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Lecture 6
Specification and Model 

Selection Strategies

(for private use, not to be posted/shared online)

• So far, we have implicitly used a simple strategy:

(1) We started with a DGP, which we assumed to be true.

(2) We tested some H0 (from economic theory).

(3) We used the model (restricted, if  needed) for prediction & 
forecasting.

• Under CLM assumptions (A1) to (A5), t-tests, F-tests and predictions 
have desirable properties. But if  assumptions do not hold, then,

- Tests can be weak with unknown distributions.

- Tests may be biased –i.e., more likely to reject H0 when it is 
true than when it is false. Same for predictions.

- Tests may be inconsistent –i.e., power does not approach 1 
for every alternative for a given significance level

Model Selection Strategies
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• In this lecture we will address assumptions (A1)-(A5). In particular, 
how do we propose and select a model (a DGP)? 

• Potentially, we have a huge number of  possible models (different 
functional form, f(.), and explanatory variables, X). Say, we have

Model 1 𝒚 = Xβ + ε
Model 2 𝒚 = Zγ + ξ
Model 3 𝒚 = (Wγ)λ + η
Model 4 𝒚 = exp(Z D δ) + 𝛜

• We want to select the best model, the one that is closest to the DGP. 
In practice, we aim for a good model. 

Model Selection Strategies

• A model is a simplification. Many approaches:

• “Pre-eminence of  theory.”  Economic theory should drive a model. 
Data is only used to quantify theory. Econometric methods offer 
sophisticated ways ‘to bring data into line’ with a particular theory. 

• Purely data driven models. Success of  ARIMA models (late 60s –
early 70s). No theory, only exploiting the time-series characteristics of  
the data to build models. 

• Modern (LSE) view.  A compromise: theory and the characteristics of  
the data are used to build a model.

Model Selection Strategies
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• Modern view: Theory and practice play a role in deriving a good 
model. David Hendry (2009) emphasizes:

“This implication is not a tract for mindless modeling of  data in the 
absence of  economic analysis, but instead suggests formulating more 
general initial models that embed the available economic theory as a 
special case, consistent with our knowledge of  the institutional 
framework, historical record, and the data properties. ... Applied 
econometrics cannot be conducted without an economic theoretical 
framework to guide its endeavours and help interpret its findings. 
Nevertheless, since economic theory is not complete, correct, and 
immutable, and never will be, one also cannot justify an insistence on 
deriving empirical models from theory alone.”

Model Selection Strategies

• According to David Hendry, a good model should be:

- Data admissible -i.e., modeled and observed y should have the 
same properties.

- Theory consistent -our model should “make sense”

- Predictive valid -we should expect out-of-sample validation

- Data coherent -all information should be in the model. 
Nothing left in the errors (white noise errors).

- Encompassing -our model should explain earlier models.

• That is, we are searching  for a statistical model that can generate the 
observed data (𝒚, X), this is usually referred as statistical adequacy, makes 
theoretical sense and  can explain other findings.

Model Selection Strategies
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• FAQ in practice:

- Should I include all the variables in the database in my model?

- How many explanatory variables do I need in my model?

- How many models do I need to estimate?

- What functional form should I be using?

- Should the model allow for structural breaks?

- Should I include dummies & interactive dummies ?

- Which regression model will work best and how do I arrive at it?

Model Selection Strategies

• Diagnostic testing: We test assumptions behind the model. In our case, 
assumptions (A1)-(A5) in the CLM.

Example:  Test E[|X] = 0  -i.e., the residuals are zero-mean, white 
noise distributed errors.

• Parameter testing: We test economic H0’s.

Example:  Test βk = 0 -say, there is no size effect on the

expected return equation.

• There are several model-selection methods. We will consider two: 

- Specific to General

- General to Specific

Model Selection Strategies: Some Concepts
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Model Selection Strategies: Two Methods

• There are several model-selection methods. We will consider two: 

- Specific to General

- General to Specific

• Specific to General. Start with a small “restricted model,” do some 
testing and make model bigger model in the direction indicated by the 
tests (for example, add  variable xk when test reject H0: βk=0).

• General to Specific. Start with a big “general unrestricted model,” do 
some testing and reduce model in the direction indicated by the tests 
(for example, eliminate variable xk when test cannot reject H0: βk=0).

• Begin with a small theoretical model – for example, the CAPM

𝒚 = X + . 
• Estimate the model – say, using  OLS

• Do some diagnostic testing – are residuals white noise?

• If the assumptions do not hold, then use:

- More advanced econometrics – GLS instead of OLS?

- A more general model – APT? Lags?

• Test economic H0 on the parameters    – Is size significant?

• This strategy is known as specific to general, Average Economic Regression
(AER), and, in the machine learning literature, forwards selection.

• Popular implementation: Stepwise Regression.

Model Selection Strategies: Specific to General
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Example: Specific-to-general strategy to model IBM returns:

(1) We start with the 3-factor FF model for IBM:
𝑟௜ୀூ஻ெ,௧ - 𝑟௙,௧ = 𝛼௜ + βଵ,௜ (𝑟ெ,௧ - 𝑟௙,௧ሻ + βଶ,௜ 𝑆𝑀𝐵௧ + βଷ,௜ 𝐻𝑀𝐿௧ + ௜,௧

(2) Estimate the 3-factor FF model for IBM:
fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB + HML)

> summary(fit_ibm_ff3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005191 0.002482  -2.091   0.0369 *  

Mkt_RF 0.910379 0.056784 16.032 <2e-16 ***

SMB       -0.221386 0.084214  -2.629   0.0088 ** 

HML     -0.139179 0.084060  -1.656   0.0983 .  

---

Residual standard error: 0.05842 on 566 degrees of freedom

Multiple R-squared:  0.3393,    Adjusted R-squared:  0.3358 

F-statistic:  96.9 on 3 and 566 DF,  p-value: < 2.2e-16

Model Selection Strategies: Specific to General

Example (continuation): 

(3) Diagnostic tests: Check t-stats & R2, F-test goodness of fit, etc.

(4) LM Test to test if there is a January Effect (H0: No January effect): 
> LM_test
[1] 9.084247  LM_test > 3.84  Reject H0: No January effect.

(5) Given this result, we modify the 3-factor FF and add the January 
Dummy to the FF model:
fit_ibm_new <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1)
> summary(fit_ibm_new)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.007302 0.002561  -2.851  0.00452 ** 
Mkt_RF 0.905182 0.056405  16.048  < 2e-16 ***
SMB     -0.247691 0.084063  -2.946  0.00335 ** 
HML     -0.154093 0.083606  -1.843  0.06584 .  
Jan_1        0.026966 0.008906   3.028 0.00258 ** 

Model Selection Strategies: Specific to General
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• The specific-to-general method makes assumptions along the way 
Some remarks based on the previous example:

(1) Very likely the starting model is based on theory and experience 
(HML is not significant at the usual 5% level). Not clear how to 
proceed from there to a more general model.

