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Lecture 3
Specification & Testing in the 

Classical Linear Model

OLS Estimation - Assumptions

• CLM Assumptions

(A1) DGP: y = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X)=k-, where T ≥ k.

Q: What happens when (A1) is not correctly specified? 

• In this lecture, we look at (A1), always in the context of linearity. Are 
we omitting a relevant regressor? Are we including an irrelevant 
variable? What happens when we impose restrictions in the DGP? 
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Specification Errors: Omitted Variables

• Omitting relevant variables:  Suppose the correct model is 

𝒚 = X11 + X22 +  –i.e., with two sets of variables.  

But, we compute OLS omitting X2. That is,

𝒚 = X11 +  <= the “short regression.” 

Some easily proved results:

(1) E[b1|X] = E [(X1X1)-1X1 𝒚] = 1 + (X1X1)-1X1X22  1.  So, 
unless X1X2 =0, b1 is biased.  The bias can be huge.  It can reverse the 
sign of a price coefficient in a “demand equation.”

(2) Var[b1|X] ≤ Var[b1.2|X].  (The latter is the northwest submatrix of 
the full covariance matrix.)  The proof uses M, the residual maker. We 
get a smaller variance when we omit X2.  

• We get a smaller variance when we omit X2.  

Interpretation:  Omitting X2 amounts to using extra information –i.e., 
2 = 0. Even if the information is wrong, it reduces the variance.  

(3) MSE
b1 may be more “precise.”  

Precision  = Mean squared error  
= variance + squared bias.

Smaller variance but positive bias.  If bias is small, may still favor the 
short regression.

Note: Suppose X1X2 = 0.  Then the bias goes away.  Interpretation, 
the information is not “right,” it is irrelevant.  b1 is the same as b1.2.

Specification Errors: Omitted Variables
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Omitted Variables Example: Gasoline Demand

• We have a linear model for the demand for gasoline: 
G = PG 1 + Y 2 + , 

Q: What happens when you wrongly exclude Income (Y)? 

E[b1|X]  = 1 +                                2

In time series data, 1 <  0,  2 >  0  (usually)
Cov[Price, Income]  >  0 in time series data.

 The short regression will overestimate the price coefficient.

In a simple regression of G (demand) on a constant and PG, the Price 
Coefficient (1) should be negative.

][

],[

icePrVar

IncomeicePrCov

Estimation of a ‘Demand’ Equation (Greene):
Shouldn’t the Price Coefficient be Negative?
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Ordinary     least squares regression ............
LHS=G        Mean                 =      226.09444

Standard deviation   =       50.59182
Number of observs.   =             36

Model size   Parameters           =              3
Degrees of freedom   =             33

Residuals    Sum of squares       =     1472.79834
Standard error of e  =        6.68059

Fit          R-squared            =         .98356
Adjusted R-squared   =         .98256

Model test   F[  2,    33] (prob) =   987.1(.0000)
--------+------------------------------------------------------
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t] 
--------+------------------------------------------------------
Constant|   -79.7535***      8.67255       -9.196   .0000

Y|     .03692***       .00132       28.022   .0000 
PG|   -15.1224***      1.88034       -8.042   .0000

--------+------------------------------------------------------

Estimation of  a ‘Demand’ Equation (Greene):
Multiple Regression - Theory Works.

• Note: Income is helping us to identify a demand equation –i.e., with a 
negative slope for the price variable. 

• Irrelevant variables . Suppose the correct model is 

𝒚 = X11 +  –i.e., with one set of variables. 

But, we estimate

𝒚 = X11 + X22 +  <= the “long regression.”

Some easily proved results: Including irrelevant variables just reverse 
the results:  It increases variance -the cost of not using information-; 
but does not create biases.

 Since the variables in X2 are truly irrelevant, then 2 = 0, 

so E[b1.2|X] = 1. 

Specification Errors: Irrelevant Variables
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Note: These are the results in general. Note that if  X2 and X3 are 
uncorrelated, there will be no loss of  efficiency after all.
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Specification Errors: Irrelevant Variables

• A simple example  

Suppose the correct model is: y = 1 + 2 X2 + 
But, we estimate: y = 1 + 2 X2 + 3 X3 + 

• Unbiased: given that 3 =0  E[b2|X]= 2

• Efficiency:

Other Models

• Looking ahead to nonlinear models:  neither of the preceding results 
extend beyond the linear regression model.

“Omitting relevant variables from a model is always costly. (No 
exceptions.) The benign result above almost never carries over to 
more involved nonlinear models.” (Greene)



RS - Econometrics 1 - Lecture 3 (Model Specification and Testing)

6Do not share/post online without written authorization

Specification and Functional Form: Non-linearity

• In the context of  OLS estimation, we can introduce some non-
linearities: quadratic, cubic and interaction effects can be easily 
estimated by OLS. For example:

y = 1 + 2 X2 + 3 X2
2 + 4 X2 X3 + 

• Partial effects , 𝜕y/𝜕X2, (and standard errors) can be different. In 
the above model

𝜕y/𝜕X2 = 2 + 2 3 X2 + 4 X3  2

Note: Recall that in a simple linear model:
y = 1 + 2 X2 + 3 X3 + 

the partial effect is equal to the i coefficient:
𝜕y/𝜕X2 = 2. 

