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Lecture 7
Asymptotics of OLS
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OLS Estimation - Assumptions

* CLM Assumptions

(A1) DGP:y =X B + g s correctly specified.

(A2) E[g|X] = 0

(A3) Var[e| X] = o? I,

(A4) X has full column rank — rank(X)=4-, where T = £.

» From (A1), (A2), and (A4) =b=XX)'X'y

* Using (A3) = Var[b|X] = o*X'X)!
- Adding (A5) &|X ~iidN(0, 0?L) = b|X ~iid N(B, 02X'X)")

(AB) gives us finite sample results for b (& for the £zest, F-test, Wald test)

* Now, we relax (A5). We study b (& the test statistics) when T — 0.
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OLS Estimation - Assumptions

* In this lecture, we relax (A5). We focus on the behavior of b (and
the test statistics) when T — 0 —i.e., large samples.

* First, we throw away the normality for €| X . This is not bad. In
many econometric situations, normality is not a realistic assumption
(daily, weekly, or monthly stock returns do not follow a normal).

* Second, we relax the Zid. assumption for €| X . This is also not bad.
In many econometric situations, identical distributions are not realistic
(different means and variances are common).

* Q: How does b (and all the tests) behave without this normality
assumption? We will not be able to say much for small samples. But,
we can say a lot about the behavior of b when T — .

Brief Review: Plims and Consistency

¢ The asymptotic properties of estimators are their properties as the
number of observations in a sample becomes very large and tends to
infinity.

* QQ: Why are we interested in large sample properties, like consistency,
when in practice we have finite samples?

A: As a first approximation, the answer is that if we can show that an
estimator has good large sample properties, then we may be optimistic
about its finite sample properties. For example, if an estimator is
inconsistent, we know that for finite samples it will definitely be

biased.

* We will review the concepts of probability limits, consistency, and
the CLT.
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Probability Limit: Convergence in probability

* Definition: Convergence in probability

Let 6 be a constant, € > 0, and n be the index of the sequence of RV
Xp. If lim,_,, Prob[|x, — 0| > €] = 0 for any € > 0, we say that Xy,
converges in probability to 0.

That is, the probability that the difference between X, and 0 is larger
than any € > 0 goes to zero as n becomes bigger.

14
Notation: Xp — 0
plim x, = 0

* If X, is an estimator (for example, the sample mean) and if plim x,
= 0, we say that X, is a consistent estimator of 6.

Estimators can be énconsistent. For example, when they are consistent
for something other than our parameter of interest.

Probability Limit: Weak Law of Large Numbers

¢ Theorem: Convergence for sample moments.

Under certain assumptions (for example, 7.z.d. with finite mean), sample
moments converge in probability to their population counterparts.

We saw this theorem before. It’s the (Weak) Law of Large Numbers
(LLN). Different assumptions create different versions of the LLN.

Note: The LLN is very general:
14
/n) XF f(z) — E[f(z)]

* The usual version in Greene assumes 774, with finite mean. This is
the Khinchin’s (1929) (weak) LLN. (Khinchin is also spelled Khintchine)




RS - Econometrics I - Lecture 7

Probability Limit: Weak Law of Large Numbers

* When {X,,} is not i.d., extra conditions are needed for the
convergence of (1/n) 2.7 f (x;). Such conditions are typically imposed
on higher-order moments of X,

* For the non-zzd. case, we have Chebychev’s version, which assumes
independence and finite mean and finite variance.

Plims and Consistency: Review

pdf of X n Oy
0.08 [ n=100 1 50

ﬂ 7 4 25

25 10

0.06 | 100 5

0.04 (\

0.02

50 100 150 200

* Consider the mean of a sample, X, of observations generated from a
RV X with mean g, and variance 0%. Recall Var[X] = 0% /n. Then,
as n grows, the sampling distribution becomes more concentrated.
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Slutsky’s Theorem: Review

Let x;, be a RV such that plim x,, = 6. (We assume 0 is a constant.)

Let g(.) be a continuous function with continuous detivatives. g(.) is
not a function of n. Then

plim[g (xn)] = gplim(xp)] = g[f]  (provided glplim(xy)]

exists)

When g(.) is continuous, this result is sometimes referred as the
continuity theorem.

Note 1: This theorem extends to sequences of random vectors and

vector-valued X-continuous functions.

Note 2: This theorem is extremely useful and has many applications

Plims and Expectations: Review

* Q: What is the difference between E[x,] and plim x,,?
— E[xy] reflects an average

— plim X, reflects a (probabilistic) limit of a sequence.

Slutsky’s Theorem works for plims, but not for expectations. That is,

plim[s?’]=0? = plim[s=vs’]=0c

E[s*]=0" = E[s]=?

Note: This very simple result is one of the motivations of using
asymptotic theory. Plims are easy to manipulate, expectations are not.
For example, the expectation of a product of RVs is complicated to
derive, but the plim is not difficult.
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Properties of plims: Review

* These properties are derived from Slutsky’s Theorem.

Let x;, have plim x,,= 8 and Yy, have plim y,, = ¢. Let ¢ be a constant.
Then,

1) plim ¢ = c.

2) plim (xp+ yn) = 6 + &

3) plim (xn * yn) = 0 * ¢ (plim (¢ xp) = ¢ 6.)

4) plim (xp,/yn) = 0/%. (provided ¢ # 0)

5) pim[g (X, Yn)] = 9(6,¢).  (assuming it exists and g(.) is cont. diff.)

* We can generalize Slutsky’s Theorem to matrices.

Let plim A, = A and plim B = B (element by element). Then
1) plim(A, ") = [plim A |1 = A

2) plim(A, B,) = plim(A, ) plim(B,) = AB

Convergence in Mean(r): Review

* Definition: Convergence in mean r
Let 8 be a constant, and n be the index of the sequence of RV x,,. If

lim, ., E[(x, —0)"] =0 forany r=>1,

we say that X, converges in mean rto 6.

The most used version is mean-squared convergence, which sets 7 =2.

. 14
Notation: X, — 0

m.s.
Xn, — 6  (whenr=2)

For the case » =2, the sample mean converges to a constant, since its
variance converges to zero.

m.s. 14
Theotem: X, — 06 =>x, — 0
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Consistency: Brief Remarks

e Consistency
A consistent estimator of a population characteristic satisfies two
conditions:

(1) It possesses a probability limit —its distribution collapses to a spike
as the sample size becomes large, and

(2) The spike is located at the true value of the population
characteristic.

¢ The sample mean in our example satisfies both conditions and so it
is a consistent estimator of f4. Most estimators, in practice, satisfy the
first condition, because their variances tend to zero as the sample size
becomes large.

¢ Then, the only issue is whether the distribution collapses to a spike at
the true value of the population characteristic.

