RS - Econometrics 1 - Lecture 4

Lecture 4
Testing in the Classical Linear
Model

Hypothesis Testing: Brief Review

* In general, there are two kinds of hypotheses:
(1) About the form of the probability distribution

Example: Is the random variable normally distributed?

(2) About the parameters of a distribution function

Example: Is the mean of a distribution equal to 0?

* The second class is the traditional material of econometrics. We may
test whether the effect of income on consumption is greater than one,
or whether there is a size effect on the CAPM —i.e., the size coefficient
on a CAPM regression is equal to zero.
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Hypothesis Testing: Brief Review

 Some history:

- The modern theory of testing hypotheses begins with the Student’s t-
test in 1908.

- Fisher (1925) expands the applicability of the t-test (to the two-sample
problem and the testing of regression coefficients). He generalizes it to
an ANOVA setting. He pushes the 5% as the standard significance
level.

- Neyman and Pearson (1928, 1933) consider the question: why these
tests and not others? Or, alternatively, what is an optimal test? N&P’s
propose a testing procedure as an answer: the “best test” is the one that
minimizes the probability of false acceptance (Type II Error) subject to
a bound on the probability of false rejection (Type I Error).

- Fisher’s and N&P’s testing approaches can produce different results.

Hypothesis Testing: Brief Review

* We compare two competing hypothesis:
1) The null hypothesis, H,, is the maintained hypothesis.
2) The alternative hypothesis, H;, which we consider if H;, is rejected.

e There are two types of hypothesis regarding parameters:
(1) A simple hypothesis. Under this scenario, we test the value of a

parameter against a single alternative.
Example: H:0=6, against H,:0=0,.

(2) A composite hypothesis. Under this scenario, we test whether the
effect of income on consumption is greater than one. Implicit in this
test is several alternative values.

Example: H:0>6, against H,:6<8,. 4
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Hypothesis Testing: Brief Review

* We compare two competing hypothesis: H,, vs. H,.
* Suppose the two hypothesis partition the universe: H, = Not H,,

* Then, we collect a sample of data X = {X;, X,, ..., Xy} and device a
decision rule, based on a statistic T(X):

T(X) €ER = Reject H, (& we learn H,! is not true).
T(X) € R => Fail to reject H,. (No learning.)

The set R is called the region of rejection or the critical region of the test. We
only, we only learn when T(X) falls in this region —i.e., rejecting H,:

“There are two possible outcomes: if the result confirms the
hypothesis, then you've made a measurement. 1f the result is contrary to
the hypothesis, then you've made a discovery.” Enrico Fermi (Italy)

Hypothesis Testing: Brief Review - Fisher

* In this context, Fisher popularized a testing procedure known as
significance testing. 1t relies on the p-value:

p-value is the probability of observing a result at least as extreme as the
test statistic, under H,,.

Example: Suppose T(X) ~ x%. We compute T(X) = 7.378. Then,
pvalne(T(X) = 7.378) = 1 — Prob|T(X) < 7.378] = 0.025

Chi-square Distribution (df=2): P-value.

= - p-value = 2.5%

o s 7378 o 15 6
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Hypothesis Testing: Brief Review - Fisher

e Fishet’s Idea.
Steps for testing

1. Form H,, and set a significance level, o.

2.a Collect a sample of data X = {X1, X5, ..., Xy }.

2.b Compute the test-statistics T(X) used to test H,,.

3. Report the p-value -i.e., the probability, of observing a result at least as
extreme as the test statistic, under H,,.

4. Decision rule:

If the p-value < o = result is significant & H,, is rejected.

If the p-value > o = result is “not significant.” No conclusions
are reached. Gather more data/modify model.
7

Note: By setting o, we determine K.

Hypothesis Testing: Steps

Example: From the U.S. Jury System

1. Identify H, & set a significance level («% = P[R|H,y))
H,: The defendant is not guilty
H,: The defendant is guilty

Significance level a = “beyond reasonable doubt,” presumably small level.
2. After judge instructions, each juror forms an “innocent index” T(X),
3. Through deliberations, jury reaches a conclusion T(X) =Y.12, T(X),.

4. Rule: If p-value of T(X) < « = Reject H,,. That is, guilty!
If p-valne of T(X) > o = Fail to reject H,,. That is, non-guilty.

Alternatively, we build a rejection region around H,,

Note: Mistakes are made. We want to quantify these mistakes.
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Hypothesis Testing: Steps

Example: We want to test if the mean of IBM annual returns, ppy, 18
10%.

1. Hy: gy = 10% & set o = .05.
23. Get a sample: {X19629 X19639 ceny XN=2023 }, Wlth N:63

2b. We use T(X) = X, which is unbiased, consistent, and, assuming X is
normally distributed, we know its distribution, X ~ N(u, 62/N).

3. Compute X=0.06 & p-value(X=0.06) = .005.

4. Decision Rule: p-value < o => result is significant & H, is rejected.

Instead of using a p-value, it is common to use a rejection region, R:

TX) =X &[T, Tyl = Reject Hy: pypy = 10%.

Hypothesis Testing

Example (continuation): That is,
R=[X < Ty, Ty > X]

Rejection Region

004
|

Density

001
1

0.00
|

20 /‘ 0 20 ’\ 40
TX)in %

TLB TUB

¢ The blue area is the significance level, a.
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Hypothesis Testing: Brief Review — N&P

* Under Fisher’s testing procedure, declaring a result significant is
subjective. Fisher pushed for a 5% (exogenous) significance level; but
practical experience may play a role.

* Neyman and Pearson devised a different procedure, hypothesis testing,
as a more objective alternative to Fisher's p-value.

Neyman’s and Pearson’s idea:

Consider two simple hypotheses (both with distributions). Calculate
two probabilities and select the hypothesis associated with the higher
probability (the hypothesis more likely to have generated the sample).

* Based on cost-benefit considerations, hypothesis testing determines

the (fixed) rejection regions.

Hypothesis Testing: Brief Review — Summary

* The N&P’s method always selects a hypothesis.

* There was a big debate between Fisher and N&P. In particular, Fisher
believed that rigid rejection areas were not practical in science.

b

¢ Philosophical issues, like the difference between “inductive inference’
(Fisher) and “inductive behavior” (N&P), clouded the debate.

¢ The dispute is unresolved. In practice, a hybrid of significance testing
and hypothesis testing is used. Statisticians like the abstraction and
elegance of the N&P’s approach.

* Bayesian statistics using a different approach also assign probahilities
to the various hypotheses considered.
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Type I and Type II Errors

Definition: Type I and Type 1I errors

A Type I error is the error of rejecting H, when it is true. A Type II error
is the error of “accepting” H, when it is false (that is when H, is true).

* Notation: ~ Probability of Type I error: o = P[X € R|H,]
Probability of Type II error: f = P[X € R¢|H,]

Definition: Power of the test

The probability of rejecting H,, based on a test procedure is called the
power of the test. 1t is a function of the value of the parameters tested, ¢:

n=mn(f) =P[X € R].

