Lecture 3 Specification \& Testing in the Classical Linear Model

OLS Estimation - Assumptions

- CLM Assumptions
(A1) DGP: $\mathbf{y}=\mathbf{X} \beta+\boldsymbol{\varepsilon}$ is correctly specified.
(A2) $\mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=0$
(A3) $\operatorname{Var}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{T}$
(A4) \mathbf{X} has full column $\operatorname{rank}-\operatorname{rank}(\mathbf{X})=k$-, where $T \geq k$.

Q: What happens when (A1) is not correctly specified?

- In this lecture, we look at (A1), always in the context of linearity. Are we omitting a relevant regressor? Are we including an irrelevant variable? What happens when we impose restrictions in the DGP?

Specification Errors: Omitted Variables

- Omitting relevant variables: Suppose the correct model is

$$
\boldsymbol{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}-\text { i.e., with two sets of variables. }
$$

But, we compute OLS omitting \mathbf{X}_{2}. That is,

$$
\boldsymbol{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon} \quad<=\text { the "short regression." }
$$

Some easily proved results:
(1) $\mathrm{E}\left[\mathbf{b}_{1} \mid \mathbf{X}\right]=\mathrm{E}\left[\left(\mathbf{X}_{1}{ }^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{\mathbf{1}}{ }^{\prime} \boldsymbol{y}\right]=\boldsymbol{\beta}_{1}+\left(\mathbf{X}_{1}{ }^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{\mathbf{1}}{ }^{\prime} \mathbf{X}_{2} \boldsymbol{\beta}_{2} \neq \boldsymbol{\beta}_{1}$. So, unless $\mathbf{X}_{1}{ }^{\prime} \mathbf{X}_{2}=0, \mathbf{b}_{1}$ is biased. The bias can be huge. It can reverse the sign of a price coefficient in a "demand equation."
(2) $\operatorname{Var}\left[\mathbf{b}_{1} \mid \mathbf{X}\right] \leq \operatorname{Var}\left[\mathbf{b}_{1.2} \mid \mathbf{X}\right]$. (The latter is the northwest submatrix of the full covariance matrix.) The proof uses \mathbf{M}, the residual maker. We get a smaller variance when we omit \mathbf{X}_{2}.

Specification Errors: Omitted Variables

- We get a smaller variance when we omit \mathbf{X}_{2}.

Interpretation: Omitting \mathbf{X}_{2} amounts to using extra information -i.e., $\boldsymbol{\beta}_{2}=\mathbf{0}$. Even if the information is wrong, it reduces the variance.
(3) MSE
\mathbf{b}_{1} may be more "precise."
Precision = Mean squared error

$$
=\text { variance }+ \text { squared bias. }
$$

Smaller variance but positive bias. If bias is small, may still favor the short regression.

Note: Suppose $\mathbf{X}_{1}{ }^{\prime} \mathbf{X}_{2}=\mathbf{0}$. Then the bias goes away. Interpretation, the information is not "right," it is irrelevant. \mathbf{b}_{1} is the same as $\mathbf{b}_{1.2}$.

Omitted Variables Example: Gasoline Demand

- We have a linear model for the demand for gasoline:

$$
\mathbf{G}=\mathrm{PG} \boldsymbol{\beta}_{1}+\mathrm{Y} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon},
$$

Q: What happens when you wrongly exclude Income (Y)?

$$
\mathrm{E}\left[b_{1} \mid \mathbf{X}\right]=\beta_{1}+\frac{\operatorname{Cov}[\text { Price, Income }]}{\operatorname{Var}[\text { Price }]} \beta_{2}
$$

In time series data, $\quad \beta_{1}<0, \beta_{2}>0$ (usually) $\operatorname{Cov}[$ Price, Income] >0 in time series data.
\Rightarrow The short regression will overestimate the price coefficient.
In a simple regression of G (demand) on a constant and PG, the Price Coefficient $\left(\beta_{1}\right)$ should be negative.

Estimation of a 'Demand' Equation (Greene): Shouldn't the Price Coefficient be Negative?

Estimation of a 'Demand' Equation (Greene): Multiple Regression - Theory Works.

- Note: Income is helping us to identify a demand equation -i.e., with a negative slope for the price variable.

Specification Errors: Irrelevant Variables

- Irrelevant variables. Suppose the correct model is

$$
\boldsymbol{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon} \quad \text {-i.e., with one set of variables. }
$$

But, we estimate

$$
\boldsymbol{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon} \quad<=\text { the "long regression." }
$$

Some easily proved results: Including irrelevant variables just reverse the results: It increases variance -the cost of not using information-; but does not create biases.
\Rightarrow Since the variables in \mathbf{X}_{2} are truly irrelevant, then $\boldsymbol{\beta}_{2}=\mathbf{0}$,

$$
\text { so } \mathrm{E}\left[\mathbf{b}_{1.2} \mid \mathbf{X}\right]=\boldsymbol{\beta}_{1} \text {. }
$$

Specification Errors: Irrelevant Variables

- A simple example

Suppose the correct model is: $\mathbf{y}=\beta_{1}+\beta_{2} \mathbf{X}_{2}+\boldsymbol{\varepsilon}$
But, we estimate: $\quad \mathbf{y}=\beta_{1}+\beta_{2} \mathbf{X}_{2}+\beta_{3} \mathbf{X}_{3}+\boldsymbol{\varepsilon}$

- Unbiased: given that $\beta_{3}=0 \quad \Rightarrow \mathrm{E}\left[\mathrm{b}_{2} \mid \mathrm{X}\right]=\beta_{2}$
- Efficiency:

$$
\sigma_{b_{2}}^{2}=\frac{\sigma^{2}}{\sum\left(X_{2 i}-\bar{X}_{2}\right)^{2}} \times \frac{1}{1-r_{X_{2}, X_{3}}^{2}}>\frac{\sigma^{2}}{\sum\left(X_{2 i}-\bar{X}_{2}\right)^{2}}
$$

Note: These are the results in general. Note that if X_{2} and X_{3} are uncorrelated, there will be no loss of efficiency after all.

Other Models

- Looking ahead to nonlinear models: neither of the preceding results extend beyond the linear regression model.
"Omitting relevant variables from a model is always costly. (No exceptions.) The benign result above almost never carries over to more involved nonlinear models." (Greene)

Specification and Functional Form: Non-linearity

- In the context of OLS estimation, we can introduce some nonlinearities: quadratic, cubic and interaction effects can be easily estimated by OLS. For example:

$$
\mathbf{y}=\beta_{1}+\beta_{2} \mathbf{X}_{2}+\beta_{3} \mathbf{X}_{2}^{2}+\beta_{4} \mathbf{X}_{2} \mathbf{X}_{3}+\varepsilon
$$

- Partial effects, $\partial \mathbf{y} / \partial \mathbf{X}_{2}$, (and standard errors) can be different. In the above model

$$
\partial \mathbf{y} / \partial \mathbf{x}_{2}=\beta_{2}+2 \beta_{3} \mathbf{X}_{2}+\beta_{4} \mathbf{x}_{3} \neq \beta_{2}
$$

Note: Recall that in a simple linear model:

$$
\mathbf{y}=\beta_{1}+\beta_{2} \mathbf{X}_{2}+\beta_{3} \mathbf{X}_{3}+\boldsymbol{\varepsilon}
$$

the partial effect is equal to the β_{i} coefficient:

$$
\partial \mathbf{y} / \partial \mathbf{X}_{2}=\beta_{2}
$$

Specification and Functional Form: Non-linearity

- The estimator of partial effects and their variances are different from b_{i} and $\operatorname{Var}\left[b_{i} \mid \mathbf{X}\right]$ in the presence of non-linearities

Example: Quadratic Effect

$$
\begin{array}{ll}
\text { Population } & \text { Estimators } \\
y=\beta_{1}+\beta_{2} x+\beta_{3} x^{2}+\beta_{4} z+\varepsilon & \hat{y}=b_{1}+b_{2} x+b_{3} x^{2}+b_{4} z \\
\delta_{x}=\frac{\partial E[y \mid x, z]}{\partial x}=\beta_{2}+2 \beta_{3} x & \hat{\delta}_{x}=b_{2}+2 b_{3} x \\
\text { Estimator of the variance of } \hat{\delta}_{x} & \\
\text { Est.Var}\left[\hat{\delta}_{x}\right]=\operatorname{Var}\left[b_{2}\right]+4 x^{2} \operatorname{Var}\left[b_{3}\right]+4 x \operatorname{Cov}\left[b_{2}, b_{3}\right]
\end{array}
$$

Note: Now, the partial effect and the variance are a function of the data! Usually, an average is used in the estimation.

