Lecture 3 Specification & Testing in the Classical Linear Model

1

OLS Estimation - Assumptions

- CLM Assumptions
- (A1) DGP: $y = X \beta + \varepsilon$ is correctly specified.
- $(\mathbf{A2}) \, \, \mathbf{E}[\boldsymbol{\varepsilon} \, | \, \mathbf{X}] = 0$
- (A3) $Var[\boldsymbol{\varepsilon} | \mathbf{X}] = \sigma^2 \mathbf{I}_T$
- (A4) **X** has full column rank $-\text{rank}(\mathbf{X})=k$ -, where $T \geq k$.
- Q: What happens when (A1) is not correctly specified?
- In this lecture, we look at (A1), always in the context of linearity. Are we omitting a relevant regressor? Are we including an irrelevant variable? What happens when we impose restrictions in the DGP?

Specification Errors: Omitted Variables

• Omitting relevant variables: Suppose the correct model is

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon$$
 -i.e., with two sets of variables.

But, we compute OLS omitting \mathbf{X}_2 . That is,

$$y = X_1\beta_1 + \varepsilon$$
 <= the "short regression."

Some easily proved results:

- (1) $E[\mathbf{b}_1|\mathbf{X}] = E[(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{y}] = \boldsymbol{\beta}_1 + (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_2\boldsymbol{\beta}_2 \neq \boldsymbol{\beta}_1$. So, unless $\mathbf{X}_1'\mathbf{X}_2 = 0$, \mathbf{b}_1 is *biased*. The bias can be huge. It can reverse the sign of a price coefficient in a "demand equation."
- (2) $\operatorname{Var}[\mathbf{b}_1 | \mathbf{X}] \leq \operatorname{Var}[\mathbf{b}_{1,2} | \mathbf{X}]$. (The latter is the northwest submatrix of the full covariance matrix.) The proof uses \mathbf{M} , the residual maker. We get a smaller variance when we omit \mathbf{X}_2 .

Specification Errors: Omitted Variables

• We get a smaller variance when we omit X_2 .

<u>Interpretation</u>: Omitting \mathbf{X}_2 amounts to using extra information –i.e., $\mathbf{\beta}_2 = \mathbf{0}$. Even if the information is wrong, it reduces the variance.

(3) MSE

 \mathbf{b}_1 may be more "precise."

Precision = Mean squared error

= variance + squared bias.

Smaller variance but positive bias. If bias is small, may still favor the short regression.

Note: Suppose $X_1'X_2 = 0$. Then the bias goes away. Interpretation, the information is not "right," it is irrelevant. b_1 is the same as $b_{1,2}$.

Omitted Variables Example: Gasoline Demand

• We have a linear model for the demand for gasoline:

$$\mathbf{G} = PG \, \mathbf{\beta}_1 + Y \, \mathbf{\beta}_2 + \mathbf{\epsilon},$$

Q: What happens when you wrongly exclude Income (Y)?

$$E[b_1 | \mathbf{X}] = \beta_1 + \frac{Cov[Price, Income]}{Var[Price]} \beta_2$$

In time series data, $\beta_1 < 0$, $\beta_2 > 0$ (usually)

Cov[Price, Income] > 0 in time series data.

⇒ The short regression will overestimate the price coefficient.

In a simple regression of G (demand) on a constant and PG, the Price Coefficient (β_1) should be negative.

Estimation of a 'Demand' Equation (Greene): Multiple Regression - Theory Works.

Ordinary	least squares regres	sion		
LHS=G	Mean	=	226.09444	
	Standard deviation	=	50.59182	
	Number of observs.	=	36	
Model size	Parameters	=	3	
	Degrees of freedom	=	33	
Residuals	Sum of squares	=	1472.79834	
	Standard error of e	=	6.68059	
Fit	R-squared	=	.98356	
	Adjusted R-squared	=	.98256	
Model test	F[2, 33] (prob)	= 98	37.1(.0000)	
	efficient Standard			P[T >t]
	- 79.7535*** 8.67			.0000
Y		132	28.022	
		034	-8.042	

• <u>Note</u>: Income is helping us to identify a demand equation –i.e., with a negative slope for the price variable.

Specification Errors: Irrelevant Variables

• Irrelevant variables . Suppose the correct model is

$$\mathbf{y} = \mathbf{X}_1 \mathbf{\beta}_1 + \mathbf{\varepsilon}$$
 —i.e., with one set of variables.

But, we estimate

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon$$
 <= the "long regression."

Some easily proved results: Including irrelevant variables just reverse the results: It increases variance -the cost of not using information-; but does not create biases.

 \Rightarrow Since the variables in \mathbf{X}_2 are truly irrelevant, then $\boldsymbol{\beta}_2 = \mathbf{0}$, so $\mathrm{E}[\mathbf{b}_{1\,2} | \mathbf{X}] = \boldsymbol{\beta}_1$.

Specification Errors: Irrelevant Variables

• A simple example

Suppose the correct model is: $\mathbf{y} = \beta_1 + \beta_2 \mathbf{X}_2 + \boldsymbol{\varepsilon}$ But, we estimate: $\mathbf{y} = \beta_1 + \beta_2 \mathbf{X}_2 + \beta_3 \mathbf{X}_3 + \boldsymbol{\varepsilon}$

- Unbiased: given that $\beta_3 = 0$ $\Rightarrow E[b_2 | X] = \beta_2$
- Efficiency:

$$\sigma_{b_2}^2 = \frac{\sigma^2}{\sum \left(X_{2i} - \overline{X}_2\right)^2} \times \frac{1}{1 - r_{X_2, X_3}^2} > \frac{\sigma^2}{\sum \left(X_{2i} - \overline{X}_2\right)^2}$$

Note: These are the results in general. Note that if X_2 and X_3 are uncorrelated, there will be no loss of efficiency after all.

9

Other Models

- Looking ahead to nonlinear models: neither of the preceding results extend beyond the linear regression model.
 - "Omitting relevant variables from a model is always costly. (No exceptions.) The benign result above almost never carries over to more involved nonlinear models." (Greene)

Specification and Functional Form: Non-linearity

• In the context of OLS estimation, we can introduce some nonlinearities: quadratic, cubic and interaction effects can be easily estimated by OLS. For example:

$$\mathbf{y} = \beta_1 + \beta_2 \, \mathbf{X}_2 + \beta_3 \, \mathbf{X}_2^2 + \beta_4 \, \mathbf{X}_2 \, \mathbf{X}_3 + \boldsymbol{\varepsilon}$$

• Partial effects, $\partial y/\partial X_2$, (and standard errors) can be different. In the above model

$$\partial \mathbf{y}/\partial \mathbf{X}_2 = \beta_2 + 2 \beta_3 \mathbf{X}_2 + \beta_4 \mathbf{X}_3 \neq \beta_2$$

Note: Recall that in a simple linear model:

$$\mathbf{y} = \beta_1 + \beta_2 \, \mathbf{X}_2 + \beta_3 \, \mathbf{X}_3 + \boldsymbol{\varepsilon}$$

the partial effect is equal to the β_i coefficient:

$$\partial \mathbf{y}/\partial \mathbf{X}_2 = \beta_2$$
.

Specification and Functional Form: Non-linearity

• The estimator of partial effects and their variances are different from b_i and $Var[b_i | X]$ in the presence of non-linearities

Example: Quadratic Effect

Population

$$y = \beta_1 + \beta_2 x + \beta_3 x^2 + \beta_4 z + \varepsilon$$

$$\hat{y} = b_1 + b_2 x + b_3 x^2 + b_4 x$$

Population Estimators
$$y = \beta_1 + \beta_2 x + \beta_3 x^2 + \beta_4 z + \varepsilon \qquad \hat{y} = b_1 + b_2 x + b_3 x^2 + b_4 z$$

$$\delta_x = \frac{\partial E[y \mid x, z]}{\partial x} = \beta_2 + 2\beta_3 x \qquad \hat{\delta}_x = b_2 + 2b_3 x$$

$$\hat{\delta}_x = b_2 + 2b_3 x$$

Estimator of the variance of $\hat{\delta}_{r}$

$$Est.Var[\hat{\delta}_x] = Var[b_2] + 4x^2Var[b_3] + 4xCov[b_2, b_3]$$

Note: Now, the partial effect and the variance are a function of the data! Usually, an average is used in the estimation.

