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Lecture 2
OLS 

OLS Estimation - Assumptions

• CLM Assumptions

(A1) DGP: y = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank – rank(X)=k-, where T ≥ k.

• From assumptions (A1), (A2), and (A4)

⇒ b = (X′X)-1X′ y

We define e = y-Xb ⇒ X′e =X′ (y-Xb) X′y - X′X(X′X)-1X′y = 0

• Now, we will study the properties of b.
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• Small sample = For all sample sizes –i.e., for all values of  T (or N). 

• The OLS estimator of   is

b = (X′X)-1X′ y

b = (X′X)-1X′ y = (X′X)-1 X′(X + ) =  +(X′X)-1X′
=  +(X′X)-1 Σi xi′i

=  +Σi vi′i

⇒ b is a vector of  random variables. 

• We condition on an X, then show that results do not depend on that 
particular X. 

⇒ The results must be general –i.e., independent of  X.

Small Sample Properties of OLS

• b =  +(X′X)-1X′ =  +Σi vi′i

• Properties

(1) E[b|X] = 
(2) Var[b|X] = E[(b-) (b-)′|X] = σ2 (X′X)-1

(3) Gauss-Markov Theorem: b is BLUE (MVLUE).

(4) If  (A5) |X ~N(0, σ2IT) ⇒ b|X ~ N(, σ2(X′X)-1)

⇒ bk|X ~ N(k, σ2(X′X)kk
-1)

(the marginals of  a multivariate normal are also normal.) 

Note: Under (A5), b is also the MLE. Thus, it has all the nice MLE 
properties: efficiency, consistency, sufficiency and invariance!

Small Sample Properties of OLS
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Sampling Distribution of b

• b =  +(X′X)-1X′ =  +Σi vi′i

Let’s generate some yi’s. Set  = .4; then, the DGP is:  

y = (.4) X + 
(1) Generate X (to be treated as numbers). Say X ~ N(2,4)

⇒ x1=3.22, x2=2.18, x3=-0.37, ......, xT =1.71

(2) Generate  ~ N(0,1)

⇒ draws 1=0.52, 2=-1.23, 3=1.09, ....., T=-0.09

(3) Generate y = .4 X + 
⇒ y1 = .4 * 3.22 + 0.52 = 1.808 

y2 = .4 * 2.18 + (-1.23) = -0.358

y3 = .4 * (-0.37) + 1.09 = 0.942

...   yT = .4 * 1.71 + (-0.09) = 0.594

(4) Generate  b = (X′X)-1X′y = Σi (xi - ) (yi - )/ Σi (xi - )2xx y

•  We want to generate b’s. Steps

(1) Generate X (to be treated as numbers). Say X ~ N(2,4)

(2) Generate  ~ N(0,1)

(3) Generate y = .4 X + 
(4) Generate  b = (X′X)-1X′y = Σi (xi - ) (xi - )/ Σi (xi - )2

Conditioning on step (1), we can repeat (2)-(4) B times, say 1,000 
times. Then, we are able to generate a sampling distribution for b.

We can obviously play with T; say T=100; 1,000; 10,000.

We can check: E[b|X] = (1/B) Σi bi = ?

We can calculate the variance of  Var[b|X].  

xx y

Sampling Distribution of  b
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Sampling Distribution of b – Code in R

• Steps (1)-(4) in R to generate b,  with a sample of  size T=100:
> T <- 100 # sample size

> x <- rnorm(T,2,2) # generate x

> ep <- rnorm(T,0,1) # generate errors

> y <- .4*x + ep

> b <- solve(t(x)%*% x)%*% t(x)%*%y # OLS regression

Run these commands B times to get the sampling distribution of  b. 

Then, calculate means, variances, skewness, kurtosis coefficients, etc.

Note: You need to initialize a vector that collects the b’s. For example:
Allbs = NULL # Initialize vector that collects the b

Allbs = rbind(Allbs,b) # accumulate b as rows

Sampling Distribution of b – Code in R

Histogram for OLS Coefficients
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For T=100
B = 1,000

Mean[b] =  0.39947
SD[b] = 0.01154
Ex Kurt[b] = -0.0568
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Estimating the Variance of b

• We want to estimate Var[b], the unconditional variance of  b.

Var[b] = Ex[Var[b|X]] + Varx[E[b|X]] = 2E[(XX)-1].

But, the population parameter 2 is unknown. 

• We consider how to use the sample data to estimate this matrix.  

• The ultimate goals are to estimate C.I. for  and to test hypotheses 
about . We need estimates of  the variability of  the distribution. 

• We use the residuals instead of  the disturbances:  
Natural estimator:  ee/T –sample counterpart for /T

• Imperfect observation of  disturbances:   i = ei + ( – b)xi

• We want to estimate E[ee|X] 
Recall e = My = M ⇒ e'e = 'M'M = 'M (M: residual maker)

• We have a quadratic form. Recall Theorem 7.3, from Math Review: 
Theorem 7.3. Let the T×1 vector y ~N(0, σ2 IT) and M be a 
symmetric idempotent matrix of  rank m. Then,

y′My/σ2 ~tr(M)
2.

• We have already established:  tr(M) = tr(IT) - tr(P) =T – k.
Recall trace property: tr(ABC) = tr(CAB)

 tr(P) = tr(X(X′X)-1X′)=tr(X′X (X′X)-1) = tr(Ik) = k

• Recall that if  Z ~ v
2  E[Z] = v

 E[ee/2|X] = (T – k)
 E[ee|X] = (T – k)2  (Downward bias of  ee/T.)

Estimating Var[b|X]
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• E[ee|X]  =  (T – k)2

 s2 = ee/(T – k) unbiased estimator of 2

(T – k) is referred as a degrees of freedom correction.

