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Lecture 10
Robust and Quantile 

Regression

(for private use, not to be posted/shared online).

Outliers

• Many definitions: Atypical observations, extreme values, conditional 
unusual values, observations outside the expected relation, etc. 

• In general, we call an outlier an observation that is numerically 
different from the data. But, is this observation a “mistake,” say a 
result of measurement error, or part of the (heavy-tailed) distribution?

• In the case of normally distributed data, roughly 1 in 370 data points 
will deviate from the mean by 3*SD. Suppose T=1,000 and we see 9
data points deviating from the mean by more than 3*SD indicates 
outliers... Which of the 9 observations can be classified as an outlier?

Problem with outliers: They can affect estimates. For example, with 
small data sets, one big outlier can seriously affect OLS estimates.
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Outliers

• Many definitions: Atypical observations, extreme values, conditional 
unusual values, observations outside the expected relation, etc. 

• In general, we call an outlier an observation that is numerically 
different from the data. But, is this observation a “mistake,” say a 
result of measurement error, or part of the (heavy-tailed) distribution?

• In the case of normally distributed data, roughly 1 in 370 data points 
will deviate from the mean by 3*SD. Suppose T=1,000 and we see 9
data points deviating from the mean by more than 3*SD indicates 
outliers... Which of the 9 observations can be classified as an outlier?

Problem with outliers: They can affect estimates. For example, with 
small data sets, one big outlier can seriously affect OLS estimates.

Outliers

• Sometimes, a distinction is made between 𝒚-outliers & 𝒙-outliers. 
In a regression, we usually look at outliers in the residuals (𝑦-outliers).

• There are many proposed measures to detect outliers. In general, 
these measures are evaluated informally, through ad-hoc rules (“rules 
of thumb”). Under some assumptions, usually assuming a normal 
distribution, there are some formal tests for outliers.

• In general, the outlier literature is more interested in the 
identification of outliers, not a lot of attention is devoted to miss-
identification –i.e., Type I error (false positive).

Remark: It is common to evaluate results and, if they go with the 
intuition, ignore potential outliers.
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• Informal identification method:

- Eyeball: Look at the observations away from a scatter plot.

Example: Plot residuals for the 3 FF factor model for IBM returns
x_resid <- residuals(fit_ibm_ff3)

plot(x_resid, typ ="l", col="blue", main ="IBM Residuals from 3 FF Factor Model", 
xlab="Date", ylab="IBM residuals")

Outliers: Identification

𝑥ො

Outliers?

• Formal identifications methods:

- Standardized residuals, 𝑒௜/SD(𝑒௜):  Check for standardized errors 
that are bigger than 2 (or 3).

Example: Plot standardized residuals for IBM residuals
x_stand_resid <- x_resid/sd(x_resid) # standardized residuals

plot(x_stand_resid, typ ="l", col="blue", main ="IBM Standardized Residuals from 3 FF 
Factor Model", xlab="Date", ylab="IBM residuals")

Outliers: Identification

𝑥ො

Outliers?
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• Formal identifications methods:

- Leverage statistics: It measures the difference of an independent 
data point from its mean. High leverage observations can be potential 
outliers. Leverage is measured by the diagonal values of the P matrix:

ℎ௜௜ ൌ   1/𝑇 + (𝑥௜ – �̄�)ଶ/ሺ𝑇 െ 1ሻ 𝑠௫ଶ]

Intuition: Recall 𝑦ො ൌ 𝑃𝑦  𝑦ො௜ ൌ ℎ௜ଵ𝑦ଵ ൅ ℎ௜ଶ𝑦ଶ ൅ ⋯൅ ℎ௜்𝑦்

• ℎ௝௝ quantifies the influence that the observed response 𝑦௜ has on its 
predicted value 𝑦ො௜. Large ℎ௜௜ , 𝑦௜ plays a large role in 𝑦ො௜.

• It turns out ℎ௜௜ ∈ ሾ0, 1ሿ & the sum of the ℎ௜௜ is equal to 𝑘.

• A standard cut-off point for ℎ௜௜ is ሺ2𝑘 ൅ 2ሻ/𝑇. But, other cut-off 
points are used, for example, 3𝑘/𝑇.

Outliers: Identification – Leverage & Influence

𝑥ො

• For multivariate sets, Mahalanobis distance (MD) is recommended.

MDሺ𝒙௜ሻ ൌ ሺ𝒙௜  െ �̄�ሻ′ 𝑺௫ଶ ሺ𝒙௜ െ  �̄�ሻ′
Suggested cut-off values for MDሺ𝒙௜ሻ/𝑘 are 3 or 4 for large 𝑇.

Note: An observation can have high leverage, but no influence.

- Influence statistics: Dif beta. It measures how much an 
observation influences a parameter estimate, say 𝑏௝ . Dif beta is 
calculated by removing an observation, say 𝑖, recalculating 𝑏௝ , say 
𝑏௝ െ𝑖 , taking the difference in betas and standardizing it. Then,  

𝐷𝑖𝑓 𝑏𝑒𝑡𝑎௝ሺି௜ሻ = 
∑ ሺ௕ೕ ି ௕ೕ ି௜ ሻ
ೖ
ೕసభ

ௌாሾ௕ೕሿ

• Usual threshold for declaring an observation “influential” is 2/ 𝑇. 

Outliers: Identification – Leverage & Influence

𝑥ො
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• A related popular influence statistic is Distance D (as in Cook’s D). 
It measures the effect of deleting an observation, say 𝑖, on the fitted 
values, say 𝑦ො௝ . Using the previous notation we have:

𝐷௜ ൌ
∑ ሺ𝑦ො௝ െ 𝑦ො௝ െ𝑖 ሻ
்
௜ୀଵ

𝑘 ∗ 𝑀𝑆𝐸

where 𝑘 is the number of parameters in the model and MSE is mean 
square error of the regression model (MSE = RSS/𝑇).

• Popular rule of thumb for Cook’s D: If 𝐷௜ > 4𝑇 observation 𝑖 is 
considered a (potential) highly influential point. 

• The textbook of Kutner et al. (2005), recommends comparing 𝐷௜ to 
the 𝐹௞,்ି௞ distribution  greater than the 50% percentile signals an 
outlier.

𝑥ො

Outliers: Identification – Leverage & Influence

Outliers: Leverage & Influence

• Deleting the observation in the upper right corner has a clear effect 
on the regression line. This observation has leverage and influence.
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• Summary of popular rules of thumb used to identify outliers:

Measure Value

abs(stand resid) > 2 (> 3 is another popular value)

leverage > (2 𝑘 +2)/𝑇 (> 3𝑘/𝑇 is also used)

abs(Dif Beta) > 2/ 𝑇 (If 𝑇 is small, 1 can be used) 

Cook's D > 4/𝑇

Note: The analysis can also be carried out for groups of observations. 
In this case, we look for blocks of highly influential observations.

Outliers: Summary of  Rules of  Thumb

Example: We estimate the Fama-French 3-factor model for IBM and 
then we look for outliers in the residuals:

SFX_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv", 
head=TRUE, sep=",")

## Extract variables from imported data
x_ibm <- SFX_da$IBM # extract IBM price data
x_Mkt_RF <- SFX_da$Mkt_RF # extract Market excess returns (in %)
x_RF <- SFX_da$RF # extract Risk-free rate (in %)
x_SMB <- SFX_da$SMB
x_HML <- SFX_da$HML

# Define log returns & adjust size of variables accordingly
T <- length(x_ibm) # sample size
lr_ibm <- log(x_ibm[-1]/x_ibm[-T]) # create IBM log returns (in decimal returns)
Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust sample size to ( T-1) by removing 1st obs
RF <- x_RF[-1]/100 # Adjust sample size and use decimal returns.
SMB <- x_SMB[-1]/100
HML <- x_HML[-1]/100
ibm_x <- lr_ibm - RF

Outliers: Example
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Example (continuation): 
fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML)
> summary(fit_ibm_ff3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.004947 0.002408 -2.054 0.04040 *  
Mkt_RF 0.885706 0.054259 16.324 < 2e-16 ***
SMB         -0.228137 0.081180 -2.810 0.00511 ** 
HML        -0.058153 0.077791 -0.748 0.45502    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05857 on 607 degrees of freedom
Multiple R-squared:  0.3227, Adjusted R-squared:  0.3193 
F-statistic: 96.38 on 3 and 607 DF,  p-value: < 2.2e-16564

Note: Market and SMB are significant factors.

