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Lecture 5
Functional Form and Prediction

OLS Estimation - Assumptions

• CLM Assumptions

(A1) DGP: y = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X)=𝑘–, where T ≥ 𝑘.

• In this lecture, again, we will look at assumption (A1). So far, we 
have restricted f(X,) to be a linear function: f(X,) = X  . 

• But, it turns out that in the framework of OLS estimation, we can 
be more flexible with f(X,).
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• Linear in variables and parameters:

• Linear in parameters (intrinsic linear), nonlinear in variables:

Note: We get some nonlinear relation between y and X, but OLS still 
can be used.

  4433221 XXXY
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Functional Form: Linearity in Parameters
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Functional Form: Linearity in Parameters

• Suppose we have:

• The model is intrinsic linear, but it allows for a quadratic relation 
between y and X2:

  2
23221 XXY
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[Matlab demo]

0
10

20
0

100

200

300

400

-10

0

10

20

Functional Form: Linearity in Parameters

X2= x2

X3= (x2)2

33221
2
23221

ˆ XbXbbXbXbbY 

Example: We want to test if  a measure of  market risk (MktRet – rf)2 is 
significant in the 3 FF factors (SMB, HML) for IBM returns. The 
model is non-linear in (MktRet – rf), but still intrinsic linear:

IBMRet – rf = 0 + 1 (MktRet – rf) + 2 SMB + 3 HML + 4 (MktRet – rf)2 + 

We can do OLS, by redefining the variables: Let 𝑋ଵ= (MktRet – rf); 𝑋ଶ = SMB; 𝑋ଷ =
HML; 𝑋ସ = 𝑋ଵ

ଶ. Then,

𝑌 ൌ 𝛽଴ ൅ 𝛽ଵ𝑋ଵ ൅ 𝛽ଶ𝑋ଶ ൅ 𝛽ଷ𝑋ଷ ൅ 𝛽ସ𝑋ଵ
ଶ ൅ 𝜀

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

x0       -0.004765 0.002854 -1.670 0.0955 .  
xx1 0.906527 0.057281 15.826 <2e-16 ***
xx2  -0.215128 0.084965 -2.532 0.0116 *  
xx3 -0.173160 0.085054 -2.036 0.0422 *  
xx4 -0.143191 0.617314 -0.232 0.8167 => Not significant

7

Functional Form: Linearity in Parameters
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• We can approximate very complex non-linearities with polynomials 
of  order k:

• Polynomial models are also useful as approximating functions to 
unknown nonlinear relationships. You can think of  a polynomial 
model as the Taylor series expansion of  the unknown function.

• Selecting the order of  the polynomial –i.e., selecting 𝑘- is not trivial.

• 𝑘 may be too large or too small.

  
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Functional Form: Linearity in Parameters

•  Nonlinear in parameters:

  43233221 XXXY

This model is nonlinear in parameters since the coefficient of  X4 is the 
product of  the coefficients of  X2 and X3. 

• Some nonlinearities in parameters can be linearized by appropriate 
transformations, but not this one. This in not an intrinsic linear model.

7

Functional Form: Linearity in Parameters
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• Now, we have an intrinsic linear model. 

• To use the OLS estimates of  β1′ and β2′, we need to say something 
about ε. For example,  =exp(ξ), where ξ|X ~ iid D(0, σ2IT).

 2
1XY 
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Functional Form: Linearity in Parameters

• Intrinsic linear models can be estimated using OLS. Sometimes, 
transformations are needed.

• Suppose we start with a power function:

• The errors enter in multiplicative form. Then, using logs:

25

Functional Form: Linearity in Parameters

• Not all models are intrinsic linear. For example:

We cannot linearize the model by taking logarithms. There is no way 
of  simplifying log(b1Xb + ε).  We will have to use some nonlinear 
estimation technique.

   2
1 XY

)log(log 2
1    XY
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• Sometimes non-linear relations in an interval can be linearized by 
splitting the interval. If this can be done, we say the relation is piecewise 
linear (a special case of a spline regression).

• Suppose we can linearized the data using two intervals –i.e., we have 

only one knot (t0). For example:

E[yi|X] = β00 + β01 xi if xi ≤ t0
E[yi|X] = γ0 + γ1 xi if xi > t0

Note: We can fit both equations into one single equation using a 
linear approximation:

E[yi|X] =  β00 + β01xi + β10 (xi – t0)+
0 + β11 (xi – t0)+

1

where (xi – t0)+  is the positive part of (xi – t0) and zero otherwise.

Functional Form: Piecewise Linearity  

• We fit both equations into one single equation:

E[𝑦௜|X] =  β00 + β01xi + β10 (xi – t0)+
0 + β11 (xi – t0)+

1

That is,

E[𝑦௜|X] =  β00 + β01xi if xi ≤ t0
E[𝑦௜|X] = γ0 + γ1xi = (β00 + β10 – β11t0) + (β01+β11)xi if xi > t0

• We have a linear model:

𝑦௜ = β00 + β01xi + β10 (xi – t0)+
0 + β11 (xi – t0)+

1 + 𝜀௜
 It can be estimated using OLS.

• If in addition, we want the function to be continuous at the knot. 
Then,

β00 + β01 t0 = (β00 + β10 – β11t0) + (β01+ β11) t0  β10 = 0

Functional Form: Linear Splines 
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Functional Form: Linear Splines 

  XY 21log

• Putting  = 0 gives the (semi–)logarithmic model (think about the limit 
of   tends to zero.). We  can estimate  One would like to test if   is 
equal to 0 or 1. It is possible that it is neither!








X

Y
21

1• Box–Cox transformation:

when  =1

  XY 21
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Functional Form: Linear vs Log specifications

• Linear model

• (Semi-) Log model:

1Y
1Y





)Ylog(
1Y





when →0
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• To test the specification of  the functional form, Ramsey designed a 
simple test. We start with the fitted values:

ŷ = Xb.

Then, we add ŷ2 to the regression specification: 

y = X  + ŷ2 γ + ε

• If  ŷ2 is added to the regression specification, it should pick up 
quadratic and interactive nonlinearity, if  present, without necessarily 
being highly correlated with any of  the X variables.

• We test H0 (linear functional form): γ = 0 

H1 ( non linear functional form): γ ≠ 0 3

Functional Form: Ramsey’s RESET Test 

• We test H0 (linear functional form): γ = 0 

H1 ( non linear functional form): γ ≠ 0 

 t-test on the OLS estimator of  γ.

• If  the t-statistic for ŷ2 is significant  evidence of  nonlinearity. 

• The RESET test is intended to detect nonlinearity, but not be specific 
about the most appropriate nonlinear model (no specific functional 
form is specified in H1). 

3

Functional Form: Ramsey’s RESET Test 

James B. Ramsey, England
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Example: We want to test the functional form of  the 3 FF Factor 
Model for IBM returns, using monthly data 1973-2020. 

fit <- lm(ibm_x ~ Mkt_RF + SMB + HML)

y_hat <- fitted(fit)

y_hat2 <- y_hat^2

fit_ramsey <- lm(ibm_x ~ Mkt_RF + SMB + HML + y_hat2)

summary(fit_ramsey)

> summary(fit_ramsey)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.004547 0.002871 -1.584   0.1137    

Mkt_RF 0.903783 0.058003 15.582   <2e-16 ***

SMB         -0.217268 0.085128 -2.552   0.0110 *  

HML         -0.173276 0.084875 -2.042   0.0417 *  

y_hat2     -0.289197 0.763526 -0.379   0.7050  Not significant!
3

Functional Form: Ramsey’s RESET Test 

• Suppose that you want to model CEO compensation. You have data 
on annual total CEO compensation, annual returns, annual sales, and the 
CEO’s last degree (education). We have qualitative data. 

• We can run individual regressions for each last degree –i.e., BA/BS; 
MS/MA/MBA; Doctoral-, but we will have three small samples:

Undergrad degree Compi = β0-u + β1-u′zi + εu,i

Masters degree Compi = β0-m + β1-m′zi + εm,i

Doctoral degree Compi = β0-d + β1-d′zi + εd,i

• Alternatively, we can combine the regressions in one. We can use a 
variable (a dummy  or indicator variable) that points whether an observation 
belongs to a category or class or not. For example:

DC,i = 1 if  observation i belongs to category C (say, male.)
= 0 otherwise.