(2) We tested for a January effect and then added to the model. 
However, we could have tested for a Dot.com effect or for an 
interactive Dot.com/January effect with the 3 FF factors. Not clear 
when to stop the search.

(3) Select a p-value to add variables to the model. In this case, we use 
the standard 5% for the tests. 

Model Selection Strategies: Specific to General

• Note that in the previous example, we started with a model. What 
happens if are skeptical regarding models?

• A popular implementation of the specific-to-general model selection 
is the stepwise regression, where we start with only a set of potential 
explanatory variables and let the data, based on some criteria (R2, AIC, 
etc.),  determine which variables to keep.

Model Selection Strategies: Specific to General
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• Overall structure:

- The method begins with a 𝑘 potential regressors. 

- Do 𝑘 one-variable regressions. Pick the one that shows the biggest t-
stat or maximizes a goodness of fit measure, say, Adjusted-R2, 𝑅2. 
Suppose 𝑥௝ is selected.

- Then, do 𝑘 െ 1 -variable regressions all with 𝑥௝ . Select the regressor
(in addition to 𝑥௝) that has the highest t-stat or that maximizes 𝑅2.

- Continue. But, when we start adding regressors, we usually check if 
the added regressor(s) change the significance of previous steps. (Note: 
at each step, we remove or add a regressor(s) based on t- or F-tests.) 

- Stop: Additional regressors do not have significant t-stats/increase 𝑅2. 

• Decisions: Selection of 𝑘 variables, α for tests (α = 5%, 10%, 20%?) 
and goodness of fit statistic. 

Model Selection Strategies: Stepwise Regression

• Overall structure:

- The method begins with a 𝑘 potential regressors. 

- Do 𝑘 one-variable regressions. Pick the one that shows the biggest t-
stat or maximizes a goodness of fit measure, say, Adjusted-R2, 𝑅2. 
Suppose 𝑥௝ is selected.

- Then, do 𝑘 െ 1 -variable regressions all with 𝑥௝ . Select the regressor
(in addition to 𝑥௝) that has the highest t-stat or that maximizes 𝑅2.

- Continue. But, when we start adding regressors, we usually check if 
the added regressor(s) change the significance of previous steps. (Note: 
at each step, we remove or add a regressor(s) based on t- or F-tests.) 

- Stop: Additional regressors do not have significant t-stats/increase 𝑅2. 

• Decisions: Selection of 𝑘 variables, α for tests (α = 5%, 10%, 20%?) 
and goodness of fit statistic. 

Model Selection Strategies: Stepwise Regression
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• Decisions: Selection of 𝑘 initial variables, α for tests (α = 5%, 10%, 
30%?) and goodness of fit statistic. 

Remark: Always keep in mind that the selected (final) model is not 
necessarily better than others. Type I and Type II errors are likely to 
occur, thus the final model may have irrelevant and/or omitted 
variables.

Technical Note: Though popular in practice, in general, selecting  
variables based on p-values is not advised, since the distribution of the 
OLS coefficients is affected. (Recall pre-testing.)

Model Selection Strategies: Stepwise Regression

Example: Stepwise regression strategy to model IBM returns. We start 
with the 5 FF factors as candidates for IBM. We use the function 
ols_step_forward_p in the olsrr package, which uses p-values to select:

library(olsrr)

ff_step_data <- data.frame(Mkt_RF, SMB, HML, RMW, CMA) 

ibm_ff_model <- lm(ibm_x ~ ., data = ff_step_data) # default p-value (penter) is 0.3 

ols_step_forward_p(ibm_ff_model , details = TRUE) #  long final output

Parameter Estimates                                    

----------------------------------------------------------------------------------------

model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 

----------------------------------------------------------------------------------------

(Intercept) -0.005 0.002     -1.999    0.046    -0.010     0.000 

Mkt_RF 0.887 0.055        0.574 16.227    0.000     0.780     0.995 

SMB -0.261 0.088       -0.111 -2.960    0.003    -0.435    -0.088 

RMW -0.128 0.114       -0.042 -1.122    0.262    -0.351     0.096 

----------------------------------------------------------------------------------------

Model Selection Strategies: Stepwise Regression
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Example (continuation):

Selection Summary                              

--------------------------------------------------------------------------------------

Variable                 Adj.                                        

Step  Entered     R-Square    R-Square C(p)        AIC         RMSE     

--------------------------------------------------------------------------------------

1    Mkt_RF 0.3087      0.3075 7.7108 -1665.5551 0.0594    

2    SMB       0.3174      0.3151 2.2117 -1671.0548 0.0590    

3    RMW      0.3188      0.3154 2.9552  -1670.3207 0.0590    

--------------------------------------------------------------------------------------

Conclusion: The Stepwise Regression method selects Market excess 
returns, SMB & RMW as the drivers of IBM excess returns.

Model Selection Strategies: Stepwise Regression

• Begin with a general unrestricted model (GUM), which nests  restricted 
models and, thus, allows any restrictions to be tested. Say:

𝒚 = X + Zγ + Wλδ + . 

• Then, reduction of the GUM starts. Mainly using t-tests, and F-tests, 
we move from the GUM to a smaller, more parsimonious, specific 
model. If competing models are selected, encompassing tests or 
information criteria (AIC, BIC) can be used to select a final model. 
This is the discovery stage. After this reduction, we move to:

𝒚 = X + . 

• Creativity is needed for the specification of a GUM. Theory and 
empirical evidence play a role in designing a GUM. Estimation of the 
GUM should be feasible from the available data.

Model Selection Strategies: General to Specific
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• General-to-Specific Method:

Step 1 - First ensure that the GUM does not suffer from any 
diagnostic problems. Check residuals in the GUM to ensure that they 
possess acceptable properties. (For example, test for 
heteroskedasticity, white noise, incorrect functional form, etc.).

Step 2 - Test the restrictions implied by the specific model against the 
general model – either by exclusion tests or other tests of linear 
restrictions.
Step 3 - If the restricted model is accepted, test its residuals to ensure 
that this more specific model is still acceptable on diagnostic grounds.

• This strategy is called general to specifics (“gets”), LSE, TTT (Test, test, 
test), and, in the ML literature, backwards selection. It was pioneered by 
Sargan (1964). The properties of gets are discussed in Hendry and 
Krolzig (2005, Economic Journal).

Model Selection Strategies: General to Specific

• The role of diagnostic testing is two-fold. 

- In the discovery steps, the tests are being used as design criteria.  
Testing plays the role of checking that the original GUM was a good 
starting point after the GUM has been simplified. 

