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Lecture 7
Asymptotics of OLS

© R. Susmel, 2022 (for private use, not to be posted/shared online).

OLS Estimation - Assumptions

• CLM Assumptions

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank – rank(X)=k-, where T ≥ k.

• From (A1), (A2), and (A4)  b = (X′X)-1X′ 𝒚

• Using (A3)  Var[b|X] = σ2(XX)-1

• Adding (A5)  |X ~iid N(0, σ2IT)  b|X ~iid N(, σ2(XX)-1)

(A5) gives us finite sample results for b (& for the t-test, F-test, Wald test)

• Now, we relax (A5). We study b (& the test statistics) when T → ∞.
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OLS Estimation - Assumptions

• In this lecture, we relax (A5). We focus on the behavior of b (and 
the test statistics) when 𝑇→ ∞   –i.e., large samples. 

• First, we throw away the normality for |X . This is not bad. In 
many econometric situations, normality is not a realistic assumption 
(daily, weekly, or monthly stock returns do not follow a normal). 

• Second, we relax the i.i.d. assumption for |X . This is also not bad. 
In many econometric situations, identical distributions are not realistic 
(different means and variances are common).

• Q: How does b (and all the tests) behave without this normality 
assumption? We will not be able to say much for small samples. But, 
we can say a lot about the behavior of b when 𝑇→ ∞.

2

• The asymptotic properties of  estimators are their properties as the 
number of  observations in a sample becomes very large and tends to 
infinity.

• Q: Why are we interested in large sample properties, like consistency, 
when in practice we have finite samples?

A: As a first approximation, the answer is that if  we can show that an 
estimator has good large sample properties, then we may be optimistic 
about its finite sample properties. For example, if  an estimator is 
inconsistent, we know that for finite samples it will definitely be 
biased.

• We will review the concepts of  probability limits, consistency, and 
the CLT.

Brief  Review: Plims and Consistency
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Probability Limit: Convergence in probability

• Definition: Convergence in probability 
Let θ be a constant, 𝜀 > 0, and 𝑛 be the index of  the sequence of  RV 
𝑥௡. If  limn→∞ Prob[|𝑥௡ – θ|> 𝜀 ] = 0 for any 𝜀 > 0, we say that 𝑥௡
converges in probability to θ.

That is, the probability that the difference between 𝑥௡ and θ is larger 
than any 𝜀 > 0 goes to zero as 𝑛 becomes bigger. 

Notation: 𝑥௡ 
    ௣   

θ
plim 𝑥௡ = θ

• If  𝑥௡ is an estimator (for example, the sample mean) and if  plim 𝑥௡
= θ, we say that 𝑥௡ is a consistent estimator of  θ. 

Estimators can be inconsistent. For example, when they are consistent 
for something other than our parameter of  interest.

• Theorem: Convergence for sample moments.  

Under certain assumptions (for example, i.i.d. with finite mean), sample 
moments converge in probability to their population counterparts.

We saw this theorem before. It’s the (Weak) Law of Large Numbers 
(LLN).  Different assumptions create different versions of the LLN.

Note: The LLN is very general:

(1/𝑛) ∑ 𝑓ሺ𝑧௜ሻ
௡
௜  

    ௣   
E[𝑓ሺ𝑧௜ሻ]

• The usual version in Greene assumes i.i.d. with finite mean. This is 
the Khinchin’s (1929) (weak) LLN. (Khinchin is also spelled Khintchine)

Probability Limit: Weak Law of  Large Numbers



RS - Econometrics I - Lecture 7

4

• When {𝑋௡} is not i.i.d., extra conditions are needed for the 
convergence of (1/𝑛) ∑ 𝑓ሺ𝑥௜ሻ

௡
௜ . Such conditions are typically imposed 

on higher-order moments of 𝑋௡ . 

• For the non-i.i.d. case, we have Chebychev’s version, which assumes 
independence and finite mean and finite variance. 

Probability Limit: Weak Law of  Large Numbers
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Plims and Consistency: Review

• Consider the mean of  a sample, 𝑋ത, of  observations generated from a 
RV X with mean X and variance ௑ଶ . Recall Var[𝑋തሿ = ௑ଶ/𝑛.  Then, 
as 𝑛 grows, the sampling distribution becomes more concentrated.



RS - Econometrics I - Lecture 7

5

Slutsky’s Theorem: Review

Let 𝑥௡ be a RV such that plim 𝑥௡ = θ.  (We assume θ is a constant.)
Let 𝑔ሺ. ሻ be a continuous function with continuous derivatives. g(.) is 
not a function of 𝑛. Then 

plim[𝑔ሺ𝑥௡ሻ] = 𝑔[plim(𝑥௡)] = 𝑔[θ] (provided g[plim(𝑥௡)] 
exists)

When 𝑔(.) is continuous, this result is sometimes referred as the 
continuity theorem.

Note 1: This theorem extends to sequences of random vectors and
vector-valued X-continuous functions.

Note 2: This theorem is extremely useful and has many applications

Plims and Expectations: Review

• Q: What is the difference between E[𝑥௡] and plim 𝑥௡?

– E[𝑥௡] reflects an average

– plim 𝑥௡ reflects a (probabilistic) limit of a sequence.

Slutsky’s Theorem works for plims, but not for expectations. That is,

Note: This very simple result is one of the motivations of using 
asymptotic theory. Plims are easy to manipulate, expectations are not. 
For example, the expectation of a product of RVs is complicated to 
derive, but the plim is not difficult.
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Properties of plims: Review

• These properties are derived from Slutsky’s Theorem. 

Let 𝑥௡ have plim 𝑥௡= 𝜃 and 𝑦௡ have plim 𝑦௡ = ψ. Let 𝑐 be a constant. 
Then,

1) plim 𝑐 = 𝑐.

2) plim (𝑥௡+ 𝑦௡) = 𝜃 + ψ.

3) plim (𝑥௡ * 𝑦௡) = 𝜃 * ψ. (plim (𝑐 𝑥௡) = c 𝜃.)

4) plim (𝑥௡/𝑦௡) = 𝜃/ψ. (provided ψ ≠ 0)

5) plim[𝑔(𝑥௡, 𝑦௡)] = 𝑔(𝜃,ψ). (assuming it exists and 𝑔(.) is cont. diff.) 

• We can generalize Slutsky’s Theorem to matrices.

Let plim An = A and plim Bn = B (element by element). Then

1) plim(An
-1) = [plim An]-1 = A-1

2) plim(AnBn) = plim(An) plim(Bn) = AB

• Definition: Convergence in mean r
Let 𝜃 be a constant, and 𝑛 be the index of the sequence of RV 𝑥௡. If 

limn→∞ E[(𝑥௡ – 𝜃)r ] = 0 for any r ≥ 1, 

we say that 𝑥௡ converges in mean r to 𝜃.

The most used version is mean-squared convergence, which sets r =2.

Notation: 𝑥௡
    ௣   

𝜃

𝑥௡
  ௠.௦. 