• True conditional covariance matrix:  Var[b|X] = 2 (X′X)-1

 the natural estimator is s2(X′X)-1

This estimator gives us the standard errors (SE) of the individual 
coefficients. For example, for the bk coefficient: 

SE[bk|X] = sqrt[s2(X′X)-1]kk

Q: How does the conditional covariance 2(X′X)-1 differ from the 
unconditional one, 2E[(X′X)-1]?

Estimating Var[b|X]

Example (Greene): Gasoline Regression Results

----------------------------------------------------------------------
Ordinary     least squares regression ............
LHS=G        Mean                 =      226.09444

Standard deviation   =       50.59182
Number of observs.   =             36

Model size   Parameters           =              7
Degrees of freedom   =             29

Residuals    Sum of squares       =      778.70227
Standard error of e  =        5.18187  <*****  sqr[778.70227/(36 – 7)]

Fit          R-squared            =         .99131
Adjusted R-squared   =         .98951

Model test   F[  6,    29] (prob) =   551.2(.0000)
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X
--------+-------------------------------------------------------------
Constant|   -7.73975        49.95915        -.155   .8780

PG|   -15.3008***      2.42171       -6.318   .0000      2.31661
Y|     .02365***       .00779        3.037   .0050      9232.86

TREND|    4.14359**       1.91513        2.164   .0389      17.5000
PNC|    15.4387        15.21899        1.014   .3188      1.67078
PUC|   -5.63438         5.02666       -1.121   .2715      2.34364
PPT|   -12.4378**       5.20697       -2.389   .0236      2.74486

--------+-------------------------------------------------------------
Create  ; trend=year-1960$
Namelist; x=one,pg,y,trend,pnc,puc,ppt$
Regress ; lhs=g ; rhs=x$
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X’X

(X’X)-1

s2(X’X)-1

Example (Greene): Gasoline Regression Results

OLS Estimation – Example in R

• Example: 3 Factor Fama-French Model (continuation) for IBM: 

Returns <- read.csv("http://www.bauer.uh.edu/rsusmel/phd/k-dis-ibm.csv", head=TRUE, 
sep=",")

b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X′X)-1X′ y  (OLS regression)

e <- y - x%*%b # regression residuals, e

RSS <- as.numeric(t(e)%*%e) # RSS

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared  (see Later)

Sigma2 <- as.numeric(RSS/(T-k)) # Estimated σ2 = s2

SE_reg <- sqrt(Sigma2) # Estimated σ – Regression stand error

Var_b <- Sigma2*solve(t(x)%*% x) # Estimated Var[b|X] = s2 (X′X)-1

SE_b <- sqrt(diag(Var_b)) # SE[b|X] 

t_b <- b/SE_b # t-stats (See Chapter 4)
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OLS Estimation – Example in R
> R2

[1] 0.5679013

> SE_reg

[1] 0.1973441

> t(b)

x1         x2          x3

[1,] -0.2258839  1.061934  0.1343667  -0.3574959

> SE_b

x1         x2         x3 

[1,] 0.01095196  0.26363344   0.35518792  0.37631714 

> t(t_b)

x1        x2         x3

[1,] -20.62498 4.028071 0.3782976 -0.9499857

Note: Again, you should get the same numbers using R’s lm (linear model fit): 

fit <- lm(y~x -1)

summary(fit)

Bootstrapping

• The bootstrap is a method for estimating the sampling distribution of a 
statistic, θ = θ(x1, x2, x3, ..., xN), by resampling from the ED, where 

x1, x2, x3, ..., xN ~ i.i.d. F (unknown)

• We usually have one sample of size N.  We do not have replicated 
samples to get a sampling distribution for θ.

• A large sample from a finite population should be well representative 
of the full population itself. Replicated samples (with replacement) 
from the original sample, which would just be an i.i.d. sample from the 
empirical CDF (ED), could be regarded as proxies for replicated 
samples from the population itself, provided N is large. 

• Now, we have a bootstrap distribution.
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Bootstrapping

• The DGP that generated the original data is unknown, and so it 
cannot be used to generate simulated data: 

 the bootstrap DGP estimates the unknown true DGP.

• Recall the Fundamental Theorem of Statistics: The empirical distribution 
(ED) of a set of independent drawings of a RV generated by some 
DGP converges to the true CDF of the RV under the DGP. This is 
just as true of simulated drawings.

• Then, an easy choice for an approximating distribution is the ED of 
the observed data. That is, the ED becomes a “fake population.” John 
Fox (2005, UCLA): 

“The population is to the sample as the sample is to the bootstrap samples.”

• Suppose we have a dataset with N i.i.d. observations drawn from F(x): 

{x1, x2, x3, ..., xN}

From the ED, F*, we sample with replacement N observations: 

{xଵ
∗ , xଶ

∗ , 𝑥ଷ
∗, ..., 𝑥ே

∗ }

This is an empirical bootstrap sample, which is a resample of  the same size 
N as the original data, drawn from F*. 

• With the i.i.d. population assumption , we construct a number B of  
resamples from the ED. This is the bootstrap distribution.

Bootstrap resampling
Sample 

{x1, x2, x3, ..., xN}
Bootstrap samples (B)

Bootstrapping – Bootstrap Distribution
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• Remark: Bootstrapping uses the ED –i.e., sample- as if  it were the 
true CDF. Potentially we have NN resamples. Unless N is small, we use 
a small number of resamples, B.

• For any statistic θ computed from the original sample, we compute a 
statistic θ* by the same formula, but using the resampled data. 

• θ* is computed by resampling the original data; we can compute 
many θ* by resampling many times from F*. Say, we resample θ* B
times. This is the bootstrap distribution of θ defined as.

HB(q) = P*[ θ(xଵ
∗ , xଶ

∗ , 𝑥ଷ
∗, ..., 𝑥ே

∗ ; F*) ≤ q ]

P* = probabilities under the bootstrap distribution.

• Since B is small, HB(q) is itself estimated by a Monte Carlo.