Outliers: Example

Example: Cook’s  D for IBM returns using the 3 FF Factor Model

mod <- lm(ibm_x ~ Mkt_RF + SML + HML)
cooksd <- cooks.distance(fit_ibm_ff3)
# plot cook's distance
plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance") 
# add cutoff line
abline(h = 4*mean(cooksd, na.rm=T), col="red")  # add cutoff line
# add labels
text(x=1:length(cooksd)+1, y=cooksd, labels=ifelse(cooksd>4*mean(cooksd, 
na.rm=T),names(cooksd),""), col="red")  # add labels

# influential row numbers
influential <- as.numeric(names(cooksd)[(cooksd > 4*mean(cooksd, na.rm=T))])  
# print first 10 influential observations.

head(dat_xy[influential, ],n=10L) 

Note: There are easier ways to plot Cook’s D and identify the 
suspect outliers. The package olsrr can be used for this purpose too.

Outliers: Example
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Example (continuation): Cook’s  D for IBM (3 FF Factor Model)

Outliers: Example

Example (continuation): Cook’s  D for IBM (3 Factor-Model)

> # print first 10 influential observations.
>head(dat_xy[influential, ],n=10L) 

y V1  Mkt_RF SMB     HML
8   -0.16095068  1  0.0475  0.0294  0.0219
94   0.01266444  1  0.0959 -0.0345 -0.0835
227 -0.04237227  1 0.1084 -0.0224 -0.0403
237 -0.19083575  1  0.0102  0.0205 -0.0210
239 -0.30648638  1  0.0153  0.0164  0.0252
282  0.07787100  1 -0.0597 -0.0383  0.0445
286  0.20734626 1  0.0625 -0.0389  0.0117
291  0.15218986 1  0.0404 -0.0565 -0.0006
306  0.13928315  1 -0.0246 -0.0512 -0.0096
315  0.16196934 1  0.0433  0.0400  0.0253

Outliers: Example



RS – EC2 - Lecture 10

9

Example: Different tools to check for outliers for IBM residuals
We will use the package olsrr.

library(olsrr) # need to install package olsrr
x_resid <- residuals(fit_ibm_ff3)
x_stand_resid <- x_resid/sd(x_resid) # standardized residuals
sum(x_stand_resid > 2) # Rule of thumb count (5% count is OK)
x_lev <- ols_leverage(fit_ibm_ff3) # leverage residuals
sum(x_lev >(2*k+2)/T) # Rule of thumb count (5% count is OK
ols_plot_resid_stand(fit_ibm_ff3) # Plot standardized residuals 
ols_plot_cooksd_bar(fit_ibm_ff3) # Plot Cook’s D measure
ols_plot_dffits(fit_ibm_ff3) # Plot Difference in fits
ols_plot_dfbetas(fit_ibm_ff3) # Plot Difference in betas

> sum(x_lev >(2*k+2)/T)
[1] 32 # 5%? = 32/569 = 0.0562
> sum(x_stand_resid > 2)
[1] 13 # 5%? = 13/569 = 0.0228

Outliers: Example

Example (continuation):
> ols_plot_cooksd_bar(fit_ibm_ff3) # Plot Cook’s D measure

Outliers: Example
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Example (continuation):
> ols_plot_dfbetas(fit_ibm_ff3)

Outliers: Example

• The histogram, Boxplot, and quantiles helps us see some potential 
outliers, but we cannot see which observations are potential outliers. 
For these, we can use Cook’s D, 𝐷𝑖𝑓 𝑏𝑒𝑡𝑎’s, standardized residuals 
and leverage statistics, which are estimated for each 𝑖.

Observation
Type           Proportion      Cutoff

Outlier            0.0356      2.00    (abs(standardized residuals) > 2)
Outlier 0.1474 2/ 𝑇 (diffit > 2/sqrt(1038)=0.0621)
Outlier 0.0501 4/ 𝑇 (cookd > 4/1038=0.00385)
Leverage     0.0723 (2 𝑘+2)/𝑇 (h = leverage > .00771)

Outliers: Application − Rules of  Thumb
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Example (continuation): The FF3 model does not seem to suffer 
from outliers. Now, we corrupt the data, we add 2 outliers to IBM. 
y <- ibm_x
y[10] <- -0.85 # Corrupt observation (added outlier #1)
y[90] <- 0.95 # Corrupt observation (added outlier #2)
fit_ibm_ff3_out <- lm(y ~ Mkt_RF + SMB + HML)
>summary(fit_ibm_ff3_out)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005215   0.003084 -1.691   0.0914 .
Mkt_RF 0.965445 0.069487  13.894 <2e-16 ***
SMB         -0.097430   0.103964  -0.937 0.3491 
HML        -0.176166   0.099623 -1.768   0.0775 . 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note: SMB and constant are not longer significant factors at the 5% 
level. HML is now significant at the 10%.

Outliers: Example

Example (continuation): The corrupted outliers are easily picked up 
by the standard influence measures
> ols_plot_dfbetas(fit_ibm_ff3_out)

Outliers: Example
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Example (continuation):
> ols_plot_cooksd_bar(fit_ibm_ff3_out)    # Plot Cook’s D measure

Outliers: Example

• Typical solutions: 

- Use a non-linear formulation or apply a transformation (log, square 
root, etc.) to the data.

- Remove suspected observations. (Sometimes, there are theoretical 
reasons to remove suspect observations. Typical procedure in finance: 
remove public utilities or financial firms from the analysis.)

- Winsorization of the data (traditionally, the most common method).

- Use dummy variables. 

- Use LAD (quantile) regressions, which are less sensitive to outliers.

- Weight observations by size of residuals or variance (robust 
estimation).

• General rule: Present results with or without outliers.

Outliers: What to do?
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• Following Huber (1981), we will interpret robustness as 
insensitivity to small deviations from the assumptions the model 
imposes on the data.

• In particular, we are interested in distributional robustness, and the 
impact of skewed distributions and/or outliers on regression estimates.

– In this context, robust refers to the shape of a distribution –i.e.,  
when the actual distribution differs from the theoretically assumed 
distribution.

– Although conceptually distinct, distributional robustness and outlier 
resistance are, for practical purposes, synonymous

– Robust can also be used to describe standard errors that are 
adjusted for non-constant error variance. But, we have already 
covered this topic. 25

Robust Estimation

• Intuition: Under normality, OLS has optimal properties. But, under 
non-normality, nonlinear estimators may be better than LS estimators.

Example: i.i.d. case

Let  {𝑦௧ሽ ~ 𝐹ሺ௬ିఓ
ఙ ሻ where 𝐹 0 ൌ 0.5.

where F is a symmetric distribution with scale parameter σ.

• Let the order statistics be 𝑦ଵ ൑ ⋯ ൑ 𝑦்
• Sample median: 𝜇෤ ൌ 𝑦ሺ்ାଶሻ/ଶ
• Laplace showed that 

26















2)0(4

1
,0)~(
f

NT

Robust Estimation – Mean vs Median
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• Using this result, one can show: 

𝑇varሺmean ൌ 𝜇ሻ 𝑇varሺmedian ൌ 𝜇෤ሻ
Normal 1                1.57

Laplace 2                  1

Average 1.5               1.28

• Intuitively, this occurs because Laplace is fat-tailed, and the median 

is much less sensitive to the information in the tails than the mean. 

