RS - Econometrics I - Lecture 5

Lecture 5
Functional Form and Prediction

OLS Estimation - Assumptions

* CLM Assumptions

(A1) DGP:y = X B + g is correctly specified.

(A2) Efs|X] = 0

(A3) Var[g|X] = & I,

(A4) X has full column rank —rank(X)=k—, where T = k.

¢ In this lecture, again, we will look at assumption (Al). So far, we
have restricted fX,p) to be a linear function: AX,B) =X .

* But, it turns out that in the framework of OLS estimation, we can
be more flexible with AX,[).
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Functional Form: Linearity in Parameters
* Linear in variables and parameters:
Y=P0+pX, +BXs+ Xy +&
* Linear in parameters (zutrinsic linear), nonlinear in variables:
2 /
Zy=X3, Zy=X;, Z,=logX,
Y=P+Prly+ BiZs+ ByZy+¢

Note: We get some nonlinear relation between y and X, but OLS still
can be used.

Functional Form: Linearity in Parameters

* Suppose we have:
Y =B+ Xy + By X5 +e

* The model is intrinsic linear, but it allows for a quadratic relation
between y and X,:
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Functional Form: Linearity in Parameters

X5= (xp)°

X,=x,

Functional Form: Linearity in Parameters

Example: We want to test if a measure of market risk (Mktg,, — t)? is
significant in the 3 FF factors (SMB, HML) for IBM returns. The
model is non-linear in (Mkty,, — 1), but still intrinsic linear:

IBMg,, —t; = By + B; Mkty, — 1) + B,SMB + B; HML + B, (Mktp,, —r)* + €

We can do OLS, by redefining the variables: Let X1= (Mkty,, — t); X, = SMB; X3 =
HML; X, = XZ. Then,

Y = Bo + BiXs + BoXo + PaXs + BuXi + €

Coefficients:
Estimate Std. Error  tvalue  Pr(>|t])
x0 -0.004765  0.002854  -1.670 0.0955 .
xx1 0.906527  0.057281 15.826  <2e-16 ***
xx2 -0.215128  0.084965  -2.532 0.0116 *
xx3 -0.173160  0.085054  -2.036 0.0422 *
xx4 -0.143191  0.617314  -0.232  0.8167 => Not significant
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Functional Form: Linearity in Parameters

* We can approximate very complex non-linearities with polynomials
of order £:

2 3 k
Y= p1+ 5o Xo + B3 X5 + F3X5 .t fra Xy +&
¢ Polynomial models are also useful as approximating functions to
unknown nonlinear relationships. You can think of a polynomial
model as the Taylor series expansion of the unknown function.

* Selecting the order of the polynomial —i.e., selecting k- is not trivial.

* k may be too latge ot too small.

Functional Form: Linearity in Parameters

* Nonlinear in parameters:

This model is nonlinear in parameters since the coefficient of X, is the
product of the coefficients of X, and Xj.

* Some nonlinearities in parameters can be linearized by appropriate
transformations, but not this one. This in not an intrinsic linear model.
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Functional Form: Linearity in Parameters

e Intrinsic linear models can be estimated using OLS. Sometimes,
transformations are needed.

* Suppose we start with a power function: Y=p4X P g

* The errors enter in multiplicative form. Then, using logs:

logY = logﬂlXﬂzg =logf, + p, log X +loge
Y'= ﬂ{ + B, X'+&'  where Y'=logY,X'=log X
fy =log f.'=loge

* Now, we have an intrinsic linear model.

* To use the OLS estimates of ;' and 3,’, we need to say something
about e. For example, € =exp(§), where €| X ~ iid D(0, o°L).

25

Functional Form: Linearity in Parameters

* Not all models are intrinsic linear. For example:
Y =B, X" +¢
log ¥ = log( ﬂlXﬁ2 +¢)
We cannot linearize the model by taking logarithms. There is no way

of simplifying log(h; X" + ¢). We will have to use some nonlinear
estimation technique.

25
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Functional Form: Piecewise Linearity

* Sometimes non-linear relations in an interval can be linearized by
splitting the interval. If this can be done, we say the relation is precewzse
linear (a special case of a spline regression).

* Suppose we can linearized the data using two intervals —i.e., we have
only one knot (#,). For example:

E[; | X] = Boo + Bor x; ifx; =4
Bl | X] = vy + v, x; ifx;> 1

Note: We can fit both equations into one single equation using a
linear approximation:

E| X] = Boo+ Borx; + Bro (= 1)+ + By (= 7).
where (x;,— 7)), is the positive part of (x;— 7)) and zero otherwise.

Functional Form: Linear Splines

* We fit both equations into one single equation:
E[y; [X] = Boo T+ Borxy + Bro 0= 7+ + Byy (= 7).

That is,
Elyi [X] = Boot Borx; if x; < 4
Eli[X] =vo +v125= Goo+ Bro— Buto) + GoitBidx if x> 4,

* We have a linear model:

Vi = Boo T Borx; + Bro (= 79)." + By (= 7)), + &
=> It can be estimated using OLS.

* If in addition, we want the function to be continuous at the knot.
Then,

Boo T BorZy = Boot Bro— Bz + Gt Bi) =B =0
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Functional Form: Linear Splines

¥

Boot Fro=Put
Bo

¥
Aot Pay
Hao Pon E

Pog— P47

Functional Form: Linear vs Log specifications

logY =4+, X +¢

e Linear model

* (Semi-) Log model:

A
* Box—Cox transformation: Y /1_1 =B +p,X+e
A
Y ol vy wheni-=l
A;L
A"
! =log(Y) when 4 —0

* Putting A = 0 gives the (semi—)logarithmic model (think about the limit
of A tends to zero.). We can estimate 4. One would like to test if A is

equal to 0 or 1. It is possible that it is neither!
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Functional Form: Ramsey’s RESET Test

¢ To test the specification of the functional form, Ramsey designed a
simple test. We start with the fitted values:

y = Xb.

Then, we add §? to the regression specification:
y=XB+§yr+e

* If $?is added to the regression specification, it should pick up

quadratic and interactive nonlinearity, if present, without necessarily
being highly correlated with any of the X variables.

* We test H, (linear functional form): y =0

H, (non linear functional form): y # 0 3

Functional Form: Ramsey’s RESET Test

* We test H, (linear functional form): y =0
H, (non linear functional form): y # 0

=> r-test on the OLS estimator of 7.

o If the ~statistic for §? is significant = evidence of nonlinearity.

* The RESET test is intended to detect nonlinearity, but not be specific
about the most appropriate nonlinear model (no specific functional
form is specified in H,).

James B. Ramsey, England
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Functional Form: Ramsey’s RESET Test

Example: We want to test the functional form of the 3 FF Factor
Model for IBM returns, using monthly data 1973-2020.

fit <- Im(ibm_x ~ Mkt_RF + SMB + HML)

y_hat <- fitted(fit)

y_hat2 <-y_hat"2

fit_ramsey <- Im(ibm_x ~ Mkt_RF + SMB + HML + y_hat2)

summary(fit_ramsey)

> summary(fit_ramsey)
Coefficients:

HEstimate Std. Error  tvalue  Pr(>|t|)
(Intercept)  -0.004547 0.002871  -1.584 0.1137
Mkt_RF 0.903783 0.058003  15.582 <2e-16 ***

SMB -0.217268 0.085128  -2.552 0.0110 *
HML -0.173276 0.084875  -2.042 0.0417 *
y_hat2 -0.289197 0.763526  -0.379 0.7050 = Not significant!

Qualitative Variables and Functional Form

* Suppose that you want to model CEO compensation. You have data
on annual total CEO compensation, annual returns, annual sales, and the
CEO?s last degree (education). We have qualitative data.