Specification and Functional Form: Non-linearity

2 2
1 2 3 4 1 2 3 4
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• The estimator of  partial effects and their variances are different 
from bi and Var[bi|X] in the presence of  non-linearities

Example: Quadratic Effect

Note: Now, the partial effect and the variance are a function of  the 
data! Usually, an average is used in the estimation.
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Application (Greene): Log Income Equation
----------------------------------------------------------------------
Ordinary     least squares regression ............
LHS=LOGY     Mean                 =       -1.15746        Estimated Cov[b1,b2]

Standard deviation   =         .49149
Number of observs.   =          27322

Model size   Parameters           =              7
Degrees of freedom   =          27315

Residuals    Sum of squares       =     5462.03686
Standard error of e  =         .44717

Fit          R-squared            =         .17237
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

AGE|     .06225***       .00213       29.189   .0000      43.5272
AGESQ|    -.00074***     .242482D-04   -30.576   .0000      2022.99

Constant|   -3.19130***       .04567      -69.884   .0000
MARRIED|     .32153***       .00703       45.767   .0000       .75869
HHKIDS|    -.11134***       .00655      -17.002   .0000       .40272
FEMALE|    -.00491          .00552        -.889   .3739       .47881
EDUC|     .05542***       .00120       46.050   .0000      11.3202

--------+-------------------------------------------------------------
At Average Age = x = 43.5272. 

Estimated Partial effect = .066225 – 2(.00074) x 43.5272 = .00018.
Estimated Variance 4.54799e-6 + 4(43.5272)2*(5.87973e-10) + 4(43.5272)*
(-5.1285e-8) = 7.4755086e-08.                                    
Estimated standard error = .00027341.
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Example: Interactive Effect

Specification and Functional Form: Non-linearity
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Application (Greene): Interaction Effect

----------------------------------------------------------------------
Ordinary     least squares regression ............
LHS=LOGY     Mean                 =       -1.15746

Standard deviation   =         .49149
Number of observs.   =          27322

Model size   Parameters           =              4
Degrees of freedom   =          27318

Residuals    Sum of squares       =     6540.45988
Standard error of e  =         .48931

Fit          R-squared            =         .00896
Adjusted R-squared   =         .00885

Model test   F[  3, 27318] (prob) =    82.4(.0000)
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------
Constant|   -1.22592***       .01605      -76.376   .0000

AGE|     .00227***       .00036        6.240   .0000      43.5272
FEMALE|     .21239***       .02363        8.987   .0000       .47881
AGE_FEM|    -.00620***       .00052      -11.819   .0000      21.2960
--------+-------------------------------------------------------------
Do women earn more than men (in this sample?)  The +.21239 coefficient on 
FEMALE would suggest so.  
But, the female “difference” –i.e., partial effect- is: +.21239 - .00620*Age. 

At average Age, the effect is: .21239 - .00620 * (43.5272) = -.05748.

OLS Subject to Restrictions

• Restrictions: Theory imposes certain restrictions on parameters. 

Examples: 
(1) Dropping  variables from the equation. That is, certain 

coefficients in b forced to equal 0.  (Is variable x3=size significant?”)

(2)  Adding up conditions:  Sums of certain coefficients must equal 
fixed values.  Adding up conditions in demand systems.  Constant 
returns to scale in production functions (α + β = 1 in a Cobb-Douglas 
production function).

(3) Equality restrictions:  Certain coefficients must equal other 
coefficients. Using real vs. nominal variables in equations.

• Usual formulation with J linear restrictions (R is Jx𝑘 and q is Jx1): 

Minb {S(𝑥 , θ) = ∑ 𝑒 = e′e = (y – Xb)′ (y – Xb)} s.t. Rb = q
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Restricted Least Squares
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• In practice, restrictions can usually be imposed by solving them out.

(1) Dropping variables –i.e., force a coefficient to equal zero. 

Problem:

(2) Adding up.  Do least squares subject to b1+b2+b3=1. Then, b3 = 1-
b1-b2.  Make the substitution so (y – x3) = b1(x1 – x3) + b2(x2 – x3) + e.  

Problem:    Minb

(3) Equality.  If  b3 = b2, then y = b1x1 + b2x2 + b2x3 + e
= b1x1 + b2(x2+x3) + e

Problem:    Minb

• Theoretical results provide insights and the foundation of  several 
tests.

• Programming problem with J restrictions (R is Jxk and q is kx1):  
Minimize wrt b S = (𝒚 – X)′ (𝒚 – X) s.t. R  = q

• Quadratic programming problem
 Minimize a quadratic criterion s.t. a set of  linear restrictions.
- Concave programming problem, all binding constraints. No 

need for Kuhn-Tucker
- Solve using a Lagrangean formulation.

• The Lagrangean approach (the 2 is for convenience with is  Jx1 ).
Min b, L* = (𝒚 – X)′ (𝒚 – X) + 2  (R  – q) 

= (𝒚′𝒚 – ′X′𝒚 – 𝒚′X + ′X′X) + 2 (R  – q) 

Restricted Least Squares
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• The Lagrangean approach
Min b, L* = = (𝒚′𝒚 – 2 ′X′𝒚 + ′X′X) + 2  (R  – q) 

f.o.c:  
L*/b = -2X(𝒚 -Xb*) + 2R = 0  -X(𝒚 – Xb*) + R = 0
L*/ =  2 (Rb* – q) = 0.  (Rb* – q) = 0

Then, from the 1st equation (and assuming full rank for X):
–X𝒚 + XXb* + R = 0  b* = (XX)-1X𝒚 – (XX)-1R

= b – (XX)-1R

Premultiply both sides by R and then subtract q
Rb* – q = Rb – R(XX)-1R – q

0 = –R(XX)-1R + (Rb – q)

Solving for    = [R(XX)-1R]-1 (Rb – q)
Substituting in b*  b* = b – (XX)-1R[R(XX)-1R]-1(R b – q)

Restricted Least Squares

• Q: How do linear restrictions affect the properties of the least 
squares estimator?

Model ( DGP): 𝒚 =  X +  
Theory (information): R – q =  0

Restricted LS estimator:   b* = b – (XX)-1R[R(XX)-1R]-1(Rb – q)
1. Unbiased?
E[b*|X] =  – (XX)-1R[R(XX)-1R]-1 E[(Rb – q)|X] = 

2. Efficiency?
Var[b*|X] = 2(XX)-1 – 2 (XX)-1R[R(XX)-1R]-1 R(XX)-1

Var[b*|X] = Var[b|X] – a nonnegative definite matrix < Var[b|X]

3. b* may be more “precise.”  
Precision  = Mean squared error  = variance + squared bias.