• The mean gives 1/𝑇 weight to all observations (close to the mean or 
in the tails). A large observation can seriously affect (influence) the mean, 
but not the median.

27

Robust Estimation – Mean vs Median

• Remark: The sample mean is the MLE under the Normal 
distribution; while the sample median is the MLE under the Laplace 
distribution.

• If we do not know which distribution is more likely, following 
Huber, we say the median is robust (“better”). But,  if the data is 
normal, the median is not efficient (57% less efficient than mean).

• There are many types of robust estimators. Although they work in 
different ways, they all give less weight to observations that would 
otherwise influence the estimator.

• Ideally, we would like to design a weighting scheme that delivers a 
robust estimator with good properties (efficiency) under normality. 28

Robust Estimation – Mean vs Median
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Examples: Robust estimators for central location parameter.

- The sample median, 𝜇෤.
- Trimmed-Mean, the mean of the sample after fraction a of the 
largest and smallest observations have been removed.

- The “Winsorized Mean,” �̂�ௐ:

�̂�ௐ ൌ ଵ

்
ሼ 𝑔 ൅ 1 ∗  𝑦௚ାଵ+ 𝑦௚ାଶ +…+ 𝑦்ି௚ିଵ ൅ ሺ𝑔 ൅ 1ሻ ∗ 𝑦்ି௚ሽ

which is similar to the trimmed-mean, but instead of throwing out the

extremes, we “accumulate” them at the truncation point.

• Q: All robust, which one is better? Trade-off: robustness-efficiency.

• The concept of robust estimation can be easily extended to the 
problem of estimating parameters in the regression framework. 29

Robust Estimation – Mean vs Median

• There are many types of robust regression models. Although they 
work in different ways, they all give less weight to observations that 
would otherwise influence the regression line.

• Early methods:

– Least Absolute Deviation/Values (LAD/LAV) regression or 
least absolute deviation regression –i.e.,  minimizes |𝑒| instead of 𝑒ଶ.

• Modern methods:

- M-Estimation
- Huber estimates, Bi-square estimators

- Bounded Influence Regression
- Least Median of Squares, Least-Trimmed Squares 30

Robust Regression
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Review: M-Estimation

31

• An extremum estimator is one obtained as the optimizer of a 
criterion function, 𝑞ሺ𝒛, b).

Examples:

OLS: b = arg max {െ∑ 𝑒௜
்
௜ୀଵ

ଶ
= െ 𝒆’𝒆 /T}

MLE: bMLE = arg max { ln 𝐿 = ∑ 𝑙𝑛𝑓ሺ𝒙௜ ,  𝑦௜ , bሻ்
௜ୀଵ  ሽ

GMM: bGMM = arg max {– 𝑔ሺ𝒙௜ ,  𝑦௜ , bሻ′ W 𝑔ሺ𝒙௜ ,  𝑦௜ , bሻሽ

• There are two classes of extremum estimators: 

- M-estimators: The objective function is a sample average or a sum.

- Minimum distance estimators: The objective function is a measure 
of a distance.

• "M" stands for a maximum or minimum estimators –Huber (1967).

Review: M-Estimation

32

• The objective function is a sample average or a sum. 

• We want to minimize a population (first) moment: 

minb E[𝑞ሺ𝒛, β)]

– Using the LLN, we move from the population first moment to the 
sample average:

∑ 𝑞ሺ𝒛௜ , bሻ/𝑇்
௜ୀଵ   

   ௣    
E[𝑞ሺ𝒛, β)] 

– We want to obtain:   b = argmin ∑ 𝑞ሺ𝒛௜ , bሻ்
௜ୀଵ (or divided by 𝑇)

– In general, we solve the f.o.c. (or zero-score condition):

Zero-Score: ∑ ௤ሺ𝒛೔, bሻ
b′

்
௜ୀଵ = 0

– To check the s.o.c., we define the (pd) Hessian: 

H = ∑ మ௤ሺ𝒛೔, bሻ
b b′

்
௜ୀଵ
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Review: M-Estimation

33

• If 𝐬ሺ𝒛, bሻ = 
௤ሺ𝒛೔, bሻ
b′ exists (almost everywhere), we solve 

∑ 𝑠ሺ𝒛௜ , bሻ/𝑇்
௜ୀଵ = 0 (*)

• If, in addition, EX[𝑠ሺ𝒛௜ , bሻ] = /b′ EX[𝑞ሺ𝒛, β)] –i.e., differentiation 
and integration are exchangeable–, then 

EX[
௤ሺ𝒛೔,βሻ
β′ ] = 0.

• Under these assumptions the M-estimator is said to be of ψ-type (ψ= 
𝐬ሺ𝒛, bሻ = score). Often, bM is taken to be the solution of (*) without 
checking whether it is indeed a minimum).

• Otherwise, the M-estimator is of  ρ-type. (ρ = 𝑞ሺ𝒛௜ , bሻ).

Review: M-Estimation

34

• Minimum Lp-estimators 

- 𝑞ሺ𝒛, β) = (1/ 𝑝)|𝒙 – |௣ for 1 ≤ 𝑝 ≤ 2

- 𝒔ሺ𝒛, β) = |𝒙 – |௣ିଵ 𝒙 –  < 0 

=െ|𝒙 – |௣ିଵ 𝒙 –  > 0 
• Special cases:
– 𝑝 ൌ 2: We get the sample mean (LS estimator for ).

𝒔ሺ𝒛, ) = ∑ ሺ𝑥௜ െ bM
்
௜ୀଵ ሻ = 0  bM = ∑ 𝑥௜/𝑇

்
௜ୀଵ

– 𝑝 ൌ 1: We get the sample median as the estimator with the least 
absolute deviation (LAD) for the median . (There is no unique 
solution if 𝑇 is even.)

Note: Unlike LS, LAD does not have an analytical solving method. 
Numerical optimization is not feasible. Linear programming is used. 
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M-Estimation: Asymptotic Normality

35

• Summary

-  𝒃ெ
   ௣    

𝒃଴

-  𝒃ெ
   ௔    

N(𝒃଴,Var[𝒃଴])

- Var[ 𝒃ெ] = (1/T) H0
-1V0 H0

-1

- If the model is correctly specified: -H = V. 

Then, Var[𝒃] = V0

– H and V are evaluated at 𝒃଴:

- H = ∑i [2q (zi; b)/bb′]

- V = ∑i [q(zi; b)/b][q(zi; b)/b′]

Example: We  compute the CAPM for IBM, using LAD. We use the 
quantreg R package (default is tau=.50, the median).
rqfit_50 <- rq(ibm_x ~ Mkt_RF)

summary(rqfit)

> summary(capm_ibm)

Call: rq(formula = ibm_x ~ Mkt_RF)

tau: [1] 0.5

Coefficients:

coefficients lower bd upper bd

(Intercept) -0.00667     -0.01033 -0.00269

Mkt_RF 0.87281      0.78756  0.95096

• CAPM 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005361   0.002403  -2.231    0.026 *  

Mkt_RF 0.856569   0.051438  16.653   <2e-16 *** 36

M-Estimation: LAD Estimation
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Example (continuation): Below, we plot both lines:

37Note: Overall, very similar results.

M-Estimation: LAD Example

Breakdown Point: Intuition

• There are several measures of robustness of an estimator, attempting 
to quantify the change. One of the most commonly used is the 
breakdown point.

• Let 𝑿 be a random sample and T(𝑿) be an estimator. Informally, the 
breakdown point of the estimator is the proportion 𝑚/𝑇 of 
observations, which can be replaced by bad observations (outliers) 
without forcing T(𝑿) to leave a bounded set –i.e., become infinity.