* We can run individual regressions for each last degree —i.e., BA/BS;
MS/MA/MBA; Doctoral-, but we will have three small samples:

Undergrad degree Comp; = By + Bruzi + &,
Masters degree Comp; = By T BrmZi T €,
Doctoral degree Comp; = Bog + Brdzi + &4

¢ Alternatively, we can combine the regressions in one. We can use a
variable (a dummy or indicator variable) that points whether an observation
belongs to a category or class or not. For example:
D¢, =1 if observation 7 belongs to category C (say, male.)
=0 otherwise.

3
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Qualitative Variables and Functional Form

* Define dummy/indicator variables for Masters & doctoral degrees:

D, =1 if at least Masters degree
=0 otherwise.

D, =1 if doctoral degree
=0 otherwise.

Then, we introduce the dummy/indicator vatiables in the model:
Comp; = Bo + 1’2, + B, D, + B3 Dy + 12, D, + 4,2, D, + &
This model uses all the sample to estimate the parameters. It is flexible:
Constant for undergrad degree: §,
Constant for Masters degree: B, + (3,
Constant for Doctoral degree: B, + B, + 5

Slopes for Masters degree: B; + v,
Slopes for Doctoral degree: B; + v, + v,

Qualitative Variables and Functional Form

* Now, you can test the effect of education on CEO compensation. Say
(1) Hy: No effect of doctoral degree: 3;=0andy,=0 = F-zest.

* Suppose we have data for CEO graduate school. We can include
another indicator variable in the model. Say D, to define if a graduate

school is in the Top 20.
Dy, =1 if grad school is a Top 20 school
=0 otherwise.

e If there is a constant, the numbers of dummy variables per qualitative
variable should be equal to the number of categories minus 1. If you put
the number of dummies per qualitative variable equal to the number of
categories, you will create perfect multicollinearity (dummy trap).

* The omitted category is the reference category. In our previous
example, the reference category is undergraduate degree.

10
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Dummy Variables as Seasonal Factors

* A popular use of dummy variables is in estimating seasonal effects. We
may be interested in estimating the January effect for stock returns or in
studying if the returns of power companies (CNP) are affected by the
seasons, since in the winter and summer the power demand increases.

In this case, we define dummy/indicator vatiables for Summer, Fall and
Winter (the base case is, thus, Spring):

Dgymi =1 if observation 7 occurs in Summer
= otherwise.

Dgy,; =1 if observation 7 occurs in Fall
= otherwise.

Dy =1 if observation 7 occurs in Winter
= otherwise.

Then, letting Z be the three FF factors, we have:
CNP; = 8y + By'z; + B,Dy,,,; T BsDpuy + B4 Dy + &

Dummy Variables: Is There a January Effect?

Example (continuation):

>Jan <- rep(c(1, 0,0, 0, 0,0, 0, 0,0, 0, 0, 0), (length(zz)/12+1))# Create January dummy
> T2 <-T+1

> Jan_1 <- Jan|2:T2]

> fit_Jan <- Im(y ~ Mkt_RF+ SMB + HML + Jan_1)

> summary(fit_Jan)

Coefficients:

Estimate  Std. Error t value Pr(>|t|)
(Intercept) -0.007195 0.002566 -2.804 0.00522 **
Mkt RF  0.902968 0.056345 16.026 < 2e-16 ***
SMB -0.240186 0.084013 -2.859 0.00441 **
HML -0.190710 0.084317 -2.262 0.02409 *
Jan_1 0.026993  0.008923 3.025 0.00260 **

Signif. codes: 0 “***(0.001 “**0.01 % 0.05 > 0.1 <’ 1

Residual standard error: 0.05807 on 564 degrees of freedom
Multiple R-squared: 0.3495, Adjusted R-squared: 0.3449
F-statistic: 75.75 on 4 and 564 DF, p-value: < 2.2¢-16

11
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Dummy Variable for One Observation

* We can use a dummy variable to isolate a single observation.

D, =1  for observation /.

=0 otherwise.

* Define d to be the dummy variable in question.
Z = all other regressors. X = [Z, D]

* Multiple regression of y on X. We know that
X'e = 0 where e = the column vector of residuals.

= Dj'e=0 = ¢ =0 (perfect fit for observation ;).

* This approach can be used to deal with (eliminate) oxtliers.

Functional Form: Chow Test

* It is common to have a qualitative variable with two categories, say
education (Top 20 school or not). Before modelling the data, we can
check if only one regression model applies to both categories.

* Chow Test (an F-test) —Chow (1960, Econometrica):

(1) Run OLS with all the data, with no distinction between categories
(Restricted regression or Pooled regression). Keep RSS;.

(2) Run two separate OLS, one for each category (Unrestricted regression).

Keep RSS,and RSS, = RS§;, = RSS, + RSS,.
(Alternative, we can run just one regression with the dummy variable).
(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

(RSS, )T —kyy) (RSS, + RSS,) T =2k) .

12
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Functional Form: Chow Test

* A Wald Test can also be used to compare the coefficient estimates, in
the two samples (regimes 1 & 2), with T, and T, observations,
respectively:

~ ~

W =T(B; — B2)'Var[(B, — B2)I"*(B1 — B2)

* This test is a bit more flexible, since it is easy to allow for different

formulations for Var[(Bl — Bz)] (In econometrics, violations of (A3)
are common, for example, different variances in regimes 1 & 2.)

Gregory C. Chow (1929, USA)

Chow Test: Males or Females visit doctors more?

¢ Taken from Greene

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of
Periods

Variables in the file are

Data downloaded from Journal of Applied Econometrics Archive. This is an
unbalanced panel with 7,293 individuals. There atre altogether 27,326
observations. The number of observations ranges from 1 to 7 per

family. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000,
7=987). The dependent variable of interest is

DOCVIS = number of visits to the doctor in the observation period

HHNINC = houschold nominal monthly net income in German matks / 10000.
(4 observations with income=0 were dropped)

HHKIDS = children under age 16 in the household = 1; otherwise = 0

EDUC = years of schooling

AGE = age in years

MARRIED= matrital status (1 = if married)

WHITEC = 1 if has “white collar” job

13
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.« .
Chow Test: Males or Females visit doctors more?
* OLS Estimation for Men only. Keep RSS,; = 379.8470

R +

| Ordinary least squares regression |

| LHS=HHNINC Mean = .3590541 |

| Standard deviation = .1735639 |

| Number of observs. = 14243 |

| Model size Parameters = 5 |

| Degrees of freedom = 14238 |

| Residuals Sum of squares = 379.8470 |

| Standard error of e = .1633352 |

| Fit R-squared = .1146423 |

| Adjusted R-squared = .1143936 |
e e +

$o——— - e L e e LT e $-——— - - et +
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
$o——— - Fom e $-——m - e et +
|Constant| .04169%** .00894 4.662 .0000 |
|AGE | .00086*** .00013 6.654 .0000 42.6528|
| EDUC | .02044*** .00058 35.528 .0000 11.7287|
|MARRIED | .03825%** .00341 11.203 .0000 .76515|
|WHITEC | .03969*** .00305 13.002 .0000 .29994|
- B et +

o .
Chow Test: Males or Females visit doctors more?
¢ OLS Estimation for Women only. Keep RSS, = 363.8789

R +

| Ordinary least squares regression |

| LHS=HHNINC Mean = .3444951 |

| Standard deviation = .1801790 |

| Number of observs. = 13083 |

| Model size Parameters = 5 |

| Degrees of freedom = 13078 |

| Residuals Sum of squares = 363.8789 |

| Standard error of e = .1668045 |

| Fit R-squared = .1432098 |

| Adjusted R-squared = .1429477 |

B e e T +

- Fom o e - - et +
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
$o——— - e L e e e $-——— - - et +
|Constant| .011901 .01158 1.029 .3036 |
|AGE | .00026* .00014 1.875 .0608 44.4760|
| EDUC | .01941*** .00072 26.803 .0000 10.8764|
|MARRIED | .12081*** .00343 35.227 .0000 .75151|
|WHITEC | .06445%** .00334 19.310 .0000 .29924|
- e e L L L e e +