20

Consistency: Brief Remarks

- A sufficient condition for consistency is that the estimator should be
unbiased and that its variance should tend to zero as #» becomes large.

- However the condition is only sufficient, not zecessary. It is possible
that an estimator may be biased in a finite sample, but the bias
disappears as the sample size tends to infinity.

=> Such an estimator is biased (in finite samples), but consistent
because its distribution collapses to a spike at the true value.

20
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Consistency: Brief Remarks
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Consistency: Brief Remarks

¢ Therefore, we should be cautious about preferring consistent
estimators to inconsistent ones.

(1) A consistent estimator may be biased for finite samples.

(2) If a consistent estimator has a larger variance than an inconsistent
one, the latter might be preferable if judged by the MSE.

(3) How can you resolve these issues? Mathematically they are
intractable, otherwise we would not have resorted to large sample
analysis in the first place.

* A simulation can help to understand the trade-offs.
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Almost Sure Convergence: Review

* Definition: Almost sure convergence
Let 0 be a constant, and n be the index of the sequence of RV x,,. If
Pllim, ,,x,=0]=1,

we say that X, converges almost surely to 0.

7n—>0

The probability of observing a realization of {x,} that does not
converge to 0 is zero. {X,} may not converge everywhere to 8, but the
points where it does not converge form a zero measure set (probability

sense).

a.s.
Notation: X, — 0

This is a stronger convergence than convergence in probability.

a.s. p
Theotrem: X, — 0 = x,—™ 0

Almost Sure Convergence: Strong LLN

* In almost sure convergence, the probability measure takes into
account the joint distribution of {X, }. With convergence in probability
we only look at the joint distribution of the elements of {X,,} that
actually appear in Xx,,.

* Strong Law of Large Numbers

We can state the LLN in terms of almost sure convergence:

Under certain assumptions, sample moments converge almost surely to
their population counterparts.

This is the Strong LLN.

* From the previous theorem, the Strong LLN implies the (Weak) LLN.
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Almost Sure Convergence: Strong LLN

* Versions used in Greene
(i) Khinchine’s Strong LLN.
Assumptions: {Xj } is a sequence of iid. RVs with E[X,] = p < .

(if) Kolmogorov’s Strong LLLN.

Assumptions: {X,} is a sequence of independent. RV's with E[X},] = u <
o and Var[X,] = ¢? < .

Convergence for Random Functions: ULLN

* In econometrics, we often deal with sample means of random
functions. A random function is a function that is a random wvariable for
each fixed value of its argument.

* In cross section econometrics, random functions usually take the form
of a function g(Z, ) of a random vector Zand a non-random vector 0.

* For example, consider a Poisson model:

_7\‘1 ).}i
Prob(Y, = y, | X,) =<
;!
* Letln = X;B and denote Z, = (Y;,X). Then,
&4z, ) = =X +y,In(Xf) - Z; In(y), where 6 = B.

For these functions we can extend the LLILN to a Uniform LILN.

10
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Convergence for Random Functions: ULLN

* Theorem: Uniform weak LLN (UWLLN)

Let {Z;,1 = 1,2, .., n} be a random sample from a k-variate
distribution. Let g(z, 8) be a Borel measurable function on Z X ®,
where Z€ R is a Borel set such that P[Z; € Z] = 1, and © is a compact
subset of R™, such that for each z€Z, g(z, 8) is a continuous function
on ®. Furthermore, let

E[supjee | 9(Zi,0)]] <
Then,

(1/m) X 9(Z1,6) - Elg(Z,0)]]| = 0.

* That is, for any fixed 6, the sequence {g(Z1,0), g(Z3,0), ...} isa
sequence of z.d. RVs, and the sample mean of this sequence converges
in probability to E[g(Z, 8)]. This is pointwise (in 8) convergence.

plim supyeg

Note: The condition that the random vectors Z; are 7.z.d. can be relaxed.

Back to CLM: New Assumptions

(1) {x;, &} 1=1,2,..., T is asequence of independent obsetvations.
— X is stochastic, but independent of the process generating €.
— We require that X have finite means and variances. Similar
requirement for g, but we also require E[g]=0.

(2) Well behaved X:
plim X'X/T) = Q  (Q a pd matrix of finite elements)

- Q: Why do we need assumption (2) in terms of a ratio divided by T?
Each element of X'X matrix is a sum of T numbers. As T — oo, these
sums will become large. We divide by T so that the sums will not be
too large.

11
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Linear Model: New Assumptions

2) plim X'X/T) = Q (Q a pd matrix of finite elements)

Note: This assumption is not a difficult one to make since the LLN
suggests that the each component of X'X/T goes to the mean values
of X'X. We require that these values are finite.

— Implicitly, we assume that there is not too much dependence in X.

Linear Model: New Assumptions

* Now, we have a new set of assumptions in the CLM:

(A1) DGP:y =X +&.

(A2’) X stochastic, but E[X' €] = 0 and E[g] = 0.

(A3) Var[e|X] = 02 I,

(A%) plim X'X/ T)=Q (pd matrix with finite elements, rank = k)

* We want to study the large sample properties of OLS:
Q 1:Is b consistent? s2?
Q 2: What is the distribution of b?

Q 3: What about the distribution of the tests: #zests, F-tests & Wald
tests?

12
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Consistency of OLS: b

‘b= X)Xy =B + XXX
= plimb = plim B + plim X'X/T)! plim X'e/T)
= B +QiplimX'e/T)

* When can we say that plim X'e/T) = 0?

New assumption (1) -or (A2%)- = E[X'e]=0

Then, using new assumptions (1) and (2), we can use the (weak) LLN:
= plim X'e/T) =0
=plimb =f = b is consistent.

m.s.
Note: This could have been shown through X'e/T) —— 0.

Consistency of OLS: s?

sst=e'e/(T — k)
= plim 5% = plim[e'e/(T — k)] = plim[e'e/T] * plim [T /(T — k)]
= plim[e'e/T]
= plim [¢'Me/T]
= plim [€'e/T] - plim ['X (X'X)'X"e/T]
= plim [g'e/T] — plim(e'X/T) * plim(X'X/T) ! *
* plim(X'e/T)
= plim [¢'e/T] -0 * Q'* 0 = g2
= 02 (52 is consistent)

Note: Using Slutzky’s theorem, we can show that plim § = 0. Now,
recall that we cannot use Slutzky’s theorem for expectations when g(.)
is nonlinear! That is, S is not an unbiased estimator for .

13
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Convergence to a Random Variable: Review
* Definition: Limiting Distribution

Let x;, be a random sequence with cdf F, (x;,). Let x be a random
variable with cdf F(x).