𝜃 (when r = 2)

For the case r =2, the sample mean converges to a constant, since its 
variance converges to zero.  

Theorem: 𝑥௡
  ௠.௦. 

𝜃  𝑥௡
    ௣   

𝜃

Convergence in Mean(r): Review
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• Consistency
A consistent estimator of  a population characteristic satisfies two 
conditions:

(1) It possesses a probability limit –its distribution collapses to a spike 
as the sample size becomes large, and

(2) The spike is located at the true value of  the population 
characteristic.

• The sample mean in our example satisfies both conditions and so it 
is a consistent estimator of X.  Most estimators, in practice, satisfy the 
first condition, because their variances tend to zero as the sample size 
becomes large.

• Then, the only issue is whether the distribution collapses to a spike at 
the true value of  the population characteristic. 

20

Consistency: Brief  Remarks

- A sufficient condition for consistency is that the estimator should be 
unbiased and that its variance should tend to zero as n becomes large.

- However the condition is only sufficient, not necessary.  It is possible 
that an estimator may be biased in a finite sample, but the bias 
disappears as the sample size tends to infinity.  

 Such an estimator is biased (in finite samples), but consistent 
because its distribution collapses to a spike at the true value.

20

Consistency: Brief  Remarks
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Consistency: Brief  Remarks

• Therefore, we should be cautious about preferring consistent 
estimators to inconsistent ones.

(1) A consistent estimator may be biased for finite samples.

(2) If  a consistent estimator has a larger variance than an inconsistent 
one, the latter might be preferable if  judged by the MSE. 

(3) How can you resolve these issues?  Mathematically they are 
intractable, otherwise we would not have resorted to large sample 
analysis in the first place.

• A simulation can help to understand the trade-offs.

Consistency: Brief  Remarks
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• Definition: Almost sure convergence

Let 𝜃 be a constant, and 𝑛 be the index of the sequence of RV 𝑥௡. If 

P[ limn→∞ 𝑥௡ = 𝜃 ] = 1,  

we say that 𝑥௡ converges almost surely to 𝜃.

The probability of observing a realization of {𝑥௡} that does not 
converge to θ is zero. {𝑥௡} may not converge everywhere to 𝜃, but the 
points where it does not converge form a zero measure set (probability 
sense).

Notation: 𝑥௡
    ௔.௦.  

𝜃

This is a stronger convergence than convergence in probability.

Theorem: 𝑥௡
    ௔.௦.  

𝜃  𝑥௡
    ௣   

𝜃

Almost Sure Convergence: Review

• In almost sure convergence, the probability measure takes into 
account the joint distribution of {𝑋௡}. With convergence in probability 
we only look at the joint distribution of the elements of {𝑋௡} that 
actually appear in 𝑥௡.

• Strong Law of Large Numbers

We can state the LLN in terms of almost sure convergence:

Under certain assumptions, sample moments converge almost surely to 
their population counterparts.

This is the Strong LLN. 

• From the previous theorem, the Strong LLN implies the (Weak) LLN.

Almost Sure Convergence: Strong LLN
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• Versions used in Greene

(i) Khinchine’s Strong LLN.

Assumptions: {𝑋௡} is a sequence of i.i.d. RVs with E[𝑋௡] = μ < ∞.

(ii) Kolmogorov’s Strong LLN.

Assumptions: {𝑋௡} is a sequence of independent. RVs with E[𝑋௡] = μ < 
∞ and Var[𝑋௡] = σ2 < ∞. 

Almost Sure Convergence: Strong LLN

• In econometrics, we often deal with sample means of random 
functions. A random function is a function that is a random variable for 
each fixed value of its argument. 

• In cross section econometrics, random functions usually take the form 
of a function g(Z, θ) of a random vector Z and a non-random vector θ.

• For example, consider a Poisson  model:

• Let ln λi= Xiβ and denote Zj = (Yj ,Xj). Then,

g(Zi, θ) = –Xiβ + yj ln(Xiβ) – Σi ln(yj), where θ = β.

For these functions we can extend the LLN to a Uniform LLN.

Convergence for Random Functions: ULLN
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• Theorem: Uniform weak LLN  (UWLLN)

Let {𝑍௜ , 𝑖 = 1, 2, .., 𝑛} be a random sample from a 𝑘-variate 
distribution. Let 𝑔ሺ𝑧,𝜃ሻ be a Borel measurable function on Ζ × Θ, 
where Ζ∈Rk is a Borel set such that P[𝑍௜ ∈ Ζ] = 1, and Θ is a compact 
subset of Rm, such that for each z∈Ζ, 𝑔ሺ𝑧,𝜃ሻ is a continuous function 
on Θ. Furthermore, let

E[supθ∈Θ | 𝑔ሺ𝑍௜ ,𝜃ሻ|] < ∞

Then, 

plim supθ∈Θ |(1/𝑛) ∑ 𝑔ሺ𝑍௜ ,𝜃ሻ
௡
௜ – E[𝑔ሺ𝑍,𝜃ሻ]| = 0.

• That is, for any fixed 𝜃, the sequence {𝑔ሺ𝑍ଵ,𝜃ሻ, 𝑔ሺ𝑍ଶ,𝜃ሻ, …} is a 
sequence of i.i.d. RVs, and the sample mean of this sequence converges 
in probability to E[𝑔ሺ𝑍,𝜃ሻ]. This is pointwise (in 𝜃) convergence. 

Note: The condition that the random vectors 𝑍௜ are i.i.d. can be relaxed.

Convergence for Random Functions: ULLN

Back to CLM: New Assumptions

(1) {𝑥௜ , 𝜀௜}  𝑖 = 1, 2, ...., 𝑇 is a sequence of independent observations.
– X is stochastic, but independent of the process generating .
– We require that X have finite means and variances. Similar 

requirement for , but we also require E[]=0.

(2) Well behaved X:

plim (XX/𝑇) =  Q (Q a pd matrix of finite elements)

- Q: Why do we need assumption (2) in terms of a ratio divided by 𝑇? 
Each element of XX matrix is a sum of 𝑇 numbers.  As 𝑇, these 
sums will become large. We divide by 𝑇 so that the sums will not be 
too large. 
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(2) plim (XX/𝑇) =  Q (Q a pd matrix of finite elements)

Note: This assumption is not a difficult one to make since the LLN  
suggests that the each component of XX/𝑇 goes to the mean values 
of XX. We require that these values are finite. 

– Implicitly, we assume that there is not too much dependence in X. 

Linear Model: New Assumptions

• Now, we have a new set of assumptions in the CLM: 

(A1) DGP: 𝒚 = X  + . 
(A2’) X stochastic, but E[X ] = 0 and E[] = 0.

(A3) Var[|X] = 𝜎ଶ IT

(A4’) plim (XX/ 𝑇) = Q (pd matrix with finite elements, rank = 𝑘)

• We want to study the large sample properties of OLS:

Q 1: Is b consistent? 𝑠ଶ?

