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Lecture 3
Specification

OLS Estimation - Assumptions

• CLM Assumptions

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X)= 𝑘 -, where T ≥ 𝑘.

Q: What happens when (A1) is not correctly specified? 

• In this lecture, we look at (A1), always in the context of linearity. Are 
we omitting a relevant regressor? Are we including an irrelevant 
variable? What happens when we impose restrictions in the DGP? 
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Specification Errors: Omitted Variables

• Omitting relevant variables:  Suppose the correct model is 

𝒚 = X11 + X22 +  –i.e., with two sets of variables.  

But, we compute OLS omitting X2. That is,

𝒚 = X11 +  <= the “short regression.” 

Some easily proved results:

(1) E[b1|X] = E [(X1X1)-1X1 𝒚] = 1 + (X1X1)-1X1X22  1.  So, 
unless X1X2 =0, b1 is biased.  The bias can be huge.  It can reverse the 
sign of a price coefficient in a “demand equation.”

(2) Var[b1|X] ≤ Var[b1.2|X].  (The latter is the northwest submatrix of 
the full covariance matrix.)  The proof uses M, the residual maker. We 
get a smaller variance when we omit X2.  

• We get a smaller variance when we omit X2.  

Interpretation:  Omitting X2 amounts to using extra information –i.e., 
2 = 0. Even if the information is wrong, it reduces the variance.  

(3) MSE
b1 may be more “precise.”  

Precision  = Mean squared error  
= variance + squared bias.

Smaller variance but positive bias.  If bias is small, may still favor the 
short regression.

Note: Suppose X1X2 = 0.  Then the bias goes away.  Interpretation, 
the information is not “right,” it is irrelevant.  b1 is the same as b1.2.

Specification Errors: Omitted Variables
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Omitted Variables Example: Gasoline Demand

• We have a linear model for the demand for gasoline: 
G = PG 1 + Y 2 + , 

Q: What happens when you wrongly exclude Income (Y)? 

E[b1|X]  = 1 +                                2

In time series data, 1 <  0,  2 >  0  (usually)
Cov[Price, Income]  >  0 in time series data.

 The short regression will overestimate the price coefficient.

In a simple regression of G (demand) on a constant and PG, the Price 
Coefficient (1) should be negative.
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Estimation of a ‘Demand’ Equation (Greene):
Shouldn’t the Price Coefficient be Negative?
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Ordinary     least squares regression ............
LHS=G        Mean                 =      226.09444

Standard deviation   =       50.59182
Number of observs.   =             36

Model size   Parameters           =              3
Degrees of freedom   =             33

Residuals    Sum of squares       =     1472.79834
Standard error of e  =        6.68059

Fit          R-squared            =         .98356
Adjusted R-squared   =         .98256

Model test   F[  2,    33] (prob) =   987.1(.0000)
--------+------------------------------------------------------
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t] 
--------+------------------------------------------------------
Constant|   -79.7535***      8.67255       -9.196   .0000

Y|     .03692***       .00132       28.022   .0000 
PG|   -15.1224***      1.88034       -8.042   .0000

--------+------------------------------------------------------

Estimation of  a ‘Demand’ Equation (Greene):
Multiple Regression - Theory Works.

• Note: Income is helping us to identify a demand equation –i.e., with a 
negative slope for the price variable. 

• Irrelevant variables . Suppose the correct model is 

𝒚 = X11 +  –i.e., with one set of variables. 

But, we estimate

𝒚 = X11 + X22 +  <= the “long regression.”

Some easily proved results: Including irrelevant variables just reverse 
the results:  It increases variance -the cost of not using information-; 
but does not create biases.

 Since the variables in X2 are truly irrelevant, then 2 = 0, 

so E[b1.2|X] = 1. 

Specification Errors: Irrelevant Variables
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Note: These are the results in general. Note that if  X2 and X3 are 
uncorrelated, there will be no loss of  efficiency after all.
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Specification Errors: Irrelevant Variables

• A simple example  

Suppose the correct model is: 𝒚 = 1 + 2 X2 + 
But, we estimate: 𝒚 = 1 + 2 X2 + 3 X3 + 

• Unbiased: given that 3 =0  E[b2|X]= 2

• Efficiency:

Other Models

• Looking ahead to nonlinear models:  neither of the preceding results 
extend beyond the linear regression model.

