { InL = ¥_ Inf(x;, y;,b) }
GMM: by, = arg max {— g(x;, y;,b)’ W g(x;, yi,b)}

* There are two classes of extremum estimators:
- M-estimators: The objective function is a sample average or a sum.

- Minimum distance estimators: The objective function is a measure
of a distance.

* "M" stands for a maximum or minimum estimators —Huber (1967).
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M-Estimation

* The objective function is a sample average or a sum.

* We want to minimize a population (first) moment:

miny, E[q(Z, §)]

— Using the LLN, we move from the population first moment to the
sample average:

ST, q(z;,b)/T = Elq(z B)]

— We want to obtain: b = argmin Y.1_; q(z;,b) (or divided by T)
— In general, we solve the f.o.c. (or zero-score condition):

Zero-Score: ?:1 5q(azli),' b) =0
— To check the s.o.c., we define the (pd) Hessian:

0%q(Z, b)
H =Y 5 5

M-Estimation

+ Ifs(z,b) = ﬁqg];' b) exists (almost everywhere), we solve

Yiis(zi,b)/T=0 (%

* If, in addition, Ex[s(z;, b)] = 0/0b' Ex[q(z, B)] —i.e., differentiation
and integration are exchangeable—, then

0q(z;
op

NI

¢ Under these assumptions the M-estimator is said to be of ¢-#ype (=
s(z, b) = score). Often, by, is taken to be the solution of (*) without
checking whether it is indeed a minimum).

* Otherwise, the M-estimator is of p-#pe. (p = q(2;, b)).
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M-Estimation: LS & ML

* Least Squares
- DGP: y; = f(Xqi X2, s Xpeis B) T &, 2= [y, X]
2
- q(z,B) =SP) = Liz1& = Liza O — f (xi, B)?
— Now, we move from population to sample moments
2 2
- q(z,b) =50) = Xizy e = Xy (i — f(x0,b)
— byips = argmin S(b)
¢ Maximum Likelihood
— Let f(x;,B) be the pdf of the data.
LB = T f (i B)
InL(x,B) = ST, In £ (xi, B)
— Now, we move from population to sample moments
q(z,b) = -InL(x,b)
— by = atgmin { —InL(x,b) }

M-Estimation: Minimum Lp-estimators

* Minimum Lp—estimators

-q(z,B) = (1/p|x-B|” for1<p<2
-5(z,B) = |x-gp! x-3<0
=-|x- B x-$>0

* Special cases:

—p = 2: We get the sample mean (LS estimator for 3).
5(z,8) = Xi=1(xi=by) =0 =by=Xi_;x;/T

—p =1:We get the sample median as the estimator with the least
absolute deviation (LAD) for the median 8. (There is no unique
solution if T'is even.)

Note: Unlike LS, LAD does not have an analytical solving method.
Numerical optimization is not feasible. Linear programming is used.
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The Score Vector

* Let X= {X}; X,;... }be iid.
*If s(z, b) = 0q(z, B)/0b" exists, we solve

I .s(zi,by)/T =0 (s(z;, b) is a kx1 vector).
—E[s(z, by)] = E[0q(z,b)/0b'] =0

_Using the LLN:  YT_, s(z;, by)/T—— E[s(z, by)] =0

— V =Vat[s(z, by)] = E[s(z, b) * s(z, b)] (Vis a kxk matrix).
= E[(0q(z, b)/b") * (0q(z, b)/0b)

_ Using the LIN: X7-1[5(2;, by) $(zi, by)')/T — Var[s(z, by)]

d
— Using the Lindeberg-Levy CLT:  Y1_; s(z;, b)/NT — N, V)

Note: We have already shown these results for the ML case.

The Hessian Matrix
« Hiz, b) = E[0s(z, b)/db] = E[0%q(z; b)/0bdb]

_ Using the LLN: YT, [5(z;, by)/b]/T —— Hiz, by)

* In general, the Information (Matrix) Equality does not hold. That is,
H # V. The equality only holds if the model is correctly specified.
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The Asymptotic Theory
* We have all the tools to detive the asymptotic distribution of by;.