Linear Restrictions
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1. b*  = b – Cm, m = the “discrepancy vector” Rb – q.  

Note: If m = 0  b*  =  b. (Q: What does m = 0 mean?)

2.  = [R(XX)-1R]-1(Rb – q) = [R(XX)-1R]-1m  

When does  = 0? What does this mean?

3. Combining results: b*  = b – (XX)-1R

4. Recall:  ee = (y – Xb)(y – Xb) ≤ e*e* = (𝒚 – Xb*)(𝒚 – Xb*)

 Restrictions cannot increase R2  R2 ≥ R2* 

Linear Restrictions

• Two cases

- Case 1:  Theory is correct: R – q = 0 (restrictions hold).

b* is unbiased  &  Var[b*|X] ≤ Var[b|X]

- Case 2:  Theory is incorrect: R - q  0 (restrictions do not hold).

b* is biased  &  Var[b*|X] ≤ Var[b|X].

• Interpretation

- The theory gives us information. 

Bad information produces bias (away from “the truth.”)

Any information, good or bad, makes us more certain of our 
answer. In this context, any information reduces variance.

Linear Restrictions – Interpretation
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- What about ignoring information (theory)?

Not using the correct information does not produce bias.

Not using information foregoes the variance reduction.

Linear Restrictions - Interpretation

“The three golden rules of  econometrics are 
test, test and test.” David Hendry (1944, 
England)

Testing in Economics

“The only relevant test of  the validity of  a 
hypothesis is comparison of  prediction with 
experience.” Milton Friedman (1912-2006, 
USA)

24
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• Testing involves the comparison between two competing hypothesis:

– H0: The maintained hypothesis.

– H1: The hypothesis considered if H0.

• Idea: We collect a sample, X = {X1, X2, … , Xn}.  We construct a 
statistic T(X) = f(X), called the test statistic. Now we have a decision rule:

– If T(X) is contained in space R, we reject H0 (& we learn).

– If T(X) is in the complement of R (RC), we fail to reject H0.

Note: T(X), like any other statistic, is a RV. It has a distribution. We 
use the distribution of T(X) to determine R, the rejection region  (& we 
associate a probability to R).

Hypothesis Testing

25

Example: Suppose T(𝑋) = 𝑋. If  data is normal, the distribution of  𝑋
is also normal. Then, under H0, we build a Rejection Region, R:

R = 𝑋 TLB , TUB 𝑋]

26

TLB TUB

Note: The blue area (“significance level”) represents the P[R|H0]. For 
example, if  the blue area is 5%, then, TLB = -1.96 & TUB = 1.96.

Hypothesis Testing: Rejection Region
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• The classical approach, also known as significance testing, relies on p-values:

p-value is the probability of observing a result at least as extreme as the 
test statistic, under H0. 

Example: Suppose T(𝑋) ~ 𝜒 . We compute  T(𝑋) = 7.378. Then, 

p-value(T(𝑋) = 7.378) =  1 – Prob[T(𝑋) < 7.378] = 0.025

Hypothesis Testing: p-value

27

2.5%

7.378

• Steps for the classical approach, also known as significance testing:

1. Identify H0 & set a significance level (α%).

2. Determine the appropriate test statistic T(𝑋) and its distribution 
under the assumption that H0 is true.

3. Calculate T(X) from the data.

4. Rule: If p-value of T(𝑋) < α  Reject H0 (& we learn H0! is not true).

If p-value of T(𝑋) > α  Fail to reject H0. (No learning.)

Note: In Step 4, setting α% is equivalent to setting R. Thus, instead of 
looking at p-value, we can look if T(𝑋) falls in R (in the blue area). We 
do this by constructing a (1 - α)% C.I.

• Mistakes are made. We want to quantify these mistakes.

Hypothesis Testing: Steps

28
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• Type I and Type II errors

A Type I error is the error of rejecting H0 when it is true. 

A Type II error is the error of “accepting” H0 when it is false (that is, 
when H1 is true). 

Notation: Probability of Type I error:  = P[X  R|H0]

Probability of Type II error:  = P[X  RC|H1]

Example: From the U.S. Jury System

Type I error is the error of finding an innocent defendant guilty.

Type II error is the error of finding a guilty defendant not guilty.

• There is a trade-off between both errors. 

Hypothesis Testing: Error Types

• Traditional view: Set Type I error equal to a small number & find a test 
that minimizes Type II error.

The usual tests (t-tests, F-tests, Likelihood Ratio tests) incorporate this 
traditional view.

Definition: Power of the test

The probability of rejecting H0 based on a test procedure is called the 
power of the test. It is a function of the value of the parameters tested, θ:

 (θ) = P[X  R].

Note: when θ  H1 ⟹ (θ) = 1 – (θ) -the usual application.

30

Hypothesis Testing: Type I and Type II Errors



RS - Econometrics 1 - Lecture 3 (Model Specification and Testing)

16Do not share/post online without written authorization

Hypothesis Testing: Summary

• Hypothesis testing in Econometrics:

(1) We need a model. For example, 𝒚 =  f(X, ) + 
(2) We gather data (𝒚, X) and estimate the model  we get 
(3) We formulate a hypotheses.  For example, H0: = 0 vs. H1: 0

(4) Find an appropriate test and know its distribution under H0

(5) Decision Rule (Test H0). Reject H0: if 0 is too far from  (“the 
hypothesis is inconsistent with the sample evidence.”)

The decision rule will be based on a statistic, T(X). If the statistic is 
large, then, we reject H0.

• To determine if the statistic is “large,” we need a null distribution.

• Ideally, we use a test that is most powerful to test H0.
31

• Logic of the Neyman-Pearson methodology:

If H0 is true, then T(X) will have a certain distribution (under H0). We 
call this distribution null distribution or distribution under the null. 

