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Lecture 4
Testing in the Classical Linear 

Model

• In general, there are two kinds of hypotheses: 

(1) About the form of the probability distribution 

Example: Is the random variable normally distributed?

(2) About the parameters of a distribution function 

Example: Is the mean of a distribution equal to 0?

• The second class is the traditional material of econometrics. We may 
test whether the effect of income on consumption is greater than one, 
or whether there is a size effect on the CAPM –i.e., the size coefficient 
on a CAPM regression is equal to zero. 

Hypothesis Testing: Brief  Review

2



RS - Econometrics 1 - Lecture 4

2

• Some history: 

- The modern theory of testing hypotheses begins with the Student’s t-
test in 1908.

- Fisher (1925) expands the applicability of the t-test (to the two-sample 
problem and the testing of regression coefficients). He generalizes it to 
an ANOVA setting. He pushes the 5% as the standard significance 
level.

- Neyman and Pearson (1928, 1933) consider the question: why these 
tests and not others? Or, alternatively, what is an optimal test? N&P’s 
propose a testing procedure as an answer: the “best test” is the one that 
minimizes the probability of false acceptance (Type II Error) subject to 
a bound on the probability of false rejection (Type I Error).

- Fisher’s and N&P’s testing approaches can produce different results.

Hypothesis Testing: Brief  Review

3

•  We compare two competing hypothesis:

1) The null hypothesis, H0, is the maintained hypothesis.

2) The alternative hypothesis, H1, which we consider if H0 is rejected.

• There are two types of hypothesis regarding parameters:

(1) A simple hypothesis.  Under this scenario, we test the value of a 
parameter against a single alternative. 

Example: H0:0 against H1:

(2) A composite hypothesis. Under this scenario, we test whether the 
effect of income on consumption is greater than one.  Implicit in this 
test is several alternative values. 

Example: H0:0 against H1:

Hypothesis Testing: Brief  Review

4
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• We compare two competing hypothesis: H0 vs. H1.

• Suppose the two hypothesis partition the universe: H1 = Not H0. 

• Then, we collect a sample of data X = {𝑋ଵ, 𝑋ଶ, …, 𝑋ே} and device a 
decision rule, based on a statistic T(X):

T(X) ∈ R  Reject H0 (& we learn H0! is not true).

T(X) ∉ R  Fail to reject H0. (No learning.)

The set R is called the region of rejection or the critical region of the test. We 
only, we only learn when T(X) falls in this region –i.e., rejecting H0:

“There are two possible outcomes: if the result confirms the 
hypothesis, then you've made a measurement. If the result is contrary to 
the hypothesis, then you've made a discovery.” Enrico Fermi (Italy)

Hypothesis Testing: Brief  Review
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• In this context, Fisher popularized a testing procedure known as 
significance testing. It relies on the p-value:

p-value is the probability of observing a result at least as extreme as the 
test statistic, under H0. 

Example: Suppose T(X) ~ 𝜒ଶ
ଶ. We compute  T(X)෣ = 7.378. Then, 

p-value(T(X)෣ = 7.378) =  1 – Prob[T(X) < 7.378] = 0.025

Hypothesis Testing: Brief  Review - Fisher

67.378

p-value = 2.5%
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• Fisher’s Idea. 

Steps for testing 

1. Form H0 and set a significance level, α.

2.a Collect a sample of data X = {𝑋ଵ, 𝑋ଶ, …, 𝑋ே}.

2.b Compute the test-statistics T(X) used to test H0. 

3. Report the p-value -i.e., the probability, of observing a result at least as 
extreme as the test statistic, under H0. 

4. Decision rule: 

If the p-value < α  result is significant & H0 is rejected. 

If the p-value > α  result is “not significant.” No conclusions 
are reached. Gather more data/modify model.

Note: By setting  α, we determine R.

Hypothesis Testing: Brief  Review - Fisher
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Example: From the U.S. Jury System

1. Identify H0 & set a significance level (α% = P[R|H0]) 

H0: The defendant is not guilty

H1: The defendant is guilty

Significance level α = “beyond reasonable doubt,” presumably small level.

2. After judge instructions, each juror forms an “innocent index” T(𝑋)i.

3. Through deliberations, jury reaches a conclusion T(𝑋) =∑ T(𝑋)i
ଵଶ
௜ୀଵ .

4. Rule: If p-value of T(𝑋) < α  Reject H0. That is, guilty!

If p-value of T(𝑋) > α  Fail to reject H0. That is, non-guilty.

Alternatively, we build a rejection region around H0.

Note: Mistakes are made. We want to quantify these mistakes.

Hypothesis Testing: Steps
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Example: We want to test if  the mean of  IBM annual returns, μIBM, is 
10%.  

1. H0: μIBM = 10% &  set α = .05.

2a. Get a sample: {𝑋ଵଽ଺ଶ, 𝑋ଵଽ଺ଷ, …, 𝑋ேୀଶ଴ଶଷ}, with N=63.

2b. We use T(X) = 𝑋ത, which is unbiased, consistent, and, assuming X is 
normally distributed, we know its distribution, 𝑋ത ~ N(μ, σ2/N).

3. Compute 𝑋ത=0.06 &  p-value(𝑋ത=0.06) = .005.

4. Decision Rule: p-value < α  result is significant & H0 is rejected. 

Hypothesis Testing: Steps

Instead of  using a p-value, it is common to use a rejection region, R:

T(X) = 𝑋ത ∉ ሾTLB, TUB]  Reject H0: μIBM = 10%. 

Example (continuation): That is, 

R = ሾ𝑋ത ൏ TLB , TUB ൐ 𝑋ത]

10

TLB TUB

• The blue area is the significance level, α.

Hypothesis Testing
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• Under Fisher’s testing procedure, declaring a result significant is 
subjective. Fisher pushed for a 5% (exogenous) significance level; but 
practical experience may play a role.

• Neyman and Pearson devised a different procedure, hypothesis testing, 
as a more objective alternative to Fisher's p-value.  

Neyman’s and Pearson’s idea: 

Consider two simple hypotheses (both with distributions). Calculate 
two probabilities and select the hypothesis associated with the higher 
probability (the hypothesis more likely to have generated the sample). 

• Based on cost-benefit considerations, hypothesis testing determines 
the (fixed) rejection regions.

Hypothesis Testing: Brief  Review – N&P

11

• The N&P’s method always selects a hypothesis. 

• There was a big debate between Fisher and N&P. In particular, Fisher 
believed that rigid rejection areas were not practical in science.

• Philosophical issues, like the difference between “inductive inference” 
(Fisher) and “inductive behavior” (N&P), clouded the debate.

• The dispute is unresolved. In practice, a hybrid of significance testing 
and hypothesis testing is used. Statisticians like the abstraction and 
elegance of the N&P’s approach.

• Bayesian statistics using a different approach also assign probabilities 
to the various hypotheses considered. 

Hypothesis Testing: Brief  Review – Summary 

12
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Definition: Type I and Type II errors

A Type I error is the error of rejecting H0 when it is true.  A Type II error
is the error of “accepting” H0 when it is false (that is when H1 is true). 