Bootstrapping – Bootstrap Distribution

• Two source of errors: 

(i) Assuming {x௕ଵ
∗ , x௕ଶ

∗ , 𝑥௕ଷ
∗ , ..., 𝑥௕ே

∗ } are resamples from F.

(ii) Estimating HB by a Monte Carlo.

An adequately large B usually makes ignoring (ii) OK.

• Under suitable conditions, the bootstrap distribution, HB, is 
asymptotically first-order equivalent to the asymptotic distribution of 
the statistic of interest, H. The bootstrap distribution, HB, is consistent.

• Typical “suitable conditions” for the mean, under an L2 metric: i.i.d.
data with E[X2]< ∞.

• Rule of thumb: If θ admits a CLT, a bootstrap is at least consistent.

Bootstrapping – Consistency
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• Delta Theorem: If θ admits a CLT and g() is a smooth function, then, 
g(θ) also admits a CLT. 

• Following the rule of thumb, the bootstrap should be consistent for 
g(θ) if it is consistent for θ.

• Many situations where the bootstrap fails are due to the lack of 
smoothness of g(). 

Bootstrapping – Consistency: Delta Method

• Q: If θ admits a CLT, why use a bootstrap?

A: A theoretical results establishes that for certain types of statistics, 
the bootstrap approximation is more accurate than the approximation 
provided by the CLT. 

The CLT (a normal is symmetric) cannot capture information about 
the skewness in the finite sample distribution of θ. The bootstrap does 
(think of an Edgeworth expansion).

This is called “second-order accuracy of the bootstrap.”

• In practice, the accuracy of bootstraps is known through simulations.

Bootstrapping – Consistency: Second-order
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• The bootstrap is simple and built around the ED and the i.i.d. 
assumption, but it is not limited to those situations.

• Variations:

- If the ED is used, the method is usually called the nonparametric 
bootstrap. 

- If the y’s and the x’s are sampled together, this method is sometimes 
called the paired bootstrap –for example,  in a regression. 

- If blocks of data are sample together, the method is called block 
bootstrap –for example, in the presence of correlated data.

- If the data from the ED is smoothed before drawing from it, the 
method is called smoothed bootstrap. 

Bootstrapping – Variations

• We have a collection of  estimated θ*:

{θ෠ଵ
∗ , θ෠ଶ

∗ , θ෠ଷ
∗ , ..., θ෠஻

∗ }.

From this collection of  θ෠*’s, we can compute the mean, the variance, 
skewness, draw a histogram, etc., and confidence intervals.

• Bootstrap Steps:

1. From the original sample, draw random sample with size N.

2. Compute statistic θ from the resample in 1: θ෠ଵ
∗ .

3. Repeat steps 1 & 2 B times  Get B statistics: {θ෠ଵ
∗ , θ෠ଶ

∗ , θ෠ଷ
∗ , ..., θ෠஻

∗ }

4. Compute moments, draw histograms, etc. for these B statistics.

• Recall that with a large enough B, the LLN allows us to use the θ෠*’s to 
estimate the distribution of  θ, F(θ). The variation in θ෠ is well 
approximated by the variation in θ෠*. 

Bootstrapping – In practice: Steps
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• Efron (1979) is the seminal paper. But, the related literature is older. 

• It became popular in the 1980’s due to the explosion of computer 
power. 

• Disadvantage: Only consistent results, no finite sample results. 

• Advantage: Simplicity.

• While it is a method for improving estimators, it is well 

known as a method for estimating standard errors, bias 

and constructing C.I. for parameters.

Bradley Efron (1938, USA) 

Bootstrapping – Pros and Cons

• Bootstrapping provides a very general method to estimate a wide 
variety of statistics. It is most useful when: 

(1) A “formula” is problematic because its assumptions are dubious.

(2) A formula holds only as N → ∞, but N is not very big.

(3) A formula is complicated or it has not even been worked out yet. 

• The most common econometric applications are situations where 
you have a consistent estimator of a parameter of interest, but it is 
hard or impossible to calculate its standard error or its C.I.

• Bootstrapping is easiest to implement if the estimator is “smooth,” 
√N-consistent and based on an i.i.d. sample. In other situations, it is 
more complicated.

Bootstrapping in Economics
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• You are interested in the relation between CEO’s education (X) and 
firm’s long-term performance (y). You have 1,500 observations on 
both variables. You estimate the correlation coefficient, ρ, with its 
sample counterpart, r. You find the correlation to be very low.

• Q: How reliable is this result? The distribution of r is complicated. 
You decide to use a bootstrap to study the distribution of r.

• Randomly construct a sequence of B samples (all with N=1,500). Say,

B1 = {(x1,y1), (x3,y3), (x6,y6), (x6,y6), ..., (x1458,y1458)} ⇒ r 1
B2 = {(x5,y5), (x7,y7), (x11,y11), (x12,y12), ..., (x1486,y1486)} ⇒ r 2

....

BB = {(x2,y2), (x2,y2), (x2,y2), (x3,y3), ..., (x1499,y1499)} ⇒ r B

Bootstrapping: Simple example

• We rely on the observed data. We take it as our “fake population” 
and we sample from it B times.

•  We have a collection of bootstrap subsamples. 

• The sample size of each bootstrap subsample is the same, N. Thus, 
some elements are repeated.

• Now, we have a collection of estimators of ρi’s: {r1, r2, r 3, ..., r B}. We 
can do a histogram and get an approximation of the probability 
distribution. We can calculate its mean, variance, kurtosis, confidence 
intervals, etc.