Ordinary LHS=LOGY	least squar Mean Standard de		=	-1.1574	6	Estimated	Cov[b1,k
	Number of o	bservs.	=	2732		1	2
Model size			=		1	4.54799e-006	_
	Degrees of						
Residuals	Sum of squa Standard er			.4471		-5.1285e-008	
Fi+	R-squared			.1723		.9 nn?∧⊾.nn5	9 91/1070
+	Coefficient .06225***						
AGESQ	00074***	.24248	2D-04	-30.576	.0000	2022.	.99
	-3.19130***		67	-69.884	.0000		
	.32153***			45.767		.758	
- 1	11134***			-17.002		.402	
	00491			889			
EDUC	.05542***	.001	20	46.050	.0000	11.32	202

Specification and Functional Form: Non-linearity

Example: Interactive Effect

Population Estimators
$$y = \beta_1 + \beta_2 x + \beta_3 z + \beta_4 x z + \varepsilon \qquad \hat{y} = b_1 + b_2 x + b_3 z + b_4 x z$$

$$\delta_x = \frac{\partial E[y \mid x, z]}{\partial x} = \beta_2 + \beta_4 z \qquad \hat{\delta}_x = b_2 + b_4 z$$

Estimator of the variance of $\hat{\delta}_x$

 $E\,st.V\,a\,r[\,\hat{\delta}_{\,x}\,] = V\,a\,r[\,b_{\,2}\,] + \,z^{\,2}V\,a\,r[\,b_{\,4}\,] + \,2\,z\,C\,o\,v[\,b_{\,2}\,,b_{\,4}\,]$

Application (Greene): Interaction Effect

OLS Subject to Restrictions

• Restrictions: Theory imposes certain restrictions on parameters.

Examples:

- (1) Dropping variables from the equation. That is, certain coefficients in **b** forced to equal 0. (Is variable $\mathbf{x_3} = size$ significant?")
- (2) Adding up conditions: Sums of certain coefficients must equal fixed values. Adding up conditions in demand systems. Constant returns to scale in production functions ($\alpha + \beta = 1$ in a Cobb-Douglas production function).
- (3) Equality restrictions: Certain coefficients must equal other coefficients. Using real vs. nominal variables in equations.
- Usual formulation with J linear restrictions (**R** is Jxk and **q** is Jx1):

$$\operatorname{Min}_{\mathbf{b}} \left\{ S(\mathbf{x}_i, \theta) = \sum_{i=1}^{T} e_i^2 = \mathbf{e}' \mathbf{e} = (\mathbf{y} - \mathbf{X}\mathbf{b})' (\mathbf{y} - \mathbf{X}\mathbf{b}) \right\}$$
 s.t. $\mathbf{R}\mathbf{b} = \mathbf{q}$

Restricted Least Squares

- In practice, restrictions can usually be imposed by solving them out.
- (1) Dropping variables –i.e., force a coefficient to equal zero.

Problem:
$$\min_{b} \sum_{i=1}^{n} (y_i - b_1 x_{i1} - b_2 x_{i2} - b_3 x_{i3})^2$$
 s.t. $b_3 = 0$
 $\min_{b} \sum_{i=1}^{n} (y_i - b_1 x_{i1} - b_2 x_{i2})^2$

(2) Adding up. Do least squares subject to $b_1+b_2+b_3=1$. Then, $b_3=1-b_1-b_2$. Make the substitution so $(\mathbf{y}-\mathbf{x}_3)=b_1(\mathbf{x}_1-\mathbf{x}_3)+b_2(\mathbf{x}_2-\mathbf{x}_3)+\mathbf{e}$.

Problem:
$$\min_b \sum_{i=1}^n ((y_i - x_{i3}) - b_1(x_{i1} - x_{i3}) - b_2(x_{i2} - x_{i3}))^2$$

(3) Equality. If $b_3 = b_2$, then $\mathbf{y} = b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 + b_2 \mathbf{x}_3 + \mathbf{e}$ = $b_1 \mathbf{x}_1 + b_2 (\mathbf{x}_2 + \mathbf{x}_3) + \mathbf{e}$

<u>Problem</u>: $\min_{b} \sum_{i=1}^{n} (y_i - b_1 x_{i1} - b_2 (x_{i2} + x_{i3}))^2$

Restricted Least Squares

- Theoretical results provide insights and the foundation of several tests.
- Programming problem with *J* restrictions (**R** is Jxk and **q** is kx1): Minimize wrt **b** $S = (y - X\beta)'(y - X\beta)$ s.t. **R** $\beta = \mathbf{q}$
- Quadratic programming problem
 - ⇒ Minimize a quadratic criterion s.t. a set of linear restrictions.
 - Concave programming problem, all binding constraints. No need for Kuhn-Tucker
 - Solve using a Lagrangean formulation.
- The Lagrangean approach (the 2 is for convenience with is $\lambda Jx1$). Min _{b,\lambda} $L^* = (y - X\beta)' (y - X\beta) + 2 \lambda' (R \beta - q)$ $= (y'y - \beta'X'y - y'X\beta + \beta'X'X\beta) + 2 \lambda'(R \beta - q)$

Restricted Least Squares

• The Lagrangean approach

Min<sub>b,
$$\lambda$$</sub> $L^* = (y'y - 2 \beta'X'y + \beta'X'X\beta) + 2 \lambda' (\mathbf{R} \beta - \mathbf{q})$

f.o.c:

$$\begin{array}{l} \partial L^*/\partial b' = -2X'(y-Xb^*) + 2R'\lambda = 0 \\ \partial L^*/\partial \lambda' = 2 \left(Rb^*-q\right) = 0. \end{array} \\ \Rightarrow -X'(y-Xb^*) + R'\lambda = 0 \\ \Rightarrow (Rb^*-q) = 0 \end{array}$$

Then, from the 1^{st} equation (and assuming full rank for **X**):

$$-\mathbf{X}'\mathbf{y} + \mathbf{X}'\mathbf{X}\mathbf{b}^* + \mathbf{R}'\lambda = \mathbf{0} \implies \mathbf{b}^* = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'\lambda$$
$$= \mathbf{b} - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'\lambda$$

Premultiply both sides by \mathbf{R} and then subtract \mathbf{q}

$$Rb^* - q = Rb - R(X'X)^{-1}R'\lambda - q$$
$$0 = -R(X'X)^{-1}R'\lambda + (Rb - q)$$

Solving for
$$\lambda$$
 \Rightarrow $\lambda = [\mathbf{R}(\mathbf{X'X})^{-1}\mathbf{R'}]^{-1} (\mathbf{R}\mathbf{b} - \mathbf{q})$
Substituting in \mathbf{b}^* \Rightarrow $\mathbf{b}^* = \mathbf{b} - (\mathbf{X'X})^{-1}\mathbf{R'}[\mathbf{R}(\mathbf{X'X})^{-1}\mathbf{R'}]^{-1}(\mathbf{R}\mathbf{b} - \mathbf{q})$

Linear Restrictions

• Q: How do linear restrictions affect the properties of the least squares estimator?

Model (DGP):
$$y = X\beta + \epsilon$$

Theory (information):
$$R\beta - q = 0$$

Restricted LS estimator: $\mathbf{b}^* = \mathbf{b} - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\mathbf{b} - \mathbf{q})$

1. Unbiased?

$$\mathrm{E}[b^* \,|\, X] \equiv \beta - (X'X)^{\text{--}1}R'[R(X'X)^{\text{--}1}R']^{\text{--}1}\,\mathrm{E}[(Rb-q) \,|\, X] \equiv \beta$$

2. Efficiency?

$$\mathrm{Var}[\boldsymbol{b}^* \,|\, \boldsymbol{X}] \equiv \sigma^2(\boldsymbol{X'X})^{\text{-}1} - \sigma^2\,(\boldsymbol{X'X})^{\text{-}1}\boldsymbol{R'}[\boldsymbol{R(X'X)^{\text{-}1}R'}]^{\text{-}1}\,\boldsymbol{R(X'X)^{\text{-}1}}$$

$$Var[\mathbf{b}^* | \mathbf{X}] = Var[\mathbf{b} | \mathbf{X}] - a$$
 nonnegative definite matrix $\leq Var[\mathbf{b} | \mathbf{X}]$

3. **b*** may be more "precise."

Precision = Mean squared error = variance + squared bias.