14
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Chow Test: Males or Females visit doctors more?

e e e e L e L e e e e et +
| Ordinary least squares regression |

| LHS=HHNINC Mean = .3520836 |

| Standard deviation = .1769083 |

| Number of observs. = 27326 |

| Model size Parameters = 5 |

| Degrees of freedom = 27321 |

| Residuals Sum of squares = 752.4767 | All

| Residuals Sum of squares = 379.8470 | Men

| Residuals Sum of squares = 363.8789 | Women
e e E e L L e e e e et +

o oo oo +omm - o Fomm - +
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
o oo m o o +omm - o Fomm - +
|Constant| .04186*** .00704 5.949 .0000 |
| AGE | .00030*** .919581D-04 3.209 .0013 43.5257|
| EDUC | .01967*** .00045 44.180 .0000 11.3206|
|MARRIED | .07947*** .00239 33.192 .0000 .75862|
|WHITEC | .04819*** .00225 21.465 .0000 .29960]|
o B e T e E LT L e +

Chow Test = F = [(752.4767 — (379.847 + 363.8789))/5] /
[(379.847 + 363.8789)/(27,326 — 10)] = 64.281
F(5,27311) = 2.214100 = reject H,

Wald Test (Greene)

--> Matrix ; zero=init(k,k,0) ; Ik = Iden(k) $§
--> Matrix ; bwald = [bm/bf] $§ Column vector
--> matrix ; vwald = [Vm/zero,VE] $
--> Matrix ; Mik = -1*Ik ; R = [Ik,MIk] ; q = init(k,1,0) §
--> Matrix ; M = R*bwald - q
; VM = R*vwald*R'
; List ; Wald = m'<vm>m
; JF = k*ChowTest$

Matrix WALD has 1 rows and 1 columns.
1
Fomm - +
1] 321.00313
Fomm - +
Matrix JF has 1 rows and 1 columns.
1
Fomm - +
1] 321.40815
oo +

15
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Functional Form: Structural Change

* Suppose there is an event that we think had a big effect on the
behaviour of our model. Suppose the event occurred at time Ty
For example, the parameters are different before and after 1. That is,

_ qnl 1 1 1 :
Yi= B(Z) + B% Xyt B% X t Bg X5t fori =Ty,
yi = Bo + B1 Xyt B2 X t+ B3 X5t fori> T

The event caused structural change in the model. T’ separates the
behaviour of the model in two regimes/categoties (“before” & “after”.)

* A Chow test tests if one model applies to both regimes:
yi =B+ By Xyt B, Xo; Bs X5t g for all 7

* Under H, (No structural change), the parameters are the same for all 7

Functional Form: Structural Change

* We test Hy (No structural change): By = Bg = B
B1 =PI =B,
Bz =B =5,
B3 =B5 =5,
H, (structural changé): For at least one k (= 0, 1, 2, 3): By # Bi

* What events may have this effect on a model? A financial crisis, a big
recession, an oil shock, Covid-19, etc.

¢ Testing for structural change is the more popular use of Chow tests.

* Chow tests have many interpretations: tests for structural breaks,
pooling groups, parameter stability, predictive power, etc.

* One important consideration: T'may not be large enough.

16
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Functional Form: Structural Change
* We structure the Chow test to test Hy (No structural change), as usual.

* Steps for Chow (Structural Change) Test:

(1) Run OLS with all the data, with no distinction between regimes.
(Restricted or pooled model). Keep RSS;.

(2) Run two separate OLS, one for each regime (Unrestricted model):
Before Date T'g. Keep RSS;.

After Date Ty, Keep RSS,. = RSS; = RS§, + RSS,.

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

_ (RSSg — RSSy)/(ky —kg) _ (RSSg — [RSS;1 + RSS,])/k
B (RSS) /(T — ky) ~ (RSS; + RSS,)/(T — 2k)

Functional Form: Structural Change

Example: We test if the Oct 1973 oil shock in quarterly GDP growth
rates had an structural change on the GDP growth rate model.

We model the GDP growth rate with an AR(1) model, that is, GDP
growth rate depends only on its own lagged growth rate:

Ve =Bo+ By Ye—1 T &

GDP_da <- read.csv("http:/ /www.bauet.uh.edu/rsusmel/4397/GDP_g.csv", head=TRUE,
Sep:">”)

x_date <- GDP_da$DATE

x_gdp <- GDP_da$GDP

x_dummy <- GDP_da$D73

T <- length(x_gdp)

s <- 108 # T, = Oct 1973

Ir_gdp <-log(x_gdpl[-1]/x_gdp[-T])
T <- length(lr_gdp)

lr_gdp0 <-Ir_gdp[-1]

Ir_gdpl <-1t_gdp[-T]

ts<-ts-1 # Adjust t_s (we lost the first observation) 34

17
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Functional Form: Structural Change

Example (continuation):
y <-lr_gdp0O

x1 <- Ir_gdpl

T <- length(y)

x0 <- matrix(1,T,1)

x <- cbind(x0,x1)

k <- ncol(x)

# Restricted Model (Pooling all data)

fit_arl <-Im(lr_gdp0 ~ lr_gdp1) # Fitting AR(1) (Restricted) Model
e_R <-fit_arl$residuals # regression residuals, e

RSS_R <- sum(e_R"2) # RSS Restricted

> summary(fit_arl)

Coefficients:

Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.011406 0.001118 10.200 < 2e-16 ***
Ir_gdp1 0.262234  0.055543 4.721  3.59e-06 ***

Signif. codes: 0 *** (0.001 “***0.01 **0.05 0.1 “* 1

Residual standard error: 0.01248 on 302 degrees of freedom. 35
Functional Form: Structural Change
Example (continuation):

# Unrestricted Model (Two regimes)

y_1 <-y[l:t_s]

x_ul <-x[l:t_s)]

fit_arl_1 <-lm(y_1 ~x_ul-1) # AR(1) Regime 1

el <- fit_arl_1$residuals # Regime 1 regression residuals, e
RSS1 <- sum(el”2) # RSS Regime 1

kk =t_s+1 # Starting date for Regime 2

y_2 <-y[kkT]

x_u2 <- x[kk:T}]

fit_arl 2 <-Ilm(y_2 ~x_u2-1) # AR(1) Regime 2

e2 <- fit_arl_2$residuals # Regime 2 regression residuals, e
RSS2 <- sum(e2”2) # RSS Regime 2

F <- (RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k))

>F

[1] 4.391997

p_val <-1-pf(E dfl = 2,df2 =T - 2*k) # p-value of F_test

> p_val

[1] 0.0131817 => small p-values: Reject H, (No structural change). 36

18
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Functional Form: Structural Change

Example: 3 Factor Fama-French Model for IBM (continuation)

Q: Did the dot.com bubble (end of 2001) affect the structute of the FF
Model? Sample: Jan 1973 — June 2020 (T = 569).

Pooled RSS = 1.9324
Jan 1973 — Dec 2001 RSS = RSS, = 1.33068 (T = 342)
Jan 2002 — June 2020 RSS = RSS, = 0.57912 (T = 227)

= 1.6627

F= [RSSR—(RSS1+RSSp)|/k _ [1.9324 — (1.3307+ 0.57911)]/4
(RSS1+RSS2)/(T—k)  (1.3307+ 0.57911)/(569 — 2%4)

= Since F, 545 o5 = 2.39, we cannot reject H,

Constant Mkt —rf SMB HMIL. RSS T

1973-2020 -0.0051 0.9083  -0.2125 -0.1715 1.9324 569
1973-2001 -0.0038  0.8092  -0.2230 -0.1970 1.3307 342
2002 — 2020 -0.0073 1.0874  -0.1955 -0.3329 0.5791 227

Chow Test: Structural Change - Example

Example: 3-Factor Fama-French Model for GE

Q: Did the dot.com bubble (end of 2001) affect the structure of the FF
Model?