- In the context of model evaluation, the role of testing is clear cut. 
Suppose you use the model to produce forecasts.  These forecasts can 
be evaluated with a test. This is the critical evaluation of the model.

Reference: Campos, Ericson, and Hendry (2005), 

General-to-Specific Modelling. Edward Elgar, London.

John Dennis Sargan (1924 – 1996, England)

Model Selection Strategies: General to Specific
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• A modeling strategy is consistent if its probability of finding the true 
model tends to 1 as T -the sample size- increases.

• Properties for strategies

(1) Specific to General 

- It is not consistent if the original model is incorrect.

- It need not be predictive valid, data coherent, & encompassing.

- No clear stopping point for an unordered search.

(2) General to Specific 

- It is consistent under some circumstances. But, it needs a large T.

- It uses data mining, which can lead to incorrect models for small T.

- The significance levels are incorrect. This is the problem of mass 
significance.

Model Selection Strategies: Properties

Example: General-to-specific strategy to model IBM returns:

Step 1 - Start with a GUM: the 3-factor FF model for IBM + January 
Dummy + Dot.com Dummy + non-linear & interactive effects:
(𝑟ூ஻ெ − 𝑟௙)௧ = 0 + 1 (𝑟ெ - 𝑟௙)௧ + 2 𝑆𝑀𝐵௧ + 3 𝐻𝑀𝐿௧ +

+ 4 Januaryt + 5 (𝑟ெ − 𝑟௙)௧2 + 6 𝑆𝑀𝐵௧2 + 7 𝐻𝑀𝐿௧2

+ 8 (𝑟ெ − 𝑟௙)௧* 𝑆𝑀𝐵௧ + 9 (𝑟ெ − 𝑟௙)௧* HMLt + 
+ 10 Dot.comt + 11 (𝑟ெ − 𝑟௙)௧ * Januaryt+
+ 12 𝐻𝑀𝐿௧ * Januaryt + 13 (𝑟ெ − 𝑟௙)௧ *  Dot.comt

+ 14𝐻𝑀𝐿௧ * Dot.com + 15 𝑆𝑀𝐵௧* Dot.com + t

Step 1 - Estimate GUM:
Mkt_Jan <- Mkt_RF * Jan_1

HML_Jan <- HML * Jan_1

Mkt_Dot <- Mkt_RF * Dot_com

HML_Dot <- HML * Dot_com

SMB_Dot <- SMB * Dot_com

Model Selection Strategies: General to Specific
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Example (continuation): 
fit_ibm_gum <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1 + Mkt_RF_2 + SMB_2 + HML_2 + 
Mkt_HML + Mkt_SMB + SMB_HML + Mkt_Jan + HML_Jan + Mkt_Dot + HML_Dot + SMB_Dot)

> summary(fit_ibm_gum)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.007836 0.003063  -2.559 0.010772 *  

Mkt_RF 0.791866 0.090474   8.752 < 2e-16 ***

SMB       -0.295790 0.110655  -2.673 0.007738 ** 

HML     -0.233942 0.135146  -1.731 0.084004 .  practice says “keep it.” Judgement call.

Jan_1      0.031769 0.009349   3.398 0.000727 ***

Mkt_RF_2 -0.433762 0.850899  -0.510 0.610417    

SMB_2    -0.927271 1.470645  -0.631 0.528615    

HML_2    2.707992 1.670366   1.621 0.105545  almost 10%, I keep it. Judgement call.

Mkt_HML 0.628721 1.557090   0.404 0.686531    

Mkt_SMB 0.791625 1.746939   0.453 0.650618    

SMB_HML -1.044806 2.029091  -0.515 0.606819    

Mkt_Jan -0.069413 0.189309  -0.367 0.714008    

HML_Jan -0.259697 0.255484  -1.016 0.309841    

Model Selection Strategies: General to Specific

Example (continuation): 
Estimate Std. Error t value Pr(>|t|)    

Mkt_Dot 0.323382 0.130645   2.475 0.013612 *  

HML_Dot 0.059742 0.208277   0.287 0.774342    

SMB_Dot 0.076998 0.198964   0.387 0.698910 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05788 on 553 degrees of freedom

Multiple R-squared:  0.3663, Adjusted R-squared:  0.3491 

F-statistic: 21.31 on 15 and 553 DF,  p-value: < 2.2e-16

Step 1 – Check GUM residuals for departures of (A2)-(A3). A 
Ramsey’s reset test can be done (using the resettest in the lmtest library).

> resettest(fit_ibm_gum, type="fitted")

RESET test

data:  fit_gum

RESET = 1.2645, df1 = 2, df2 = 551, p-value = 0.2832

Model Selection Strategies: General to Specific
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Example (continuation): 

Step 2 – Reduce Model with t-test and F-tests. Say, we keep all the 
variables with a p-value close to 10% (we still keep HML, using previous 
experience). We estimate a restricted GUM: 

fit_ibm_gum_r <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1 + HML_2 + Mkt_Dot)

> summary(fit_ibm_gum_r)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.008696   0.002788  -3.119  0.00191 ** 

Mkt_RF     0.779336   0.072453  10.756 < 2e-16 ***

SMB      -0.280018   0.083891 -3.338  0.00090 ***

HML     -0.250480   0.088504 -2.830  0.00482 ** 

Jan_1    0.028499   0.008937   3.189 0.00151 ** 

HML_2    1.676011   1.331161   1.259  0.20853    

Mkt_Dot  0.344030   0.116685  2.948  0.00333 ** 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Model Selection Strategies: General to Specific

Example (continuation): 

Step 2 – Test the restrictions implied by the specific model against the 
general model. Using an F-test, we test J=9 restrictions: 

H0: 5 = 6 = 8 = 9 = 10 = 11 = 12 = 14 = 15 = 0  

e_u <- fit_ibm_gum$residuals # GUM residuals

RSS_u <- t(e_u)%*%e_u

e_r <- fit_ibm_gum_r$residuals # Restricted GUM residuals

RSS_r <- t(e_r)%*%e_r

f_test_gum <- ((RSS_r - RSS_u)/9)/(RSS_u/(T-16)) # F-test

> f_test_gum

[,1]

[1,] 0.4299497  we cannot reject H0 (f_test_gum < qchisq(.95, 9, 553) = 1.896801)

> qf(.95, df1=9, df2=T-16)

[1] 1.896801 

p_val <- 1 - pf(f_test_gum, df = 9 , df2=T-16) # p-value of F-test 

>  p_val

[1,] 0.919105  p-value is almost 1. No evidence for H0.