Linear Restrictions

- 1. $\mathbf{b}^* = \mathbf{b} \mathbf{Cm}$, $\mathbf{m} = \text{the "discrepancy vector" } \mathbf{Rb} \mathbf{q}$. Note: If $\mathbf{m} = \mathbf{0} \implies \mathbf{b}^* = \mathbf{b}$. (Q: What does $\mathbf{m} = \mathbf{0}$ mean?)
- 2. $\lambda = [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\mathbf{b} \mathbf{q}) = [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{m}$ When does $\lambda = \mathbf{0}$? What does this mean?
- 3. Combining results: $\mathbf{b}^* = \mathbf{b} (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'\lambda$
- 4. Recall: $\mathbf{e'e} = (\mathbf{y} \mathbf{Xb})'(\mathbf{y} \mathbf{Xb}) \le \mathbf{e^{*'}}\mathbf{e^{*}} = (\mathbf{y} \mathbf{Xb^{*}})'(\mathbf{y} \mathbf{Xb^{*}})$ $\Rightarrow \text{Restrictions cannot increase } R^{2} \Rightarrow R^{2} \ge R^{2^{*}}$

Linear Restrictions – Interpretation

- Two cases
 - Case 1: Theory is correct: $\mathbf{R}\boldsymbol{\beta} \mathbf{q} = \mathbf{0}$ (restrictions hold). \mathbf{b}^* is unbiased & $\mathrm{Var}[\mathbf{b}^*|\mathbf{X}] \leq \mathrm{Var}[\mathbf{b}|\mathbf{X}]$
 - Case 2: Theory is incorrect: $\mathbf{R}\boldsymbol{\beta}$ $\mathbf{q} \neq \mathbf{0}$ (restrictions do not hold). \mathbf{b}^* is biased & $\mathrm{Var}[\mathbf{b}^*|\mathbf{X}] \leq \mathrm{Var}[\mathbf{b}|\mathbf{X}]$.
- Interpretation
- The theory gives us information.

 Bad information produces bias (away from "the truth.")

 Any information, good or bad, makes us more certain of our answer. In this context, *any* information reduces variance.

Linear Restrictions - Interpretation

What about ignoring information (theory)?
 Not using the correct information does not produce bias.
 Not using information foregoes the variance reduction.

Testing in Economics

"The three golden rules of econometrics are test, test and test." David Hendry (1944, England)

"The only relevant test of the validity of a hypothesis is comparison of prediction with experience." Milton Friedman (1912-2006, USA)

Hypothesis Testing

- Testing involves the comparison between two competing hypothesis:
- $-H_0$: The maintained hypothesis.
- $-H_1$: The hypothesis considered if H_0 .
- <u>Idea</u>: We collect a sample, $X = \{X_1, X_2, \dots, X_n\}$. We construct a statistic T(X) = f(X), called the *test statistic*. Now we have a decision rule:
 - If T(X) is contained in space R, we reject H_0 (& we learn).
 - If T(X) is in the complement of $R(R^{C})$, we fail to reject H_{0} .

Note: T(X), like any other statistic, is a RV. It has a distribution. We use the distribution of T(X) to determine R, the *rejection region* (& we associate a probability to R).

25

Hypothesis Testing: Rejection Region

Example: Suppose $T(X) = \overline{X}$. If data is normal, the distribution of \overline{X} is also normal. Then, under H_0 , we build a Rejection Region, R:

$$R = [\bar{X} < T_{LB}, T_{UB} > \bar{X}]$$

Note: The blue area ("significance level") represents the P[R|H₀]. For example, if the blue area is 5%, then, T_{LB} = -1.96 & T_{UB} = 1.96.

Hypothesis Testing: p-value

• The classical approach, also known as significance testing, relies on p-values:

p-value is the probability of observing a result at least as extreme as the test statistic, under H_0 .

Example: Suppose $T(X) \sim \chi_2^2$. We compute $\widehat{T(X)} = 7.378$. Then,

$$p$$
-value $(\widehat{T(X)} = 7.378) = 1 - \text{Prob}[T(X) < 7.378] = 0.025$

Hypothesis Testing: Steps

- Steps for the classical approach, also known as significance testing:
- 1. Identify H_0 & set a significance level (α %).
- **2.** Determine the appropriate test statistic T(X) and its distribution under the assumption that H_0 is true.
- **3.** Calculate T(X) from the data.
- 4. Rule: If *p-value* of $T(X) < \alpha \Rightarrow \text{Reject H}_0$ (& we learn H_0 ! is not true). If *p-value* of $T(X) > \alpha \Rightarrow \text{Fail to reject H}_0$. (No learning.)

Note: In Step 4, setting $\alpha\%$ is equivalent to setting R. Thus, instead of looking at *p-value*, we can look if T(X) falls in R (in the blue area). We do this by constructing a $(1 - \alpha)\%$ C.I.

• Mistakes are made. We want to quantify these mistakes.

Hypothesis Testing: Error Types

Type I and Type II errors

A *Type I error* is the error of rejecting H_0 when it is true.

A *Type II error* is the error of "accepting" H_0 when it is false (that is, when H_1 is true).

Notation: Probability of Type I error: $\alpha = P[X \in R | H_0]$

Probability of Type II error: $\beta = P[X \in R^C | H_1]$

Example: From the U.S. Jury System

Type I error is the error of finding an innocent defendant guilty.

Type II error is the error of finding a guilty defendant not guilty.

• There is a trade-off between both errors.

Hypothesis Testing: Type I and Type II Errors

• Traditional view: Set *Type I error* equal to a small number & find a test that minimizes *Type II error*.

The usual tests (t-tests, F-tests, Likelihood Ratio tests) incorporate this traditional view.

Definition: Power of the test

The probability of rejecting H_0 based on a test procedure is called the *power of the test.* It is a function of the value of the parameters tested, θ :

$$\pi = \pi(\theta) = P[X \in R].$$

Note: when $\theta \in H_1$ $\Longrightarrow \pi(\theta) = 1 - \beta(\theta)$ -the usual application.

Hypothesis Testing: Summary

- Hypothesis testing in Econometrics:
- (1) We need a model. For example, $\mathbf{y} = f(\mathbf{X}, \theta) + \mathbf{\epsilon}$
- (2) We gather data (y, X) and estimate the model \Rightarrow we get $\hat{\theta}$
- (3) We formulate a hypotheses. For example, H_0 : $\theta = \theta_0$ vs. H_1 : $\theta \neq \theta_0$
- (4) Find an appropriate test and know its distribution under H₀
- (5) Decision Rule (Test H_0). Reject H_0 : if θ_0 is too far from $\hat{\theta}$ ("the hypothesis is *inconsistent* with the sample evidence.")

The decision rule will be based on a statistic, T(X). If the statistic is large, then, we reject H_0 .

- To determine if the statistic is "large," we need a null distribution.
- Ideally, we use a test that is most powerful to test H_0 .

3

Hypothesis Testing: Issues

- Logic of the Neyman-Pearson methodology: If H_0 is true, then T(X) will have a certain distribution (under H_0). We call this distribution *null distribution* or *distribution under the null*.
- It tells us how likely certain values are, if H_0 is true. Thus, we expect 'large values' for θ_0 to be unlikely.
- Decision rule.

If the observed value for T(X) falls in rejection region R

 \Rightarrow Assumed distribution must be incorrect: H_0 should be rejected.

Hypothesis Testing: Issues

- Issues:
- What happens if the model is wrong?
- What is a testable hypothesis?
- Nested vs. Non-nested models
- Methodological issues
 - Classical (frequentist approach): Are the data consistent with H₀?
 - Bayesian approach: How do the data affect our prior odds? Use the posterior odds ratio.

33

Testing in the CLM: Single Parameter

• We test a hypotheses about a single parameter, say β_k , of the DGP.

Example: The linear model (DGP): $y = X\beta + \varepsilon$

- 1. Formulate H_0 : \mathbf{X}_k should not be in the DGP \Rightarrow H_0 : $\beta_k = \beta_k^0$ H_1 : $\beta_k \neq \beta_k^0$.
- 2. Construct T(X) test H_0 : $t_k = (b_k \beta_k^0)/\operatorname{sqrt}\{s^2(\mathbf{X}'\mathbf{X})_{kk}^{-1}\}$ Distribution of T(X) under H_0 , with s^2 estimating σ^2 (unknown):

 If $(\mathbf{A5}) \ \mathbf{\epsilon} \ | \mathbf{X} \sim \mathrm{N}(\mathbf{0}, \sigma^2 \mathbf{I}_{\mathrm{T}}), \qquad \Rightarrow t_k \sim t_{T-k}.$ If $(\mathbf{A5})$ not true, asymptotic results: $\Rightarrow t_k \to \mathrm{N}(0, 1).$
- 3. Using OLS, we estimate $b_1, b_2, ..., b_k, ..., \&$ estimate $t_k \Rightarrow \hat{t}$.
- 4. Decision Rule: Set α level. We reject H_0 if $\ p\text{-value}(\hat{t}) \leq \alpha.$

Or, reject H_0 , if $|\hat{t}| > t_{T-k,1-\alpha/2}$.