Sample: Jan 1973 — July 2020 (T = 570).

Pooled RSS = 1.569956

Jan 1973 — Dec 2001 RSS = RSS,; = 0.5455917 (T = 342)

Jan 2002 — July 2020 RSS = RSS, = 0.9348033 (T = 228)

_ [RSSR=(RSS1+RSS)1/k _ [1.5700 - (0.5456 +0.9348)/4 _
T T (RSS1+RSS,)/(T—k)  (0.5456 +0.9348)/570 — 2x4) 8.499996

F

= Since F, 54, o5 = 2.39, we reject H,

Conclusion: At the 5% level, we have evidence for a Dot.com bubble

structural change.

19
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Functional Form: Structural Change

* Under the H, (No structural change), we pool the data into one model.
That is, the parameters are the same under both regimes. We fit the
same model for all ¢, for example:

Ve =Bo+ By Ye—1 T &

e If the Chow test rejects H,, we need to reformulate the model. A
typical reformulation includes a dummy variable (Dsp ;). For example,
with vector X; of explanatory variables:

Ve = Bo+ Bi'xe + By Dsp e + 1'% Dspr + &
where

Dsp: =1 if observation t occurred after T'¢y
=0 otherwise.

Structural Change: Specification with Dummies

Example: We are interested in modelling the effect of the Oct 1973
oil shock in GDP growth rates. We include a dummy variable in the

model, say D-:
D73 = 1 if observation t occurred after October 1973

= 0 otherwise.
Then, Ye=Bo T B/xt ¥ By D73 + v/ X D73 + g

In the model, the oil shock affects the constant and the slopes.

Constant Slopes:
Before oil shock (D3 = 0): Bo Bs
After oil shock (D73 = 1) : By + B, Bit+ v

* We estimate the above model and perform an F-test to test if H, (No
structural change): p,= 0 & y, = 0. 40
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Structural Change: Specification with Dummies

Example: We add an Oct 1973 dummy in the AR(1) GDP model.

T1 <-T-t_s # Number of Observations after SB
D73_0 <- rep(0,t_s) #Dummy_t=0if t<=t_s

D73_1 <- rep(1,T1) # Dummy_t =1 of t > t_s

D73 <-¢(D73_0,D73_1) # SB Dummy variable t_s <- 108
Ir_gdpl_D73 <-lr_gdpl * D73 # interactive dummy (effect on slope)

fit_arl_d_2 <- Im(r_gdp0 ~ lr_gdpl + D73 + Ir_gdp1_D73)
summary(fit_arl_d_2)

Coefficients:
Estimate Std. Error tvalue Pr(>|t|)
(Intercept)  0.009139 0.001939 4.712  3.75e-06 ***

Ir_gdp1 0.457011 0.090716 5.038  8.15¢-07 ***
D73 0.003499 0.002362 1.482 0.13947 = no significant effect on constant
Ir_gdpl1_D73 -0.316005 0.114197 -2.767 = significant effect of oil shock on slope.

Signif. codes: 0 “*** (0.001 “***0.01 **0.05 0.1 “* 1

Conclusion: After the oil shock the slope significantly changed from
0.457011 to 0.141006 (= 0.457011 + (-0.316005)).

41

Chow Test: Structural Change in Constant

Example (continuation): Suppose you suspect the dot.com bubble
only affected GE’s constant (create dummy) and decide to model it:
T <- length(ge_x)

x_break <- 342

dot_0 <- rep(0, x_break) # 0 up to Dec 2001
dot_1 <- rep(1, T - x_break) # 1 after Dec 2001
dot <- c(dot_0,dot_1) # Doc.com dummy

fit ge_dot <-Im(ge_x ~ Mkt_RF + SMB + HML + dot)
> summary(fit_ge_dot)
Cocfficients:

Estimate  Std. Error t value Pr(>|t])
(Intercept) -0.003273 0.002877 -1.138 0.25566
Mkt_RF  1.226412  0.050868 24.110 < 2e-16 ***

SMB -0.308411 0.075433 -4.089 4.97e-05 ***
HML 0.341709  0.075755 4.511 7.86e-06 ***
dot -0.013052 0.004502 -2.899 => significant effect on constant.
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Chow Test: Structural Change - Example

* But, we can try different breaking points, starting at T=85:

F-test at different Break Points

F-fest

o] 100 200 300 400

Break Point

Note: Recall that the Chow test is an F-test, we are testing a joint
hypothesis, all coefficients are subject to structural change.

Chow Test: Structural Change - Issues

* Issues with Chow tests
- The results are conditional on the breaking point —say, October 73
or Dec 2001.
- The breaking point is usually unknown. It needs to be estimated.
- It can deal only with one structural break —i.e., two categories!

- The number of breaks is also unknown.

- Heteroscedasticity —for example, structural breaks in the
variance- and unit roots (high persistence) complicate the test.

- In general, only asymptotic (consistent) results are available.
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Structural Change: Unknown Break

* For an unknown break date, Quandt (1958, 1960) proposed a
likelihood ratio test statistics, called Supremum (Max)-Test,

OLR, = max }Fr(r)

76 (T s T

The max (supremum) is taken over all potential breaks in (1., .0

For example, 7., = T*.15; 1, = T*.85).

Easy to calculate QLR with a do loop.

The assumptions that make the LR-statistic asymptotically ¥* do not
apply in this setting. (Quandt was aware of the problem, but did not
know how to derive the asymptotic null distribution of QLR..)

Problem: The (nuisance) parameter 1 is not identified under H; (no
structural break) = regularity conditions are violated!

Structural Change: Unknown Break

* Andrews (1993) showed that under appropriate regularity conditions,
the QLR statistic, also referred to as a SupLR statistic, has a nonstandard
limiting distribution:

Bi(r) By (r)

r(l1-r) )

d
OLRp ——>  sup .,

‘min >/ max ] (
where 0<r_. <r_ <1 and B () is a “Brownian Bridge’ process defined
on [0,1]. Percentiles of this distribution as functions of r__,r_. and £

are tabulated in Andrews (1993). (Critical values much larger than %)

Note: A Brownian bridge is a continuous-time stochastic process B(?)
whose probability distribution is the conditional probability distribution
of a Wiener process W) given the condition that B(0) = B(1) = 0. The
increments in a Brownian bridge are not independent.