• Notation: Probability of Type I error:  = P[X  R|H0]

Probability of Type II error:  = P[X  RC|H1]

Definition: Power of the test

The probability of rejecting H0 based on a test procedure is called the 
power of the test. It is a function of the value of the parameters tested, θ:

 (θ) = P[X  R].

Note: when θ  H1 ⟹ (θ) = 1 – (θ) -the usual application.

Type I and Type II Errors

13

• We want (θ) to be near 0 for θH0, and (θ) to be near 1 for θH1.

Definition: Level of significance

When θ  H0, (θ) gives you the probability of Type I error. This 
probability depends on θ. The maximum value of this when θ  H0 is 
called level of significance of a test, denoted by α. Thus,

α = supθ  H0 P[X  R|H0] = supθ  H0 (θ)

Define a level  test to be a test with supθ  H0 (θ) ≤ α.

Sometimes,  = P[X  R|H0] is called the size of a test.

Practical Note: Usually, the distribution of T(X) is known only 
approximately. In this case, we need to distinguish between the nominal
and the actual rejection probability (empirical size). They may differ greatly

Type I and Type II Errors

14
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Need to control both types of  error:

α  = P(rejecting H0|H0) <= Reject H0 by “accident” or 
luck (a false positive). 

β = P(not rejecting H0|H1) <= 1 – β = Power of  test (under 
H1). 

State of  World

Decision H0 true H1 true (H0 false)

Cannot reject H0 Correct decision Type II error

Reject H0 Type I error Correct decision

Type I and Type II Errors

Learning

15
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Type I and Type II Errors

β = Type II error α = Type I error

 = 1 – β = Power of  test (under H1)Note: Trade-off  α & β. 16



RS - Econometrics 1 - Lecture 4

9

• We conduct a 1,000 studies of  some hypothesis (say, H0: μ=0)
- Assume the proportion of  false H0 is 10% (100 false cases).
- Use standard 5% significance level (45 rejections under H0).
- Power 50% (50% correct rejections)

State of  World

Decision Ho true H1 true (Ho false)

Cannot reject Ho 855 50 (Type II error)

Reject Ho 45 (Type I error) 50

900 100

Type I and Type II Errors - Example

Note: Of  the 95 studies which result in a “statistically significant” (i.e., 
p<0.05) result, 45 (47.4%) are true H0 and so are “false positives.”17

• Now, with same proportion of  false H0 (10%) and same α = 5%,
assume the power is 80% (80% correct rejections of  H0).

State of  World

Decision Ho true H1 true (Ho false)

Cannot reject Ho 855 20 (Type II error)

Reject Ho 45 (Type I error) 80

900 100

Type I and Type II Errors: Example

Now, of  the 125 studies which result in a “statistically significant” (i.e., 
p<0.05) result, 45 (36%) are true H0 and so are “false positives.”

18
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• Now, assume the power is 80% (80% correct rejections) and same α
= 5%, but the proportions of  false H0 is 50% (500 false cases). 

State of  World

Decision Ho true H1 true (Ho false)

Cannot reject Ho 475 100 (Type II error)

Reject Ho 25 (Type I error) 400

500 500

Type I and Type II Errors - Example

Now, of  the 425 studies which result in a “statistically significant” (i.e., 
p<0.05) result, 25 (5.88%) are true H0 and so are “false positives.”

Conclusion: The proportion of  false positives depends on percentage 
of  false H0 and the power of  test. Higher power, lower proportion.

19

Type I and Type II Errors - Example

• For a given α (P), higher power, lower % of  false-positives –i.e., more 
true learning.

20
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Definition: More Powerful Test

Let () and () be the characteristics of two tests.  The first 
test is more powerful (better) than the second test if ≤ , and ≤ 
with a strict inequality holding for at least one point.

Note: If we cannot determine that one test is better by the definition, 
we could consider the relative cost of each type of error.  Classical 
statisticians typically do not consider the relative cost of the two errors 
because of the subjective nature of this comparison.

Bayesian statisticians compare the relative cost of the two errors using a 
loss function.

More Powerful Test

21

Definition: Most powerful test of size 
R is the most powerful test of size  if (R)= and for any test R1 of size 
, (R) ≤ (R1).

Definition: Most powerful test of level 
R is the most powerful test of level  (that is, such that (R) ≤  and for 
any test R1 of level (that is, (R1) ≤ ), if (R) ≤ (R1).

Most Powerful Test

22



RS - Econometrics 1 - Lecture 4

12

Definition: Uniformly most powerful (UMP) test

R is the uniformly most powerful test of level  (that is, such that (R) ≤ ) 
and for every test R1 of level (that is, (R1) ≤ ), if (R) ൒ (R1).

For every test: for alternative values of in H1:

•  Choosing between admissible test statistics in the () plane is 
similar to the choice of a consumer choosing a consumption point in 
utility theory.  Similarly, the tradeoff problem between and  can be 
characterized as a ratio. 

• This idea is the basis of the Neyman-Pearson Lemma to construct a test 
of a hypothesis about θ: H0:0 against H1:

UMP Test

23

• Neyman-Pearson Lemma provides a procedure for selecting the best 
test of a simple hypothesis about θ: H0:0 against H1:

• Let L(x|θ) be the joint density function of X. We determine R based 
on the ratio L(x|θ1)/L(x|θ0). (This ratio is called the likelihood ratio.) 
The bigger this ratio, the more likely the rejection of H0. 

• That is, the Neyman-Pearson lemma of hypothesis testing provides  
a good criterion for the selection of hypotheses: The ratio of their 
probabilities. 

Neyman-Pearson Lemma

24
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• Consider testing a simple hypothesis H0:  = 0 vs. H1:  = 1, where 
the pdf corresponding to i is L(x|i), i=0,1, using a test with rejection 
region R that satisfies

(1) x R if  L(x|1) > k L(x|0) 

x Rc if  L(x|1) < k L(x|0), 

for some k  0, and

(2) α = P[X  R|H0]

Then,

(a) Any test that satisfies (1) and (2) is a UMP level  test.

(b) If there exists a test satisfying (1) and (2) with k > 0, then every 
UMP level  test satisfies (2) and every UMP level  test satisfies (1) 
except perhaps on a set A satisfying P[XA|H0] = P[XA|H1] = 0.

Neyman-Pearson Lemma

25

• In general, we have no basis to pick 1. We need a procedure to test 
composite hypothesis, preferably with a UMP. 

Definition: Monotone Likelihood Ratio

The model f(X,θ) has the monotone likelihood ratio property in u(X) if there 
exists a real valued function u(X) such that the likelihood ratio 

λ= L(x|θ1)/L(x|θ0) is a non-decreasing function of u(X) for each 
choice of θ1 and θ0, with θ1>θ0.

If L(x|θ1) satisfies the MLRP with respect to L(x|θ0) the higher the 
observed value u(X), the more likely it was drawn from distribution 
L(x|θ1) rather than L(x|θ0).

Note: In general, we think of u(X) as a statistic.

Monotone Likelihood Ratio

26
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• Under the MLRP there is a relationship between the magnitude of 
some observed variable, say u(X), and the distribution it draws from it.