Testing in the CLM: *t-value*

• Special case: H_0 : $\beta_k = 0$ H_1 : $\beta_k \neq 0$.

Then,

$$t_k = (b_k / \operatorname{sqrt} \{ s^2 (\mathbf{X}' \mathbf{X})_{kk}^{-1} \} = b_k / \operatorname{SE}[b_k] \qquad \Rightarrow t_k \sim t_{T-k}.$$

This special case of t_k is called the *t-value*. That is, the t-value is the ratio of the estimated coefficient and its SE.

- The t-value is routinely reported in all regression packages. In the lm() function, it is reported in the third row of numbers.
- Usually, $\alpha = 5\%$, then if $|\hat{\mathbf{t}}| > 1.96 \approx 2$, we say the coefficient \mathbf{b}_k is "significant."

3:

Hypothesis Testing: Confidence Intervals

- The OLS estimate **b** is a point estimate for β , meaning that **b** is a single value in R^k .
- Broader concept: Estimate a set C_n , a collection of values in R^k .
- When the parameter is real-valued, it is common to focus on intervals $C_n = [L_n; U_n]$, called an *interval estimate* for θ . The goal of C_n is to contain the true value, e.g. $\theta \in C_n$, with high probability.
- C_n is a function of the data. Therefore, it is a RV.
- The coverage probability of the interval $C_n = [L_n; U_n]$ is $Prob[\theta \in C_n]$.

Hypothesis Testing: Confidence Intervals

- The randomness comes from C_n , since θ is treated as fixed.
- Interval estimates C_n are called *confidence intervals* (C.I.) as the goal is to set the coverage probability to equal a pre-specified target, usually 90% or 95%. C_n is called a (1α) % C.I.
- When we know the distribution for the point estimate, it is easy to construct a C.I. For example, under (**A5**), the distribution of **b** is normal, then a 95% C.I. is given by:

 $C_n = [b_k + z_{.025} \times \text{Estimated SE}(b_k), b_k + z_{.975} \times \text{Estimated SE}(b_k)]$

(Note: The Normal distribution is symmetric $\Rightarrow -z_{.025} = z_{..975} = 1.96$).

• This C.I. is symmetric around b_k , with length proportional to its SE.

Hypothesis Testing: Confidence Intervals

- Equivalently, C_n is the set of parameter values for \mathbf{b}_k such that the z-statistic $\mathbf{z}_n(\mathbf{b}_k)$ is smaller (in absolute value) than $\mathbf{z}_{\alpha/2}$. That is, $C_n = \{\mathbf{b}_k \colon |\mathbf{z}_n(\mathbf{b}_k)| \le \mathbf{z}_{1-\alpha/2}\}$ with coverage probability $(1 \alpha)^{\infty}$.
- In general, the coverage probability of C.I.'s is unknown, since we do not know the distribution of the point estimates.
- In Lecture 8, we will use asymptotic distributions to approximate the unknown distributions. We will use these asymptotic distributions to get asymptotic coverage probabilities.
- <u>Summary</u>: C.I.'s are a simple but effective tool to assess estimation uncertainty.

Recall: A t-distributed variable

• Recall a t_v -distributed variable is a ratio of two independent RV: a N(0, 1) RV and the square root of a χ_v^2 RV divided by v.

Let
$$z = \frac{(\bar{x} - \mu)}{\sigma / \sqrt{n}} = \sqrt{n} \frac{(\bar{x} - \mu)}{\sigma} \sim N(0,1)$$

Let
$$U = \frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

Assume that Z and U are independent (check the middle matrices in the quadratic forms!). Then,

$$t = \frac{\sqrt{n} \frac{(\bar{x} - \mu)}{\sigma}}{\sqrt{\frac{(n-1)s^{2}}{\sigma^{2}}/(n-1)}} = \frac{\sqrt{n}(\bar{x} - \mu)}{s} = \frac{(\bar{x} - \mu)}{s/\sqrt{n}} \sim t_{n-1}$$
39

Hypothesis Testing: Testing Example in R

Example: 3 Factor Fama-French Model (continuation) for IBM:

$$\textbf{IBM}_{\textbf{Ret}} - \textbf{r}_{\textbf{f}} = \beta_1 + \beta_{\textit{Mkt}} \left(\textbf{Mkt}_{\textbf{Ret}} - \textbf{r}_{\textbf{f}} \right) + \beta_{\textit{SMB}} \ \textbf{SMB} + \beta_{\textit{HML}} \ \textbf{HML} + \epsilon$$

Returns <- read.csv("http://www.bauer.uh.edu/rsusmel/phd/K-DIS-IBM.csv", head=TRUE, sep=",")

 $b \le - solve(t(x)\%^*\% x)\%^*\% t(x)\%^*\% y$ # $b = (X'X)^{-1}X' y$ (OLS regression)

 $e < -y - x^0/(*0)b$ # regression residuals, e

RSS <- as.numeric(t(e)%*%e) # RSS

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared

Sigma2 <- as.numeric(RSS/(T-k)) # Estimated $\sigma^2 = s^2$

SE_reg <- sqrt(Sigma2) # Estimated σ - Regression stand error

 $Var_b < Sigma2*solve(t(x)\%*\% x)$ # Estimated $Var[b | X] = s^2 (X'X)^{-1}$

 $SE_b \leftarrow sqrt(diag(Var_b))$ # SE[b | X]

t_b <- b/SE_b # t-stats (See Chapter 4)

OLS Estimation – Is IBM's Beta equal to 1?

• Q: Is the market beta (β_1) equal to 1? That is,

H₀:
$$\beta_1 = 1$$
 vs. H₁: $\beta_1 \neq 1$
 $\Rightarrow t_k = (b_k - \beta_k^0) / \text{Est. SE}(b_k)$
 $t_1 = (0.9082989 - 1) / 0.05672206 = -1.616674$
 $\Rightarrow |t_1| < 1.96 \Rightarrow \text{Cannot reject H}_0 \text{ at 5\% level}$

Testing: The Expectation Hypothesis (EH)

Example: EH states that forward/futures prices are good predictors of future spot rates: $E_t[S_{t+T}] = F_{t,T}$.

 $\label{eq:standard} \text{Implication of EH:} \qquad S_{t+T} - F_{t,T} = \text{unpredictable}.$

That is,
$$E_{t}[S_{t+T} - F_{t,T}] = E_{t}[\varepsilon_{t}] = 0!$$

Empirical tests of the EH are based on a regression:

$$(S_{t+T} - F_{t,T})/S_t = \alpha + \beta Z_t + \epsilon_t, \qquad \quad (\text{where } E[\epsilon_t] = 0)$$

where Z_t represents any economic variable that might have power to explain S_t , for example, (i_d-i_f) .

Then, under EH,
$$H_0$$
: $\alpha = 0$ and $\beta = 0$.
vs H_1 : $\alpha \neq 0$ and/or $\beta \neq 0$.

Testing: The Expectation Hypothesis (EH)

Example (continuation): We will informally test EH using exchange rates (USD/GBP), 3-mo forward rates and 3-mo interest rates.

```
SF\_da < - read.csv("http://www.bauer.uh.edu/rsusmel/4397/SpFor\_prices.csv", head=TRUE, sep=",") \\ summary(SF\_da) \\ x\_date < - SF\_da\$Date \\ x\_S < - SF\_da\$GBPSP \\ x\_F3m < - SF\_da\$GBP3M \\ i\_us3 < - SF\_da\$Dep\_USD3M \\ i\_uk3 < - SF\_da\$Dep\_UKP3M \\ T < - length(x\_S) \\ prem < - (x\_S[-1] - x\_F3m[-T])/x\_S[-1] \\ int\_dif < - (i\_us3 - i\_uk3)/100 \\ y < - prem \\ x < - int\_dif[-T] \\ fit < - lm( y \sim x) \\
```

Testing: The Expectation Hypothesis (EH)

Example (continuation): We do two individual t-tests on $\alpha \& \beta$.

```
> summary(fit)
Call:
lm(formula = y \sim x)
Residuals:
        1Q Median
                         3Q
                                Max
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0001854 0.0016219 -0.114 0.90906 \Rightarrow constant not significant (|t|<2)
           -0.2157540 0.0731553 -2.949 0.00339 ** ⇒ slope is significant (|t|>2). ⇒ Reject H<sub>0</sub>
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 0.02661 on 361 degrees of freedom
Multiple R-squared: 0.02353, Adjusted R-squared: 0.02082
                                                                                44
F-statistic: 8.698 on 1 and 361 DF, p-value: 0.003393
```

Testing: The Expectation Hypothesis (EH)

• 95% C.I. for b:

$$C_n = [b_k \pm t_{k,1-.05/2} * Estimated SE(b_k)]$$

Then,

$$C_n = [-0.215754 - 1.96 * 0.0731553, -0.215754 + 1.96 * 0.0731553]$$

= [-0.3591384, -0.07236961]

Since $\beta = 0$ is not in C_n with 95% confidence \Rightarrow Reject H_0 : $\beta_1 = 0$ at 5% level.