When F, converges to F as n — o, for all points x at which F(x) is
continuous, we say that X, converges in distribution to x. The
distribution of that random variable is the Zwmiting distribution of xy,.

d
Notation: Xn—X

d
Example: The t,, statistic converges to a N(0, 1): t,, —> N(0, 1)

Remark: If plim x,, = 6 (a constant), then F, (x,,) becomes a point.

Convergence to a Random Variable: Review

d d
Theorem: If x,, — x & plim y,= ¢. Then, x, y, — C x.

That is the limiting distribution of X, ¥, is the distribution of ¢ x.

d
Also, xp +y,—x+c

d
Xpn /Yn — x/C (provided ¢ # 0.)

14
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Slutsky’s Theorem for RVs - Review

Let x,, converge in distribution to x and let g(.) be a continnous
function with continuous detivatives. g(.) is not a function of n.

d
Then, 90r) — g(x).

Example: t;, — NO1) = g(ty) = (6, — [NO.D.

* Extension

d d
Letx, — x & g(x,,0) — g(x) (8: parameter).
Let plim y,, = 6 (Y is a consistent estimator of )

d
Then, g(xpn, Yn) — g(x).

That is, replacing 8 by a consistent estimator leads to the same limiting
distribution.

Extension of Slutsky’s Theorem: Examples

Example 1: t,, statistic
da
2= (& — /o — N, 1)
d
th=n (X —u)/s, — N(O, 1) (where plim s, = 0)

Example 2: F-statistic for testing | restrictions in a regression (€* &
e are restricted and unrestricted residuals, respectively)

F=[e¥e*—e'e)/]]/[e'e/T — k)]
= [(ex'ex—e'e)/(aY)]/[e'e/ (@X(T — k)]

The denominator: e'e/[cXT — k)] LY

Then, the limiting distribution of the F statistic will be given by the
limiting distribution of the numerator.

15
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The CLT: Review

* The CLT states conditions for the sequence of RV {x,,} under which
the mean or a sum of a sufficiently large number of x; s will be
approximately normally distributed.

a
CLT: Under some conditions, z = y/n (X — u) /o — N(0,1)

* It is a general result. When sums of random variables are involved,
eventually (sometimes after transformations) the CLT can be applied.

The CLT: Review

* Two popular versions in Greene, used in economics and finance:

Lindeberg-Levy: {xy,} are i.i.d., with finite 4 and finite 0.

Laindeberg-Feller: {x,,} are independent, with finite p;, 67< 0,

Sp = 24 Xi, SE = »t Giz and for e > 0,

) 1 & )
lim,,, —>  [(x,— @) f(x)dx =0
Sn i=1 [x;—p;il>es,
Note:
Lindeberg-Levy assumes random sampling — observations are 7.z.d.,

with the same mean and same variance.

Lindeberg-Feller allows for heterogeneity in the drawing of the
observations --through different variances. The cost of this more
general case: More assumptions about how the {x,} vary.

16
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Asymptotic Distribution of OLS

*b=XX)X'y =+ XX)'X"e

Using Slutzky’s theorem for RV, we know the limiting distribution of
b is not affected by replacing (X’X) by its plim. That is, we examine
the limiting distribution of

B +Q'X'e/T

* Notice b LN B. But, it has no distribution! It is O(7/7).

We need to do a stabilizing transformation —i.e., the moments do
not depend on T. Steps:

(1) Stabilize the variance: Var[NT b] ~ 6?Q ! is O(1)

(2) Stabilize the mean: ENT (b—PB)] =0

Now, we have a RV, VT (b — B), with finite mean and variance .

Asymptotic Distribution of OLS
*b=XX)Xy =B +XX)'X’e

The stabilizing transformation of b gives us:
VT b-B) =VTXX)'Xe
=T (XX/1) (e /T)
The limiting behavior of NT (b — B) is the same as that of
VT Q' X'e/T)
Q is a fixed matrix. Asymptotic behavior depends on the RV

VT X'g/T)

* T (X'e/T) =T B aiei/T =T [1/T L wi] =T w

= W is a sample mean of independent observations.

17
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Asymptotic Distribution of OLS

= w =)' x;&/T is a sample mean of independent observations.

p
* Under the new assumptions, w — 0 (already shown).

p
* Since Var[xe] = 0°x/'x; = Var[w] — o*Q/T

= VarVT W] — °Q

* We can apply the Lindeberg-Feller CLT: VT W LR N(0, o> Q)
= Tw -4 N(©, o> Q)
= QWT W — N©,¢Q'QQ") = N©, Q")
= VT (b-8 — NO, Q")
= b — N, (/1) Q"

Asymptotic Distribution of OLS

* Note: The last step is a significant jump. We go from an asymptotic
distribution to an approximation that we use in small samples. That
is, the last step embodies a significant assumption. Now, we say:

b — N 0%/ T)QY

Phillips (1983, Handbook of Econometrics) rematrks:
“For the process by which asymptotic machinery works
inevitably washes out sensitivities that are present and important
in finite samples”.

18
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Asymptotic Results

* How ‘fast’ does b converges to 37
Asy.Var[b] = ¢?/T Qlis O(1/T)
— Convergence is at the rate of 1/VT —usual square root rate

— VT b has variance of O(1)
* Distribution of b does not depend on normality of e

* Estimator of the Asy Var[b] = (6?/T)Q!is (#/T) X'X/T)?. (The
degrees of freedom correction is irrelevant. It may matter for small
sample behavior.)

* Slutsky's theorem and the delta method apply to functions of b.

Test Statistics

* We have established the asymptotic distribution of b. We now turn
to the construction of test statistics, which are functions of b.

* Again, we know that if (A5) €| X ~N(0, 6°L), the Wald statistic
FJJ,T =kl = (1/DRb - g’[R SXX)'R'Rb - q) ~ Fjr_

* QQ: What is the distribution of F when (A5) is no longer assumed?
Again, we will study the distribution of test statistics when T — o0

19
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Wald Statistics: Cheat sheet

e Recall these results:

- A square of a N(0, 1) RV ~ y2
Ifz ~ N[, 02 = [(z — @) /0> ~ x?

- Let z,, be not normally distributed, with E[z,,] = u & Var[z,] = 02
Then, by CLT,

d
= Tp = (2n - w/o —> N[0, 1].
d
- If the preceding holds = ()2 = [(Zn — W/0 > — x%.
- Let 6 be unknown. We use S, such that plim s, = 0.

d
=ty = [(2Zn— W/sp] — N(0,1) (Slutzky’s theorem)

Wald Statistics: Cheat sheet
- A sum of k independent squared N(0, 1) RV ~ y?

- If z is a Txk vector, where z ~ N(i, X)
= W= (=) 2= )~ Xiani(Sy

da
- Let z,, — N(M, 2). Also, suppose that X is replaced by a consistent
matrix S, —i.e., plim S, = X. Then,

d
W= (zp, - M)' Sﬁ1 (2n - M) - XIZQank(Sn)

* Note: No normal distribution for z needed. What we used is
consistency of a certain estimator (S,) and the CLT for z,,.