3

Qualitative Variables and Functional Form
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• Define dummy/indicator variables for Masters & doctoral degrees: 
Dm = 1 if  at least Masters degree

= 0 otherwise.
Dd = 1 if  doctoral degree

= 0 otherwise.

Then, we introduce the dummy/indicator variables in the model:

Compi = β0 + β1′zi + β2 Dm,i + β3 Dd,i + γ1′zi Dm,i + γ2′zi Dd,i + 𝜀௜

This model uses all the sample to estimate the parameters. It is flexible: 

Constant for undergrad degree: β0

Constant for Masters degree: β0 + β2

Constant for Doctoral degree: β0 + β2 + β3

Slopes for Masters degree: β1 + γ1

Slopes for Doctoral degree: β1 + γ1 + γ2 3

Qualitative Variables and Functional Form

• Now, you can test the effect of  education on CEO compensation. Say 
(1) H0: No effect of  doctoral degree: β3 = 0 and γ2 = 0  F-test.

• Suppose we have data for CEO graduate school. We can include 
another indicator variable in the model. Say DT20 to define if  a graduate 
school is in the Top 20. 

DT20 = 1 if  grad school is a Top 20 school
= 0 otherwise.

• If  there is a constant, the numbers of  dummy variables per qualitative 
variable should be equal to the number of  categories minus 1. If  you put 
the number of  dummies per qualitative variable equal to the number of  
categories, you will create perfect multicollinearity (dummy trap). 

• The omitted category is the reference category. In our previous 
example, the reference category is undergraduate degree. 

3

Qualitative Variables and Functional Form
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• A popular use of  dummy variables is in estimating seasonal effects. We 
may be interested in estimating the January effect for stock returns or in 
studying if  the returns of  power companies (CNP) are affected by the 
seasons, since in the winter and summer the power demand increases.

In this case, we define dummy/indicator variables for Summer, Fall and 
Winter (the base case is, thus, Spring): 

DSum,i = 1 if  observation i occurs in Summer
= 0 otherwise.

DFall,i = 1 if  observation i occurs in Fall 
= 0 otherwise.

DWin,i = 1 if  observation i occurs in Winter 
= 0 otherwise.

Then, letting Z be the three FF factors, we have:
CNPi = β0 + β1′zi + β2DSum,i + β3DFall,i + β4 DWin,i + 𝜀௜ 3

Dummy Variables as Seasonal Factors

Example (continuation):
>Jan <- rep(c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1))# Create January dummy
> T2 <- T+1
> Jan_1 <- Jan[2:T2]
> fit_Jan <- lm(y ~ Mkt_RF+ SMB + HML + Jan_1)
> summary(fit_Jan)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.007195  0.002566 -2.804  0.00522 ** 
Mkt_RF 0.902968  0.056345  16.026  < 2e-16 ***
SMB        -0.240186 0.084013 -2.859  0.00441 ** 
HML       -0.190710 0.084317 -2.262  0.02409 *  
Jan_1      0.026993 0.008923 3.025 0.00260 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05807 on 564 degrees of  freedom
Multiple R-squared:  0.3495,    Adjusted R-squared:  0.3449 
F-statistic: 75.75 on 4 and 564 DF,  p-value: < 2.2e-16

3

Dummy Variables: Is There a January Effect?
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Dummy Variable for One Observation

• We can use a dummy variable to isolate a single observation. 
DJ = 1 for observation j.

= 0 otherwise.

• Define d to be the dummy variable in question.  
Z = all other regressors.  X = [Z, DJ]

• Multiple regression of y on X.  We know that 
X'e = 0 where e = the column vector of residuals.  
 DJ'e = 0  ej = 0 (perfect fit for observation j). 

• This approach can be used to deal with (eliminate) outliers. 

32

Functional Form: Chow Test

• It is common to have a qualitative variable with two categories, say 
education (Top 20 school or not). Before modelling the data, we can 
check if  only one regression model applies to both categories. 

• Chow Test (an F-test) –Chow (1960, Econometrica): 

(1) Run OLS with all the data, with no distinction between categories 
(Restricted regression or Pooled regression). Keep RSSR.

(2) Run two separate OLS, one for each category (Unrestricted regression). 
Keep RSS1 and RSS2  RSSU = RSS1 + RSS2. 

(Alternative, we can run just one regression with the dummy variable).

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):
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Functional Form: Chow Test

• A Wald Test can also be used to compare the coefficient estimates, in 
the two samples (regimes 1 & 2), with T1 and T2 observations, 
respectively:

• This test is a bit more flexible, since it is easy to allow for different 
formulations for Var[ β෠ଵ െ β෠ଶ ]. (In econometrics, violations of  (A3) 
are common, for example, different variances in regimes 1 & 2.)

𝑊 ൌ 𝑇 β෠ଵ െ β෠ଶ ′𝑉𝑎𝑟ሾ β෠ଵ െ β෠ଶ ሿିଵ β෠ଵ െ β෠ଶ

Gregory C. Chow (1929, USA)

Chow Test: Males or Females visit doctors more? 

• Taken from Greene

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of  
Periods
Variables in the file are
Data downloaded from Journal of  Applied Econometrics Archive. This is an 
unbalanced panel with 7,293 individuals. There are altogether 27,326 
observations. The number of  observations ranges from 1 to 7 per 
family. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 
7=987). The dependent variable of  interest is

DOCVIS  =  number of  visits to the doctor in the observation period

HHNINC = household nominal monthly net income in German marks / 10000.
(4 observations with income=0 were dropped)

HHKIDS = children under age 16 in the household = 1; otherwise = 0
EDUC     = years of  schooling 
AGE        = age in years
MARRIED= marital status (1 = if  married)
WHITEC = 1 if  has “white collar” job
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+----------------------------------------------------+
| Ordinary    least squares regression               |
| LHS=HHNINC   Mean                 =   .3590541     |
|              Standard deviation   =   .1735639     |
|              Number of observs.   =      14243     |
| Model size   Parameters           =          5     |
|              Degrees of freedom   =      14238     |
| Residuals    Sum of squares       =   379.8470 |
|              Standard error of e  =   .1633352     |
| Fit          R-squared            =   .1146423     |
|              Adjusted R-squared   =   .1143936     |
+----------------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
|Constant|     .04169***       .00894        4.662   .0000            |
|AGE     |     .00086***       .00013        6.654   .0000     42.6528|
|EDUC    |     .02044***       .00058       35.528   .0000     11.7287|
|MARRIED |     .03825***       .00341       11.203   .0000      .76515|
|WHITEC  |     .03969***       .00305       13.002   .0000      .29994|
+--------+------------------------------------------------------------+

Chow Test: Males or Females visit doctors more? 

• OLS Estimation for Men only. Keep RSSM = 379.8470

+----------------------------------------------------+
| Ordinary    least squares regression               |
| LHS=HHNINC   Mean                 =   .3444951     |
|              Standard deviation   =   .1801790     |
|              Number of observs.   =      13083     |
| Model size   Parameters           =          5     |
|              Degrees of freedom   =      13078     |
| Residuals    Sum of squares       =   363.8789 |
|              Standard error of e  =   .1668045     |
| Fit          R-squared            =   .1432098     |
|              Adjusted R-squared   =   .1429477     |
+----------------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
|Constant|     .01191          .01158        1.029   .3036            |
|AGE     |     .00026*         .00014        1.875   .0608     44.4760|
|EDUC    |     .01941***       .00072       26.803   .0000     10.8764|
|MARRIED |     .12081***       .00343       35.227   .0000      .75151|
|WHITEC  |     .06445***       .00334       19.310   .0000      .29924|
+--------+------------------------------------------------------------+

Chow Test: Males or Females visit doctors more? 