Q 2: What is the distribution of b?

Q 3: What about the distribution of the tests: t-tests, F-tests & Wald 
tests?

Linear Model: New Assumptions
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Consistency of OLS: b

•  b = (XX)-1X 𝒚 =  + (XX)-1X 
 plim b  = plim  + plim (XX/𝑇)-1 plim (X/𝑇)

=  + Q-1 plim (X/𝑇) 

• When can we say that plim (X/𝑇) = 0?

New assumption (1) -or (A2’)-  E[X]=0

Then, using new assumptions (1) and (2), we can use the (weak) LLN:

 plim (X/𝑇) = 0

 plim b  =   b is consistent.

Note: This could have been shown through (X/𝑇)
    ௠.௦.  

0.

Consistency of OLS: 𝑠ଶ

• 𝑠ଶ = e'e/(𝑇 െ 𝑘)

 plim 𝑠ଶ = plim[e'e/(𝑇 െ 𝑘)] = plim[e'e/𝑇] * plim [𝑇/(𝑇 െ 𝑘)]
= plim[e'e/𝑇]

= plim ['M/𝑇]

= plim ['/𝑇] – plim ['X (X′X)-1X′/𝑇]

= plim ['/𝑇] – plim('X/𝑇) * plim(X′X/𝑇)-1 *
* plim(X′/𝑇)

= plim ['/𝑇] – 0 * Q-1 * 0 = 𝜎ଶ

 𝜎ଶ (𝑠ଶ is consistent)

Note: Using Slutzky’s theorem, we can show that plim 𝑠 = 𝜎 Now, 
recall that we cannot use Slutzky’s theorem for expectations when g(.) 
is nonlinear! That is, 𝑠 is not an unbiased estimator for 𝜎.
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Convergence to a Random Variable: Review

• Definition: Limiting Distribution
Let 𝑥௡ be a random sequence with cdf 𝐹௡(𝑥௡). Let 𝑥 be a random 
variable with cdf 𝐹ሺ𝑥ሻ.  

When 𝐹௡ converges to 𝐹 as 𝑛 → ∞, for all points 𝑥 at which 𝐹ሺ𝑥ሻ is 
continuous, we say that 𝑥௡ converges in distribution to 𝑥. The 
distribution of that random variable is the limiting distribution of 𝑥௡.

Notation: 𝑥௡
    ௗ   

𝑥

Example: The 𝑡௡ statistic converges to a N(0, 1): 𝑡௡ 
    ௗ   

N(0, 1)

Remark: If plim 𝑥௡ = 𝜃 (a constant), then 𝐹௡(𝑥௡) becomes a point.

Theorem: If 𝑥௡ 
    ௗ   

𝑥 & plim 𝑦௡= 𝑐. Then, 𝑥௡ 𝑦௡
    ௗ   

𝑐 𝑥. 
That is the limiting distribution of 𝑥௡ 𝑦௡ is the distribution of 𝑐 𝑥.

Also, 𝑥௡ ൅ 𝑦௡ 
    ௗ   

𝑥 ൅ 𝑐

𝑥௡ /𝑦௡
    ௗ   

𝑥/𝑐 (provided  𝑐 ≠ 0.)

Convergence to a Random Variable: Review
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Slutsky’s Theorem for RVs - Review

Let 𝑥௡ converge in distribution to x and let 𝑔ሺ. ሻ be a continuous
function with continuous derivatives. 𝑔ሺ. ሻ is not a function of  𝑛. 

Then, 𝑔ሺ𝑥௡ሻ
    ௗ   

𝑔ሺ𝑥).

Example: 𝑡௡
    ௗ   

N(0,1)  𝑔ሺ𝑡௡ሻ = (𝑡௡)2 
    ௗ   

[N(0,1)]2.

• Extension

Let 𝑥௡
    ௗ   

𝑥 & 𝑔ሺ𝑥௡,𝜃) 
    ௗ   

𝑔ሺ𝑥ሻ (𝜃: parameter). 

Let plim 𝑦௡ = 𝜃 (𝑦௡ is a consistent estimator of  𝜃)

Then, 𝑔ሺ𝑥௡, 𝑦௡ሻ
    ௗ   

𝑔ሺ𝑥ሻ.

That is, replacing 𝜃 by a consistent estimator leads to the same limiting 
distribution.

Extension of Slutsky’s Theorem: Examples

Example 1: 𝑡௡ statistic

z = 𝑛 ሺ𝑥̅ െ 𝜇ሻ/𝜎
    ௗ   

N(0, 1)

𝑡௡= 𝑛 ሺ𝑥̅ െ 𝜇ሻ/𝑠௡
    ௗ   

N(0, 1) (where plim 𝑠௡ = 𝜎)

Example 2: F-statistic for testing J restrictions in a regression (𝒆* &
𝒆 are restricted and unrestricted residuals, respectively)

F = [(𝒆*′𝒆* – 𝒆′𝒆)/J]/[𝒆′𝒆/(𝑇 െ 𝑘)] 

= [(𝒆*′𝒆* – 𝒆′𝒆)/(𝜎2J)]/[𝒆′𝒆/(𝜎2(𝑇 െ 𝑘ሻ)] 

The denominator: 𝒆′𝒆/[𝜎2(𝑇 െ 𝑘)] 
    ௣   

1.  

Then, the limiting distribution of  the F statistic will be given by the 
limiting distribution of  the numerator.
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The CLT: Review

• The CLT states conditions for the sequence of RV {𝑥௡} under which 
the mean or a sum of a sufficiently large number of 𝑥௜’s will be 
approximately normally distributed. 

CLT: Under some conditions, 𝑧 = 𝑛 ሺ𝑥̅ െ 𝜇ሻ/𝜎
    ௗ   

N(0,1)

• It is a general result. When sums of random variables are involved, 
eventually (sometimes after transformations) the CLT can be applied.

• Two popular versions in Greene, used in economics and finance:

Lindeberg-Levy: {𝑥௡} are i.i.d., with finite 𝜇 and finite 𝜎2. 

Lindeberg-Feller: {𝑥௡} are independent, with finite  𝜇௜, 𝜎௜
ଶ< ∞, 

𝑆௡ = ∑ 𝑥௜
௡
௜ ,  𝑠௡ଶ = ∑ 𝜎௜

ଶ௡
௜ and for ε > 0, 

Note: 

Lindeberg-Levy assumes random sampling – observations are i.i.d.,
with the same mean and same variance.

Lindeberg-Feller allows for heterogeneity in the drawing of the 
observations --through different variances. The cost of this more 
general case: More assumptions about how the {𝑥௡} vary.
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The CLT: Review
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Asymptotic Distribution of OLS

•  b = (XX)-1Xy =  + (XX)-1X 
Using Slutzky’s theorem for RV, we know the limiting distribution of  
b is not affected by replacing (X’X) by its plim. That is, we examine 
the limiting distribution of  

 + Q-1 X/T

• Notice b 
    ௣   

β.  But, it has no distribution! It is O(1/T).
We need to do a stabilizing transformation –i.e., the moments do 
not depend on T. Steps:
(1) Stabilize the variance: Var[T b] ~ σ2Q-1 is O(1)
(2) Stabilize the mean: E[T (b – β)] = 0

Now, we have a RV, T (b – β), with finite mean and variance .

