RS - Econometrics 1 - Lecture 3 (Model Specification and Testing)

Lecture 3
Specification & Testing in the
Classical Linear Model

OLS Estimation - Assumptions

* CLM Assumptions

(A1) DGP:y =X B + g s correctly specified.

(A2) Efe|X] = 0

(A3) Var[e|X] = o* L.

(A4) X has full column rank —rank(X)=4-, where T = £.

Q: What happens when (A1) is not correctly specified?

* In this lecture, we look at (Al), always in the context of linearity. Are
we omitting a relevant regressor? Are we including an irrelevant
variable? What happens when we impose restrictions in the DGP?
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Specification Errors: Omitted Variables

* Omitting relevant variables: Suppose the correct model is
y=XB, +X,B,+¢& —iec., with two sets of variables.
But, we compute OLS omitting X,. That is,
y=XB, +¢ <= the “short regression.”

Some easily proved results:

(1) E[b, | X] = E [XX) X" y] = By + XX) XX, # By So,
unless X,'X, =0, b, is biased. The bias can be huge. It can reverse the
sign of a price coefficient in a “demand equation.”

(2) Var|b, | X] = Var[b,,|X]. (The latter is the northwest submatrix of
the full covariance matrix.) The proof uses M, the residual maker. We
get a smaller variance when we omit X,,.

Specification Errors: Omitted Variables

* We get a smaller variance when we omit X,.

Interpretation: Omitting X, amounts to using extra information —i.e.,
B, = 0. Even if the information is wrong, it reduces the vatiance.

(3) MSE
b, may be more “precise.”
Precision = Mean squared error
= variance + squared bias.

Smaller variance but positive bias. If bias is small, may still favor the
short regression.

Note: Suppose XX, = 0. Then the bias goes away. Interpretation,
the information is not “right,” it is irrelevant. b, is the same as b ,.

Do not share/post online without written authorization



RS - Econometrics 1 - Lecture 3 (Model Specification and Testing)

Omitted Variables Example: Gasoline Demand

* We have a linear model for the demand for gasoline:
G=PGB, +YB,+k,

Q: What happens when you wrongly exclude Income (Y)?

El[b | X] =B, + Cov[ Price, Income] B,
Var| Price]

In time seties data, B, < 0, B, > 0 (usually)
Cov|Price, Income] > 0 in time series data.

=> The short regression will overestimate the price coefficient.

In a simple regression of G (demand) on a constant and PG, the Price
Coefficient (3,) should be negative.

Estimation of a ‘Demand’ Equation (Greene):
Shouldn’t the Price Coefficient be Negative?

Simple Regression of G on a Constant and PG

Fitted &
2= +154.0304
b = +31.1075
Rsq= G924

50 100 150 2.00 250 200 350 4.00 450

PG
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Ordinary least squares regression ....
LHS=G Mean = 2
Standard deviation
Number of observs. =
Model size Parameters =
Degrees of freedom =
Residuals Sum of squares = 14
Standard error of e =
Fit R-squared =
Adjusted R-squared =
Model test F[ 2, 33] (prob) = 987.
________ o .
Variable| Coefficient Standard Error t
________ o
Constant| =79.7535*** 8.67255
Y| .03692*** .00132
PG|  -15.1224%%*%* 1.88034

________ -

negative slope for the price variable.

Estimation of a ‘Demand’ Equation (Greene):
Multiple Regression - Theory Works.

33
72.79834
6.68059
.98356
.98256
1(.0000)

-ratio P[|T|>t]
-9.196 .0000
28.022 .0000
-8.042 .0000

* Note: Income is helping us to identify a demand equation —i.e., with a

But, we estimate

the results: It increases variance -the cost
but does not create biases.

so E[b;,|X] = B,.

Specification Errors: Irrelevant Variables

¢ Irrelevant variables . Suppose the correct model is

y=XB, +¢ —i.e., with one set of variables.
y=XB, +XB,+¢ <= the “long regression.”

Some easily proved results: Including irrelevant variables just reverse

of not using information-;

= Since the vatiables in X, are truly irrelevant, then B, = 0,

Do not share/post online without written authorization




RS - Econometrics 1 - Lecture 3 (Model Specification and Testing)

Specification Errors: Irrelevant Variables

* A simple example

Suppose the correct modelis: y =, + B, X, + €

But, we estimate: y=B,+tBX,+B,;X;+¢
* Unbiased:  given that 35 =0 = E[b, | X]= B,
e Efficiency:

o’ 1 o’

2 _
Cp, =

— X > —
Z(X2i_X2)2 1—1")2(2,/\/3 Z(XZi_X2)2

Note: These are the results in general. Note that if X, and Xj are

uncorrelated, there will be no loss of efficiency after all.

Other Models

* Looking ahead to nonlinear models: neither of the preceding results
extend beyond the linear regression model.

“Omitting relevant variables from a model is always costly. (No
exceptions.) The benign result above almost never carries over to
more involved nonlinear models.” (Greene)
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Specification and Functional Form: Non-linearity

* In the context of OLS estimation, we can introduce some non-
linearities: quadratic, cubic and interaction effects can be easily
estimated by OLS. For example:

y=B B, X, + B X2+ B, X, X; + ¢

* Partial effects , dy/0X,, (and standard errors) can be different. In
the above model

dy/0X, =B, + 2B, X, + B, X; # B,

Note: Recall that in a simple linear model:

Y=B B X, + B X+ g
the partial effect is equal to the B; coefficient:
dy/0X, = B3,.