Example: B(t) = W (%) — W (1) is a Brownian Bridge.
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Structural Change: Test with Unknown Break

Critical values of the QLR test Distribution, taken from Andrews
(1993). Note: p = # of parameters (k), n, = trimming value. (Ignore A.)
840 DONALD W. K. ANDREWS

TABLE
Asvmrromic Crimical VALUES

Critical value

p=1 p=2 p=3 p=4 p=5
L0 A W % 1% 10% 3% 1% 10% 5% 1% 10% % 1% 10% 5% 1% fortest for

S0 100 271 384 663 461 S99 921 625 781 1134 778 949 1328 924 1107 1509 k:2 .= 15
A9 108 347 473 782 542 686 1030 719 SE3 12358 893 1063 1464 1039 1228 1634 > )T .
E 117 37 510 826 580 731 1071 764 929 1305 942 1117 1517 1096 1288 1683 _

47 121 am 538 mes 612 767 101 788 962 1M ok e 159 n4e 2 v and o = .05.
A5 149 438 591 900 660 811 1177 850 1015 1423 1035 1227 1664 1205 1400 1

A0 225 510 657 982 745 902 1291 946 1117 1488 1139 1332 1766 1) 3

35 345 559 705 1053 806 967 1353 1006 1208 1571 1210 14 3 1593 1999

30 544 605 751 1091 857 1019 80 T4.79 1910 1458 1648 20.67
25 900 646 793 1148 910 1075 1534 1978 1517 1725 2139
20 1600 680 BA4S 1169 959 1126 1584 2024 1563 1788 2190

8 1850 .
A8 3211 747 885 1235 1001 1179 1551 1227 1415 1768 1431 - 164542071 1620 1835 2249
.0 BLOO 763 931 1269 1050 1227 1604 1281 1462 1828 1494 1698 2] 687 1893 233
05 36100 B.19 984 1301 1120 1293 1644 1347 1515 1906 1562 1756 21354 17 61 24.18

p=6 =T p=8 =9 p=10
wy A 0% 5% 1% 10% 5% 1% 10% 3% 1% 10% 3% 1% 10% 5% 1%

50 100 1064 1259 1681 1202 1407 1848 1336 1551 2009 1468 1692 2167 1599 1831 2321 Critical value
49 108 1181 174 1832 1327 1552 1993 1329 1563 2033 1617 1836 205 1733 1979 H@ o f

48 117 1242 1445 1902 1352 1614 2064 1389 1631 2114 1682 1925 2383 1808 2035 2575 1Of test for
A7 127 1290 1486 1964 1432 1663 2104 1443 1674 2172 1726 1974 2480 1867 2092 2643

A5 149 1353 1559 2045 1497 1738 2232 1505 1753 2228 1810 2059 2552 19% 7 2% k=4 1. = .15
40 225 1471 1691 2160 1623 1841 2135 1626 1873 2363 1956 2212 2686 2074 2315 2886 >0

s 345 1556 1775 2233 17.09 1934 2410 1706 1946 2464 2040 2293 2177 2187 2417 29.7% d — 05
30 544 1632 1846 2306 17.74 2001 2486 1790 2036 2564 2127 2365 2850 2273 2505 3074 ana o — . .
25 900 1700 1907 265 1838 2063 2511 1861 2095 2610 2193 2431 2921 23312 2580 AN

20 1600 1756 1964 2427 1904 2107 2572 197 2147 2676 2254 2491 2992 2400 2642 3198

A5 3211 1812 2026 2479 1969 2184 2623 1982 2213 2725 2315 2547 3052 u6 700 1B

10 8100 1878 2082 2521 2032 2251 2691 2045 2287 1769 2377 2616 31.15 2539 2787 3295

05 36100 19.49 2156 2596 2102 2322 2753 2123 2360 2877 2464 2694 3161 2624 2863 3386

Structural Change: Unknown Break - Example

Example: We search for breaking points for GDP growth rate in
AR(1) model. Below, we plot all F-tests starting at T*15:

GDP Growth - AR(1) Model: F-test at different Break Points

S,
& o
=
o
w
= & B
s -
g 8.
ril e
o
. &
= 7 &
@
el
°
<5, 3
- S, o
w & T
T T T T T
(o] 50 100 150 200
Break Point

* Maximum F is 22.08 occurs at t = Jan 2009 (observation 250). Then,
QLR =22.08 > 11.79 = Reject H;, at 5% level & break is not Oct 73!.
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Structural Change: Unknown Break - Example

Example: 3 Factor Fama-French Model for GE excess returns
Andrews’ (1993) test with Ty = 50 (T * .15), Typgy = 286 (T * .85)

QLR = 14.5936 at t = 433 (April 2008)

Critical value (k = 4, 1, = Typin/ T = (1- Typax/T) = 15, & 2=.05) = 16.45

=> cannot reject H,

F-test at different Break Points

Fest

* Q: Multiple breaks?

Structural Change: Unknown Break - Example

b <- solve(t(x)%0*% x)%*% t(x)%*%y #b=XX)-1X'y (OLS regression)
e <-y-x%*%b # regtession residuals, e
RSS_R <- as.numeric(t(e) %*%oe) #RSSR

T1 <- round(T*.15)
T2 <- round(T*.85)
All_F <- matrix(0,T2-T1,1)

t<-T1

while (t <="T2) {

y_1 <-y[1:T1]

x_ul <-x[1:T1)]

b_1 <- solve(t(x_ul)%*% x_ul)%*% t(x_ul)%*%y_1

el <-y_1-x_ul%*%b_1

RSS1 <- as.numeric(t(el)%o*%oel) #RSS 1

kk = t+1

y_2 <- y[kk:T]

x_u2 <- x[kk:T,

b_2 <- solve(t(x_u2)%*% x_u2)%*% t(x_u2)%*%y_2

€2 <-y_2-x_u2%*%b_2

RSS2 <- as.numeric(t(e2)%o*%oe2) #RSS2

F <- (RSS_R - (RSS1+RSS2)/k)/((RSS1+RSS2)/(T1-k))
Al_F = rbind(All_EF)

)

plot(All_F, col="red" ylab ="F-test", xlab ="Break Point")
title(""F-test at different Break Points")
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Forecasting and Prediction

“There are two kind of forecasters: those who don't know and those who don 't know they don't know”

John Kenneth Galbraith (1993)

* Objective: Forecast
* Distinction: Ex post vs. Ex ante forecasting
— Ex post: RHS data are observed
— Ex ante (true forecasting): RHS data must be forecasted

* Prediction and Forecast
Prediction: Explaining an outcome, which could be a future outcome.

Forecast: A particular prediction, focusing in a future outcome.

Example: Prediction: Given x’ = predict y°.

Forecast:  Given x{,; = predict y,,,.

Forecasting and Prediction

* Two types of predictions:

- In-sample (IS, prediction): The value of a future y (& X) is observed
by the sample. The expected value of y (in-sample), given the estimates
of the parameters, is what we called fitted values.

- Out-of-sample (OOS, forecasting): The value of a future y that is not
observed by the sample. The expected value of y (out-of-sample),
given the estimates of the parameters, is what we called forecast value.

Notation:

- Prediction for T made at T: Yr.

- Forecast for T + [ made at T: Y, ?T+Z|T, Y- (D,
where T'is the forecast origin and [ is the forecast hotizon.
Then,

Yr(1): Lstep abead forecast = Forecasted value Yr,; at time T.
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Forecasting and Prediction

* Any prediction or forecast needs an information set, I7. This includes
data, models and/or assumptions available at time T. The predictions
and forecasts will be conditional on I7.

For example, in-sample, I7 = {x"} to predict y".
Or in time seties, [T = {x%_lyx(%_z) v x(%_q} to predict Yr4;.

* Then, the forecast is just the conditional expectation of Yry;, given
the observed sample:

?T+l = E[Yry1| X1, Xr—1, -, X1]

Example: If X7 = Y7, then, the one-step ahead forecast is:
?T+1 = E[Yr41|Yr, Y71, ..., 1]

Forecasting and Prediction

* Keep in mind that the forecasts are a random variable. Technically
speaking, they can be fully characterized by a pdf.

* In general, it is difficult to get the pdf for the forecast. In practice, we
get a point estimate (the forecast) and a C.I.

* Q: What is a good forecast? We need metrics to evaluate the
forecasting performance of different models.

* In general, the evaluation of forecasts relies on MSE.
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Forecasting and Prediction: Variance-bias

* We start with general model (DGP):

(A1) DGP: y=/X,0) +e.

* Given x°, we predict y°, using the expectation: E[y | X, x| = Ax?, 6)
* We estimate E[y | X, x%] with Y0 = fx9, 0).

* The realization y" is just: y° = fx9, 6) + €°

* With y observed, we compute the prediction error: $°— y° and its
associated expected squared error, which can be written as:

B[(§°=y")?] = Var[§°] + [Bias(¥")]* + Varlg]

* We want to minimize this squared error. Note that there is nothing a
forecaster can do regarding the last term, called the zrveducible error.