• b = (XX)-1Xy =  + (XX)-1X
The stabilizing transformation of b gives us:

𝑇 (b - β) = 𝑇 (XX)-1X’ 

= 𝑇 (XX/T)-1(X’ /𝑇)

The limiting behavior of T (b – β) is the same as that of

𝑇 Q-1 (X/𝑇)

Q is a fixed matrix. Asymptotic behavior depends on the RV  

𝑇 (X/𝑇)

• 𝑇 (Xε/𝑇) = 𝑇 ∑ 𝒙௜𝜀௜
௡
௜ /𝑇 = 𝑇 [1/𝑇 ∑ 𝒘௜

௡
௜ ] = 𝑇 𝑤ഥ

 𝑤ഥ is a sample mean of independent observations. 

Asymptotic Distribution of  OLS
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 𝑤ഥ = ∑ 𝒙௜𝜀௜
௡
௜ /𝑇 is a sample mean of independent observations. 

• Under the new assumptions, 𝑤ഥ
    ௣   

0 (already shown). 

• Since Var[xiεi] = σ2 xixi  Var[𝑤ഥ ]  
    ௣   

σ2 Q/𝑇

 Var[ 𝑇 𝑤ഥ ]  
    ௣   

σ2Q

• We can apply the Lindeberg-Feller CLT: 𝑇 𝑤ഥ
    ௗ   

N(0, σ2 Q)

 𝑇 𝑤ഥ
    ௗ   

N(0, σ2 Q)

 Q-1 𝑇 𝑤ഥ
    ௗ   

N(0, σ2 Q-1 Q Q-1) = N(0, σ2 Q-1)

 𝑇 (b – β)  
    ௗ   

N(0, σ2 Q-1)

 b
    ௔   

N(β, (σ2/T) Q-1)

Asymptotic Distribution of  OLS

• Note: The last step is a significant jump. We go from an asymptotic 
distribution to an approximation that we use in small samples. That 
is, the last step embodies a significant assumption. Now, we say:

b
    ௔   

N(β, (σ2/ 𝑇)Q-1)

Phillips (1983, Handbook of Econometrics) remarks:

“For the process by which asymptotic machinery works 
inevitably washes out sensitivities that are present and important 
in finite samples”.

Asymptotic Distribution of  OLS
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Asymptotic Results

• How ‘fast’ does b converges to β?

Asy.Var[b] = σ2/𝑇 Q-1 is O(1/T)

– Convergence is at the rate of 1/ 𝑇 –usual square root rate

– 𝑇 b has variance of O(1)

• Distribution of b does not depend on normality of ε

• Estimator of the Asy Var[b] = (σ2/𝑇)Q-1 is (s2/𝑇) (XX/𝑇)-1.  (The 
degrees of freedom correction is irrelevant. It may matter for small 
sample behavior.)

• Slutsky's theorem and the delta method apply to functions of b.

Test Statistics

• We have established the asymptotic distribution of b.  We now turn 
to the construction of test statistics, which are functions of b.  

• Again, we know that if (A5) |X ~N(0, σ2IT), the  Wald statistic 

F[J𝐽,𝑇 െ 𝑘] = (1/J)(Rb - q)’[R s2(XX)-1R]-1(Rb - q) ~  𝐹௃,்ି௞

• Q: What is the distribution of F when (A5) is no longer assumed? 
Again, we will study the distribution of test statistics when 𝑇→ ∞.
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Wald Statistics: Cheat sheet

• Recall these results:  

- A square of a N(0, 1) RV ~ 𝜒ଵ
ଶ

- If z ~ N[, 𝜎2]   [ሺ𝑧 െ 𝜇ሻ/𝜎]2 ~ 𝜒ଵ
ଶ

- Let 𝑧௡ be not normally distributed, with E[𝑧௡] =  & Var[𝑧௡] = 𝜎2. 
Then, by CLT, 

 𝜏௡ ൌ (𝑧௡ – )/𝜎
    ௗ   

N[0, 1].

- If the preceding holds  (𝜏௡)2 = [(𝑧௡ – )/𝜎 ]2
    ௗ   

𝜒ଵ
ଶ.  

- Let  be unknown. We use 𝑠௡ such that  plim 𝑠௡ = 𝜎.  

 𝑡௡ = [(𝑧௡ – )/𝑠௡]  
    ௗ   

N(0,1) (Slutzky’s theorem)

- A sum of 𝑘 independent squared N(0, 1) RV ~ 𝜒௞
ଶ

- If z is a Tx𝑘 vector, where z ~ N(, )

 W = (x – ) -1 (x – ) ~ 𝜒ோ௔௡௞ሺሻ
ଶ

)

- Let 𝒛௡
    ௗ   

N(, ). Also, suppose that  is replaced by a consistent 
matrix 𝑺௡ –i.e., plim ST = . Then,

W = (𝒛௡ – ) 𝑺௡-1 (𝒛௡ – )  
    ௗ   

𝜒ோ௔௡௞ሺ𝑺𝒏ሻ
ଶ

• Note: No normal distribution for z needed. What we used is 
consistency of a certain estimator (𝑺௡) and the CLT for 𝒛௡.

Wald Statistics: Cheat sheet
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• Let 𝒛௡
    ௗ   

N(, ) and plim  𝑺௡ = . Then,

W = (𝒛௡ – ) 𝑺௡-1 (𝒛௡ – )  
    ௗ   

𝜒ோ௔௡௞ሺ𝑺𝒏ሻ
ଶ

• Now, we derive the asymptotic distribution for the F-statistic for 
H0: R – q =  0

F = (1/J) (Rb – q)’[R 𝑠ଶ(XX)-1R]-1(Rb – q)

Let m = (R 𝐛௡ – q), 

 Under H0, plim m = 0 and Var[m] = R(𝜎ଶ/T)Q-1R’.

By CLT,

T m
    ௗ   

N[0, R(2)Q-1R’]

Then, by Slutzky’s theorem (using plim 𝑠ଶ = 𝜎ଶ)    

J F
    ௗ   

𝜒ோ௔௡௞ሺ୚ୟ୰ሾ𝒎ሿሻ
ଶ

Wald Statistics: The F-test

Hypothesis Test: Central and Non-central 2

• Recall: The noncentral 2 distribution is “pushed to the right” relative 
to the (central) 2. For a given value q, 

Prob[𝜒ଵ
ଶ * [½2] > q] is larger than Prob[𝜒ଵ

ଶ > q].

• In our hypothesis testing context:  H0:R – q = 0. The “z” in the 
quadratic form is Rb – q.  The hypothesis is that  E[Rb – q] = 0.