Application (Greene): Log Income Equation

Specification and Functional Form: Non-linearity

Example: Interactive Effect

Population
$y=\beta_{1}+\beta_{2} x+\beta_{3} z+\beta_{4} x z+\varepsilon$
$\delta_{x}=\frac{\partial E[y \mid x, z]}{\partial x}=\beta_{2}+\beta_{4} z$
Estimator of the variance of $\hat{\delta}_{x}$
Est.Var $\left[\hat{\delta}_{x}\right]=\operatorname{Var}\left[b_{2}\right]+z^{2} \operatorname{Var}\left[b_{4}\right]+2 z \operatorname{Cov}\left[b_{2}, b_{4}\right]$

Application (Greene): Interaction Effect

Do women earn more than men (in this sample?) The +. 21239 coefficient on FEMALE would suggest so.
But, the female "difference" -i.e., partial effect- is: +.21239 - .00620*Age.
At average Age, the effect is: . $21239-.00620$ * (43.5272) $=-.05748$.

OLS Subject to Restrictions

- Restrictions: Theory imposes certain restrictions on parameters.

Examples:

(1) Dropping variables from the equation. That is, certain coefficients in \mathbf{b} forced to equal 0 . (Is variable $\mathbf{x}_{3}=$ size significant?")
(2) Adding up conditions: Sums of certain coefficients must equal fixed values. Adding up conditions in demand systems. Constant returns to scale in production functions $(\alpha+\beta=1$ in a Cobb-Douglas production function).
(3) Equality restrictions: Certain coefficients must equal other coefficients. Using real vs. nominal variables in equations.

- Usual formulation with J linear restrictions (\mathbf{R} is $\mathrm{J} \mathrm{x} k$ and \mathbf{q} is Jx 1):

$$
\operatorname{Min}_{\mathbf{b}}\left\{\mathrm{S}\left(x_{i}, \theta\right)=\sum_{i=1}^{T} e_{i}^{2}=\mathbf{e}^{\prime} \mathbf{e}=(\mathbf{y}-\mathbf{X} \mathbf{b})^{\prime}(\mathbf{y}-\mathbf{X} \mathbf{b})\right\} \quad \text { s.t. } \mathbf{R} \mathbf{b}=\mathbf{q}
$$

Restricted Least Squares

- In practice, restrictions can usually be imposed by solving them out.
(1) Dropping variables -i.e., force a coefficient to equal zero.

Problem: $\min _{b} \sum_{i=1}^{n}\left(y_{i}-b_{1} x_{i 1}-b_{2} x_{i 2}-b_{3} x_{i 3}\right)^{2}$ s.t. $b_{3}=0$

$$
\min _{b} \sum_{i=1}^{n}\left(y_{i}-b_{1} x_{i 1}-b_{2} x_{i 2}\right)^{2}
$$

(2) Adding up. Do least squares subject to $b_{1}+b_{2}+b_{3}=1$. Then, $b_{3}=1$ -$b_{1}-b_{2}$. Make the substitution so $\left(\mathbf{y}-\mathbf{x}_{3}\right)=b_{1}\left(\mathbf{x}_{1}-\mathbf{x}_{3}\right)+b_{2}\left(\mathbf{x}_{2}-\mathbf{x}_{3}\right)+\mathbf{e}$.
Problem: $\operatorname{Min}_{\mathrm{b}} \quad \sum_{i=1}^{n}\left(\left(y_{i}-x_{i 3}\right)-b_{1}\left(x_{i 1}-x_{i 3}\right)-b_{2}\left(x_{i 2}-x_{i 3}\right)\right)^{2}$
(3) Equality. If $b_{3}=b_{2}$, then $\mathbf{y}=b_{1} \mathbf{x}_{1}+b_{2} \mathbf{x}_{2}+b_{2} \mathbf{x}_{3}+\mathbf{e}$

$$
=b_{1} \mathbf{x}_{1}+b_{2}\left(\mathbf{x}_{2}+\mathbf{x}_{3}\right)+\mathbf{e}
$$

Problem: $\operatorname{Min}_{\mathrm{b}} \quad \sum_{i=1}^{n}\left(y_{i}-b_{1} x_{i 1}-b_{2}\left(x_{i 2}+x_{i 3}\right)\right)^{2}$

Restricted Least Squares

- Theoretical results provide insights and the foundation of several tests.
- Programming problem with J restrictions $(\mathbf{R}$ is $J \mathrm{x} k$ and \mathbf{q} is $k \times 1)$: Minimize wrt b $\quad \mathrm{S}=(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \quad$ s.t. $\mathbf{R} \boldsymbol{\beta}=\mathbf{q}$
- Quadratic programming problem
\Rightarrow Minimize a quadratic criterion s.t. a set of linear restrictions.
- Concave programming problem, all binding constraints. No need for Kuhn-Tucker
- Solve using a Lagrangean formulation.
- The Lagrangean approach (the 2 is for convenience with is $\boldsymbol{\lambda} J \times 1$).

$$
\begin{aligned}
\operatorname{Min}_{\mathbf{b}, \lambda} \quad L^{*} & =(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})+2 \boldsymbol{\lambda}^{\prime}(\mathbf{R} \boldsymbol{\beta}-\mathbf{q}) \\
& =\left(\boldsymbol{y}^{\prime} \boldsymbol{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}\right)+2 \boldsymbol{\lambda}^{\prime}(\mathbf{R} \boldsymbol{\beta}-\mathbf{q})
\end{aligned}
$$

Restricted Least Squares

- The Lagrangean approach

$$
\operatorname{Min}_{\mathbf{b}, \lambda} \quad L^{*}==\left(\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}\right)+2 \lambda^{\prime}(\mathbf{R} \boldsymbol{\beta}-\mathbf{q})
$$

f.o.c:

$$
\begin{aligned}
& \partial L^{*} / \partial \mathbf{b}^{\prime}=-2 \mathbf{X}^{\prime}\left(\boldsymbol{y}-\mathbf{X} \mathbf{b}^{*}\right)+2 \mathbf{R}^{\prime} \lambda=\mathbf{0} \\
& \partial L^{*} / \partial \lambda^{\prime}=2\left(\mathbf{R} \mathbf{b}^{*}-\mathbf{q}\right)=\mathbf{0} .
\end{aligned}
$$

Then, from the $1^{\text {st }}$ equation (and assuming full rank for \mathbf{X}):

$$
\begin{aligned}
-\mathbf{X}^{\prime} \boldsymbol{y}+\mathbf{X}^{\prime} \mathbf{X} \mathbf{b}^{*}+\mathbf{R}^{\prime} \boldsymbol{\lambda}=\mathbf{0} \Rightarrow \quad \mathbf{b}^{*} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \lambda \\
& =\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \lambda
\end{aligned}
$$

Premultiply both sides by \mathbf{R} and then subtract \mathbf{q}

$$
\begin{array}{r}
\mathbf{R} \mathbf{b}^{*}-\mathbf{q}=\mathbf{R} \mathbf{b}-\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \lambda-\mathbf{q} \\
\mathbf{0}=-\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \lambda+(\mathbf{R} \mathbf{b}-\mathbf{q})
\end{array}
$$

Solving for $\lambda \quad \Rightarrow \quad \lambda=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R b}-\mathbf{q})$
Substituting in $\mathbf{b}^{*} \Rightarrow \mathbf{b}^{*}=\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})$

Linear Restrictions

- Q: How do linear restrictions affect the properties of the least squares estimator?

Model (DGP): $\quad \boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
Theory (information): $\quad \mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$

Restricted LS estimator: $\mathbf{b}^{*}=\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})$

1. Unbiased?
$E\left[\mathbf{b}^{*} \mid \mathbf{X}\right]=\boldsymbol{\beta}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathrm{E}[(\mathbf{R} \mathbf{b}-\mathbf{q}) \mid \mathbf{X}]=\boldsymbol{\beta}$
2. Efficiency?
$\operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
$\operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right]=\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]-$ a nonnegative definite matrix $<\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]$
3. \mathbf{b}^{*} may be more "precise."

Precision $=$ Mean squared error $=$ variance + squared bias.

Linear Restrictions

1. $\mathbf{b}^{*}=\mathbf{b}-\mathbf{C m}, \quad \mathbf{m}=$ the "discrepancy vector" $\mathbf{R b}-\mathbf{q}$.

Note: If $\mathbf{m}=\mathbf{0} \Rightarrow \mathbf{b}^{*}=\mathbf{b} . \quad(\mathrm{Q}$: What does $\mathbf{m}=\mathbf{0}$ mean?)
2. $\lambda=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{m}$

When does $\boldsymbol{\lambda}=\mathbf{0}$? What does this mean?
3. Combining results: $\mathbf{b}^{*}=\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \boldsymbol{\lambda}$
4. Recall: $\mathbf{e}^{\prime} \mathbf{e}=(\mathbf{y}-\mathbf{X b})^{\prime}(\mathbf{y}-\mathbf{X b}) \leq \mathbf{e}^{* \prime} \mathbf{e}^{*}=\left(\boldsymbol{y}-\mathbf{X} \mathbf{b}^{*}\right)^{\prime}\left(\boldsymbol{y}-\mathbf{X b} \mathbf{b}^{*}\right)$

$$
\Rightarrow \text { Restrictions cannot increase } R^{2} \quad \Rightarrow R^{2} \geq R^{2^{*}}
$$

Linear Restrictions - Interpretation

- Two cases
- Case 1: Theory is correct: $\mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$ (restrictions hold). \mathbf{b}^{*} is unbiased \& $\operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right] \leq \operatorname{Var}[\mathbf{b} \mid \mathbf{X}]$
- Case 2: Theory is incorrect: $\mathbf{R} \boldsymbol{\beta}-\mathbf{q} \neq \mathbf{0}$ (restrictions do not hold). \mathbf{b}^{*} is biased \& $\operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right] \leq \operatorname{Var}[\mathbf{b} \mid \mathbf{X}]$.
- Interpretation
- The theory gives us information.