20
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Wald Statistics: The F-test

d
* Let z,, — N(i, ) and plim S, = 2. Then,
d

W= (Zn— W' Sp' Zn — W) — Xhank(s,)

* Now, we derive the asymptotic distribution for the F-statistic for
H:RB-q =0

F=(1/)) Rb-q)’[R s*X'X)'R'|"'(Rb - q)
Letm = (R b, —q),

= Under H,, plim m = 0 and Var[m] = R(c?/T)Q"'R".
By CLT,

d
VT'm — N[0, R(G)Q'R’]
Then, by Slutzky’s theorem (using plim s? = ¢2)

d
JEF — XIZQank(Var[m])

Hypothesis Test: Central and Non-central 2

* Recall: The noncentral y? distribution is “pushed to the right” relative
to the (central) y2. For a given value q,

Prob[x? * [/2u?] > q] is larger than Prob[x% > q].

* In our hypothesis testing context: H:Rp —q = 0. The “z” in the
quadratic form is Rb — q. The hypothesis is that E[Rb —q] = 0.

* If H,, is true —i.e., the expectation really is 0—, W will follow a x>
distribution. If the mean is not zero —i.e., H, is true—, Iis likely to be
larger than we would “predict” based on the (central) %2

* Thus, we construct a test statistic, the Wald statistic, based on the
(central) 2 distribution. Most Neyman-Pearson tests can be cast in
this form. Analysis of the power of a test will need a noncentral y>.
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The Delta Method

® The delta method is used to obtain the asymptotic distribution of a
non-linear function of random variables (usually, estimators). It uses a
first-order Taylor series expansion and Slutsky’s theorem.

* Univariate case
Let X, be a RV, with plim x,= 6 and Var(x,) = o> < o,
d
We can apply the CLT to obtain v/n (X, — w)/o — N(0, 1).
a
Goal: g(x,) — ? (g(xy,) is a continuous differentiable
function, independent of n.)
Steps:
(1) Taylor series approximation around 6:
g(x,) ~g(0) + g'(0) (x, — 8) + higher order terms

We will assume the higher order terms are o(n).

The Delta Method

Remark: o(n): as n grows the higher order terms vanish.

(2) Use Slutsky theorem: plim g(x,) = g(6@)
plim g'(x,)= g'(6)
Then, as n grows, g(x,) ~g) +¢g'O) (x, —0)
= Vnglxn) -8(0)) ~g'(0) [Vn(x, — )]
= Vn([g(xn) —8(0)] /o) = g'(0) [Vn(x, — 0)/0]

If () does not behave badly, the asymptotic distribution of (g(x,) —
g(0)) is given by that of [\/n(x,, — ) /0], which is a standard normal.

For the approximation to work well, we want ¢ to be “small.”

Then,
Vn [g(xy) —8(0)] — N, [g'(6)])> ).

22
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The Delta Method

Then,
Vi [g(xn) - g(6)] — N, [g'(0)]? 0?).

After some work (“inversion”), we obtain:

g(xn) — N(g(6), [g'(O)F o).

* If we want to test H: g(8) = gg, we can do a Wald test:

W = [8(xn) — GolP/[18Ctn)) 52/n] — 12

The Delta Method

¢ Multivariate case
The extension is straightforward.

Now, we have a vector, X,, that can be asymptotically approximated by
a multivariate normal:

X, — N(6,)
Then,
g(x,) — N, [g(0] = [2(8).

23
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The Delta Method — Example 1
Let x,, N N(0, a2 /n)

a
Then, g(x,) = 8/x, —>? (8 is a constant)

(1) Calculate the plims of g(x;) and g'(xy,):
g(xn) = 8/xp = plim g(xp) = (5/0)
g'(xn)= -(8/x2”) = plim g'(x,) = -(6/6?)

(2) Use delta method formula: g(x;,) SN N(g(0), [g'(8)]? % /n).
= glx) — N©/6, (/6902 /n)

* If we want to test Hy: g(x,) = g, we can do a Wald test:

W = [8/%n — 8/ [(5%/ %) 2/] — 12

The Delta Method — Example 2

ol (B
—> N ,
Y ey Oy Oy

Define R = x,, /yn.
Q: What is the Var(R) = ?

Let

(1) Calculate the plims of g(x;) and g'(x,):
gR,) =Xy /¥n = plim g(R,) = (6,/0)
gR,) =[(1/yn) (X /yn?)] = plim gR) =[(1/0) (-0./67)

(2) Multivariate delta method:  g(y) — N(g(), [ O] £ [¢'(O)]/n)-
1

c ., 6_, 60,0, 6,0, 6)2(0
Var(Rn):[L _ex‘|[cxx x}:| 6) = O AU A 2
5
y

2 2 3 3 4
0, 02|0n Oy 02 o} 03 0!
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The Delta Method — Example 2

* We are interested in constructing a CI for the Sharpe ratio. Define:
x, = estimator of excess returns (W) = [, - 1y

9, = estimator of the variance of returns = &

Sharpe Ratio = SR = p-t;/o

The joint asymptotic distribution of {x,,}:

nery | _a Nuu—zer of  Eti-w] 4}
52 c El(r,-w)’] El(rn-w']-o

Now, we can apply the multivariate delta method:

1
1 u-ry c’ E[(r,-n)’] P
Var (SR)=|— - -
a0 L 267 L[(n—m E[(n—u)“]—c“} nory
263
The Delta Method — Example 2
1
R o’ E[(r, - 1)*] s
Var(SR)_L 26° L[(n—u)ﬁ Bl -w* 1=t | =1
2c

* When we assume a normal distribution for returns (not a very
realistic assumption), thus, we have zero skewness and zero excess
kurtosis. Then,

1

-r 2 . 2 26t (u-r,)? —r)?

Var(SR) = l _H 3f S 04 Cir :GZ+ (“6f) :1+(M é”)
c 20 0 2*|| _H77r c 4c 20

263

¢ Under the normality assumption, we construct a 95% C.I. for the SR:
Est. SR + 1.96 sqrt[(1 + 1/2 (Est. SR)?)/T]

Note: Easy to calculate. But, in general, we will need third and fourth
moment data to do inferences about the SR.
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Trilogy of Asymptotic Tests: LR, Wald, and LM

* We assume we know the distribution for €|X. to build a likelihood
function, L(B). We present three asymptotic tests: LR, Wald, and LM.

* Notation:
LY : Unrestricted estimator (MLE, BY = fu1)
ﬁ’ R . Restricted estimator, imposing H: ¢(B)=RB-q =0.