• It tells us how likely certain values are, if H0 is true. Thus, we expect 
‘large values’ for 0 to be unlikely.

•  Decision rule. 

If the observed value for T(X) falls in rejection region R 

 Assumed distribution must be incorrect: H0 should be rejected.

Hypothesis Testing: Issues

32
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• Issues: 
– What happens if the model is wrong?
– What is a testable hypothesis? 
– Nested vs. Non-nested models
– Methodological issues

– Classical (frequentist approach):  Are the data consistent with H0?
– Bayesian approach:  How do the data affect our prior odds? Use 

the posterior odds ratio.

Hypothesis Testing: Issues

33

• We test a hypotheses about a single parameter, say  , of the DGP.

Example: The linear model (DGP):  𝒚 = X + 
1. Formulate H0: X should not be in the DGP ⇒ H0:  = 

H1:  ≠  .

2. Construct T(X) test H0: t = (b -  )/sqrt{s2(X 𝑿 }

Distribution of T(X) under H0, with s2 estimating σ2 (unknown):
If (A5) |X ~ N(0, σ2IT), ⇒ t ~ t .

If (A5) not true, asymptotic results: ⇒  t → N(0, 1).

3. Using OLS, we estimate b , b , …, b , …, & estimate t ⇒ t.̂

4. Decision Rule: Set α level. We reject H0 if  p-value(t)̂ < α.

Or, reject H0, if |t|̂> t , / .

Testing in the CLM: Single Parameter

34



RS - Econometrics 1 - Lecture 3 (Model Specification and Testing)

18Do not share/post online without written authorization

• Special case: H0:  = 0
H1:  ≠ 0.

Then,

t = (b /sqrt{s2(X 𝑿 } = b /SE[b ] ⇒ t ~ t .

This special case of t is called the t-value. That is, the t-value is the 
ratio of the estimated coefficient and its SE. 

• The t-value is routinely reported in all regression packages. In the 
lm() function, it is reported in the third row of numbers.

• Usually, α = 5%, then if |t|̂> 1.96 ≈ 2, we say the coefficient b is 
“significant.”

Testing in the CLM: t-value

35

• The OLS estimate b is a point estimate for , meaning that b is a 
single value in Rk. 

• Broader concept: Estimate a set Cn, a collection of values in Rk. 

• When the parameter is real-valued, it is common to focus on 
intervals Cn = [Ln; Un], called an interval estimate for θ.  The goal of Cn

is to contain the true value, e.g. θ  Cn, with high probability.

• Cn is a function of the data. Therefore, it is a RV.

• The coverage probability of the interval Cn= [Ln; Un] is Prob[θ Cn].

Hypothesis Testing: Confidence Intervals

36
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• The randomness comes from Cn, since θ is treated as fixed.

• Interval estimates Cn are called confidence intervals (C.I.) as the goal is 
to set the coverage probability to equal a pre-specified target, usually 
90% or 95%. Cn is called a (1 – α)% C.I.

• When we know the distribution for the point estimate, it is easy to 
construct a C.I. For example, under (A5), the distribution of b is 
normal, then a 95% C.I. is given by:

Cn= [b + z.025  Estimated SE(b ),  b + z.975  Estimated SE(b )]

(Note: The Normal distribution is symmetric   -z.025 = z..975 = 1.96).

• This C.I. is symmetric around b , with length proportional to its SE. 

Hypothesis Testing: Confidence Intervals

37

• Equivalently, Cn is the set of parameter values for b such that the 
z-statistic zn(b ) is smaller (in absolute value) than zα/2. That is,    

Cn= {b : |zn(b )| ≤ z1- α/2}   with coverage probability (1 - α)%.

• In general, the coverage probability of C.I.’s is unknown, since we 
do not know the distribution of the point estimates. 

• In Lecture 8, we will use asymptotic distributions to approximate the 
unknown distributions. We will use these asymptotic distributions to 
get asymptotic coverage probabilities.

• Summary: C.I.’s are a simple but effective tool to assess estimation 
uncertainty.

Hypothesis Testing: Confidence Intervals

38
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Let 

Assume that Z and U are independent (check the middle 
matrices in the quadratic forms!). Then, 

• Recall a t -distributed variable is a ratio of  two independent RV: a 
N(0, 1) RV and the square root of  a χ RV divided by 𝑣.

Recall: A t-distributed variable

39

Hypothesis Testing: Testing Example in R

Example: 3 Factor Fama-French Model (continuation) for IBM: 

IBMRet – rf = 1 +   (MktRet – rf) +  SMB +  HML + 

Returns <- read.csv("http://www.bauer.uh.edu/rsusmel/phd/K-DIS-IBM.csv", 
head=TRUE, sep=",")

b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X′X)-1X′ y (OLS regression)

e <- y - x%*%b # regression residuals, e

RSS <- as.numeric(t(e)%*%e) # RSS

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared  

Sigma2 <- as.numeric(RSS/(T-k)) # Estimated σ2 = s2

SE_reg <- sqrt(Sigma2) # Estimated σ – Regression stand error

Var_b <- Sigma2*solve(t(x)%*% x) # Estimated Var[b|X] = s2 (X′X)-1

SE_b <- sqrt(diag(Var_b)) # SE[b|X] 

t_b <- b/SE_b # t-stats (See Chapter 4)

40
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> t(b)

Mkt_RF SMB        HML

[1,] -0.005088944 0.9082989 -0.2124596 -0.1715002

> t(SE_b)

Mkt_RF SMB        HML

[1,] 0.002487509 0.05672206 0.08411188 0.08468165

> t(t_b)

Mkt_RF SMB       HML

[1,] -2.045799 16.01315 -2.525917 -2.025235  all coefficients are significant (|t|>2).