Specification and Functional Form: Non-linearity

* The estimator of partial effects and their variances are different
from b, and Var|b, | X] in the presence of non-linearities

Example: Quadratic Effect

Population Estimators

y:B1+B2x+B3x2+B4z+s )A/Zb,+b2x+b3x2+b4z
E n

5)‘:%:[324—2[33)6 8, =b,+2bx

Estimator of the variance of Sx

Est.Var[Sx] =Var[b,]+ 4x2Var[b3] +4xCovl[b,,b,]

Note: Now, the partial effect and the variance are a function of the
data! Usually, an average is used in the estimation.
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Application (Greene): Log Income Equation
Ordinary least squares regression ............
LHS=LOGY Mean -1.15746 Estimated Cov[bl,b2]
Standard deviation = .49149
Number of observs. = 27322 1 | ? |
Model size Parameters = 7
Degrees of freedom = 27315 1 | 454793006 -51285e-008
Residuals Sum of squares = 5462.03686 ? 01285008 RE7I73e010 0 9.
Standard error of e = .44717 ) ANNMaif | Qo ANTann?
Fit R-squared = .17237
________ o
Variable| Coefficient Standard Error Db/St.Er. P[|Z]>z] Mean of X
________ o
AGE | .06225%** .00213 29.189 0000 43.5272
AGESQ| =.00074*** .242482D-04 -30.576 0000 2022.99
Constant| -3.19130%*x* .04567 -69.884 0000
MARRIED| .32153*** .00703 45.767 0000 . 75869
HHKIDS | —.11134*** .00655 -17.002 0000 .40272
FEMALE | -.00491 .00552 -.889 3739 .47881
EDUC| .05542%** .00120 46.050 0000 11.3202
________ o
At Average Age = x = 43.5272.
Estimated Partial effect = .066225 - 2(.00074) x 43.5272 = .00018.
Estimated Variance 4.54799e-6 + 4(43.5272)2*(5.87973e-10) + 4(43.5272)*
(=5.1285e-8) = 7.4755086e-08.
Estimated standard error = .00027341.

Example: Interactive Effect

Population

y=B +B,x+Psz+Pxz+e y
R L
Ox

Estimator of the variance of Sx

EstVar[§ 1=Var(b,]+ zVar[b,]+

x

Specification and Functional Form: Non-linearity

Estimators

=b, +b,x+b,z+b,xz

=b,+b,z

2zCov[b,,b,]
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Application (Greene): Interaction Effect

Ordinary least squares regression ............

LHS=LOGY Mean = -1.15746

Standard deviation = .49149

Number of observs. = 27322

Model size Parameters = 4

Degrees of freedom = 27318

Residuals Sum of squares = 6540.45988

Standard error of e = .48931

Fit R-squared = .00896

Adjusted R-squared = .00885

Model test F[ 3, 27318] (prob) = 82.4(.0000)
________ o
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ o

Constant|  -1.22592%%%* .01605 -76.376  .0000

AGE | .00227%** .00036 6.240  .0000 43.5272
FEMALE | .21239%%* .02363 8.987  .0000 .47881
AGE_FEM| -.00620%** .00052 -11.819  .0000 21.2960

________ o
Do women earn more than men (in this sample?) The +.21239 coefficient on
FEMALE would suggest so.

But, the female “difference” -i.e., partial effect- is: +.21239 - .00620*Age.

At average Age, the effect is: .21239 - .00620 * (43.5272) = -.05748.

OLS Subject to Restrictions

* Restrictions: Theory imposes certain restrictions on parameters.

Examples:

(1) Dropping variables from the equation. That is, certain
coefficients in b forced to equal 0. (Is variable x;=s/ze significant?”)

(2) Adding up conditions: Sums of certain coefficients must equal
fixed values. Adding up conditions in demand systems. Constant
returns to scale in production functions (« + 3 = 1 in a Cobb-Douglas
production function).

(3) Equality restrictions: Certain coefficients must equal other
coefficients. Using real vs. nominal variables in equations.

* Usual formulation with J linear restrictions (R is Jxk and q is Jx1):

Min, {S(x;, ) = Y1 e =ee=(y—Xb) (y—Xb)} stRb=gq
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Restricted Least Squares
¢ In practice, restrictions can usually be imposed by solving them out.
(1) Dropping variables —i.e., force a coefficient to equal zero.
Problem: min, Z: (v, —=byx;y —byX;y —byx;3 ) st. by=0
. n 2
min, ZH (J’i =bixX; —byxpp )

(2) Adding up. Do least squares subject to b, +b,+b,=1. Then, by = 1-
b,-b,. Make the substitution so (y — x;) = b,(x, —X;) + b,(x, — x;) T e.

Problem:  Min, Z; (s =xi3) = by sy = Xi3) = Do (32 = X ))2

(3) Equality. If b, = b,, theny = bx, + b,x, + b,x, + e
= bx, + by(x,+x,) T e

Problem: Min, Z?zl (3, —byxy = by + x5 ))2

Restricted Least Squares

* Theoretical results provide insights and the foundation of several

tests.

* Programming problem with | restrictions (R is Jxkand q is Ax1):
Minimize wetb S = (y — XB)' (y — XPB) st. RB=q

* Quadratic programming problem
= Minimize a quadratic criterion s.t. a set of linear restrictions.
- Concave programming problem, all binding constraints. No
need for Kuhn-Tucker
- Solve using a Lagrangean formulation.

* The Lagrangean approach (the 2 is for convenience with is A Jx1).
Miny,  L*=(@y-XB) y-XP)+2L (RB-q)
=0y -BXy-yXp+ FXXB)+2 A (RB-q)
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Restricted Least Squares

* The Lagrangean approach
Min bA [¥==0y-2pXy +BXXB)+2A (RB—q)

f.o.c:
oL*/ob' = -2X'(y -Xb*) + 2R'A =0 = -X'(y - Xb*) + RA =0
0L*/ON = 2 (Rb* - q) = 0. = Rb*-q) =0

Then, from the 1% equation (and assuming full rank for X):
Xy+XXb*+RA=0= b*=XX)Xy-XX)'R'A
=b- X'X)'R'A
Premultiply both sides by R and then subtract q
Rb*—-q=Rb-RX'X)'R'A-q
0=-RX'X)'R'A + (Rb—-q)

Solving for A = A=RXX)'R]!Rb-q)
Substituting in b* = b* =b — (X'X)'R'[RX'X)'R’|'®R b — q)

Linear Restrictions

* Q: How do linear restrictions affect the properties of the least
squares estimator?