Note: when 0 € H, = n() =1-P()  -the usual app]jcati%)n.

Type I and Type II Errors

* We want 1t(f) to be near 0 for fe H,,, and w(f) to be near 1 for feH,.

Definition: Level of significance
When ¢ € H, m(6) gives you the probability of Type I error. This

probability depends on 6. The maximum value of this when 6 € H, is
called Jevel of significance of a test, denoted by o. Thus,

o = Supy ¢ 4o P[X € RIHg] = supy ¢ o 7(6)

Define a /Jevel & test to be a test with sup, . o T(6) = a.
Sometimes, a0 = P[X € KR|H,] is called the size of a test.

Practical Note: Usually, the distribution of T(X) is known only
approximately. In this case, we need to distinguish between the nominal
o and the actual regection probability (empirical 5izé). They may differ Sreatly
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Type I and Type II Errors

State of World

Decision H, true H, true (H, false)

Cannot reject H, | Correct decision | Type 11 error

Reject H,, Type I error Correct decision ~— Learning

Need to control both types of error:
o = P(rejecting Hy | Hy) <= Reject H; by “accident” or
luck (a false positive).

B = P(not rejecting H, | H,) <=1 -3 = Power of test (under
Hy). 15

Type I and Type II Errors

1.00

0.00 0.50
——HO ——H1

1.50

g = Type 1I error o = Type I error

n =1— 8 = Power of test (under H,)
Note: Trade-off o & B. 16
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Type I and Type II Errors - Example

* We conduct a 1,000 studies of some hypothesis (say, H,: p=0)
- Assume the proportion of false H, is 10% (100 false cases).
- Use standard 5% significance level (45 rejections under H).
- Power 50% (50% correct rejections)

State of World
Decision H, true H, true (H, false)
Cannot reject H, | 855 50 (Dype 11 error)
Reject H, 45 (Type I error) | 50
900 100

Note: Of the 95 studies which result in a “statistically significant” (i.e.,
p<0.05) result, 45 (47.4%) are true H, and so are “false positivels7.”

Type I and Type II Errors: Example

* Now, with same proportion of false H, (10%) and same a = 5%,
assume the power is 80% (80% correct rejections of H,).

State of World
Decision H, true H, true (H, false)
Cannot reject H 855 20 (Dype II error)
Reject H 45 (Iype I error) | 80
900 100

Now, of the 125 studies which result in a “statistically significant’ (1.e.,
p<0.05) result, 45 (36%) are true H, and so are “false positives.”

18
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Type I and Type II Errors - Example

* Now, assume the power is 80% (80% correct rejections) and same o
= 5%, but the proportions of false H, is 50% (500 false cases).

State of World
Decision H, true H, true (H, false)
Cannot reject H, 475 100 (Dype 11 error)
Reject H, 25 (Type I error) | 400
500 500

Now, of the 425 studies which result in a “statistically significan?’ (1.e.,
p<0.05) result, 25 (5.88%) are true H; and so are “false positives.”

Conclusion: The proportion of false positives depends on percgpntage
of false H, and the power of test. Higher power, lower proportion.

Type I and Type II Errors - Example

* For a given o (P), higher power, lower % of false-positives —i.e., more
true learning,

Proportion of ideas Power of Percentage of “‘significant™
that are correct study results that are false-positives
(null hypothesis false) P=0.05 P=0.01 P=0.001
20% 5.9 1.2 0.1
80% 50% 2.4 0.5 0.0
80% 1.5 0.3 0.0
20% 20.0 4.8 0.5
50% 50% 9.1 2.0 0.2
80% 5.9 1.2 0.1
20% 69.2 31.0 4.3
10%o 50% 47.4 153 1.8
80% 36.0 10.1 1.1
20% 96.1 83.2 33.1
1% 50% 90.8 66.4 16.5
80% 86.1 55.3 11.020

10
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More Powerful Test

Definition: More Powerful Test

Let (o, B) and (a,, B,) be the characteristics of two tests. The first
test is more powerful (better) than the second test if a; < a,, and B; < B,
with a strict inequality holding for at least one point.

Note: If we cannot determine that one test is better by the definition,
we could consider the relative cost of each type of error. Classical
statisticians typically do not consider the relative cost of the two errors
because of the subjective nature of this comparison.

Bayesian statisticians compare the relative cost of the two errors using a

loss function.
21

Most Powerful Test

Definition: Most powerful test of size o

R is the most powerful test of size o if a(R)=a and for any test R, of size

o, BR) = BR,).

Definition: Most powerful test of level a

R is the most powerful test of level o (that is, such that ol(R) < a) and for
any test R of level a (that is, a(R,) < av), if B(R) < B(R)).

22

11
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UMP Test

Definition: Uniformly most powerful (UMP) test

R is the uniformly most powerful test of level o (that is, such that a(R) < o)
and for every fest R, of level a (that is, a(R)) < o), if m(R) = n(R,).

For every test: for alternative values of 6, in H;:0=6,.

* Choosing between admissible test statistics in the (o, B) plane is
similar to the choice of a consumer choosing a consumption point in
utility theory. Similarly, the tradeoff problem between o and 8 can be
characterized as a ratio.

® This idea is the basis of the Neyman-Pearson 1emma to construct a test
of a hypothesis about 0: H: 0=0, against H,: 6=0,. 3

Neyman-Pearson Lemma

* Neyman-Pearson Lemma provides a procedure for selecting the best
test of a simple hypothesis about 0: H: 0=, against H,:6=0,.

* Let L(x| 0) be the joint density function of X. We determine R based
on the ratio L(x|0,)/L(x|6,). (This ratio is called the /Zkelibood ratio.)
The bigger this ratio, the more likely the rejection of H,,.

e That is, the Neyman-Pearson lemma of hypothesis testing provides
a good criterion for the selection of hypotheses: The ratio of their
probabilities.

24

12
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Neyman-Pearson Lemma

* Consider testing a simple hypothesis Hy: 8= 6, vs. H;: @ = 6,, where
the pdf corresponding to 8.is (x| 6), /=0,1, using a test with rejection
region R that satisfies

(1)  xeRif L(x|8) > #L(x|0,)

xeRif L(x|0) < £1.(x|0,),

for some £2 0, and

@  «=P[XeR|H]
Then,
(a) Any test that satisfies (1) and (2) is a UMP level o test.

(b) If there exists a test satisfying (1) and (2) with £ > 0, then every
UMP level a test satisfies (2) and every UMP level o test satisties (1)
except perhaps on a set A satistying P[XeA|H| =P[XeA|H,] =0.

25

Monotone Likelihood Ratio

* In general, we have no basis to pick 8,. We need a procedure to test
composite hypothesis, preferably with a UMP.

Definition: Monotone Likelihood Ratio

The model f(X,0) has the monotone likelibood ratio property in u(X) if there
exists a real valued function #(X) such that the likelihood ratio

A= L(x|0,)/L(x]| 6, is a non-decreasing function of #(X) for each
choice of 6, and 6,, with 6,>0),.