• Q: Is the market beta (1) equal to 1? That is,

H0: 1 = 1 vs.  H1: 1 ≠ 1

 t = (b – k
0)/Est. SE(b ) 

t1 = (0.9082989 – 1)/ 0.05672206 = -1.616674 

 |t1| < 1.96  Cannot reject H0 at 5% level

OLS Estimation – Is IBM’s Beta equal to 1?

41

Testing: The Expectation Hypothesis (EH) 

Example: EH states that forward/futures prices are good predictors 
of future spot rates: Et[St+T] = Ft,T.

Implication of EH: St+T – Ft,T = unpredictable. 

That is, Et[St+T – Ft,T] = Et[εt] = 0!

Empirical tests of the EH are based on a regression: 

(St+T – Ft,T)/St = α + β Zt + εt, (where E[εt]=0)

where Zt represents any economic variable that might have power to 
explain St, for example, (id-if). 

Then, under EH, H0: α = 0 and β = 0.

vs H1: α ≠ 0 and/or β ≠ 0. 42
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Testing: The Expectation Hypothesis (EH) 

Example (continuation): We will informally test EH using exchange 
rates (USD/GBP), 3-mo forward rates and 3-mo interest rates.

SF_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/SpFor_prices.csv", 
head=TRUE, sep=",")

summary(SF_da)

x_date <- SF_da$Date

x_S <- SF_da$GBPSP

x_F3m <- SF_da$GBP3M

i_us3 <- SF_da$Dep_USD3M

i_uk3 <- SF_da$Dep_UKP3M

T <- length(x_S)

prem <- (x_S[-1] - x_F3m[-T])/x_S[-1]

int_dif <- (i_us3 - i_uk3)/100

y <- prem

x <- int_dif[-T]

fit <- lm( y ~ x) 43

Testing: The Expectation Hypothesis (EH) 

Example (continuation): We do two individual t-tests on α & β.
> summary(fit)
Call:

lm(formula = y ~ x)

Residuals:

Min        1Q    Median        3Q       Max 

-0.125672 -0.014576 -0.000439  0.017356  0.094283 

Coefficients:

Estimate Std. Error t value Pr(>|t|)   

(Intercept) -0.0001854  0.0016219  -0.114  0.90906    constant not significant (|t|<2)

x         -0.2157540  0.0731553 -2.949  0.00339  **  slope is significant (|t|>2).  Reject H0

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02661 on 361 degrees of freedom

Multiple R-squared:  0.02353,   Adjusted R-squared:  0.02082 

F-statistic: 8.698 on 1 and 361 DF,  p-value: 0.003393
44
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• 95% C.I. for b:

Cn = [ b ± t𝒌,𝟏 .𝟎𝟓/𝟐 * Estimated SE(b )]

Then,

Cn = [-0.215754 – 1.96 * 0.0731553, -0.215754 + 1.96 * 0.0731553]

= [-0.3591384, -0.07236961] 

Since = 0 is not in Cn  with 95% confidence  Reject H0: 1 = 0
at 5% level.

Note: The EH is a joint hypothesis, it should be tested with a joint 
test!

Testing: The Expectation Hypothesis (EH) 

45

Testing a Hypothesis: Wald Statistic

• Most of our test statistics, including joint tests, are Wald statistics.

Wald = normalized distance measure: 
One parameter: t = (b – 0

k)/sb,k = distance/unit

More than one parameter. 

Let z = (random vector – hypothesized value) be the distance 

W =  z [Var(z)]-1 z (a quadratic form)

• Distribution of W ? We have a quadratic form.

– If z is normal and σ2 known, W ~ χ )

– If z is normal and σ2 unknown, W ~ F

– If z is not normal and σ2 unknown, we rely on

asymptotic theory,  W → χ

Abraham Wald (1902–1950, Hungary) 
46
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• Distribution of W ? We have a quadratic form.

Recall Theorem 7.4. Let the 𝑛 × 1 vector y ~ N(μy, Σy). Then, 

(y – μy)′ Σy
-1 (y – μy) ~ χ  –note: 𝑛 = rank(Σy). 

 If  z ~ N(0, Var(z))  W is distributed as χ

In general, Var(z) is unknown, we need to use an estimator of Var(z). 
In our context, we need an estimator of σ2. Suppose we use s2. Then, 
we have the following result:

Let z ~ N(0, Var(z)). We use s2 instead of σ2 to estimate Var(z)

 W ~ F distribution.

Recall the F distribution arises as the ratio of two χ2 variables divided 
by their degrees of freedom.  

Testing a Hypothesis: Wald Statistic

47
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• There is a relationship between t and F when testing one restriction.

- For a single restriction, m = r’b – q.  The variance of m is: r Var[b] r.

- The distance measure is t = m / Est. SE(m) ~ tT-k. 

- This t-ratio is the sqrt{F-ratio}.

• t-ratios are used for individual restrictions, while F-ratios are used 
for joint tests of several restrictions.

Recall: An F-distributed variable

49

The General Linear Hypothesis:  H0: R – q = 0

• Suppose we are interested in testing J joint hypotheses.

Example:  We want to test that in the 3 FF factor model that the 
SMB and HML factors have the same coefficients, SMB = HML = 0.

We can write linear restrictions as H0: R – q = 0,

where R is a Jxk matrix and q a Jx1 vector.

In the above example (J=2), we write:

0 0 1 0
0 0 0 1

∗






=
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• Q: Is Rb – q close to 0? There are two different approaches to this 
questions. Both have in common the property of unbiasedness for b.

(1) We base the answer on the discrepancy vector:  

m = Rb – q. 

Then, we construct a Wald statistic:

W = m (Var[m|X])-1 m 

to test if m is different from 0.

(2) We base the answer on a model loss of fit when restrictions are 
imposed: RSS must increase and R2 must go down. Then, we 
construct an F test to check if the unrestricted RSS (𝑅𝑆𝑆 ) is different 
from the restricted RSS (𝑅𝑆𝑆 ).