Model ( DGP): y=XB + ¢
Theoty (information): RB-q = 0

Restricted LS estimator: b* = b — X'X)'R'[RX'X)R'|}(Rb - q)
1. Unbiased?
E[b*|X] = B - X'X)'R'[RX'X)'R'|"E[(Rb — q) | X] = B
2. Efficiency?
Var[b*|X] = ¢*X'X) ! — o X'X) 'R'[RX'X)'R']! RX'X)"!
Var[b* | X] = Var[b | X] — a nonnegative definite matrix < Var[b|X]

3. b* may be more “precise.”

Precision = Mean squared error = variance + squared bias.
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Linear Restrictions

1. b* =b—-Cm, m = the “discrepancy vector” Rb —q.
Note: If m =0 = b* = b. (Q: What does m = 0 mean?)

2.0 = [R(X'X)’lR']’l(Rb -q) = [R(X’X)’1R’]’1m
When does A = 0? What does this mean?

3. Combining results: b* = b — X'X)'R'A

4. Recall: e’e = (y — Xb)'(y — Xb) < e¥'e* = (y — Xb*)'(y — Xb*)

= Restrictions cannot increase R? — R2>R¥

Linear Restrictions — Interpretation

* Two cases
- Case 1: Theoty is correct: RB — q = 0 (restrictions hold).
b* is unbiased & Var[b*|X] = Var[b|X]
- Case 2: Theory is incorrect: RP - q # 0 (restrictions do not hold).
b* is biased & Var[b*|X] =< Var[b|X].

* Interpretation
- The theory gives us information.
Bad information produces bias (away from “the truth.”)

Any information, good or bad, makes us more certain of our
answer. In this context, azy information reduces variance.
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Linear Restrictions - Interpretation

- What about ignoring information (theory)?
Not using the correct information does not produce bias.

Not using information foregoes the variance reduction.

Testing in Economics

“The three golden rules of econometrics are
test, test and test.” David Hendry (1944,
England)

“The only relevant test of the validity of a
hypothesis is comparison of prediction with
experience.” Milton Friedman (1912-2000,
USA)

24
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Hypothesis Testing

¢ Testing involves the comparison between two competing hypothesis:
— H,: The maintained hypothesis.
— H,: The hypothesis considered if H,,.

* Idea: We collect a sample, X = {X|, X, ..., X,}. We construct a
statistic T(X) = f{X), called the zest statistic. Now we have a decision rule:

—If T(X) is contained in space R, we reject H,, (& we learn).
— If T(X) is in the complement of R (R®), we fail to reject H,,.

Note: T(X), like any other statistic, is a RV. It has a distribution. We
use the distribution of T(X) to determine R, the rejection region (& we
associate a probability to R).

25

Hypothesis Testing: Rejection Region

Example: Suppose T(X) = X. If data is normal, the distribution of X
is also normal. Then, under H,, we build a Rejection Region, R:

R=[X<T, Ty>X]

Rejection Region

Density
002
|

-20 / o] 20 '\ 40
TEX)in %

TLB TUB

Note: The blue area (“significance level”) represents the P[R|H,)]. For
example, if the blue area is 5%, then, T} ; = -1.96 & T;; = 1.96. 26
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Hypothesis Testing: p-value

* The classical approach, also known as significance testing, relies on p-values:
p-value is the probability of observing a result at least as extreme as the
test statistic, under H,,.

Example: Suppose T(X) ~ x5. We compute T(X) = 7.378. Then,
pvalne(T(X) = 7.378) = 1 — Prob|T(X) < 7.378] = 0.025

Chi-square Distribution (df=2): P-value.

E e 2.5%
o s 7378 1 15
quantiles 27

Hypothesis Testing: Steps

* Steps for the dlassical approach, also known as significance testing:

1. Identify H, & set a significance level (2%0).

2. Determine the appropriate test statistic T'(X) and its distribution
under the assumption that H,, is true.

3. Calculate T(X) from the data.
4. Rule: If p-value of T(X) < « = Reject H;, (& we learn H,! is not true).
If p-value of T(X) > o => Fail to reject H,. (No learning.)

Note: In Step 4, setting a% is equivalent to setting R. Thus, instead of
looking at p-value, we can look if T(X) falls in K (in the blue area). We
do this by constructing a (1 - «)% C.I.

* Mistakes are made. We want to quantify these mistakes. 23
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Hypothesis Testing: Error Types

¢ Type I and Type II errors
A Type I erroris the error of rejecting H, when it is true.

A Type II error is the error of “accepting” H,, when it is false (that is,
when H, is true).

Notation: Probability of Type I error: a0 = P[X € R|H|
Probability of Type II error: B = P[X € R¢|H|]

Example: From the U.S. Jury System
Type I error is the error of finding an innocent defendant guilty.

Type I error is the error of finding a guilty defendant not guilty.

e There is a trade-off between both errors.

Hypothesis Testing: Type I and Type II Errors

¢ Traditional view: Set Type I error equal to a small number & find a test
that minimizes Type II error.

The usual tests (t-tests, F-tests, Likelihood Ratio tests) incorporate this
traditional view.

Definition: Power of the test

The probability of rejecting H, based on a test procedure is called the
power of the test. 1t is a function of the value of the parameters tested, ¢:

n=mn(f) =P[X € R].

Note: whenf e H;, = mn(0) =1-p(0)  -the usual application.

30
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Hypothesis Testing: Summary

* Hypothesis testing in Econometrics:

(1) We need a model. For example, y = fX, 6) + €

(2) We gather data (y, X) and estimate the model = we get )
(3) We formulate a hypotheses. For example, H,: 6= 6, vs. H;:0= 6,
(4) Find an appropriate test and know its distribution under H,,

(5) Decision Rule (Test H). Reject Hy: if 6, is too far from ) (“the
hypothesis is znconsistent with the sample evidence.”)

The decision rule will be based on a statistic, T(X). If the statistic is
large, then, we reject H,,.

* To determine if the statistic is “large,” we need a nu/l distribution.

. 31
* Ideally, we use a test that is most powerful to test H,,

Hypothesis Testing: Issues

* Logic of the Neyman-Pearson methodology:

If Hyis true, then T(X) will have a certain distribution (under H). We
call this distribution ##// distribution ot distribution under the null.

e It tells us how likely certain values are, if His true. Thus, we expect
‘large values’ for 6, to be unlikely.

¢ Decision rule.