If I(x| 0)) satisfies the MLRP with respect to I(x|6,) the higher the
observed value #(X), the more likely it was drawn from distribution
I(x|0,) rather than I.(x|0,).

Note: In general, we think of #(X) as a statistic. 2

13



RS - Econometrics 1 - Lecture 4

Monotone Likelihood Ratio

* Under the MLRP there is a relationship between the magnitude of
some observed variable, say #(X), and the distribution it draws from it.

* Consider the exponential family:
LOX:0) = exp{EUK) - A©) ET(X) + 1 BO)}.
Then, In A= ZTX) [A@)) — AO))] + nB@,) — nB(0,).
Let n(X)=2T(X).
= dln )/ du=[AG,) — A@G,))] >0, if A(.) is monotonic in 6.
In addition, #(X) is a sufficient statistic..

* Some distributions with MLRP in T(X)= X, x;: normal (with o
known), exponential, binomial, Poisson. 27

Karlin-Rubin Theorem

Theorem: Karlin-Rubin (KR) Theorem
Suppose we are testing H:0 < 6, vs. H;:0 > 6,

Let T(X) be a sufficient statistic, and the family of distributions g(.) has
the MLRP in T(X).

Then, for any £, the test with rejection region T>7, is UMP level «,
where o = Pr(T>7%,|0,).

28

14
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KR Theorem: Practical Use

Goal: Find the UMP level o test of Hy: © < 0, vs. H;: 6 > 0, (similar for
Hy: 0= 6,vs. H;: 0<6)

1. If possible, find a univariate sufficient statistic T(X). Verify its
density has an MLR (might be non-decreasing or non-increasing,
just show it is monotonic).

2. KR states the UMP level « test is either 1) reject if T>%, or 2) reject
if T<#,. Which way depends on the direction of the MLR and the
direction of H;.

3. Detive E[T] as a function of 8. Choose the ditection to teject
(T>#, ot T<#) based on whether E[T] is higher or lower for fin
H,. If E[T] is higher for values in H,, reject when T>#,, otherwise
reject for T<%,

29

KR Theorem: Practical Use

4. 1,is the appropriate percentile of the distribution of T when 6=6),.
This percentile is either the a percentile (if you reject for T<%) or
the 1 — o percentile (if you reject for T>7%,).

30

15
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Nonexistence of UMP tests
* For most two-sided hypotheses —i.e., H;:0 = 6, vs. H;:0 # §,—, no
UMP level test exists.

Simple intuition: The test which is UMP for 8 < 6, is not the same as
the test which is UMP for € > 6,. A UMP test must be most powerful
across every value in H;.

Definition: Unbiased Test

A test is said to be #nbiased when
n(0) > « forall € H,
and  P[Typelerrot]: P[X € R|H] = n(0) < « forall 8 € H,,.

Unbiased test = n(6) < n(6) for all §,in Hjand 6, in H,.

Most two-sided tests we use are UMP level a wnbiased (UMPU) tests.

Some problems left for students

* So far, we have produced UMP level « tests for simple versus simple
hypotheses (H:0 = 6§, vs. H;:0 = 0)) and one sided tests with MLRP
Hy:0 =< 6,vs. H:0> 0,).

* There are a lot of unsolved problems. In particular,

(1) We did not cover unbiased tests in detail, but they are often simply
combinations of the UMP tests in each directions

(2) Karlin-Rubin discussed univariate sufficient statistics, which leaves
out every problem with more than one parameter (for example testing
the equality of means from two populations).

(3) Every problem without an MLRP is left out.

32

16
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No UMP test

* Power function (again)

We define the power function as (f) = P[X e R]. Ideally, we want 1t(6)
to be near 0 for # € H, and m(f) to be near 1 for ¢ € H,.

The classical (frequentist) approach is to look in the class of all level a
tests (all tests with sup, _ 1o T(6) < «) and find the MP one available.

* In some cases there is a UMP level « test, as given by the Neyman
Pearson Lemma (simple hypotheses) and the Karlin Rubin Theorem
(one sided alternatives with univariate sufficient statistics with MLRP).
But, in many cases, there is no UMP test.

* When no UMP test exists, we turn to general methods that produce
good tests —i.e., given a a, with good power. 3

No UMP test

* Power is a function of three factors (60— ), n, & «):

— Effect size: True value (6) — Hypothesized value. (Say, 60— 6,). Bigger
deviations from H,, are easier to detect.

— Sample size: n. Higher n, smaller sampling error. Sampling
distributions are mote concentrated!

— Statistical significance —i.e., the «.

Example: We randomly collect 20 stock returns (12 = 20), which are
assumed N(6, 0.2%) (known o for simplicity). Set « =.05. We want to
test Hy: @ =6,= 0.1 against H;: 6> 0.1.

Q: What is the power of the test if the true €= 0.2 (H;: €= 0.2 is true)?
Test-statistitc: ¢ = (X — 6))/[o/sqrt(n)] .
Rejection rule: g 2 z,_ ;- = 1.645.

34

17
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No UMP test

Example (continuation):

Test-statistic: z—xmz‘z'xtz'f = (x-6)/|o/sqrt(m)] =(X — 0.1)/(.2/sqrt(20)).

Rejection rule: = z,_ (s = 1.645, or, equivalently, when the observed
Xz .1736 [=2z,/,% 0/sqrt(n) + 6,= 1.645*2/5qrt(20)+.1]

= Power = P[X € R|H,] [X>.1736 |6 =0.2]

P
Plz > (1736 — 0.2)/(.2/sqrt(20))]
P
1-

[z = -591]
Pz < -.591] = 0.722760

* Changing 60— 6,

If (H,: @ = 0.3 is true)?, then the power of the test (under H,):

— Power=P[X € R|H,| =P[z> (1736 0.3)/(2/5qrt(20))]
=Pl > -2.82713] = 0.997652

No UMP test

Example (continuation):

* Changing « (6, = 0.2; n = 20)

If o = .01, then rejection rule: 52 3, /5= go5 = 2.33.

Or equivalently: X = 0.2042 [= 2.33 *.2/sqrt(20) + 0.1]

= Power = P[X € R|H;] =P[x = (0.2042 - 0.2)/(.2/sqrt(20))]
=Pz = 0.093915] = .46259

* Changing n (6,= 0.2; o« = .05)

If n = 200, then rejection rule: X = .12332 [= 1.645 *.2/sqrt(200) + 0.1]

= Power = P[X € R|H,] =P[x = (12323 -0.2)/(.2/sqrt(200))]
=Pl = -5.4261] = .9999999

Note: We can select 22 to achieve a given power (for given €, & oc) Say,
set n= 34 to set P[X € R|H,] = .90.

18
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General Methods

¢ Likelihood Ratio (LR) Tests

* Bayesian Tests - can be examined for their frequentist properties even
if you are not a Bayesian.