“Omitting relevant variables from a model is always costly. (No 
exceptions.) The benign result above almost never carries over to 
more involved nonlinear models.” (Greene)
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Specification and Functional Form: Non-linearity

• In the context of  OLS estimation, we can introduce some non-
linearities: quadratic, cubic and interaction effects can be easily 
estimated by OLS. For example:

𝒚 = 1 + 2 X2 + 3 X2
2 + 4 X2 X3 + 

• Partial effects , 𝜕𝒚/𝜕X2, (and standard errors) can be different. In 
the above model

𝜕𝒚/𝜕X2 = 2 + 2 3 X2 + 4 X3 ് 2

Note: Recall that in a simple linear model:

𝒚 = 1 + 2 X2 + 3 X3 + 
the partial effect is equal to the i coefficient:

𝜕𝒚/𝜕X2 = 2. 

Specification and Functional Form: Non-linearity
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• The estimator of  partial effects and their variances are different 
from bi and Var[bi|X] in the presence of  non-linearities

Example: Quadratic Effect

Note: Now, the partial effect and the variance are a function of  the 
data! Usually, an average is used in the estimation.
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Application (Greene): Log Income Equation
----------------------------------------------------------------------
Ordinary     least squares regression ............
LHS=LOGY     Mean                 =       -1.15746        Estimated Cov[b1,b2]

Standard deviation   =         .49149
Number of observs.   =          27322

Model size   Parameters           =              7
Degrees of freedom   =          27315

Residuals    Sum of squares       =     5462.03686
Standard error of e  =         .44717

Fit          R-squared            =         .17237
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

AGE|     .06225***       .00213       29.189   .0000      43.5272
AGESQ|    -.00074***     .242482D-04   -30.576   .0000      2022.99

Constant|   -3.19130***       .04567      -69.884   .0000
MARRIED|     .32153***       .00703       45.767   .0000       .75869
HHKIDS|    -.11134***       .00655      -17.002   .0000       .40272
FEMALE|    -.00491          .00552        -.889   .3739       .47881
EDUC|     .05542***       .00120       46.050   .0000      11.3202

--------+-------------------------------------------------------------
At Average Age = x = 43.5272. 

Estimated Partial effect = .066225 – 2(.00074) x 43.5272 = .00018.
Estimated Variance 4.54799e-6 + 4(43.5272)2*(5.87973e-10) + 4(43.5272)*
(-5.1285e-8) = 7.4755086e-08.                                    
Estimated standard error = .00027341.
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Example: Interactive Effect

Specification and Functional Form: Non-linearity
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Application (Greene): Interaction Effect

----------------------------------------------------------------------
Ordinary     least squares regression ............
LHS=LOGY     Mean                 =       -1.15746

Standard deviation   =         .49149
Number of observs.   =          27322

Model size   Parameters           =              4
Degrees of freedom   =          27318

Residuals    Sum of squares       =     6540.45988
Standard error of e  =         .48931

Fit          R-squared            =         .00896
Adjusted R-squared   =         .00885

Model test   F[  3, 27318] (prob) =    82.4(.0000)
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------
Constant|   -1.22592***       .01605      -76.376   .0000

AGE|     .00227***       .00036        6.240   .0000      43.5272
FEMALE|     .21239***       .02363        8.987   .0000       .47881
AGE_FEM|    -.00620***       .00052      -11.819   .0000      21.2960
--------+-------------------------------------------------------------
Do women earn more than men (in this sample?)  The +.21239 coefficient on 
FEMALE would suggest so.  
But, the female “difference” –i.e., partial effect- is: +.21239 - .00620*Age. 

At average Age, the effect is: .21239 - .00620 * (43.5272) = -.05748.

OLS Subject to Restrictions

• Restrictions: Theory imposes certain restrictions on parameters. 

Examples: 
(1) Dropping  variables from the equation. That is, certain 

coefficients in b forced to equal 0.  (Is variable x3=size significant?”)

(2)  Adding up conditions:  Sums of certain coefficients must equal 
fixed values.  Adding up conditions in demand systems.  Constant 
returns to scale in production functions (α + β = 1 in a Cobb-Douglas 
production function).

(3) Equality restrictions:  Certain coefficients must equal other 
coefficients. Using real vs. nominal variables in equations.

• Usual formulation with J linear restrictions (R is Jx𝑘 and q is Jx1): 

Minb {S(𝑥 , θ) = ∑ 𝑒ଶ
்
ୀଵ = 𝒆′𝒆 = (𝒚 – Xb)′ (𝒚 – Xb)} s.t. Rb = q
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Restricted Least Squares
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• In practice, restrictions can usually be imposed by solving them out.