If the observed value for T(X) falls in rejection region R

= Assumed distribution must be incorrect: H, should be rejected.

32
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Hypothesis Testing: Issues

* Issues:
— What happens if the model is wrong?
— What is a testable hypothesis?
— Nested vs. Non-nested models
— Methodological issues
— Classical (frequentist approach): Are the data consistent with H?

— Bayesian approach: How do the data affect our prior odds? Use
the posterior odds ratio.

33

Testing in the CLM: Single Parameter
* We test a hypotheses about a single parameter, say By, of the DGP.

Example: The linear model (DGP): y=XP + &
1. Formulate H,: X should not be in the DGP = H,: By = BY
H;: B # Bi-

2. Construct T(X) test H;: ti = (bg - BY)/sqrt{s? X' X) a }
Distribution of T(X) under H,, with s? estimating 6> (unknown):
If (A5) €| X ~ N(0, o°L;), =t ~ tr_g.
d
If (A5) not true, asymptotic results: = f, » N(, 1).
3. Using OLS, we estimate by, by, ..., by, ..., & estimate t;, = {.

4. Decision Rule: Set a level. We reject H, if p-value() < a.
Or, reject Hy, if |T|> tr_k1-qy2- »
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Testing in the CLM: t-value

* Special case: H,: Br=0
Then,

tie = (b /sqrt{s>X'X)x } = by/SE[by] =t ~ tr_g.-

This special case of ty, is called the #va/ue. That is, the t-value is the
ratio of the estimated coefficient and its SE.

¢ The t-value is routinely reported in all regression packages. In the
Im() function, it is reported in the third row of numbers.

* Usually, « = 5%, then if |f| >1.96 = 2, we say the coefficient by, is
“significant.”
35

Hypothesis Testing: Confidence Intervals

* The OLS estimate b is a point estimate for B, meaning that b is a
single value in R

* Broader concept: Estimate a set C,, a collection of values in RX.

* When the parameter is real-valued, it is common to focus on
intervals C, = [L_; U], called an znterval estimate for 0. The goal of C_
is to contain the true value, e.g. # € C_, with high probability.

* C, is a function of the data. Therefore, it is a RV.

¢ The coverage probability of the interval C = [L_; U, ] is Prob[0 €C].

36
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Hypothesis Testing: Confidence Intervals
* The randomness comes from C_, since ¢ is treated as fixed.

¢ Interval estimates C_ are called confidence intervals (C.1.) as the goal is
to set the coverage probability to equal a pre-specified target, usually
90% or 95%. C, is called a (1 — )% C.I.

* When we know the distribution for the point estimate, it is easy to
construct a C.I. For example, under (A5), the distribution of b is
normal, then a 95% C.I. is given by:

C,= [bx + zs x Estimated SE(bg), by + z4,5 x Estimated SE(by)]

(Note: The Normal distribution is symmetric = -z s = Z ¢75 = 1.96).

* This C.I. is symmetric around by, with length proportional to its SE.
37

Hypothesis Testing: Confidence Intervals

* Equivalently, C_ is the set of parameter values for by such that the
z-statistic z (by) is smaller (in absolute value) than z, ,. That is,
C.= {bg: |z,(br)| = z_,,,} with coverage probability (1 - «)%.

* In general, the coverage probability of C.1.’s is unknown, since we
do not know the distribution of the point estimates.

* In Lecture 8, we will use asymptotic distributions to approximate the
unknown distributions. We will use these asymptotic distributions to
get asymptotic coverage probabilities.

* Summary: C.I.’s are a simple but effective tool to assess estimation

uncertainty. s
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Recall: A ~distributed variable

* Recall a t,-distributed variable is a ratio of two independent RV: a
N(0, 1) RV and the square root of a x2 RV divided by v.

_(x— ) (x- /J)
Let z G/\/_ =n—£2 ~ N (0,1)

(n-1)s>
02 n—1

Let U =

Assume that Z and U are independent (check the middle
matrices in the quadratic forms!). Then,

(x—p) B B
Vi - Vn(x-u)  (x-w)

t = = = ~

n-1
(n-1s® s s/ n
\/ =1

39

Hypothesis Testing: Testing Example in R

Example: 3 Factor Fama-French Model (continuation) for IBM:
IBMpg,, — 1, = By + Byke Mktge, — 1) + Bsyp SMB + Bpypy, HML + £

Returns <- read.csv("http://www.bauer.uh.edu/rsusmel/phd/K-DIS-IBM.csv",
head=TRUE, sep=",")

b <- solve(t(x)%*% x)%0*% t(x)%*%y #b=XX)'X'y (OLS regression)

e <-y -x%*%b # regression residuals, e

RSS <- as.numeric(t(e)%o*%oc) # RSS

R2 <-1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared

Sigma2 <- as.numeric(RSS/(T-k)) # Estimated 0? = &

SE_reg <- sqrt(Sigma?2) # Estimated o — Regression stand error
Var_b <- Sigma2*solve(t(x)%*% x) # Estimated Vat[b|X] = & (X'X)!
SE_b <- sqrt(diag(Var_b)) # SE[b|X]

t_b <-b/SE_b # t-stats (See Chapter 4)

40
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OLS Estimation — Is IBM’s Beta equal to 17

> t(b)

Mkt_RF SMB HML
[1,] -0.005088944 0.9082989 -0.2124596 -0.1715002
> t(SE_b)

Mkt_RF SMB HML
[1,] 0.002487509 0.05672206 0.08411188 0.08468165
> t(t_b)

Mkt_RF SMB HML

[1,] -2.045799 16.01315 -2.525917 -2.025235 => all coefficients are significant (|t|>2).

* QQ: Is the market beta (B,) equal to 1? That is,
Hy: By=1 vs. Hi: B, # 1
=ty = (br — B,)/Est. SE(bg)
£, = (0.9082989 — 1)/ 0.05672206 = -1.616674
= |t;] <196 = Cannot reject Hjat 5% level 4

Testing: The Expectation Hypothesis (EH)

Example: EH states that forward/futures prices are good predictors
of future spot rates:  E[S ] = F .

Implication of EH: S, — F, . = unpredictable.
That is, B[S, — F 1] = E/[g] = 0!