* Pivot Tests - Tests based on a function of the parameter and data
whose distribution does not depend on unknown parameters. Wald and
Score tests are examples:

- Wald Tests - Based on the asymptotic normality of the MLE.

- Score Tests - Based on the asymptotic normality of the log-
likelihood.

37

Likelihood Ratio Tests

* Define the likelihood ratio (LR) statistic
MX) = Supy e o LX)/ sup, (X )

Note:
Numerator: maximum of the LF within H,,

Denominator: maximum of the LF within the entire parameter space,
which occurs at the MLE.

* Reject Hj if A(X) < k, where k is determined by
Prob[0 < A(X) < k|0 € H,] = a.

38
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Properties of the LR statistic M X)

* Properties of A(X) = sup, . yo LX|6)/ sup,L(X|0)

(1) 0 =AX) = 1, with M(X) = 1 if the supremum of the likelihood
occurs within H,,.

Intuition of test: If the likelihood is much larger outside H, —i.e., in the
unrestricted space—, then A(X) will be small and H, should be rejected.

(2) Under general assumptions, -2 In A(X) ~ X;Zm where p is the
difference in df between the H, and the general parameter space.

(3) For simple hypotheses, the numerator and denominator of the LR
test are simply the likelithoods under H, and H,. The LR test reduces to
a test specified by the NP Lemma. 39

Likelihood Ratio Tests: Example I

Example: M(X) for a X ~ N(6,6?) for Hy: 0 = 0, vs. H;: 0 # 0,. Assume
o? is known.

A SE-00220 F-gP R0 S
-n/2 = a =h —n(x=6y)
/1()() _ L(@O | X) _ (272') e 1 —c 202 —e 25?
Ny - g(x,»—)ic)z/ZO'2
L(X | X) (Zﬂ)rn/ze i=1
_ v 0 2 __ 0 2
Reject H, if  A(x)<k = InA(x)= ”(x—z‘)) <Ink :% >-21nk
o /n

Note: Finding £ is not needed.
Why? We know the left hand side is distributed as a X%, thus (-2 1n £)
needs to be the 1 — a percentile of a X%,. We need not solve explicitly

for £, we just need the rejection rule.
40

20
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Likelihood Ratio Tests: Example II

Example: M(X) for a X ~ exponential (\) for Hy A = Ay vs. Hy: A # A,
L(X | )= A" exp(-A X, x) = \" exp(-An x) = g = 1/x
7\‘ ne—xon} _ s
AMx) = = (x k) e
(1/x)"e™"

Reject Hyif A(x)<k = InAX) =nln(xiy)+n(l-L,x)<Ink
We need to find k such that P[A(X) < k] = a. Unfortunately, this is not

analytically feasible. We know the distribution of X is Gamma(z; A/ ),
but we cannot get further.

It is, however, possible to determine the cutoff point, £, by simulation
(set 72, A). 4

Testing in Economics

“The three golden rules of econometrics are
test, test and test.” David Hendry (1944,
England)

“The only relevant test of the validity of a
hypothesis is comparison of prediction with
experience.” Milton Friedman (1912-2000,
USA)

4

21
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Hypothesis Testing: Summary

* Hypothesis testing:

(1) We need a model. For example, y = fX, 6) + €

(2) We gather data (y, X) and estimate the model = we get )
(3) We formulate a hypotheses. For example, H,: =6, vs. H,:6=6,
(4) Find an appropriate test and know its distribution under H,,

(5) Decision Rule (Test H). Reject Hy: if 6, is too far from ) (“the
hypothesis is znconsistent with the sample evidence.”)

The decision rule will be based on a statistic, T(X). If the statistic is
large, then, we reject H,,.

* To determine if the statistic is “large,” we need a nu/l distribution.

43

* Ideally, we use a test that is most powerful to test H,,

Hypothesis Testing: Issues

* Logic of the Neyman-Pearson methodology:

If Hyis true, then T(X) will have a certain distribution (under H). We
call this distribution ##// distribution ot distribution under the null.

e It tells us how likely certain values are, if His true. Thus, we expect
‘large values’ for 6, to be unlikely.

* Decision rule.
If the observed value for T(X) falls in rejection region R

= Assumed distribution must be incorrect: H, should be rejected.

44
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Hypothesis Testing: Issues

* Issues:
— What happens if the model is wrong?
— What is a testable hypothesis?
— Nested vs. Non-nested models
— Methodological issues
— Classical (frequentist approach): Are the data consistent with H?

— Bayesian approach: How do the data affect our prior odds? Use
the posterior odds ratio.

45

Testing in the CLM: Single Parameter
* We test a hypotheses about a single parameter, say By, of the DGP.

Example: The linear model (DGP): y=XP + &
1. Formulate H,: X should not be in the DGP = H,: By = BY
H;: B # Bi-

2. Construct T(X) test H;: ti = (bg - BY)/sqrt{s? X' X) a }
Distribution of T(X) under H,, with s? estimating 6> (unknown):
If (A5) €| X ~ N(0, o°L;), =t ~ tr_g.

d
If (A5) not true, asymptotic results: = f, » N(, 1).
3. Using OLS, we estimate by, by, ..., by, ..., & estimate t;, = {.

4. Decision Rule: Set a level. We reject H, if p-value() < a.
Or, reject Hy, if |T|> tr_k1-qy2- i
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Testing in the CLM: t-value

* Special case: H,: Br=0
Then,

tie = (b /sqrt{s>X'X)x } = by/SE[by] =t ~ tr_g.-

This special case of ty, is called the #va/ue. That is, the t-value is the
ratio of the estimated coefficient and its SE.

¢ The t-value is routinely reported in all regression packages. In the
Im() function, it is reported in the third row of numbers.

* Usually, « = 5%, then if |f| >1.96 = 2, we say the coefficient by, is
“significant.”
47

Hypothesis Testing: Confidence Intervals

* The OLS estimate b is a point estimate for B, meaning that b is a
single value in R

Broader concept: Estimate a set Cy, a collection of values in R, For
example, gL € {0.00155, 0.00554}.

* It is common to focus on intervals Cp, = [Ly; Uy], called an interval

estimate for 0. The goal of €y, is to contain the true population value, 0.

We want to see 0 € C,,, with high probability.

Technical detail: Since G, is a function of the data, it is a RV and,
thus, it has a pdf associated with it. The coverage probability of the
interval C, = [Ly; Up] is Prob[0 € Cy,].

48
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Hypothesis Testing: Confidence Intervals
* The randomness comes from C,,, since 0 is treated as fixed.

* Intervals estimates C,, provide an idea of the uncertainty in the
estimation of 0: The wider Cp,, the more uncertainty about 0.

* Interval estimates Cy, are called confidence intervals (C.1.) as the goal is
to set the coverage probability to equal a pre-specified target, usually
90% or 95%. Cy, is called a (1 — o)% C.I.