Example: The sample mean has a breakdown point equal to 0 (one 
observation can drive the sample mean, regardless of the other T-1 
values). The median has a breakdown point 1/2 (it can tolerate 50% 
bad values) and α%-trimmed mean has a breakdown point α%.

38
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Breakdown Point: Definition

• Assume a sample, 𝒁, with 𝑇 observations, and let T be a regression 
estimator. That is, we apply T to 𝒁 we get the regression coefficients:

T(𝒁) = b

• Imagine all possible “corrupted” samples 𝒁0 that replace any subset 
of observations, 𝑚, in the dataset with arbitrary values -i.e., influential 
cases.

• The maximum bias that could arise from these substitutions is:

𝑏𝑖𝑎𝑠ሺ𝑚; T, 𝒁ሻ = supZ´ ║T(𝒁´) - T(𝒁)║

• If the 𝑏𝑖𝑎𝑠ሺ𝑚; T, 𝒁ሻ is infinite, the 𝑚 outliers have an arbitrarily 
large effect on T. In other words, the estimator breaks down.

39

• Then, the breakdown point for an estimator T for a finite sample 𝒁
is:

𝜀௡∗ሺT, 𝒁ሻ = min{
௠

்
; 𝑏𝑖𝑎𝑠ሺ𝑚,T, 𝒁ሻ is infinite}

• The breakdown point of an estimator is the smallest fraction of “bad” 
data (outliers or data grouped at the extreme of a tail) the estimator can 
tolerate without taking on values arbitrarily far from T(𝒁).

• For OLS regression one unusual case is enough to influence the 
coefficient estimates. Its breakdown point is then

𝜀௡∗ሺT, 𝒁ሻ = 1/𝑇

• As 𝑇 gets larger, 1/𝑇 tends towards 0, meaning that the breakdown 
point for OLS is 0%. 40

Breakdown Point: Definition
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• Robust regression methods attempt to limit  the impact of unusual 
cases on the regression estimates:

– Least Absolute Values (LAV/LAD) regression is robust to 
outliers (unusual 𝑦௜ values given 𝑥௜), but typically fares even worse 
than OLS for cases with high leverage.

- If a leverage point is very far away, the LAD line will pass 
through it. In other words, its breakdown point is also 1/𝑇.

– M-Estimators are also robust to outliers. More efficient than LAD 
estimators. They can have trouble handling cases with high leverage, 
meaning that the breakdown point is also 1/𝑇.

– Bounded influence methods have a much higher breakdown point 
(as high as 50%) because they effectively remove a large proportion of 
the cases. These methods can have trouble with small samples.

41

Robust Regression: Methods

• In order to explain how robust regression works, we start with the 
simple case of robust estimation of the center of a distribution. 
Consider independent observations and the simple model:

𝑦௜ = 𝜇 + ε௜

• If the underlying distribution is normal, the sample mean is the MLE. 

• The mean minimizes the LS objective function:

𝑞௅ௌ = 𝒆ᇱ𝒆 = ∑ 𝑒௜
ଶ்

௜ୀଵ

• The derivative of the objective function with respect to 𝑒௜ gives the 
influence function which determines the influence of observations: 
𝜓௅ௌ,௜ሺ𝑒ሻ ൌ 2 ∗ 𝑒௜ . That is, influence is proportional to the residual 𝑒௜. 

42

Estimating the Center of  a Distribution
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• As an alternative to the mean, we consider the median as an estimator 
of μ. The median minimizes the LAD objective function:

𝑞௅஺஽ = 1/𝑇 ∑ |𝑒௜| ்
௜ୀଵ

• Taking the derivative of the objective function gives the shape of the 
influence function:

𝜓௅஺஽,௜ሺ𝑒ሻ = 1 for 𝑒௜ > 0.

= 0 for 𝑒௜ = 0.

= -1 for 𝑒௜ < 0.

• Note that influence of 𝑒௜ is bounded. The fact that the median is 
more resistant than the mean to outliers is a favorable characteristic.

43

Estimating the Center of  a Distribution

44

Influence Function for Mean and Median
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Example: We compute the 3-factor F-F for IBM, using LAD, for the 
Corrupted IBM data. We use the quantreg R package (default is 
tau=.50, the median).

rqfit_50 <- rq(ibm_x ~ Mkt_RF)

summary(rqfit)

> summary(capm_ibm)

Call: rq(formula = ibm_x ~ Mkt_RF)

tau: [1] 0.5

Coefficients:
Estimate lower bd upper bd

(Intercept) -0.00549 -0.00874 -0.00296
Mkt_RF 0.95236  0.82872 1.02321
SMB         -0.20620 -0.34978 -0.07770
HML        0.02466 -0.09746 0.24427

Note: Again, SMB & constant are significant (5% level). HML is not. 
45

M-Estimation: LAD Example with Outliers

Example (continuation): Below, we compare the LAD estimates and 
OLS estimates with the corrupted IBM data. Estimates and 
significance are affected for HML & SMB.

46

LAD OLS
Estimate lower bd upper bd Estimate SE t-value

(Intercept) -0.00549 -0.0087 -0.00296 -0.00522 0.003 -1.69
Mkt_RF      0.95236 0.82872 1.02321 0.96545 0.069 13.89
SMB         -0.2062 -0.3498 -0.0777 -0.09743 0.104 -0.94
HML        0.02466 -0.0975 0.24427 -0.17617 0.1 -1.77

M-Estimation: LAD Example with Outliers
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• But, the median is far less efficient, however. If 𝑦௜ ~ N(𝜇, 𝜎ଶ),

Var[mean] = 𝜎ଶ/𝑇
Var[median] = 𝜋 𝜎ଶ/2𝑇

 The Var[median] is 𝜋 /2 (ൎ 1.57) times as large as Var[mean].

• A good compromise between the efficiency of LS and the robustness

of LAD is the Huber (1964) objective function:

𝑞ு,௜ሺ𝑒௜ሻ = 
ଵ

ଶ
∗ 𝑒௜ଶ for |𝑒௜|≤ 𝑘. (𝑘 = tuning constant)

= 𝑘|𝑒௜| െଵ

ଶ
𝑘ଶ for |𝑒௜| > 𝑘.

with influence function:

𝑠ு,௜ሺ𝑒௜ሻ′= 𝑘 for 𝑒௜ > 𝑘.

= 𝑒௜ for |𝑒௜| ≤ 𝑘.

= െ𝑘 for 𝑒௜ > 𝑘. 47

M-Estimation: Huber Estimates

• 𝑘 is called the tuning constant.

Note: For 𝑘 → ∞, the M-estimator turns into mean, for 𝑘 → 0, it 
becomes the median.

• Assuming 𝜎ଶ ൌ 1, setting 𝑘 = 1.345 produces 95% efficiency relative 
to the sample mean when the population is normal. It gives substantial 
resistance to outliers when it is not.

• In general, 𝑘 is expressed as a multiple of the 𝑌 scale (the spread), 𝑆 
 𝑘 ൌ 𝑐 𝑆

– We could use 𝜎 as a measure of scale, but it is more influenced by

extreme observations than is the mean.

– Instead, we use the median absolute deviation:

MAD = median|𝑦௜ െ  𝜇 ෝ|= median|𝑒௜| 48

M-Estimation: Tuning constant, 𝒌
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• We use the median absolute deviation:

MAD = median|𝑦௜ െ  𝜇 ෝ|= median|𝑒௜|
• The median of Y serves as an initial estimate of 𝜇 ෝ , thus allowing us 
to define 𝑆 = MAD/.6745, which ensures that 𝑆 estimates 𝜎 when the 
population is normal –i.e., for the standard normal E[MAD] = 0.6745

• Using 𝑘 = 1.345 𝑆 (1.345/.6745 is about 2 MAD) produces 95% 
efficiency relative to the sample mean when the population is normal 
and gives substantial resistance to outliers when it is not.