• If H0 is true –i.e., the expectation really is 0–, W will follow a 2

distribution. If the mean is not zero –i.e., H1 is true–, W is likely to be 
larger than we would “predict”  based on the (central) 2.  

• Thus, we construct a test statistic, the Wald statistic, based on the 
(central) 2 distribution. Most Neyman-Pearson tests can be cast in 
this form. Analysis of the power of a test will need a noncentral 2..
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The Delta Method

• The delta method is used to obtain the asymptotic distribution of a 
non-linear function of random variables (usually, estimators). It uses a 
first-order Taylor series expansion and Slutsky’s theorem.

• Univariate case

Let 𝑥௡ be a RV, with plim 𝑥௡= 𝜃 and Varሺ𝑥௡) = σ2 < ∞. 

We can apply the CLT to obtain 𝑛 ሺ𝑥௡ – )/𝜎
    ௗ   

 N(0, 1).

Goal: gሺ𝑥௡ሻ
    ௔   

? (gሺ𝑥௡ሻ is a continuous differentiable 
function, independent of 𝑛.)

Steps:

(1) Taylor series approximation around 𝜃:  

gሺ𝑥௡ሻ  gሺ𝜃ሻ + g′ሺ𝜃ሻ 𝑥௡ െ 𝜃 ൅ higher order terms

We will assume the higher order terms are o(𝑛). 

Remark: o(𝑛): as 𝑛 grows the higher order terms vanish.

(2) Use Slutsky theorem: plim gሺ𝑥௡ሻ = gሺ𝜃ሻ
plim g′ሺ𝑥௡ሻ= g′ሺ𝜃ሻ

Then, as 𝑛 grows, gሺ𝑥௡ሻ  gሺ𝜃ሻ + g′ሺ𝜃ሻ ሺ𝑥௡ െ 𝜃ሻ
 𝑛 [gሺ𝑥௡ሻ – gሺ𝜃ሻ])  g′ሺ𝜃ሻ [ 𝑛ሺ𝑥௡ െ 𝜃ሻ]
 𝑛 ሺሾgሺ𝑥௡ሻ – gሺ𝜃ሻ] /𝜎ሻ  g′ሺ𝜃ሻ [ 𝑛ሺ𝑥௡ െ 𝜃ሻ/𝜎]

If g(.) does not behave badly, the asymptotic distribution of ሺgሺ𝑥௡ሻ –
gሺ𝜃ሻሻ is given by that of [ 𝑛ሺ𝑥௡ െ 𝜃ሻ/𝜎], which is a standard normal. 

For the approximation to work well, we want σ to be “small.” 

Then,

𝑛 ሾgሺ𝑥௡ሻ – gሺ𝜃ሻሿ
    ௔   

N(0, [g′ሺ𝜃ሻ]2 𝜎2).

The Delta Method
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Then,

𝑛 ሾgሺ𝑥௡ሻ – gሺ𝜃ሻሿ
    ௔   

N(0, [g′ሺ𝜃ሻ]2 𝜎ଶ).

After some work (“inversion”), we obtain:

gሺ𝑥௡ሻ
    ௔   

N(gሺ𝜃ሻ, [g′ሺ𝜃ሻ]2 𝜎ଶ).

• If we want to test H0: gሺ𝜃ሻ = 𝑔଴, we can do a Wald test:

W = ሾgሺ𝑥௡ሻ – 𝑔଴]2/[[gሺ𝑥௡ሻ]2 𝑠ଶ/𝑛] 
    ௔   

𝜒ଵ
ଶ

The Delta Method

• Multivariate case
The extension is straightforward.

Now, we have a vector, 𝒙௡, that can be asymptotically approximated by 
a multivariate normal:

𝒙௡
    ௔   

N(θ, Σ)
Then,

gሺ𝒙௡ሻ
    ௔   

N(g(θ), [g(θ)]’ Σ [g(θ)]).

The Delta Method
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Let 𝑥௡
    ௔   

N(θ, 𝜎ଶ/𝑛) 

Then, gሺ𝑥௡ሻ = δ/𝑥௡
    ௔   

? (δ is a constant)

(1) Calculate the plims of  g 𝑥௡ and gᇱ 𝑥௡ :
gሺ𝑥௡ሻ = δ/𝑥௡  plim gሺ𝑥௡ሻ = (δ/𝜃)

g′ሺ𝑥௡ሻ= -(δ/𝑥௡2)  plim gᇱ 𝑥௡  = -(δ/𝜃 2)

(2) Use delta method formula: g 𝑥௡   
     ௔   

N(gሺ𝜃ሻ, [g′ሺ𝜃ሻ]2 𝜎ଶ/𝑛).

 g 𝑥௡  
    ௔   

N(δ/𝜃, (δ2/𝜃4)𝜎ଶ/𝑛)

• If  we want to test H0: g 𝑥௡ = g0, we can do a Wald test:

W = [δ/𝑥௡ – g0]2/[(δ2/𝑥௡4)s2/𝑛] 
    ௔   

𝜒ଵ
ଶ

The Delta Method – Example 1

Let 

Define R = 𝑥௡ /𝑦௡.
Q:  What is the Var(R) =  ?

(1) Calculate the plims of  g 𝑥௡ and gᇱ 𝑥௡ :
g(Rn) = 𝑥௡ /𝑦௡  plim gሺRn) = (θx/θy)
g’(Rn) = [(1/𝑦௡)   (-𝑥௡ /𝑦௡2 )]  plim g’(Rn) = [(1/θy)  (-θx/θy

2 )]’

(2) Multivariate delta method:   g 𝑥௡
    ௔   

N(g(θ), [g(θ)] Σ [g(θ)]/𝑛).

The Delta Method – Example 2
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The Delta Method – Example 2
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• When we assume a normal distribution for returns (not a very 
realistic assumption), thus, we have zero skewness and zero excess 
kurtosis. Then,

The Delta Method – Example 2
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• Under the normality assumption, we construct a 95% C.I. for the SR: 
Est. SR ± 1.96 sqrt[(1 + 1/2 (Est. SR)2)/T]

Note: Easy to calculate. But, in general, we will need third and fourth 
moment data to do inferences about the SR.
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Trilogy of Asymptotic Tests: LR, Wald, and LM
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Trilogy of Asymptotic Tests: Wald, LM and LR

• We want to test J restrictions H0: g(β) = 0, where g(.) is a nice 
differentiable vector function, with 1st derivative matrix G. 

• The Likelihood Ratio (LR) test
We estimate the model twice, once unrestricted and once restricted.
Then, we compare the two.

• The Wald (W) test
We estimate only the unrestricted model. We use an estimate of  the
second derivative to `guess' the restricted model.

• The Lagrange Multiplier (LM) test
We estimate only the restricted model. We use again an estimate of
the second derivatives to guess the restricted model. Under H0, the
LM associated with the constraint, λ, is zero.
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• Then,
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• Subtracting both expression, under H0, we get
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Trilogy of  Asymptotic Tests: LR Test

• An asymptotic test which rejects H0 with probability one when the 
H1 is true is called a consistent test. That is, a consistent test has 
asymptotic power of  1.