Note: The EH is a joint hypothesis, it should be tested with a joint test!

45

Testing a Hypothesis: Wald Statistic

Most of our test statistics, including joint tests, are Wald statistics.
 Wald = normalized distance measure:

waid – normalized distance measure. $\mathbf{t} = (\mathbf{b} - \mathbf{c}) \cdot (\mathbf{c} - \mathbf{d})$

One parameter: $t_k = (\mathbf{b}_k - \beta^0_k)/s_{b,k} = \text{distance/unit}$ More than one parameter.

Let $\mathbf{z} = (\text{random vector} - \text{hypothesized value})$ be the distance $W = \mathbf{z}' [\text{Var}(\mathbf{z})]^{-1} \mathbf{z}$ (a quadratic form)

- Distribution of W? We have a quadratic form.
 - If **z** is normal and σ^2 known, $W \sim \chi^2_{v=Rank(Var[z])}$
 - If \mathbf{z} is normal and σ^2 unknown, $W \sim F$
 - If **z** is not normal and σ^2 unknown, we rely on asymptotic theory, $W \xrightarrow{d} \chi^2_{v=Rank(Var[z])}$

Abraham Wald (1902–1950, Hungary)

Testing a Hypothesis: Wald Statistic

• Distribution of W? We have a quadratic form.

Recall **Theorem 7.4.** Let the $n \times 1$ vector $y \sim N(\mu_y, \Sigma_y)$. Then, $(y - \mu_y)' \Sigma_y^{-1} (y - \mu_y) \sim \chi_n^2$. —note: $n = \text{rank}(\Sigma_y)$. $\Rightarrow \text{If } \mathbf{z} \sim N(0, \text{Var}(\mathbf{z})) \Rightarrow W \text{ is distributed as } \chi_{v=Rank(Var[z])}^2$

In general, $Var(\mathbf{z})$ is unknown, we need to use an estimator of $Var(\mathbf{z})$. In our context, we need an estimator of σ^2 . Suppose we use s^2 . Then, we have the following result:

Let $\mathbf{z} \sim N(0, \text{Var}(\mathbf{z}))$. We use s^2 instead of σ^2 to estimate $\text{Var}(\mathbf{z})$ $\Rightarrow W \sim F$ distribution.

Recall the F distribution arises as the ratio of two χ^2 variables divided by their degrees of freedom.

Recall: An F-distributed variable

Let
$$F = \frac{\chi_J^2 / J}{\chi_T^2 / T} \sim F_{J,T}$$
Let
$$z = \frac{(\bar{x} - \mu)}{\sigma / \sqrt{n}} = \sqrt{n} \frac{(\bar{x} - \mu)}{\sigma} \sim N(0,1)$$
Let
$$U = \frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

If Z and U are independent, then

$$F = \frac{\left[\sqrt{n} \frac{(\bar{x} - \mu)}{\sigma}\right]^{2} / 1}{\frac{(n-1)s^{2}}{\sigma^{2}} / (n-1)} = \frac{(\bar{x} - \mu)^{2}}{s^{2} / n} \sim F_{1,n-1}$$

Recall: An F-distributed variable

- There is a relationship between t and F when testing one restriction.
- For a single restriction, $m = r^3b q$. The variance of m is: r Var[b] r.
- The distance measure is $t = m / \text{Est. SE}(m) \sim t_{T-k}$.
- This *t*-ratio is the sqrt{*F*-ratio}.
- *t*-ratios are used for individual restrictions, while *F*-ratios are used for joint tests of several restrictions.

49

The General Linear Hypothesis: H_0 : $R\beta - q = 0$

• Suppose we are interested in testing / joint hypotheses.

Example: We want to test that in the 3 FF factor model that the SMB and HML factors have the same coefficients, $\beta_{SMB} = \beta_{HML} = \beta^0$.

We can write linear restrictions as H_0 : $\mathbf{R}\boldsymbol{\beta} - \mathbf{q} = \mathbf{0}$, where **R** is a Jxk matrix and **q** a Jx1 vector.

In the above example (J=2), we write:

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_{Mkt} \\ \boldsymbol{\beta}_{SMB} \\ \boldsymbol{\beta}_{HML} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\beta}^0 \\ \boldsymbol{\beta}^0 \end{bmatrix}$$

The General Linear Hypothesis: H_0 : $R\beta - q = 0$

- Q: Is $\mathbf{Rb} \mathbf{q}$ close to $\mathbf{0}$? There are two different approaches to this questions. Both have in common the property of unbiasedness for \mathbf{b} .
- (1) We base the answer on the discrepancy vector:

$$m = Rb - q$$
.

Then, we construct a Wald statistic:

$$W = \mathbf{m'} (Var[\mathbf{m} | \mathbf{X}])^{-1} \mathbf{m}$$

to test if **m** is different from 0.

(2) We base the answer on a model loss of fit when restrictions are imposed: RSS must increase and R^2 must go down. Then, we construct an F test to check if the unrestricted RSS (RSS_U) is different from the restricted RSS (RSS_R).

The General Linear Hypothesis: H_0 : $R\beta - q = 0$

- Q: Is $\mathbf{Rb} \mathbf{q}$ close to 0? There are two different approaches to this questions. Both have in common the property of unbiasedness for \mathbf{b} .
- (1) We base the answer on the discrepancy vector:

$$m = Rb - q$$
.

Then, we construct a Wald statistic:

$$W = \mathbf{m'} (Var[\mathbf{m} | \mathbf{X}])^{-1} \mathbf{m}$$

to test if **m** is different from 0.

(2) We base the answer on a model loss of fit when restrictions are imposed: RSS must increase and R^2 must go down. Then, we construct an F test to check if the unrestricted RSS (RSS_U) is different from the restricted RSS (RSS_R).

Wald Test Statistic for H_0 : $R\beta - q = 0$

• To test H_0 , we calculate the discrepancy vector:

$$m = Rb - q$$
.

Then, we compute the Wald statistic:

$$W = \mathbf{m'} (Var[\mathbf{m} | \mathbf{X}])^{-1} \mathbf{m}$$

It can be shown that $Var[\mathbf{m} | \mathbf{X}] = \mathbf{R}[\sigma^2(\mathbf{X}'\mathbf{X})^{-1}]\mathbf{R}'$. Then,

$$W = (\mathbf{Rb} - \mathbf{q})' \{\mathbf{R}[\sigma^2(\mathbf{X'X})^{-1}]\mathbf{R'}\}^{-1}(\mathbf{Rb} - \mathbf{q})$$

Under H₀ and assuming (A5) & estimating σ^2 with $s^2 = \mathbf{e'e}/(T-k)$:

W* =
$$(\mathbf{Rb} - \mathbf{q})' \{ \mathbf{R}[s^2(\mathbf{X}'\mathbf{X})^{-1}]\mathbf{R} \}^{-1} (\mathbf{Rb} - \mathbf{q})$$

F = $W^*/J \sim F_{IT-b}$.

If (A5) is not assumed, the results are only asymptotic: $J^*F \xrightarrow{d} \chi_J^2$

5

Wald Test Statistic for H_0 : $R\beta - q = 0$

Example: In the 3 FF factor model for IBM excess returns (T=569) $\mathbf{IBM}_{Ret} - \mathbf{r}_{f} = \beta_{1} + \beta_{Mkt} (\mathbf{Mkt}_{Ret} - \mathbf{r}_{f}) + \beta_{SMB} \mathbf{SMB} + \beta_{HML} \mathbf{HML} + \boldsymbol{\varepsilon}$ we want to test if $\beta_{SMB} = 0.2$ and $\beta_{HML} = 0.6$.