* From a Taylor expansion, we get the basic tests:
(6-6,)Var(0)™(6-6,)—— 1,

* Differences in the construction.

- Likelihood Ratio (LLR) test: Use both BY and R

- Wald test: Use ﬁw

- Lagrange Multiplier (M) test: Use BR (a test of Hy: A=0.)

Trilogy of Asymptotic Tests: Wald, LM and LR

* We want to test ] restrictions H: g() = 0, where g(.) is a nice
differentiable vector function, with 1st derivative matrix G.

* The Likelibood Ratio (LR) test
We estimate the model twice, once unrestricted and once restricted.
Then, we compare the two.

* The Wald (W) test
We estimate only the unrestricted model. We use an estimate of the
second derivative to “guess' the restricted model.

* The Lagrange Multiplier (LM) test

We estimate only the restricted model. We use again an estimate of
the second derivatives to guess the restricted model. Under H, the
LM associated with the constraint, A, is zero.
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Trilogy of Asymptotic Tests: LR Test

Lu

LR/2

LR

AR o U
B P =8
If the values of fY and SR are far apart, then .U and IR will be far
apart, the test statistic will be large, and we will reject H,.

Trilogy of Asymptotic Tests: LR Test

* Recall that we can approximate the likelihood function, L, using a

2nd-order Taylor series expansion around ﬁ ML
logL(3))=108L ([, ) By~ B)S(Pn) +§ (B~ BILBo) (B B)

where  Olog(L(B)) _ o Slog(ftx,|B)) _ s
S EE S DSVl B = S(B) =SSy )= 0

B op
5 log(L(B)) _ _
Siop (P =n1h)
gl (Qlog fGs ) | _ g[8 log f(x:f) _1(8)
op opop’

* Then,
log(L( B))=10g(L( By N+ 0.5( Bry - B LB B - B)

27



RS - Econometrics I - Lecture 7

Trilogy of Asymptotic Tests: LR Test
* Under H,, we do the approximation around SR:
log(L( B)) = log(L(ﬁR))%(ﬁR -B)L (BB -B)
¢ Subtracting both expression, under H,, we get
108(L( By )-V0eL B )= By B 1, (B B - )
* Under the regularity conditions in SR-11, we have shown:
n( Buy - B ) I Bry ) Bu - B )—> 7
* Then,
LR = 2[log(L( B\, )-log(L( B* )1 —> 1]

Trilogy of Asymptotic Tests: LR Test

* An asymptotic test which rejects H,, with probability one when the
H, is true is called a conmsistent test. That is, a consistent test has
asymptotic power of 1.

e The LR test is a consistent test. A heuristic argument is that if the
alternative hypothesis is true instead of H, then

(B’ =B~k =0

Then, under H, (ﬁ’ML - Bt )'I(,éML )(ﬁML -B*) converges to £, a
constant, not 0. Multiplying a constant by 7, get the LR to diverge to

Alternatively, we can think of g(,éﬂ )——>g(4)#0 driving the
divergence of the LR test under Hywhen H; is true.

o as » — oo,which implies that we always reject H, when H, is true.
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Trilogy of Asymptotic Tests: Wald Test

Lu

LR/2

LR

IR /
~ e A -~

B P = ﬂU

* Consider two likelihood functions, L and L. They have the same

values of fY and BR —i.c., same |BY - BR|. But different LR tests.

Trilogy of Asymptotic Tests: Wald Test

* The fact that the LR test statistic is atfected by the curvature of L.
suggests a rescaling for | Y - BR|. Use the second derivative of the
likelihood function.

* Formally, recall that under the usual regularity conditions, the ML
estimator BU = By is asymptotically normal:

Priu——>N(BI(B)™) (*)
* Then, under H,, the Wald test can be calculated as:
W=(B" =) WarGOT (B =) =5 ~AYUB B - A=z

* We can also derive a Wald test by combining (*) and a 1st-order
Taylor expansion of the restriction g(B), around the true value {3
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Trilogy of Asymptotic Tests: Wald Test

* We can also derive a Wald test by combining (*) and a 1st-order
Taylor expansion of the restriction g(f3), around the true value B

g( B’ )=g(B)+G'(BY-By)+o(1)
+ A little bit of algebra and (¥) deliver:
Jn(g(BY)-g( B)—>N©O.G'I( 5,)"G)
* Under H;: g(By)=0, we form the usual quadratic form for a Wald
o ne( U NGB ) GY gl B )—s 1

where we use £Uto evaluate I(B) and G.

Trilogy of Asymptotic Tests: LM Test

Lu

LR

Wald
—

~ e ~ ~
s Py = ﬂU

* Consider two likelihood functions, L and L. They have the same

slope at BR. But the distance | Y - BR|. will be greater for L.
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Trilogy of Asymptotic Tests: LM Test

* Recall that in the context of the CLM in Chapter 4, we derive a
Wald test based on the LM.

Suppose we just test Hy: A = 0, using the Wald criterion:
W =N (Var[A| X])TA

* The LM test uses the curvature at the restricted estimator, R to
test if it 1s closed to O (the f.o.c.).

* Thus, in the basic formula (0-6,)'Var(8)™'(6-6,)
a rescaling is suggested, by a measure of L’s curvature, as given by

the score, S(B).

Trilogy of Asymptotic Tests: LM Test

* Recall the score function, S(@) - N(0, #1(B)).
* The LM (score) test is based on S(B). Under H, S(%)=0. Then,

LM :%S( BYIBIHTS(BH— x1,°

* The information matrix , I(f) may be evaluated at the hypothesized

value BR or at the Byz. One advantage of using S® is that we bypass
the calculation of the ML. In practice, score tests are seldom used.

* Recall that we can write I(B) as the expectation of a product of
scores, S(B). We can rewrite the LM test as

py=Lsv Sloalis|O)f 15w Slogfts|0) Sloglfs 0))}1 5 Slogis|0)
neE 50 | ne 80 50 S

This expression looks like an R? from the regression of 1 on S(B).
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Trilogy of Asymptotic Tests: LM Test
XX X)X

'

I

* The (uncentered) R% R* =

* Then, LM = 7 R?, where R? is calculated from a regression of a
vector of ones on the scores. (This version of the LM test may be
referred as Engle’s LM test.)

Example: Y, = f( X, 8, 8,) T & subject to g(f,)=0

where {3, is a subset of parameters restricted by g(B;) =0 (Gis the 1st
derivative of this restriction).

* Then, Gle*
© S(B)==5

I(p,)=1c”E(G'G)]"

e*: estimated errors from the restricted model

Trilogy of Asymptotic Tests: LM Test
* The LM test becomes: LM = 62 e¥G{c? E[G’G]}! 672 G'e*
If E[G’G] = G’G = LM = o2 e®e*,
with the interpretation as TR? from a regression of e* on G. This is
used in many tests for serial correlation, heteroskedasticity, etc.
Example: Testing for serial correlation
Suppose Y= XB+e
&= P&y T Uy

H,: p=0 (no serial correlation).