* When we know the distribution for 0, it is straightforward to
construct a C.I. For example, if & ~N(8, Var[0]), then a (1 — )% C.1.:
Cn = [ + ,, * Estimated SE®), 6 + ;,_,, * Estimated SE(0)]

¢ This C.I. is symmetric around 0. Its length is proportional to SE(@) 49

Hypothesis Testing: Confidence Intervals

* Equivalently, C, is the set of parameter values for by such that the
z-statistic Zy (by) is smaller (in absolute value) than z;_,/,. That is,
Cn={bk: |zx(by)| = 7.,/ with coverage probability (1 - «)%

where the g values are taken from the standard normal distribution,
which is symmetric around 0. That is, zy_, /5 = -2,/, = | Z,)5]-

* In general, the coverage probability of C.1.’s is unknown, since we
do not know the distribution of the point estimates.

* In Lecture 8, we will use asymptotic distributions to approximate the
unknown pdf. Then, we will get asymptotic coverage probabilities.

* Summary: C.I’s are a simple but effective tool to assess estimgfion
uncertainty.
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Recall: A ~distributed variable

* Recall a t,-distributed variable is a ratio of two independent RV: a
N(0, 1) RV and the square root of a x2 RV divided by v.

_(x— ) (x- /J)
Let z G/\/_ =n—£2 ~ N (0,1)

(n-1s’ ~ y2
o

Let U =

Assume that Z and U are independent (check the middle
matrices in the quadratic forms!). Then,

(x—p) B B
Vi - Vn(x-u)  (x-w)

t = = = ~

n-1
(n-1s® s s/ n
\/ =1

51

Hypothesis Testing: Testing Example in R

Example: 3 Factor Fama-French Model (continuation) for IBM:
IBMg,, — 1= B + Byie Mktge, — 1) + Bsyp SMB + Bpypy, HML + &

Returns <- read.csv("http://www.bauer.uh.edu/rsusmel/phd/K-DIS-IBM.csv",
head=TRUE, sep=",")

b <- solve(t(x)%*% x)%0*% t(x)%*%y #b=XX)'X'y (OLS regression)

e <-y -x%*%b # regression residuals, e

RSS <- as.numeric(t(e)%o*%oc) # RSS

R2 <-1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared

Sigma2 <- as.numeric(RSS/(T-k)) # Estimated 0? = &

SE_reg <- sqrt(Sigma?2) # Estimated o — Regression stand error
Var_b <- Sigma2*solve(t(x)%*% x) # Estimated Vat[b|X] = & (X'X)!
SE_b <- sqrt(diag(Var_b)) # SE[b|X]

t_b <-b/SE_b # t-stats (See Chapter 4)
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OLS Estimation — Is IBM’s Beta equal to 17

> t(b)

Mkt_RF SMB HML
[1,] -0.005088944 0.9082989 -0.2124596 -0.1715002
> t(SE_b)

Mkt_RF SMB HML
[1,] 0.002487509 0.05672206 0.08411188 0.08468165
> t(t_b)

Mkt_RF SMB HML

[1,] -2.045799 16.01315 -2.525917 -2.025235 => all coefficients are significant (|t|>2).

* QQ: Is the market beta (B,) equal to 1? That is,
Hy: By=1 vs. Hi: B, # 1
=ty = (br — B,)/Est. SE(bg)
£, = (0.9082989 — 1)/ 0.05672206 = -1.616674
= |t;] <196 = Cannot reject Hj at 5% level 33

Testing: The Expectation Hypothesis (EH)

Example: EH states that forward/futures prices are good predictors
of future spot rates:  E[S ] = F .

Implication of EH: S, — F, . = unpredictable.
That is, B[S, — F 1] = E/[g] = 0!

Empirical tests of the EH are based on a regression:
(St+T - Ft,T)/St =at 5 Zt + € (Where E[BJ:O)
where Z, represents any economic variable that might have power to

explain S, for example, (i;-i).

Then, under EH, Hya=0and g =0.
vs H;: o # 0and/or B # 0. 54
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Testing: The Expectation Hypothesis (EH)

Example (continuation): We will informally test EH using exchange
rates (USD/GBP), 3-mo forward rates and 3-mo interest rates.

SF_da <- read.csv("http://www.bauet.uh.edu/rsusmel/4397/SpFor_ptices.csv",
head=TRUE, sep=",")

summary(SF_da)

x_date <- SF_da$Date

x_S <- SF_da$GBPSP

x_F3m <- SF_da$GBP3M
i_us3 <- SF_da$Dep_USD3M
i_uk3 <- SF_da$Dep_UKP3M
T <-length(x_S)

prem <- (x_S[-1] - x_F3m[-T])/x_S[-1]
int_dif <- (i_us3 - i_uk3)/100
y <- prem

x <-int_dif[-T]

fit <-Im(y ~ x) 55

Testing: The Expectation Hypothesis (EH)

Example (continuation): We do two individual t-tests on o & .
> summary(fit)
Call:

Im(formula =y ~ x)

Residuals:
Min 1Q Median 3Q Max
-0.125672 -0.014576 -0.000439 0.017356 0.094283

Coefficients:
Estimate  Std. Error tvalue Pr(>|t|)
(Intercept) -0.0001854 0.0016219 -0.114 0.90906  => constant not siguificant (| t| <2)
X -0.2157540 0.0731553 -2.949 0.00339 ** = slope is significant (| t|>2). = Reject H,

Signif. codes: 0 ****0.001 ***0.01 **0.050.1 "1

Residual standard error: 0.02661 on 361 degrees of freedom
Multiple R-squared: 0.02353, Adjusted R-squared: 0.02082 56
F-statistic: 8.698 on 1 and 361 DF, p-value: 0.003393
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Testing: The Expectation Hypothesis (EH)

* 95% C.I. for b:
Cyp = [ by £ i 1-05/2 * Estimated SE(by)]
Then,
Cy, = [-0.215754 — 1.96 * 0.0731553, -0.215754 + 1.96 * 0.0731553]
= [-0.3591384, -0.07236961]

Since B = 0 is not in C with 95% confidence = Reject Hy: B, =0
at 5% level.

Note: The EH is a joint hypothesis, it should be tested with a joint
test!

57

Testing a Hypothesis: Wald Statistic

* Most of our test statistics, including joint tests, are Wald statistics.
Wald = normalized distance measure:

One parameter: ti = (bx —B°y /s, = distance/unit

More than one parameter.

Let z = (random vector — hypothesized value) be the distance
W= 2z' [Vat(z)] 'z (a quadratic form)

* Distribution of W' ? We have a quadratic form.
—If z is normal and ¢® known, W ~ X121=Rank(Var[z])

— If z is normal and ¢®unknown, W ~ F

— If z is not normal and ¢? unknown, we rely on
d
: 2
asymptotic theory, W = X;_pankvar(z])

Abraham Wald (1902-1950, Hungary) .
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Testing a Hypothesis: Wald Statistic

* Distribution of I? We have a quadratic form.