• Consider the exponential family: 

L(X;θ) = exp{ΣiU(Xi) – A(θ) ΣiT(Xi) + n B(θ)}.

Then, ln λ= ΣiT(Xi) [A(θ1) – A(θ0)] + nB(θ1) – nB(θ0).

Let u(X)=ΣiT(Xi). 

 ln λ/ u = [A(θ1) – A(θ0)] >0, if A(.) is monotonic in θ.

In addition, u(X) is a sufficient statistic..

• Some distributions  with MLRP in T(X)= Σi xi: normal (with σ
known), exponential, binomial, Poisson.

Monotone Likelihood Ratio

27

Theorem: Karlin-Rubin (KR) Theorem

Suppose we are testing H0: ≤ 0 vs. H1: > 0. 

Let T(X) be a sufficient statistic, and the family of distributions g(.) has 
the MLRP in T(X). 

Then, for any t0 the test with rejection region T>t0 is UMP level α, 
where α = Pr(T>t0|0).

Karlin-Rubin Theorem

28
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Goal: Find the UMP level α test of H0:  ≤ 0 vs. H1:  > 0 (similar for 
H0:  ≥ 0 vs. H1:  < 0)

1. If possible, find a univariate sufficient statistic T(X). Verify its 
density has an MLR (might be non-decreasing or non-increasing, 
just show it is monotonic).

2. KR states the UMP level α test is either 1) reject if T>t0 or 2) reject 
if T<t0. Which way depends on the direction of the MLR and the 
direction of H1.

3. Derive E[T] as a function of . Choose the direction to reject 
(T>t0 or T<t0) based on whether E[T] is higher or lower for  in 
H1. If E[T] is higher for values in H1, reject when T>t0, otherwise 
reject for T<t0.

KR Theorem: Practical Use

29

4. t0 is the appropriate percentile of the distribution of T when =0. 
This percentile is either the α percentile (if you reject for T<t0) or 
the 1 – α percentile (if you reject for T>t0).

KR Theorem: Practical Use

30



RS - Econometrics 1 - Lecture 4

16

• For most two-sided hypotheses –i.e., H0: = 0 vs. H1:  0–, no 
UMP level  test exists. 

Simple intuition: The test which is UMP for  < 0 is not the same as 
the test which is UMP for  > 0. A UMP test must be most powerful 
across every value in H1.

Definition: Unbiased Test

A test is said to be unbiased when 

() ≥ α for all   H1

and P[Type I error]: P[X  R|H0] = () ≤ α for all   H0.

Unbiased test  (0) < (1) for all 0 in H0 and 1 in H1.

Most two-sided tests we use are UMP level α unbiased (UMPU) tests. 

Nonexistence of  UMP tests

31

• So far, we have produced UMP level α tests for simple versus simple 
hypotheses (H0: = 0 vs. H1: = 1) and one sided tests with MLRP 
(H0: ≤ 0 vs. H1: > 0).

• There are a lot of unsolved problems. In particular,

(1) We did not cover unbiased tests in detail, but they are often simply 
combinations of the UMP tests in each directions

(2) Karlin-Rubin discussed univariate sufficient statistics, which leaves 
out every problem with more than one parameter (for example testing 
the equality of means from two populations). 

(3) Every problem without an MLRP is left out.

Some problems left for students

32
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• Power function (again)

We define the power function as (θ) = P[X  R]. Ideally, we want (θ) 
to be near 0 for θ  H0, and (θ) to be near 1 for θ  H1.

The classical (frequentist) approach is to look in the class of all level α
tests (all tests with supθ  H0 (θ) ≤ α) and find the MP one available.

• In some cases there is a UMP level α test, as given by the Neyman
Pearson Lemma (simple hypotheses) and the Karlin Rubin Theorem 
(one sided alternatives with univariate sufficient statistics with MLRP). 
But, in many cases, there is no UMP test.

• When no UMP test exists,  we turn to general methods that produce 
good tests –i.e., given a α, with good power.

No UMP test

33

• Power is a function of three factors ( – 0, n, & α):

– Effect size: True value () – Hypothesized value. (Say,  – 0). Bigger 
deviations from H0  are easier to detect. 

– Sample size: n. Higher n, smaller sampling error. Sampling 
distributions are more concentrated! 

– Statistical significance –i.e., the α.

Example: We randomly collect 20 stock returns (n = 20), which are 
assumed N(, 0.22) (known σ2 for simplicity). Set α =.05. We want to 
test H0:  =0 = 0.1 against H1:  > 0.1.

Q: What is the power of the test if the true  = 0.2 (H1:  = 0.2 is true)?

Test-statistitc: z = (𝑥̅ – 0)/[σ/sqrt(n)] . 

Rejection rule: z ≥ zα=.05 = 1.645.

No UMP test

34
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Example (continuation):

Test-statistic: z-statistic = (𝑥 ഥ - 0)/[σ/sqrt(n)] =(𝑥̅ – 0.1)/(.2/sqrt(20)). 

Rejection rule: z ≥ zα=.05 = 1.645, or, equivalently, when the observed

𝑥̅ ≥ .1736 [=zα/2*σ/sqrt(n) + 0 = 1.645*.2/sqrt(20)+.1]

 Power = P[X  R|H1] = P[𝑥̅ ≥ .1736 | = 0.2]

= P[z ≥ (.1736 – 0.2)/(.2/sqrt(20))] 

= P[z ≥  -.591] 

= 1 – P[z < -.591] = 0.722760

• Changing  – 0

If (H1:  = 0.3 is true)?, then the power of the test (under H1): 

 Power = P[X  R|H1] = P[z ≥ (.1736 – 0.3)/(.2/sqrt(20))] 

= P[z ≥  -2.82713] = 0.997652

No UMP test

35

Example (continuation):

• Changing α (1 = 0.2; n = 20)

If α = .01, then rejection rule: z ≥ zα/2=.005 = 2.33.

Or equivalently: 𝑥̅ ≥ 0.2042 [= 2.33 *.2/sqrt(20) + 0.1]

 Power = P[X  R|H1] = P[𝑥̅ ≥ (0.2042 – 0.2)/(.2/sqrt(20))] 

= P[z ≥  0.093915] = .46259

• Changing n (1 = 0.2; α = .05)

If n = 200, then rejection rule: 𝑥̅ ≥ .12332 [= 1.645 *.2/sqrt(200) + 0.1]

 Power = P[X  R|H1] = P[𝑥̅ ≥ (.12323 – 0.2)/(.2/sqrt(200))] 

= P[z ≥  -5.4261] = .9999999

Note: We can select n to achieve a given power (for given 1 & α). Say, 
set n = 34 to set P[X  R|H1] = .90.

No UMP test

36
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• Likelihood Ratio (LR) Tests

• Bayesian Tests - can be examined for their frequentist properties even 
if you are not a Bayesian.

• Pivot Tests - Tests based on a function of the parameter and data 
whose distribution does not depend on unknown parameters. Wald and 
Score tests are examples:

- Wald Tests - Based on the asymptotic normality of the MLE.

- Score Tests - Based on the asymptotic normality of the log-
likelihood.