To calculate the Engle’s LM test we need e*(residuals under p=0) and
G.
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Trilogy of Asymptotic Tests: LM Test

Example(continuation): Serial correlation
Steps to calculate Engle’s LM test for serial correlation.:

(1) Estimate restricted model —i.e., without setial correlation: g: p=0.
(2) Save the residuals e*.

(3) Get G= e*  (lagged residuals). Then, estimate the model:
e*=x,'"y+0e,  *+v,
and keep the R? from this regression .

@ LM = (I -1)R*~ x7

Trilogy of Asymptotic Tests: Wald, LM and LR
Lu

LR/2

LM
LR

Wald
—
B k Prr =B v
If the likelihood function were quadratic then LR = LM = W. In
general, however W > LR > LM.
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Trilogy of Asymptotic Tests: Wald, LM and LR

* The three tests have the same asymptotic distribution: Equivalent
as T'— o0, Thus, they are expected to give similar results in large
samples.

* Their small-sample properties are not known. Simulation studies
suggest that the likelihood ratio test may be better in small samples.

* The three tests are consistent, pivotal tests.

Asymptotic Tests: Small sample behavior?

* The p-values from asymptotic tests are approximate for small
samples. We worry that tests based on them may over-reject in small
samples (or under-reject). The conclusions may end up being too
liberal (or too conservative).

* Whether they over-reject or under-reject, and how severely,
depends on many things:

(1) Sample size, T.
(2) Distribution of the error terms, €.
(3) The number of regressors, £, and their properties

(4) The relationship between the error terms and the regressors.

* A simulation can help.
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Pivot Tests: Review

Definition: Pivot Test

A pivot is a statistic whose sampling distribution does not depend on
unknown parameters. A test whose distribution does not depend on
unknown parameters is called a pzvot test.

Example: Suppose you draw X from a N(u, ¢?).

d
Asymptotic theory implies that X — N(u, 62/N).
This statistic is #of asymptotically pivotal statistic because it depends

on an unknown parametert, o (even if you specify p, under H).

d
On the other hand, the #statistic, t = (X — ) /s - N(O,1).

=> The #statistic is asymptotically pivotal since 0 and 1 are known!

Pivot Tests: Review

* Most statistics are #of asymptotically pivotal. Popular test statistics in
econometrics, however, are asymptotically pivotal. For example,
Wald, LR and LM tests ate distributed as y? with known df.

* Keep in mind that in finite samples, most tests are not still
asymptotically pivotal in finite samples.

* Under the usual assumptions, the #= (b — )/SE(b) is an example
of a pivotal statistic: 7 ~ #.,, which does not depend on f3.

Note: These functions depend on the parameters, but the distribution
is independent of the parameters.
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Bootstrap: Review

* Recall the Fundamental Theorem of Statistics:
The empirical cdf — true CDF.

¢ Then, if we knew that a certain test statistic was pivotal but did not
know how it was distributed, we could select any DGP in H;, and
generate simulated samples from it.

Trick: Simulation to get the empirical cdf of a statistic. Apply FTS.
=> Sample from our ED to collect B samples of size T.

* The simulated samples can be used to construct a C.I., which easily
allows us to test a Hy,.

Bootstrap: Testing — Example IBM

* We want to test if IBM has an average return equal to the market,
proxied by the S&P 500. Hy: pipy= Matarker = 0-76% monthly (or 9.5%
annualized, based on 1928-2015 data).

We have monthly data from 1990: Jan to 2016: August (1=320). The
average IBM return was 0.9%. We do a bootstrap to check the
sampling distribution of IBM mean returns.

Steps:

(1) Draw B = 10,000 bootstrap subsamples of size T'= 320.

(2) For cach subsample, calculate the observed sample mean, X;*.
(3) Draw a histogram

From the histogram, it is straightforward to build a (1-a)% C.I. and
check if the market return (0.76%) falls within it.

36



RS - Econometrics I - Lecture 7

Bootstrap: Testing — Example IBM

* R-code

dat_xy <- read.csv("C:/IFM/datastream-K-DIS.csv", head=TRUE, sep=",")
x <- dat_xy$IBM

sim_size = 10000

# bootstrap

bstrap <- c()

for (iin 1:sim_size){

newsample <- sample(x, 320, replace=T)

bstrap <- c(bstrap, mean(newsample))}

hist(bstrap,main="Histogram for Simulated IBM Means", xlab="Mean
Return", breaks=20)

# 95% Confidence Interval
> quantile(bstrap,.025)

> 9.031304¢-05

> quantile(bstrap,.975)

Bootstrap: Testing — Example IBM

Histogram for Simulated IBM Means

1500

1000

Frequency

500
I

T T T T T 1
-0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025

Mean Return

Notes: The simulated IBM mean is 0.0086%.
- Normal approximation seems OK => usual t-test should work finel.
- 95% C.I: [0.00001, 0.01711] = a sample mean of 0.0076 is possible!
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Bootstrap critical values

® Suppose we are interested in testing in the CLM, H: B, = B,

We use a t-statistic: ~ #= (b, — B,)/SE(b,), which is asymptotically
d

pivotal (-N(0,1)).

* Bootstrapping can provide some finite sample correction (refinement),
providing more accurate estimates of the t-test.

Steps:
(1) Draw B (say, 999) bootstrap subsamples of size T from your data.
Denote the subsamples as w* = {yj, xj}, i=1,2,..,B.

(2) For each subsample calculate the observed #=(b,; — 8,)/SE(b,)).

(3) Sort these B estimates from smallest to largest.

Bootstrap critical values

* In the last step, we sort the B t;* estimates from smallest to largest.

* For an (upper) one-tailed test the bootstrap critical value (at level o) is
the “upper azh quantile” of the B estimates of t*. For example, if B =
999, choose the critical value of 7at the 5% level as ty5,*.

* For two-sided tests, there are two possibilities.

(1) A non-symmetrical or equal-tailed test has the same number of
bootstrapped estimates in the two tails, which may implies that the
critical values for the upper and lower tails are not necessarily equal in

absolute value.

For example, for inference at the 5% significance level |t,;*| may not
be equal to |ty,s*|.
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Bootstrap critical values

(2) In contrast, a symmetric fest orders the t*’s in terms of their absolute
values and the critical value is the single value in absolute value terms.

For example, with B = 999 and a 5% significance level, order all 999
t*’s in terms of their absolute value from smallest to the largest. Pick
the one that is 50 from the top and compare that to |7].