Bad information produces bias (away from "the truth.")
Any information, good or bad, makes us more certain of our answer. In this context, any information reduces variance.

Linear Restrictions - Interpretation

- What about ignoring information (theory)?

Not using the correct information does not produce bias.
Not using information foregoes the variance reduction.

Testing in Economics

"The three golden rules of econometrics are test, test and test." David Hendry (1944, England)

"The only relevant test of the validity of a hypothesis is comparison of prediction with experience." Milton Friedman (1912-2006, USA)

Hypothesis Testing

- Testing involves the comparison between two competing hypothesis: $-H_{0}$: The maintained hypothesis.
$-H_{1}$: The hypothesis considered if H_{0}.
- Idea: We collect a sample, $X=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. We construct a statistic $\mathrm{T}(X)=f(X)$, called the test statistic. Now we have a decision rule:
- If $T(X)$ is contained in space R, we reject H_{0} (\& we learn).
- If $T(X)$ is in the complement of $R\left(R^{\mathrm{C}}\right)$, we fail to reject H_{0}.

Note: $T(X)$, like any other statistic, is a RV. It has a distribution. We use the distribution of $T(X)$ to determine R , the rejection region (\& we associate a probability to R).

Hypothesis Testing: Rejection Region

Example: Suppose $\mathrm{T}(X)=\bar{X}$. If data is normal, the distribution of \bar{X} is also normal. Then, under H_{0}, we build a Rejection Region, R :

$$
\mathrm{R}=\left[\bar{X}<T_{L B}, T_{U B}>\bar{X}\right]
$$

Note: The blue area ("significance level") represents the $\mathrm{P}\left[\mathrm{R} \mid \mathrm{H}_{0}\right]$. For example, if the blue area is 5%, then, $T_{L B}=-1.96 \& T_{U B}=1.96$.

Hypothesis Testing: p-value

- The classical approach, also known as significance testing, relies on p-values: p-value is the probability of observing a result at least as extreme as the test statistic, under H_{0}.

Example: Suppose $T(X) \sim \chi_{2}^{2}$. We compute $\overline{T(X)}=7.378$. Then, $p-$ value $(\overline{T(X)}=7.378)=1-\operatorname{Prob}[T(X)<7.378]=0.025$

Chi-square Distribution (df=2): P-value.

Hypothesis Testing: Steps

- Steps for the classical approach, also known as significance testing:

1. Identify $\mathrm{H}_{0} \&$ set a significance level ($\alpha \%$).
2. Determine the appropriate test statistic $\mathrm{T}(X)$ and its distribution under the assumption that H_{0} is true.
3. Calculate $\mathrm{T}(X)$ from the data.
4. Rule: If p-value of $\mathrm{T}(X)<\alpha \Rightarrow$ Reject H_{0} (\& we learn H_{0} ! is not true). If p-value of $\mathrm{T}(X)>\alpha \Rightarrow$ Fail to reject H_{0}. (No learning.)

Note: In Step 4 , setting $\alpha \%$ is equivalent to setting R. Thus, instead of looking at p-value, we can look if $\mathrm{T}(X)$ falls in R (in the blue area). We do this by constructing a $(1-\alpha) \%$ C.I.

- Mistakes are made. We want to quantify these mistakes.

Hypothesis Testing: Error Types

- Type I and Type II errors

A Type I error is the error of rejecting H_{0} when it is true.
A Type II error is the error of "accepting" H_{0} when it is false (that is, when H_{1} is true).

Notation: \quad Probability of Type I error: $\alpha=\mathrm{P}\left[\mathrm{X} \in \mathrm{R} \mid \mathrm{H}_{0}\right]$ Probability of Type II error: $\beta=\mathrm{P}\left[\mathrm{X} \in \mathrm{R}^{C} \mid \mathrm{H}_{1}\right]$

Example: From the U.S. Jury System
Type I error is the error of finding an innocent defendant guilty.
Type II error is the error of finding a guilty defendant not guilty.

- There is a trade-off between both errors.

Hypothesis Testing: Type I and Type II Errors

- Traditional view: Set Type I error equal to a small number \& find a test that minimizes Type II error.

The usual tests (t-tests, F-tests, Likelihood Ratio tests) incorporate this traditional view.

Definition: Power of the test
The probability of rejecting H_{0} based on a test procedure is called the power of the test. It is a function of the value of the parameters tested, θ :

$$
\pi=\pi(\theta)=\mathrm{P}[\mathrm{X} \in \mathrm{R}] .
$$

Note: when $\theta \in \mathrm{H}_{1} \quad \Rightarrow \pi(\theta)=1-\beta(\theta) \quad$-the usual application.

Hypothesis Testing: Summary

- Hypothesis testing in Econometrics:
(1) We need a model. For example, $\boldsymbol{y}=f(\mathbf{X}, \theta)+\boldsymbol{\varepsilon}$
(2) We gather data $(\boldsymbol{y}, \mathbf{X})$ and estimate the model \Rightarrow we get $\hat{\theta}$
(3) We formulate a hypotheses. For example, $\mathrm{H}_{0}: \theta=\theta_{0}$ vs. $\mathrm{H}_{1}: \theta \neq \theta_{0}$
(4) Find an appropriate test and know its distribution under H_{0}
(5) Decision Rule (Test H_{0}). Reject H_{0} : if θ_{0} is too far from $\hat{\theta}$ ("the hypothesis is inconsistent with the sample evidence.")

The decision rule will be based on a statistic, $T(X)$. If the statistic is large, then, we reject H_{0}.

- To determine if the statistic is "large," we need a null distribution.
- Ideally, we use a test that is most powerful to test H_{0}.

Hypothesis Testing: Issues

- Logic of the Neyman-Pearson methodology:

If H_{0} is true, then $T(X)$ will have a certain distribution (under H_{0}). We call this distribution null distribution or distribution under the null.

- It tells us how likely certain values are, if H_{0} is true. Thus, we expect 'large values' for θ_{0} to be unlikely.
- Decision rule.

If the observed value for $T(X)$ falls in rejection region R
\Rightarrow Assumed distribution must be incorrect: H_{0} should be rejected.

Hypothesis Testing: Issues

- Issues:
- What happens if the model is wrong?
- What is a testable hypothesis?
- Nested vs. Non-nested models
- Methodological issues
- Classical (frequentist approach): Are the data consistent with H_{0} ? - Bayesian approach: How do the data affect our prior odds? Use the posterior odds ratio.

Testing in the CLM: Single Parameter

- We test a hypotheses about a single parameter, say β_{k}, of the DGP.

Example: The linear model (DGP): $\quad \boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

1. Formulate $\mathrm{H}_{0}: \mathbf{X}_{k}$ should not be in the DGP $\Rightarrow \quad H_{0}: \beta_{k}=\beta_{k}^{0}$

$$
H_{1}: \beta_{k} \neq \beta_{k}^{0} .
$$

2. Construct $T(X)$ test $\mathrm{H}_{0}: \quad t_{k}=\left(\mathrm{b}_{k}-\beta_{k}^{0}\right) / \operatorname{sqrt}\left\{s^{2}\left(\mathbf{X}^{\prime} \boldsymbol{X}\right)_{k k}^{-1}\right\}$

Distribution of $T(X)$ under H_{0}, with s^{2} estimating σ^{2} (unknown):
If $(\mathbf{A} 5) \boldsymbol{\varepsilon} \mid \mathbf{X} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{\mathrm{T}}\right), \quad \Rightarrow t_{k} \sim t_{T-k}$.
If (A5) not true, asymptotic results: $\quad \Rightarrow t_{k} \xrightarrow{d} \mathrm{~N}(0,1)$.
3. Using OLS, we estimate $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{k}, \ldots$, \& estimate $t_{k} \Rightarrow \hat{\mathrm{t}}$.
4. Decision Rule: Set α level. We reject H_{0} if p -value $(\mathrm{t})<\alpha$.

$$
\text { Or, reject } \mathrm{H}_{0} \text {, if }|\hat{\mathrm{t}}|>t_{T-k, 1-\alpha / 2}
$$

Testing in the CLM: \boldsymbol{t}-value

- Special case: $H_{0}: \beta_{k}=0$

$$
H_{1}: \beta_{k} \neq 0 .
$$

Then,

$$
t_{k}=\left(\mathrm{b}_{k} / \operatorname{sqrt}\left\{s^{2}\left(\mathbf{X}^{\prime} \boldsymbol{X}\right)_{k k}^{-1}\right\}=\mathrm{b}_{k} / \operatorname{SE}\left[\mathrm{b}_{k}\right] \quad \Rightarrow \mathrm{t}_{k} \sim t_{T-k}\right.
$$

This special case of t_{k} is called the t-value. That is, the t -value is the ratio of the estimated coefficient and its SE .