Recall Theorem 7.4. Let the n X 1 vector y ~ N(p,, Z). Then,
- py' Zy‘l 0—w) ~ X2. —note: N = rank(X).
= If z ~ N(0, Var(2)) = Wis distributed as X} - gankvar(z])

In general, Var(z) is unknown, we need to use an estimator of Var(z).
In our context, we need an estimator of 62 Suppose we use 2. Then,
we have the following result:

Let z ~ N(0, Var(z)). We use 52 instead of 6° to estimate Var(z)

= W ~ F distribution.

Recall the F distribution arises as the ratio of two 2 vatiables divided

by their degtrees of freedom. 59

Recall: An F-distributed variable
x5 lJ
;(1% /T

Let z ifx/j_) J_(x ) N 0.)

—1)s2
Lee v =l2ZDst o2
o

Let

J.,T

If Z and U are independent, then

2

\/;M /1

o B
_ _ G-t g
(n—1)s? s?/n frt

f(n—1)

60
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Recall: An F-distributed variable

* There is a relationship between #and F when testing one restriction.

- For a single restriction, 7z = t’b — g. The variance of » is: r Var[b] r.

- The distance measure is # = 7 / Est. SE(m) ~ tr_.
- This #ratio is the sqrt{F-ratio}.

* ratios are used for individual restrictions, while F-ratios are used
for joint tests of several restrictions.

61

The General Linear Hypothesis: Hy: RB—-q =0

* Suppose we are interested in testing | joint hypotheses.

Example: We want to test that in the 3 FF factor model that the
SMB and HML factors have the same coefficients, By = Bz = B

We can write linear restrictions as Hy RB—q =0,

where R is a /x& matrix and q a /x1 vector.

In the above example (/=2), we write:

[0 0 1 BMkt lBl
000 BSMB

62
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The General Linear Hypothesis: Hy: RB—-q =0

* Q: Is Rb — q close to 0? There are two different approaches to this
questions. Both have in common the property of unbiasedness for b.

(1) We base the answer on the discrepancy vector:
m = Rb —q.
Then, we construct a Wald statistic:
W =m' (Varm|X])' m

to test if m is different from 0.

(2) We base the answer on a model loss of fit when restrictions are
imposed: RSS must increase and R? must go down. Then, we
construct an F test to check if the unrestricted RSS (RSSy) is different
from the restricted RSS (RSSR). 63

The General Linear Hypothesis: Hy: RB—-q =0

* Q: Is Rb — q close to 0? There are two different approaches to this
questions. Both have in common the property of unbiasedness for b.

(1) We base the answer on the discrepancy vector:
m = Rb —q.
Then, we construct a Wald statistic:
W =m' (Varm|X])'m

to test if m is different from 0.

(2) We base the answer on a model loss of fit when restrictions are
imposed: RSS must increase and R? must go down. Then, we
construct an F test to check if the unrestricted RSS (RSSy) is different
from the restricted RSS (RSSR). 64
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Wald Test Statistic for Hy: RB—-q =0

* To test H, we calculate the discrepancy vector:
m = Rb —q.
Then, we compute the Wald statistic:
W =m' (Varm|X])' m

It can be shown that Var[m | X] = R[c*X'X)|R’. Then,
W= [Rb-q) {R[c*X'X)"|R"}"! (Rb - q)

Under H, and assuming (A5) & estimating o® with & = e'e/(T-£):
W+ = (Rb - q)' {R[#X'X)"|R}"! (Rb - q)
FE=W*] ~ Frk

d
If (A5) is not assumed, the results are only asymptotic: /*F — X;
65

Wald Test Statistic for Hy: RB—-q =0

Example: In the 3 FF factor model for IBM excess returns (1=569)
Tizipme — 15 = @ + By ('mye — 77) + Bsmp SMBy + Bupy HMLy + €

we want to test if Bgyp = 0.2 and Byp = 0.6.

1. HOZ BSMB = (0.2 and BHML = 0.6.
Hli BSMB * 0.2 and/or BHML # 0.6. :>[ =2

We define R (2x4) below and write m = R — q = 0:

B1
[0 0 1 0]* Bukt :[0.2
0 0 0 1 Bsme 0.6
BHML

2. Test-statistic: F =W*/] = (Rb - q)' {R[#X'X)"|R"}'(Rb—-q) |,
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Wald Test Statistic for Hy: RB—-q =0

Example (continuation):

2. Test-statisticc F=W+*// = (Rb-q)' {R[ZX'X)'JR"}'(Rb - q)

d
Distribution under Hy: F = W*/2 ~ Fy_; (asymptotic, 25F = x3)
3. Get OLS results, compute F.

4. Decision Rule: o0 = 0.05 level. We reject H if p-value(F) < .05.
Or, reject Hy, if F> Fj—p1_k, 05-

J<-2 # number of restriction

R <- matrix(c(0,0,0,0,1,0,0,1), nrow=2) # matrix of restrictions

q<-c(2,1) # hypothesized values
m <- R%*%b - q # m = Estimated R*Beta - q 67
Wald Test Statistic for Hy: RB—-q =0
Example (continuation):
Var_m <- R %*% Var_b %*% t(R) # Vatiance of m
det(Var_m) # check for non-singularity
W <- t(m)%*%solve(Var_m)%*%m
F_t <- as.numeric(W/J) # F-test statistic
qf(.95, df1=], df2=(T - k)) # exact distribution (F-dist) if errors normal
p_val <-1 - pf(F_t, df1=], df2=(T - k)) # p-value(F_t) under errors normal
p_val
>F_t
[1] 49.21676
>
> qf(.95, df1=], df2=(T - k)) # exact distribution (F-dist) if errors normal
[1] 3.011672 F_t > 3.011672 => reject H, at 5% level
> p_val <- 1 - pf(F_t, df1=], df2=(T - k)) # p-value(F_t) under errors normal
> ral
p-va , 68
170 very low chance H,, is true.
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Wald Test Statistic for H,: Does EH hold?

Example: Now, we do a joint test of the EH. Hy: « = 0 and 3 = 0.

Using the previous program but with:

J<-2 # number of restriction

R <- matrix(c(1,0,0,1), ntow=2) # matrix of restrictions

q <-¢(0,0) # hypothesized values

>F_t

[1] 4.1024

>

> qf(.95, df1=], df2=(T - k)) # exact distribution (F-dist) if errors normal
[1] 3.020661 F_t > 3.020661 = reject H at 5% level
>

> p_val <- 1 - pf(F_t, df1=], df2=(T - k)) # p-value(F_t) under errors normal

> p_val

[1] 0.01731 very low chance Hj is true.

69

The F Test: H: RB—q =0

(2) We know that imposing restrictions leads to a loss of fit: R? must
go down. Does it go down a lot? —i.e., significantly?