Note: An alternative (but “wnrefined’) method to test H, is to just use
the bootstrapped standard errors to compute

1= (by = B20)/SEpe0i(by)-

Bootstrap critical values

* Another “unrefined” method is not to calculate any SE at all. We
use the B b,*’s estimates to build a confidence interval. Suppose we
are interested in a 2-sided test.

Steps:
(1) As usual, calculate B estimates of b,, call them b, *, ..., b, 5*.

(2) At the % significance level, cut out the bottom («/2)% and the
top (a/2)% estimates of 3,

(3) Reject Hy if B, falls outside this range.

This method is called the percentile method tor conducting hypothesis
tests.
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Bootstrap p-values

* Recall that the p-value is the probability, under H, of obtaining a
more extreme (or equal to) result than what was actually observed.

* We compute p-values through a simulation for a test statistic, T,
with observed value 7. (T follows a distribution under H; T is a
realization.)

(1) Choose any DGP in H,, and draw B (say, 999) samples of size T
from it. Denote the simulated samples as yi*, i=12,..,B

(2) For each simulated sample calculate the observed T*;.

(3) Count the number of times the simulated values (T%'s) exceeds the
observed value 7. Divide by B. This is the bootstrapped p-value:

B
* Ty 1 * ~
p(T) =3 E I(t{ > 7)
i=1

Bootstrap p-values

* Since the EDF converges to the true CDF, it follows that, if B were
infinitely large, this procedure would yield an exact test.

* Simulating a pivotal statistic is called a Monte Carlo test; Dufour and
Khalaf (2001) provides a more detailed introduction and references.
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Bootstrap p-values: Example IBM

* Now, we do a simulation assuming H,, is true.

1) We shift the mean of the data in the sample (the “fake population”)

> new_x <- x —mean(x) + .0076

2) We do another bootstrap (using the same code as before) with
these data to compare with the observed 0.89% IBM return

3) The p-value is the probability of getting something more extreme
than what we observed, 0.89%, which is 0.89-0.76%=0.13% units
from H,,. For a two-sided test, the p-value is given by:

> p_val <- (sum(bstrap < 0.0063) + sum(bstrap > 0.0089)/sim_size

> print(p_val)

[1] 0.7494 = cannot reject H!

Bootstrap Testing: Remarks

* Two types of errors associated with bootstrap testing with p-values:

(1) Most tests are not asymptotically pivotal in finite samples.

The distribution of most test statistics depend on unknown
parameters (or other unknown features) of the DGP. Then,
bootstrapped p-values will be inaccurate, because of the differences
between the bootstrap DGP and the true DGP.

Q: How serious is this problem?

Beran (1988), Hall (1992), and Davidson and MacKinnon (1999)
argue that bootstrap tests tend to perform better than tests based on
approximate asymptotic distributions.

= The errors committed by both tests diminish as T increases, but
those committed by bootstrap tests diminish more rapidly.
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Bootstrap Testing: Remarks

* Two types of errors associated with bootstrap testing:

(2) B is finite.

An ideal bootstrap test rejects H,, at level @ whenever p*(T) < a. But,
our “feasible” bootstrap test reject H, whenever p*(%) < a. If B is
extremely large, the difference between feasible and ideal tests will be
small. In practice, because of costs, we use small B.

Two consequences of small B?

(a) The test may depend on the sequence of random numbers used to
generate the bootstrap samples (the seed).

(b) Whenever B < oo, there is loss of power, as discussed in Hall and
Titterington (1989). This loss of power is often small, but as pointed
out by Davidson and MacKinnon (2001) can get big.

Example: Gasoline Demand (Greene)

* Based on the gasoline data: The regression equation is

G =B, + Byy + Bspg + Bypnc + Pspuc +
+ Beppt + Bopd + Bgpn + PBops + Pyt + &

All variables are logs of the raw variables, so that coefficients are
elasticities.

The new variable, t, is a time trend, 0, 1, ..., 26, so that 3, is the
autonomous yearly proportional growth in G.
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Gasoline Demand - OLS Results (Greene)

e +

| Ordinary least squares regression |

| LHS=G Mean = 5.308616 |

| Standard deviation = .2313508 |

| Model size Parameters = 10 |

| Degrees of freedom = 17 |

| Residuals Sum of squares = .003776938 |

| Standard error of e = .01490546 |

| Fit R-squared = .9972859 |

| Adjusted R-squared = .9958490 |

| Model test F[ 9, 17] (prob) = 694.07 (.0000) |

| Chi-sq [ 9] (prob) = 159.55 (.0000) |

e +

Fommm - e E et e it - $ommm - et +
|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X|

dommm - e E et e it - do—m - e +
Constant -5.97984140 2.50176400 -2.390 0287

Y 1.39438363 .27824509 5.011 0001 9.03448264
PG -.58143705 .06111346 -9.514 0000 .47679491
PNC -.29476979 .25797920 -1.143 2690 .28100132
PUC -.20153591 .07415599 -2.718 0146 .40523616
PPT .08050720 .08706712 925 3681 .47071442
PD 1.50606609 .29745626 5.063 0001 -.44279509
PN .99947385 .27032812 3.697 0018 -.58532943
PS -.81789420 .46197918 -1.770 0946 -.62272267
T -.01251291 .01263559 -.990 3359 13.0000000

Gasoline Demand Covariance Matrix (Greene)

Matrix - Cov.Mat.

wotm ek [
ONE Y | pe PNC puc | peT [ PD PN | Ps T
ONE E.Z@_B_Zl 1685564 0.0159666 -0.2525M1 .0992025 0121959 00767857 0.210285 041674 (.0204369
Y (1685584 0.0774203 0007186804 0016933 000926158 (00115885 0.000248256 (0170407 00291785 -0.00265606
PG | 015966 000186804 | 000373485 000287659 000105386 -DO04A163 -OOOG7E19  0OTIZ643 O.0T4GE09 0000101201
PNC -0.25251 0016933 0002876539 0.0665533 000347858 (0132043 00406575 0418232 0093873 0.00126402
PUC 00992025 000326198 | 000105386 | (000947888 000543911 000356764 -000915534 (10135477 (10226384 -6 24541e-005
PPT 0121559 0.0115385 000248163 0.0132043 000358764 0007580658 -0.00443361 (0175285 00315759 0000146502
PD 0.0767857  0.000248256 | -0.00B07319 0406975 000915534 -0.00443961 (0834802 -(L0267256 00314479 0.00121354
PN -0.210285 0.070407 £.0112643 0.0418232 0.035477 00175285 00267256 00730773 0103791 0.000133505
PS 0.41674 A.0291785 0.0 45609 -0.0988791 0226984 00315759 (0314479 0103791 0.213425  -0.00168306
T 0024969 | -0ODZGE06 | Q.0CCTOTZ0T | 00026402 | 624541005 D0004ES02 000121354 DODMS3E05  -000T6E306 0000159658
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Gasoline Demand - Linear Hypothesis (Greene)