- The t-value is routinely reported in all regression packages. In the $\operatorname{lm}()$ function, it is reported in the third row of numbers.
- Usually, $\alpha=5 \%$, then if $|\hat{\mathrm{t}}|>1.96 \approx 2$, we say the coefficient b_{k} is "significant."

Hypothesis Testing: Confidence Intervals

- The OLS estimate \mathbf{b} is a point estimate for $\boldsymbol{\beta}$, meaning that \mathbf{b} is a single value in R^{k}.
- Broader concept: Estimate a set C_{n}, a collection of values in R^{k}.
- When the parameter is real-valued, it is common to focus on intervals $\mathrm{C}_{\mathrm{n}}=\left[\mathrm{L}_{\mathrm{n}} ; \mathrm{U}_{\mathrm{n}}\right]$, called an interval estimate for θ. The goal of C_{n} is to contain the true value, e.g. $\theta \in C_{n}$, with high probability.
- C_{n} is a function of the data. Therefore, it is a RV.
- The coverage probability of the interval $\mathrm{C}_{\mathrm{n}}=\left[\mathrm{L}_{\mathrm{n}} ; \mathrm{U}_{\mathrm{n}}\right]$ is $\operatorname{Prob}\left[\theta \in \mathrm{C}_{\mathrm{n}}\right]$.

Hypothesis Testing: Confidence Intervals

- The randomness comes from C_{n}, since θ is treated as fixed.
- Interval estimates C_{n} are called confidence intervals (C.I.) as the goal is to set the coverage probability to equal a pre-specified target, usually 90% or $95 \% . C_{n}$ is called a $(1-\alpha) \%$ C.I.
- When we know the distribution for the point estimate, it is easy to construct a C.I. For example, under (A5), the distribution of \mathbf{b} is normal, then a 95% C.I. is given by:
$\mathrm{C}_{\mathrm{n}}=\left[\mathrm{b}_{k}+z_{.025} \times\right.$ Estimated $\operatorname{SE}\left(\mathrm{b}_{k}\right), \mathrm{b}_{k}+z_{.975} \times$ Estimated $\left.\operatorname{SE}\left(\mathrm{b}_{k}\right)\right]$
(Note: The Normal distribution is symmetric $\Rightarrow-z_{.025}=z_{. .975}=1.96$).
- This C.I. is symmetric around b_{k}, with length proportional to its SE.

Hypothesis Testing: Confidence Intervals

- Equivalently, C_{n} is the set of parameter values for b_{k} such that the z -statistic $\mathrm{z}_{\mathrm{n}}\left(\mathrm{b}_{k}\right)$ is smaller (in absolute value) than $\mathfrak{z}_{\alpha / 2}$. That is, $\mathrm{C}_{\mathrm{n}}=\left\{\mathrm{b}_{k}:\left|\mathrm{z}_{\mathrm{n}}\left(\mathrm{b}_{k}\right)\right| \leq z_{1-\alpha / 2}\right\} \quad$ with coverage probability $(1-\alpha) \%$.
- In general, the coverage probability of C.I.'s is unknown, since we do not know the distribution of the point estimates.
- In Lecture 8, we will use asymptotic distributions to approximate the unknown distributions. We will use these asymptotic distributions to get asymptotic coverage probabilities.
- Summary: C.I.'s are a simple but effective tool to assess estimation uncertainty.

Recall: A \boldsymbol{t}-distributed variable

- Recall a $\mathrm{t}_{v^{\prime}}$-distributed variable is a ratio of two independent RV: a $\mathrm{N}(0,1)$ RV and the square root of a χ_{v}^{2} RV divided by v.

Let $\quad z=\frac{(\bar{x}-\mu)}{\sigma / \sqrt{n}}=\sqrt{n} \frac{(\bar{x}-\mu)}{\sigma} \sim N(0,1)$
Let $\quad U=\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$
Assume that Z and U are independent (check the middle matrices in the quadratic forms!). Then,

$$
t=\frac{\sqrt{n} \frac{(\bar{x}-\mu)}{\sigma}}{\sqrt{\frac{(n-1) s^{2}}{\sigma^{2}} /(n-1)}}=\frac{\sqrt{n}(\bar{x}-\mu)}{s}=\frac{(\bar{x}-\mu)}{s / \sqrt{n}} \sim t_{n-1}
$$

Hypothesis Testing: Testing Example in \mathbf{R}

Example: 3 Factor Fama-French Model (continuation) for IBM:
$\mathbf{I B M}_{\text {Ret }}-\mathbf{r}_{\mathbf{f}}=\beta_{1}+\beta_{M k t}\left(\mathbf{M k t}_{\text {Ret }}-\mathbf{r}_{\mathbf{f}}\right)+\beta_{S M B} \mathbf{S M B}+\beta_{H M L} \mathbf{H M L}+\boldsymbol{\varepsilon}$

Returns <- read.csv("http://www.bauer.uh.edu/rsusmel/phd/K-DIS-IBM.csv", head=TRUE, sep=",")
$\mathrm{b}<-\operatorname{solve}\left(\mathrm{t}(\mathrm{x})^{\%} \% * \% \mathrm{x}\right)^{0} \% * \% \mathrm{t}(\mathrm{x})^{\%} \% * \% \mathrm{y} \quad \# \mathrm{~b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$ (OLS regression)
$\mathrm{e}<-\mathrm{y}-\mathrm{x} \% * \% \mathrm{~b} \quad$ \# regression residuals, \mathbf{e}
RSS $<-$ as.numeric $(\mathrm{t}(\mathrm{e}) \% * \% \mathrm{e}) \quad$ \# RSS
R2 <- 1 - as.numeric $(\operatorname{RSS}) /$ as.numeric $(\mathrm{t}(\mathrm{y}) \% * \% \mathrm{y})$ \# R-squared
Sigma $2<-$ as.numeric $(\operatorname{RSS} /(T-k)) \quad$ \# Estimated $\sigma^{2}=s^{2}$
SE_reg $<-$ sqrt(Sigma2) \# Estimated $\sigma-$ Regression stand error
Var_b <- Sigma2*Solve $\left(\mathrm{t}(\mathrm{x})^{\%} \%{ }^{*} \% \mathrm{x}\right) \quad$ \# Estimated $\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
SE_b <- sqrt(diag(Var_b)) \# SE[b|X]
t_b <- b/SE_b \# t-stats (See Chapter 4)

OLS Estimation - Is IBM's Beta equal to 1?

$$
>\mathrm{t}(\mathrm{~b})
$$

Mkt_RF SMB HML
[1,] -0.005088944 0.9082989-0.2124596-0.1715002
$>\mathrm{t}($ SE_b)
Mkt_RF SMB HML
[1,] 0.0024875090 .056722060 .084111880 .08468165
$>\mathrm{t}(\mathrm{t}$ _b)
Mkt_RF SMB HML
$[1]-$,2.045799 16.01315-2.525917-2.025235 $\quad \Rightarrow$ all coefficients are significant $(|\mathrm{t}|>2)$.

- Q : Is the market beta $\left(\beta_{1}\right)$ equal to 1? That is,

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=1 \text { vs. } \mathrm{H}_{1}: \beta_{1} \neq 1 \\
& \Rightarrow \mathrm{t}_{k}=\left(\mathrm{b}_{k}-\beta_{k}^{0}\right) / \operatorname{Est} . \operatorname{SE}\left(\mathrm{b}_{k}\right) \\
& \quad \mathrm{t}_{1}=(0.9082989-1) / 0.05672206=-1.616674 \\
& \Rightarrow\left|\mathrm{t}_{1}\right|<1.96 \quad \Rightarrow \text { Cannot reject } \mathrm{H}_{0} \text { at } 5 \% \text { level }
\end{aligned}
$$

Testing: The Expectation Hypothesis (EH)

Example: EH states that forward/futures prices are good predictors of future spot rates: $\quad \mathrm{E}_{\mathrm{t}}\left[\mathrm{S}_{\mathrm{t}+\mathrm{T}}\right]=\mathrm{F}_{\mathrm{t}, \mathrm{T}}$.

Implication of $\mathrm{EH}: \quad \mathrm{S}_{\mathrm{t}+\mathrm{T}}-\mathrm{F}_{\mathrm{t}, \mathrm{T}}=$ unpredictable.
That is, $\mathrm{E}_{\mathrm{t}}\left[\mathrm{S}_{\mathrm{t}+\mathrm{T}}-\mathrm{F}_{\mathrm{t}, \mathrm{T}}\right]=\mathrm{E}_{\mathrm{t}}\left[\varepsilon_{\mathrm{t}}\right]=0$!
Empirical tests of the EH are based on a regression:

$$
\left(\mathrm{S}_{\mathrm{t}+\mathrm{T}}-\mathrm{F}_{\mathrm{t}, \mathrm{~T}}\right) / \mathrm{S}_{\mathrm{t}}=\alpha+\beta \mathrm{Z}_{\mathrm{t}}+\varepsilon_{\mathrm{t}}, \quad\left(\text { where } \mathrm{E}\left[\mathrm{\varepsilon}_{\mathrm{t}}\right]=0\right)
$$

where Z_{t} represents any economic variable that might have power to explain S_{t}, for example, $\left(i_{d} \mathrm{i}_{\mathrm{f}}\right)$.