Bootstrapping: Simple example – Remarks
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• We bootstrap the correlation between the returns of IBM & the S&P 
500, using monthly data 1990-2018, with B = 1,000 (with r= 0.341194).

dat_xy<-read.table("http://www.bauer.uh.edu/rsusmel/phd/k-dis-ibm.csv", sep=",", header=T)

sim_size = 1000

library(boot)

# function to obtain correlation from the data

cor_xy <- function(data, i) {

d <- data[i,]

return(cor(d$IBM,d$SP500))

}

# bootstrapping with sim_size replications

boot.samps <- boot(data=dat_xy, statistic=cor_xy, R=sim_size)

# view stored bootstrap samples and compute mean

boot.samps$t # show 1,000 boostrapped correlation coeff

mean(boot.samps$t) # calculates mean of 1,000 correlation coeff

Bootstrapping: Simple example in R

> boot.samps$t[1:20] #show first 20 bootstrapped correlations coeff -i.e., r

[1] 0.2394950 0.3915076 0.2474868 0.3340402 0.2650797 0.2483522 0.3811410

[8] 0.3713640 0.3648230 0.3375564 0.4060621 0.3203225 0.3025321 0.2993649

[15] 0.3293505 0.3500546 0.3153994 0.3028840 0.3809710 0.4645849

>mean(boot.samps$t) # calculates mean of boot.samps$t (size = 1,000)
[1] 0.3432176
>
> sd(boot.samps$t) # calculates SD of boot.samps$t (size = 1,000)
[1] 0.06141714 
>
># Empirical 95% C.I. for bootstrapped r’s
> quantile(boot.samps$t,.025)

2.5% 
0.2131369 
> quantile(boot.samps$t,.975)

97.5% 
0.4602344 

Bootstrapping: Simple example in R
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> # Elegant histogram
> hist(boot.samps$t,main="Histogram for Bootstrapped Correlations", 
+      xlab="Correlations", breaks=20)

>mean(boot.samps$t)
[1] 0.3432176
>
> sd(boot.samps$t)
[1] 0.06141714 
>
> quantile(boot.samps$t,.025)

2.5% 
0.2131369 
> quantile(boot.samps$t,.975)

97.5% 
0.4602344 

Bootstrapping: Simple example in R

Histogram for Bootstrapped Correlations
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• It is not clear. There are many theorems on asymptotic convergence, 
but there are no clear rules regarding B. There are some suggestions. 

Efron and Tibsharani’s (1994) textbook recommends B=200 as 
enough. (Good results with B as low as 25!)

The purposed of the bootstrap plays a role in B. For example, in 
hypothesis testing, increasing B increases the power of test. In this 
context, Andrews and Buchinsky (2000, Econometrica) propose a 3-
step process to select B. Davidson and Mackinnon (2001) attempt to 
improve on A & B’s procedure –i.e., they get a lower B.

D&M suggest selecting B using a pretest procedure. In the D&M 
simulations, on average, B is between 300 and 2,400.

Bootstrapping: How many bootstraps?
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• Wilcox’s (2010) textbook recommends “599 [...] for general use.”

Rule of thumb: Start with B=100, then, try B=1,000, and see if your 
answers have changed by much. Increase bootstraps until you get 
stability in your answers.

•  But, be careful. Recall that we have NN possible subsamples.

• Note:  A jack-knife is a special kind of bootstrap. Each bootstrap 
subsample has all but one of the original elements of the list. For 
example, if original N=20, then there are 20 jack-knife subsamples.

Bootstrapping: How many bootstraps?

Example: We bootstrap the correlation between IBM returns and 
S&P 500 returns, using B = 1,000. (Sample r = 0.3411941.)

> # view bootstrap results
> sim_size = 1000
> boot.samps
Call:
boot(data = dat_xy, statistic = cor_xy, R = sim_size)

Bootstrap Statistics :
original      bias    std. error

t1* 0.3411941 0.003224424  0.05860686
> mean(boot.samps$t)
[1] 0.3444186
> quantile(boot.samps$t,.025)

2.5% 
0.2283223 
> quantile(boot.samps$t,.975)

97.5% 
0.4535492

Bootstrapping: How many bootstraps?

• Results do not change that much.

Histogram for Bootstrapped Correlations
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Example: We bootstrap the correlation between IBM returns and 
S&P 500 returns, using B = 100. (Sample r = 0.3411941.)

> # view bootstrap results
> sim_size = 100
> boot.samps #show results
Call:
boot(data = dat_xy, statistic = cor_xy, R = sim_size)

Bootstrap Statistics :
original      bias   std. error

t1* 0.3411941 -0.003574917  0.06051004
> mean(boot.samps$t)
[1] 0.3376192
> quantile(boot.samps$t,.025)

2.5% 
0.2301927 
> quantile(boot.samps$t,.975)

97.5% 
0.4609417 

Bootstrapping: How many bootstraps?

Histogram for Bootstrapped Correlations
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• Results do not change that much.

Example: We bootstrap the correlation between IBM returns and 
S&P 500 returns, using B = 25. (Sample r = 0.3411941.)

> # view bootstrap results
> sim_size = 25
> boot.samps$t
Call:
boot(data = dat_xy, statistic = cor_xy, R = sim_size)

Bootstrap Statistics :
original      bias   std. error

t1* 0.3411941 0.006412186 0.04230658
mean(boot.samps$t)
[1] 0.3476063
> quantile(boot.samps$t,.025)

2.5% 
0.2706706 
> quantile(boot.samps$t,.975)

97.5% 
0.4110658

Bootstrapping: How many bootstraps?

Histogram for Bootstrapped Correlations
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• 97.5% C.I., a bit different. But, overall, within range.
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•  You can estimate the bias of the estimator 𝜃෠:

Bias(𝜃෠) = (1/B)r   (r) − 𝜃෠

Note: In the OLS case, 𝜃෠ = b is an unbiased estimator, but as an 
estimate, the bias can be non-zero. This estimate must be analyzed 
along the SE’s.

Example:  In the previous bootstrapping  correlations exercise 
(B=25), R (boots.samps) displays the bias (relative to sample r =
0.3411941, “original” below):
Bootstrap Statistics :

original bias std. error

t1* 0.3411941 0.006412186 0.04230658

bias = 0.3476063 − 0.3411941 = 0.0064122

Bootstrapping: Bias





Bootstrapping: Var[b]

• Some assumptions in the CLM are not reasonable –for example, 
normality. Note that by assuming normality, we also assume the 
sampling distribution of b.