Recall the Mean Value Theorem:
fx)=f(a)+f'(b) (x-a) a<b<x

Apply MVT to the score, with by < b* < by,:

N_18(zi,by) =X1_15(zy, by) + X1-q H(z;, b*) (by — by)
0 = ZiT=1 s(z;, by) + ZiT=1 H(z;,b¥) (by, — by)
= (by—by) = [Xi-1 H(z;,b¥)]' X1, s(2;, by)
= NT (by —by) = [X1—y H(z;, b¥)]" T1_ s(2;, bo) /NT

The asymptotic distribution of by is driven by Y.1_; s(2;, by)/ \NT

The Asymptotic Theory

* Theorem: Consistency of M-estimators

Let {X = X_; X,;... }be 7id. and assume

(1) b € B, where B is compact. (“compact”)

) D, qX; b)/T] L, g(b) uniformly in b for some continuous
functiong: B — R (“ontinuity”)

(3) g(b) has a unique global minimum at by.  (“identification”)

14
Then, by — b,

Remark: a) Since X are zzd. by the LLN (without uniformity) it

must hold g(b) = Ex[q(X: b)), thus Ex[q(z, by)] = minyep Exfq(z: B
b) If B is not compact, find a compact subset B, with b, € B,

and P[by, € Bj] — 1.
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The Asymptotic Theory

Theorem: Asymptotic Normality of M-estimators
Assumptions:

(1) by Z, b, for some by € B.

(2) by is of ¢-type and s is continuously (for almost all x)
differentiable w.r.t. b.

(3) Z’erl[as(zi; b)/ab]/T|b=b* i) H(Z, bo) for b* i) bo
@ X7 s(zi, )T —— N©, V) V, = Var|s(z, bo)] <

Then, VT (by —by) = | ?=1H(Zé,b*)]‘1 Yi-15(2: bo)
= T (by - bo) — NO, Hy'V, Hy")

- V= E[s(zb) s(z,b)] = E[(0q(z,b)/0b) (q(z,b)/0b)]
- H'= 0s(2,b)/db = E[0°q(z,b)/b0b]]

Asymptotic Normality

* Summary

_ by = by

- by —> N(bo,Varlbo))

Var| by = (1/T) Hy'V, Hy'

- If the model is correctly specified: -H=V.
Then, Var[b] =V,

— H and V are evaluated at by:
-H =) [0%*q (z; b)/Ob0Ob'|
- V = 3 [0q(z; b)/0b][0q(z; b)/ob]]
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M-Estimation: Example

* DGP: y = fix;B) + & = expxp) + s,
- Objective function:

qX; B) = V2e'e = V2 [y —expXP)[' [y — exp(XP)]
Let G = [g], whereg = 0f(x;B)/0B, = exp(x/B) x

- Score: s(z, B) = 0q(z; B)/0B = ' Ofix; B)/OB = €' G
=-y—expXP'G=-yG + expXP)' G

- V = Var[s(z,)] = E[G's €'G]

- H= E[?°q(z, B)/ BB = E[ofx;B)/ 0B ofix; B)/ OB —
— 0°fx; B)/0POB' ] = E[G'G — 0G/ B ¢]

- Varlby] = (1/T) Hy'V Hy'

M-Estimation: Example

* Var[ by = (1/1) Hy' Vy Hy'

* We approximate (“estimate”)

Var[by] = (1/T) {3 [0s(z, by)/0b]} ' [Ys(z;, by) s(z;, by)']
{2 [Os(z, bp)/ O]}

s(z, by) = - [exp(x; by)x]]' [y; — exp(x; bp)] = - x/' exp(x/' by)' e,
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Two-Step M-Estimation

* Sometimes, nonlinear models depend not only on our parameter of
interest {3, but nuisance parameters or unobserved variables in some
way. It is common to estimate § using a “two-step” procedure:

Ist-stage:  y, =g(w;y) +v = we estimate ¥y, say €
2ndstage  y=flx;B,c) t e = we estimate 3, given c.
* The objective function: ming {Y;q(x; B,c) = e’ e}

* Examples:
(i) DHW Test for endogeneity
(i) Weighted NLLS: ming {3 [y —Ax; B)]*/ 4(z; ©)
(iii) Selection Bias Model: y =XB+ 6h+e h=G(zc).

Two-Step M-Estimation

* Properties --Pagan (1984, 19806), generated regressors:
- Consistency. We need to apply a uniform weak LLN.
- Asymptotic normality: We need to apply CLT.

* Two interesting results:

- The 2§ estimator can be consistent even in some cases where g(z;y)
is not correctly specified —i.e., situations where ¢ may be inconsistent.