H,: Aggregate price variables are not significant determinants of
gasoline consumption

Hy B =Bs=8,=0
H,: At least one is nonzero

RB-q=0
0 0000 O1 O0O0TO 0
R={O 0 0 00O O 1 O0 0},g=|0
0 0000 O O OT1TTFPDO 0

Gasoline Demand - Wald Test (Greene)

R =10,0,0,0,0,0,1,0,0,0/
0,0,0,0,0,0,0,1,0,0/
0,0,0,0,0,0,0,0,1,0];

q=1[0/0/0];

m = R*b - q;

Vm = R*¥Varb*R*

Wald = m*inv(Vm)*m,;

WALD = 66.91506
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Gasoline Demand - Nonlinear Restrictions

* Suppose we are interested in testing the hypothesis that certain
ratios of elasticities are equal. In particular,

& = By/Bs— B:/Bs =0
b, = Bs/Bs— Bo/Bs =0

* To do the Wald test, first we estimate the asymptotic covariance
matrix for the sample estimates of ¢, and ¢,. After estimating the
regression by least squares, the estimates are

f1=b,/bs - b,/bg

f2=Db,/bs - by/bs.
Then, using the delta method, we estimate the asymptotic variances
and covariances of f1 and f2.

Gasoline Demand - Setting Up the Wald Stat

* After estimating the regression by least squares, the estimates are
f1=b,/bs - b,/bg
f2 =b,/bs - by/bs.

Then, we use the delta method to get the asymptotic covariance
matrix for f1 and f2. We write f1 = f1(b), a function of the entire

10x1 coefficient vector. Then, we compute the 1x10 derivative
vector, d1 = 0f1(b)/0b’. This vector is

1 23 4 5 6 7 8 910
d1 =0, 0, 0, 1/b5, -b4/b52, 0,-1/b8, b7/b8% 0, 0
« Similarly for d2 = 6f2(b)/db'.

d2=0, 0, 0, 1/b5, -b4/b52, 0, 0, b9/b82% -1/b8, 0
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Gasoline Demand - Wald Statistics (Greene)

Then, D = the 2x10 matrix with first row d1 and second row d2.
The estimator of the asymptotic covariance matrix of [f1,£2]" (a 2x1
column vector) is

V =Dxs2X'X)!xD'".

Finally, the test of Hy: ¢ = 0 is done with
W = (£:0)'V(£-0) ~ y,2.

The critical value from the chi-squared table is 5.99 at the 5% level.
Then, if W > 5.99 = reject H,,.

Computation: W = 22.65 > 5.99 = reject H,,.

Wald Test: Manipulation of variables (Greene)

* In the example below, to make this a little simpler, Greene
computed the 10 variable regression, then extracted the 5x1 subvector
of the coefficient vector ¢ = (b,,bs,b;,bg,by) and its associated part of
the 10x10 covariance matrix. Then, Greene manipulated this smaller

set of values.
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Application of the Wald Statistic (Greene)

? Extract subvector and submatrix for the test
matrixslist ; ¢=[b(4)/b(5)/b(7)/b(8)/b(9)]$
matrix;list ; ve=[varb(4,4)/
varb(5,4),varb(5,5)/
varb(7,4),varb(7,5),varb(7,7)/
varb(8,4),varb(8,5),varb(8,7),varb(8,8)/
varb(9,4),varb(9,5),varb(9,7),varb(9,8),varb(9,9)|$

? Compute derivatives
calc ;list
; 211=1/¢(2); gl2=-c(1)*gl1*gl1; g13=-1/c(4); gl4=c(3)*g13*13 ; g15=0
;21=¢gl1 ;g22=g12 ;23=0 ; g24=c(5)/c(4)"2 ; g25=-1/c(4)$
? Move detivatives to matrix
matrix;list; dfdc=[g11,g12,¢13,g14,15 / 221,922,623 024,025]%
? Compute functions, then move to matrix and compute Wald statistic
calcilist ; f1=c(1)/¢(2) - ¢(3)/c(4)

; £2=c(1)/c(2) - ¢(5)/c(4) $
matrix ; list; £ = [f1/£2]$
matrix ; list; vf=dfdc * vc * dfdc' $
matrix ; list ; wald = f' * <vf> * {§
(This is all automated in the WALD command.)

Computations (Greene)

Matrix C is 5 rows by 1 columns.
1
1 -0.2948 -0.2015 1.506 0.9995 -0.8179
Matrix V€ is  5rows by 5 columns.

1 2 3 4 5
0.6655E-01 0.9479E-02 -0.4070E-01 0.4182E-01 -0.9888E-01
0.9479E-02 0.5499E-02 -0.9155E-02 0.1355E-01 -0.2270E-01
-0.4070E-01 -0.9155E-02 0.8848E-01 -0.2673E-01 0.3145E-01
0.4182E-01 0.1355E-01 -0.2673E-01 0.7308E-01 -0.1038
-0.9888E-01 -0.2270E-01 0.3145E-01-0.1038  0.2134
G11 = -4.96184 Gl12= 725755 G13=-1.00054 G14 = 150770 G15 = 0.000000
G21 = -4.96184 G22= 725755 G23=0 G24 =-0.818753 G25 = -1.00054
DFDC=[G11,G12,G13,G14,G15/G21,G22,G23,G24,G25]

Matrix DFDC  is 2 rows by 5 columns.
1 2 3 4 5
1 -4962 7258 -1.001 1.508  0.0000
2 -4962 7258 0.0000 -0.8188 -1.001
F1=-0.442126E-01
F2= 2.28098
F=[F1/F2]
VF=DFDC*VC*DFDC'
Matrix VFE is 2rows by 2 columns.
1 2
1 0.9804 0.7846
2 0.7846  0.8648
WALD = 22,65

S N S
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Non-invariance of the Wald Test (Greene)

T algo did a second test (uzing the built-in procedure) to illustrate a problem
with Wald tests. Note that the hypothesis can be written a bit differently. An
equivalent way to write them

o= PsPr - PaPs =0
ta = PaPs - Psbs

Il
(=1

In a small sample, one can get a different answer depending on how they write
the hypothesis.

| WALD procedure. Estimates and standard errors
! Wald Statistic 10. 68662 ! USING PRODUCTS
! Prob. from Chi-squared[ 2] 0.00478 !

Variable Coefficient &Standard Error =z=hfs.e. P[|Z]=z]

Frncni 1) -0.8905728E-0Z2 0.zZ0022 -0.044 0. %6452
Frncni( 2) 0.4594581 0.18578 Z.473 0.01339

Unlike likelihood ratio tests and Lagrange multiplier tests, the Wald test iz not
invariant to such transformations |
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