• We can use a bootstrap to estimate the sampling distribution of b. 
Then, we can estimate the Var[b].

• Monte Carlo (MC=repeated sampling) method:

1.  Estimate model using full sample (of size N)  ⇒ we get b

2.  Repeat B times:

- Draw T observations from the sample, with replacement

- Estimate  with b(r).  

3.  Estimate variance with 

Vboot =  (1/B) [b(r) - b][b(r) - b]’
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• In the case of one parameter, say b1: Estimate variance with 

Varboot[b1] = (1/B)r [b1(r) – b1 ]2

• You can also estimate Var[b1] as the variance of b1 in the bootstrap

Varboot[b1] = (1/B)r [b1(r) – mean(b1-r) ]2;

mean(b1-r) = (1/B)r b1

Note: Obviously, this method for obtaining standard errors of

parameters is most useful when no formula has been worked out for

the standard error (SE), or the formula is complicated –for example, in 
some 2-step estimation procedures.

Bootstrapping: Var[b]

Example: 3 Factor Fama-French Model for IBM (continuation): 
> fit <- lm(y ~ x -1)

> summary(fit)
Call:

lm(formula = y ~ x - 1)

Residuals:

Min       1Q   Median       3Q      Max 

-0.48076 -0.16205  0.02532  0.18265  0.36144 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

x  -0.22588 0.01095 -20.625 < 2e-16 ***

xx1 1.06193 0.26363 4.028 6.98e-05 ***

xx2 0.13437 0.35519 0.378 0.705    

xx3 -0.35750 0.37632 -0.950 0.343    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1973 on 332 degrees of freedom

Multiple R-squared:  0.5679,    Adjusted R-squared:  0.5627 

F-statistic: 109.1 on 4 and 332 DF,  p-value: < 2.2e-16

Bootstrapping: Var[b] in R
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Example: 3 Factor Fama-French Model for IBM (continuation): 
> sim_size <- 1000

> library(boot)

> # function to obtain b from the data

> bols_xy <- function(data, i) {

+ d <-data[i,]

+ y1 <- d$IBM; rf <- d$Rf; y <- y1 - rf

+ x1 <- d$Rm_Rf; x2 <- d$SMB; x3 <- d$HML

+ T <- length(x1)

+ x0 <- matrix(1,T,1)

+ x <- cbind(x0,x1,x2,x3)

+ b_i <- solve(t(x)%*% x)%*% t(x)%*%y

+   return(b_i)

+ }

> # bootstrapping with sim_size replications

> boot.samps <- boot(data=Returns, statistic=bols_xy, R=sim_size)

> 

> # view stored bootstrap samples and compute mean

Bootstrapping: Var[b] in R

Example: 3 Factor Fama-French Model (continuation): 
> boot.samps # original: OLS b;  bias: [OLS b - mean(boot.samps$t)];  std. error: sqrt{Var(b)}

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = Returns, statistic = bols_xy, R = sim_size)

Bootstrap Statistics :

original        bias    std. error

t1* -0.2258839 -0.0001378402  0.01087016

t2* 1.0619343  0.0129093074  0.27145374

t3* 0.1343667  0.0431736591  0.41107154

t4* -0.3574959 0.0121591493  0.41944286

> apply(boot.samps$t,2,mean)

[1] -0.2260218  1.0748436  0.1775404 -0.3453368

> apply(boot.samps$t,2,sd)

[1] 0.01087016 0.27145374 0.41107154 0.41944286

Bootstrapping: Var[b] in R
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• Example: 3 Factor Fama-French Model (continuation): 
Bootstrap Statistics :

original        bias    std. error

t1* -0.2258839 -0.0001378402  0.01087016

t2* 1.0619343  0.0129093074 0.27145374

t3* 0.1343667  0.0431736591 0.41107154

t4* -0.3574959 0.0121591493  0.41944286

> bs_m <- apply(boot.samps$t,2,mean)

> bols_m <- fit$coefficients

> bols_m - bs_m #Bootstrap b bias

x          xx1          xx2          xx3 

-0.0001378402 0.0129093074 0.0431736591 0.0121591493

> apply(boot.samps$t,2,sd)

[1] 0.01087016 0.27145374 0.41107154 0.41944286

> bols_sd <- coef(summary(fit))[, "Std. Error"]

> bols_sd

x       xx1        xx2        xx3 

0.01095196 0.26363344 0.35518792 0.3763 1714

Bootstrapping: Var[b] in R

Example: 3 Factor Fama-French Model for IBM (continuation): 

• Comparison of SE(b): OLS vs Bootstrapped (B = 1,000) 

Bootstrapping: Var[b] in R

b (OLS) b (Boot) SE (OLS) SE (Boot)

Constant -0.2259 -0.2259 0.0110 0.0110

Market 1.0619 1.0848 0.2636 0.2738

SMB 0.1344 0.1629 0.3552 0.4111

HML -0.3575 -0.3482 0.3763 0.4280

Note: Mean of  bootstrapped b’s: 
-0.22586  1.08483  0.16294  -0.34820
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• From the B samples, we compute variances and SD as usual.