Model Selection Strategies: General to Specific
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Example (continuation): 

Step 2 – Further specification checks of Restricted GUM, for example, 
perform a Ramsey’s reset test (using the resettest in the lmtest library).
> resettest(fit_gum_r, type="fitted")

RESET test

data:  fit_ibm_gum_r

RESET = 1.0998, df1 = 2, df2 = 561, p-value = 0.3337

Step 3 - Test if Restricted GUM residuals are acceptable –i.e., do 
diagnostic tests (mainly, make sure they are white noise). If Restricted 
GUM passes all the diagnostic tests, it becomes the “final model.”

Note: With the final model, we use it to justify/explain financial theory 
and features, and do forecasting.

Model Selection Strategies: General to Specific

• The general-to-specific method makes assumptions along the way.

Some remarks based on the previous example:

(1) Select a p-value for the tests of significance in the discovery stage 
(we use 10%). Given that we performed 15 t-tests, we should not be 
surprised we rejected the GUM, since we had an overall significance, 
α* = .79 [= 1 – (1 - .10)^15]. Mass significance is an issue.  

(2) Judgement calls are also made.

(3) The reduction of the GUM involves “pre-testing” –i.e., data mining. 
We are likely rejecting a true H0 (false positives) & not rejecting a true 
H1 (false negatives), along the way. This increases the probability that 
the final model is not a good approximation. It is  common to ignore 
(or not even acknowledge) pre-testing issues. 

Model Selection Strategies: General to Specific
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• Begin with a big model, with 𝑘 regressors:

𝒚 = X + .
The idea is to select the “best” subset of the 𝑘 regressors in X, where 
“best” is defined by the researcher, say MSE, Adjusted-R2, etc. 

• In theory, it requires 2௞regressions. It can take a while if 𝑘 is big (𝑘
< 40 is no problem).

• Many tricks are used to reduce the number of regressions.

• In practice, we use best subset to reduce the number of models to 
consider. For example, from the regressions with one-variable, keep 
the best one-variable model, from the regression with two-variables, 
keep the best two-variable model, etc.

Model Selection Strategies: Best Subset

Example: We want to select a model for IBM excess returns, using 
the 𝑘=3 Fama-French factors: Market excess returns (Mkt_RF), SMB, 
& HML. We have 8 (=23) models and, thus, regressions: 
1) Constant; 
2) Mkt_RF (CAPM)
3) SMB
4) HML
5) Mkt_RF & SMB 
6) Mkt_Rf & HML
7) SMB & HML
8) Mkt_RF, SMB, & HML (the 3-factor F-F Model). 

• We select the model with the lower MSE. Or, we can carry two or 
three models of the best models to do cross-validation.

Model Selection Strategies: Best Subset
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Example (continuation): We use library olsrr in R:
library(olsrr)
ff_step_data <- data.frame(Mkt_RF, SMB, HML) 
fit_ibm_ff3_sb <- lm(ibm_x ~ ., data = ff_step_data) # default p-value (penter) is 0.3 
ols_step_best_subset(fit_ibm_ff3_sb, details = TRUE) #  long final output

Model Index    Predictors
-----------------------------

1         Mkt_RF
2         Mkt_RF SMB     
3         Mkt_RF SMB HML 

-----------------------------
Subsets Regression Summary                                                      

------------------------------------------------------------------------------------------------------------------------------------
Adj.        Pred

Model    R-Square    R-Square R-Square C(p)        AIC           SBIC          SBC         MSEP      FPE       
-----------------------------------------------------------------------------------------------------------------------------------
1        0.3128      0.3116       0.308    8.3178    -1705.0204    -3424.8023    -1691.7998    2.1146    0.0035 
2        0.3214      0.3192      0.3134    2.6125    -1710.7200    -3430.4398    -1693.0924    2.0913    0.0035 
3        0.3221      0.3187       0.311    4.0000    -1709.3362    -3429.0366    -1687.3018    2.0927    0.0035   

Model Selection Strategies: Best Subset

Example (continuation): Suppose we selected three model: CAPM 
(M1); Mkt_RF & SMB (M2); and the 3-factor F-F Model (M3).

Now, we use 𝐾-fold cross-validation, with 𝐾=5.

CV5 M1: 0.003542756

CV5 M2: 0.003505873

CV5 M3: 0.003556918

Note: Models look very similar. Practitioners compute a SE for 𝐶𝑉௄
and use a one SE rule. If within one SE, keep simplest model (M1).

Model Selection Strategies: Best Subset
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Issues: Pre-testing

• A special case of omitted variables.

- First, a researcher starts with an unrestricted model (U):

𝒚 = X + . (U)

- Then, based on (“preliminary”) tests –say, an F-test- a researcher 
decides to use restricted estimator. That is, 

𝒚 = X + . s.t. R = q (R)

- We can think of the estimator we get from estimating R as:

bPT = I{0,c}(F) b* + I{c,∞}(F) b,

where I{0,c} is an indicator function: 

I{0,c}(F) = 1, if F-stat not in the rejection region – say, F < 𝑐 –

I{c,∞}(F) = 0, otherwise.

𝑐: critical value chosen for testing H0: R = q , using the F-stat.

Issues: Pre-testing

• The pre-test estimator is a rule which chooses between the restricted 
estimator, b*, or the OLS estimator, b:

bPT = I{0,c}(F) b* + I{c,∞}(F) b.

where b*  =  b – (XX)-1R[R(XX)-1R]-1(Rb – q)

• Two “negative” situations: 

(1) H0: R = q is true. The F-test will incorrectly reject H0 α% of the 
time. That is, in α% of the repeated samples, OLS b  No bias, 
inefficient estimator.

(2) H0: R = q is false. The F-test will correctly reject H0 a % of times 
equal to the power π of the test. That is, (100 – π)% of the time, 
R=q will be incorrectly imposed, b* will be used  bias!  
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Issues: Pre-testing

• The failure of  the OLS estimator to have the properties under 
correct specification is called pre-test bias.

• Pre-testing (also called sequential estimation, data mining) is common in 
practice. In general, it is ignored –and not even acknowledged.

• Main argument to ignore pre-testing: We need some assumptions to 
decide which variables are included in a model. Is the probability that 
pre-testing yields an incorrect set of X  greater than the probability of 
selecting the “correct” assumption?

• The LSE methodology does not see pre-testing in the discovery 
stage as a problem. For the LSE method, pre-testing at that stage is 
part of the process of discovery.  

Issues: Pre-testing

• Checking the MSE of bPT, b* and b helps to evaluate the problem

• Practical advise: Be aware of the problem. Do not rely solely on stats 
to select a model –use economic theory as well.

• Do not use same sample evidence to generate an H0 and to test it!

Example: The Fama-French factors have been “discovered” using 
the CRSP/Compustast database for a long, long time. Thus, testing 
the Fama-French factors using the CRSP/Compustat is not advisable! 
(You can test them with another dataset, for example, get 
international data.)
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Issues: Pre-testing

• Taken from Wallace (1977, AJAE) --non-centrality parameter θ. 