General Methods

37

• Define the likelihood ratio (LR) statistic 

λ(X) = supθ  H0 L(X|θ)/ supθ L(X|θ)

Note:

Numerator: maximum of the LF within H0

Denominator: maximum of the LF within the entire parameter space, 
which occurs at the MLE.

• Reject H0 if λ(X) < 𝑘,     where 𝑘 is determined by 

Prob[0 < λ(X) < 𝑘|θ  H0] = α.

Likelihood Ratio Tests

38
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• Properties of  λ(X) = supθ  H0 L(X|θ)/ supθL(X|θ)

(1) 0 ≤ λ(X) ≤ 1, with λ(X)  = 1 if the supremum of the likelihood 
occurs within H0. 

Intuition of test: If the likelihood is much larger outside H0 –i.e., in the 
unrestricted space–, then λ(X) will be small and H0 should be rejected.

(2) Under general assumptions, -2 ln λ(X) ~ χ௣ଶ , where 𝑝 is the 
difference in df between the H0 and the general parameter space.

(3) For simple hypotheses, the numerator and denominator of the LR 
test are simply the likelihoods under H0 and H1. The LR test reduces to 
a test specified by the NP Lemma.

Properties of  the LR statistic λ(X)

39

Example: λ(X) for a X ~ N(θ,σ2) for H0:  = 0 vs. H1:   0. Assume 
σ2 is known.

Likelihood Ratio Tests: Example I
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Note: Finding k is not needed.
Why? We know the left hand side is distributed as a χ௣ଶ , thus (-2 ln k) 
needs to be the 1 – α percentile of  a χ௣ଶ . We need not solve explicitly 
for k, we just need the rejection rule.
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Example: λ(X) for a X ~ exponential (λ) for H0: λ = λ0 vs. H1: λ  λ0.

L(X|θ)= λn exp(-λ Σi xi) = λn exp(-λn   )  λMLE = 1/

Likelihood Ratio Tests: Example II
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We need to find 𝑘 such that P[λ(X)< 𝑘] = α. Unfortunately, this is not 
analytically feasible. We know the distribution of  𝑥̅ is Gamma(n; λ/n), 
but we cannot get further.

It is, however, possible to determine the cutoff  point, k, by simulation
(set n, λ0).

_

x
_

x
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“The three golden rules of  econometrics are 
test, test and test.” David Hendry (1944, 
England)

Testing in Economics

“The only relevant test of  the validity of  a 
hypothesis is comparison of  prediction with 
experience.” Milton Friedman (1912-2006, 
USA)

42
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Hypothesis Testing: Summary

• Hypothesis testing:

(1) We need a model. For example, 𝒚 =  f(X, ) + 
(2) We gather data (𝒚, X) and estimate the model  we get ෠

(3) We formulate a hypotheses.  For example, H0: =0 vs. H1:0

(4) Find an appropriate test and know its distribution under H0

(5) Decision Rule (Test H0). Reject H0: if 0 is too far from ෠ (“the 
hypothesis is inconsistent with the sample evidence.”)

The decision rule will be based on a statistic, T(X). If the statistic is 
large, then, we reject H0.

• To determine if the statistic is “large,” we need a null distribution.

• Ideally, we use a test that is most powerful to test H0.
43

• Logic of the Neyman-Pearson methodology:

If H0 is true, then T(X) will have a certain distribution (under H0). We 
call this distribution null distribution or distribution under the null. 

• It tells us how likely certain values are, if H0 is true. Thus, we expect 
‘large values’ for 0 to be unlikely.

•  Decision rule. 

If the observed value for T(X) falls in rejection region R 

 Assumed distribution must be incorrect: H0 should be rejected.

Hypothesis Testing: Issues

44
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• Issues: 

– What happens if the model is wrong?

– What is a testable hypothesis? 

– Nested vs. Non-nested models

– Methodological issues

– Classical (frequentist approach):  Are the data consistent with H0?

– Bayesian approach:  How do the data affect our prior odds? Use 
the posterior odds ratio.

Hypothesis Testing: Issues

45

• We test a hypotheses about a single parameter, say ௞, of the DGP.

Example: The linear model (DGP):  𝒚 = X + 
1. Formulate H0: X௞ should not be in the DGP ⇒ H0: ௞ = ௞

଴

H1: ௞ ≠ ௞
଴ .

2. Construct T(X) test H0: t௞ = (b௞ - ௞
଴)/sqrt{s2(Xᇱ𝑿ሻ௞௞

ିଵ}

Distribution of T(X) under H0, with s2 estimating σ2 (unknown):
If (A5) |X ~ N(0, σ2IT), ⇒ t௞ ~ t்ି௞.

If (A5) not true, asymptotic results: ⇒  t௞
ௗ
→ N(0, 1).

3. Using OLS, we estimate bଵ, bଶ, …, b௞ , …, & estimate t௞ ⇒ t.̂

4. Decision Rule: Set α level. We reject H0 if  p-value(t)̂ < α.

Or, reject H0, if |t|̂> t்ି௞,ଵି஑/ଶ.

Testing in the CLM: Single Parameter

46
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• Special case: H0: ௞= 0
H1: ௞≠ 0.

Then,

t௞ = (b௞/sqrt{s2(Xᇱ𝑿ሻ௞௞
ିଵ} = b௞/SE[b௞] ⇒ t௞ ~ t்ି௞.

This special case of t௞ is called the t-value. That is, the t-value is the 
ratio of the estimated coefficient and its SE. 

• The t-value is routinely reported in all regression packages. In the 
lm() function, it is reported in the third row of numbers.

• Usually, α = 5%, then if |t|̂> 1.96 ≈ 2, we say the coefficient b௞ is 
“significant.”

Testing in the CLM: t-value

47

• The OLS estimate b is a point estimate for , meaning that b is a 
single value in Rk. 

Broader concept: Estimate a set 𝐶௡, a collection of values in 𝑅௞. For 
example, μ ∈ {0.00155, 0.00554}.

• It is common to focus on intervals 𝐶௡ = [𝐿௡; 𝑈௡], called an interval 
estimate for θ. The goal of 𝐶௡ is to contain the true population value, θ. 
We want to see θ  𝐶௡, with high probability.

Technical detail: Since 𝐶௡ is a function of the data, it is a RV and, 
thus, it has a pdf associated with it. The coverage probability of the 
interval 𝐶௡= [𝐿௡; 𝑈௡] is Prob[θ  𝐶௡].

Hypothesis Testing: Confidence Intervals

48
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• The randomness comes from 𝐶௡, since θ is treated as fixed.

• Intervals estimates 𝐶௡ provide an idea of the uncertainty in the 
estimation of θ: The wider 𝐶௡, the more uncertainty about θ. 

• Interval estimates 𝐶௡ are called confidence intervals (C.I.) as the goal is 
to set the coverage probability to equal a pre-specified target, usually 
90% or 95%. 𝐶௡ is called a (1 – α)% C.I.

• When we know the distribution for θ෠, it is straightforward to 
construct a C.I. For example, if θ෠ ~N(θ, Var[θ෠]), then a (1 – α)% C.I.: 

𝐶௡ = [θ෠ + zα/2 * Estimated SE(θ෠), θ෠ + z(1- α/2) * Estimated SE(θ෠)]

• This C.I. is symmetric around θ෠ . Its length is proportional to SE(θ෠).