• OLS Estimation for Women only. Keep RSSW = 363.8789
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+----------------------------------------------------+
| Ordinary    least squares regression               |
| LHS=HHNINC   Mean                 =   .3520836     |
|              Standard deviation   =   .1769083     |
|              Number of observs.   =      27326 |
| Model size   Parameters           =          5     |
|              Degrees of freedom   =      27321     |
| Residuals    Sum of squares       =   752.4767 | All
| Residuals    Sum of squares       =   379.8470 | Men
| Residuals    Sum of squares       =   363.8789 | Women
+----------------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
|Constant|     .04186***       .00704        5.949   .0000            |
|AGE     |     .00030***     .919581D-04     3.209   .0013     43.5257|
|EDUC    |     .01967***       .00045       44.180   .0000     11.3206|
|MARRIED |     .07947***       .00239       33.192   .0000      .75862|
|WHITEC  |     .04819***       .00225       21.465   .0000      .29960|
+--------+------------------------------------------------------------+

Chow Test = F = [(752.4767 – (379.847 + 363.8789))/5] / 
[(379.847 + 363.8789)/(27,326 – 10)] = 64.281 

F(5, 27311) = 2.214100  reject H0

Chow Test: Males or Females visit doctors more? 

Wald Test (Greene)

--> Matrix   ; zero=init(k,k,0) ; Ik = Iden(k) $
--> Matrix   ; bwald = [bm/bf] $  Column vector
--> matrix   ; vwald = [Vm/zero,Vf] $
--> Matrix   ; Mik = -1*Ik ; R = [Ik,MIk]  ; q = init(k,1,0) $
--> Matrix   ; M = R*bwald - q

; VM = R*vwald*R'
; List ; Wald = m'<vm>m

; JF = k*ChowTest$
Matrix WALD     has  1 rows and  1 columns.

1
+-------------+
1|  321.00313
+-------------+

Matrix JF       has  1 rows and  1 columns.
1

+-------------+
1|  321.40815
+-------------+
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• Suppose there is an event that we think had a big effect on the 
behaviour of  our model. Suppose the event occurred at time TSB.
For example, the parameters are different before and after TSB. That is,

𝑦௜ = ଴ଵ + ଵଵ X1,i + ଶଵ X2,i + ଷଵ X3,i + 𝜀௜ for i ≤ TSB

𝑦௜ = ଴ଶ + ଵଶ X1,i + ଶଶ X2,i + ଷଶ X3,i + 𝜀௜ for i > TSB

The event caused structural change in the model. TSB separates the 
behaviour of  the model in two regimes/categories (“before” & “after”.) 

• A Chow test tests if  one model applies to both regimes:
𝑦௜ = 0 + 1 X1,i+ 2 X2,i + 3 X3,i + 𝜀௜ for all i

• Under H0 (No structural change), the parameters are the same for all i.

3

Functional Form: Structural Change

• We test H0 (No structural change): ଴ଵ = ଴ଶ = 0

ଵଵ = ଵଶ = 1

ଶଵ = ଶଶ = 2

ଷଵ = ଷଶ = 3

H1 (structural change): For at least one 𝑘 (= 0, 1, 2, 3): ௞
ଵ ≠ ௞

ଶ

• What events may have this effect on a model? A financial crisis, a big 
recession, an oil shock, Covid-19, etc. 

• Testing for structural change is the more popular use of  Chow tests.

• Chow tests have many interpretations: tests for structural breaks, 
pooling groups, parameter stability, predictive power, etc. 

• One important consideration: T may not be large enough. 
3

Functional Form: Structural Change
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• We structure the Chow test to test H0 (No structural change), as usual. 

• Steps for Chow (Structural Change) Test: 

(1) Run OLS with all the data, with no distinction between regimes. 
(Restricted or pooled model). Keep RSSR.

(2) Run two separate OLS, one for each regime (Unrestricted model):

Before Date TSB. Keep RSS1. 

After Date TSB. Keep RSS2.  RSSU = RSS1 + RSS2. 

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

𝐹 ൌ
ሺ𝑅𝑆𝑆ோ െ 𝑅𝑆𝑆௎ሻ/ሺ𝑘௎ െ 𝑘ோሻ

ሺ𝑅𝑆𝑆௎ሻ/ሺ𝑇 െ 𝑘௎ሻ
ൌ
ሺ𝑅𝑆𝑆ோ െ ሾ𝑅𝑆𝑆ଵ ൅ 𝑅𝑆𝑆ଶሿሻ/𝑘
ሺ𝑅𝑆𝑆ଵ ൅ 𝑅𝑆𝑆ଶሻ/ሺ𝑇 െ 2𝑘ሻ

3

Functional Form: Structural Change

Example: We test if  the Oct 1973 oil shock in quarterly GDP growth 
rates had an structural change on the GDP growth rate model.

We model the GDP growth rate with an AR(1) model, that is, GDP 
growth rate depends only on its own lagged growth rate:

𝑦௧ = 0 + 1 𝑦௧ିଵ + ௧
GDP_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/GDP_q.csv", head=TRUE, 
sep=",")
x_date <- GDP_da$DATE
x_gdp <- GDP_da$GDP
x_dummy <- GDP_da$D73
T <- length(x_gdp)
t_s <- 108 # TSB = Oct 1973

lr_gdp <- log(x_gdp[-1]/x_gdp[-T])
T <- length(lr_gdp)
lr_gdp0 <- lr_gdp[-1]
lr_gdp1 <- lr_gdp[-T]
t_s <- t_s -1 # Adjust t_s (we lost the first observation)

Functional Form: Structural Change

34
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Example (continuation):
y <- lr_gdp0 
x1 <- lr_gdp1
T <- length(y)
x0 <- matrix(1,T,1)
x <- cbind(x0,x1)
k <- ncol(x)

# Restricted Model (Pooling all data)
fit_ar1 <- lm(lr_gdp0 ~ lr_gdp1) # Fitting AR(1) (Restricted) Model
e_R <- fit_ar1$residuals # regression residuals, e
RSS_R <- sum(e_R^2) # RSS Restricted

> summary(fit_ar1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.011406 0.001118 10.200 < 2e-16 ***
lr_gdp1  0.262234 0.055543 4.721 3.59e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.01248 on 302 degrees of  freedom.

Functional Form: Structural Change

35

Example (continuation):
# Unrestricted Model (Two regimes)

y_1 <- y[1:t_s]
x_u1 <- x[1:t_s,]
fit_ar1_1 <- lm(y_1 ~ x_u1 - 1) # AR(1) Regime 1
e1 <- fit_ar1_1$residuals # Regime 1 regression residuals, e
RSS1 <- sum(e1^2) # RSS Regime 1

kk = t_s+1 # Starting date for Regime 2
y_2 <- y[kk:T]
x_u2 <- x[kk:T,]
fit_ar1_2 <- lm(y_2 ~ x_u2 - 1) # AR(1) Regime 2
e2 <- fit_ar1_2$residuals # Regime 2 regression residuals, e
RSS2 <- sum(e2^2) #  RSS Regime 2

F <- ((RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k))
> F
[1] 4.391997
p_val <- 1 - pf(F, df1 = 2, df2 = T - 2*k)  # p-value of  F_test
> p_val
[1] 0.0131817  small p-values: Reject H0 (No structural change). 3

Functional Form: Structural Change

36
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Example: 3 Factor Fama-French Model for IBM (continuation)
Q: Did the dot.com bubble (end of 2001) affect the structure of the FF 
Model? Sample: Jan 1973 – June 2020 (T = 569).

Pooled RSS = 1.9324

Jan 1973 – Dec 2001 RSS = RSS1 = 1.33068 (T = 342) 

Jan 2002 – June 2020 RSS = RSS2 = 0.57912 (T = 227)

𝐹 ൌ ሾோௌௌೃିሺோௌௌభାோௌௌమሻሿ/௞ 

ሺோௌௌభାோௌௌమሻ/ሺ்ି௞ሻ
= 

[1.9324 ି ሺ1.3307+ 0.57911)]/4
ሺ1.3307+ 0.57911)/(569 − 2∗4) = 1.6627

 Since F4,565,.05 = 2.39, we cannot reject H0

Constant Mkt – rf SMB HML RSS T

1973-2020 -0.0051 0.9083 -0.2125 -0.1715 1.9324 569

1973-2001 -0.0038 0.8092 -0.2230 -0.1970 1.3307 342

2002 – 2020 -0.0073 1.0874 -0.1955 -0.3329 0.5791 227

Functional Form: Structural Change

Chow Test: Structural Change - Example

Example: 3-Factor Fama-French Model for GE

Q: Did the dot.com bubble (end of 2001) affect the structure of the FF 
Model? 