Note: A smaller 𝑘 gives more resistance to outliers.

49

M-Estimation: Tuning constant, 𝒌

• Tukey’s bi-weight (bisquare) estimates behave somewhat 
differently than Huber weights, but are calculated in a similar manner

• The biweight objective function is especially resistant to 
observations on the extreme tails:

𝑞஻ௐ,௜ሺ𝑒௜ሻ = 
௞మ

଺
∗ ሼ1 െ  ሾ1 െ ሺ௘೔

௞
ሻଶ]3} for |𝑒௜|≤ 𝑘.

=  
௞మ

଺
for |𝑒௜| > 𝑘.

with an influence function:

𝑠஻ௐ,௜ሺ𝑒௜ሻ′ = {𝑒௜  ∗  ሾ1 െ ሺ௘೔
௞
ሻଶሿ} for |𝑒௜|≤ 𝑘.

= 0 for |𝑒௜|> 𝑘.

• For this function, 𝑘 = 4.685 S (4.685/.6745 about 7 MADS) 
produces 95% efficiency when sampling from a normal population 50

M-Estimation: Bi-weight Estimates
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• Since regression is based on the mean, it is easy to extend the idea of 
M-estimation to regression.  The linear model is:

𝑦௜ =  𝑥௜
ᇱ𝑏 + ε௜

• The M-estimator then minimizes the objective function:

𝑞 = ∑ 𝑞ሺ𝑦௜ െ   𝑥௜
ᇱ𝑏ሻ்

௜ୀଵ

with f.o.c.’s:

∑ 𝜓 ሺ𝑦௜ െ   𝑥௜
ᇱ𝑏ሻ்

௜ୀଵ 𝑥௜
ᇱ = 0

• We have a system of 𝑘 equations. We replace 𝜓ሺ. ሻ with the weight 
function, 𝑤௜ ൌ 𝜓ሺ. ሻ/𝑒௜:

∑ 𝑤௜ሺ𝑦௜ െ   𝑥௜
ᇱ𝑏ሻ்

௜ୀଵ 𝑥௜
ᇱ = 0

Note: We assign a different weight to each 𝑖 depending on the size of 
𝑒௜; similar to WLS.

51

M-Estimation and Regression

• Different loss functions:

52

M-Estimation and Regression: Loss Functions
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• The weight function: 𝑤௜ ൌ 𝑤 𝑒௜ ൌ 𝜓ሺ. ሻ/𝑒௜:

53

M-Estimation and Regression: Weights

54

Weight Functions for Various Estimators
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• The solution assigns a different weight to each case depending on the 
size of their residual, and thus minimizes the weighted sum of squares.

∑ 𝑤௜ ε௜
ଶ்

௜ୀଵ ൌ 0

• The 𝑤௜weights depend on the residuals in the model. An iterative 
solution (using Iterative Re-weighted Least Squares, IRLS) is needed.

• The solution to this problem is weighted LS:

(1) Set initial 𝒃଴, say by using OLS. Get  𝑒௜
଴.

(2) Estimate the scale of the residuals S0 and the weights  𝑤௜
଴.

(3) Estimate 𝒃௝ : 𝑗 = 1, 2, ...

𝒃௝ = (X’WX)-1 X’Wy W=diag{ 𝑤௜
௝ିଵ}

(4) With 𝒃௝ go back to (1). Repeat steps (1)-(3) until convergence. 55

M-Estimation and Regression: Algorithm

• Usual weight functions: Huber and Biweight (bisquare) weights.

• M-Estimators are statistically equally efficient as OLS if the 
distribution is normal, while at the same time are more robust with 
respect to influential cases.

• However, M-estimation can still be influenced by a single very 
extreme X-value—i.e., like OLS, it still has a breakdown point of 0

56

M-Estimation and Regression
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• M-estimation can still be influenced by a single very extreme X-
value—i.e., like OLS, it still has a breakdown point of 0

• Least-trimmed-squares (LTS) estimators (Rousseeuw (1984)) can 
have a breakdown point up to 50% -i.e., half the data can be influential 
in the OLS sense before the LTS estimator is seriously affected.

– Least-trimmed-squares essentially proceeds with OLS after 
eliminating the most extreme positive or negative residuals.

• LTS orders the squared residuals from smallest to largest: 

(𝑒ଶ)(1), (𝑒
ଶ)(2), ...., (𝑒

ଶ)(T)

• Then, LTS calculates b that minimizes the sum of only the smaller half of the 
residuals. 57

Bounded Influence Regression: LTS

• LTS calculates b that minimizes the sum of only the smaller half of the 
residuals:

∑ 𝑒௜
ଶ௠

௜ୀଵ

where 𝑚 = [𝑇 /2] + 1; the square bracket indicates rounding down.

• By using only the 50% of the data that fits closest to the original OLS 
line, LTS completely ignores extreme outliers. The breakdown value 
for the LTS estimate is (𝑇 െ𝑚)/T.

• On the other hand, this method can misrepresent the trend in the 
data if it is characterized by clusters of extreme cases or if the data set 
is relatively small.

58

Bounded Influence Regression: LTS
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• An alternative bounded influence method is Least Median Squares 
(LMS).

• Rather than minimize the sum of the least squares function, this 
model minimizes the median of the squared residuals, 𝑒௜

ଶ.

• The breakdown value for the LTS estimate is also (𝑇 െ𝑚)/T.

• LMS is very robust with respect to outliers both in terms of 𝑿 and 𝒀.

• But, it performs poorly form the point of view of asymptotic 
efficiency. Also, relative to LMS, LTS’s objective function is smoother, 
making the LTS estimate less jumpy -i.e., less sensitive to local effects.

59

Bounded Influence Regression: LMS

• One application of bounded-influence estimators is to provide 
starting values for M-estimation.

• This procedure, along with using the bounded-influence estimate of 
the error variance, produces the so-called MM-estimator. 

• The MM-estimator retains the high breakdown point of the bounded-
influence estimator and shares the relatively high efficiency under 
normality of the traditional M-estimator.

• MM-estimators are especially attractive when paired with 
redescending -functions such as the bisquare, which can be sensitive 
to starting values.

60

Bounded Influence Regression: MM-estimator
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Example: We  compute the CAPM for IBM using Huber’s M-
estimator. We use the MASS R package (default is M estimation).
library(MASS)

ibm_rob <- rlm(ibm_x ~ Mkt_RF)

> summary(ibm_rob)

Call: rlm(formula = ibm_x ~ Mkt_RF)

Residuals:

Min         1Q     Median         3Q        Max 

-0.3140923 -0.0323543 -0.0008752  0.0333639  0.2490740 

Coefficients:

Value   Std. Error t value

(Intercept) -0.0056  0.0021    -2.6126

Mkt_RF 0.8602  0.0455    18.9090

Residual standard error: 0.0487 on 609 degrees of freedom
61

M-Estimation: CAPM

Example (continuation): Below, we plot the 90th quantile fit, along 
the standard CAPM line.

62

Note: Again, very similar results to OLS. There is evidence of  outliers 
affecting fit.

M-Estimation: CAPM
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Example: We compute the 3-factor F-F model for the Corrupted 
IBM data, using Huber’s M-estimator. We use the MASS R package 
(default is M-estimation).
library(MASS)

ibm_ff3_rob <- rlm(ibm_x ~ Mkt_RF + SMB+HML)

> summary(ibm__ff3_ rob)

Coefficients:
Estimate Std. Error t value

(Intercept) -0.0052 0.0021 -2.4525
Mkt_RF 0.9114 0.0479 19.0187
SMB         -0.2438 0.0717 -3.4002
HML        .0091  0.0687     0.1318

> summary(fit_ibm_ff3)
Coefficients:

Estimate Std. Error t value
(Intercept) -0.004947 0.002408 -2.054
Mkt_RF 0.885706 0.054259 16.324
SMB         -0.228137 0.081180 -2.810
HML        -0.058153 0.077791 -0.748 63

M-Estimation: F-F Model with Outliers

Example (continuation): Below, we compare the M-estimates and 
OLS estimates with the corrupted data. Again, estimates and 
significance are affected for HML & SMB. The M-estimates are very 
similar to the OLS estimates without the corrupting outliers.