Hypothesis Testing: Confidence Intervals

49

• Equivalently, 𝐶௡ is the set of parameter values for b௞ such that the 
z-statistic 𝑧௡(b௞) is smaller (in absolute value) than z(1- α/2). That is,    

𝐶௡= {b௞ : |𝑧௡(b௞)| ≤ z1- α/2}    with coverage probability (1 - α)%

where the z values are taken from the standard normal distribution, 
which is symmetric around 0. That is, z(1- α/2) = -zα/2  = |zα/2|.

• In general, the coverage probability of C.I.’s is unknown, since we 
do not know the distribution of the point estimates. 

• In Lecture 8, we will use asymptotic distributions to approximate the 
unknown pdf. Then, we will get asymptotic coverage probabilities.

• Summary: C.I.’s are a simple but effective tool to assess estimation 
uncertainty.

Hypothesis Testing: Confidence Intervals

50
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Assume that Z and U are independent (check the middle 
matrices in the quadratic forms!). Then, 

• Recall a t௩-distributed variable is a ratio of  two independent RV: a 
N(0, 1) RV and the square root of  a χ௩ଶ RV divided by 𝑣.

Recall: A t-distributed variable

51

Hypothesis Testing: Testing Example in R

Example: 3 Factor Fama-French Model (continuation) for IBM: 

IBMRet – rf = 1 + ெ௞௧ (MktRet – rf) + ௌெ஻ SMB + ுெ௅ HML + 

Returns <- read.csv("http://www.bauer.uh.edu/rsusmel/phd/K-DIS-IBM.csv", 
head=TRUE, sep=",")

b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X′X)-1X′ y (OLS regression)

e <- y - x%*%b # regression residuals, e

RSS <- as.numeric(t(e)%*%e) # RSS

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared  

Sigma2 <- as.numeric(RSS/(T-k)) # Estimated σ2 = s2

SE_reg <- sqrt(Sigma2) # Estimated σ – Regression stand error

Var_b <- Sigma2*solve(t(x)%*% x) # Estimated Var[b|X] = s2 (X′X)-1

SE_b <- sqrt(diag(Var_b)) # SE[b|X] 

t_b <- b/SE_b # t-stats (See Chapter 4)
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> t(b)

Mkt_RF SMB        HML

[1,] -0.005088944 0.9082989 -0.2124596 -0.1715002

> t(SE_b)

Mkt_RF SMB        HML

[1,] 0.002487509 0.05672206 0.08411188 0.08468165

> t(t_b)

Mkt_RF SMB       HML

[1,] -2.045799 16.01315 -2.525917 -2.025235  all coefficients are significant (|t|>2).

• Q: Is the market beta (1) equal to 1? That is,

H0: 1 = 1 vs.  H1: 1 ≠ 1

 t௞ = (b௞ – k
0)/Est. SE(b௞) 

t1 = (0.9082989 – 1)/ 0.05672206 = -1.616674 

 |t1| < 1.96  Cannot reject H0 at 5% level

OLS Estimation – Is IBM’s Beta equal to 1?

53

Testing: The Expectation Hypothesis (EH) 

Example: EH states that forward/futures prices are good predictors 
of future spot rates: Et[St+T] = Ft,T.

Implication of EH: St+T – Ft,T = unpredictable. 

That is, Et[St+T – Ft,T] = Et[εt] = 0!

Empirical tests of the EH are based on a regression: 

(St+T – Ft,T)/St = α + β Zt + εt, (where E[εt]=0)

where Zt represents any economic variable that might have power to 
explain St, for example, (id-if). 

Then, under EH, H0: α = 0 and β = 0.

vs H1: α ≠ 0 and/or β ≠ 0. 54
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Testing: The Expectation Hypothesis (EH) 

Example (continuation): We will informally test EH using exchange 
rates (USD/GBP), 3-mo forward rates and 3-mo interest rates.

SF_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/SpFor_prices.csv", 
head=TRUE, sep=",")

summary(SF_da)

x_date <- SF_da$Date

x_S <- SF_da$GBPSP

x_F3m <- SF_da$GBP3M

i_us3 <- SF_da$Dep_USD3M

i_uk3 <- SF_da$Dep_UKP3M

T <- length(x_S)

prem <- (x_S[-1] - x_F3m[-T])/x_S[-1]

int_dif <- (i_us3 - i_uk3)/100

y <- prem

x <- int_dif[-T]

fit <- lm( y ~ x) 55

Testing: The Expectation Hypothesis (EH) 

Example (continuation): We do two individual t-tests on α & β.
> summary(fit)
Call:

lm(formula = y ~ x)

Residuals:

Min        1Q    Median        3Q       Max 

-0.125672 -0.014576 -0.000439  0.017356  0.094283 

Coefficients:

Estimate Std. Error t value Pr(>|t|)   

(Intercept) -0.0001854  0.0016219  -0.114  0.90906    constant not significant (|t|<2)

x         -0.2157540  0.0731553 -2.949  0.00339  **  slope is significant (|t|>2).  Reject H0

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02661 on 361 degrees of freedom

Multiple R-squared:  0.02353,   Adjusted R-squared:  0.02082 

F-statistic: 8.698 on 1 and 361 DF,  p-value: 0.003393
56
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• 95% C.I. for b:

𝐶௡ = [ b௞ ± t𝒌,𝟏ି.𝟎𝟓/𝟐 * Estimated SE(b௞)]

Then,

𝐶௡ = [-0.215754 – 1.96 * 0.0731553, -0.215754 + 1.96 * 0.0731553]

= [-0.3591384, -0.07236961] 

Since = 0 is not in Cn  with 95% confidence  Reject H0: 1 = 0
at 5% level.

Note: The EH is a joint hypothesis, it should be tested with a joint 
test!

Testing: The Expectation Hypothesis (EH) 

57

Testing a Hypothesis: Wald Statistic

• Most of our test statistics, including joint tests, are Wald statistics.

Wald = normalized distance measure: 
One parameter: t௞ = (b௞ – 0

k)/sb,k = distance/unit

More than one parameter. 

Let z = (random vector – hypothesized value) be the distance 

W =  z [Var(z)]-1 z (a quadratic form)

• Distribution of W ? We have a quadratic form.

– If z is normal and σ2 known, W ~ χ௩ୀோ௔௡௞ሺ௏௔௥ ௭ ሻ
ଶ

)

– If z is normal and σ2 unknown, W ~ F

– If z is not normal and σ2 unknown, we rely on

asymptotic theory,  W
ௗ
→ χ௩ୀோ௔௡௞ሺ௏௔௥ ௭ ሻ

ଶ

Abraham Wald (1902–1950, Hungary) 
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• Distribution of W ? We have a quadratic form.

Recall Theorem 7.4. Let the 𝑛 × 1 vector y ~ N(μy, Σy). Then, 

(y – μy)′ Σy
-1 (y – μy) ~ χ௡ଶ  –note: 𝑛 = rank(Σy). 