MSE (b1) = MSE (b) = OLS MSE

MSE (β෠1) = MSE (b*) = Restricted OLS MSE

MSE (β*1) = MSE (bPT) = Pretest estimator MSE

Issues: Mass significance

• We perform k different tests each with a nominal significance level of α:

α = Prob (Rejecting for a given test |H0 for this test is true)

• The overall significance of the test procedure is, however, given by

α* = Prob (Rejecting at least one test | all H0 are true).

• The probability of rejecting at least one H0 is obviously greater than 
of rejecting a specific test. This is the problem of mass significance.

• Two cases

(1) Independent tests: (1 − α*) = (1 − α)k

 α* = 1 − (1 − α)k & α = 1 − (1 − α*)1/k

(2) Dependent tests (Bonferroni bounds): α* ≤ kα

 α ≥ α*/k
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Issues: Mass significance

• Two cases

(1) Independent tests α* = 1 − (1 − α)k &    α = 1 − (1 − α*)1/k

(2) Dependent tests: α* ≤ kα &    α ≥ α*/k

 close to the “independent” values for small α, but can differ for 
large α.

Example: α =0.05 and k=5 ⇒ α*(Indep) =.23   &  α*(Dep)=.25 

α =0.05 and k=20 ⇒ α*(Indep) =.64   &  α*(Dep) =1 

α* =0.05 and k=5 ⇒ α(Indep) =.0102  &  α(Dep) =.01 

α* =0.20 and k=5 ⇒ α(Indep) =.044   &  α(Dep) =.04

α* =0.20 and k=20 ⇒ α(Indep) =.011   &  α(Dep) =.01

Issues: Mass significance

• In repeated parametric testing (overall level 5%):

- Only accept variables as important when their p-values are less 
than 0.001, preferably smaller

- Maybe look for other ways of choosing variables, say IC.

• In repeated diagnostic testing (overall level 20%), we should only accept 
there is no misspecification if

- All p-values are greater than 0.05, or

- Most p-values are greater than 0.10 with a few in the range 
0.02 to 0.10
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Modeling Strategies: Information Criteria

• IC’s are equal to the estimated variance or the log-likelihood 
function plus a penalty factor, that depends on k. Many IC’s:

- Theil Information Criterion (Adjusted R2) 𝑅2)

𝑅2 = 1 - [(T-1)/(T-k)](1 – R2) = 1- [(T-1)/(T-k)] RSS/TSS

 maximizing Adjusted R2 ⟺ minimizing s2

- Akaike Information Criterion (AIC)

AIC = -2/T(ln L – k) = -2 ln L/T + 2 k/T

 if normality AIC = ln(e’e/T) + (2/T) k         (+constants)

- Bayes-Schwarz Information Criterion (BIC)

BIC = -(2/T ln L – [ln(T)/T] k)

 if normality AIC = ln(e’e/T) + [ln(T)/T] k   (+constants)

Modeling Strategies: Information Criteria

• The goal of these criteria is to provide us with an easy way of 
comparing alternative model specifications, by ranking them. 

General Rule: The lower the IC, the better the model. For the 
previous IC’s, then choose model to minimize s2

J, AICJ,, or BICJ.

• Some remarks about IC’s:

- They are used for ranking. The raw value tends to be ignored.

- They have two components: a goodness of fit component –based on 
lnL– and a model complexity component –the penalty based on k.

- Different penalties, different IC’s.

- Some authors do not scale the IC’s by T, like we do above. If raw 
values are irrelevant, this is not an issue.
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Modeling Strategies: Information Criteria

• IC’s are not test statistics. They do not test a model. But, they are 
statistics –i.e., they are functions of RVs- with sampling distributions.

• We would like these statistics –i.e., the IC’s– to have good 
properties. For example, if the true model is being considered among 
many, we’d want the information criteria to select it. This can be done 
on average (unbiased) or as T increases (consistent).

• Usually, inconsistency is a fatal flaw for a statistics. But, in model 
selection, it is very likely that the true DGP is not among the models 
considered. That is, inconsistency may not matter in these cases.

• Information? It refers to Kullback and Leibler’s (1951) information 
discrepancy measure, used in information theory (in telecom literature).

Modeling Strategies: IC - K-L divergence

• Kullback and Leibler’s (1951) information discrepancy measure is also 
called information divergence.

• Information divergence measures the difference between two 
probability distributions P and Q; where P represents the true DGP. 
Here, we look at the difference between the expected values of Y
when Y is determined by: (i) P and (ii) some Q model. 

• Minimizing the K-L divergence, when considering several Q models, 
gets us close to the true DGP. 

• But, expected values are unobservable, they need to be estimated. 
The information associated with Y is given by L –i.e., the joint pdf. 
The AIC uses ln L evaluated at the estimated parameter values.
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Modeling Strategies: IC – AIC and BIC

• Some results regarding AIC and BIC. 

- AIC and Adjusted R2 are not consistent.

- AIC is conservative –i.e., it tends to over-fit; that is, choose too large 
models.

- AIC selects the model that minimizes the leave-one-out cross-
validation MSE for cross-sectional data. In time series, it selects the 
model that minimizes the out-of-sample one-step ahead forecast 
MSE. 

- BIC is more parsimonious than AIC. It penalizes the inclusion of 
parameters more (𝑘BIC 

≤ 𝑘AIC 
).

- BIC is consistent in hierarchical (gets) autoregressive models.

• There are several small sample corrections of IC’s. But,  asymptotically 
they have no impact. Because of this feature, using corrected IC’s is 
not a bad choice.

• Comparing models based on IC’s can be expensive 

• In ‘unstructured problems’ (natural order to the hypotheses to be 
tested), there is a huge number of potential combinations to 
investigate: 2m possible models for m candidate variables. 

• For the Lovell (1983) database, that would be 240 ≈ 1012 models. 
Even at a USD 0.001 per model, that would cost USD 1 billion.

Modeling Strategies: IC – AIC and BIC
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Modeling Strategies: Other Criteria

• A related criteria is Mallows’ (1973) Cp statistic (Notation: p = 𝑘):

Cp = RSS(𝑘)/𝑠ଶ – T + 2 * 𝑘
where RSS(𝑘) is the RSS for the model with 𝑘 regressors.

It can be shown that the Cp-statistic estimates the size of the bias that 
is introduced into the predicted responses by having omitted variables 
–i.e., an underspecified model. 

It has useful properties for selection of regressors:

- For a model that fits the data “adequately”  E[Cp] ≈ 𝑘
- For the full model (no bias), with 𝑘 parameters  E[Cp] = 𝑘.

• Other popular statistics: RIC (Risk Inflation Criteria), FPE, OOS R2.