Then, under EH, $\quad \mathrm{H}_{0}: \alpha=0$ and $\beta=0$.

$$
\begin{equation*}
\text { vs } \quad \mathrm{H}_{1}: \alpha \neq 0 \text { and/or } \beta \neq 0 \tag{42}
\end{equation*}
$$

Testing: The Expectation Hypothesis (EH)

Example (continuation): We will informally test EH using exchange rates (USD/GBP), 3-mo forward rates and 3-mo interest rates.

SF_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/SpFor_prices.csv", head=TRUE, sep=",")
summary(SF_da)
x_date $<-$ SF_da\$Date
x_S <-SF_da\$GBPSP
x_F3m <-SF_da\$GBP3M
i_us3 <- SF_da\$Dep_USD3M
i_uk3 <- SF_da\$Dep_UKP3M
$\mathrm{T}<-$ length $\left(\mathrm{x}_{-} \mathrm{S}\right)$
prem <- (x_S[-1] - x_F3m[-T])/x_S[-1]
int_dif $<-($ i_us3 - i_uk3)/100
$\mathrm{y}<$ - prem
$\mathrm{x}<-$ int_dif[-T]
fit $<-\operatorname{lm}(y \sim x)$

Testing: The Expectation Hypothesis (EH)

Example (continuation): We do two individual t-tests on $\alpha \& \beta$.
> summary(fit)
Call:
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x})$
Residuals:
Min 1Q Median 3Q Max
$-0.125672-0.014576-0.0004390 .0173560 .094283$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $-0.00018540 .0016219-0.114 \quad 0.90906 \Rightarrow$ constant not significant $(|\mathrm{t}|<2)$
$x \quad-0.21575400 .0731553-2.949 \quad 0.00339^{* *} \Rightarrow$ slope is significant $(|t|>2) . \Rightarrow$ Reject H_{0} ---

Residual standard error: 0.02661 on 361 degrees of freedom
Multiple R-squared: 0.02353, Adjusted R-squared: 0.02082
F-statistic: 8.698 on 1 and $361 \mathrm{DF}, \mathrm{p}$-value: 0.003393

Testing: The Expectation Hypothesis (EH)

- 95% C.I. for b :

$$
\mathrm{C}_{\mathrm{n}}=\left[\mathrm{b}_{k} \pm t_{k, 1-.05 / 2} * \text { Estimated } \mathrm{SE}\left(\mathrm{~b}_{k}\right)\right]
$$

Then,

$$
\begin{aligned}
\mathrm{C}_{\mathrm{n}} & =[-0.215754-1.96 * 0.0731553,-0.215754+1.96 * 0.0731553] \\
& =[-0.3591384,-0.07236961]
\end{aligned}
$$

Since $\beta=0$ is not in C_{n} with 95% confidence \Rightarrow Reject $H_{0}: \beta_{1}=0$ at 5% level.

Note: The EH is a joint hypothesis, it should be tested with a joint test!

Testing a Hypothesis: Wald Statistic

- Most of our test statistics, including joint tests, are Wald statistics.

Wald $=$ normalized distance measure:
One parameter: $\quad t_{k}=\left(\mathrm{b}_{k}-\beta^{0}{ }_{k}\right) / s_{b, k}=$ distance/unit
More than one parameter.
Let $\mathbf{z}=$ (random vector - hypothesized value) be the distance

$$
W=\mathbf{z}^{\prime}[\operatorname{Var}(\mathbf{z})]^{-1} \mathbf{z} \quad \text { (a quadratic form) }
$$

- Distribution of W ? We have a quadratic form.
- If \mathbf{z} is normal and σ^{2} known, $W \sim \chi_{v=\operatorname{Rank}(\operatorname{Var}[z])}^{2}$
- If \mathbf{z} is normal and σ^{2} unknown, $W \sim F$
- If \mathbf{z} is not normal and σ^{2} unknown, we rely on asymptotic theory, $W \xrightarrow{d} \chi_{v=\operatorname{Rank}(\operatorname{Var}[z])}^{2}$

Abraham Wald (1902-1950, Hungary)

Testing a Hypothesis: Wald Statistic

- Distribution of W ? We have a quadratic form.

Recall Theorem 7.4. Let the $n \times 1$ vector $y \sim N\left(\mu_{y}, \Sigma_{y}\right)$. Then,

$$
\begin{aligned}
& \left(y-\mu_{y}\right)^{\prime} \Sigma_{\mathrm{y}}^{-1}\left(y-\mu_{\mathrm{y}}\right) \sim \chi_{n}^{2} . \quad \text {-note: } n=\operatorname{rank}\left(\Sigma_{\mathrm{y}}\right) . \\
& \Rightarrow \text { If } \mathbf{z} \sim \mathrm{N}(0, \operatorname{Var}(\mathbf{z})) \Rightarrow W \text { is distributed as } \chi_{v=\operatorname{Rank}(\operatorname{Var}[z])}^{2}
\end{aligned}
$$

In general, $\operatorname{Var}(\mathbf{z})$ is unknown, we need to use an estimator of $\operatorname{Var}(\mathbf{z})$. In our context, we need an estimator of σ^{2}. Suppose we use s^{2}. Then, we have the following result:
Let $\mathbf{z} \sim N(0, \operatorname{Var}(\mathbf{z}))$. We use s^{2} instead of σ^{2} to estimate $\operatorname{Var}(\mathbf{z})$

$$
\Rightarrow W \sim F \text { distribution. }
$$

Recall the F distribution arises as the ratio of two χ^{2} variables divided by their degrees of freedom.

Recall: An \boldsymbol{F}-distributed variable

Let $\quad F=\frac{\chi_{J}^{2} / J}{\chi_{T}^{2} / T} \sim F_{J, T}$
Let $\quad z=\frac{(\bar{x}-\mu)}{\sigma / \sqrt{n}}=\sqrt{n} \frac{(\bar{x}-\mu)}{\sigma} \sim N(0,1)$
Let $\quad U=\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$
If Z and U are independent, then

$$
F=\frac{\left[\sqrt{n} \frac{(\bar{x}-\mu)}{\sigma}\right]^{2} / 1}{\frac{(n-1) s^{2}}{\sigma^{2}} /(n-1)}=\frac{(\bar{x}-\mu)^{2}}{s^{2} / n} \sim F_{1, n-1}
$$

Recall: An F-distributed variable

- There is a relationship between t and F when testing one restriction.
- For a single restriction, $m=\mathrm{r}^{\prime} \mathrm{b}-q$. The variance of m is: $\mathrm{r} \operatorname{Var}[\mathrm{b}] \mathrm{r}$.
- The distance measure is $t=m / \mathrm{Est}$. $\mathrm{SE}(m) \sim \mathrm{t}_{T-k}$.
- This t-ratio is the $\operatorname{sqrt}\{F$-ratio $\}$.
- t-ratios are used for individual restrictions, while F-ratios are used for joint tests of several restrictions.

The General Linear Hypothesis: $\mathbf{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$

- Suppose we are interested in testing J joint hypotheses.

Example: We want to test that in the 3 FF factor model that the SMB and HML factors have the same coefficients, $\beta_{S M B}=\beta_{H M L}=\beta^{0}$.

We can write linear restrictions as $\mathrm{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$, where \mathbf{R} is a 厄xk matrix and \mathbf{q} a Jx1 vector.

In the above example $(J=2)$, we write:

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{c}
\boldsymbol{\beta}_{1} \\
\boldsymbol{\beta}_{M k t} \\
\boldsymbol{\beta}_{S M B} \\
\boldsymbol{\beta}_{H M L}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{\beta}^{0} \\
\boldsymbol{\beta}^{0}
\end{array}\right]
$$

The General Linear Hypothesis: $\mathbf{H}_{\mathbf{0}}: \mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$

- Q : Is $\mathbf{R b}-\mathbf{q}$ close to $\mathbf{0}$? There are two different approaches to this questions. Both have in common the property of unbiasedness for \mathbf{b}.
(1) We base the answer on the discrepancy vector:

$$
\mathbf{m}=\mathbf{R} \mathbf{b}-\mathbf{q} .
$$

Then, we construct a Wald statistic:

$$
W=\mathbf{m}^{\prime}(\operatorname{Var}[\mathbf{m} \mid \mathbf{X}])^{-1} \mathbf{m}
$$

to test if \mathbf{m} is different from 0 .
(2) We base the answer on a model loss of fit when restrictions are imposed: RSS must increase and R^{2} must go down. Then, we construct an F test to check if the unrestricted $\operatorname{RSS}\left(R S S_{U}\right)$ is different from the restricted RSS $\left(R S S_{R}\right)$.