64

M-estimation OLS
Estimate SE t-value Estimate SE t-value

(Intercept) -0.0052 0.0021 -2.4525 -0.00522 0.003 -1.69
Mkt_RF      0.9114 0.0479 19.0187 0.96545 0.069 13.89
SMB         -0.2438 0.0717 -3.4002 -0.09743 0.104 -0.94
HML        0.0091 0.0687 0.1318 -0.17617 0.1 -1.77

M-Estimation: F-F Model with Outliers
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Example: We compute the 3-factor F-F model for the Corrupted 
IBM data, using Tukey’s bi-square estimator. We use the MASS R 
package (default is M-estimation).
library(MASS)

ibm_ff3_out_bisq <- rlm(ibm_x ~ Mkt_RF + SMB+HML, method="MM")

> summary(ibm_ff3_out_bisq b)

Coefficients:
Estimate Std. Error t value

(Intercept) -0.0051 0.0021 -2.3784
Mkt_RF 0.9178 0.0480 19.1386
SMB         -0.2475 0.0717 -3.4487
HML        .00377  0.0688     0.5477

Note: Again, very similar results to the Huber’s M-estimation. 

65

M-Estimation: Bi-square F-F Model (Outliers)

66

Robust Regression: Application

De Long and Summers (1991) studied the national growth of  61 
countries from 1960 to 1985 using OLS: 

GDPi = β0 + β1 LFGi + β2 GAPi + β3 EQPi + β4 NEQi + ε௜
where GDP growth per worker (GDP) and the regressors are labor 
force growth (LFG), relative GDP gap (GAP), equipment investment 
(EQP), and nonequipment investment (NEQ).

• The OLS analysis: GAP and EQP have a significant effect on GDP 
at the 5% level.



RS – EC2 - Lecture 10

34

67

Robust Regression: Application

Zaman, Rousseeuw, and Orhan (2001) used robust techniques to 
estimate the same model (Zambia (observation #60) an outlier):

GDPi = β0 + β1 LFGi + β2 GAPi + β3 EQPi + β4 NEQi + ε௜

• Huber M-estimates: Besides GAP and EQP, the robust analysis also 
show NEQ has significant effect on GDP.

• It is common to analyze the residuals for outliers (as usual) and 
leverage points. To check for leverage points, Rousseeuw (1984) 
proposes a robust version of the Mahalanobis distance by using a 
generalized minimum covariance determinant (MCD) method.

• Mahalanobis Distance is the square root of a standard Wald distance:

𝑀𝐷ሺ𝒙௜ሻ ൌ sqrtሼሺ𝒙௜ െ 𝒙ഥሻ′ �̅�(𝑿) ሺ𝒙௜ െ 𝒙ഥሻሽ

where �̅� is the mean and �̅�(𝑿) is the variance (scale or scatter) of 𝑿.

• Rousseeuw’s Robust Distance is given by

𝑅𝐷ሺ𝒙௜ሻ ൌ sqrtሼሺ𝒙௜ െ 𝑇ሺ𝒙ሻሻ′ �̅�(𝑿) ሺ𝒙௜ െ 𝑇ሺ𝒙ሻሻሽ

where 𝑇 𝒙 & 𝐶ሺ𝒙ሻ are the robust multivariate location & scale, 
respectively, obtained by MCD. 68

Robust Regression: Diagnostics 
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• MD and  RD are compared with thresholds to determine if an 
observation is an outlier. 

• Thresholds tend to be data-specific, but, it is common to use 
thresholds based on Confidence intervals using the Chi-square 
distribution, with degrees of freedom are given by the number of 
parameters/variables in the model.

• Outlier detection can be also be done by looking at the standardized 
robust residuals.

• Mass significance issues appear in this context (we check every 
observation!), thus, many authors suggest using very small p-values 
(0.005 or 0.001). See Hair et all (2010) or Tabachnik and Fidell (2013).69

Robust Regression: Diagnostics 

70

Robust Regression: LTS - Application

Analysis of  robust residuals. Lots of  leverage observations, but only 
one outlier (Zambia, #60).  
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71

Robust Regression: LTS - Application

The analysis of  robust residuals revealed Zambia (#60) as an outlier. 
Potentially, this can create problems for M-estimators. LTS 
estimation is has a better breakdown point.

72

Robust Regression: LTS - Application

After removing the outlier (Zambia), we re-estimate model: 
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• Separated points can have a strong influence on statistical models

– Unusual cases can substantially influence the fit of the OLS 
model. Cases that are both outliers and high leverage exert influence on both 
the slopes and intercept of the model

– Outliers may also indicate that our model fails to capture 
important characteristics of the data

• Efforts should be made to remedy the problem of unusual cases 
before proceeding to robust regression

• If robust regression is used, careful attention must be paid to the 
model—different procedures can give completely different answers.

73

Robust Regression: Remarks

• No one robust regression technique is best for all data

• There are some considerations, but even these do not hold up all the 
time:

– LAD regression should generally be avoided because it is less 
efficient than other techniques and often not very resistant

– Bounded influence regression models, which can have a breaking 
point as high as 50%, often work very well with large datasets. But, 
they tend to perform poorly with small datasets.

• M-Estimation is typically better for small datasets, but its standard 
errors are not reliable for small samples. This can be overcome by 
using bootstrapping to obtain new estimates of the standard errors.

74

Robust Regression: Remarks
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• Mosteller and Tukey (1977):

“What the regression curve does is a grand summary for the the 
averages of the distributions corresponding to the set of x’s. We 
could go further and compute several different regression curves 
corresponding to the various percentage points of the distribution 
and thus get a more complete picture.”

• One might be interested in behavior of say, lower tail of the 
conditional distribution rather than in its mean. 

• For example, how does a 1% increase in market returns affect the 
returns of small size firms?

75

Quantile Regression

Quantiles: Characterizing a Distribution

• We are used to assume a distribution and describe it through its  
moments: mean, variance, skewness, etc. Some distributions are  
characterized by few parameters. For example, the normal is 
completely described by the mean and the variance. 

• A different approach. Use quantiles instead. For example:

– Median

– Interquartile Range

– Interdecile Range

– Symmetry = ሺ𝜁.଻ହ െ 𝜁.ହ଴ሻ/ሺ𝜁.ହ଴ െ 𝜁.ଶହሻ
– Tail Weight = ሺ𝜁.ଽ଴ െ 𝜁.ଵ଴ሻ/ሺ𝜁.଻ହ െ 𝜁.ଶହሻ



RS – EC2 - Lecture 10

39

Definition: We say that a firm is in the 𝜃th quantile if it is bigger than 
the proportion 𝜃, of the reference group of firms, and smaller than 
the proportion ሺ1 െ 𝜃ሻ.

• The 𝜃th sample quantile is simply 𝑦ሺ௞ሻ, where 𝑘 is the smallest 

integer such that 
௄

்
൏ 𝜃. (Note the relation between rank and 

quantile.)

77

Quantiles

Quantiles: Definition

Definition: 

(1) Discrete RV. Given 𝜃 ∈ [0, 1]. A 𝜃th quantile of a discrete RV 𝑍 is 
any number 𝜁ఏ such that Pሺ𝑍 < 𝜁ఏ ) ≤  ≤ Pሺ𝑍 ≥ 𝜁ఏ ).

Example: Suppose 𝑍 = {3, 4, 7, 9, 9, 11, 17, 21} and 𝜃 = 0.5 then
Pሺ𝑍 ൏ 9ሻ = 3/8 ≤ 1/2 ≤ Pሺ𝑍 ≥ 9ሻ = 5/8.