Forecasting and Prediction: Variance-bias

* Since there is nothing to do regarding the irreducible error, all efforts
are devoted to minimize the sum of a variance and a squared bias. This
creates the variance-bias trade-off in forecasting.

e It is possible that biased forecast can produce a lower MSE than an
unbiased one. In this lecture, we based our forecasts on OLS
estimates, which under the CLM assumptions, produce unbiased
forecast.

Note: The variance-bias trade-off is always present in forecasting. In
general, more flexible models have less bias and more variance. The
key is to pick an “optimal” mix of both.
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Prediction Intervals: Point Estimate
* Prediction: Given x" = predict y°.

* Given the CLM, we have:

Expectation: E[y|X, x% = B'x%
Predictor: y' = bx"
Realization: YO =p'x0 + ¢’

Note: The predictor includes an estimate of €:
¥y’ = b’x" + estimate of €". (Estimate of €"=0, but with variance.)

* Associated with the prediction (a point estimate), there is a forecast
error, e?:

el = yo_yo =b'x0_ BlXO_ g0 = (b—B)'XO— g0
= Var|(" - ¥°) [x] = E[3" —¥")' 0" - ¥) |x’]

Var[e? |x] = x% Var[(b — B) |x?] x* + &2

Prediction Intervals: Point Estimate

Example: We have already estimated the 3 Factor Fama-French
Model for IBM returns:

Estimate  Std. Error tvalue Pr(>|t|)
(Intercept) -0.005089  0.002488 -2.046 0.0412 *
Mkt RF 0908299  0.056722 16.013 <2e-16 ***
SMB -0.212460  0.084112 -2.526 0.0118 *
HML -0.171500  0.084682 -2.025 0.0433 *

Suppose we are given x” = [1.0000 -0.0189 -0.0142 -0.0027]
Then,
§° = -0.005089 + 0.908299 * (-0.0189) -0.212460 * -0.0142 -
- 0.171500 * (-0.0027) = -0.01877582

Suppose we observe y? = 0.1555214. Then, the forecast error is
§0 — 30 = -0.01877582 - 0.1555214 = -0.1742973
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Prediction Intervals: Point Estimate
Example: In R:

> x_0 <- rbind(1.0000, -0.0189, -0.0142, -0.0027)
>y_0<-0.1555214
> y_{0 <- t(b)%*% x_00
> y_fo
L1
[1,] -0.01877582
>ef 0<-y_fO-y_00
>ef O
1]
[1,] -0.1742973

Prediction Intervals: C.I.

* How do we estimate the uncertainty behind the forecast? Form a (1-
a)% confidence interval, as usual:

[0t trgia * sqrt(Var[e])]

Two cases:
(1) If x" is given —i.e., constants. Then,
Var[§? — y°|x°] = x” Var[b |x’] x" + &2

= Form C.I. as usual.

Note: In OOS forecasting, x? is unknown, it has to be estimated.

(2) If x" has to be estimated, then we use a random variable. What is
the variance of the product? One possibility: Use a bootstrap to form
a C.L
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Prediction Intervals: C.I. and Forecast Variance

* Assuming x" is known, the variance of the forecast error is
o2 + x” Var[b |x"x" = 62 + o2 [x¥ X’X) x|
If the model contains a constant term, this is

K-1K-1

1 .
Var[e?] = o2 |1 ot () — x)(xp — %) (Z'MOZ)J*

=1

x

j=1

(where Z is X without x,=i). In terms squares and cross products of
deviations from means.

Note: Large 62, small 7, and large deviations from the means, decrease
the precision of the forecasting error.

Interpretation: Forecast variance is smallest in the middle of our
“experience” and increases as we move outside it.

Prediction Intervals: C.I. and Forecast Variance

* Then, the (1 — )% C.L is given by: [§° & tr 1,5 * sqrt(Var[e®])]

* As x" moves away from , the C.I increases, this is known as the

“butterfly effect.”

-
I
I
I
I
I
I
I
I
I
I
I
I
x

FIGURE 6.1 Prediction Intervals.
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Prediction Intervals

Example (continuation): We want to calculate the variance of the
forecast etror: for thee given x” = [1.0000 -0.0189 -0.0142 -0.0027]
Recall we got 70 = b’x" = -0.01877587

Then,
Estimated Var[§? — y°|x%] = x" Var[b |x%] x" + & = 0.003429632

> var_ef_0 <- t(x_0)%*% Var_b%*% x_0 + Sigma2
> var_ef_0
[-1]
[1,] 0.003429632
> sqrt(var_ef_0)
[-1]
[1,] 0.05856306

Check: What is the forecast error if x” = colMeans(x)?

Prediction Intervals

Example (continuation):

># (1-alpha)% C.I. for prediction (alpha = .05)
> CI_lb <-y_f0 —1.96 * sqrt(var_ef_0)

> CI_Ib

>[1] -0.1335594

> CI_ub <-y_f0 + 1.96 * sqrt(var_ef_0)

>CI_ub

>[1] 0.09600778

That is, CI for prediction: [-0.13356; 0.09601] with 95% confidence.
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Forecasting and Prediction: Model Validation

* Model validation refers to establishing the statistical adequacy of the
assumptions behind the model —i.e., (A1)-(A5) in this lecture.
Predictive power or forecast accuracy can be used to do model
validation.

* In the context of prediction and forecasting, model validation is done
by fitting a model in-sample, but keeping a small part of the sample,
the hold-out-sample, to check the accuracy of OOS forecasts.

* Hold out sample: We estimate the model using only a part of the
sample (say, up to time T,). The rest of the observations, the hold out
sample, (T - T, observations) are used to check the predictive power of
the model —i.e., the accuracy of predictions, by comparing §" with
actual y'.

Forecasting and Prediction: Model Validation

. Validation
Forecasting
Forecasts
1.2000
1.0000
@ 0.8000 \,\//
2 06000 Out-of-
o
2 04000 lEample
0.2000 L . orecasts
00000 L_Srresseassasssasnans Estimation Period ....cceeaeviunens [ PR [ >
D OO O v v AN AN MO M S TN 0O O NN 0000 o o
D OO OO OO0 0 00 00000 0 0 O OO0 O O O O v« v«
i
R EREE R E R E R R E R E R R R

Steps to measure forecast accuracy:

1) Select a (long) part of the sample (estimation period) to estimate the
parameters of the model. (Get in-sample forecasts, ¥.)

2) Keep a (short) part of the sample to check the model’s forecasting
skills. This is the validation step. You can calculate true MSE or MAE

3) If happy with Step 2), proceed to do out-of-sample forecasts.
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Forecasting and Prediction: Model Validation

Details:

1) Estimation period. Use the first T, observations to estimate the
parameters of the model. This step produces in-sample forecasts, J. In-
sample evaluation of model is usually performed here.

2) Validation period. Use (T - T)) observations to check the model’s
forecasting skills. Given estimates in (1) , get OSS §, but since y* is
known, calculate true MSE or MAE. For example:

1 (T-Ty)

— ~0 0
MSE = -1 i:(T1+1)(Yi _yi)z

Note: It is common to set (T - T}) close to 10% of sample.

3) True OOS forecast period. Produce OSS ¥, but since y’ is not
known now, it will take time to evaluate the true OOS forecasts.

Forecasting and Prediction: Model Validation

Note: In the Machine Learning literature, the terminology used for
model validation is slightly different.

Step 1 is called “#raining)’ the data used (say, first T, observations) are
called #raining data/set. In this step, we estimate the parameters of the
model, subject to the assumptions, for example, (Al)-(A4).