(1) Dropping variables –i.e., force a coefficient to equal zero. 

Problem:

(2) Adding up.  Do least squares subject to b1+b2+b3=1. Then, b3 = 1-
b1-b2.  Make the substitution:  (𝒚 – x3) = b1(x1 – x3) + b2(x2 – x3) + 𝒆

Problem:    Minb

(3) Equality.  If  b3 = b2, then 𝒚 = b1x1 + b2x2 + b2x3 + 𝒆
= b1x1 + b2(x2+x3) + 𝒆

Problem:    Minb

• Theoretical results provide insights and the foundation of  several 
tests.

• Programming problem with J restrictions (R is Jxk and q is kx1):  
Minimize wrt b S = (𝒚 – X)′ (𝒚 – X) s.t. R  = q

• Quadratic programming problem
 Minimize a quadratic criterion s.t. a set of  linear restrictions.
- Concave programming problem, all binding constraints. No 

need for Kuhn-Tucker
- Solve using a Lagrangean formulation.

• The Lagrangean approach (the 2 is for convenience with is  Jx1 ).
Min b, L* = (𝒚 – X)′ (𝒚 – X) + 2  (R  – q) 

= (𝒚′𝒚 – ′X′𝒚 – 𝒚′X + ′X′X) + 2 (R  – q) 

Restricted Least Squares
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• The Lagrangean approach
Min b, L* = = (𝒚′𝒚 – 2 ′X′𝒚 + ′X′X) + 2  (R  – q) 

f.o.c:  
L*/b = -2X(𝒚 -Xb*) + 2R = 0  -X(𝒚 – Xb*) + R = 0
L*/ =  2 (Rb* – q) = 0.  (Rb* – q) = 0

Then, from the 1st equation (and assuming full rank for X):
–X𝒚 + XXb* + R = 0  b* = (XX)-1X𝒚 – (XX)-1R

= b – (XX)-1R

Premultiply both sides by R and then subtract q
Rb* – q = Rb – R(XX)-1R – q

0 = –R(XX)-1R + (Rb – q)

Solving for    = [R(XX)-1R]-1 (Rb – q)
Substituting in b*  b* = b – (XX)-1R[R(XX)-1R]-1(R b – q)

Restricted Least Squares

• Q: How do linear restrictions affect the properties of the least 
squares estimator?

Model ( DGP): 𝒚 =  X +  
Theory (information): R – q =  0

Restricted LS estimator:   b* = b – (XX)-1R[R(XX)-1R]-1(Rb – q)
1. Unbiased?
E[b*|X] =  – (XX)-1R[R(XX)-1R]-1 E[(Rb – q)|X] = 

2. Efficiency?
Var[b*|X] = 2(XX)-1 – 2 (XX)-1R[R(XX)-1R]-1 R(XX)-1

Var[b*|X] = Var[b|X] – a nonnegative definite matrix < Var[b|X]

3. b* may be more “precise.”  
Precision  = Mean squared error  = variance + squared bias.

Linear Restrictions
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1. b*  = b – Cm, m = the “discrepancy vector” Rb – q.  

Note: If m = 0  b*  =  b. (Q: What does m = 0 mean?)

2.  = [R(XX)-1R]-1(Rb – q) = [R(XX)-1R]-1m  

When does  = 0? What does this mean?

3. Combining results: b*  = b – (XX)-1R

4. Recall:  ee = (y – Xb)(y – Xb) ≤ e*e* = (𝒚 – Xb*)(𝒚 – Xb*)

 Restrictions cannot increase R2  R2 ≥ R2* 

Linear Restrictions

• Two cases

- Case 1:  Theory is correct: R – q = 0 (restrictions hold).

b* is unbiased  &  Var[b*|X] ≤ Var[b|X]

- Case 2:  Theory is incorrect: R - q  0 (restrictions do not hold).

b* is biased  &  Var[b*|X] ≤ Var[b|X].

• Interpretation

- The theory gives us information. 

Bad information produces bias (away from “the truth.”)

Any information, good or bad, makes us more certain of our 
answer. In this context, any information reduces variance.

Linear Restrictions – Interpretation
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- What about ignoring information (theory)?

Not using the correct information does not produce bias.

Not using information foregoes the variance reduction.

Linear Restrictions - Interpretation

“The three golden rules of  econometrics are 
test, test and test.” David Hendry (1944, 
England)

Testing in Economics

“The only relevant test of  the validity of  a 
hypothesis is comparison of  prediction with 
experience.” Milton Friedman (1912-2006, 
USA)
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