- The S.E. —i.e., Var[b,g]— needs to be adjusted by the 1 stage
estimation, in most cases.
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Two-Step M-Estimation
* Recall NT (by —by) = Hy'[-3,s(z; by,c)/NT] + o(1) (%)
The question is weather the following equation holds:

Y 8(z; bo,c)/NT = ¥, 8(z; boc)/NT+o(1) (%)

where ¢, is the true value of y.

If this equality holds, by, would be consistent.

* Let’s do a 1% order Taylor expansion:
2. 8(2; bo,0)/ VT = 25 8(2;; bo,Co)/ T+ Fy(c—cy/ T (%)
where Fy = 0s(z; by,c)/0y

Note: If ¢ = ¢, or Fy = 0, then (**) holds.

Two-Step M-Estimation
* We can also write VT (c—cp) = Hy'[-S.s(w, ¢)/NT] + o(1)

C!

=Y h(w, ¢)/NT + o(1)

* Then, substituting back in (***) and then in (*), we have
VT (byy —bg) = Hy'[- 10z boco)/NT) + (1), (5+%)

where 1(z; by,cy) = s(z;; by,cy) + F h(w,, c)

Note: Difference between (¥) and (****): r(z;, by,c,) replaces s(z;,by,c).
The second term in r(z;, by,c,) reflects the 1%-stage adjustment.

* Var[ by| = (1/T) Hy' Var[t(z; by,c,)] Hy'
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Applications

* Heteroscedastity Autocorrelation Consistent (HAC) Variance-
Covariance Matrix

— Non-spherical disturbances in NLLS

* Quasi Maximum Likelihood (QML)
— Misspecified density assumption in ML
— Information Equality may not hold

Special case of M-estimation: NL Regression
* We start with a regression model: y; = f(x;, B) + €

* Q: What makes a regression model nonlinear?

* Recall that OLS can be applied to nonlinear functional forms. But,
for OLS to work, we need zutrinsic linearity —i.e., the model linear in the

parameter S.

Example: A nonlinear functional form, but intrinsic linear:

Yi = exp(Br) + P2 * x; + B3 * x + g
Example: A non intrinsic linear model:

J’i:f(xi>5o)+€i:l30+[31xil32+€i
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Nonlinear Least Squares

* Least squares:

Min g { SB) = V5 X1y [yi — f (20, B2 = 2 Xy i )
F.o.c.
Y2y i — f (xi, B /OB
=2 22 =1 [yl f(xla B) Zaf(xl, B)/aﬁ - _Zl 16 xl

= — > eix°=0, wesolve for byiis

In general, there is no explicit solution, like in the OLS case:

b=¢X,y) = XX)'X'y

* In this case, we have a nonlinear model: the f.o.c. cannot be solved
explicitly for by, 5. That is, the nonlinearity of the f.o.c. defines a
nonlinear model.

Nonlinear Least Squares: Example

* QQ: How to solve this kind of set of equations?

Example: Min s { SB) = 2 X1y [vi - f (i, B = V> Xy & }
= FiB) + e =By + Pyt g

f.o.c.

o 2Xi- 191 1/6By =% (1) i — By + By xP) 1 =0
o] VX1 1el 1/0By = Z; (1) i = By + By ") x,P =0
O VSl1 e 1/0B, = % (1) 0 - By + By 4P BxiIn(xy) = 0

* Nonlinear equations require a nonlinear solution. This defines a
nonlinear regression model: the f.o.c. are not linear in B.

Note: If B, = 1, we have a linear model.
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Nonlinear Least Squares: Example
Example: Min g S) = { % £, Vi (B, + Br x "+ e}

* From the f.o.c., we cannot solve for B explicitly. But, using some
steps, we can still minimize RSS to obtain estimates of .

* Nonlinear regression algorithm:

1. Start by guessing a plausible values for B, say .

2. Calculate RSS for ° = get RSS(BY)

3. Make small changes to B’ = get BL.

4. Calculate RSS for B! = get RSS(BY)

5. If RSS(B!) < RSS(BY) = B! becomes the new starting point.

6. Repeat steps 3-5 until you RSS(B/) cannot be lowered. = get BI.

= P is the (nonlinear) least squares estimates. .