Step 2 has the same name, the validation step. This step is used to “fune
(hyper-)parameters.” In our CLM, we can “tune” the model for departures
of (Al)-(A4), for example, by including more variables (Al) and re-
estimating the model accordingly using the “training data” alone. We
choose the model with lower MSE or MAE

Remark: The idea of this step is to simulate out-of-sample accuracy.

But, the “tuned” parameters selected in Step 2 are fed back to Step 1.

Step 3 fests the true out-of-sample forecast accuracy of model selected
by Step 1 & Step 2. This last part of the sample is called “esting sample.”
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Forecasting and Prediction: Cross Validation

* Step 2 is used as a testing ground of the model before performing
OOS forecasting. There are many ways to approach the validation step.

* Instead of a single split, split the data in K parts. This is called K-fo/d
cross-validation. For j = 1, 2, ..., K, use all folds but fold J to estimate
model; use fold j to check model’s forecasting skills by computing MSE,
MSE;. The K-fold CV estimate is an average of each fold MSEs:

—1vk
CVy = 2 =1 MSE;
Usual choices for K are 5 & 10. (These are arbitrary choices.)

Random and non-random splits of data can be used. The non-random
splits are used for some special cases, such as qualitative data, to make
sure the splits are “representative.”

Forecasting and Prediction: Cross Validation

* Use a single observation for validation. This is called lave-one-out cross-
validation (ILOOCYV). A special case of K-fold cross-validation with K = T.
That is, use (T - 1) observations for estimation, and, then, use the
observation left out, { = 1, ..., T, to compute MSE_;), which is just
=iy — yi)?, where J(=iy is the prediction for observation i based on
the full sample but observation i. Then, compute:

1
CVn = ;Z?zl MSE(_I)

* Instead of just one, it is possible to leave p observations for validation.

This is called leave-p-out cross-validation (LpOCV).

Remark: In time series, since the order of the data matters, cross
validation is more complicated. In general, rolling windows are used.

35



RS - Econometrics I - Lecture 5

Forecasting and Prediction: Cross Validation

Example: We do cross-validation on the 5-Factor Fama-French Model

for IBM returns with K=5:

y <-ibm_x

#H#H##H CV: Cross-Validation K-fold Code Function #H#####

CV<- function(dats, n.folds) {

folds <- list() # flexible object for storing folds

fold.size <- nrow(dats)/n.folds

remain <- l:nrow(dats) # all obs are in

for (i in 1:n.folds){

select <- sample(remain, fold.size, replace = FALSE)

# randomly sample fold_size from remaining obs)

folds[[i]] <- select # store indices (write a special statement for last fold if ‘leftover points’)

if (i == n.folds){
folds|[[i]] <- remain

}

remain <- setdiff(remain, select) # update remaining indices to reflect what was taken out

remain

}

Forecasting and Prediction: Cross Validation

Example (continuation):

results <- matrix(0,1,n.folds)

for (i in 1:n.folds){
# fold i
indis <- folds][[i]]
estim <- dats[-indis, ]

test <- datsindis, |

Im.model <- Im(y[-indis] ~ ., data = estim)
pred <- predict(lm.model, newdata = test)
MSE <- mean((y[indis| - pred)"2)
results[[i]]<- MSE

}

return(results)

}

CV_ff_5 <- CV(ff_step_data, 5)
> mean(CV_ff_5)
[1] 0.003532592

# unpack into a vector

#split into estimation (train) & validation (test) sets

# OLS with estimation data
# predicted values for fold not used
# MSE (any other evaluation measure can be used)

# Accumulate MSE in vector
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Evaluation of Forecasts: Measures and Tests

* We want to evaluate the forecast accuracy of a model:
- For individual (in-sample and out-of-sample) observations.

- For a group of (in-sample and out-of-sample) observations.

* Since squared loss functions are easy to work with, the traditional in-
sample model evaluation has been based on MSE or R% For example,

1 ~
MSE =23, (9 — yi)?

* Problem: In sample, models tend to overfit. The usual solution is to
include penalties for model complexity, say, higher k. For example, use
AIC or Adjusted R? to judge a model.

¢ Another solution is to use cross-validation.

Evaluation of Forecasts: Measures and Tests
* For OOS forecast, there are many measures, but it is common to

adapt the traditional measures, MSE or MAE. For example, with m
out of sample forecasts:

1 «T+m s~ 2 _ 15vT+m 2
MSE = —Yizr+1(Vi —=¥)™ = - Xi=rt1 €

Note: Always keep in mind that all measures to evaluate forecasts are
RV. We need a test to do any statistical comparison of measures.
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Evaluation of Forecasts: Measures of Accuracy
¢ Popular measures of OOS forecast accuracy, after 7 forecasts:
1$T+m

Mean Absolute Error (MAE) = % T:ﬁl Vi —vi| = —Di=T+1 le; ]

Mean Squatred Error (MSE) = % {:ﬁl(ﬁl —y)? = % T;ﬁl e;?

Root Mean Square Error (RMSE) = [—YT4, ¢;2
_lyT+m (VizVi
Mean Absolute Percentage Error (MAPE) = mzi:T == 100|
1 T+m 5 ‘
/7 e,
1> e m i:ZT:H
Theil’s U statistics: Us=-———e
/ 1 2
F; Vi

Evaluation of forecasts: Measures of Accuracy

* Theil’s U statistics has the interpretation of an R? But, it is not
restricted to be smaller than 1.

* An OOS R? can be computed as:

MSE4

2 — - a
ROOS =1- MSEy
with  MSE, = ZtQ=1(yt+‘r - yt+r)2

MSEy = ZtQ=1(Yt+‘r - yt)z
where T is the forecasting horizon. (See Goyal and Welch (2008) for a
well-known finance application.)

* We can also use cross-validation measures that use the whole (or
almost all the) sample to evaluate forecasting performance.
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Evaluation of forecasts: Measures of Accuracy

Example: We want to check the forecast accuracy of the 3 FI Factor
Model for IBM returns. We estimate the model using only 1973 to
2017 data (T=539), leaving 2018-2020 (30 observations) for validation
of predictions.
>T0 <-1
>T1 <-539
> T2 <-T1+1
>yl <-y[TOT1]
> x1 <-x[T0:T1,]
> fi2 <- Im(yl~ x1-1)
> summary(fit2)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
x1 -0.003848 0.002571 -1.497 0.13510
x1Mkt_RF0.865579 0.059386 14.575 < 2e-16 ***
xISMB  -0.224914 0.085505 -2.630 0.00877 **
xIHML  -0.230838 0.090251 -2.558 0.01081 *

Evaluation of forecasts: Measures of Accuracy

Example (continuation): We condition on the observed data from
2018: Jan to 2020: Jun.

>x_0 <-x[T2:T)]

> y_0 <- y[12:1]

> y_{0 <- x_0%*% b1

>ef 0<-y_f0-y_0

> mes_ef_0 <- sum(ef_0"2)/nrow(x_0)

> mes_ef 0

[1] 0.003703207

> mae_ef_0 <- sum(abs(ef_0))/nrow(x_0)
> mae_ef 0

[1] 0.04518326

That is, MSE = 0.003703207
MAE = 0.04518326
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Evaluation of forecasts: Measures of Accuracy

Example (continuation): Plot of actual IBM returns and forecasts.

plot(y_f0, type="1", col="red", main = "IBM: Actual vs. Forecast (2018-2020)",
xlab = "Obs", ylab = "Forecast")

lines(y_0, type = "I", col = "blue")

legend("topleft", legend = c("Actual", "Forecast"), col = c("blue", "red"), lty = 1)

IBnM: Actual vws. Forecast (2018-2020)

— —  Actual
= — —— Forecast

Forecast

Evaluation of forecasts: Testing Accuracy

* We have measures of accuracy, which are RV, a function of the data.
Given usual sampling variation, per se, measures are difficult to
compare.