The General Linear Hypothesis:  H0: R – q = 0

51

• Q: Is Rb – q close to 0? There are two different approaches to this 
questions. Both have in common the property of unbiasedness for b.

(1) We base the answer on the discrepancy vector:  

m = Rb – q. 

Then, we construct a Wald statistic:

W = m (Var[m|X])-1 m 

to test if m is different from 0.

(2) We base the answer on a model loss of fit when restrictions are 
imposed: RSS must increase and R2 must go down. Then, we 
construct an F test to check if the unrestricted RSS (𝑅𝑆𝑆 ) is different 
from the restricted RSS (𝑅𝑆𝑆 ).

The General Linear Hypothesis:  H0: R – q = 0

52
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• To test H0, we calculate the discrepancy vector:  

m = Rb – q. 

Then, we compute the Wald statistic:

W = m (Var[m|X])-1 m 

It can be shown that Var[m|X] = R[2(XX)-1]R. Then,

W = (Rb – q) {R[2(XX)-1]R}-1 (Rb – q)

Under H0 and assuming (A5) & estimating 2 with s2 = ee/(T-k):

W* = (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q)

F = W*/J ~ FJ,T-k.

If (A5) is not assumed, the results are only asymptotic: J*F → χ

Wald Test Statistic for H0: R – q = 0 

53

Example: In the 3 FF factor model for IBM excess returns (T=569)

IBMRet – rf = 1 +   (MktRet – rf) +  SMB +  HML + 
we want to test if  = 0.2 and  = 0.6.

1. H0:  = 0.2 and  = 0.6.

H1:  0.2 and/or  0.6.  J = 2

We define R (2x4) below and write m = R – q = 0:

0 0 1 0
0 0 0 1

∗






= 0.2
0.6

2. Test-statistic:  F = W*/J = (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q)

Wald Test Statistic for H0: R – q = 0 

54
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Example (continuation):  

2. Test-statistic:  F = W*/J = (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q)

Distribution under H0: F = W*/2 ~ F2,T-2 (asymptotic, 2*F → χ )

3. Get OLS results, compute F.

4. Decision Rule: α  0.05 level. We reject H0 if  p-value(F) < .05.

Or, reject H0, if  F > FJ=2,T-2,.05.

J <- 2 # number of restriction

R <- matrix(c(0,0,0,0,1,0,0,1), nrow=2) # matrix of restrictions

q <- c(.2,1) # hypothesized values

m <- R%*%b - q # m = Estimated R*Beta - q

Wald Test Statistic for H0: R – q = 0 
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Example (continuation):  
Var_m <- R %*% Var_b %*% t(R) # Variance of m

det(Var_m) # check for non-singularity

W <- t(m)%*%solve(Var_m)%*%m

F_t <- as.numeric(W/J) # F-test statistic

qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if errors normal

p_val <- 1 - pf(F_t, df1=J, df2=(T - k)) # p-value(F_t) under errors normal

p_val

> F_t

[1] 49.21676

> 

> qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if errors normal

[1] 3.011672 F_t > 3.011672  reject H0 at 5% level

> p_val <- 1 - pf(F_t, df1=J, df2=(T - k)) # p-value(F_t) under errors normal

> p_val

[1] 0 very low chance H0 is true.

Wald Test Statistic for H0: R – q = 0 
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Example: Now, we do a joint test of the EH. H0: α = 0 and β = 0.

Using the previous program but with:
J <- 2 # number of restriction

R <- matrix(c(1,0,0,1), nrow=2) # matrix of restrictions

q <- c(0,0) # hypothesized values

> F_t

[1] 4.1024

> 

> qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if errors normal

[1] 3.020661 F_t > 3.020661  reject H0 at 5% level

> 

> p_val <- 1 - pf(F_t, df1=J, df2=(T - k)) # p-value(F_t) under errors normal

> p_val

[1] 0.01731 very low chance H0 is true.

Wald Test Statistic for H0: Does EH hold?

57

(2)  We know that imposing restrictions leads to a loss of fit: R2 must 
go down.  Does it go down a lot?  –i.e., significantly? 

Recall (i)  e* = y – Xb* = e – X(b*– b)
(ii) b* = b – (XX)-1R[R(XX)-1R]-1(Rb – q)

 e*e* = ee + (b* – b)XX(b*– b)
e*e* = ee+(Rb–q)[R(XX)-1R]-1R(XX)-1 XX(XX)-1R[R(XX)-1R]-1(Rb–q)

e*e* – ee = (Rb – q)[R(XX)-1R]-1(Rb – q)

Recall
– W = (Rb – q){R[2(XX)-1]R}-1(Rb – q) ~ χ  (if 2 is known)
– ee/ 2 ~ χ . 

Then,
F = (e*e* – ee)/ J / [ee/(T – k)] ~ FJ,T-K.

The F Test: H0: R – q = 0

58
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• F = (e*e* – ee)/J / [ee/(T – k)] ~ FJ,T-K.

Let R2 = unrestricted model = 1 – RSS/TSS
R*2 = restricted model fit = 1 – RSS*/TSS

Then, dividing and multiplying F by TSS we get

F = ((1 – R*2) – (1 – R2))/J / [(1 – R2)/(T – k)] ~ FJ,T-K

or
F = { (R2 – R*2)/J } / [(1 - R2)/(T – k)] ~ FJ,T-K.

The F Test: H0: R – q = 0

59

10

• In the linear model 

y = X  +  = X1 1 + X2 2 +... + Xk k + 

• We want to test if  the slopes X2, ... , Xk are equal to zero. That is,

H0: 𝛽 . . . 𝛽 0
H1: at least one 𝛽  0  J = k – 1

• We have J = k – 1. Then,
F = { (R2 – R*2)/(k – 1) } / [(1 – R2)/(T – k)] ~ Fk-1,T-K.

• For the restricted model,  R*2 = 0.