 If  z ~ N(0, Var(z))  W is distributed as χ௩ୀோ௔௡௞ሺ௏௔௥ ௭ ሻ
ଶ

In general, Var(z) is unknown, we need to use an estimator of Var(z). 
In our context, we need an estimator of σ2. Suppose we use s2. Then, 
we have the following result:

Let z ~ N(0, Var(z)). We use s2 instead of σ2 to estimate Var(z)

 W ~ F distribution.

Recall the F distribution arises as the ratio of two χ2 variables divided 
by their degrees of freedom.  

Testing a Hypothesis: Wald Statistic
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If  Z and U are independent, then

Recall: An F-distributed variable
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• There is a relationship between t and F when testing one restriction.

- For a single restriction, m = r’b – q.  The variance of m is: r Var[b] r.

- The distance measure is t = m / Est. SE(m) ~ t்ି௞. 

- This t-ratio is the sqrt{F-ratio}.

• t-ratios are used for individual restrictions, while F-ratios are used 
for joint tests of several restrictions.

Recall: An F-distributed variable

61

The General Linear Hypothesis:  H0: R – q = 0

• Suppose we are interested in testing J joint hypotheses.

Example:  We want to test that in the 3 FF factor model that the 
SMB and HML factors have the same coefficients, SMB = HML = 0.

We can write linear restrictions as H0: R – q = 0,

where R is a Jxk matrix and q a Jx1 vector.

In the above example (J=2), we write:

0 0 1 0
0 0 0 1

∗

ଵ
ெ௞௧
ௌெ஻
ுெ௅

=
଴

଴
62



RS - Econometrics 1 - Lecture 4

32

• Q: Is Rb – q close to 0? There are two different approaches to this 
questions. Both have in common the property of unbiasedness for b.

(1) We base the answer on the discrepancy vector:  

m = Rb – q. 

Then, we construct a Wald statistic:

W = m (Var[m|X])-1 m 

to test if m is different from 0.

(2) We base the answer on a model loss of fit when restrictions are 
imposed: RSS must increase and R2 must go down. Then, we 
construct an F test to check if the unrestricted RSS (𝑅𝑆𝑆௎) is different 
from the restricted RSS (𝑅𝑆𝑆ோ).

The General Linear Hypothesis:  H0: R – q = 0

63

• Q: Is Rb – q close to 0? There are two different approaches to this 
questions. Both have in common the property of unbiasedness for b.

(1) We base the answer on the discrepancy vector:  

m = Rb – q. 

Then, we construct a Wald statistic:

W = m (Var[m|X])-1 m 

to test if m is different from 0.

(2) We base the answer on a model loss of fit when restrictions are 
imposed: RSS must increase and R2 must go down. Then, we 
construct an F test to check if the unrestricted RSS (𝑅𝑆𝑆௎) is different 
from the restricted RSS (𝑅𝑆𝑆ோ).

The General Linear Hypothesis:  H0: R – q = 0

64
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• To test H0, we calculate the discrepancy vector:  

m = Rb – q. 

Then, we compute the Wald statistic:

W = m (Var[m|X])-1 m 

It can be shown that Var[m|X] = R[2(XX)-1]R. Then,

W = (Rb – q) {R[2(XX)-1]R}-1 (Rb – q)

Under H0 and assuming (A5) & estimating 2 with s2 = ee/(T-k):

W* = (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q)

F = W*/J ~ F௃,்ି௞.

If (A5) is not assumed, the results are only asymptotic: J*F
ௗ
→ χ௃

ଶ

Wald Test Statistic for H0: R – q = 0 

65

Example: In the 3 FF factor model for IBM excess returns (T=569)

𝑟௜ୀூ஻ெ,௧ – 𝑟௙ = 𝛼௜ + βଵ (𝑟௠,௧ – 𝑟௙) + βௌெ஻ 𝑆𝑀𝐵௧ + βுெ௅ 𝐻𝑀𝐿௧ +  ௜,௧
we want to test if ௌெ஻ = 0.2 and ுெ௅ = 0.6.

1. H0: ௌெ஻ = 0.2 and ுெ௅ = 0.6.

H1: ௌெ஻ ് 0.2 and/or ுெ௅ ് 0.6.  J = 2

We define R (2x4) below and write m = R – q = 0:

0 0 1 0
0 0 0 1

∗

ଵ
ெ௞௧
ௌெ஻
ுெ௅

= 0.2
0.6

2. Test-statistic:  F = W*/J = (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q)

Wald Test Statistic for H0: R – q = 0 
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Example (continuation):  

2. Test-statistic:  F = W*/J = (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q)

Distribution under H0: F = W*/2 ~ Fଶ,்ି௞ (asymptotic, 2*F
ௗ
→ χଶ

ଶ)

3. Get OLS results, compute F.

4. Decision Rule: α ൌ 0.05 level. We reject H0 if  p-value(F) < .05.

Or, reject H0, if  F > F௃ୀଶ,்ି௞,.଴ହ.

J <- 2 # number of restriction

R <- matrix(c(0,0,0,0,1,0,0,1), nrow=2) # matrix of restrictions

q <- c(.2,1) # hypothesized values

m <- R%*%b - q # m = Estimated R*Beta - q

Wald Test Statistic for H0: R – q = 0 
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Example (continuation):  
Var_m <- R %*% Var_b %*% t(R) # Variance of m

det(Var_m) # check for non-singularity

W <- t(m)%*%solve(Var_m)%*%m

F_t <- as.numeric(W/J) # F-test statistic

qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if errors normal

p_val <- 1 - pf(F_t, df1=J, df2=(T - k)) # p-value(F_t) under errors normal

p_val

> F_t

[1] 49.21676

> 

> qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if errors normal

[1] 3.011672 F_t > 3.011672  reject H0 at 5% level

> p_val <- 1 - pf(F_t, df1=J, df2=(T - k)) # p-value(F_t) under errors normal

> p_val

[1] 0 very low chance H0 is true.

Wald Test Statistic for H0: R – q = 0 
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Example: Now, we do a joint test of the EH. H0: α = 0 and β = 0.

Using the previous program but with:
J <- 2 # number of restriction

R <- matrix(c(1,0,0,1), nrow=2) # matrix of restrictions

q <- c(0,0) # hypothesized values

> F_t

[1] 4.1024

> 

> qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if errors normal

[1] 3.020661 F_t > 3.020661  reject H0 at 5% level

> 

> p_val <- 1 - pf(F_t, df1=J, df2=(T - k)) # p-value(F_t) under errors normal

> p_val

[1] 0.01731 very low chance H0 is true.

Wald Test Statistic for H0: Does EH hold?
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(2)  We know that imposing restrictions leads to a loss of fit: R2 must 
go down.  Does it go down a lot?  –i.e., significantly? 