Modeling Strategies: Model Validation

• Cross validation, as in Lecture 5, can be used to select a model. For 
example, 𝐾-fold cross-validation. We have already done this in 
combination with Best subset.

Example: Suppose using best subsets to model IBM excess returns, 
using the 𝑘=3 Fama-French factors, we selected three model: CAPM 
(M1); Mkt_RF & SMB (M2); and the 3-factor F-F Model (M3).

Now, we use 𝐾-fold cross-validation, with 𝐾=5.

CV5 M1: 0.003542756

CV5 M2: 0.003505873

CV5 M3: 0.003556918

Note: Models look very similar. Practitioners compute a SE for 𝐶𝑉௄
and use a one SE rule. If within one SE, keep simplest model (M1).
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Example:  
Model 1 𝒚 = Xβ + Wδ + 
Model 2 𝒚 = Xβ + Zγ + ξ

• If  the dependent variable is the same in both models (as is the case 
here), we can simply use Adjusted-R2 to rank the models and select 
the one with the largest Adjusted-R2.

• We can also use AIC and/or BIC to rank the models.

• But, we can also use more sophisticated, testing-based, methods. 

Testing Model Specification: Non-Nested Models

• Testing-based Method 1: Encompassing

(1) Form a composite or encompassing model that nests both rival 
models −Model 1 & Model 2. This is the unrestricted Model, ME.

(2) Test the relevant restrictions of  each rival model against ME. We 
do two F-tests:

(i) Test ME (Unrestricted Model) against Model 1 (Restricted Model) 
(ii) Test ME (Unrestricted Model) against Model 2 (Restricted Model) 

• If  we reject the restrictions against one Model, say Model 1, and we 
cannot reject the restrictions against the other, Model 2, we are done: 
We select the Model that the F test do not reject restrictions (Model 2).

Assuming the restrictions cannot be rejected, we prefer the model with 
the lower F statistic for the test of  restrictions. 

Non-nested Models and Tests: Encompassing
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Example: We have:
Model 1 𝒚 = Xβ + Wδ + 
Model 2 𝒚 = Xβ + Zγ + ξ

Then, the Encompassing Model (ME) is:
ME: 𝒚 = Xβ + Wδ + Zγ + 

Now test, separately, the hypotheses (1) δ = 0 and (2) γ = 0. That is, 

F-test for H0: γ = 0: ME (U Model) vs Model 1 (R Model).
F-test for H0: δ = 0: ME (U Model) vs Model 2 (R Model).

If  we reject H0: γ = 0 ⇒ We have evidence against Model 1 
If  we reject H0: δ = 0 ⇒ We have evidence against Model 2. 

Note: We test a hybrid model, a combination of  two models. Also, 
multicollinearity may appear.

Non-nested Models and Tests: Encompassing

• Two of  the main theories to explain the behaviour of  exchange rates, 
St, are the International Fisher Effect (IFE) and the Purchasing 
Power Parity (PPP). We use the direct notation for St, that is, units of  
Domestic Currency per 1 unit of  Foreign currency.

• IFE states that, in equilibrium, changes in exchange rates (e) are 
driven by the interest rates differential between the domestic currency, 
id, and the foreign currency, if:. A DGP consistent with IFE is:

e = α1 + β1 (id – if) + 1

• Relative PPP states that that, in equilibrium, e are driven by the 
inflation rates differential between the domestic Inflation rate, Id, and 
the foreign Inflation rate, If. A GDP consistent with IFE is:

e = α2 + β2 (Id – If) + 2

• Theories are non-nested, use non-nested methods to pick a model. 

Non-nested Models and Tests: IFE or PPP?
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Example: What drives log changes in exchange rates for the 
USD/GBP (e): (id – if) or (Id – If)?

Model 1 (IFE): e = α1 + β1 (id – if) + 1

Model 2 (PPP): e = α2 + β2 (Id – If) + 2

SF_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/SpFor_prices.csv", head=TRUE, sep=",")
x_date <- SF_da$Date
x_S <- SF_da$GBPSP
x_F3m <- SF_da$GBP3M
i_us3 <- SF_da$Dep_USD3M
i_uk3 <- SF_da$Dep_UKP3M
cpi_uk <- SF_da$UK_CPI
cpi_us <- SF_da$US_CPI
T <- length(x_S)
int_dif <- (i_us3[-1] - i_uk3[-1])/100
lr_usdgbp <- log(x_S[-1]/x_S[-T])
I_us <- log(cpi_us[-1]/cpi_us[-T])
I_uk <- log(cpi_uk[-1]/cpi_uk[-T])
inf_dif <- (I_us - I_uk)

Non-nested Models and Tests: IFE or PPP?

Example (continuation): Encompassing Model
e = α + β1 (id – if) + β2 (Id – If) + 1

# Encompassing Model and Test
fit_e <- lm( y ~ int_dif + inf_dif)

> summary(fit_e)

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

(Intercept) -0.0009633  0.0016210  -0.594   0.5527  
int_dif -0.0278510  0.0741189  -0.376   0.7073  ⇒ cannot reject H0: β1 = 0.
inf_dif 0.7444711  0.3429106   2.171 0.0306 * ⇒ reject H0: β2 = 0.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02662 on 360 degrees of  freedom
Multiple R-squared:  0.01316,   Adjusted R-squared:  0.007673 
F-statistic: 2.399 on 2 and 360 DF,  p-value: 0.09221

Non-nested Models and Tests: IFE or PPP?
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• Testing-based Method 1: Davidson-MacKinnon (1981)’s J-test.
We start with two non-nested models. Say,

Model 1: 𝒚 = Xβ + 
Model 2: 𝒚 = Zγ + ξ

Idea: If  Model 2 is true, then the fitted values from the Model 1, when 
added to the 2nd equation, should be insignificant. 

• Steps:
(1) Estimate Model 1  obtain fitted values: Xb. 

(2) Add Xb to the list of  regressors in Model 2 
 𝒚 = Zγ + λXb + ξ

(3) Do a t-test on λ. A significant t-value would be evidence against 
Model 2 and in favour of  Model 1. 

Non-nested Models and Tests: J-test

(4) Repeat the procedure for the models the other way round.
(4.1) Estimate Model 2  obtain fitted values: Zc. 
(4.2) Add Zc to the list of  regressors in Model 1: 

 𝒚 = Xβ + λ Zc + 
(4.3) Do a t-test on λ. A significant t-value would be evidence 
against Model 1 and in favour of  Model 2. 

(5) Rank the models on the basis of  this test.

• It is possible that we cannot reject both models. This is possible in 
small samples, even if  one model, say Model 2, is true.

• It is also possible that both t-tests reject H0 (λ ≠ 0 & λ ≠ 0). This is 
not unusual. McAleer’s (1995), in a survey, reports that out of  120 
applications all models were rejected 43 times. 