NLLS: Linearization

* We start with a nonlinear model:  y; = f(x;, B) + &;

* We expand the regression around some point, B
f(xi, By~ f (i, BY) + Xy [0 (i, B)/OBJ] * B — B
= f(x0, B) + Xj=a 60 * (B~ B))
= [f (xi, B) = Xy 27 +BJ1 + Xy %7 * B;
= [P+ Zjaxl #Bi=f7 " B
where

2= f(x;, B — x;"" B° (f® does not depend on unknowns)

Now, f(x;, B) is (approximately) linear in the parameters! That is,
Vi = fio +x" B+ S? (8? = g; + linearization error i)

_ 0 _
=" =y —f; =x"B+ g
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NLLS: Linearization

* We lineatized f(x;, B) to get:
y =f"+X'B+ g (e" = € + linearization error)
=y'=y-f=X"B+¢

* Now, we can do OLS:
byips = X X0 X” y°

Note: X" are called pseudo-regressors.

* In general, we get different by ¢ for different B°. An algorithm can
be used to get the best by q.

* We will resort to numerical optimization to find the by .

NLLS: Linearization

* We can also compute the asymptotic covariance matrix for the
NLLS estimator as usual, using the pseudo regressors and the RSS:

Est. Var[by ;5| X% = £y s X" X!
Pairs = [V = F (i, byl [Y — f(x4, byl /(T = £).

¢ Since the results are asymptotic, we do not need a degrees of
freedom correction. However, a df correction is usually included.

Note: To calculate %, we calculate the residuals from the
nonlinear model, not from the linearized model (linearized
regression).
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NLLS: Linearization — Example

* Nonlinear model: y; = f(x;, B°) + & =B, + leiBZJr &
* Linearize the model to get:
yo =y fo = X0 B + 80, where in :f(xi, Bo) . xiov BO

Get x;°= 0f (x;, B)/ B | p_po
of (x;,B)/0B, =1

of (x;, B)/2By = 2
Of (x1, B/ = PuxP? In(xy
£0 = B8+ B xPE _ (pg + p2 xPZ+ g2 B2 1P 1nxy) B

0 — + Bg+ 0 Bg 1 i 0
yi' =B+ B1x; B2 B1x; " In(x;) + &

0 0
To get by s, tegress Y on a constant, xBZ, and B P2 In(x).

Gauss-Newton Algorithm

* Recall that by ;s depends on B. That is,
byis (B%) = X X1 X y°

* We use a Gauss-Newton algorithm to find the by, ;. Recall GN:
Bt =Bt 0" D' )" e —J: Jacobian = 8f(x;; B)/5.
* Given a by ¢ at step /, b(j), we find the by, ¢ for step j+1 by:
b(+1) = b() + X()X() X)) &)
Columns of X'()) are the derivatives:  0f(x;,b()))/Ib()’

e"() =y —fx,b()]

* The update vector is the slopes in the regression of the residuals on
X". The update is zero when they are orthogonal. (Just like OLS)
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Box-Cox Transformation

¢ It’s a simple transformation that allows non-linearities in the CLM.

Vi = f(x, B+ & =25 %, ;0B; + g
XM = (x> = 1) /A lim,_,, (X" —1)/h =1n xp

* For a given A, OLS can be used. An iterative process can be used to
estimate A. OLS standard errors have to be corrected. Probably, not a
very efficient method.

* NLLS or MLE will work fine.

* We can have a more general Box-Cox transformation model:

_ vk
yi® =i %0 B+ g

Testing non-linear restrictions

* Testing linear restrictions as before.

* Non-linear restrictions introduce slight modification to the usual
tests. We want to test:

Hy:RP) =0
where R(B) is a non-linear function, with rank[OR(B)/IB = G(B)] = J.

* A Wald test can be based on m = R(by; ;) — 0:
W =m'(Var[m | X])'m = R(by; ) (Var[R(by9) [ X)) R(by o)

Problem: We do not know the distribution of R(by; ), but we know
the distribution of by q.