1.
$$H_0$$
: $\beta_{SMB} = 0.2$ and $\beta_{HML} = 0.6$. H_1 : $\beta_{SMB} \neq 0.2$ and/or $\beta_{HML} \neq 0.6$. $\Rightarrow J = 2$

We define R (2x4) below and write $m = R\beta - q = 0$:

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} \beta_1 \\ \beta_{Mkt} \\ \beta_{SMB} \\ \beta_{HML} \end{bmatrix} = \begin{bmatrix} 0.2 \\ 0.6 \end{bmatrix}$$

2. Test-statistic: $F = W^*/J = (\mathbf{Rb} - \mathbf{q})' \{\mathbf{R}[s^2(\mathbf{X}'\mathbf{X})^{-1}]\mathbf{R}'\}^{-1}(\mathbf{Rb} - \mathbf{q})$

Wald Test Statistic for H_0 : $R\beta - q = 0$

Example (continuation):

- 2. Test-statistic: $F = W*/J = (\mathbf{Rb} \mathbf{q})' \{\mathbf{R}[s^2(\mathbf{X'X})^{-1}]\mathbf{R'}\}^{-1}(\mathbf{Rb} \mathbf{q})$ Distribution under H_0 : $F = W*/2 \sim F_{2,T-2}$ (asymptotic, $2*F \xrightarrow{d} \chi_2^2$)
- 3. Get OLS results, compute F.
- 4. <u>Decision Rule</u>: $\alpha = 0.05$ level. We reject H₀ if p-value(F) < .05. Or, reject H₀, if $F > F_{J=2,T-2..05}$.

```
\begin{array}{ll} J <-2 & \text{\# number of restriction} \\ R <- \text{ matrix}(c(0,0,0,0,1,0,0,1), \text{ nrow=2}) & \text{\# matrix of restrictions} \\ q <- c(.2,1) & \text{\# hypothesized values} \\ m <- R\%*\%b - q & \text{\# m = Estimated R*Beta - q} \end{array}
```

Wald Test Statistic for H_0 : $R\beta - q = 0$

Example (continuation):

```
Var_m <- R %*% Var_b %*% t(R)
                                               # Variance of m
det(Var_m)
                                               # check for non-singularity
W \le t(m)^0/0*0/0solve(Var_m)^0/0*0/0m
F_t \le as.numeric(W/J)
                                            # F-test statistic
qf(.95, df1=J, df2=(T - k))
                                            # exact distribution (F-dist) if errors normal
p_val < -1 - pf(F_t, df1=J, df2=(T - k))
                                            # p-value(F_t) under errors normal
p_val
> F t
[1] 49.21676
> qf(.95, df1=J, df2=(T - k))
                                            # exact distribution (F-dist) if errors normal
                                             F_t > 3.011672 \Rightarrow reject H_0 at 5\% level
[1] 3.011672
> p_val < 1 - pf(F_t, df1=J, df2=(T-k)) # p-value(F_t) under errors normal
> p_val}
                                                                                                56
[1] 0
                                            very low chance H<sub>0</sub> is true.
```

Wald Test Statistic for H_0 : Does EH hold?

Example: Now, we do a joint test of the EH. H_0 : $\alpha = 0$ and $\beta = 0$.

Using the previous program but with:

```
\begin{array}{lll} J <-2 & \# \ number \ of \ restriction \\ R <- \ matrix (c(1,0,0,1), \ nrow=2) & \# \ matrix \ of \ restrictions \\ q <- \ c(0,0) & \# \ hypothesized \ values \\ > F_t \\ [1] \ \textbf{4.1024} \\ > \\ > qf(.95, \ df1=J, \ df2=(T-k)) & \# \ exact \ distribution \ (F-dist) \ if \ errors \ normal \\ [1] \ \textbf{3.020661} & \Rightarrow \ reject \ H_0 \ at \ 5\% \ level \\ > \\ > p_val <- 1 - pf(F_t, \ df1=J, \ df2=(T-k)) & \# \ p-value(F_t) \ under \ errors \ normal \\ > p_val \\ [1] \ \textbf{0.01731} & very \ low \ chance \ H_0 \ is \ true. \\ \end{array}
```

57

The F Test: H_0 : $R\beta - q = 0$

(2) We know that imposing restrictions leads to a loss of fit: R² must go down. Does it go down a lot? –i.e., significantly?

Recall (i)
$$\mathbf{e}^* = \mathbf{y} - \mathbf{X}\mathbf{b}^* = \mathbf{e} - \mathbf{X}(\mathbf{b}^* - \mathbf{b})$$

(ii) $\mathbf{b}^* = \mathbf{b} - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\mathbf{b} - \mathbf{q})$
 $\Rightarrow \mathbf{e}^{*'}\mathbf{e}^* = \mathbf{e}'\mathbf{e} + (\mathbf{b}^* - \mathbf{b})'\mathbf{X}'\mathbf{X}(\mathbf{b}^* - \mathbf{b})$
 $\mathbf{e}^{*'}\mathbf{e}^* = \mathbf{e}'\mathbf{e} + (\mathbf{R}\mathbf{b} - \mathbf{q})'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\mathbf{b} - \mathbf{q})$
 $\mathbf{e}^{*'}\mathbf{e}^* - \mathbf{e}'\mathbf{e} = (\mathbf{R}\mathbf{b} - \mathbf{q})'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\mathbf{b} - \mathbf{q})$
Recall $- \mathbf{W} = (\mathbf{R}\mathbf{b} - \mathbf{q})'\{\mathbf{R}[\sigma^2(\mathbf{X}'\mathbf{X})^{-1}]\mathbf{R}'\}^{-1}(\mathbf{R}\mathbf{b} - \mathbf{q}) \sim \chi_J^2$ (if σ^2 is known) $- \mathbf{e}'\mathbf{e}/\sigma^2 \sim \chi_{T-k}^2$.
Then, $F = (\mathbf{e}^{*'}\mathbf{e}^* - \mathbf{e}'\mathbf{e})/\mathbf{J}/[\mathbf{e}'\mathbf{e}/(T-k)] \sim F_{LT\cdot K}$.

The F Test: H_0 : $R\beta - q = 0$

•
$$F = (\mathbf{e}^{*'}\mathbf{e}^{*} - \mathbf{e}^{'}\mathbf{e})/J / [\mathbf{e}^{'}\mathbf{e}/(T - k)] \sim F_{J,T-K}$$

Let
$$R^2$$
 = unrestricted model = 1 – RSS/TSS
 R^{*2} = restricted model fit = 1 – RSS*/TSS

Then, dividing and multiplying F by TSS we get

$$F = ((1-R^{*2})-(1-R^2))/J/\left[(1-R^2)/(T-k)\right] \sim F_{J,T-K}$$
 or
$$F = \{ (R^2-R^{*2})/J \} / \left[(1-R^2)/(T-k)\right] \sim F_{J,T-K}.$$

59

The F Test: F-test of goodness of fit

• In the linear model

$$\mathbf{y} = \mathbf{X} \; \boldsymbol{\beta} + \boldsymbol{\epsilon} = \mathbf{X}_1 \; \boldsymbol{\beta}_1 + \mathbf{X}_2 \; \boldsymbol{\beta}_2 + ... + \mathbf{X}_k \; \boldsymbol{\beta}_k + \boldsymbol{\epsilon}$$

ullet We want to test if the slopes $\mathbf{X}_2, \ldots, \mathbf{X}_k$ are equal to zero. That is,

$$H_0: \beta_2 = \dots = \beta_k = 0$$

 $H_1: \text{ at least one } \beta \neq 0 \qquad \Rightarrow J = k-1$

• We can write
$$H_0$$
: $\mathbf{R}\boldsymbol{\beta} - \mathbf{q} = \mathbf{0}$ $\Rightarrow \begin{bmatrix} 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \dots \\ \beta_n \end{bmatrix} = \begin{bmatrix} 0 \\ \dots \\ 0 \end{bmatrix}$

• We have
$$J = k - 1$$
. Then,
$$F = \{ (R^2 - R^{*2})/(k - 1) \} / [(1 - R^2)/(T - k)] \sim F_{k-1, T-K}.$$

• For the restricted model, $R^{*2} = 0$.