> # print the first 10 of  B=1,000 bootstrap samples

x   xMkt_RF xSMB xHML
[1,] -6.109007e-03 0.9186830 -0.1299534100 -0.163421636
[2,] -1.757503e-03 0.8333006 -0.2067565390 -0.147604991
[3,] -3.907573e-03 0.9746878 -0.2870744815 -0.169189619
[4,]  1.596103e-03 0.9185157 -0.2937731120 -0.296972497
[5,] -8.409239e-03 0.7309406 -0.0681714313 -0.149883639
[6,] -1.998929e-03 0.9133751 -0.3001713380 -0.315913280
[7,] -6.289286e-03 0.9441856 -0.2276894034 -0.058924929
[8,] -5.533354e-03 0.8210057 -0.2221866298 -0.078512341
[9,] -6.152301e-03 1.0389917 -0.2592958758 -0.237930809
[10,] -3.778058e-03 0.9544829 -0.1859554067 -0.217702583

Bootstrapping: Estimating Var[b]

• Example: 3 Factor Fama-French Model (continuation): 
> sim_size <- 100

> boot.samps <- boot(data=Returns, statistic=bols_xy, R=sim_size)

> boot.samps

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = Returns, statistic = bols_xy, R = sim_size)

Bootstrap Statistics :

original       bias    std. error

t1* -0.2258839 -0.001875955  0.01079366

t2*  1.0619343 - 0.048363387  0.27853542

t3* 0.1343667  0.029859101 0.38133799

t4* -0.3574959  0.061470947  0.43286410

> apply(boot.samps$t,2,mean)

[1] -0.2277599  1.0135709  0.1642258 -0.2960250

> apply(boot.samps$t,2,sd)

[1] 0.01079366 0.27853542 0.38133799 0.43286410

Bootstrapping: Var[b] in R
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Bootstrapping: Some Remarks

• Q: How reliable is bootstrapping? 

- There is still no consensus on how far it can be applied, but for now 
nobody is going to dismiss your results for using it.

- There is a general agreement that for normal (or close to normal) 
distributions it works well.

- Bootstrapping is more problematic for skewed distributions.

- It can be unreliable for situations where there are not a lot of 
observations. Typical example in finance: estimation of quantiles in the 
tails of returns distributions. 

Note: We presented two simple examples. There are many variations 
that have not been discussed. 

• Always keep in mind: Convergence in distribution of a random 
sequence does not imply convergence of moments – see Billingsley’s 
textbook (1968).

• Suppose you are interested in estimating a moment, say the variance 
(but, it can be skewness or kurtosis), through a bootstrap. The 
consistency of the bootstrap distribution, however, does not guarantee 
the consistency of the variance of the bootstrap distribution (the 
“bootstrap variance”) as an estimator of the asymptotic variance.

In the usual situations we find in econometrics, the bootstrap variance 
tends to work well and is consistent; but for other statistics (skewness 
or kurtosis) the consistency of the bootstrap estimator is difficult to 
establish.

Bootstrapping: Some Remarks
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Data Problems

•  Three important data problems:
(1) Missing Data – very common, especially in cross sections and long 
panels. 
(2) Outliers – unusually high/low observations. 
(3) Multicollinearity – there is perfect or high correlation in the 
explanatory variables. 

• In general, data problems are exogenous to the researcher. We 
cannot change the data or collect more data.

“If  the data were perfect, collected from well-designed randomized experiments, 
there would hardly be room for a separate field of  econometrics.” Zvi 
Griliches (1986, Handbook of  Econometrics) 

Missing Data

• General Setup
We have an indicator variable, si. If si = 1, we observe Yi, and if si = 0 
we do not observe Yi.

Note: We always observe the missing data indicator si. 

• Suppose we are interested in the population mean θ = E[Yi].

• With a lot of information – large T–, we can learn p = E[si] and μ1 = 
E[Yi| si = 1], but nothing about μ0 = E[Yi|si = 0]. 

• We can write: θ = p · μ1 +(1 − p) · μ0.

Problem: Since even in large samples we learn nothing about μ0, it 
follows that without additional information/assumptions there is no 
limit on the range of possible values for θ.
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Missing Data

• General Setup
• Now, suppose the variable of interest is binary: Yi ∈ {0, 1}. We also 
have an explanatory variable of Yi, say Wi.

• Then, the natural (not data-informed) lower and upper bounds for 
μ0 are 0 and 1 respectively. 

• This implies bounds on θ:
θ ∈ [θLB, θUB] = [p · μ1, p · μ1 +(1 − p)].

These bounds are sharp, in the sense that without additional
information we can not improve on them.

Formally, for all values θ ∈ [θLB, θUB], we can find a joint distribution
of (Yi,Wi) that is consistent with the joint distribution of the observed 
data and with θ.

Missing Data

• Now, suppose we have the CLM: yi  = xi β +εi
• We use the selection indicator, si , where si = 1 if we can use 
observation i. Then,

b =  + (Σi si xi′xi /T)-1 (Σi si xi′i /T)

• For unbiased (and consistent) results, we need E[si xi′i ]=0, 

implied by E[i|si xii]=0 (*)

A sufficient condition for (*) is E[i|xi]=0, si = h(xi).

Note:· Zero covariance assumption in the population, E[xi′i ]= 0, is 
not sufficient for consistency when si = h(xi) 

⇒ selection is a function of xi (selection bias).
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Missing Data

Example of Selection Bias: Determinants of Hedging.

A researcher only observes companies that hedge. Estimating the 
determinants of hedging from this population will bias the results!

• If missing observations are randomly (exogenously) “selected,” it is 
likely safe to ignore problem. Rubin (1976) calls this assumption  
“missing completely at random” (or MCAR).

In general, MCAR is rare. In general, it is more common to see 
“missing at random,” where missing data depends on observables (say, 
education, sex) but one item for individual i is NA (Not Available). 

If in the regression we “control” for the observables that influence 
missing data, it is OK to delete the whole observation for i.

Missing Data

Otherwise, we can:

a. Fill in the blanks –i.e., impute values to the missing data– with 
averages, interpolations, or values derived from a model. For 
example, use the Data-augmentation methods in Bayesian analysis.

b. Use (inverse) probability weighted estimation. Here, we inflate or 
“over-weight” unrepresented subjects or observations. 

c. Heckman selection correction. We build a model for the h(xi).

• Little and Rubin (2002) provide an overview of methods for analysis 
with missing data.



RS – Lecture 2

28

Outliers

• Many definitions: Atypical observations, extreme values, conditional 
unusual values, observations outside the expected relation, etc. 