The General Linear Hypothesis: $\mathbf{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$

- Q : $\mathrm{Is} \mathbf{R b}-\mathbf{q}$ close to $\mathbf{0}$? There are two different approaches to this questions. Both have in common the property of unbiasedness for \mathbf{b}.
(1) We base the answer on the discrepancy vector:

$$
\mathbf{m}=\mathbf{R b}-\mathbf{q} .
$$

Then, we construct a Wald statistic:

$$
W=\mathbf{m}^{\prime}(\operatorname{Var}[\mathbf{m} \mid \mathbf{X}])^{-1} \mathbf{m}
$$

to test if \mathbf{m} is different from 0 .
(2) We base the answer on a model loss of fit when restrictions are imposed: RSS must increase and R^{2} must go down. Then, we construct an F test to check if the unrestricted $\operatorname{RSS}\left(R S S_{U}\right)$ is different from the restricted RSS $\left(R S S_{R}\right)$.

Wald Test Statistic for $\mathbf{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$

- To test H_{0}, we calculate the discrepancy vector:

$$
\mathbf{m}=\mathbf{R} \mathbf{b}-\mathbf{q} .
$$

Then, we compute the Wald statistic:

$$
W=\mathbf{m}^{\prime}(\operatorname{Var}[\mathbf{m} \mid \mathbf{X}])^{-1} \mathbf{m}
$$

It can be shown that $\operatorname{Var}[\mathbf{m} \mid \mathbf{X}]=\mathbf{R}\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}$. Then,

$$
W=(\mathbf{R} \mathbf{b}-\mathbf{q})^{\prime}\left\{\mathbf{R}\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}\right\}^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})
$$

Under H_{0} and assuming (A5) \& estimating σ^{2} with $s^{2}=\mathbf{e}^{\prime} \mathbf{e} /(T-k)$:

$$
\begin{aligned}
& \mathrm{W}^{*}=(\mathbf{R} \mathbf{b}-\mathbf{q})^{\prime}\left\{\mathbf{R}\left[s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}\right\}^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q}) \\
& \mathrm{F}=W^{*} / J \sim F_{J, T-k} .
\end{aligned}
$$

If (A5) is not assumed, the results are only asymptotic: $J^{*} F \xrightarrow{d} \chi_{J}^{2}$

Wald Test Statistic for $\mathbf{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathrm{q}=\mathbf{0}$

Example: In the 3 FF factor model for IBM excess returns ($T=569$) $\mathbf{I B M}_{\text {Ret }}-\mathbf{r}_{\mathbf{f}}=\beta_{1}+\beta_{M k t}\left(\mathbf{M k t}_{\text {Ret }}-\mathbf{r}_{\mathbf{f}}\right)+\beta_{S M B} \mathbf{S M B}+\beta_{H M L} \mathbf{H M L}+\boldsymbol{\varepsilon}$ we want to test if $\beta_{S M B}=0.2$ and $\beta_{H M L}=0.6$.

1. $\mathrm{H}_{0}: \beta_{S M B}=0.2$ and $\beta_{H M L}=0.6$.

$$
\mathrm{H}_{1}: \beta_{S M B} \neq 0.2 \mathrm{and} / \text { or } \beta_{H M L} \neq 0.6 . \quad \Rightarrow J=2
$$

We define $\mathbf{R}(2 \times 4)$ below and write $\mathbf{m}=\mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$:

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{c}
\boldsymbol{\beta}_{1} \\
\boldsymbol{\beta}_{M k t} \\
\boldsymbol{\beta}_{S M B} \\
\boldsymbol{\beta}_{H M L}
\end{array}\right]=\left[\begin{array}{c}
0.2 \\
0.6
\end{array}\right]
$$

2. Test-statistic: $\mathrm{F}=\mathrm{W} * / J=(\mathbf{R} \mathbf{b}-\mathbf{q})^{\prime}\left\{\mathbf{R}\left[s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}\right\}^{-1}(\mathbf{R b}-\mathbf{q})$

Wald Test Statistic for $\mathbf{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathrm{q}=\mathbf{0}$

Example (continuation):

2. Test-statistic: $\mathrm{F}=\mathrm{W}^{*} / J=(\mathbf{R b}-\mathbf{q})^{\prime}\left\{\mathbf{R}\left[s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}\right\}^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})$

Distribution under $\mathrm{H}_{0}: \mathrm{F}=W^{*} / 2 \sim F_{2, T-2}$ (asymptotic, $2^{*} F \stackrel{d}{\rightarrow} \chi_{2}^{2}$)
3. Get OLS results, compute F.
4. Decision Rule: $\alpha=0.05$ level. We reject H_{0} if p -value $(F)<.05$.

Or, reject H_{0}, if $F>\mathrm{F}_{J=2, T-2,05}$.
$\mathrm{J}<-2$ \# number of restriction
$\mathrm{R}<-\operatorname{matrix}(\mathrm{c}(0,0,0,0,1,0,0,1)$, nrow=2) \# matrix of restrictions
$\mathrm{q}<-\mathrm{c}(.2,1) \quad$ \# hypothesized values
$\mathrm{m}<-\mathrm{R} \% * \% \mathrm{~b}-\mathrm{q} \quad \# \mathrm{~m}=$ Estimated $\mathrm{R} *$ Beta $-\mathrm{q} \quad 55$

Wald Test Statistic for $\mathbf{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathrm{q}=\mathbf{0}$

Example (continuation):

$\begin{aligned} & \text { Var_m <- R \%*\% Var_b \% } \% \% \text { t(R) } \\ & \text { det(Var_m) } \end{aligned}$	\# Variance of m \# check for non-singularity
$\mathrm{W}<-\mathrm{t}(\mathrm{m}) \% \%^{*} \%$ solve(Var_m) $\%$ \% ${ }^{\text {\% }} / \mathrm{m}$	
F_t <- as.numeric(W/J)	\# F-test statistic
$\mathrm{qf}(.95, \mathrm{df} 1=\mathrm{J}, \mathrm{df} 2=(\mathrm{T}-\mathrm{k})$)	\# exact distribution (F-dist) if errors normal
P_val <-1-pf(F_t, df1 $=$ J, df2 $=(\mathrm{T}-\mathrm{k})$)	\# p-value(F_t) under errors normal
p_val	
> F_t	
[1] 49.21676	
$>$	
$>\mathrm{qf}(.95, \mathrm{df} 1=\mathrm{J}, \mathrm{df} 2=(\mathrm{T}-\mathrm{k}))$	\# exact distribution (F-dist) if errors normal
[1] 3.011672	F_t $>3.011672 \Rightarrow$ reject H_{0} at 5% level
$>$ p_val <- $1-\mathrm{pf}\left(\mathrm{F} _\mathrm{t}, \mathrm{df} 1=\mathrm{J}, \mathrm{df} 2=(\mathrm{T}-\mathrm{k})\right)$	\# p-value(F_t) under errors normal
> p _val	
[1] 0	very low chance H_{0} is true.

Wald Test Statistic for \mathbf{H}_{0} : Does EH hold?

Example: Now, we do a joint test of the EH. $\mathrm{H}_{0}: \alpha=0$ and $\beta=0$.
Using the previous program but with:
J <-2
$\mathrm{R}<-\operatorname{matrix}(\mathrm{c}(1,0,0,1)$, nrow=2) \# matrix of restrictions
$\mathrm{q}<-\mathrm{c}(0,0)$
$>$ F_t $^{\text {t }}$
[1] 4.1024
$>$
$>\mathrm{qf}(.95, \mathrm{df} 1=\mathrm{J}, \mathrm{df} 2=(\mathrm{T}-\mathrm{k})) \quad$ \# exact distribution $(\mathrm{F}$-dist) if errors normal
[1] 3.020661
F_t $>3.020661 \Rightarrow$ reject H_{0} at 5% level
$>\mathrm{p} _$val $<-1-\mathrm{pf}\left(\mathrm{F}_{-} \mathrm{t}, \mathrm{df} 1=\mathrm{J}, \mathrm{df} 2=(\mathrm{T}-\mathrm{k})\right) \quad$ \# p-value(F_t) under errors normal
$>$ p_val
[1] 0.01731 very low chance H_{0} is true.

The F Test: $\mathbf{H}_{\mathbf{0}}: \mathbf{R} \boldsymbol{\beta}-\mathrm{q}=\mathbf{0}$
(2) We know that imposing restrictions leads to a loss of fit: R^{2} must go down. Does it go down a lot? -i.e., significantly?

Recall (i) $\mathbf{e}^{*}=\mathbf{y}-\mathbf{X} \mathbf{b}^{*}=\mathbf{e}-\mathbf{X}\left(\mathbf{b}^{*}-\mathbf{b}\right)$
(ii) $\mathbf{b}^{*}=\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})$
$\Rightarrow \quad \mathrm{e}^{* \prime} \mathrm{e}^{*}=\mathrm{e}^{\prime} \mathrm{e}+\left(\mathrm{b}^{*}-\mathrm{b}\right)^{\prime} \mathbf{X}^{\prime} \mathbf{X}\left(\mathrm{b}^{*}-\mathrm{b}\right)$
$\mathbf{e}^{*} \mathbf{e}^{*}=\mathrm{e}^{\prime} \mathrm{e}^{+}(\mathbf{R b}-\mathbf{q})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R b}-\mathbf{q})$

$$
\mathbf{e}^{*^{\prime}} \mathbf{e}^{*}-\mathrm{e}^{\prime} \mathbf{e}=(\mathbf{R} \mathbf{b}-\mathbf{q})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})
$$

Recall
$-W=(\mathbf{R b}-\mathbf{q})^{\prime}\left\{\mathbf{R}\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}\right\}^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q}) \sim \chi_{J}^{2} \quad$ (if σ^{2} is known) - $\mathrm{e}^{\prime} \mathrm{e} / \sigma^{2} \sim \chi_{T-k}^{2}$.