Sample: Jan 1973 – July 2020 (T = 570).

Pooled RSS = 1.569956

Jan 1973 – Dec 2001 RSS = RSS1 = 0.5455917 (T = 342) 

Jan 2002 – July 2020 RSS = RSS2 = 0.9348033 (T = 228)

𝐹 ൌ ሾோௌௌೃିሺோௌௌభାோௌௌమሻሿ/௞ 

ሺோௌௌభାோௌௌమሻ/ሺ்ି௞ሻ
= [1.5700 ି ሺ0.5456 +0.9348)/4
ሺ0.5456 +0.9348)/570 − 2∗4) = 8.499996

 Since F4,562,.05 = 2.39, we reject H0

Conclusion: At the 5% level, we have evidence for a Dot.com bubble 
structural change. 
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• Under the H0 (No structural change), we pool the data into one model. 
That is, the parameters are the same under both regimes. We fit the 
same model for all 𝑡, for example:

𝑦௧ = 0 + 1 𝑦௧ିଵ + ௧

• If  the Chow test rejects H0, we need to reformulate the model. A 
typical reformulation includes a dummy variable (𝐷ௌ஻,௧). For example, 
with vector 𝒙௧  of  explanatory variables:

𝑦௧ = 0 + β1′𝒙௧  + 2𝐷ௌ஻,௧ + γ1′𝒙𝒕 𝐷ௌ஻,௧ + ௧
where

𝐷ௌ஻,௧ = 1 if  observation 𝑡 occurred after  TSB

= 0 otherwise.

3

Functional Form: Structural Change

Example: We are interested in modelling the effect of  the Oct 1973 
oil shock in GDP growth rates. We include a dummy variable in the 
model, say D73:

𝑫𝟕𝟑,𝒕 = 1 if  observation 𝑡 occurred after October 1973
= 0 otherwise.

Then, 𝑦௧ = β0 + β1′𝒙௧ + β2 𝑫𝟕𝟑,𝒕 + γ1′𝒙௧ 𝑫𝟕𝟑,𝒕 + ௧

In the model, the oil shock affects the constant and the slopes.

• We estimate the above model and perform an F-test to test if  H0 (No 
structural change): β2 = 0 & γ1 = 0. 

Constant Slopes:

Before oil shock (𝐷଻ଷ = 0): β0 β1

After oil shock (𝐷଻ଷ = 1) : β0 + β2 β1 + γ1

40

Structural Change: Specification with Dummies
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Example: We add an Oct 1973 dummy in the AR(1) GDP model.
T1 <- T - t_s # Number of  Observations after SB
D73_0 <- rep(0,t_s) # Dummy_t = 0 if  t <= t_s
D73_1 <- rep(1,T1) # Dummy_t = 1 of  t > t_s
D73 <- c(D73_0,D73_1) # SB Dummy variable t_s <- 108
lr_gdp1_D73 <- lr_gdp1 * D73 # interactive dummy (effect on slope)
fit_ar1_d_2 <- lm(lr_gdp0 ~ lr_gdp1 + D73 + lr_gdp1_D73)
summary(fit_ar1_d_2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.009139   0.001939 4.712 3.75e-06 ***
lr_gdp1  0.457011 0.090716 5.038 8.15e-07 ***
D73 0.003499   0.002362 1.482 0.13947  no significant effect on constant
lr_gdp1_D73 -0.316005 0.114197 -2.767 0.00601 **  significant effect of  oil shock on slope.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Conclusion: After the oil shock the slope significantly changed from 
0.457011 to 0.141006 (= 0.457011 + (-0.316005)).

41

Structural Change: Specification with Dummies

Example (continuation): Suppose you suspect the dot.com bubble 
only affected GE’s constant (create dummy) and decide to model it:
T <- length(ge_x)

x_break <- 342

dot_0 <- rep(0, x_break) # 0 up to Dec 2001

dot_1 <- rep(1, T - x_break) # 1 after Dec 2001

dot <- c(dot_0,dot_1) # Doc.com dummy

fit_ge_dot <- lm(ge_x ~ Mkt_RF + SMB + HML + dot)

> summary(fit_ge_dot)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.003273 0.002877  -1.138  0.25566    

Mkt_RF 1.226412 0.050868  24.110  < 2e-16 ***

SMB     -0.308411 0.075433  -4.089 4.97e-05 ***

HML     0.341709 0.075755   4.511 7.86e-06 ***

dot    -0.013052 0.004502  -2.899 0.00388 **  significant effect on constant. 

Chow Test: Structural Change in Constant
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• But, we can try different breaking points, starting at T=85:

Chow Test: Structural Change - Example

Note: Recall that the Chow test is an F-test, we are testing a joint 
hypothesis, all coefficients are subject to structural change.

• Issues with Chow tests
- The results are conditional on the breaking point –say, October 73 

or Dec 2001.

- The breaking point is usually unknown. It needs to be estimated.

- It can deal only with one structural break –i.e., two categories!

- The number of  breaks is also unknown. 

- Heteroscedasticity –for example, structural breaks in the  
variance- and unit roots (high persistence) complicate the test.

- In general, only asymptotic (consistent) results are available.

3

Chow Test: Structural Change - Issues
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• For an unknown break date, Quandt (1958, 1960) proposed a 
likelihood ratio test statistics, called Supremum (Max)-Test, 

The max (supremum) is taken over all potential breaks in (τmin, τmax). 
For example, τmin = T*.15; τmax = T*.85). 

Easy to calculate QLRT with a do loop.

The assumptions that make the LR-statistic asymptotically χ2 do not 
apply in this setting. (Quandt was aware of  the problem, but did not 
know how to derive the asymptotic null distribution of  QLRT.) 

Problem: The (nuisance) parameter τ is not identified under H0 (no 
structural break)  regularity conditions are violated!

3

)(max
},...,{ maxmin


 TT FQLR 

Structural Change: Unknown Break

• Andrews (1993) showed that under appropriate regularity conditions, 
the QLR statistic, also referred to as a SupLR statistic, has a nonstandard 
limiting distribution:

where 0< rmin< rmax<1 and Bk(.) is a “Brownian Bridge” process defined 
on [0,1]. Percentiles of  this distribution as functions of  rmax, rmin and k
are tabulated in Andrews (1993). (Critical values much larger than χ2.) 

Note: A Brownian bridge is a continuous-time stochastic process B(t) 
whose probability distribution is the conditional probability distribution 
of  a Wiener process W(t) given the condition that B(0) = B(1) = 0. The 
increments in a Brownian bridge are not independent.
Example: B(t) = W(t) – t W(1) is a Brownian Bridge.

3
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Structural Change: Unknown Break
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Critical values of the QLR test Distribution, taken from Andrews 
(1993). Note: p = # of parameters (𝑘), π0 = trimming value. (Ignore λ.)

*

Critical value 
for test for 
𝑘=4, π0 = .15 
and α = .05.

Structural Change: Test with Unknown Break 

Critical value 
for test for 
𝑘=2, π0 = .15 
and α = .05.

Example: We search for breaking points for GDP growth rate in 
AR(1) model. Below, we plot all F-tests starting at T*15:

• Maximum F is 22.08 occurs at 𝑡 = Jan 2009 (observation 250). Then, 
𝑄𝐿𝑅෣ = 22.08 > 11.79  Reject H0 at 5% level & break is not Oct 73!.

Structural Change: Unknown Break - Example
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Example: 3 Factor Fama-French Model for GE excess returns
Andrews’ (1993) test with 𝜏௠௜௡ = 50 (T * .15), 𝜏௠௔௫ = 286 (T * .85) 

𝑄𝐿𝑅෣ = 14.5936 at 𝑡 = 433 (April 2008)

Critical value (𝑘 = 4, π1 = 𝜏௠௜௡/T = (1- 𝜏௠௔௫/T) = .15, & α=.05) = 16.45

 cannot reject H0

• Q: Multiple breaks?