Solution: Linearize R(by; ;) around

R(byprs) * RB) + G(byyrs) (buiis—B)
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Testing non-linear restrictions

* Lineatize R(by; ¢ around B (= by)
R(byi1s) ® RB) + Gbyyys) briis—B)

* Recall \NT (by — by) i’ N(0, Var[by])
where Vat[by] = HB)'V(B) HPB)"'

= VT [R(byrrs) — RB)] 5 N (0, GB) Var[by] GB)")

= Vat[R(by,,9)] = (1/7) GB) Var[b,| G(B)'
* Then,

W= TR(by15) { Gbnrrs) Var[byy sl Gbyrs)'t ' R(byyrs)

d 2

NLLS - Application: A NIST Application (Greene)

Y X
2138 1309
3421 1471
3597 1490 vy = B, +BxP+e
4340  1.565
4882 1611 x° = [1, xP2 B,xP2logx |
5660 1.680
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NLLS - Application: Iterations (Greene)

NLSQ; LHS=Y;

FCN=b0+B1*X"B2;

LABELS = b0, B1, B2;

MAXIT=500; TLF; TLB; OUTPUT=1; DFC ;
START=0,1,5 $

Begin NLSQ iterations. Linearized regression.

Iteration= 1; Sum of squares= 149.719219 ; Gradient= 149.718223
Iteration= 2; Sum of squares= 5.04072877 ; Gradient= 5.03960538
Iteration= 3; Sum of squares= .137768222E-01; Gradient=.125711747E-01
Iteration= 4; Sum of squares= .186786786E-01; Gradient=.174668584E-01
Iteration= 5; Sum of squares= .121182327E-02; Gradient=.301702148E-08
Iteration= 6; Sum of squares= .121182025E-02; Gradient=.134513256E-15
Iteration= 7; Sum of squares= .121182025E-02; Gradient=.644990175E-20
Convergence achieved

Gradient = [e®'X°]'[X°'X°]*X°'e°

NLLS - Application: Results (Greene)

User Defined Optimization.................. ... ....

Nonlinear least squares regression ............
LHS=Y Mean = 4.00633
Standard deviation = 1.23398
Number of observs. = 6
Model size Parameters = 3
Degrees of freedom = 3
Residuals Sum of squares = 00121
Standard error of e = 02010
Fit R-squared = 99984
________ +__________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z]
________ +__________________________________________________
BO| -.54559%* .22460 -2.429 .0151
Bl1| 1.08072*** .13698 7.890 .0000
B2| 3.37287*** .17847 18.899 .0000

________ Uy SR
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NLLS - Application: Solution (Greene)

The pseudo regressors and residuals at the solution are:

X10  X20 X30

1 xP2 B,xP?2 Inx e0

1 2.47983 0.721624  .0036
1 3.67566 1.5331 -.0058
1 3.83826 1.65415 -.0055
1 4.52972 2.19255 -.0097
1 4.99466 2.57397 .0298
1 5.75358 3.22585 -.0124

X0'e0 = .3375078D-13
.3167466D-12
.1283528D-10

Application 2: Doctor Visits (Greene)

* German Individual Health Care data: N = 27,236
* Model for number of visits to the doctor

* Explanatory variables: Income, health, marital status, education, etc.

11152

9364 —

5576 —

Frequency

2788 —

T T L L L L L L L L AL L L L LI L L L
4 & B 0 12 14 & ¥ 20 22 24 2 28 W Iz I I ¥ 4 42 41 M 48 5
DOCvIS
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Application 2: Conditional Mean and Projection

* Plot: Number of visits to the doctor against household income:

Exponential Mean and Linear Projection Predictions

Most of the .

TBEN data areiin -, - -
here This area is
] outside the range

' Py
8 : of the data

Predicted Doctor Visits

I -1.05-1

10
INCOME

E_DOCVIS ——— P_DOCvIS ‘

Notice the problem with the linear approach. Negative predictions.

Application 2: NL Model Specification (Greene)

* Nonlinear Regression Model y = exp(Xp) + ¢

X = one, age, health_status, married, educ., household_income, nkids
. nlsq;lhs=docvis;start=0,0,0,0,0,0,0;1abels=k_b;fcn=exp(b1'x);maxit=25;out...
Begin NLSQ iterations. Linearized regression.

Iteration= 1; Sum of squares= 1014865.00 ; Gradient= 257025.070

Iteration= 2; Sum of squares= .130154610E+11; Gradient= .130145942E+11
Iteration= 3; Sum of squares= .175441482E+10; Gradient= .175354986E+10
Iteration= 4; Sum of squares= 235369144. ; Gradient= 234509185.