0 1 … 0
… … … …
0 0 0 1

𝛽
𝛽
. . .
𝛽

0
…
0

• We can write H0: R – q = 0

The F Test: F-test of  goodness of  fit
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10

𝐹 𝑘 1,𝑛 𝑘
𝑅 𝑘 1⁄

1 𝑅 𝑇 𝑘⁄

𝐸𝑆𝑆
𝑇𝑆𝑆 𝑘 1

𝑅𝑆𝑆
𝑇𝑆𝑆 𝑇 𝑘

𝐸𝑆𝑆 𝑘 1⁄
𝑅𝑆𝑆 𝑇 𝑘⁄

• Recall ESS/TSS is the definition of  R2.  RSS/TSS is equal to (1 – R2).  

Then, F = { R2 /(k-1) }/[(1 - R2)/(T-k)] ~ Fk-1,T-K.

• This test statistic is called the F-test of  goodness of  fit.

The F Test: F-test of  goodness of  fit

61
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Example: We want to test if  all the FF factors (Market, SMB, HML) 
are significant, using monthly data 1973 – 2020 (T=569). 
y <- ibm_x

T <- length(x)

x0 <- matrix(1,T,1)

x <- cbind(x0,Mkt_RF, SMB, HML)

k <- ncol(x)

b <- solve(t(x)%*% x)%*% t(x)%*%y #OLS regression

e <- y - x%*%b

RSS <- as.numeric(t(e)%*%e)

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) #R-squared

> R2 

[1] 0.338985

F_goodfit <- (R2/(k-1))/((1-R2)/(T-k)) #F-test of  goodness of  fit.

> F_goodfit

[1] 96.58204  F_goodfit > F2,565,.05 = 2.387708  Reject H0.

The F Test: F-test of  goodness of  fit
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F (cost in df, unconstr df ) =
RSSR – RSSU kU – kR

RSSU T – kU

• We can use, F = (e*e* – ee)/J / [ee/(T – k)] ~ FJ,T-K.

• In the linear model 
y = X  +  = 1 + X2 2 + X3 3 + X4 4 + 

• We want to test if  the slopes X3, X4 are equal to zero. That is,

Define

The F Test: General Case – Example
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Example: We want to test if the additional FF factors (SMB, HML) 
are significant, using monthly data 1973 – 2020 (T=569). 

Unrestricted Model: 

(U)  IBMRet – rf = 0 + 1 (MktRet – rf) + 2 SMB + 3 HML +  

Hypothesis: H0: 2 = 3 = 0

H1: 2≠ 0 and/or 3 ≠ 0

Then, the Restricted Model:

(R) IBMRet – rf = 0 + 1 (MktRet – rf) + 

Test: F = 
/

/
~ FJ,T-K. with J = kU – kR = 4 - 2 = 2

The F Test: General Case – Example

64



RS - Econometrics 1 - Lecture 3 (Model Specification and Testing)

33Do not share/post online without written authorization

Example (continuation): The unrestricted model was already 
estimated. For the restricted model:

y <- ibm_x

x0 <- matrix(1,T,1)

x_r <- cbind(x0,Mkt_RF) # Restricted X vector

T <- nrow(x)

k2 <- ncol(x)

b2 <- solve(t(x_r)%*% x_r)%*% t(x_r)%*%y # Restricted OLS regression

e2 <- y – x_r%*%b2

RSS2 <- as.numeric(t(e2)%*%e2)

> RSS = 1.932442 # RSSU

> RSS2 = 1.964844 # RSSR

J <- k - k2 # J = degrees of freedom of numerator 

F_test <- ((RSS2 - RSS)/J)/(RSS/(T-k))

The F Test: General Case – Example
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Example (continuation): 
F_test <- ((RSS2 - RSS)/J)/(RSS/(T-k))

> F_test

[1] 4.736834

> qf(.95, df1=J, df2=(T-k)) # F2,565,.05 value (≈ 3)

[1] 3.011672  Reject H0.

p_val <- 1 - pf(F_test, df1=J, df2=(T-k)) # p-value of F_test

> p_val

[1] 0.009117494  p-value is small  Reject H0.

The F Test: General Case – Example
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Lagrange Multiplier Statistics

• Specific to the classical model.
Recall the Lagrange multipliers: 

 = [R(XX)-1R]-1 m

Suppose we just test H0:  = 0, using the Wald criterion. 
W = (Var[|X])-1

where 
Var[|X] = [R(XX)-1R]-1Var[m|X] [R(XX)-1R]-1
Var[m|X] = R[2(XX)-1]R

Var[|X] = [R(XX)-1R]-1 R[2(XX)-1]R[R(XX)-1R]-1
= 2 [R(XX)-1R]-1 

Then,
W = m’ [R(XX)-1R]-1 {2 [R(XX)-1R]-1}-1 [R(XX)-1R]-1 m

= m’ [2R(XX)-1R]-1} m
67

Application (Greene): Gasoline Demand

• Time series regression,

LogG =  1 + 2logY + 3logPG + 4logPNC +5logPUC

+ 6logPPT + 7logPN + 8logPD + 9logPS +  
Period  =  1960 - 1995.  

• A significant event occurs in October 1973: the first oil crash.  In 
the next lecture, we will be interested to know if the model 1960 to 
1973 is the same as from 1974 to 1995.  