Structural Change: Unknown Break - Example

b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X'X)-1 X' y  (OLS regression)
e <- y - x%*%b # regression residuals, e
RSS_R <- as.numeric(t(e)%*%e) # RSS R

T1 <- round(T*.15)
T2 <- round(T*.85)
All_F <- matrix(0,T2-T1,1)

t <- T1
while (t <= T2) {
y_1 <- y[1:T1]
x_u1 <- x[1:T1,]
b_1 <- solve(t(x_u1)%*% x_u1)%*% t(x_u1)%*%y_1 
e1 <- y_1 - x_u1%*%b_1
RSS1 <- as.numeric(t(e1)%*%e1) # RSS 1

kk = t+1
y_2 <- y[kk:T]
x_u2 <- x[kk:T,
b_2 <- solve(t(x_u2)%*% x_u2)%*% t(x_u2)%*%y_2 
e2 <- y_2 - x_u2%*%b_2
RSS2 <- as.numeric(t(e2)%*%e2) # RSS 2

F <- ((RSS_R - (RSS1+RSS2)/k)/((RSS1+RSS2)/(T1-k))
All_F = rbind(All_F,F)
}
plot(All_F, col="red",ylab ="F-test", xlab ="Break Point")
title("F-test at different Break Points") 3

Structural Change: Unknown Break - Example
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Forecasting and Prediction

• Objective:  Forecast

• Distinction:  Ex post vs. Ex ante forecasting

– Ex post: RHS data are observed

– Ex ante (true forecasting): RHS data must be forecasted

• Prediction and Forecast

Prediction: Explaining an outcome, which could be a future outcome.   

Forecast: A particular prediction, focusing in a future outcome.

Example: Prediction: Given x0  predict y0.

Forecast: Given x௧ାଵ
଴  predict yt+1.

“There are two kind of forecasters: those who don´t know and those who don´t know they don´t know”

John Kenneth Galbraith (1993)  

Forecasting and Prediction

• Two types of predictions:

- In-sample (IS, prediction): The value of a future y (& X) is observed 
by the sample. The expected value of y (in-sample), given the estimates 
of the parameters, is what we called fitted values.

- Out-of-sample (OOS, forecasting): The value of a future y that is not 
observed by the sample. The expected value of y (out-of-sample), 
given the estimates of the parameters, is what we called forecast value.

Notation: 
- Prediction for 𝑇 made at T: 𝑌෠் .
- Forecast for 𝑇 ൅ 𝑙 made at T: 𝑌෠் ା௟ , 𝑌෠் ା௟|், 𝑌෠் 𝑙 , 

where T is the forecast origin and 𝑙 is the forecast horizon. 
Then,

𝑌෠் ሺ𝑙ሻ: l-step ahead forecast = Forecasted value 𝑌 ା௟ at time T.
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Forecasting and Prediction

• Any prediction or forecast needs an information set, 𝐼் . This includes 
data, models and/or assumptions available at time T. The predictions 
and forecasts will be conditional on 𝐼் .

For example, in-sample, 𝐼் = {x0} to predict y0. 
Or in time series, 𝐼் = {x்ିଵ

଴
, x்ିଶ
଴

, ..., x்ି௤
଴ } to predict 𝑦்ା௟ .

• Then, the forecast is just the conditional expectation of 𝑌 ା௟ , given
the observed sample:

𝑌෠் ା௟ ൌ 𝐸ሾ𝑌 ା௟|𝑋் ,𝑋்ିଵ, … ,𝑋ଵሿ

Example: If 𝑋் ൌ 𝑌 , then, the one-step ahead forecast is:

𝑌෠் ାଵ ൌ 𝐸ሾ𝑌 ାଵ|𝑌 ,𝑌 ିଵ, … ,𝑌ଵሿ

Forecasting and Prediction

• Keep in mind that the forecasts are a random variable. Technically 
speaking, they can be fully characterized by a pdf. 

• In general, it is difficult to get the pdf for the forecast. In practice, we 
get a point estimate (the forecast) and a C.I. 

• Q: What is a good forecast? We need metrics to evaluate the 
forecasting performance of different models. 

• In general, the evaluation of forecasts relies on MSE.  
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• We start with general model (DGP):

(A1) DGP: 𝒚 = f(X, θ) + .

• Given x0, we predict 𝑦0, using the expectation: E[𝑦|X, x0] = f(x0, θ)  

• We estimate E[𝑦|X, x0] with 𝒚ෝ0 = f(x0, θ෠). 

• The realization 𝑦0 is just: 𝑦0 = f(x0, θ) + 0

• With 𝑦0 observed, we compute the prediction error: 𝑦ො0 – 𝑦0 and its 
associated expected squared error, which can be written as:

E[ሺ𝑦ො0 
– 𝑦0ሻ2 ] = Var[𝑦ො0 ] + [Bias(𝑦ො0 )]2 + Var[] 

• We want to minimize this squared error. Note that there is nothing a 
forecaster can do regarding the last term, called the irreducible error. 

Forecasting and Prediction: Variance-bias 

• Since there is nothing to do regarding the irreducible error, all efforts 
are devoted to minimize the sum of a variance and a squared bias. This 
creates the variance-bias trade-off in forecasting.

• It is possible that biased forecast can produce a lower MSE than an 
unbiased one. In this lecture, we based our forecasts on OLS 
estimates, which under the CLM assumptions, produce unbiased 
forecast.

Note: The variance-bias trade-off is always present in forecasting.  In 
general, more flexible models have less bias and more variance. The 
key is to pick an “optimal” mix of both.

Forecasting and Prediction: Variance-bias 
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• Prediction: Given x0  predict 𝒚0.

• Given the CLM, we have:  
Expectation: E[𝒚|X, x0] = x0; 

Predictor:  𝒚ෝ0 = b’x0

Realization: 𝒚0 = x0 + 0

Note: The predictor includes an estimate of 0:  
𝒚ෝ0 = b’x0 + estimate of 0.  (Estimate of 0=0, but with variance.)

• Associated with the prediction (a point estimate), there is a forecast 
error, 𝑒଴:

𝑒଴ = 𝒚ෝ0 – 𝒚0 = bx0 – x0 – 0 = (b – )x0 – 0

 Var[(𝒚ෝ0 – 𝒚0)|x0] = E[(𝒚ෝ0 – 𝒚0) (𝒚ෝ0 – 𝒚0)|x0] 
Varሾ𝑒଴|x0ሿ = x0 Var[(b – )|x0] x0 + 2

Prediction Intervals: Point Estimate

Example: We have already estimated the 3 Factor Fama-French 
Model for IBM returns: 

Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.005089 0.002488  -2.046   0.0412 * 
Mkt_RF 0.908299 0.056722 16.013   <2e-16 ***
SMB         -0.212460 0.084112 -2.526   0.0118 * 
HML         -0.171500  0.084682 -2.025   0.0433 * 

Suppose we are given x0 = [1.0000 -0.0189 -0.0142 -0.0027]
Then,      

ŷ0 = -0.005089 + 0.908299 * (-0.0189) -0.212460 * -0.0142 -
- 0.171500 * (-0.0027) = -0.01877582

Suppose we observe y0 = 0.1555214.  Then, the forecast error is
ŷ0 – y0 = -0.01877582 - 0.1555214 = -0.1742973

Prediction Intervals: Point Estimate



RS - Econometrics I - Lecture 5

30

Example: In R:

> x_0 <- rbind(1.0000, -0.0189, -0.0142, -0.0027)

> y_0 <- 0.1555214

> y_f0 <- t(b)%*% x_00

> y_f0

[,1]

[1,] -0.01877582

> ef_0 <- y_f0 - y_00

> ef_0

[,1]

[1,] -0.1742973

Prediction Intervals: Point Estimate

• How do we estimate the uncertainty behind the forecast?  Form a (1-
α)% confidence interval, as usual:  

[ŷ0 േ tT-k,1-α/2 * sqrt(Varሾ𝑒଴ሿሻሿ

Two cases:

(1) If x0 is given –i.e., constants. Then,

Var[ŷ0 – y0|x0] = x0 Var[b|x0] x0 + 2

 Form C.I. as usual.