Recall (i)  𝒆* = y – Xb* = 𝒆 – X(b*– b)
(ii) b* = b – (XX)-1R[R(XX)-1R]-1(Rb – q)

 𝒆*𝒆* = 𝒆𝒆 + (b* – b)XX(b*– b)
e*e* = ee+(Rb–q)[R(XX)-1R]-1R(XX)-1 XX(XX)-1R[R(XX)-1R]-1(Rb–q)

𝒆*𝒆* – 𝒆𝒆 = (Rb – q)[R(XX)-1R]-1(Rb – q)

Recall
– W = (Rb – q){R[2(XX)-1]R}-1(Rb – q) ~ χ௃

ଶ (if 2 is known)
– 𝒆𝒆/ 2 ~ χ்ି௞

ଶ . 
Then,

F = (𝒆*𝒆* – 𝒆𝒆 )/ J / [𝒆𝒆 /(𝑇 െ 𝑘)] ~ F௃,்ି௞.

The F Test: H0: R – q = 0

70



RS - Econometrics 1 - Lecture 4

36

• F = (𝒆*𝒆* – 𝒆𝒆 )/ J / [𝒆𝒆 /(𝑇 െ 𝑘)] ~ F௃,்ି௞.

Let R2 = unrestricted model = 1 – RSS/TSS
R*2 = restricted model fit = 1 – RSS*/TSS

Then, dividing and multiplying F by TSS we get

F = ((1 – R*2) – (1 – R2))/J / [(1 – R2)/(𝑇 െ 𝑘)] ~ FJ,T-K

or
F = { (R2 – R*2)/J } / [(1 - R2)/(𝑇 െ 𝑘)] ~ FJ,T-K.

The F Test: H0: R – q = 0

71

10

• In the linear model 

y = X  +  = X1 1 + X2 2 +... + Xk k + 

• We want to test if  the slopes X2, ... , Xk are equal to zero. That is,

H0: 𝛽ଶ ൌ. . .ൌ 𝛽௞ ൌ 0
H1: at least one 𝛽 ്  0  J = k – 1

• We have J = k – 1. Then,
F = { (R2 – R*2)/(k – 1) } / [(1 – R2)/(T – k)] ~ Fk-1,T-K.

• For the restricted model,  R*2 = 0.


0 1 … 0
… … … …
0 0 0 1

𝛽ଵ
𝛽ଶ
. . .
𝛽௞

ൌ
0
…
0

• We can write H0: R – q = 0

The F Test: F-test of  goodness of  fit
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10

𝐹ሺ𝑘 െ 1,𝑛 െ 𝑘ሻ ൌ
𝑅ଶ ሺ𝑘 െ 1ሻ⁄

ሺ1 െ 𝑅ଶሻ ሺ𝑇 െ 𝑘ሻ⁄
ൌ

𝐸𝑆𝑆
𝑇𝑆𝑆 ሺ𝑘 െ 1ሻൗ

𝑅𝑆𝑆
𝑇𝑆𝑆 ሺ𝑇 െ 𝑘ሻൗ

ൌ
𝐸𝑆𝑆 ሺ𝑘 െ 1ሻ⁄
𝑅𝑆𝑆 ሺ𝑇 െ 𝑘ሻ⁄

• Recall ESS/TSS is the definition of  R2.  RSS/TSS is equal to (1 – R2).  

Then, F = { R2 /(k-1) }/[(1 - R2)/(T-k)] ~ Fk-1,T-K.

• This test statistic is called the F-test of  goodness of  fit.

The F Test: F-test of  goodness of  fit
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Example: We want to test if  all the FF factors (Market, SMB, HML) 
are significant, using monthly data 1973 – 2020 (T=569). 
y <- ibm_x

T <- length(x)

x0 <- matrix(1,T,1)

x <- cbind(x0,Mkt_RF, SMB, HML)

k <- ncol(x)

b <- solve(t(x)%*% x)%*% t(x)%*%y #OLS regression

e <- y - x%*%b

RSS <- as.numeric(t(e)%*%e)

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) #R-squared

> R2 

[1] 0.338985

F_goodfit <- (R2/(k-1))/((1-R2)/(T-k)) #F-test of  goodness of  fit.

> F_goodfit

[1] 96.58204  F_goodfit > F2,565,.05 = 2.387708  Reject H0.

The F Test: F-test of  goodness of  fit
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URSSXXXY   4433221

RRSSXY   221

32

0   :

0:

31

430








H

H

04  04 3or or both and

F (cost in df, unconstr df ) =
RSSR – RSSU kU – kR

RSSU T – kU

• We can use, F = (e*e* – ee)/J / [ee/(T – k)] ~ FJ,T-K.

• In the linear model 
y = X  +  = 1 + X2 2 + X3 3 + X4 4 + 

• We want to test if  the slopes X3, X4 are equal to zero. That is,

Define

The F Test: General Case – Example

75

Example: We want to test if the additional FF factors (SMB, HML) 
are significant, using monthly data 1973 – 2020 (T=569). 

Unrestricted Model: 

(U) 𝑟௜,௧ – 𝑟௙ = 𝛼௜ + βଵ (𝑟௠,௧ – 𝑟௙) + βଶ 𝑆𝑀𝐵௧ + βଷ 𝐻𝑀𝐿௧ +  ௜,௧

Hypothesis: H0: 2 = 3 = 0

H1: 2≠ 0 and/or 3 ≠ 0

Then, the Restricted Model:

(R) 𝑟௜,௧ – 𝑟௙ = 𝛼௜ + βଵ (𝑟௠,௧ – 𝑟௙) + ௜,௧

Test: F = 
ሺோௌௌೃିோௌௌೆሻ/௃

ோௌௌೆ/ሺ்ି௞ೠሻ
~ FJ,T-K. with J = kU – kR = 4 - 2 = 2

The F Test: General Case – Example
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Example (continuation): The unrestricted model was already 
estimated. For the restricted model:

y <- ibm_x

x0 <- matrix(1,T,1)

x_r <- cbind(x0,Mkt_RF) # Restricted X vector

T <- nrow(x)

k2 <- ncol(x)

b2 <- solve(t(x_r)%*% x_r)%*% t(x_r)%*%y # Restricted OLS regression

e2 <- y – x_r%*%b2

RSS2 <- as.numeric(t(e2)%*%e2)

> RSS = 1.932442 # RSSU

> RSS2 = 1.964844 # RSSR

J <- k - k2 # J = degrees of freedom of numerator 

F_test <- ((RSS2 - RSS)/J)/(RSS/(T-k))

The F Test: General Case – Example
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Example (continuation): 
F_test <- ((RSS2 - RSS)/J)/(RSS/(T-k))

> F_test

[1] 4.736834

> qf(.95, df1=J, df2=(T-k)) # F2,565,.05 value (≈ 3)

[1] 3.011672  Reject H0.

p_val <- 1 - pf(F_test, df1=J, df2=(T-k)) # p-value of F_test

> p_val

[1] 0.009117494  p-value is small  Reject H0.

The F Test: General Case – Example
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Lagrange Multiplier Statistics

• Specific to the classical model.
Recall the Lagrange multipliers: 

 = [R(XX)-1R]-1 m

Suppose we just test H0:  = 0, using the Wald criterion. 
W = (Var[|X])-1

where 
Var[|X] = [R(XX)-1R]-1Var[m|X] [R(XX)-1R]-1
Var[m|X] = R[2(XX)-1]R

Var[|X] = [R(XX)-1R]-1 R[2(XX)-1]R[R(XX)-1R]-1
= 2 [R(XX)-1R]-1 

Then,
W = m’ [R(XX)-1R]-1 {2 [R(XX)-1R]-1}-1 [R(XX)-1R]-1 m

= m’ [2R(XX)-1R]-1} m
79

Application (Greene): Gasoline Demand

• Time series regression,

LogG =  1 + 2logY + 3logPG + 4logPNC +5logPUC

+ 6logPPT + 7logPN + 8logPD + 9logPS +  
Period  =  1960 - 1995.  