The F Test: F-test of goodness of fit

Then,
$$F = \{ R^2 / (k-1) \} / [(1 - R^2) / (T-k)] \sim F_{k-1,T-K}$$

• Recall ESS/TSS is the definition of R^2 . RSS/TSS is equal to $(1 - R^2)$.

$$F(k-1, n-k) = \frac{R^2/(k-1)}{(1-R^2)/(T-k)} = \frac{\frac{ESS}{TSS}/(k-1)}{\frac{RSS}{TSS}/(T-k)}$$
$$= \frac{ESS/(k-1)}{RSS/(T-k)}$$

• This test statistic is called the *F-test of goodness of fit.*

6

10

The F Test: F-test of goodness of fit

Example: We want to test if all the FF factors (Market, SMB, HML) are significant, using monthly data 1973 - 2020 (T=569).

```
y <- ibm_x
```

 $T \leq - length(x)$

 $x0 \le matrix(1,T,1)$

x <- cbind(x0,Mkt_RF, SMB, HML)

 $k \le -ncol(x)$

b <- solve(t(x)%*% x)%*% t(x)%*% #OLS regression

e <- y - x%/0*0/0b

RSS \leq - as.numeric(t(e)%*%e)

 $R2 \le 1 - as.numeric(RSS)/as.numeric(t(y)\%^*\%y)$ #R-squared

> R2

[1] 0.338985

 $F_{goodfit} < (R2/(k-1))/((1-R2)/(T-k))$ #F-test of goodness of fit.

> F_goodfit

[1] 96.58204

 \Rightarrow F_goodfit > F_{2.565,05} = 2.387708 \Rightarrow Reject H₀. 62

The F Test: General Case – Example

• In the linear model

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\epsilon} = \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \mathbf{X}_3 \boldsymbol{\beta}_3 + \mathbf{X}_4 \boldsymbol{\beta}_4 + \boldsymbol{\epsilon}$$

• We want to test if the slopes X_3 , X_4 are equal to zero. That is,

$$H_0: \beta_3 = \beta_4 = 0$$

 $H_1: \beta_3 \neq 0 \text{ or } \beta_4 \neq 0 \text{ or both } \beta_3 \text{ and } \beta_4 \neq 0$

• We can use, $F = (e^*/e^* - e'e)/J / [e'e/(T-k)] \sim F_{J,T-K}$.

Define
$$Y = \beta_1 + \beta_2 X_2 + \varepsilon$$
 RSS _R

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon \quad RSS_U$$

$$F(\text{cost in } df, \text{ unconstr } df) = \frac{RSS_R - RSS_U / k_U - k_R}{RSS_U / T - k_U}$$

The F Test: General Case – Example

Example: We want to test if the additional FF factors (SMB, HML) are significant, using monthly data 1973 - 2020 (T=569).

Unrestricted Model:

(U)
$$\mathbf{IBM_{Ret}} - \mathbf{r_f} = \beta_0 + \beta_1 (\mathbf{Mkt_{Ret}} - \mathbf{r_f}) + \beta_2 \mathbf{SMB} + \beta_3 \mathbf{HML} + \boldsymbol{\epsilon}$$

Hypothesis:
$$H_0$$
: $\beta_2 = \beta_3 = 0$
 H_1 : $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$

Then, the Restricted Model:

(R)
$$IBM_{Ret} - r_f = \beta_0 + \beta_1 (Mkt_{Ret} - r_f) + \epsilon$$

Test:
$$F = \frac{(RSS_R - RSS_U)/J}{RSS_U/(T - k_u)} \sim F_{J,T-K}$$
 with $J = k_U - k_R = 4 - 2_{64} = 2$

The F Test: General Case – Example

Example (continuation): The unrestricted model was already estimated. For the restricted model:

```
y \le -ibm_x
x0 \le matrix(1,T,1)
                                                         # Restricted X vector
x_r <- cbind(x0,Mkt_RF)
T \leq -nrow(x)
k2 \le -ncol(x)
b2 \le - solve(t(x_r)^0/_0*_0/_0 x_r)^0/_0*_0/_0 t(x_r)^0/_0*_0/_0 y
                                                         # Restricted OLS regression
e2 \le -y - x_r^0/_0*^0/_0b2
RSS2 <- as.numeric(t(e2)%*%e2)
> RSS = 1.932442
                                                         # RSS<sub>II</sub>
> RSS2 = 1.964844
                                                         # RSS<sub>R</sub>
J <- k - k2
                                                         # J = degrees of freedom of numerator
F_{test} \leq ((RSS2 - RSS)/J)/(RSS/(T-k))
```

The F Test: General Case – Example

Example (continuation):

```
\begin{split} F\_\text{test} &<- ((RSS2 - RSS)/J)/(RSS/(T-k)) \\ > F\_\text{test} \\ [1] \ \textbf{4.736834} \\ > qf(.95, df1=J, df2=(T-k)) & \# F_{2,565,.05} \text{ value } (\approx 3) \\ [1] \ \textbf{3.011672} & \Rightarrow \text{Reject H}_0. \\ p\_\text{val} &<- 1 - pf(F\_\text{test, df1}=J, df2=(T-k)) & \# p\text{-value of F}\_\text{test} \\ > p\_\text{val} \\ [1] \ \textbf{0.009117494} & \Rightarrow p\text{-value is small} \Rightarrow \text{Reject H}_0. \end{split}
```

Lagrange Multiplier Statistics

• Specific to the classical model. Recall the Lagrange multipliers:

$$\lambda = [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1} \mathbf{m}$$

Suppose we just test H_0 : $\lambda = 0$, using the Wald criterion.

$$W = \lambda' (\operatorname{Var}[\lambda \mid \mathbf{X}])^{-1} \lambda$$

where

$$\begin{aligned} \operatorname{Var}[\boldsymbol{\lambda} \mid \mathbf{X}] &= [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\operatorname{Var}[\mathbf{m} \mid \mathbf{X}] \ [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1} \\ \operatorname{Var}[\mathbf{m} \mid \mathbf{X}] &= \mathbf{R}[\sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}]\mathbf{R}' \\ \operatorname{Var}[\boldsymbol{\lambda} \mid \mathbf{X}] &= [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1} \ \mathbf{R}[\sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}]\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1} \\ &= \sigma^{2} \ [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1} \end{aligned}$$

Then,

$$W = \mathbf{m'} [\mathbf{R}(\mathbf{X'X})^{-1}\mathbf{R'}]^{-1} \{\sigma^2 [\mathbf{R}(\mathbf{X'X})^{-1}\mathbf{R'}]^{-1}\}^{-1} [\mathbf{R}(\mathbf{X'X})^{-1}\mathbf{R'}]^{-1} \mathbf{m}$$

$$= \mathbf{m'} [\sigma^2 \mathbf{R}(\mathbf{X'X})^{-1}\mathbf{R'}]^{-1}\} \mathbf{m}$$

Application (Greene): Gasoline Demand

• Time series regression,

$$\begin{split} \mathrm{Log}\mathbf{G} \; = \; \beta_1 + \beta_2 \mathrm{log}\mathbf{Y} + \beta_3 \mathrm{log}\mathrm{PG} + \beta_4 \mathrm{log}\mathbf{PNC} + \beta_5 \mathrm{log}\mathbf{PUC} \\ + \; \beta_6 \mathrm{log}\mathbf{PPT} + \beta_7 \mathrm{log}\mathbf{PN} + \beta_8 \mathrm{log}\mathbf{PD} + \beta_9 \mathrm{log}\mathbf{PS} + \; \pmb{\epsilon} \end{split}$$
 Period = 1960 - 1995.

• A significant event occurs in October 1973: the first oil crash. In the next lecture, we will be interested to know if the model 1960 to 1973 is the same as from 1974 to 1995.

Note: All coefficients in the model are elasticities.