• The LR test  is a consistent test. A heuristic argument is that if  the 
alternative hypothesis is true instead of  H0, then

Then, under H1, converges to k, a 
constant, not 0. Multiplying a constant by n, get the LR to diverge to 
∞ as n → ∞,which implies that we always reject H0 when H1 is true.

Alternatively, we can think of  driving the 
divergence of  the LR test under H0 when H1 is true.
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• Then, under H0, the Wald test can be calculated as:

• We can also derive a Wald test  by combining (*) and a 1st-order 
Taylor expansion of  the restriction g(β), around the true value β0.
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Trilogy of  Asymptotic Tests: Wald Test



RS - Econometrics I - Lecture 7

30

• We can also derive a Wald test by combining (*) and a 1st-order 
Taylor expansion of  the restriction g(β), around the true value β0:

Trilogy of  Asymptotic Tests: Wald Test
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• A little bit of  algebra and (*) deliver:
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• Under H0: g(β0)=0, we form the usual quadratic form for a Wald 
test:
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Trilogy of  Asymptotic Tests: LM Test
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• Recall the score function, S(β)         N(0, nI(β)). 
• The LM (score) test is based on S(β). Under H0, S(βR)=0. Then,

J
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This expression looks like an R2 from the regression of  1 on S(β).

a
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• The (uncentered) R2:
ii

iXXXXi
=R

'

')'(' 1
2



• Then, LM = n R2, where R2 is calculated from a regression of  a 
vector of  ones on the scores. (This version of  the LM test may be  
referred as Engle’s LM test.) 

Example: 0)(  1t21tt g+),,Xf(=Y to subject

where β1 is a subset of  parameters restricted by  g(β1) =0  (G is the 1st 
derivative of  this restriction).

Trilogy of  Asymptotic Tests: LM Test
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• Then,

e*: estimated errors from the restricted model  

• The LM test becomes:  LM = σ-2 e*’G{σ-2 E[G’G]}-1 σ-2 G’e*

If  E[G’G] = G’G  LM = σ-2 e*’e*,

with the interpretation as TR2 from a regression of  e* on G. This is 
used in many tests for serial correlation, heteroskedasticity, etc.

Trilogy of  Asymptotic Tests: LM Test

Example:  Testing for serial correlation
Suppose

ttt u+=

+X=Y

1


H0: ρ=0 (no serial correlation). 

To calculate the Engle’s LM test we need e*(residuals under ρ=0) and 
G. 



RS - Econometrics I - Lecture 7

33

Example(continuation):  Serial correlation
Steps to calculate Engle’s LM test for serial correlation.:
(1) Estimate restricted model –i.e., without serial correlation: g: ρ=0.
(2) Save the residuals e*. 
(3) Get G= e*-1 (lagged residuals). Then, estimate the model:

tttt e+x=e   *'* 1

and keep the R2 from this regression . 

(4) LM = (T – 1) R2 ~ 𝜒ଵ
ଶ

Trilogy of  Asymptotic Tests: LM Test

If  the likelihood function were quadratic then LR = LM = W. In 
general, however W > LR > LM.

Lu

LR

U
ML  ˆˆ R̂

LR/2

Wald

LM

Trilogy of  Asymptotic Tests: Wald, LM and LR
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• The three tests have the same asymptotic distribution:  Equivalent 
as T → ∞. Thus, they are expected to give similar results in large 
samples. 

• Their small-sample properties are not known. Simulation studies 
suggest that the likelihood ratio test may be better in small samples.

• The three tests are consistent, pivotal tests.

Trilogy of  Asymptotic Tests: Wald, LM and LR

Asymptotic Tests: Small sample behavior?

• The p-values from asymptotic tests are approximate for small 
samples. We worry that tests based on them may over-reject in small 
samples (or under-reject).  The conclusions may end up being too 
liberal (or too conservative).

• Whether they over-reject or under-reject, and how severely, 
depends on many things:

(1) Sample size, T.

(2) Distribution of the error terms, .
(3) The number of regressors, k, and their properties

(4) The relationship between the error terms and the regressors.

• A simulation can help.
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Definition: Pivot Test 

A pivot is a statistic whose sampling distribution does not depend on 
unknown parameters. A test whose distribution does not depend on 
unknown parameters is called a pivot test.

Example: Suppose you draw X from a N(μ, σ2).

Asymptotic theory implies that  𝑥̅
d
→ N(μ, σ2/N).

This statistic is not asymptotically pivotal statistic because it depends

on an unknown parameter, σ2 (even if you specify μ0 under H0). 

On the other hand, the t-statistic, t = (𝑥̅ – μ0)/s 
d
→ N(0,1). 

 The t-statistic is asymptotically pivotal since 0 and 1 are known! 

Pivot Tests: Review

• Most statistics are not asymptotically pivotal. Popular test statistics in 
econometrics, however, are asymptotically pivotal. For example,  
Wald, LR and LM tests are distributed as χ2 with known df.

• Keep in mind that in finite samples, most tests are not still 
asymptotically pivotal in finite samples.

• Under the usual assumptions, the t = (b – )/SE(b)  is an example 
of a pivotal statistic: t ~ tT-k, which does not depend on .

Note: These functions depend on the parameters, but the distribution 
is independent of the parameters.

Pivot Tests: Review
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• Recall the Fundamental Theorem of Statistics:  

The empirical cdf → true CDF.

• Then, if we knew that a certain test statistic was pivotal but did not 
know how it was distributed, we could select any DGP in H0 and 
generate simulated samples from it.

Trick:  Simulation to get the empirical cdf of a statistic. Apply FTS. 
 Sample from our ED to collect B samples of size T.

• The simulated samples can be used to construct a C.I., which easily 
allows us to test a H0.

Bootstrap: Review

Bootstrap: Testing – Example IBM

• We want to test if  IBM has an average return equal to the market,
proxied by the S&P 500. H0: μIBM= μMarket = 0.76% monthly (or 9.5% 
annualized, based on 1928-2015 data).

We have monthly data from 1990: Jan to 2016: August (T=320). The
average IBM return was 0.9%. We do a bootstrap to check the
sampling distribution of  IBM mean returns.

Steps:
(1) Draw B = 10,000 bootstrap subsamples of  size T = 320.
(2) For each subsample, calculate the observed sample mean, 𝑥̅j*.
(3) Draw a histogram

From the histogram, it is straightforward to build a (1-α)% C.I. and 
check if  the market return (0.76%) falls within it.
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Bootstrap: Testing – Example IBM

• R-code
dat_xy <- read.csv("C:/IFM/datastream-K-DIS.csv", head=TRUE, sep=",")
x <- dat_xy$IBM
sim_size = 10000

# bootstrap
bstrap <- c()

for (i in 1:sim_size){
newsample <- sample(x, 320, replace=T)
bstrap <- c(bstrap, mean(newsample))}

hist(bstrap,main="Histogram for Simulated IBM Means",  xlab="Mean 
Return", breaks=20)

# 95% Confidence Interval
> quantile(bstrap,.025)
> 9.031304e-05
> quantile(bstrap,.975)

Notes: The simulated IBM mean is 0.0086%.