Empirical tests of the EH are based on a regression:
(St+T - Ft,T)/St =at 5 Zt + € (Where E[BJ:O)
where Z, represents any economic variable that might have power to

explain S, for example, (i;-i).

Then, under EH, Hya=0and g =0.
vs H;: o # 0and/or B # 0. 42
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Testing: The Expectation Hypothesis (EH)

Example (continuation): We will informally test EH using exchange
rates (USD/GBP), 3-mo forward rates and 3-mo interest rates.

SF_da <- read.csv("http://www.bauet.uh.edu/rsusmel/4397/SpFor_ptices.csv",
head=TRUE, sep=",")

summary(SF_da)

x_date <- SF_da$Date

x_S <- SF_da$GBPSP

x_F3m <- SF_da$GBP3M
i_us3 <- SF_da$Dep_USD3M
i_uk3 <- SF_da$Dep_UKP3M
T <-length(x_S)

prem <- (x_S[-1] - x_F3m[-T])/x_S[-1]
int_dif <- (i_us3 - i_uk3)/100
y <- prem

x <-int_dif[-T]

fit <-Im(y ~ x) 3

Testing: The Expectation Hypothesis (EH)

Example (continuation): We do two individual t-tests on o & .
> summary(fit)
Call:

Im(formula =y ~ x)

Residuals:
Min 1Q Median 3Q Max
-0.125672 -0.014576 -0.000439 0.017356 0.094283

Coefficients:
Estimate  Std. Error tvalue Pr(>|t|)
(Intercept) -0.0001854 0.0016219 -0.114 0.90906  => constant not siguificant (| t| <2)
X -0.2157540 0.0731553 -2.949 0.00339 ** = slope is significant (| t|>2). = Reject H,

Signif. codes: 0 ****0.001 ***0.01 **0.050.1 "1

Residual standard error: 0.02661 on 361 degrees of freedom
Multiple R-squared: 0.02353, Adjusted R-squared: 0.02082 44
F-statistic: 8.698 on 1 and 361 DF, p-value: 0.003393
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Testing: The Expectation Hypothesis (EH)

* 95% C.I. for b:
C,= [ by * ti1-05/2 * Estimated SE(by)]
Then,
C,=[-0.215754 — 1.96 * 0.0731553, -0.215754 + 1.96 * 0.0731553]
= [-0.3591384, -0.07236961]

Since B = 0 is not in C with 95% confidence = Reject Hy: B, =0
at 5% level.

Note: The EH is a joint hypothesis, it should be tested with a joint
test!

45

Testing a Hypothesis: Wald Statistic

* Most of our test statistics, including joint tests, are Wald statistics.
Wald = normalized distance measure:

One parameter: ti = (bx —B°y /s, = distance/unit

More than one parameter.

Let z = (random vector — hypothesized value) be the distance
W= z'[Var(z)] 'z (a quadratic form)

* Distribution of W' ? We have a quadratic form.
—If z is normal and ¢® known, W ~ X121=Rank(Var[z])

— If z is normal and ¢®unknown, W ~ F

— If z is not normal and ¢? unknown, we rely on

d
: 2
asymptotic theory, W = X;_pankvar(z])

Abraham Wald (1902-1950, Hungary)
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Testing a Hypothesis: Wald Statistic

* Distribution of I? We have a quadratic form.

Recall Theorem 7.4. Let the n X 1 vector y ~ N(p,, Z). Then,
- py' Zy‘l 0—w) ~ X2. —note: N = rank(X).
= If z ~ N(0, Var(2)) = Wis distributed as X} - gankvar(z])

In general, Var(z) is unknown, we need to use an estimator of Var(z).
In our context, we need an estimator of 62 Suppose we use 2. Then,
we have the following result:

Let z ~ N(0, Var(z)). We use 52 instead of 6° to estimate Var(z)

= W ~ F distribution.

Recall the F distribution arises as the ratio of two 2 vatiables divided

by their degtrees of freedom. 47

Recall: An F-distributed variable
x5 lJ
;(1% /T

Let z ifx/j_) J_(x ) N 0.)

—1)s2
Lee v =l2ZDst o2
o

Let

J.,T

If Z and U are independent, then

2

\/;M /1

o B
_ _ G-t g
(n—1)s? s?/n frt

f(n—1)

48
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Recall: An F-distributed variable

* There is a relationship between #and F when testing one restriction.
- For a single restriction, 7z = t’b — g. The variance of » is: r Var[b] r.
- The distance measure is # = 7 / Est. SE(m) ~ t,.

- This #ratio is the sqrt{F-ratio}.

* fratios are used for individual restrictions, while F-ratios are used
for joint tests of several restrictions.

49

The General Linear Hypothesis: Hy: RB—-q =0

* Suppose we are interested in testing | joint hypotheses.

Example: We want to test that in the 3 FF factor model that the
SMB and HML factors have the same coefficients, By = Bz = B

We can write linear restrictions as Hy RB—q =0,

where R is a /x& matrix and q a /x1 vector.

In the above example (/=2), we write:

[0 0 1 BMkt lBl
000 BSMB

50
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The General Linear Hypothesis: Hy: RB—-q =0

* Q: Is Rb — q close to 0? There are two different approaches to this
questions. Both have in common the property of unbiasedness for b.

(1) We base the answer on the discrepancy vector:
m = Rb —q.
Then, we construct a Wald statistic:
W =m' (Varm|X])' m

to test if m is different from 0.

(2) We base the answer on a model loss of fit when restrictions are
imposed: RSS must increase and R? must go down. Then, we
construct an F test to check if the unrestricted RSS (RSSy) is different
from the restricted RSS (RSSR). 51

The General Linear Hypothesis: Hy: RB—-q =0

* Q: Is Rb — q close to 0? There are two different approaches to this
questions. Both have in common the property of unbiasedness for b.

(1) We base the answer on the discrepancy vector:
m = Rb —q.
Then, we construct a Wald statistic:
W =m' (Varm|X])'m

to test if m is different from 0.