Application (Greene): Gasoline Demand

Ordinary	least squar	es regression						
LHS=LG	Mean	=	5.39299					
	Standard de	viation =	.24878	.24878				
	Number of o	bservs. =	36					
Model size	Parameters	=	9					
	Degrees of	freedom =	27					
Residuals	Sum of squa	res =	.00855	<*****	•			
	Standard er	ror of e =	.01780	<*****				
Fit	R-squared	=	. 99605	<*****	•			
	Adjusted R-	squared =	.99488	<*****	•			
variable C		Standard Erro		P[T >t] 	Mean of X			
					Mean of X			
Constant		1.29811		.0000				
Constant	-6.95326***	1.29811 .14562	 -5.356	.0000	9.11093			
Constant LY LPG	-6.95326*** 1.35721***	1.29811 .14562 .06200	 -5.356 9.320	.0000	9.11093 .67409			
Constant LY LPG LPNC	-6.95326*** 1.35721*** 50579***	1.29811 .14562 .06200 .19957	-5.356 9.320 -8.158	.0000 .0000 .0000 .9346	9.11093 .67409 .44320			
Constant LY LPG LPNC LPUC	-6.95326*** 1.35721*** 50579***	1.29811 .14562 .06200 .19957 .06568 .07859	-5.356 9.320 -8.158 083 -1.881 1.472	.0000 .0000 .0000 .9346 .0708	9.11093 .67409 .44320 .66361			
Constant LY LPG LPNC LPUC LPPT	-6.95326*** 1.35721***50579***0165412354*	1.29811 .14562 .06200 .19957 .06568 .07859	-5.356 9.320 -8.158 083 -1.881 1.472	.0000 .0000 .0000 .9346 .0708	9.11093 .67409 .44320 .66361 .77208			
Constant LY LPG LPNC LPUC LPPT LPN	-6.95326*** 1.35721***50579***0165412354* .11571	1.29811 .14562 .06200 .19957 .06568 .07859 .26840	-5.356 9.320 -8.158 083 -1.881 1.472 4.103	.0000 .0000 .0000 .9346 .0708 .1525	9.11093 .67409 .44320 .66361 .77208 .60539			
Constant LY LPG LPNC LPUC LPPT LPN LPD	-6.95326*** 1.35721***50579***0165412354* .11571 1.10125***	1.29811 .14562 .06200 .19957 .06568 .07859 .26840 .27018	-5.356 9.320 -8.158 083 -1.881 1.472 4.103	.0000 .0000 .0000 .9346 .0708 .1525 .0003	9.11093 .67409 .44320 .66361 .77208 .60539			

Application (Greene): Gasoline Demand

- Q: Is the price of public transportation really relevant? $H_0: \beta_6 = 0$.
- (1) Distance measure: $t_6 = (b_6 0) / s_{b6} = (.11571 0) / .07859$ = 1.472 < 2.052 \Rightarrow cannot reject H₀.
- (2) Confidence interval: $b_6 \pm t_{(.95,27)} \times \text{Standard error}$ = .11571 ± 2.052 × (.07859) = .11571 ± .16127 = (-.045557,.27698) \Rightarrow C.I. contains 0 \Rightarrow cannot reject H_0 .
- (3) Regression fit if \mathbf{X}_6 drop? Original $R^2 = .99605$,

 Without LPPT, $R^{*2} = .99573$ F(1,27) = [(.99605 .99573)/1]/[(1 .99605)/(36 9)] = 2.187 $= 1.472^2 \text{ (with some rounding)} \Rightarrow \text{cannot reject}^7\mathbf{H}_0.$

Gasoline Demand (Greene) - Hypothesis Test: Sum of Coefficients

• Do the three aggregate price elasticities sum to zero? $H_0: \beta_7 + \beta_8 + \beta_9 = 0$

 $\mathbf{R} = [0, 0, 0, 0, 0, 0, 1, 1, 1], \quad \mathbf{q} = 0$

Var:	iable	Coeffic	ient 	Standa	rd Erro	r t-ra	tio P[T >t]		
LPI	N 1	.10125*	**	.2684	0	4.103	.000	3	. 60539	
LPI	DΙ	.92018*	**	.2701	8	3.406	.002	1	. 43343	
LPS	S -1	.09213*	**	.3081	2	-3.544	.001	5	.68105	
	1	2	3	4	5	6	7	8	9	

	1	2	3	4	5	6	7	8	9
1	1.6851	-0.189024	-0.0256198	-0.218091	-0.0240267	-0.0295907	-0.0261772	0.197857	0.176068
2	-0.189024	0.0212045	0.00290895	0.0243971	0.00269963	0.0032894	0.00280174	-0.0222154	-0.0195876
3	-0.0256198	0.00290895	0.00384368	-0.000682307	-0.000413822	-0.00176052	-0.0114883	-0.0044953	0.0108144
4	-0.218091	0.0243971	-0.000682307	0.0398293	0.00350897	0.00824835	0.0236143	-0.0311143	-0.0453555
5	-0.0240267	0.00269963	-0.000413822	0.00350897	0.00431411	0.001419	0.00979376	-0.0118214	-0.00970482
6	-0.0295907	0.0032894	-0.00176052	0.00824835	0.001419	0.00617673	0.0134911	-0.00740557	-0.0198458
7	-0.0261772	0.00280174	-0.0114883	0.0236143	0.00979376	0.0134911	0.0720371	-0.0335608	-0.0705545
8	0.197857	-0.0222154	-0.0044953	-0.0311143	-0.0118214	-0.00740557	-0.0335608	0.0729982	0.0346625
9	0.176068	-0.0195876	0.0108144	-0.0453555	-0.00970482	-0.0198458	-0.0705545	0.0346625	0.0949391
								_	71

Gasoline Demand (Greene) - Hypothesis Test: Sum of Coefficients - Wald Test

The critical chi squared with 1 degree of freedom is 3.84, so the hypothesis is rejected.

Gasoline Demand (Greene) - Imposing Restrictions

```
Linearly restricted regression
                                          5.392989
LHS=LG
              Mean
                                          .2487794
              Standard deviation =
              Number of observs. = 36

Parameters = 8 <*** 9 - 1 restriction

Degrees of freedom = 28

Sum of squares = .0112599 <*** With the restriction

Sum of squares = .0085531 <*** Without the
Model size Parameters
Residuals
Residuals
restriction
restriction Fit R-squared = .9948020 Restrictns. F[ 1, 27] (prob) = 8.5(.01)
Not using OLS or no constant.R2 & F may be < 0
Variable | Coefficient Standard Error t-ratio P[|T|>t] Mean of X
F = [(.0112599 - .0085531)/1] / [.0085531/(36 - 9)] = 8.544691
```

Gasoline Demand (Greene) - Joint Hypotheses

• Joint hypothesis: Income elasticity = +1, Own price elasticity = -1. The hypothesis implies that $\log G = \beta_1 + \log Y - \log Pg + \beta_4 \log PNC + ...$

Strategy: Regress logG – logY + logPg on the other variables and

• Compare the sums of squares

With two restrictions imposed

Residuals Sum of squares = .0286877 Fit R-squared = .9979006

Unrestricted

Residuals Sum of squares = .0085531 Fit R-squared = .9960515

F = ((.0286877 - .0085531)/2) / (.0085531/(36-9)) = 31.779951

The critical F for 95% with 2,27 degrees of freedom is 3.354 \Rightarrow H₀ is rejected.

• Q: Are the results consistent? Does the R² really go up when the restrictions are imposed?

Gasoline Demand - Using the Wald Statistic

```
--> Matrix ; R = [0,1,0,0,0,0,0,0,0,0 /
                  0,0,1,0,0,0,0,0,0]$
--> Matrix ; q = [1/-1]$
--> Matrix ; list ; m = R*b - q $
Matrix M has 2 rows and 1 columns.
               1
       1| .35721
2| .49421
              .49421
--> Matrix ; list ; vm = R*varb*R' $
Matrix VM has 2 rows and 2 columns.
                            2
               1
       +----+
       1| .02120 .00291
             .00291
                           .00384
--> Matrix ; list ; w = 1/2 * m'<vm>m $
{\tt Matrix} \ {\tt W} \qquad \qquad {\tt has} \quad {\tt 1} \ {\tt rows} \ {\tt and} \quad {\tt 1} \ {\tt columns} \, .
        +-----
       1| 31.77981
```

75

Gasoline Demand (Greene) - Testing Details

• Q: Which restriction is the problem? We can look at the Jx1 estimated LM, λ , for clues:

$$\lambda = [\mathbf{R}(\mathbf{X}'\mathbf{X})\mathbf{R}']^{-1}(\mathbf{R}\mathbf{b} - \mathbf{q})$$

• Recall that under H_0 , λ should be 0.

Matrix Result has 2 rows and 1 columns.

+----+
1| -.88491 Income elasticity
2| 129.24760 Price elasticity
+------

Results *suggest* that the constraint on the price elasticity is having a greater effect on the sum of squares.

Gasoline Demand (Greene) - Basing the Test on \mathbb{R}^2

• After building the restrictions into the model and computing restricted and unrestricted regressions: Based on R²s,

$$F = [(.9960515 - .997096)/2]/[(1 - .9960515)/(36-9)]$$

= -3.571166 (!)

• Q: What's wrong?