Non-nested Models: J-test



RS – Chapter 6 – Methodological Issues

30© RS 2024 – Not to be posted/shared online without written consent from author

Technical Note: As some of  the regressors in step (3) are stochastic, 
Davidson and MacKinnon (1981) show that the t-test is asymptotically
valid.

• One would also want to examine the diagnostic test results when 
choosing between two models. 

Non-nested Models: J-test

Example: Now, we test Model 1 vs Model 2, using the J-test.
Model 1 (IFE): e = α1 + β1 (id – if) + 1

Model 2 (PPP): e = α2 + β2 (Id – If) + 2

y <- lr_usdgbp
fit_m1 <- lm( y ~ int_dif)
summary(fit_m1)
y_hat1 <- fitted(fit_m1)
fit_J1 <- lm( y ~ inf_dif + y_hat1)
summary(fit_J1)

fit_m2 <- lm( y ~ inf_dif)
summary(fit_m2)
y_hat2 <- fitted(fit_m2)
fit_J2 <- lm( y ~ int_dif + y_hat2)
summary(fit_J2)

Non-nested Models: J-test – IFE or PPP?
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Example (continuation):
> fit_m1 <- lm( y ~ int_dif)
> y_hat1 <- fitted(fit_m1)
> fit_J1 <- lm(formula = y ~ inf_dif + y_hat1)
> summary(fit_J1)

Residuals:
Min        1Q    Median        3Q       Max 

-0.136310 -0.014168  0.000351  0.017227  0.092421 

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

(Intercept) 0.0001497  0.0025556   0.059   0.9533  
inf_dif 0.7444711  0.3429106   2.171   0.0306 *
y_hat1 1.2853298  3.4206106   0.376 0.7073  ⇒ cannot reject H0: λ=0. (Good for Model 2)
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02662 on 360 degrees of  freedom
Multiple R-squared:  0.01316,   Adjusted R-squared:  0.007673 
F-statistic: 2.399 on 2 and 360 DF,  p-value: 0.09221

Non-nested Models: J-test – IFE or PPP?

Example (continuation):
> fit_m2 <- lm( y ~ inf_dif)
> y_hat2 <- fitted(fit_m2)
> fit_J2 <- lm(formula = y ~ int_dif + y_hat2)
> summary(fit_J2)

Residuals:
Min        1Q    Median        3Q       Max 

-0.136310 -0.014168  0.000351  0.017227  0.092421 

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

(Intercept) -0.0003045 0.0016409  -0.186   0.8529  
int_dif -0.0278510 0.0741189  -0.376   0.7073  
y_hat2 1.0066945 0.4636932   2.171 0.0306 * ⇒ Reject H0: λ=0. (Again, good for Model 2)
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02662 on 360 degrees of  freedom
Multiple R-squared:  0.01316,   Adjusted R-squared:  0.007673 
F-statistic: 2.399 on 2 and 360 DF,  p-value: 0.09221

Non-nested Models: J-test – IFE or PPP?
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• We want to test
H0: 𝒚 = Xβ + 0 (additive) vs 
H1: ln 𝒚 = (ln X) γ + 1 (multiplicative)

• We look at the J-test

Step 1: OLS on H1: get γො
OLS 𝒚 = Xβ + λ1 exp{ln(X) γො} +   t-test on λ1

Step 2: OLS on H0: get b
OLS ln 𝒚 = (ln X) γ + λ0 Xb +   t-test on λ0

• Situations:
(1) Both OK:  λ1 = 0 and λ0 = 0  get more data
(2) Only 1 is OK: λ1≠ 0 and λ0 = 0 (multiplicative is OK); 

λ0≠ 0 and λ1 = 0 (additive is OK)
(3) Both rejected: λ1≠ 0 and λ0 ≠ 0  new model is needed.

Non-nested Models: J-test – Application

• J-test does not work very well when we compare 3 or more models.

• Encompassing interpretation of  the J-test .
Let’s encompass both models:

𝒚 = (1-λ) Zγ + λXβ + ε
Under H0 (Model 2 is true): λ = 0. 
Under H1 (Model 1 is true): λ = 1. 

Nice model, but unfortunately, this model is not intrinsic linear!

Non-nested Models: J-test – Many Models
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• The J-test was designed to test non-nested models (one model is the 
true model, the other is the false model), not for choosing competing 
models –the usual use of  the test.  

• The J-test is likely to over reject the true (model) hypothesis when 
one or more of  the following features is present: 
i) A poor fit of  the true model
ii) A low/moderate correlation between the regressors of  the 2 models
iii) The false model includes more regressors than the correct model. 

Davidson and MacKinnon (2004) state that the J-test will over-reject, 
often quite severely in finite samples when the sample size is small or
where conditions (i) or (iii) above are obtained.

Non-nested Models: J-test - Considerations

Modeling Strategies: Significance level, α

• So far, we have assumed that the distribution of the test statistic –say 
the F-statistic-- under H0 is known exactly, so that we have what is 
called an exact test. 

• Technically, the size of a test is the supremum of the rejection 
probability over all DGPs that satisfy H0. For an exact test, the size 
equals the nominal level, α –i.e., the Prob[Type I error] = α. 

• Usually, the distribution of a test is known only approximately 
(asymptotically). In this case, we need to draw a distinction between the 
nominal level  (nominal size) of the test  and the actual rejection probability 
(empirical size), which may differ greatly from the nominal level. 

• Simulations are needed to gauge the empirical size of tests.
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Modeling Strategies: A word about α

• Ronald Fisher, before computers, tabulated distributions. He used a 
.10, .05, and .01 percentiles. These tables were easy to use and, thus, 
those percentile became the de-facto standard α for testing H0.

• “It is usual and convenient for experimenters to take 5% as a 
standard level of significance.” –Fisher (1934). 

• Given that computers are powerful and common, why is p = 0.051   
unacceptable, but p = 0.049 is great? There is no published work that 
provides a theoretical basis for the standard thresholds. 

• Rosnow and Rosenthal (1989): “ ... surely God loves .06 nearly as 
much as .05.”

Practical advise: In the usual Fisher’s null hypothesis (significance) 
testing, significance levels, α, are arbitrary.  Make sure you pick one, 
say 5%, and stick to it throughout your analysis or paper.

• Report p-values, along with CI’s. Search for economic significance.

• Q: .10, .05, or .01 significance?

Many tables will show *, **, and *** to show .10, .05, and .01 
significance levels. Throughout the paper, the authors will point out 
the different significance levels. In these papers, it is not clear what α
is the paper using for inference.

• In a Neyman-Pearson world, we can think of these stars (or p-values) 
as ways of giving weights to H0 relative to H1.

Modeling Strategies: A word about α
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Modeling Strategies: A word about H0

• In applied work, we only learn when we reject H0. Failing to reject 
H0 provides almost no information about the state of the world.