Note: In OOS forecasting, x0 is unknown, it has to be estimated.

(2) If x0 has to be estimated, then we use a random variable.  What is 
the variance of the product?  One possibility:  Use a bootstrap to form 
a C.I. 

Prediction Intervals: C.I.
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• Assuming x0 is known, the variance of the forecast error is  
2 + x0’ Var[b|x0]x0 = 2 + 2 [x0’ (X’X)-1x0]

If the model contains a constant term, this is

Varሾ𝑒଴ሿ  ൌ  𝜎ଶ 1  ൅ 
1
𝑛
 ൅ ෍ ෍ሺ𝑥௝

଴  െ  𝑥̄௝ሻሺ𝑥௞
଴  െ  𝑥̄௞ሻሺZᇱM଴Zሻ௝௞

௄ିଵ

௞ୀଵ

௄ିଵ

௝ୀଵ

(where Z is X without x1=ί). In terms squares and cross products of 
deviations from means.  

Note: Large 2, small n, and large deviations from the means, decrease 
the precision of the forecasting error.

Interpretation:  Forecast variance is smallest in the middle of our 
“experience” and increases as we move outside it. 

Prediction Intervals: C.I. and Forecast Variance

• Then, the (1 െ α)% C.I. is given by: [ŷ0 േ tT-k,1-α/2 * sqrt(Varሾ𝑒଴ሿሻሿ

• As x0 moves away from , the C.I increases, this is known as the 
“butterfly effect.”

Prediction Intervals: C.I. and Forecast Variance
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Example (continuation): We want to calculate the variance of the 
forecast error: for thee given x0 = [1.0000 -0.0189 -0.0142 -0.0027]
Recall we got ŷ0 = b’x0 = -0.01877587

Then,
Estimated Var[ŷ0 – y0|x0] = x0 Var[b|x0] x0 + s2 = 0.003429632

> var_ef_0 <- t(x_0)%*% Var_b%*% x_0 + Sigma2
> var_ef_0

[,1]
[1,] 0.003429632
> sqrt(var_ef_0)

[,1]
[1,] 0.05856306

Check: What is the forecast error if x0 = colMeans(x)?

Prediction Intervals

Example (continuation):

># (1-alpha)% C.I. for prediction (alpha = .05)
> CI_lb <- y_f0 – 1.96 * sqrt(var_ef_0) 
> CI_lb
>[1] -0.1335594
> CI_ub <- y_f0 + 1.96 * sqrt(var_ef_0)
>CI_ub
>[1] 0.09600778

That is, CI for prediction: [-0.13356; 0.09601] with 95% confidence.

Prediction Intervals
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Forecasting and Prediction: Model Validation

• Model validation refers to establishing the statistical adequacy of the 
assumptions behind the model –i.e., (A1)-(A5) in this lecture. 
Predictive power or forecast accuracy can be used to do model 
validation. 

• In the context of prediction and forecasting, model validation is done 
by fitting a model in-sample, but keeping a small part of the sample, 
the hold-out-sample, to check the accuracy of OOS forecasts.  

• Hold out sample: We estimate the model using only a part of the 
sample (say, up to time T1). The rest of the observations, the hold out 
sample, (T - T1 observations) are used to check the predictive power of 
the model –i.e., the accuracy of predictions, by comparing ŷ0 with 
actual y0.

Forecasting
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Steps to measure forecast accuracy:

1) Select a (long) part of the sample (estimation period) to estimate the
parameters of the model. (Get in-sample forecasts, 𝑦ො.)
2) Keep a (short) part of the sample to check the model’s forecasting
skills. This is the validation step. You can calculate true MSE or MAE

3) If happy with Step 2), proceed to do out-of-sample forecasts.

Forecasting and Prediction: Model Validation
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Details:

1) Estimation period. Use the first T1 observations to estimate the
parameters of the model. This step produces in-sample forecasts, 𝑦ො. In-
sample evaluation of model is usually performed here.

2) Validation period. Use (T - T1) observations to check the model’s 
forecasting skills. Given estimates in (1) , get OSS ŷ0, but since y0 is 
known, calculate true MSE or MAE. For example: 

𝑀𝑆𝐸 ൌ  ଵ

ሺ்ି భ்ሻ
∑ ሺ𝑦ො௜

଴  െ 𝑦௜
଴ሻଶሺ்ି భ்ሻ

௜ୀሺ భ்ାଵሻ
 

Note: It is common to set (T - T1) close to 10% of sample.

3) True OOS forecast period. Produce OSS ŷ0, but since y0 is not
known now, it will take time to evaluate the true OOS forecasts.

Forecasting and Prediction: Model Validation

Note: In the Machine Learning literature, the terminology used for
model validation is slightly different.

Step 1 is called “training,” the data used (say, first T1 observations) are
called training data/set. In this step, we estimate the parameters of the
model, subject to the assumptions, for example, (A1)-(A4).

Step 2 has the same name, the validation step. This step is used to “tune
(hyper-)parameters.” In our CLM, we can “tune” the model for departures
of (A1)-(A4), for example, by including more variables (A1) and re-
estimating the model accordingly using the “training data” alone. We
choose the model with lower MSE or MAE

Remark: The idea of this step is to simulate out-of-sample accuracy.
But, the “tuned” parameters selected in Step 2 are fed back to Step 1.

Step 3 tests the true out-of-sample forecast accuracy of model selected
by Step 1 & Step 2. This last part of the sample is called “testing sample.”

Forecasting and Prediction: Model Validation
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• Step 2 is used as a testing ground of the model before performing
OOS forecasting. There are many ways to approach the validation step.

• Instead of a single split, split the data in 𝐾 parts. This is called 𝐾-fold
cross-validation. For 𝑗 = 1, 2, …, 𝐾, use all folds but fold 𝑗 to estimate
model; use fold 𝑗 to check model’s forecasting skills by computing MSE,
𝑀𝑆𝐸௝ . The 𝐾-fold CV estimate is an average of each fold MSE’s:

𝐶𝑉௄ ൌ
ଵ

௄
∑ 𝑀𝑆𝐸௝
௄
௝ୀଵ

Usual choices for 𝐾 are 5 & 10. (These are arbitrary choices.)

Random and non-random splits of data can be used. The non-random
splits are used for some special cases, such as qualitative data, to make
sure the splits are “representative.”

Forecasting and Prediction: Cross Validation

• Use a single observation for validation. This is called leave-one-out cross-
validation (LOOCV). A special case of 𝐾-fold cross-validation with 𝐾 = T.
That is, use (T - 1) observations for estimation, and, then, use the
observation left out, 𝑖 = 1, …, T, to compute 𝑀𝑆𝐸ሺି௜ሻ, which is just
ሺ𝑦ොሺି௜ሻ െ 𝑦௜ሻଶ, where 𝑦ොሺି௜ሻ is the prediction for observation 𝑖 based on
the full sample but observation 𝑖. Then, compute:

𝐶𝑉௡ ൌ
ଵ

௡
∑ 𝑀𝑆𝐸ሺି௜ሻ
௡
௜ୀଵ

• Instead of just one, it is possible to leave p observations for validation.
This is called leave-p-out cross-validation (LpOCV).

Remark: In time series, since the order of the data matters, cross
validation is more complicated. In general, rolling windows are used.