(2) Continuous RV. Let Z be a continuous r.v. with cdf F(.), then 
P(𝑍< z) = Pሺ𝑍 ≤ z) = F(z) for every z in the support and a 𝜃th
quantile is any number 𝜁ఏ such that F(𝜁ఏ) = 𝜃.

• If F is continuous and strictly increasing then the inverse exists and 
𝜁ఏ ൌ F-1(𝜃).
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Quantiles: CDF and Quantile Function

• Cumulative Distribution Function

𝐹 z ൌ  𝑃ሺ𝑍 ≤ z) 

• Quantile Function

𝑄ሺ𝜃ሻ ൌ  min(z:𝐹 z  ≤ 𝜃ሻ

⇒ Discrete step function

CDF
1.0

0.6

0.2

2.01.51.00.50.0

0.4

-0.5-1.0

0.0

0.8

-1.5-2.0

Quantile (n=20)

-1.0

-1.5

1.0

0.0

1.00.8

1.5

0.6

0.5

0.40.2

-0.5

• It can be shown that quantile (𝜃) is the solution to

min 
఍

ଵ 

்
ሼ∑  𝜃 |𝑦௜  െ 𝜁|௬೔ஹ ఍ ൅ ∑  ሺ1 െ 𝜃ሻ |𝑦௜  െ 𝜁|௬೔ழ ఍ }

• If 𝜃 = 1/2, then this becomes min
఍

ଵ 

்
∑  |𝑦௜  െ 𝜁|ே
௜ୀଵ , which yields a 

f.o.c.:

0 ൌ ଵ 

்
∑  sgnሺ𝑦௜  െ 𝜁ሻே
௜ୀଵ

where sng (“signum”) function: sgnሺ𝑢ሻ = 1 െ 2 ∗ Iሾ𝑢 ൏ 0ሿ, (defined 
to be right-continuous).

⇒ the sample median, ζ=.50, solves this problem (easier to 
visualize with expectations).

80

Quantiles
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Quantile Regression

• Basset and Koenker (1978, JASA) suggest simply replacing the 𝜁 in 
the definition of the quantile estimator

min 
఍

ଵ 

்
ሼ∑  𝜃 |𝑦௜  െ 𝜁|௬೔ஹ ఍ ൅ ∑  ሺ1 െ 𝜃ሻ |𝑦௜  െ 𝜁|௬೔ழ ఍ }

with 𝒙௜
ᇱ𝜷 to get the quantile regression:

min 
𝜷

 ሼ∑  𝜃 |𝑦௜  െ 𝒙௜
ᇱ𝜷 |௬೔ஹ𝒙೔

ᇲ𝜷 ൅ ∑  ሺ1 െ 𝜃ሻ |𝑦௜  െ 𝒙௜
ᇱ𝜷 |௬೔ழ𝒙೔

ᇲ𝜷 }

or

min 
𝜷
ሼ∑  𝜃 |𝜀௜|௬೔ஹ𝒙೔

ᇲ𝜷 ൅ ∑  ሺ1 െ 𝜃ሻ |𝜀௜|௬೔ழ𝒙೔
ᇲ𝜷 }

• If 𝜃 ൌ 1/2, then this becomes LAD estimation. We have a 
symmetric weighting of observations with positive and negative 
residuals. But, if 𝜃 ≠ 1/2, the weighting is asymmetric.

81

Quantile Regression

• We define a family of regressions:

𝜁ఏ = Q(𝑦௜|𝒙௜ , 𝜃)  = 𝑿′ఏ, 𝜃 ∈ [0, 1] 

- Median regression is obtained by setting 𝜃 = .50: 

𝜁ఏୀ.ହ଴ = Q(𝑦௜|𝒙௜ , .50)  = 𝑿′ఏୀ.ହ଴

82
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Quantile Regression

Note: Median regression estimated by LAD. It estimates the same 
parameters as OLS if symmetric conditional distribution.

• We assume correct specification of the quantile, Q(𝑦௜|𝒙௜ , 𝜃) = 𝑿′ఏ. 
That is, 𝑿′ is a particular linear combination of the independent 
variables such that 

𝜃 ൌ P 𝑌 ≤ 𝜁ఏሺ𝑋ሻ 𝑋 ൌ 𝑃ሺ𝑌 ≤ 𝑿ᇱ) = 𝐹ሺ𝜁ఏሺ𝑋ሻ|𝑋ሻ

Q: Why use quantile (median) regression?

- Semiparametric

- Robust to some extensions (heteroscedasticity?)

- Complete characterization of conditional distribution.

83

Quantile Regression

.25

𝜁ఏୀ.ଶହሺ𝑥ሻ = 𝑿′ఏୀ.ଶହ
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• Different from LS, now we minimize an asymmetric absolute loss 
function, given by 

min 
𝜷
𝜌ఏሺ𝑦௜ ,𝒙௜

ᇱ𝜷ሻൌ min 
𝜷

 ሼ∑  𝜃 |𝜀௜|௬೔ஹ𝒙೔
ᇲ𝜷 ൅ ∑  ሺ1 െ 𝜃ሻ |𝜀௜|௬೔ழ𝒙೔

ᇲ𝜷 }

where 𝜀௜ = 𝑦௜  െ 𝒙௜
ᇱ𝜷, for some 𝜃.

• We call 𝜌ఏ the tilted absolute value function. It is convex. The local 
minimum is a global one, which assures uniqueness (and identification).

Quantile Regression: Loss Function

-1 10


1

Quantile Regression: Loss Function

0

0.5

1

1.5

2

2.5

3

-2 -1 0 1 2

Quad

p=.5

p=.7

Absolute Loss vs. Quadratic Loss over errors

A quadratic loss penalizes large errors very heavily.  When p=.5 our 
best predictor is the median; it does not give as much weight to 
outliers.  When p=.7 the loss is asymmetric; large positive errors are 
more heavily penalized then negative errors.
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Quantile Regression: Estimation

• Optimization problem:

min 
𝜷

 ሼ ∑  𝜃 |𝜀௜|ఌ೔ஹ଴ ൅ ∑  1 െ 𝜃 𝜀௜ ൌ ఌ೔ழ଴ ∑ ሺ𝜃 െ 𝐼 𝑦௜ ൏ 0 ሻ𝜀௜ሽ
்
௜ୀଵ

where 𝜀௜ = 𝑦௜  െ 𝒙௜
ᇱ𝜷, for some 𝜃.

• Simple intuition: number of negative residuals ≤ 𝑇 𝜃 ≤ number of 
negative residuals + number of zero residuals.

• The loss function is piecewise linear  A linear programming 
problem. Trick: replace absolute values by positivity constraints. Thus,
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Quantile Regression: Estimation

• The usual software packages will use the Barrodale and Roberts 
(1974) simplex algorithm or a Frisch-Newton (FN) algorithm.

• For large data sets, the FN method is used. It combines a log-barrier 
Lagrangian (Frisch part) with steepest descent steps (Newton part). 
For very large data sets, FN algorithm is combined with a 
preprocessing step, which makes the computations faster.

• Solution at vertex of feasible region. The solution need not be 
unique (along the edge). The fitted line will go through k data points.

• Well known program in R, written by Koenker and described in 
Koenker’s Vignetee article (2005).

88
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Example: We  compute the CAPM for IBM for the 90th quantile, 
using LAD. We use the quantreg R package (default is tau=.50, LAD).
rqfit_90<- rq(ibm_x ~ Mkt_RF, tau=.90)

summary(rqfit_90)

> summary(c rqfit_90)

Call: rq(formula = ibm_x ~ Mkt_RF)

tau: [1] 0.9

Coefficients:

coefficients lower bd upper bd

(Intercept) 0.06707      0.05898  0.07734 

Mkt_RF 0.90736      0.64632  1.06355 

• CAPM 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005361   0.002403  -2.231    0.026 *  

Mkt_RF 0.856569   0.051438  16.653   <2e-16 *** 89

M-Estimation: LAD Estimation

Example (continuation): Below, we plot the 90th quantile fit, along 
the standard CAPM line.