Iteration= 5; Sum of squares= 31610466.6 ; Gradient= 30763872.3

Iteration= 6; Sum of squares= 4684627.59 ; Gradient= 3871393.70

Iteration= 7; Sum of squares= 1224759.31 ; Gradient= 467169.410

Iteration= 8; Sum of squares= 778596.192 ; Gradient= 33500.2809

Iteration= 9; Sum of squares= 746343.830 ; Gradient= 450.321350

Iteration= 10; Sum of squares= 745898.272 ; Gradient= .287180441
Iteration=11; Sum of squares= 745897.985 ; Gradient= .929823308E-03
Iteration=15; Sum of squares= 745897.984 ; Gradient= .188041512E-10
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Application 2: NL Regression Results (Greene)

| Nonlinear least squares regression |
| LHS=DOCVIS Mean = 3.183525 |
| Standard deviation = 5.689690 |
| WTS=none Number of observs. = 27326 |
| Model size Parameters = 7

| Degrees of freedom = 27319 |
| Residuals Sum of squares = 745898.0 |
| Standard error of e = 5.224584 |
| Fit R-squared = .1567778

| Adjusted R-squared = .1568087 |
| Info criter. LogAmemiya Prd. Crt. = 3.307006 |
| Akaike Info. Criter. = 3.307263 |
I |

Not using OLS or no constant. Rsgd & F may be < 0.

e +
o fommmmmm - o fo—mmm fommmm— +
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] |
o fommmmmm - o fo—mmm fommmm— +
Bl 2.37667859 .06972582 34.086 .0000

B2 .00809310 .00088490 9.146 .0000

B3 -.21721398 .00313992 -69.178 .0000

B4 .00371129 .02051147 .181 .8564

B5 -.01096227 .00435601 -2.517 .0118

B6 -.26584001 .05664473 -4.693 .0000

B7 -.09152326 .02128053 -4.301 .0000

Partial Effects in the Nonlinear Model (Greene)

What are the slopes?
Conditional Mean Function = E[y|x] =exp(B'x)
Derivatives of the conditional mean are the partial effects

oE[y|x] :
—— =exp(B'x
x p(B'x) xB
= a scaling of the coefficients that depends
on the data

Usually computed using the sample means of the data.
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Asymptotic Variance of the Slope Estimator (Greene)

5 = estimated partial effects = %l (x = X)

To estimate Asy.Var[S], we use the delta method:
5 = exp(X'B) B

G)>

- % —exp(X'B) I + Pexp(xX'P)X

Est.Asy.Var[5]=G Est.Asy.Var[$] G'

Computing the Slopes (Greene)

calc;k=col(x)$
nlsq;lhs=docvis;start=0,0,0,0,0,0,0
slabels=k_b;fcn=exp(b1'x);
matr;xbar=mean(x)$
calc;mean=exp(xbat'b)$
matr;me=b*mean$
matr;g=mean*iden(k)+mean*b*xbar'$
matt;vme=g*varb*g'$

matr;stat(me,vme)$
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Variable| Coefficient
Constant| 6.48148***
AGE | .02207%**
HSAT| -.59241***

MARRIED | .01005

EDUC| -.02988**
HHNINC| -.72495%%*
HHKIDS| -.24958%%*

Number of observations in current sample =
Number of parameters computed here
Number of degrees of freedom
________ +_________________________________________________

Standard Error b/St.Er. P[|Z]|>z]

Partial Effects at the Means of X (Greene)

________ +________________________________________________

What About Just Using LS? (Greene)

Fom - Fom e o to— Fomm - Fomm - +
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z]|>z] | Mean of X|
Fom - Fom e o Fom Fomm - Fom - +
Least Squares Coefficient Estimates

Constant 9.12437987 .25731934 35.459 .0000

AGE .02385640 .00327769 7.278 .0000 43.5256898
NEWHSAT -.86828751 .01441043 -60.254 .0000 6.78566201
MARRIED -.02458941 .08364976 -.294 .7688 .75861817
EDUC -.04909154 .01455653 -3.372 .0007 11.3206310
HHNINC -1.02174923 .19087197 -5.353 .0000 .35208362
HHKIDS -.38033746 .07513138 -5.062 .0000 .40273000
Estimated Partial Effects

ME 1 Constant term, marginal effect not computed

ME 2 .02207102 .00239484 9.216 .0000

ME 3 -.59237330 .00660118 -89.737 .0000

ME 4 .01012122 .05593616 .181 .8564

ME 5 -.02989567 .01186495 -2.520 .0117

ME 6 -.72498339 .15449817 -4.693 .0000

ME 7 -.24959690 .05796000 -4.306 .0000
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