- Normal approximation seems OK  usual t-test should work fine!. 

- 95% C.I: [0.00001, 0.01711]  a sample mean of 0.0076 is possible! 

Bootstrap: Testing – Example IBM
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• Suppose we are interested in testing in the CLM, H0: β2 = β2,0.

We use a t-statistic: t = (b2 – β2,0)/SE(b2), which is asymptotically 

pivotal (
d
→N(0,1)).

• Bootstrapping can provide some finite sample correction (refinement), 
providing more accurate estimates of the t-test. 

Steps:

(1) Draw B (say, 999) bootstrap subsamples of size T from your data.  
Denote the subsamples as wj* = {yj, xj}, j = 1, 2, …, B.

(2) For each subsample calculate the observed t*j=(b2,j – β2,0)/SE(b2,j). 

(3) Sort these B estimates from smallest to largest.

Bootstrap critical values

• In the last step,  we sort the B tj* estimates from smallest to largest.

• For an (upper) one-tailed test the bootstrap critical value (at level α) is 
the “upper αth quantile” of the B estimates of tj*. For example, if B = 
999, choose the critical value of t at the 5% level as t950*.

• For two-sided tests, there are two possibilities. 

(1) A non-symmetrical or equal-tailed test has the same number of 
bootstrapped estimates in the two tails, which may implies that the 
critical values for the upper and lower tails are not necessarily equal in

absolute value. 

For example, for inference at the 5% significance level |t25*| may not 
be equal to |t975*|.

Bootstrap critical values
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(2) In contrast, a symmetric test orders the tj*’s in terms of their absolute 
values and the critical value is the single value in absolute value terms. 

For example, with B = 999 and a 5% significance level, order all 999  
tj*’s in terms of their absolute value from smallest to the largest. Pick 
the one that is 50th from the top and compare that to |t|.

Note: An alternative (but “unrefined”) method to test H0 is to just use 
the bootstrapped standard errors to compute 

t = (b2 – β2,0)/SEboot(b2). 

Bootstrap critical values

• Another “unrefined” method is not to calculate any SE at all. We 
use the B b2*’s estimates to build a confidence interval. Suppose we 
are interested in a 2-sided test.

Steps:

(1) As usual, calculate B estimates of b2, call them b2,1*, … , b2,B*.

(2) At the α% significance level, cut out the bottom (α/2)% and the 
top (α/2)% estimates of β2

(3) Reject H0 if β2,0 falls outside this range. 

This method is called the percentile method for conducting hypothesis 
tests.

Bootstrap critical values
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• Recall that the p-value is the probability, under H0, of obtaining a 
more extreme (or equal to) result than what was actually observed.

• We compute p-values through a simulation for a test statistic, ,
with observed value ො. ( follows a distribution under H0; ො is a 
realization.)

(1) Choose any DGP in H0, and draw B (say, 999) samples of size T
from it. Denote the simulated samples as yj*, j = 1, 2, …, B.

(2) For each simulated sample calculate the observed *j.

(3) Count the number of times the simulated values (*j's) exceeds the 
observed value ො. Divide by B. This is the bootstrapped p-value:

Bootstrap p-values

• Since the EDF converges to the true CDF, it follows that, if B were 
infinitely large, this procedure would yield an exact test.

• Simulating a pivotal statistic is called a Monte Carlo test; Dufour and 
Khalaf (2001) provides a more detailed introduction and references.

Bootstrap p-values
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• Now, we do a simulation assuming H0 is true.

1) We shift the mean of the data in the sample (the “fake population”)
> new_x <- x – mean(x) + .0076

2) We do another bootstrap (using the same code as before) with 
these data to compare with the observed 0.89% IBM return

3) The p-value is the probability of getting something more extreme 
than what we observed, 0.89%, which is 0.89-0.76%=0.13% units 
from H0. For a two-sided test, the p-value is given by:
> p_val <- (sum(bstrap < 0.0063) + sum(bstrap > 0.0089)/sim_size

> print(p_val)

[1] 0.7494  cannot reject H0!

Bootstrap p-values: Example IBM

Bootstrap Testing: Remarks

• Two types of errors associated with bootstrap testing with p-values:

(1) Most tests are not asymptotically pivotal in finite samples. 

The distribution of most test statistics depend on unknown 
parameters (or other unknown features) of the DGP. Then, 
bootstrapped p-values will be inaccurate, because of the differences 
between the bootstrap DGP and the true DGP. 

Q: How serious is this problem?

Beran (1988), Hall (1992), and Davidson and MacKinnon (1999) 
argue that bootstrap tests tend to perform better than tests based on 
approximate asymptotic distributions. 

 The errors committed by both tests diminish as T increases, but 
those committed by bootstrap tests diminish more rapidly.
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• Two types of errors associated with bootstrap testing:

(2) B is finite.

An ideal bootstrap test rejects H0 at level 𝛼 whenever p*(ො) < 𝛼. But, 
our “feasible” bootstrap test reject H0 whenever pො*(ො) < 𝛼. If B is 
extremely large, the difference between feasible and ideal tests will be 
small. In practice, because of costs, we use small B.

Two consequences of small B? 

(a) The test may depend on the sequence of random numbers used to 
generate the bootstrap samples (the seed). 

(b)  Whenever B < ∞, there is loss of power, as discussed in Hall and 
Titterington (1989). This loss of power is often small, but as pointed 
out by Davidson and MacKinnon (2001) can get big.  

Bootstrap Testing: Remarks

Example: Gasoline Demand (Greene)

• Based on the gasoline data:  The regression equation is

G = 1 + 2y + 3pg + 4pnc + 5puc +

+ 6ppt + 7pd + 8pn + 9ps + 10t + 
All variables are logs of the raw variables, so that coefficients are 
elasticities.  

The new variable, t, is a time trend, 0, 1, …, 26, so that 10 is the 
autonomous yearly proportional growth in G. 