90

M-Estimation: LAD Estimation
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Example (continuation): Below, we plot the 95th and 5% quantile 
fits, along the standard CAPM line.

91

M-Estimation: LAD Estimation

• Proposition 

Under the asymmetric absolute loss function ρ a best predictor of Y 
given X = 𝑥 is the 𝜃th conditional quantile, ζ.

Example: Let 𝜃 = .5. Then, the best predictor is the median fitted 
value.

• That is, under asymmetric absolute loss, the quantile regression 
estimator is more efficient than OLS.

• We offer this without proof.  The proof would be similar in 
construction to the Gauss-Markov Theorem, which states that the 
conditional mean is best linear unbiased.

Quantile Regression: Optimality
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Properties of the Estimator

• Consistency 

Consistency of      is easy. The minimand Sn(.) is continuous in β with 
probability 1. In fact, Sn(.) is convex in β; then, consistency follows if 
Sn can be shown to converge pointwise to a function that is uniquely 
minimized at the true value βθ. 

• To prove consistency, we impose conditions on the model:

1. The data (𝑥௜ ; 𝑦௜) are i.i.d. across 𝑖.
2. The regressors have bounded second moment. 

3. ε௜|𝑥௜ is continuously distributed; with conditional density 𝑓கሺε௜|𝑥௜ሻ
satisfying the conditional quantile restriction.

4. The regressors and error density satisfy a .local identification 
condition: C E[𝑓கሺ0ሻ 𝒙𝒙′] is a pd matrix.

̂

Properties of the Estimator

• Asymptotic Normality (under i.i.d assumption)

The lack of continuously differentiable 𝑆௡ሺሻ complicates the usual 
derivation of asymptotic normality (through Taylor’s expansion). 

• But, an approximate f.o.c. can be used -through sgn(.). Additional 
conditions (stochastic equicontinuity) need to be established before using 
the Lindeberg-Levy CLT, which establishes:

• We have a sandwich estimator. The variance matrix depends on the 
unknown 𝑓க . 𝑥௜  and the 𝑥௜ , at which the covariance is being 
evaluated.
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Properties of the Estimator

• We need to estimate E[𝑓கሺ0ሻ 𝒙𝒙′], complicated without knowing 
𝑓க . 𝑥௜ ! It can be done through non-parametric kernel estimation.

• When the error is independent of 𝑥 –i.e., 𝑓க ε௜ 𝑥௜ ൌ 𝑓க ε௜ – then 
the coefficient covariance reduces to 

Λఏ ൌ  ఏ ሺଵ ି ఏሻ

௙಍" க೔
ሺ𝐸෠[𝒙𝒙′ሿሻିଵ

where

𝐸෠[𝒙𝒙′] = 
ଵ 

்
∑  𝒙௜𝒙௜′௜ୀଵ

• The variance is related to a Bernoulli variance [𝜃 (1 െ 𝜃)] –divided 
by the square density of 𝑦 at the quantile, analogous to a sample size.

Properties of the Estimator

• The previous results can be extended to multivariate cases –i.e., joint 
estimates of several quantiles. We obtain convergence to a 
multivariate normal distribution.

• In general, the quantile regression estimator is more efficient than 
OLS. But, efficiency requires knowledge of the true error’s pdf. 

• Robust to outliers.  As long as the sign of the residual does not 
change, any yi can be arbitrarily changed without shifting the 
conditional quantile line.

• The regression quantiles are correlated.
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Partial Effects and Prediction

• The marginal change in the Θth conditional quantile due to a 
marginal change in the 𝑗-th element of 𝒙:

 ொഇሺ௬೔|௫೔ሻ

௫೔,ೕ

• Under linearity, the effect will be ௝. But, if non-linearities are 
included, the partial effect will be a function of 𝒙.

Note: There is no guarantee that the 𝑖-th observation will remain in the 
same quantile after 𝑥௜,௝ changes. 

• Using ෠ఏ and X values, predicted vales of 𝑦ොఏcan be computed. 
Suppose we have 𝑿 = 𝒙଴′, the predicted 90th quantile is 𝒙଴

ᇱ  ෠ఏ.

Hypothesis Testing: Standard Errors

• Given asymptotic normality, one can construct asymptotic t-statistics 
for the coefficients. But which standard errors should be used?

• We can use the asymptotic estimator, but in non-i.i.d. situations is 
complicated. Inversion of a rank test --Koenker (1994, 1996)-- can be 
used to construct C.I.’s in a non-i.i.d. error context. 

• Bootstrapping works well. Parzen, Wei, and Ying (1994) have 
suggested that rather than bootstrapping (𝑦௜, 𝒙௜) pairs, instead 
bootstrap the quantile regression gradient condition. It produces a 
pivotal approach.
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Hypothesis Testing

• Alternatively, confidence regions for the quantile regression 
parameters can be computed from the empirical distribution of the 
sample of bootstrapped 𝑏௝(𝜃)’s, the so-called percentile method.

• These procedures can be extended to deal with the joint distribution 
of several quantile regression estimators {𝒃௝(𝜃௞), 𝑘 = 1, 2, ... , 𝐾}. 
This would be needed to test equality of slope parameters across 
quantiles.

• The error term may be heteroscedastic. Efficiency issue. There are 
many tests for heteroscedasticity in this context.

• A test for symmetry, resembling a Wald Test, can be constructed 
which could not be done under Least Squares estimation.

Crossings

• Since quantile regressions are typically estimated individually, the 
quantile curves can cross, leading  to strange (an invalid) results. 

• Crossings problems increase with the number of regressors.. 

• Simultaenous estimation, with constraints are one solution.

• Individual specification of each quantile also works.  For example:

Note: Since exp(.) is positive, the quantiles by design never cross.
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Quantile Linear Regression: Application 1

Food Expenditure vs 
Income

Engel 1857 
survey of  235 
Belgian households 

Q: Change of  slope 
at different quantiles?

Note: Variation of Parameter with Quantiles.

Quantile Linear Regression: Application 1
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Quantile Linear Regression: Application 2

 = .25

 = .50

 = .75

Quantile Linear Regression: SAS - Application 3

proc quantreg data=ab ;
model y1 = xm SMB HML /quantile=0.25 0.5 0.75
run;

The QUANTREG Procedure
Quantile and Objective Function

Quantile                           0.25
Parameter DF Estimate     95% Confidence  Limits
Intercept  1  -1.6310  -1.7793  -1.5164
xm         1   0.9855   0.9477   1.0069
SMB        1   1.2018   1.1505   1.3219
HML        1   0.5071   0.4250   0.5615

Quantile                           0.75
Parameter DF Estimate     95% Confidence  Limits
Intercept  1   0.9056   0.6957   1.1344
xm         1   0.9919   0.9626   1.0535
SMB        1   1.4267   1.3340   1.5025
HML        1   0.5435   0.4593   0.6213
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Heteroscedasticity

• Model: 𝑦௜ = 𝒙௜′β+ 𝜀௜  , with i.i.d. errors.

– The quantiles are a vertical shift of one another.

• Model: 𝑦௜ = 𝒙௜′β+ σ(𝒙௜) 𝜀௜, errors are now heteroscedastic.

– The quantiles now exhibit a location shift as well as a scale 
shift.

• Khmaladze-Koenker Test Statistic

Quantile Regression: Bibliography
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Quantile Regression

• S+ Programs - Lib.stat.cmu.edu/s

• www.econ.uiuc.edu/~roger

• http://Lib.stat.cmu.edu/R/CRAN

• SAS

• Limdep