Forecasting and Prediction: Cross Validation
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Example: We do cross-validation on the 5-Factor Fama-French Model 
for IBM returns with 𝐾=5: 

y <- ibm_x

###### CV: Cross-Validation K-fold Code Function ######

CV<- function(dats, n.folds){

folds <- list() # flexible object for storing folds

fold.size <- nrow(dats)/n.folds

remain <- 1:nrow(dats) # all obs are in

for (i in 1:n.folds){

select <- sample(remain, fold.size, replace = FALSE) # randomly sample fold_size from remaining obs)

folds[[i]] <- select # store indices ( write a special statement for last fold if  ‘leftover points’)

if  (i == n.folds){

folds[[i]] <- remain

}

remain <- setdiff(remain, select) # update remaining indices to reflect what was taken out

remain

}

Forecasting and Prediction: Cross Validation

Example (continuation):
results <- matrix(0,1,n.folds)

for (i in 1:n.folds){

# fold i

indis <- folds[[i]] # unpack into a vector

estim <- dats[-indis, ] #split into estimation (train) & validation (test) sets

test <- dats[indis, ]

lm.model <- lm(y[-indis] ~ ., data = estim) # OLS with estimation data

pred <- predict(lm.model, newdata = test) # predicted values for fold not used

MSE <- mean((y[indis] - pred)^2) # MSE (any other evaluation measure can be used)

results[[i]]<- MSE # Accumulate MSE in vector

}

return(results)

}

CV_ff_5 <- CV(ff_step_data, 5)

> mean(CV_ff_5)

[1] 0.003532592

Forecasting and Prediction: Cross Validation
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• We want to evaluate the forecast accuracy of  a model:
- For individual (in-sample and out-of-sample) observations.
- For a group of  (in-sample and out-of-sample) observations. 

• Since squared loss functions are easy to work with, the traditional in-
sample model evaluation has been based on MSE or R2. For example, 

MSE = 
ଵ

்
∑ ሺ𝑦ො௜ െ 𝑦௜
்
௜ୀଵ ሻଶ

• Problem: In sample, models tend to overfit. The usual solution is to 
include penalties for model complexity, say, higher 𝑘. For example, use 
AIC or Adjusted R2 to judge a model.

• Another solution is to use cross-validation.

Evaluation of  Forecasts: Measures and Tests

• For OOS forecast, there are many measures, but it is common to 
adapt the traditional measures, MSE or MAE. For example, with 𝑚
out of  sample forecasts:

MSE = 
ଵ

௠
∑ ሺ𝑦ො௜ െ 𝑦௜
்ା௠
௜ୀ்ାଵ ሻଶ ൌ ଵ

௠
∑ 𝑒௜ଶ
்ା௠
௜ୀ்ାଵ

Note: Always keep in mind that all measures to evaluate forecasts are 
RV. We need a test to do any statistical comparison of  measures.

Evaluation of  Forecasts: Measures and Tests
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• Popular measures of  OOS forecast accuracy, after m forecasts: 

Mean Absolute Error (MAE) = 
ଵ

௠
∑ |𝑦ො௜ െ 𝑦௜
்ା௠
௜ୀ்ାଵ | ൌ ଵ

௠
∑ |𝑒௜|
்ା௠
௜ୀ்ାଵ

Mean Squared Error (MSE) = 
ଵ

௠
∑ ሺ𝑦ො௜ െ 𝑦௜
்ା௠
௜ୀ்ାଵ ሻଶ ൌ ଵ

௠
∑ 𝑒௜ଶ
்ା௠
௜ୀ்ାଵ

Root Mean Square Error (RMSE) = 
ଵ

௠
∑ 𝑒௜ଶ்ା௠
௜ୀ்ାଵ

Mean Absolute Percentage Error (MAPE) = 
ଵ

௠
∑ | ௬

ො೔ି௬೔
௬೔

்ା௠
௜ୀ்ାଵ ∗ 100|

Theil’s U statistics:

Evaluation of  Forecasts: Measures of  Accuracy
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• Theil’s U statistics has the interpretation of  an R2. But, it is not 
restricted to be smaller than 1.

• An OOS R2 can be computed as: 

𝑅ைைௌ
ଶ = 1 -

ெௌாಲ
ெௌாಿ

with 𝑀𝑆𝐸஺ = ∑ ሺ𝑦௧ାఛ െ 𝑦ො௧ାఛሻଶ
ொ
௧ୀଵ

𝑀𝑆𝐸ே = ∑ ሺ𝑦௧ାఛ െ 𝑦ത௧ሻଶ
ொ
௧ୀଵ

where 𝜏 is the forecasting horizon. (See Goyal and Welch (2008) for a 
well-known finance application.)

• We can also use cross-validation measures that use the whole (or 
almost all the) sample to evaluate forecasting performance. 

Evaluation of  forecasts: Measures of  Accuracy
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Example: We want to check the forecast accuracy of the 3 FF Factor 
Model for IBM returns. We estimate the model using only 1973 to 
2017 data (T=539), leaving 2018-2020 (30 observations) for validation 
of predictions.
> T0 <- 1

> T1 <- 539

> T2 <- T1+1

> y1 <- y[T0:T1]

> x1 <- x[T0:T1,]

> fit2 <- lm(y1~ x1-1)

> summary(fit2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

x1       -0.003848   0.002571  -1.497  0.13510    

x1Mkt_RF0.865579   0.059386  14.575  < 2e-16 ***

x1SMB   -0.224914   0.085505  -2.630  0.00877 ** 

x1HML  -0.230838   0.090251  -2.558  0.01081 *

Evaluation of  forecasts: Measures of  Accuracy

Example (continuation): We condition on the observed data from 
2018: Jan to 2020: Jun.
> x_0 <- x[T2:T,]

> y_0 <- y[T2:T]

> y_f0 <- x_0%*% b1

> ef_0 <- y_f0 - y_0

> mes_ef_0 <- sum(ef_0^2)/nrow(x_0)

> mes_ef_0

[1] 0.003703207

> mae_ef_0 <- sum(abs(ef_0))/nrow(x_0)

> mae_ef_0

[1] 0.04518326

That is, MSE = 0.003703207

MAE = 0.04518326

Evaluation of  forecasts: Measures of  Accuracy
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Example (continuation): Plot of actual IBM returns and forecasts.
plot(y_f0, type="l", col="red", main = "IBM: Actual vs. Forecast (2018-2020)",

xlab = "Obs",  ylab = "Forecast")

lines(y_0, type = "l", col = "blue")

legend("topleft",  legend = c("Actual", "Forecast"),  col = c("blue", "red"),  lty = 1)

Evaluation of  forecasts: Measures of  Accuracy

• We have measures of  accuracy, which are RV, a function of  the data. 
Given usual sampling variation, per se, measures are difficult to 
compare. 

Q: We have two models, how do we know one forecast significantly 
better than the other? We need a test for this. 

Evaluation of  forecasts: Testing Accuracy
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• Suppose two competing forecasting procedures produce a vector of  
errors: 𝑒ሺଵሻ & 𝑒ሺଶሻ. Then, if  expected MSE is the criterion used, the 
procedure with the lower MSE will be judged superior.

• We want to test H0: MSE(1) = MSE(2) 
H1: MSE(1) ≠ MSE(2). 

Assumptions: forecast errors are unbiased, normal, and uncorrelated.  
If  forecasts are unbiased, then MSE = Variance.

• Consider, the pair of  RVs: (𝑒ሺଵሻ ൅ 𝑒ሺଶሻ) & (𝑒ሺଵሻ െ 𝑒ሺଶሻ). Now,

𝐸ሾሺ𝑒ሺଵሻ ൅ 𝑒ሺଶሻሻሺ𝑒ሺଵሻ െ 𝑒ሺଶሻሻሿ ൌ 𝜎ଵ
ଶ െ 𝜎ଶ

ଶ

• That is, we test H0 by testing that the two RVs are not correlated! 

Under H0, 𝐸ሾሺ𝑒ሺଵሻ ൅ 𝑒ሺଶሻሻሺ𝑒ሺଵሻ െ 𝑒ሺଶሻሻሿ ൌ 0.

Evaluation of  forecasts: Testing Accuracy

• Under H0,  𝑒
ଵ ൅ 𝑒 ଶ  & ሺ𝑒ሺଵሻ െ 𝑒ሺଶሻሻ are not correlated. This 

idea is due to Morgan, Granger and Newbold (MGN, 1977).

• There is a simpler way to do the MGN test. Steps:

1. Define 𝑒ሺଵሻ & 𝑒ሺଶሻ, where 𝑒ሺଵሻ is the error with the higher MSE. Let
𝑧௧ = 𝑒ሺଵሻ ൅ 𝑒ሺଶሻ – 𝑒ሺଵሻ: the error with the higher MSE.
𝑥௧ = 𝑒ሺଵሻ െ 𝑒ሺଶሻ

2. Do a regression: 𝑧௧ = β 𝑥௧ + 𝜀௧

3. Test H0: β = 0  a simple t-test. 

The MGN test statistic is exactly the same as that for testing H0: β = 0. 
This is the approach taken by Harvey, Leybourne and Newbold (1997).