Q: We have two models, how do we know one forecast significantly
better than the other? We need a test for this.
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Evaluation of forecasts: Testing Accuracy

* Suppose two competing forecasting procedures produce a vector of
errors: e & e Then, if expected MSE is the criterion used, the
procedure with the lower MSE will be judged superior.

* We want to test H,: MSE(1) = MSE(2)
H,: MSE(1) # MSE(2).

Assumptions: forecast errors are unbiased, normal, and uncorrelated.
If forecasts are unbiased, then MSE = Variance.

* Consider, the pair of RVs: e® +e®@) & (e — () Now,

E[(e® +e@)(e® — e®)] = o7 — o7

* That is, we test H, by testing that the two RVs are not correlated!
Under H,,  E[(e® +e®@)(e® —e®@)] =0.

Evaluation of forecasts: Testing Accuracy

* Under H,, (e(l) + e(z)) & (e — e@) are not correlated. This
idea is due to Morgan, Granger and Newbold (MGN, 1977).

* There is a simpler way to do the MGN test. Steps:

1. Define e & e(z)’ where e is the error with the higher MSE. Let
Zy = e +e@ — eM: the error with the higher MSE.
X = e _ (2

2. Do a regression:  Z; = B x; + &

3. Test Hi:B=0 => a simple #est.

The MGN test statistic is exactly the same as that for testing H: § = 0.
This is the approach taken by Harvey, Leybourne and Newbold (1997).

* Non-parametric: Spearman’s rank test for zero Xy & Z; correlation.
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Evaluation of forecasts: Testing Accuracy

Example: We produce IBM returns one-step-ahead forecasts for
2018-2020 using the 3 FF Factor Model for IBM returns:
(IBMRet - rf)t = BO + Bl (MktRet - rf)t + BZ SMBt + Bfﬁ HMLt + &

Taking expectations at time #+7, conditioning on time 7 information
set, Iy ={(Mktg,, — 1), SMB,, HML. }

E[(IBMg,, — 7)1 [ Ie] = By + By E[Mkty,, — 7)1 [ Ie ] +
+ B, E[SMB, [I¢] + B E[HML,,, | I ]

In order to produce forecast, we will make a naive assumption: The
best forecast for the FF factors is the previous observation. Then,

E[(IBMg, = 17) 1 [ 1] = Bo + By Mktg,, — Te) + B,SMB, + 3; HML,.

Now, replacing the B by the estimated b, we have our one-step-ahead

fovecacic

Evaluation of forecasts: Testing Accuracy

Example: We compare the forecast accuracy relative to a random walk
model for IBM returns. That is,

E[IBMge, = 77) i1 [ 1e] = (IBMg,, —75),

Using R, we create the forecasting errors for both models and MSE:

>x 01 <- x[T1:(T-1),]

> y_0 <-y[T2T]

>y_f0 <- x_01%*% bl

>ef 0<-y_f0-y_0 # e

> mes_ef_0 <- sum(ef_0"2)/nrow(x_0)

> mes_ef_0 # MSE(2)

[1] 0.01106811

> ef_rw_0 <-y[T1:(T-1)] - y_0 #e

> mse_ef_rw_0 <- sum(ef_rw_0"2)/nrow(x_0)

> mse_ef_rw_0 #MSE(1) <= (1) is the higher MSE.

[1] 0.02031009
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Evaluation of forecasts: Testing Accuracy

Example: Now, we create z; = e +e@ & Xy = e — @),
Then, regress:  Zy = B X¢ + & and test Hy: B = 0.

>z mgn <-ef_rw_0+ef 0
>x_mgn <-ef rw_0-ef 0

> fit_mgn <- Im(z_mgn ~ x_mgn)
> summary(fit_mgn)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.05688 0.03512 1.619 0.117
x_mgn 277770 0.58332 4.762 5.32e-05 ***

Conclusion: We reject that both MSE are equal = MSE of RW is higher.

Evaluation of forecasts: Testing Accuracy — DM
* If the assumptions are violated, these tests have problems.

* In practice, these tests are only applied to one-step predictions and
the MSE is the loss function.

* Diebold and Mariano (DM, 1995) generalized the MGN approach to
any loss function, g(.), and can be applied to forecast errors that are
biased, non-normal and correlated.

¢ The test is based on the loss differential between two forecasts:
d, = gle™) —gle®)

* Then, we test the null hypotheses of equal predictive accuracy:
Hy: Eld¢] =0
Hli E[dt] = % ;ﬁ O
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Evaluation of forecasts: Testing Accuracy — DM

* Then, we test the null hypotheses of equal predictive accuracy:
Hy: Eld¢] =0
H;: E[d¢] = # 0.

- Diebold and Matiano (1995) assume {eM} & {e@)} is covariance
stationarity and other regularity conditions (finite Var[d ],
independence of forecasts after £ periods) needed to apply CLT.
Then,

- T+m
d—u d -1
s N(O0,1), d=— Z d;
Var|d]/T m. &4
* Then, under H,, the DM test is a simple g-zesz:
d d
DM = N(0,1)

VVar[d]/T

Evaluation of forecasts: Testing Accuracy — DM

where Var[d] is a consistent estimator of the vatiance, usually based
on sample autocovariances of dy:

Par(d] =v(0)+2 ) ()
i=k

* There are some suggestion to calculate small sample modification of
the DM test. For example, :
DM*=DM/{[T+1-2€+ L& -1)/T)/T}"? ~ t.,.

where £-step ahead forecast. If ARCH is suspected, replace £ with
[0.5 V(D] + .

Note: If {eM} & {e@} are petfectly correlated, the numerator and
denominator of the DM test are both converging to 0 as T — co.
= Avoid DM test when this situation is suspected (say, two
nested models.) Though, in small samples, it is OK.
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Evaluation of forecasts: Testing Accuracy — DM

Example: Code in R

dm.test <- function (el, €2, h = 1, power = 2) {

d <- c(abs(el))"power - c(abs(e2))"power
d.cov <- acf(d, na.action = na.omit, lagmax = h - 1, type = "covariance", plot = FALSE)$acf], , 1]
d.var <- sum(c(d.cov[1], 2 * d.cov[-1]))/length(d)

dv <- d.var #max(le-8,d.var)
if(dv > 0)

STATISTIC <- mean(d, na.rm = TRUE) / sqrt(dv)
else if(h==1)

stop("'Variance of DM statistic is zero")

else

{

warning("Vatiance is negative, using horizon h=1")
return(dm.test(el,e2,alternative,h=1,power))
}
n <- length(d)
k<-(m+1-2*%h+ (h/n)* (h-1))/0)"(1/2)
STATISTIC <- STATISTIC * k
names(STATISTIC) <- "DM"

Out-of-sample predictions and prediction
errors: Chow Test Revisited (Greene)

¢ Variation of the Chow test: Chow Predictive Test

* When there is not enough data to do the regression on both sub-
samples, we can use an alternative formulation of the Chow test.

(1) We estimate the regression over a (long) sub-period, with T
observations —say 3/4 of the sample. Keep RSS,;.

(2) We estimate the regression for the whole sample (restricted
regression). Keep RSS;.

(3) Run an F-test, where the numerator represents a “predicted” RSS
for the T, (=T - T)) left out observations.

o (RSSg—RSS)/T, _
RSS, (T, — k) Bon-k
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Out-of-sample predictions and prediction
errors: Chow Test Revisited

Example: 3 Factor Fama-French Model for IBM (continuation)
We have T = 336 observations. We set T} = 252 & T, = 86. Then,
RSS,;, = 8.063611.

RSS5;, = 12.92964.

= Fpp = (12.92964 — 8.063611)/86 = 2.329618
8.063611 /(336-4)

Since Fgg 335 g5 = 1.308807 < Fp; = reject H,) (constant parameters).
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