• In general, we call an outlier an observation that is numerically 
different from the data. But, is this observation a “mistake,” say a 
result of measurement error, or part of the (heavy-tailed) distribution?

• In the case of normally distributed data, roughly 1 in 370 data points 
will deviate from the mean by 3xSD. Suppose  T=1000. Then, 9 data 
points deviating from the mean by more than 3xSD indicates outliers. 
But, which of the 9 observations can be classified as an outliers?

Problem with outliers: They can affect estimates. For example, with 
small data sets, one big outlier can seriously affect OLS estimates.

• Several identifications methods:

- Eyeball: Look at the observations away from a scatter plot. 

- Standardized residual:  Check for errors that are two or more standard 
deviations away from the expected value.

- Leverage statistics: It measures the difference of an independent data 
point from its mean. High leverage observations can be potential 
outliers. Leverage is measured by the diagonal values of the P matrix:

ht = 1/T + (xt - )/[(T-1)sx
2 ].

But, an observation can have high leverage, but no influence.

- Influence statistics: Dif beta. It measures how much an observation 
influences a parameter estimate, say bj. Dif beta is calculated by 
removing an observation, say i, recalculating bj, say bj(-i), taking the 
difference in betas and standardizing it. Then,  

Dif betaj(-i) = [bj - bj(-i)]/SE[bj].

Outliers: Identification

x̂

x
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Outliers: Leverage & Influence

• Deleting the observation in the upper right corner has a clear effect 
on the regression line. This observation has leverage and influence.

• A related popular influence statistic is Distance D (as in Cook’s D). It 
measures the effect of deleting an observation on the fitted values,  
say ŷj. 

Dj = Σj [ŷj - ŷj(-i)]/[K MSE]

where K is the number of parameters in the model and MSE is mean 
square error of the regression model.

• The influence statistics are usually compared to some ad-hoc cut-off 
values used for identifying highly influential points, say Di>4/T.

• The analysis can also be carried out for groups of observations. In 
this case, we would be looking for blocks of highly influential 
observations.

Outliers: Influence

x̂



RS – Lecture 2

30

• General rules of thumb used to identify outliers:

Measure Value

abs(stand resid) > 2

leverage >(2k+2)/T

abs(Dif Beta) > 2/sqrt(T)

Cook's D > 4/T

Outliers: Summary of  Rules of  Thumb

Example: Cook’s  D for IBM returns using the 3 FF Factor Model

mod <- lm(y ~ x-1)
cooksd <- cooks.distance(mod)
# plot cook's distance
plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance") 
# add cutoff line
abline(h = 4*mean(cooksd, na.rm=T), col="red")  # add cutoff line
# add labels
text(x=1:length(cooksd)+1, y=cooksd, labels=ifelse(cooksd>4*mean(cooksd, 
na.rm=T),names(cooksd),""), col="red")  # add labels

# influential row numbers
influential <- as.numeric(names(cooksd)[(cooksd > 4*mean(cooksd, na.rm=T))])  
# print first 10 influential observations.

head(dat_xy[influential, ],n=10L) 

Note: There are easier ways to plot Cook’s D and identify the 
suspect outliers. The package olsrr can be used for this purpose too.

Outliers: Example
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Example (continuation): Cook’s  D for IBM (3 Factor-Model)

Outliers: Example

Example (continuation): Cook’s  D for IBM (3 Factor-Model)

> # print first 10 influential observations.
>head(dat_xy[influential, ],n=10L) 

y V1  Mkt_RF SMB     HML
8   -0.16095068  1  0.0475  0.0294  0.0219
94   0.01266444  1  0.0959 -0.0345 -0.0835
227 -0.04237227  1 0.1084 -0.0224 -0.0403
237 -0.19083575  1  0.0102  0.0205 -0.0210
239 -0.30648638  1  0.0153  0.0164  0.0252
282  0.07787100  1 -0.0597 -0.0383  0.0445
286  0.20734626 1  0.0625 -0.0389  0.0117
291  0.15218986 1  0.0404 -0.0565 -0.0006
306  0.13928315  1 -0.0246 -0.0512 -0.0096
315  0.16196934 1  0.0433  0.0400  0.0253

Outliers: Example
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Example: Different tools to check for outliers for IBM returns
We will use the package olsrr.

library(olsrr) # need to install package olsrr
x_resid <- residuals(mod)
x_stand_resid <- x_resid/sd(x_resid) # standardized residuals
sum(x_stand_resid > 2) # Rule of thumb count (5% count is OK)
x_lev <- ols_leverage(mod) # leverage residuals
sum(x_lev >(2*k+2)/T) # Rule of thumb count (5% count is OK
ols_plot_resid_stand(mod) # Plot standardized residuals 
ols_plot_cooksd_bar(mod) # Plot Cook’s D measure
ols_plot_dffits(mod) # Plot Difference in fits
ols_plot_dfbetas(mod) # Plot Difference in betas

> sum(x_lev >(2*k+2)/T)
[1] 32 # 5%? = 32/569 = 0.0562
> sum(x_stand_resid > 2)
[1] 13 # 5%? = 13/569 = 0.0228

Outliers: Example

Example (continuation):
>ols_plot_cooksd_bar(mod) # Plot Cook’s D measure

Outliers: Example
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Example (continuation):
>ols_plot_dfbetas(mod)

Outliers: Example

• The histogram, Boxplot, and quantiles helps us see some potential 
outliers, but we cannot see which observations are potential outliers. 
For these, we can use Cook’s D, Diffbeta’s, standardized residuals 
and leverage statistics, which are estimated for each i .

Observation
Type           Proportion      Cutoff

Outlier            0.0356      2.0000    (abs(standardized residuals) > 2)
Outlier 0.1474 2/sqrt(T)  (diffit > 2/sqrt(1038)=0.0621)
Outlier 0.0501 4/T (cookd > 4/1038=0.00385)
Leverage     0.0723 (2k+2)/T (h=leverage > .00771)

Outliers: Application - Rules of  Thumb
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• Typical solutions: 

- Use a non-linear formulation or apply a transformation (log, square 
root, etc.) to the data.