Recall (i) e*=y— Xb*= e — X(b*~ b)
(i) b* =b - X'X)'R'RX'X)'RT'(Rb - q)

= et'er =e'e + (b* — b)'X'X(b*- b)
e¥'e* = e'et(Rb-q)'[RX'X)'RT'RX'X) ' X'XX'X) 'R'RX'X) 'R (Rb—q)
e¥'e* —e'e = (Rb — q)'[RX'X)'R']!(Rb - q)

Recall
— W= Rb - q)'{R[2X'X) R} Rb—q) ~x}  (if 62is known)
—e'e/ >~ x3_,.
Then,
F=(evet—e'e)/ |/ |e'e /(T —k)] ~ Fr_. 70
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The F Test: H: RB—q =0
. F=(evet—e'e)/ |/ |e'e /(T —k)] ~ Fr_.

Let R?2 = unrestricted model = 1 — RSS/TSS
R*2 = restricted model fit = 1 — RSS*/'TSS

Then, dividing and multiplying F by TSS we get
F=(1-R?-1-R))/]/[A-R)/(T = k)] ~ Fjrx

or

F={®*-R*)/]}/[1-R)/(T = k)] ~ Fpx

71

The F Test: F-test of goodness of fit

¢ In the linear model

y=XB+e=X; B+ X, B, +.. +X; B, T ¢

* We want to test if the slopes X,, ... , X; are equal to zero. That is,

Hy By =...=PB =0
H,: atleastone f # 0 = /=k-1
0
*We can writte H: RB—q=0 = |..
0 0 O
* We have | = £—1. Then,

F={®R-R¥)/(k-1)} /[1-R)/(T-A]~ Frr

. 72
* For the restricted model, R*?>= 0. o
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The F Test: F-test of goodness of fit

Then, F= {R*/(4-17) }/[(1-R)/(T-R)] ~ F,,

* Recall ESS/TSS is the definition of R% RSS/TSS is equal to (1 — R?).

ESS
F(k—1n—-k)= R?/(k — 1) =m/(k—n
(1-R%)/(T — k) %/(T_k)
_ESS/(k—1)
T RSS/(T=h)

* This test statistic is called the F-zest of goodness of fit.

73

The F Test: F-test of goodness of fit

Example: We want to test if all the FF factors (Market, SMB, HML)
are significant, using monthly data 1973 — 2020 (T=569).

y <-ibm_x

T <- length(x)

x0 <- matrix(1,T,1)

x <- cbind(x0,Mkt_RF, SMB, HML)

k <- ncol(x)

b <- solve(t(x)%o*% x)%*% t(x)%*%y #OLS regression

e <-y-x%*%b

RSS <- as.numeric(t(e)%o*%e)

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%o*%y) #R-squared

> R2

[1] 0.338985

F_goodfit <- (R2/(k-1))/((1-R2)/(T-k)) #F-test of goodness of fit.

> F_goodfit

[1] 96.58204 = F_goodfit > F, 4, s = 2.387708 = Reject H,, 74
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The F Test: General Case — Example

¢ In the linear model
y=XB+e=B,+X, B, +X; B, +X,B, ¢

* We want to test if the slopes X3, X, are equal to zero. That is,

H,:p,=5,=0
H :B,#0 or f,#0 orboth Byand B, #0

* We canuse, F'= (e¥e*— e'e)/]/ [e'e/(T— k)| ~ Fjpx

RSS,— RSS,, | Ay Ay

F (cost in df, unconstr df) =
RSSy [ T-ky 7S

32

The F Test: General Case — Example

Example: We want to test if the additional FF factors (SMB, HML)
are significant, using monthly data 1973 — 2020 (T=569).

Unrestricted Model:
U) 1 —1p = a; + By (e —77) + P2 SMBy + B3 HMLy + &;;

Hypothesis:  Hy: B,=B;=0
H;:B,# 0and/or B;# 0

Then, the Restricted Model:

R)  rp-rr=a; By e —Tr) + Eip
(RSSR=RSS»)/J _
RSSy/(T—ky)

Test: F= Firg  with]=ky—ky=4-2=2

76
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The F Test: General Case — Example

Example (continuation): The unrestricted model was already
estimated. For the restricted model:

y <-ibm_x

x0 <- matrix(1,T,1)

x_r <- cbind(x0,Mkt_RF)
T <- nrow(x)

k2 <- ncol(x)

b2 <- solve(t(x_1)%*% x_1)%*% t(x_1)%*%y
e2 <-y —x_r%*%b2

RSS2 <- as.numeric(t(e2)%o*%0e2)

> RSS =1.932442

> RSS2 = 1.964844

J<-k-k2

F_test <- (RSS2 - RSS)/J)/(RSS/(I-k))

# Restricted X vector

# Restricted OLS regression

# RSS,,
# RSS,

# ] = degrees of freedom of numerator

71

The F Test: General Case — Example

Example (continuation):
F_test <- (RSS2 - RSS)/J)/(RSS/(T-K))
> F_test

[1] 4.736834

> qf(.95, df1=], df2=(T-k))

[1] 3.011672

p_val <- 1 - pf(F_test, df1=], df2=(T"k))
> p_val

[1] 0.009117494

# B 565,05 Value (= 3)
= Reject H,,.
# p-value of F_test

= p-value is small = Reject H,,.

78
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Lagrange Multiplier Statistics

* Specific to the classical model.
Recall the Lagrange multipliers:

A= REX)'R]'m

Suppose we just test Hy: A = 0, using the Wald criterion.
W = A (Var[A | X]) A
where
Var[A|X] = [RXX) 'R 'Var[m | X] [RX'X) R
Var[m|X] = R[c*X'X)|R’

Varlh X1 = [ROEX) R e XX IRREX) IR
= GZ [R(X!X)_ R!]_

Then,
= m REX) 'R {0? REXX) 'R} [RE'K) R m
= m’ [c’RX'X) 'R’} m "

Application (Greene): Gasoline Demand

* Time series regression,
LogG = B, + B,logY + B;logPG + B,logPNC +B:logPUC
+ BlogPPT + B.logPN + BlogPD + BologPS + &
Period = 1960 - 1995.

* A significant event occurs in October 1973: the first oil crash. In
the next lecture, we will be interested to know if the model 1960 to
1973 is the same as from 1974 to 1995.