• A significant event occurs in October 1973: the first oil crash.  In 
the next lecture, we will be interested to know if the model 1960 to 
1973 is the same as from 1974 to 1995.  

Note: All coefficients in the model are elasticities. 
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Ordinary     least squares regression ............
LHS=LG       Mean                 =        5.39299

Standard deviation   =         .24878
Number of observs.   =             36

Model size   Parameters           =              9
Degrees of freedom   =             27

Residuals    Sum of squares       =         .00855  <*******
Standard error of e  =         .01780  <*******

Fit          R-squared            =         .99605  <*******
Adjusted R-squared   =         .99488  <*******

--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X
--------+-------------------------------------------------------------
Constant|   -6.95326***      1.29811       -5.356   .0000

LY|    1.35721***       .14562        9.320   .0000      9.11093
LPG|    -.50579***       .06200       -8.158   .0000       .67409
LPNC|    -.01654          .19957        -.083   .9346       .44320
LPUC|    -.12354*         .06568       -1.881   .0708       .66361
LPPT|     .11571          .07859        1.472   .1525       .77208
LPN|    1.10125***       .26840        4.103   .0003       .60539
LPD|     .92018***       .27018        3.406   .0021       .43343
LPS|   -1.09213***       .30812       -3.544   .0015       .68105

--------+------------------------------------------------------------------------

Application (Greene): Gasoline Demand

81

• Q: Is the price of public transportation really relevant?  H0 : 6 = 0.
(1)  Distance measure: t6 = (b6 – 0) / sb6 =  (.11571 – 0) / .07859  

=  1.472  <  2.052  cannot reject H0.

(2)  Confidence interval:  b6  t(.95,27)  Standard error  
=  .11571  2.052  (.07859)
=  .11571  .16127  =  (-.045557 ,.27698)
 C.I. contains 0  cannot reject H0.

(3) Regression fit if X6 drop?  Original R2 = .99605,
Without LPPT, R*2 = .99573

F(1,27) = [(.99605 – .99573)/1]/[(1 – .99605)/(36 – 9)] = 2.187 
= 1.4722 (with some rounding)  cannot reject H0.

Application (Greene): Gasoline Demand
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Gasoline Demand (Greene) - Hypothesis Test: 
Sum of Coefficients

• Do the three aggregate price elasticities sum to zero?
H0 :β7 + β8 +  β9 =  0
R = [0, 0, 0, 0, 0, 0, 1, 1, 1],    q = 0

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t] 
------------+-----------------------------------------------------
LPN|    1.10125***       .26840        4.103   .0003       .60539
LPD|     .92018***       .27018        3.406   .0021       .43343
LPS|   -1.09213***       .30812       -3.544   .0015       .68105

83

Gasoline Demand - Wald Test

Gasoline Demand (Greene) - Hypothesis Test: 
Sum of  Coefficients – Wald Test
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Gasoline Demand (Greene) - Imposing Restrictions

Linearly restricted regression
LHS=LG       Mean                 =   5.392989

Standard deviation   =   .2487794
Number of observs.   =         36

Model size   Parameters           =          8  <*** 9 – 1 restriction
Degrees of freedom   =         28

Residuals    Sum of squares       =   .0112599  <*** With the restriction
Residuals    Sum of squares       =   .0085531  <*** Without the 
restriction
Fit          R-squared            =   .9948020
Restrictns.  F[  1,    27] (prob) =   8.5(.01)
Not using OLS or no constant.R2 & F may be < 0
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]  Mean of X
--------+-------------------------------------------------------------
Constant|   -10.1507***       .78756      -12.889   .0000

LY|    1.71582***       .08839       19.412   .0000      9.11093
LPG|    -.45826***       .06741       -6.798   .0000       .67409
LPNC|     .46945***       .12439        3.774   .0008       .44320
LPUC|    -.01566          .06122        -.256   .8000       .66361
LPPT|     .24223***       .07391        3.277   .0029       .77208
LPN|    1.39620***       .28022        4.983   .0000       .60539
LPD|     .23885          .15395        1.551   .1324       .43343
LPS|   -1.63505***       .27700       -5.903   .0000       .68105

--------+-------------------------------------------------------------
F = [(.0112599 - .0085531)/1] / [.0085531/(36 – 9)]  =  8.544691

85

Gasoline Demand (Greene) - Joint Hypotheses

• Joint hypothesis: Income elasticity = +1, Own price elasticity = -1.
The hypothesis implies that logG = β1 + logY – logPg + β4 logPNC + ...

Strategy: Regress logG – logY + logPg on the other variables and

• Compare the sums of  squares
With two restrictions imposed
Residuals  Sum of  squares =   .0286877
Fit          R-squared           =   .9979006
Unrestricted
Residuals Sum of  squares =   .0085531
Fit R-squared         =   .9960515

F = ((.0286877 - .0085531)/2) / (.0085531/(36-9))  =  31.779951
The critical F for 95% with 2,27 degrees of  freedom is 3.354  H0 is rejected.

• Q: Are the results consistent?  Does the R2 really go up when the restrictions are 
imposed? 86
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Gasoline Demand - Using the Wald Statistic
--> Matrix ; R = [0,1,0,0,0,0,0,0,0 / 

0,0,1,0,0,0,0,0,0]$
--> Matrix ; q = [1/-1]$
--> Matrix ; list ; m = R*b - q $
Matrix M        has  2 rows and  1 columns.

1
+-------------+

1|     .35721
2|     .49421
+-------------+

--> Matrix ; list ; vm = R*varb*R' $
Matrix VM       has  2 rows and  2 columns.

1             2
+-------------+-------------+

1|     .02120       .00291
2|     .00291       .00384
+-------------+-------------+

--> Matrix ; list ; w = 1/2 * m'<vm>m $
Matrix W        has  1 rows and  1 columns.

1
+-------------+

1|   31.77981
+-------------+

87

Gasoline Demand (Greene) – Testing Details

• Q: Which restriction is the problem? We can look at the Jx1 
estimated LM, λ, for clues:

• Recall that under H0, λ should be 0.

1[ ( ) ] ( )  R X X R R b q -

Matrix Result   has  2 rows and  1 columns.
1

+-------------+
1|    -.88491      Income elasticity
2|  129.24760      Price elasticity
+-------------+

Results suggest that the constraint on the price elasticity is having a 
greater effect on the sum of  squares.
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Gasoline Demand (Greene) - Basing the Test on 
R2

• After building the restrictions into the model and computing 
restricted and unrestricted regressions: Based on R2s, 

F = [(.9960515 – .997096)/2]/[(1 –.9960515)/(36-9)]
= -3.571166 (!)

• Q: What's wrong?
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