- Remove suspected observations. (Sometimes, there are theoretical 
reasons to remove suspect observations. Typical procedure in finance: 
remove public utilities or financial firms from the analysis.)

- Winsorization of the data.

- Use dummy variables. 

- Use LAD (quantile) regressions, which are less sensitive to outliers.

- Weight observations by size of residuals or variance (robust 
estimation).

• General rule: Present results with or without outliers.

Outliers: What to do?

Multicollinearity

•  The X matrix is singular (perfect collinearity) or near singular  
(multicollinearity).

• Perfect collinearity. Not much we can do. OLS will not work => 
X'X cannot be inverted. The model needs to be reformulated.

• Multicollinearity.  OLS will work.  is unbiased.  The problem is in 
(X'X)-1. Consider the OLS estimator of k ⇒ E[bk] = k

⇒ The variance of bk is the kth diagonal element of 2(X’X)-1 .
We can show that the estimated variance of bk is

Var[bk|X] = 
௦మ

ሺଵିோೖ.
మ ሻ ∑ ሺ௫೔ೖ ି ௫ೖ

೙
೔సభ ሻమ

.

 the higher 𝑅௞.
ଶ –i.e., the fit between 𝒙௞ and the rest of the 

regressors–, the higher Var[bk|X].  
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Multicollinearity

• The ratio 
ଵ

ሺଵିோೖ.
మ ሻ

 is called the Variance Inflation Factor of regressor

k, or VIFk. 

It should be equal to 1 when 𝒙௞ is unrelated to the rest of the 
regressors (including a constant). The higher it is, the higher the linear 
correlation between 𝒙௞ and the rest of the regressors. 

• Signs of Multicollinearity:
- Small changes in X produce wild swings in b.
- High R2, but b has low t-stats –i.e., high standard errors
- “Wrong signs” or difficult to believe magnitudes in b.

• There is no cure for collinearity.  Estimating something else is not 
helpful (transforming regressors, principal components, etc).

• There are “measures” of multicollinearity, such as the 
- Condition number of X = max(singular value)/min(singular value) 

- Variance inflation factor = VIFk = 
ଵ

ሺଵିோೖ.
మ ሻ

Multicollinearity: Signs
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• Singular value decomposition (SVD) of any matrix X
X = H Σ GT. 

- The first matrix in SVD: H is (Txk) like X. It has sample principal 
coordinates of X standardized in the sense that HTH=Ik.  Note, 
however, that HHT does not equal identity. H is not an orthogonal 
matrix.

- The middle matrix in SVD: Σ has k non-negative elements. It is a 
diagonal matrix.  It contains the singular values of X, in general in 
descending order.  

- The last matrix of SVD:  G is (kxk) orthogonal in the sense that its 
inverse equals its transpose –i.e., GG = Ik

The matrix G is (kxk) containing columns g1 to gk. The gi are columns 
of G and are direction cosine vectors which orient the i-th principal 
axis of X with respect to the given original axes of the X data.

Multicollinearity: Condition Number

Multicollinearity: Condition Number
• Singular value decomposition (SVD) of matrix X

X = H Σ GT. 

• Computation: The columns of H are orthonormal eigenvectors of 
XXT, the columns of G are orthonormal eigenvectors of XTX, and Σ
is a diagonal matrix containing the square roots of eigenvalues from H
or G in descending order.

• The condition number K# = max(singular value)/ min(singular 
value) assesses the condition of the matrix. 

• Rule of thumb in numerical math: If K#>30 such matrix cannot be 
inverted reliably. Thus, X shows severe multicollinearity.

Note: You can find the SVD written as H as a (TxT), Σ as (Txk), and 
G as (kxk). In both systems, H and G have orthogonal columns –i.e., 
HTH=IT. and GTG=Ik.
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Multicollinearity: VIF and Condition Index

• Belsley (1991) proposes to calculate the VIF and the condition index, 
using RX, the correlation matrix of the standardized regressors:

VIFk = diag(RX
-1)k

Condition Index = κk = sqrt(λ1/ λk)

where λ1> λ2 >... > λp>... are the ordered eigenvalues of RX.

• Belsley’s (1991) rules of thumb for κk:
- below 10 ⟹ good
- from 10 to 30 ⟹ concern 
- greater than 30 ⟹ trouble 
- greater than 100 ⟹ disaster.

• Another common rule of thumb: If VIFk > 5, concern. 

• Best approach:  Recognize the problem and understand its 
implications for estimation.

Note: Unless we are very lucky, some degree of multicollinearity will 
always exist in the data. The issue is: when does it become a problem? 

Multicollinearity
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Multicollinearity: Example

Example: Different tools to check for outliers for IBM returns
library(olsrr)
ols_vif_tol(mod)
ols_eigen_cindex(mod)

> ols_vif_tol(mod)
Variables Tolerance      VIF

1   xMkt_RF 0.8901229 1.123440
2   xSMB 0.9147320 1.093216
3   xHML 0.9349904 1.069530
> ols_eigen_cindex(mod)
Eigenvalue Condition Index  intercept    xMkt_RF xSMB xHML

1  1.4506645 1.000000 0.01557614 0.24313961 0.212001760 0.1518949
2  1.0692689    1.164770 0.66799183 0.01432250 0.001789253 0.2129328
3  0.7967889    1.349310 0.16184731 0.01239755 0.576432492 0.4107435
4  0.6832777   1.457085 0.15458473 0.73014033 0.209776495 0.2244287

Note: Multicollinearity does not seem to be a problem.

Multicollinearity in Other Models

• Looking ahead to nonlinear models:  The preceding results 
may not extend beyond the linear regression model:

In a nonlinear model, lack of multicollinearity among the 
variables is no guarantee that a similar phenomenon related to 
certain other functions of the x’s might not still reappear.