Note: All coefficients in the model are elasticities.
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Application (Greene): Gasoline Demand

Ordinary least squares regression ............
LHS=LG Mean = 5.39299
Standard deviation .24878
Number of observs. 36
Model size Parameters 9
Degrees of freedom 27

Residuals Sum of squares .00855 <**kkkkkk
Standard error of e .01780 <kEkkkkkk
Fit R-squared .99605 <kkkkkkk
Adjusted R-squared .99488 kkkkkkk
________ +_____________________________________________________________
Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X
________ +_____________________________________________________________
Constant| -6.95326%** 1.29811 -5.356 .0000
LY| 1.35721%** .14562 9.320 .0000 9.110093
LPG| -.50579*** .06200 -8.158 .0000 .67409
LPNC| -.01654 .19957 -.083 .9346 .44320
LPUC| -.12354* .06568 -1.881 .0708 .66361
LPPT| .11571 .07859 1.472 .1525 .77208
LPN| 1.10125%** .26840 4.103 .0003 .60539
LPD| .92018*** .27018 3.406 .0021 .43343
LPS| -1.09213%** .30812 -3.544 .0015 .68105

———————— L P

Application (Greene): Gasoline Demand

* QQ: Is the price of public transportation really relevant? H, : B, = 0.
(1) Distance measure: £, = (b, —0) /'s,, = (11571 -0) /.07859
= 1472 < 2.052 = cannot reject H,,

(2) Confidence interval: by £ 7 95,7 X Standard error

11571 £2.052 x (.07859)

= 11571 £.16127 = (-.045557 ,.27698)

= C.I. contains 0 = cannot reject H,,

(3) Regression fit if X, drop? Original R? = .99605,
Without LPPT, R*? = 99573
F(1,27) = [(:99605 — .99573)/1]/[(1 = .99605)/(36 — 9)] = 2.187
=1.472% (with some rounding) = cannot rejectH,,.
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Gasoline Demand (Greene) - Hypothesis Test:
Sum of Coefficients

* Do the three aggregate price elasticities sum to zero?

Hy:B; +Bg + By =
R=10,0,0,0,0,0,1,1,1], q=0

Variable| Coefficient Standard Error t-ratio P[|T|>t]

____________ +_____________________________________________________
LPN| 1.10125%** .26840 4.103 .0003 .60539
LPD| .92018*** .27018 3.406 .0021 .43343
LPS| -1.09213%** .30812 -3.544 .0015 .68105

1 | 2 | 3 [ 4 | 5 [ 3 [ 7 [ 8 [ 9 |

1 16051 0069024  DO256198 | 021809 00240267 00295907 D.0261772 0197857 0175068
2 -0.189024 0.0212045 0.00290895 0.0243971 0.00269963 0.0032894 0.00280174 -0.0222154 -0.0195876
3 D0ZE6196 | 000200895 000384368 0000682307 -0.000413822 | 000176052 00114883 00044853 O.0108144
[l 0218091 00243971 D000BE2307 | (.0398293 | (00360897 | (0.00824835 0.0236143 00311143 00453555
5 00240267 | 000269963 0000413822 0.00350897 000431411 0001419 000979376 00118214 -0.00570482
[ 00295907 | 0.0032854  -D.ODT7EOS2 | 0.00824835 0001419 0O0BI7E73 | 00134911 | 000740857 -D.0198458
7 -0.0261772 0.00280174 -0.0114883 0.0236143 0.009739376 0.0134311 0.0720371 -0.0335608 -0.0705545
[ 0197857 00222154 00044953 001143 0018214 | 000740557 -0.03ITE05| 00729982 00346625
9 0176068 D.O195876 00108144 00453565 000970482 0.019a458)  -0.0705545 )  00MEEI5 . 0.094539
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Gasoline Demand (Greene) - Hypothesis Test:
Sum of Coefficients — Wald Test

--> MATRIX ; list ;R = [0,0,0,0,0,0,1,1,1] : g = [0O]
m=R*hb - g

Varm = R*Varb*R'
Wald = m' <Varm> m §
Var[m] = R = Var[b] * R = [0 00000 111]
9 9
5 5 A L . =
Lid el &RJCGV(E?;,E?) 0.10107
n' [Var(m)]? m = 8.544¢

The critical chi sgoared with 1 degree of freedom is 3.84, =0 the
hypothesiszs is rejected.
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LHS=LG

Model size

Linearly restricted regression

Mean

Standard deviation
Number of observs.

Parameters

Degrees of freedom

F = [(.0112599

3

2

- .0085531) /1] / [.0085531/(36

Gasoline Demand (Greene) - Imposing Restrictions

5.392989
.2487794

6
8 <*** 9 — ] restriction
8

Residuals Sum of squares .0112599 <*** With the restriction

Residuals Sum of squares .0085531 <*** Without the

restriction

Fit R-squared = .9948020

Restrictns. F[ 1, (prob) = 8.5(.01)

Not using OLS or no constant.R2 & F may be < 0

________ +_____________________________________________________________

Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X

________ +_____________________________________________________________

Constant| =10.1507%%** 78756 -12.889 .0000

LY| 1.71582%%* 08839 19.412 .0000 9.11093

LPG| -.45826%** 06741 -6.798 .0000 .67409
LPNC| .46945%x* 12439 3.774 .0008 .44320
LPUC| -.01566 06122 -.256 .8000 .66361
LPPT| .24223%** 07391 3.277 .0029 .77208
LPN| 1.39620%** 28022 4.983 .0000 .60539
LPD| .23885 15395 1.551 .1324 .43343
LPS| -1.63505%** 27700 -5.903 0000 6810585

________ +_____________________________________________________________

- 9)] = 8.544691

* Compare the sums of squares
With two restrictions imposed

Unrestricted

Fit R-squared

imposed?

Residuals Sum of squares
Fit R-squared

Residuals Sum of squares

.0286877
9979006

.0085531
9960515

Gasoline Demand (Greene) - Joint Hypotheses

* Joint hypothesis: Income elasticity = +1, Own price elasticity = -1.
The hypothesis implies that logG = B; + logY —logPg + 3, logPNC + ...

Strategy: Regress logG —logY + logPg on the other variables and

F = ((.0286877 - .0085531)/2) / (.0085531/(36-9)) = 31.779951
The critical F for 95% with 2,27 degrees of freedom is 3.354 = H, is rejected.

* QQ: Are the results consistent? Does the R? really go up when the restrictions are
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Gasoline Demand - Using the Wald Statistic

--> Matrix ; R = [0,1,0,0,0,0,0,0,0 /
0,0,1,0,0,0,0,0,01%
--> Matrix ; q = [1/-1]8
--> Matrix ; list ; m = R*b - g $
Matrix M has 2 rows and 1 columns.
1
o +
1| 35721
2| 49421
o +
--> Matrix ; list ; vm = R*varb*R' $
Matrix VM has 2 rows and 2 columns.
1 2
domm oo e e L LT +
1| 02120 00291
2| 00291 00384
domm oo e e LT +
--> Matrix ; list ; w=1/2 * m'<vm>m $
Matrix W has 1 rows and 1 columns.
1
Fomm e +
1| 31.77981 87
Fomm e +

Gasoline Demand (Greene) — Testing Details

* QQ: Which restriction is the problem? We can look at the Jx1
estimated LM, A, for clues:

A=[R(XX)R'T'(Rb-q)
* Recall that under H, A should be 0.

Matrix Result has 2 rows and 1 columns.

1
o +
1] -.88491 Income elasticity
2| 129.24760 Price elasticity
o +

Results s#ggest that the constraint on the price elasticity is havinga
greater effect on the sum of squares.
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Gasoline Demand (Greene) - Basing the Test on
R2

* After building the restrictions into the model and computing
restricted and unrestricted regressions: Based on R?s,

F = [(.9960515 — .997096)/2]/[(1 —.9960515)/(36-9)]
= 3.571166 ()

* Q: What's wrong?
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