• Thus, failing to reject H0 does not rule out an infinite number of 
other competing research hypotheses. 

• Null hypothesis significance testing is asymmetric:  if the test statistic 
is “too large” for a given H0 then H0 is rejected; but if the test statistic 
is not “too large”  then H0 is not automatically accepted. 

• It is dangerous to “accept” the conclusion from a non-rejected H0. 
But, it is common. Eight of the twenty (40%) articles in the American 
Political  Science Review Volume 91 (1997), that used a H0, drew 
substantive conclusions from a fail to reject decision.

Modeling Strategies: A word about H0

• In applied work, we only learn when we reject H0; say, when the p-
value<α.  But, rejections are of two types: 

- Correct ones, driven by the power of the test, 

- Incorrect ones, driven by Type I Error (“statistical accident,” luck).

• It is important to realize that, however small the p-value, there is 
always a finite chance that the result is a pure accident. At the 5% 
level, there is 1 in 20 chances that the rejection of H0 is just luck.

• Since negative results are difficult to publish (publication bias), there is  
an unknown but possibly large number of false claims taken as truths.

Example (from Lecture 4): If α ൌ 0.05,  proportion of false H0=10%, 
and π = .50, 47.4% of rejections are true H0 -i.e., “false positives.”
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• Eight literature strands can be delineated:
(1) Specific-to-general: Anderson (1962), Hendry and Mizon (1978), and 
Hendry (1979), for critiques;

(2) Retaining the general model: Yancey and Judge (1976), and Judge and 
Bock (1978);

(3) Testing Theory-based models: Hall (1978), criticized by Davidson and 
Hendry (1981), and Hendry and Mizon (2000); Stigum (1990) proposes 
a formal approach;

(4) Other ‘rules’ for model selection, such as: 
- step-wise regression: Leamer (1983a), for a critical appraisal 
- ‘optimal’ regression: algorithm to maximize the Adj-R2 with a 

specified set of  regressors. See Coen, Gomme and Kendall (1969);

Model Selection Methods: Summary

• Eight literature strands can be delineated (continuation):
(5) Model comparisons, often based on non-nested hypothesis tests or 
encompassing: Cox (1961, 1962), Pesaran (1974), and the survey in 
Hendry and Richard (1989);

(6) Model selection by information criteria: Schwarz (1978), Hannan and 
Quinn (1979), Amemiya (1980);

(7) Bayesian model comparisons: Leamer (1978) and Clayton, Geisser and 
Jennings (1986);

(8) General-to-specifics (gets): Anderson (1962), Sargan (1973, 1981), 
Hendry (1979), and White (1990).

Model Selection Methods: Summary
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• In the end,  judgment must be used in weighing up various criteria: 

- The Economic Criterion   –are the estimated parameters plausible? 
(Economic Significance)

- The First Order Statistical Criterion  –does the model provide a 
good fit (in-sample) with statistically significant parameter estimates? 

- The Second Order Statistical Criterion  –is the model generally free 
of  misspecification problems – as evidenced in the diagnostic tests?

- The Out of  Sample Predictive Criterion   –does the model provide 
good out of  sample predictions? Model validation, with the different 
flavours, can be used here.

Criteria for Model Selection: Judgement Call

• In empirical work, we are interested in identifying causal relations, 
say from X to y, as implied in the DGP of  the CLM: y = X + . 

• Suppose we have two correlated variables: Yt & Xt. The co-variation 
in Yt & Xt can be driven by (not mutually exclusive):

- Causation from Yt to Xt : Changes in Yt ⇒ changes in Xt

- Causation from Xt to Yt : Changes in Xt ⇒ changes in Yt

- Correlated through a 3rd variable, Wt: changes in Wt ⇒ changes Xt & Yt

• In practice, it is not easy to say what generates variation in Yt & Xt. 
The third case, especially when Wt is an unobservable variable, creates 
a lot complications.

Example: Yt: earnings; Xt: schooling; Wt: ability.

Model Selection: Causality and Identification
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• There are four approaches for identification (of  variation):

- Experiments. The researcher generates the variation in the variables.

- Natural Experiments. A known exogenous event generates the 
variation in the variables. 

- Instrumental variables.  A variable provides variation.

- Econometric Identification. We use econometric assumptions for 
identification.

• In time series, there is the concept of  Granger causality, where past 
changes in one variable affect the present values of  another variable. 
This is not, strictly speaking, the causation we discuss here.

Model Selection: Causality and Identification

• To be precise, the identification problem in econometrics refers to 
the problem of  identifying and estimating one or more coefficients of  
a system of  simultaneous equations.

Model Selection: Causality and Identification
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• Experiments

Experiments are popular in the sciences (say, biology, physics). For 
example, we want to test a new treatment. Then, 

(1) A sample is divided randomly in two similar groups: treated group 
& control group.  (A randomized study: Only difference is the treatment!)

(2) Look for differences in both groups.

Rare in economics and finance; they can be very expensive or 
unethical (say, exposing people to a “poverty shock”). Some work 
in small communities and small units in some businesses. 

Problem: Not easy to randomize these man-made experiments that 
involve humans.

Model Selection: Causality and Identification

• Natural experiments

An exogenous (historical) event (not necessarily a nature event) 
provides a situation where groups can be reasonably randomized in a 
treated (affected by the natural event) and a control group (not affected by 
the natural event). 

In the absence of  experiments, natural experiments give us a very 
good way to identify causation.

Examples: Changes in tax code and regulations; changes in 
accounting standards, shocks (Covid-19, stock market crisis), disasters 
(earthquakes, floods, etc.), laws or rules that impose thresholds 
(discontinuity) for behaviors, etc. (More on Lectures 8 & 15.)

Problem: Not easy to generalize, not clear how robust results are.

Model Selection: Causality and Identification
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• Instrumental Variables

Suppose we want to study the effect of  networking on CEO 
compensation. Since CEO compensation and networking may be 
affected by the unobserved natural ability of  an individual (Wt), a 
simple regression will be biased (omitted variables problem). 

Suppose we have a variable, Z, correlated with networking, but not 
with natural ability (ethnicity?, age?, number of  childhood friends?) –i.e., Z
induces variation in X unrelated to Wt. Then, we use Z to study the 
effect of  networking on CEO compensation.  

We call Z an instrument. Usually, we can relate Z to a natural experiment.

Problem: As we will see later, in Lecture 8, finding Z is not easy.

Model Selection: Causality and Identification

• Econometric Identification

We think that networking is correlated with ability, then we model it. 
Actually, we model everything. Very transparent in the assumptions.

We end up with a Simultaneous Equations Models (SEM), which we 
will study later in Lecture 16.

Problem: They tend to be (very) complicated. 

Model Selection: Causality and Identification