(2) We base the answer on a model loss of fit when restrictions are
imposed: RSS must increase and R? must go down. Then, we
construct an F test to check if the unrestricted RSS (RSSy) is different
from the restricted RSS (RSSR). 52
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Wald Test Statistic for Hy: RB—-q =0

* To test H, we calculate the discrepancy vector:
m = Rb —q.
Then, we compute the Wald statistic:
W =m' (Varm|X])' m

It can be shown that Var[m | X] = R[c*X'X)|R’. Then,
W= [Rb-q) {R[c*X'X)"|R"}"! (Rb - q)
Under H, and assuming (A5) & estimating o® with & = e'e/(T-£):

W*=Rb - q) {R[*X'X)"|R}" (Rb - q)
F=WH] ~F

d
If (A5) is not assumed, the results are only asymptotic: [*F — X?

53

Wald Test Statistic for Hy: RB—-q =0

Example: In the 3 FF factor model for IBM excess returns (1=569)
IBMg,, — 1, = B; + Byke Mktge, — 1) + Bsyp SMB + By, HML + €
we want to test if Bgyp = 0.2 and Byp = 0.6.

1. HOZ BSMB = 0.2 and BHML = 0.6.
Hll BSMB * 0.2 and/or BHML * 0.6. :>/ =2

We define R (2x4) below and write m = R} — q = 0:

B
[0 01 0]* Bk :[0.2
0 0 0 11" |Bsup| l06
BHML

2. Test-statistic: F=W*// = (Rb—q)' {RIPX'X)'|R'}' Rb—q) _
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Wald Test Statistic for Hy: RB—-q =0

Example (continuation):

2. Test-statisticc F=W+*// = (Rb-q)' {R[ZX'X)'JR"}'(Rb - q)

a
Distribution under Hy: F = W*/2 ~ F,., (asymptotic, 2*F = ¥3)
3. Get OLS results, compute F.

4. Decision Rule: a = 0.05 level. We reject H, if p-value(F) < .05.
Or, reject Hy, if F'>F )5 5.

J<-2 # number of restriction

R <- matrix(c(0,0,0,0,1,0,0,1), ntow=2) # matrix of restrictions

q <-c(2,1) # hypothesized values
m <- R%*%b - q # m = Estimated R*Beta - q s
Wald Test Statistic for Hy: RB—-q =0
Example (continuation):
Var_m <- R %*% Var_b %*% t(R) # Vatiance of m
det(Var_m) # check for non-singularity
W <- t(m)%*%solve(Var_m)%*%m
F_t <- as.numeric(W/J) # F-test statistic
qf(.95, df1=], df2=(T - k)) # exact distribution (F-dist) if errors normal
p_val <-1 - pf(F_t, df1=], df2=(T - k)) # p-value(F_t) under errors normal
p_val
>F_t
[1] 49.21676
>
> qf(.95, df1=], df2=(T - k)) # exact distribution (F-dist) if errors normal
[1] 3.011672 F_t > 3.011672 => reject H, at 5% level
> p_val <- 1 - pf(F_t, df1=], df2=(T - k)) # p-value(F_t) under errors normal
> ral
p-va , 56
170 very low chance H,, is true.
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Wald Test Statistic for H,: Does EH hold?

Example: Now, we do a joint test of the EH. Hy: « = 0 and 3 = 0.

Using the previous program but with:

J<-2 # number of restriction

R <- matrix(c(1,0,0,1), ntow=2) # matrix of restrictions

q <-¢(0,0) # hypothesized values

>F_t

[1] 4.1024

>

> qf(.95, df1=], df2=(T - k)) # exact distribution (F-dist) if errors normal
[1] 3.020661 F_t > 3.020661 = reject H at 5% level
>

> p_val <- 1 - pf(F_t, df1=], df2=(T - k)) # p-value(F_t) under errors normal

> p_val

[1] 0.01731 very low chance Hj is true.

57

The F Test: H: RB—q =0

(2) We know that imposing restrictions leads to a loss of fit: R? must
go down. Does it go down a lot? —i.e., significantly?

Recall (1) e* =y—Xb* =e—X(b*-b)
(ii) b* =b — XX)'R'[RX'X) 'R (Rb — q)

=  e¥e* =e'e + (b* — b)X'X(b*—b)
e¥'e* = e'e+(Rb-q)'[RX'X) 'R RX'X) | X'XX'X) 'R [RX'X) 'R (Rb—q)
e¥'e* _e'e = (Rb — q)'[RX'X) 'R '(Rb — q)

Recall
~ W= Rb-q{R[>X'X)|R'}''Rb-q) ~ X} (if o%is known)
—e'e/ 6%~ X2_p.
Then,
F=(e¥et— ee)/ |/ [e'e/(T- k]~ Frp ™
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The F Test: H: RB—q =0
. F:(e*'e* ee)/]/[ee/(T /é)] jYK

Tet R2 = unrestricted model = 1 — RSS/TSS
R*2 = restricted model fit = 1 — RSS*/TSS

Then, dividing and multiplying I by TSS we get
F=(1-R*) - (1-R))// /(1 -R)/(T— k)] ~ Fjpx

or
F={®R-R/]} /[1-R)/(T- k)] ~ F

59

The F Test: F-test of goodness of fit

¢ In the linear model

y=XB+e=X; B+ X, B, +.. +X; B, T ¢

* We want to test if the slopes X,, ... , X; are equal to zero. That is,

Hy By =...=PB =0
H,: atleastone f # 0 = /=k-1
0
*We can writte H: RB—q=0 = |..
0 0 O
* We have | = £—1. Then,

F={®R-R¥)/(k-1)} /[1-R)/(T-A]~ Frr

. 60
* For the restricted model, R*?>= 0. o
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The F Test: F-test of goodness of fit

Then, F= {R*/(4-17) }/[(1-R)/(T-R)] ~ F,,

* Recall ESS/TSS is the definition of R% RSS/TSS is equal to (1 — R?).

ESS
F(k—1n—-k)= R?/(k — 1) =m/(k—n
(1-R%)/(T — k) %/(T_k)
_ESS/(k—1)
T RSS/(T=h)

* This test statistic is called the F-zest of goodness of fit.