Then,

$$
F=\left(\mathbf{e}^{*} \mathbf{e}^{*}-\mathbf{e}^{\prime} \mathbf{e}\right) / J /\left[\mathbf{e}^{\prime} \mathbf{e} /(T-k)\right] \sim F_{J, T-K} .
$$

58

The F Test: $\mathrm{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathrm{q}=\mathbf{0}$

- $\quad F=\left(\mathbf{e}^{*} \mathbf{e}^{*}-\mathbf{e}^{\prime} \mathbf{e}\right) / J /\left[\mathbf{e}^{\prime} \mathbf{e} /(T-k)\right] \sim F_{J, T-K}$.

Let $\quad \mathrm{R}^{2}=$ unrestricted model $=1-\mathrm{RSS} / \mathrm{TSS}$
$\mathrm{R}^{* 2}=$ restricted model fit $=1-\mathrm{RSS} * / \mathrm{TSS}$
Then, dividing and multiplying F by TSS we get

$$
F=\left(\left(1-\mathrm{R}^{* 2}\right)-\left(1-\mathrm{R}^{2}\right)\right) / J /\left[\left(1-\mathrm{R}^{2}\right) /(T-k)\right] \sim F_{J, T-K}
$$

or

$$
F=\left\{\left(\mathrm{R}^{2}-\mathrm{R}^{* 2}\right) / J\right\} /\left[\left(1-\mathrm{R}^{2}\right) /\left(T-k_{*}\right)\right] \sim F_{J, T-K} .
$$

The F Test: F-test of goodness of fit

- In the linear model

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\ldots+\mathbf{X}_{k} \boldsymbol{\beta}_{k}+\boldsymbol{\varepsilon}
$$

- We want to test if the slopes $\mathbf{X}_{2}, \ldots, \mathbf{X}_{k}$ are equal to zero. That is,

$$
H_{0}: \beta_{2}=\ldots=\beta_{k}=0
$$

H_{1} : at least one $\beta \neq 0 \quad \Rightarrow J=k-1$

- We can write $\mathrm{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0} \quad \Rightarrow\left[\begin{array}{cccc}0 & 1 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \ldots \\ \beta_{k}\end{array}\right]=\left[\begin{array}{c}0 \\ \ldots \\ 0\end{array}\right]$
- We have $J=k-1$. Then,

$$
F=\left\{\left(\mathrm{R}^{2}-\mathrm{R}^{* 2}\right) /(k-1)\right\} /\left[\left(1-\mathrm{R}^{2}\right) /(T-k)\right] \sim F_{k-1, T-K} .
$$

- For the restricted model, $\mathrm{R}^{* 2}=0$.

The F Test: F-test of goodness of fit

Then, $F=\left\{\mathrm{R}^{2} /(k-1)\right\} /\left[\left(1-\mathrm{R}^{2}\right) /(T-k)\right] \sim F_{k-1, T-K}$.

- Recall ESS/TSS is the definition of R^{2}. RSS/TSS is equal to ($1-R^{2}$).

$$
\begin{aligned}
F(k-1, n-k) & =\frac{R^{2} /(k-1)}{\left(1-R^{2}\right) /(T-k)}=\frac{\frac{E S S}{T S S} /(k-1)}{\frac{R S S}{T S S} /(T-k)} \\
& =\frac{E S S /(k-1)}{R S S /(T-k)}
\end{aligned}
$$

- This test statistic is called the F-test of goodness of fit.

The F Test: F-test of goodness of fit

Example: We want to test if all the FF factors (Market, SMB, HML) are significant, using monthly data 1973 - $2020(\mathrm{~T}=569)$.

```
y<- ibm_x
T<- length(x)
x0<- matrix (1,T,1)
x <- cbind(x0,Mkt_RF, SMB, HML)
k}<-\operatorname{ncol(x)
b <- solve(t(x) % % % x ) % % % t t(x) % % % % # #OLS regression
e<- y - x%*%%b
RSS <- as.numeric(t(e)%*%ee)
R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%%y) #R-squared
>R2
[1] 0.338985
F_goodfit<- (R2/(k-1))/((1-R2)/(T-k)) #F-test of goodness of fit.
> F_goodfit
[1] 96.58204 }=>\mathrm{ F_goodfit }>\mp@subsup{F}{2,565,05}{=2.387708 }=>\mathrm{ Reject H}\mp@subsup{H}{0}{\prime}.\quad6
```


The F Test: General Case - Example

- In the linear model

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}=\boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\mathbf{X}_{3} \boldsymbol{\beta}_{3}+\mathbf{X}_{4} \boldsymbol{\beta}_{4}+\boldsymbol{\varepsilon}
$$

- We want to test if the slopes $\mathbf{X}_{3}, \mathbf{X}_{4}$ are equal to zero. That is,

$$
\begin{aligned}
& \boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\beta}_{3}=\boldsymbol{\beta}_{4}=\mathbf{0} \\
& \boldsymbol{H}_{1}: \boldsymbol{\beta}_{3} \neq \mathbf{0} \text { or } \boldsymbol{\beta}_{4} \neq \mathbf{0} \text { or both } \boldsymbol{\beta}_{3} \text { and } \boldsymbol{\beta}_{4} \neq \mathbf{0}
\end{aligned}
$$

- We can use, $F=\left(\mathbf{e}^{*} \mathbf{e}^{*}-\mathbf{e}^{\prime} \mathbf{e}\right) / J /\left[\mathbf{e}^{\prime} \mathbf{e} /(T-k)\right] \sim F_{J, T-K}$.

$$
\begin{array}{rr}
\text { Define } & Y=\beta_{1}+\beta_{2} X_{2}+\varepsilon \\
Y=\beta_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon & R S S_{R} \\
\boldsymbol{F}(\text { cost in } d f \text {, unconstr } d f)=\frac{R S S_{R}-R S S_{U} / k_{U}-k_{R}}{R S S_{U} / T-k_{U}}
\end{array}
$$

The F Test: General Case - Example

Example: We want to test if the additional FF factors (SMB, HML) are significant, using monthly data 1973 - 2020 ($\mathrm{T}=569$).
Unrestricted Model:
(U) $\mathbf{I B M}_{\text {Ret }}-\mathbf{r}_{\mathrm{f}}=\beta_{0}+\beta_{1}\left(\mathbf{M k t}_{\text {Ret }}-\mathbf{r}_{\mathbf{f}}\right)+\beta_{2} \mathbf{S M B}+\beta_{3} \mathbf{H M L}+\varepsilon$

Hypothesis: $\quad \mathrm{H}_{0}: \beta_{2}=\beta_{3}=0$

$$
\mathrm{H}_{1}: \beta_{2} \neq 0 \text { and } \text { or } \beta_{3} \neq 0
$$

Then, the Restricted Model:
(R) $\quad \mathbf{I B M}_{\text {Ret }}-\mathbf{r}_{\mathbf{f}}=\beta_{0}+\beta_{1}\left(\mathbf{M k t}_{\text {Ret }}-\mathbf{r}_{\mathrm{f}}\right)+\boldsymbol{\varepsilon}$

Test: $\quad F=\frac{\left(R S S_{R}-R S S_{U}\right) / J}{R S S_{U} /\left(T-k_{u}\right)} \sim F_{J, T-K} . \quad$ with $J=k_{\mathrm{U}}-k_{\mathrm{R}}=4-2=2$

The F Test: General Case - Example

Example (continuation): The unrestricted model was already estimated. For the restricted model:

```
\(y<-\) ibm_x
\(x 0<-\operatorname{matrix}(1, T, 1)\)
\(\mathrm{x} \_\mathrm{r}<-\) cbind \((\mathrm{x} 0, \mathrm{Mkt}\) _RF) \# Restricted X vector
\(\mathrm{T}<-\operatorname{nrow}(\mathrm{x})\)
\(\mathrm{k} 2<-\operatorname{ncol}(\mathrm{x})\)
\(\mathrm{b} 2<-\) solve \(\left(\mathrm{t}\left(\mathrm{x} \_\mathrm{r}\right) \% * \% \mathrm{x}\right.\) ) r\() \% * \% \mathrm{t}\left(\mathrm{x} \_\mathrm{r}\right) \% * \% \mathrm{oy} \quad\) \# Restricted OLS regression
e2 <- y - x_r \(\%\) * 0 / b 2
RSS \(2<-\) as.numeric(t(e2) \(\% * \% / \mathrm{e} 2\) )
\(>\) RSS \(=1.932442 \quad \#\) RSS \(_{U}\)
\(>\) RSS2 \(=1.964844 \quad\) \# RSS \({ }_{R}\)
\(\mathrm{J}<-\mathrm{k}-\mathrm{k} 2\)
F_test <- \(((\mathrm{RSS} 2-\mathrm{RSS}) / \mathrm{J}) /(\mathrm{RSS} /(\mathrm{T}-\mathrm{k}))\)
\(\mathrm{J}<-\mathrm{k}-\mathrm{k} 2\)
F_test \(<-((\mathrm{RSS} 2-\mathrm{RSS}) / \mathrm{J}) /(\mathrm{RSS} /(\mathrm{T}-\mathrm{k}))\)
```

\# J = degrees of freedom of numerator
65

The F Test: General Case - Example

```
Example (continuation):
F_test <- ((RSS2 - RSS)/J)/(RSS/(T-k))
> F_test
[1] 4.736834
>qf(.95, df1=J, df2=(T-k)) # F F2,565,05 value ( }\approx3
[1] 3.011672
p_val <- 1 - pf(F_test, df1=J, df2=(T-k))
Reject H0
    # p-value of F_test
> p_val
[1] 0.009117494 }\quad=>\textrm{p}\mathrm{ -value is small }=>\mathrm{ Reject }\mp@subsup{\textrm{H}}{0}{}\mathrm{ .
```


Lagrange Multiplier Statistics

- Specific to the classical model.