• Non-parametric: Spearman’s rank test for zero 𝑥௧ & 𝑧௧ correlation. 

Evaluation of  forecasts: Testing Accuracy
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Example: We produce IBM returns one-step-ahead forecasts for 
2018-2020 using the 3 FF Factor Model for IBM returns:

(IBMRet – 𝑟௙)t = 0 + 1 (MktRet – 𝑟௙)t + 2 SMBt + 3 HMLt + t

Taking expectations at time t+1, conditioning on time t information 
set, 𝐼௧ ={(MktRet – rf)t, SMBt, HMLt}

E[(IBMRet – 𝑟௙)t+1|𝐼௧] = 0 + 1 E[(MktRet – 𝑟௙)t+1|𝐼௧ ] +
+ 2 E[SMBt+1|𝐼௧ ] + 3 E[HMLt+1|𝐼௧ ] 

In order to produce forecast, we will make a naive assumption: The 
best forecast for the FF factors is the previous observation. Then,

E[(IBMRet – 𝑟௙)t+1|𝐼௧] = 0 + 1 (MktRet – 𝑟௙)t + 2 SMBt + 3 HMLt.

Now, replacing the  by the estimated b, we have our one-step-ahead 
forecasts

Evaluation of  forecasts: Testing Accuracy

Example: We compare the forecast accuracy relative to a random walk 
model for IBM returns. That is,  

E[(IBMRet – 𝑟௙)t+1|𝐼௧ ] = (IBMRet – 𝑟௙)t

Using R, we create the forecasting errors for both models and MSE:

> x_01 <- x[T1:(T-1),]
> y_0 <- y[T2:T]
> y_f0 <- x_01%*% b1
> ef_0 <- y_f0 - y_0 # et

(2) 

> mes_ef_0 <- sum(ef_0^2)/nrow(x_0)
> mes_ef_0 # MSE(2)
[1] 0.01106811
> ef_rw_0 <- y[T1:(T-1)] - y_0 # et

(1) 

> mse_ef_rw_0 <- sum(ef_rw_0^2)/nrow(x_0)
> mse_ef_rw_0 # MSE(1) <= (1) is the higher MSE.
[1] 0.02031009

Evaluation of  forecasts: Testing Accuracy
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Example: Now, we create 𝑧௧ = 𝑒ሺଵሻ ൅ 𝑒ሺଶሻ, &  𝑥௧ = 𝑒ሺଵሻ െ 𝑒ሺଶሻ. 
Then, regress: 𝑧௧ = β 𝑥௧ + 𝜀௧ and test H0: β = 0.

> z_mgn <- ef_rw_0 + ef_0
> x_mgn <- ef_rw_0 - ef_0
> fit_mgn <- lm(z_mgn ~ x_mgn)
> summary(fit_mgn)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.05688    0.03512   1.619    0.117    
x_mgn 2.77770    0.58332   4.762 5.32e-05 ***

Conclusion: We reject that both MSE are equal  MSE of  RW is higher.

Evaluation of  forecasts: Testing Accuracy

• If  the assumptions are violated, these tests have problems. 

• In practice, these tests are only applied to one-step predictions and 
the MSE is the loss function.

• Diebold and Mariano (DM, 1995) generalized the MGN approach to 
any loss function, g(.), and can be applied to forecast errors that are 
biased, non-normal and correlated.

• The test is based on the loss differential between two forecasts: 

𝑑௧ = g(𝑒 ଵ ) – g(𝑒 ଶ )

• Then, we test the null hypotheses of  equal predictive accuracy: 
H0: E[𝑑௧] = 0
H1: E[𝑑௧] = μ ≠ 0. 

Evaluation of  forecasts: Testing Accuracy – DM 
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• Then, we test the null hypotheses of  equal predictive accuracy: 
H0: E[𝑑௧] = 0
H1: E[𝑑௧] = μ ≠ 0. 

- Diebold and Mariano (1995) assume {𝑒 ଵ } & {𝑒 ଶ } is covariance 
stationarity and other regularity conditions (finite Var[dt], 
independence of  forecasts after ℓ periods) needed to apply CLT. 
Then,

𝑑ሜ െ 𝜇

𝑉𝑎𝑟ሾ𝑑ሜሿ/𝑇
 
 ௗ 

 𝑁ሺ0,1ሻ,    𝑑ሜ ൌ
1
𝑚

෍ 𝑑௜

்ା௠

௜ୀ்ାଵ

• Then, under H0, the DM test is a simple z-test:

𝐷𝑀 ൌ
𝑑ሜ

𝑉෠𝑎𝑟ሾ𝑑ሜሿ/𝑇
 
 ௗ 

 𝑁ሺ0,1ሻ

Evaluation of  forecasts: Testing Accuracy – DM 

where 𝑉෠𝑎𝑟ሾ𝑑ሜሿ is a consistent estimator of  the variance, usually based 
on sample autocovariances of  𝑑௧:

𝑉෠𝑎𝑟ሾ𝑑ሜሿ ൌ 𝛾ሺ0ሻ ൅ 2෍𝛾ሺ𝑗ሻ

ℓ

௝ୀ௞

• There are some suggestion to calculate small sample modification of  
the DM test. For example, :

DM* = DM/{[T + 1 – 2 ℓ + ℓ (ℓ – 1)/T]/T}1/2 ~ tT-1.

where ℓ-step ahead forecast. If  ARCH is suspected, replace ℓ with 
[0.5 √(T)] + ℓ.

Note:  If  {𝑒 ଵ } & {𝑒 ଶ } are perfectly correlated, the numerator and 
denominator of  the DM test are both converging to 0 as  T → ∞.  

 Avoid DM test when this situation is suspected (say, two 
nested models.) Though, in small samples, it is OK.

Evaluation of  forecasts: Testing Accuracy – DM 
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Example: Code in R
dm.test <- function (e1, e2, h = 1, power = 2) {

d <- c(abs(e1))^power - c(abs(e2))^power
d.cov <- acf(d, na.action = na.omit, lag.max = h - 1, type = "covariance", plot = FALSE)$acf[, , 1]
d.var <- sum(c(d.cov[1], 2 * d.cov[-1]))/length(d)
dv <- d.var #max(1e-8,d.var)
if(dv > 0)
STATISTIC <- mean(d, na.rm = TRUE) / sqrt(dv)

else if(h==1)
stop("Variance of  DM statistic is zero")

else
{
warning("Variance is negative, using horizon h=1")
return(dm.test(e1,e2,alternative,h=1,power))

}
n <- length(d)

k <- ((n + 1 - 2*h + (h/n) * (h-1))/n)^(1/2)
STATISTIC <- STATISTIC * k
names(STATISTIC) <- "DM"

}

Evaluation of  forecasts: Testing Accuracy – DM 

3

• Variation of the Chow test: Chow Predictive Test

• When there is not enough data to do the regression on both sub-
samples, we can use an alternative formulation of the Chow test.
(1) We estimate the regression over a (long) sub-period, with T1
observations –say 3/4 of the sample. Keep RSS1.
(2) We estimate the regression for the whole sample (restricted
regression). Keep RSSR.
(3) Run an F-test, where the numerator represents a “predicted” RSS
for the T2 (=T - T1) left out observations.

kTT
R F

kTRSS

TRSSRSS
F





12 ,

11

21 ~
)/(

/)(

Out-of-sample predictions and prediction 
errors: Chow Test Revisited (Greene)
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Out-of-sample predictions and prediction 
errors: Chow Test Revisited

Example: 3 Factor Fama-French Model for IBM (continuation)
We have T = 336 observations. We set T1 = 252 & T2 = 86. Then,
RSS252 = 8.063611. 
RSS336 = 12.92964. 

 FFF = (12.92964 – 8.063611)/86 = 2.329618 
8.063611 /(336-4)

Since F86, 332, 05 = 1.308807 < FFF  reject H0 (constant parameters).