61

The F Test: F-test of goodness of fit

Example: We want to test if all the FF factors (Market, SMB, HML)
are significant, using monthly data 1973 — 2020 (T=569).

y <-ibm_x

T <- length(x)

x0 <- matrix(1,T,1)

x <- cbind(x0,Mkt_RF, SMB, HML)

k <- ncol(x)

b <- solve(t(x)%o*% x)%*% t(x)%*%y #OLS regression

e <-y-x%*%b

RSS <- as.numeric(t(e)%o*%e)

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%o*%y) #R-squared

> R2

[1] 0.338985

F_goodfit <- (R2/(k-1))/((1-R2)/(T-k)) #F-test of goodness of fit.

> F_goodfit

[1] 96.58204 = F_goodfit > F, 4, s = 2.387708 = Reject H,, 62
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The F Test: General Case — Example

¢ In the linear model
y=XB+e=B,+X, B, +X; B, +X,B, ¢

* We want to test if the slopes X3, X, are equal to zero. That is,

H,:p,=5,=0
H :B,#0 or f,#0 orboth Byand B, #0

* We canuse, F'= (e¥e*— e'e)/]/ [e'e/(T— k)| ~ Fjpx

RSS,— RSS,, | Ay Ay

F (cost in df, unconstr df) =
RSSy [ T-ky &

32

The F Test: General Case — Example

Example: We want to test if the additional FF factors (SMB, HML)
are significant, using monthly data 1973 — 2020 (T=569).

Unrestricted Model:
(U) IBMg,, —t;= B, + B; Mktg,, —1) + B,SMB + 3, HML + ¢

Hypothesis:  Hy: B,=B;=0
H;: B, # 0and/or B;# 0

Then, the Restricted Model:
®R) IBMg,, —1; = By + By Mktg,, —1) + €

_ (RSSR=RSSy)/] _

Test: F RS0/ (T ko) Frrg  with]=fky—Ag=4-2=2

64
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The F Test: General Case — Example

Example (continuation): The unrestricted model was already
estimated. For the restricted model:

y <-ibm_x

x0 <- matrix(1,T,1)

x_r <- cbind(x0,Mkt_RF) # Restricted X vector
T <- nrow(x)

k2 <- ncol(x)

b2 <- solve(t(x_1)%*% x_1)%*% t(x_1)%*%y # Restricted OLS regression
e2 <-y —x_r%*%b2
RSS2 <- as.numeric(t(e2)%o*%0e2)

> RSS = 1.932442 # RSS
> RSS2 = 1.964844 # RSSy
J<-k-k2 # ] = degrees of freedom of numerator

F_test <- (RSS2 - RSS)/J)/(RSS/(T-k)) o

The F Test: General Case — Example

Example (continuation):
F_test <- (RSS2 - RSS)/J)/(RSS/(T-k))

> F_test

[1] 4.736834

> qf(.95, df1=], df2=(T-k)) # F, 55,05 value (= 3)

[1] 3.011672 = Reject H,,.

p_val <- 1 - pf(F_test, df1=], df2=(T-k)) # p-value of F_test

> p_val

[1] 0.009117494 = p-value is small = Reject H,,.

66
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Lagrange Multiplier Statistics

* Specific to the classical model.
Recall the Lagrange multipliers:

A= REX)'R]'m

Suppose we just test Hy: A = 0, using the Wald criterion.
W = A (Var[A | X]) A
where
Var[A|X] = [RXX) 'R 'Var[m | X] [RX'X) R
Var[m|X] = R[c*X'X)|R’

Varlh X1 = [ROEX) R e XX IRREX) IR
= GZ [R(X!X)_ R!]_

Then,
= m REX) 'R {02 REXX) 'R} [RE'K) R m
= m’ [c’RX'X) 'R’} m 67

Application (Greene): Gasoline Demand

* Time series regression,
LogG = B, + B,logY + B;logPG + B,logPNC +B:logPUC
+ BlogPPT + B.logPN + BlogPD + BologPS + &
Period = 1960 - 1995.

* A significant event occurs in October 1973: the first oil crash. In
the next lecture, we will be interested to know if the model 1960 to
1973 is the same as from 1974 to 1995.

Note: All coefficients in the model are elasticities.

68
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Application (Greene): Gasoline Demand

Ordinary least squares regression ............
LHS=LG Mean = 5.39299
Standard deviation .24878
Number of observs. 36
Model size Parameters 9
Degrees of freedom 27

Residuals Sum of squares .00855 <**kkkkkk
Standard error of e .01780 <kEkkkkkk
Fit R-squared .99605 <kkkkkkk
Adjusted R-squared .99488 kkkkkkk
________ +_____________________________________________________________
Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X
________ +_____________________________________________________________
Constant| -6.95326%** 1.29811 -5.356 .0000
LY| 1.35721%** .14562 9.320 .0000 9.110093
LPG| -.50579*** .06200 -8.158 .0000 .67409
LPNC| -.01654 .19957 -.083 .9346 .44320
LPUC| -.12354* .06568 -1.881 .0708 .66361
LPPT| .11571 .07859 1.472 .1525 .77208
LPN| 1.10125%** .26840 4.103 .0003 .60539
LPD| .92018*** .27018 3.406 .0021 .43343
LPS| -1.09213%** .30812 -3.544 .0015 .68105

———————— L Y

Application (Greene): Gasoline Demand

* QQ: Is the price of public transportation really relevant? H, : B, = 0.
(1) Distance measure: £, = (b, —0) /'s,, = (11571 -0) /.07859
= 1472 < 2.052 = cannot reject H,,

(2) Confidence interval: by £ 7 95,7 X Standard error
= 11571 £2.052 x (.07859)
= 11571 £.16127 = (-.045557 ,.27698)
= C.I. contains 0 = cannot reject H,,

(3) Regression fit if X, drop? Original R? = .99605,
Without LPPT, R*? = 99573
F(1,27) = [(:99605 — .99573)/1]/[(1 = .99605)/(36 — 9)] = 2.187
=1.472% (with some rounding) = cannot reject/H,,.
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Gasoline Demand (Greene) - Hypothesis Test:
Sum of Coefficients

* Do the three aggregate price elasticities sum to zero?