Note: All coefficients in the model are elasticities. 
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Ordinary     least squares regression ............
LHS=LG       Mean                 =        5.39299

Standard deviation   =         .24878
Number of observs.   =             36

Model size   Parameters           =              9
Degrees of freedom   =             27

Residuals    Sum of squares       =         .00855  <*******
Standard error of e  =         .01780  <*******

Fit          R-squared            =         .99605  <*******
Adjusted R-squared   =         .99488  <*******

--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X
--------+-------------------------------------------------------------
Constant|   -6.95326***      1.29811       -5.356   .0000

LY|    1.35721***       .14562        9.320   .0000      9.11093
LPG|    -.50579***       .06200       -8.158   .0000       .67409
LPNC|    -.01654          .19957        -.083   .9346       .44320
LPUC|    -.12354*         .06568       -1.881   .0708       .66361
LPPT|     .11571          .07859        1.472   .1525       .77208
LPN|    1.10125***       .26840        4.103   .0003       .60539
LPD|     .92018***       .27018        3.406   .0021       .43343
LPS|   -1.09213***       .30812       -3.544   .0015       .68105

--------+------------------------------------------------------------------------

Application (Greene): Gasoline Demand

69

• Q: Is the price of public transportation really relevant?  H0 : 6 = 0.
(1)  Distance measure: t6 = (b6 – 0) / sb6 =  (.11571 – 0) / .07859  

=  1.472  <  2.052  cannot reject H0.

(2)  Confidence interval:  b6  t(.95,27)  Standard error  
=  .11571  2.052  (.07859)
=  .11571  .16127  =  (-.045557 ,.27698)
 C.I. contains 0  cannot reject H0.

(3) Regression fit if X6 drop?  Original R2 = .99605,
Without LPPT, R*2 = .99573

F(1,27) = [(.99605 – .99573)/1]/[(1 – .99605)/(36 – 9)] = 2.187 
= 1.4722 (with some rounding)  cannot reject H0.

Application (Greene): Gasoline Demand
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Gasoline Demand (Greene) - Hypothesis Test: 
Sum of Coefficients

• Do the three aggregate price elasticities sum to zero?
H0 :β7 + β8 +  β9 =  0
R = [0, 0, 0, 0, 0, 0, 1, 1, 1],    q = 0

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t] 
------------+-----------------------------------------------------
LPN|    1.10125***       .26840        4.103   .0003       .60539
LPD|     .92018***       .27018        3.406   .0021       .43343
LPS|   -1.09213***       .30812       -3.544   .0015       .68105

71

Gasoline Demand - Wald Test

Gasoline Demand (Greene) - Hypothesis Test: 
Sum of  Coefficients – Wald Test
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Gasoline Demand (Greene) - Imposing Restrictions

Linearly restricted regression
LHS=LG       Mean                 =   5.392989

Standard deviation   =   .2487794
Number of observs.   =         36

Model size   Parameters           =          8  <*** 9 – 1 restriction
Degrees of freedom   =         28

Residuals    Sum of squares       =   .0112599  <*** With the restriction
Residuals    Sum of squares       =   .0085531  <*** Without the 
restriction
Fit          R-squared            =   .9948020
Restrictns.  F[  1,    27] (prob) =   8.5(.01)
Not using OLS or no constant.R2 & F may be < 0
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]  Mean of X
--------+-------------------------------------------------------------
Constant|   -10.1507***       .78756      -12.889   .0000

LY|    1.71582***       .08839       19.412   .0000      9.11093
LPG|    -.45826***       .06741       -6.798   .0000       .67409
LPNC|     .46945***       .12439        3.774   .0008       .44320
LPUC|    -.01566          .06122        -.256   .8000       .66361
LPPT|     .24223***       .07391        3.277   .0029       .77208
LPN|    1.39620***       .28022        4.983   .0000       .60539
LPD|     .23885          .15395        1.551   .1324       .43343
LPS|   -1.63505***       .27700       -5.903   .0000       .68105

--------+-------------------------------------------------------------
F = [(.0112599 - .0085531)/1] / [.0085531/(36 – 9)]  =  8.544691
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Gasoline Demand (Greene) - Joint Hypotheses

• Joint hypothesis: Income elasticity = +1, Own price elasticity = -1.
The hypothesis implies that logG = β1 + logY – logPg + β4 logPNC + ...

Strategy: Regress logG – logY + logPg on the other variables and

• Compare the sums of  squares
With two restrictions imposed
Residuals  Sum of  squares =   .0286877
Fit          R-squared           =   .9979006
Unrestricted
Residuals Sum of  squares =   .0085531
Fit R-squared         =   .9960515

F = ((.0286877 - .0085531)/2) / (.0085531/(36-9))  =  31.779951
The critical F for 95% with 2,27 degrees of  freedom is 3.354  H0 is rejected.

• Q: Are the results consistent?  Does the R2 really go up when the restrictions are 
imposed? 74
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Gasoline Demand - Using the Wald Statistic
--> Matrix ; R = [0,1,0,0,0,0,0,0,0 / 

0,0,1,0,0,0,0,0,0]$
--> Matrix ; q = [1/-1]$
--> Matrix ; list ; m = R*b - q $
Matrix M        has  2 rows and  1 columns.

1
+-------------+

1|     .35721
2|     .49421
+-------------+

--> Matrix ; list ; vm = R*varb*R' $
Matrix VM       has  2 rows and  2 columns.

1             2
+-------------+-------------+

1|     .02120       .00291
2|     .00291       .00384
+-------------+-------------+

--> Matrix ; list ; w = 1/2 * m'<vm>m $
Matrix W        has  1 rows and  1 columns.

1
+-------------+

1|   31.77981
+-------------+
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Gasoline Demand (Greene) – Testing Details

• Q: Which restriction is the problem? We can look at the Jx1 
estimated LM, λ, for clues:

• Recall that under H0, λ should be 0.

1[ ( ) ] ( )  R X X R R b q -

Matrix Result   has  2 rows and  1 columns.
1

+-------------+
1|    -.88491      Income elasticity
2|  129.24760      Price elasticity
+-------------+

Results suggest that the constraint on the price elasticity is having a 
greater effect on the sum of  squares.
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Gasoline Demand (Greene) - Basing the Test on 
R2

• After building the restrictions into the model and computing 
restricted and unrestricted regressions: Based on R2s, 

F = [(.9960515 – .997096)/2]/[(1 –.9960515)/(36-9)]
= -3.571166 (!)

• Q: What's wrong?
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