Recall the Lagrange multipliers:

$$
\lambda=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{m}
$$

Suppose we just test $\mathrm{H}_{0}: \boldsymbol{\lambda}=\mathbf{0}$, using the Wald criterion.

$$
W=\lambda^{\prime}(\operatorname{Var}[\lambda \mid \mathbf{X}])^{-1} \lambda
$$

where

$$
\begin{aligned}
& \operatorname{Var}[\lambda \mid \mathbf{X}]=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \operatorname{Var}[\mathbf{m} \mid \mathbf{X}]\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \\
& \operatorname{Var}[\mathbf{m} \mid \mathbf{X}]=\mathbf{R}\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}^{-1}\right] \mathbf{R}^{\prime}\right. \\
\operatorname{Var}[\lambda \mid \mathbf{X}] & =\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime-1} \mathbf{R}\left[\mathbf{R}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}\right. \\
& =\sigma^{2}\left[\mathbf{R} / \mathbf{X}^{\prime} \mathbf{X}-1 \mathbf{R}^{\prime}\right]^{-1}
\end{aligned}
$$

Then,

$$
\begin{aligned}
W & =\mathbf{m}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}\left\{\sigma^{2}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}\right\}^{-1}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}_{67}^{\prime}\right]^{-1} \mathbf{m} \\
& \left.=\mathbf{m},\left[\sigma^{2} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}\right\} \mathbf{m}
\end{aligned}
$$

Application (Greene): Gasoline Demand

- Time series regression,

$$
\begin{aligned}
\log \mathbf{G}= & \beta_{1}+\beta_{2} \log \mathbf{Y}+\beta_{3} \log \mathbf{P G}+\beta_{4} \log \mathbf{P N C}+\beta_{5} \log \mathbf{P U C} \\
& +\beta_{6} \log \mathbf{P P T}+\beta_{7} \log \mathbf{P N}+\beta_{8} \log \mathbf{P D}+\beta_{9} \log \mathbf{P S}+\varepsilon
\end{aligned}
$$

Period $=1960-1995$.

- A significant event occurs in October 1973: the first oil crash. In the next lecture, we will be interested to know if the model 1960 to 1973 is the same as from 1974 to 1995.

Note: All coefficients in the model are elasticities.

Application (Greene): Gasoline Demand

Application (Greene): Gasoline Demand

- $Q:$ Is the price of public transportation really relevant? $H_{0}: \beta_{6}=0$.
(1) Distance measure: $t_{6}=\left(\mathrm{b}_{6}-0\right) / \mathrm{s}_{\mathrm{b} 6}=(.11571-0) / .07859$

$$
=1.472<2.052 \Rightarrow \text { cannot reject } \mathrm{H}_{0} .
$$

(2) Confidence interval: $\mathrm{b}_{6} \pm t_{(.95,27)} \times$ Standard error

$$
\begin{aligned}
& =.11571 \pm 2.052 \times(.07859) \\
& =.11571 \pm .16127=(-.045557, .27698) \\
& \Rightarrow \text { C.I. contains } 0 \quad \Rightarrow \text { cannot reject } \mathrm{H}_{0} .
\end{aligned}
$$

> (3) Regression fit if \mathbf{X}_{6} drop? $\begin{array}{r}\text { Original } \mathrm{R}^{2}=.99605, \\ \\ \text { Without LPPT, } \mathrm{R}^{* 2}=.99573\end{array}$ $\begin{aligned} \mathrm{F}(1,27)= & {[(.99605-.99573) / 1] /[(1-.99605) /(36-9)]=2.187 } \\ & =1.472^{2} \text { (with some rounding) } \quad \Rightarrow \text { cannot reject }{ }^{7} \mathrm{H}_{0} .\end{aligned}$

Gasoline Demand (Greene) - Hypothesis Test: Sum of Coefficients

- Do the three aggregate price elasticities sum to zero?
$\mathrm{H}_{0}: \beta_{7}+\beta_{8}+\beta_{9}=0$
$\mathbf{R}=[0,0,0,0,0,0,1,1,1], \quad \mathbf{q}=0$

Gasoline Demand (Greene) - Hypothesis Test: Sum of Coefficients - Wald Test

```
--> MATRIX ; list ;R = [0,0,0,0,0,0,1,1,1] ; q = [0]
    ; m = R*b - q
    ; Varm = R*Varb*R'
    ; Wald = m' <Varm> m $
Var[m] = R * Var[b] }\times\mp@subsup{R}{}{\prime}=[\begin{array}{lllllllll}{0}&{0}&{0}&{0}&{0}&{0}&{1}&{1}&{1}\end{array}
\sum \}\mp@subsup{}{i=1}{9}\mp@subsup{\sum}{j=1}{9}\mp@subsup{R}{i}{}\mp@subsup{R}{j}{}\operatorname{Cov}(\mp@subsup{b}{i}{},\mp@subsup{b}{j}{})=0.1010
m' [Var(m)] -1 m = 8.5446
```


The critical chi squared with 1 degree of freedom is 3.84 , so the hypothesis is rejected.

```

\section*{Gasoline Demand (Greene) - Imposing Restrictions}


\section*{Gasoline Demand (Greene) - Joint Hypotheses}
- Joint hypothesis: Income elasticity \(=+1\), Own price elasticity \(=-1\).

The hypothesis implies that \(\log \mathrm{G}=\beta_{1}+\log \mathrm{Y}-\log \mathrm{Pg}+\beta_{4} \log \mathrm{PNC}+\ldots\)
Strategy: Regress \(\log \mathrm{G}-\log \mathrm{Y}+\log \mathrm{Pg}\) on the other variables and
- Compare the sums of squares

With two restrictions imposed
Residuals Sum of squares \(=.0286877\)
Fit R-squared \(=.9979006\)
Unrestricted
Residuals Sum of squares \(=.0085531\)
Fit R-squared \(=.9960515\)
\(\mathrm{F}=((.0286877-.0085531) / 2) /(.0085531 /(36-9))=31.779951\)
The critical F for \(95 \%\) with 2,27 degrees of freedom is \(3.354 \quad \Rightarrow H_{0}\) is rejected.
- Q: Are the results consistent? Does the \(\mathrm{R}^{2}\) really go up when the restrictions are imposed?

\section*{Gasoline Demand - Using the Wald Statistic}
```

--> Matrix ; R = [0,1,0,0,0,0,0,0,0 /
--> Matrix ; q = [1/-1]\$
--> Matrix ; list ; m = R*b - q \$
Matrix M has 2 rows and 1 columns.
1
+-------------+
1| . }3572
2| . }4942
--> Matrix ; list ; vm = R*varb*R' \$
Matrix VM has 2 rows and 2 columns.
1 2
+-------------+----------------
1| .02120 . 00291
2| .00291 . 00384
--> Matrix ; list ; w = 1/2 * m'<vm>m \$
Matrix W has 1 rows and 1 columns.
1
+-------------+
1| 31.77981

Gasoline Demand (Greene) - Testing Details

- Q: Which restriction is the problem? We can look at the Jx1 estimated LM, λ, for clues:

$$
\lambda=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})
$$

- Recall that under H_{0}, λ should be 0 .

Matrix Result has 2 rows and 1 columns.

Results suggest that the constraint on the price elasticity is having ${ }_{6}{ }^{2}$ greater effect on the sum of squares.

Gasoline Demand (Greene) - Basing the Test on \mathbf{R}^{2}

- After building the restrictions into the model and computing restricted and unrestricted regressions: Based on $\mathrm{R}^{2} \mathrm{~s}$,

$$
\begin{aligned}
\mathrm{F} & =[(.9960515-.997096) / 2] /[(1-.9960515) /(36-9)] \\
& =-3.571166(!)
\end{aligned}
$$

- Q: What's wrong?