Hy:B; +Bg + By =
R=10,0,0,0,0,0,1,1,1], q=0

Variable| Coefficient Standard Error t-ratio P[|T|>t]

____________ +_____________________________________________________
LPN| 1.10125%** .26840 4.103 .0003 .60539
LPD| .92018*** .27018 3.406 .0021 .43343
LPS| -1.09213%** .30812 -3.544 .0015 .68105

1 | 2 | 3 [ 4 | 5 [ 3 [ 7 [ 8 [ 9 |

1 16051 0069024  DO256198 | 021809 00240267 00295907 D.0261772 0197857 0175068
2 -0.189024 0.0212045 0.00290895 0.0243971 0.00269963 0.0032894 0.00280174 -0.0222154 -0.0195876
3 D0ZE6196 | 000200895 000384368 0000682307 -0.000413822 | 000176052 00114883 00044853 O.0108144
[l 0218091 00243971 D000BE2307 | (.0398293 | (00360897 | (0.00824835 0.0236143 00311143 00453555
5 00240267 | 000269963 0000413822 0.00350897 000431411 0001419 000979376 00118214 -0.00570482
[ 00295907 | 0.0032854  -D.ODT7EOS2 | 0.00824835 0001419 0O0BI7E73 | 00134911 | 000740857 -D.0198458
7 -0.0261772 0.00280174 -0.0114883 0.0236143 0.009739376 0.0134311 0.0720371 -0.0335608 -0.0705545
[ 0197857 00222154 00044953 001143 0018214 | 000740557 -0.03ITE05| 00729982 00346625
9 0176068 D.O195876 00108144 00453565 000970482 0.019a458)  -0.0705545 )  00MEEI5 . 0.094539

71

Gasoline Demand (Greene) - Hypothesis Test:
Sum of Coefficients — Wald Test

--»> MATRIX : list ;R = [0,0,0,0,0,0,1,1,1] : g = [0O]
; m=R*h - g

» Varm = BR*WVarb=R'
; Wald = m' «<Varm» m §
Var[m] = R = Var[b] * R = [0 00000 111]
9 9
=1 =1 _
Lid el &RJ'CGV(E%,E?J-) = 0.10107

m' [Var(m)]l m = B&.5446

The critical chi sgoared with 1 degree of freedom is 3.84, =0 the
hypothesiszs is rejected.

72

L =R =R - )

Do not share/post online without written authorization

36



RS - Econometrics 1 - Lecture 3 (Model Specification and Testing)

Gasoline Demand (Greene) - Imposing Restrictions

Linearly restricted regression

LHS=LG Mean = 5.392989
Standard deviation = .2487794
Number of observs. = 36
Model size Parameters = 8 <*** 9 — ] restriction
Degrees of freedom = 28
Residuals Sum of squares = .0112599 <*** With the restriction
Residuals Sum of squares = .0085531 <*** Without the
restriction
Fit R-squared = .9948020
Restrictns. F[ 1, 27] (prob) = 8.5(.01)
Not using OLS or no constant.R2 & F may be < 0
________ +_____________________________________________________________
Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X
________ +_____________________________________________________________
Constant| -10.1507*** .78756 -12.889 .0000
LY| 1.71582%*% .08839 19.412 .0000 9.11093
LPG| -.45826%** .06741 -6.798 .0000 .67409
LPNC| .46945%x* .12439 3.774 .0008 .44320
LPUC| -.01566 .06122 -.256 .8000 .66361
LPPT| .24223%%* .07391 3.277 .0029 .77208
LPN| 1.39620*** .28022 4.983 .0000 .60539
LPD| .23885 .15395 1.551 .1324 .43343
LPS| -1.63505*** .27700 -5.903 0000 .6810%3
________ +_____________________________________________________________
F = [(.0112599 - .0085531)/1] / [.0085531/(36 — 9)] = 8.544691

Gasoline Demand (Greene) - Joint Hypotheses

* Joint hypothesis: Income elasticity = +1, Own price elasticity = -1.
The hypothesis implies that logG = B; + logY —logPg + 3, logPNC + ...

Strategy: Regress logG —logY + logPg on the other variables and

* Compare the sums of squares
With two restrictions imposed

Residuals Sum of squares = .0286877
Fit R-squared = .9979006
Unrestricted

Residuals Sum of squares = .0085531
Fit R-squared = .9960515

F = ((.0286877 - .0085531)/2) / (.0085531/(36-9)) = 31.779951
The critical F for 95% with 2,27 degrees of freedom is 3.354 = H, is rejected.

* QQ: Are the results consistent? Does the R? really go up when the restrictions are

imposed? 74
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Gasoline Demand - Using the Wald Statistic
--> Matrix ; R = [0,1,0,0,0,0,0,0,0 /
0,0,1,0,0,0,0,0,01%
--> Matrix ; q = [1/-1]8
--> Matrix ; list ; m = R*b - g $
Matrix M has 2 rows and 1 columns.
1
o +
1| 35721
2| 49421
o +
--> Matrix ; list ; vm = R*varb*R' $
Matrix VM has 2 rows and 2 columns.
1 2
domm oo e e L LT +
1| 02120 00291
2| 00291 00384
domm oo e e LT +
--> Matrix ; list ; w=1/2 * m'<vm>m $
Matrix W has 1 rows and 1 columns.
1
Fomm e +
1| 31.77981 75
Fomm e +

Gasoline Demand (Greene) — Testing Details

* QQ: Which restriction is the problem? We can look at the Jx1
estimated LM, A, for clues:

A=[R(XX)R'T'(Rb-q)
* Recall that under H, A should be 0.

Matrix Result has 2 rows and 1 columns.

1
o +
1] -.88491 Income elasticity
2| 129.24760 Price elasticity
o +

Results s#ggest that the constraint on the price elasticity is having a

greater effect on the sum of squares.
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RS - Econometrics 1 - Lecture 3 (Model Specification and Testing)

Gasoline Demand (Greene) - Basing the Test on
R2

* After building the restrictions into the model and computing
restricted and unrestricted regressions: Based on R?s,

F = [(.9960515 — .997096)/2]/[(1 —.9960515)/(36-9)]
= 3.571166 ()

* Q: What's wrong?

71
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