RS - Econometrics I - Lecture 7

43

Gasoline Demand - OLS Results (Greene)
+----------------------------------------------------+
| Ordinary    least squares regression               |
| LHS=G        Mean                 =   5.308616     |
|              Standard deviation   =   .2313508     |
| Model size   Parameters           =         10     |
|              Degrees of freedom   =         17     |
| Residuals    Sum of squares       =   .003776938   |  
|              Standard error of e  =   .01490546    |
| Fit          R-squared            =   .9972859     |
|              Adjusted R-squared   =   .9958490     |
| Model test   F[  9,    17] (prob) = 694.07 (.0000) |
|              Chi-sq [  9]  (prob) = 159.55 (.0000) |
+----------------------------------------------------+
+---------+--------------+----------------+--------+---------+----------+
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X|
+---------+--------------+----------------+--------+---------+----------+
Constant     -5.97984140     2.50176400    -2.390   .0287
Y             1.39438363      .27824509     5.011   .0001    9.03448264
PG            -.58143705      .06111346    -9.514   .0000     .47679491
PNC           -.29476979      .25797920    -1.143   .2690     .28100132
PUC           -.20153591      .07415599    -2.718   .0146     .40523616
PPT            .08050720      .08706712      .925   .3681     .47071442
PD            1.50606609      .29745626     5.063   .0001    -.44279509
PN             .99947385      .27032812     3.697   .0018    -.58532943
PS            -.81789420      .46197918    -1.770   .0946    -.62272267
T             -.01251291      .01263559     -.990   .3359    13.0000000

Gasoline Demand Covariance Matrix (Greene)
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Gasoline Demand - Linear Hypothesis (Greene)

H0: Aggregate price variables are not significant determinants of 
gasoline consumption

H0: β7 = β8 = β9 = 0

H1: At least one is nonzero

0 0 0 0 0 0 1 0 0 0 0
= 0 0 0 0 0 0 0 1 0 0 , = 0
0 0 0 0 0 0 0 0 1 0 0

   
   
   
      

Rβ - q = 0

R q

Gasoline Demand - Wald Test (Greene)

R = [0,0,0,0,0,0,1,0,0,0/
0,0,0,0,0,0,0,1,0,0/
0,0,0,0,0,0,0,0,1,0];

q = [0 / 0 / 0 ] ;

m = R*b - q ; 
Vm = R*Varb*R‘
Wald = m‘*inv(Vm)*m;

WALD = 66.91506
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Gasoline Demand - Nonlinear Restrictions

• Suppose we are interested in testing the hypothesis that certain 
ratios of elasticities are equal. In particular,

1 = 4/5 – 7/8 = 0

2 = 4/5 – 9/8 = 0 

• To do the Wald test, first we estimate the asymptotic covariance 
matrix for the sample estimates of 1 and 2.  After estimating the 
regression by least squares, the estimates are 

f1= b4/b5 - b7/b8

f2 = b4/b5 - b9/b8.  

Then, using the delta method, we estimate the asymptotic variances 
and covariances of f1 and f2.

Gasoline Demand - Setting Up the Wald Stat

• After estimating the regression by least squares, the estimates are 
f1= b4/b5 - b7/b8

f2 = b4/b5 - b9/b8.  

Then, we use the delta method to get the asymptotic covariance 
matrix for f1 and f2.  We write f1 = f1(b), a function of the entire 
101 coefficient vector.  Then, we compute the 110 derivative 
vector, d1 = f1(b)/b.  This vector is

1    2   3     4         5         6     7         8        9   10

d1 = 0,  0,  0,  1/b5, -b4/b52, 0, -1/b8, b7/b82,  0,  0

• Similarly for d2 = f2(b)/b.

d2 = 0,  0,  0,  1/b5, -b4/b52,  0,   0,    b9/b82, -1/b8,  0
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Gasoline Demand - Wald Statistics (Greene)

Then, D = the 210 matrix with first row d1 and second row d2.  
The estimator of the asymptotic covariance matrix of [f1,f2] (a 21 
column vector) is 

V = D  s2 (XX)-1  D.

Finally, the test of H0:  = 0 is done with 
W = (f-0)V-1(f-0) ~ χ2

2.

The critical value from the chi-squared table is 5.99 at the 5% level. 
Then, if W > 5.99  reject H0. 

Computation: W  =  22.65 > 5.99  reject H0. 

Wald Test: Manipulation of variables (Greene)

• In the example below, to make this a little simpler, Greene 
computed the 10 variable regression, then extracted the 51 subvector 
of the coefficient vector c = (b4,b5,b7,b8,b9) and its associated part of 
the 1010 covariance matrix.  Then, Greene manipulated this smaller 
set of values.
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Application of the Wald Statistic (Greene)
?  Extract subvector and submatrix for the test
matrix;list ; c=[b(4)/b(5)/b(7)/b(8)/b(9)]$
matrix;list ; vc=[varb(4,4)/

varb(5,4),varb(5,5)/
varb(7,4),varb(7,5),varb(7,7)/

varb(8,4),varb(8,5),varb(8,7),varb(8,8)/
varb(9,4),varb(9,5),varb(9,7),varb(9,8),varb(9,9)]$

?  Compute derivatives
calc  ;list 
; g11=1/c(2); g12=-c(1)*g11*g11; g13=-1/c(4); g14=c(3)*g13*g13 ; g15=0
; g21=g11   ; g22=g12     ; g23=0  ; g24=c(5)/c(4)^2 ; g25=-1/c(4)$
?  Move derivatives to matrix
matrix;list; dfdc=[g11,g12,g13,g14,g15 / g21,g22,g23,g24,g25]$
?  Compute functions, then move to matrix and compute Wald statistic
calc;list ; f1=c(1)/c(2) - c(3)/c(4)

; f2=c(1)/c(2) - c(5)/c(4) $
matrix ; list; f = [f1/f2]$
matrix ; list; vf=dfdc * vc * dfdc' $
matrix ; list ; wald = f' * <vf> * f$
(This is all automated in the WALD command.)

Computations (Greene)
Matrix C  is    5 rows by    1 columns.

1
1   -0.2948  -0.2015   1.506   0.9995  -0.8179

Matrix VC       is    5 rows by    5 columns.
1           2          3           4        5

1    0.6655E-01  0.9479E-02 -0.4070E-01  0.4182E-01 -0.9888E-01
2    0.9479E-02  0.5499E-02 -0.9155E-02  0.1355E-01 -0.2270E-01
3   -0.4070E-01 -0.9155E-02  0.8848E-01 -0.2673E-01  0.3145E-01
4    0.4182E-01  0.1355E-01 -0.2673E-01  0.7308E-01 -0.1038
5   -0.9888E-01 -0.2270E-01  0.3145E-01 -0.1038      0.2134

G11 =  -4.96184        G12 =  7.25755      G13= -1.00054    G14     =   1.50770   G15     =  0.000000
G21 =  -4.96184        G22 =  7.25755      G23 = 0          G24     = -0.818753  G25     =  -1.00054
DFDC=[G11,G12,G13,G14,G15/G21,G22,G23,G24,G25]
Matrix DFDC     is    2 rows by    5 columns.

1           2           3           4           5
1    -4.962       7.258      -1.001       1.508      0.0000
2    -4.962       7.258      0.0000     -0.8188      -1.001

F1= -0.442126E-01
F2=  2.28098
F=[F1/F2]
VF=DFDC*VC*DFDC'
Matrix VF       is    2 rows by    2 columns.

1           2
1    0.9804      0.7846
2    0.7846      0.8648

WALD   =  22.65
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Non-invariance of the Wald Test (Greene)


