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Lecture 3
Discrete Choice Models

(for private use, not to be posted/shared online).

Limited Dependent Variables

• So far, implicitly, we have assumed that the variable 𝑦௜ is a 
continuous random variable.

• But, assumptions (A1)-(A4) in the CLM does not require continuity 
for 𝑦௜: 𝑦௜ can have discontinuities, it can be discrete, follow counts, 
etc. Thus, we can use OLS with “limited dependent variables”. 

• Suppose, we have binary data, that is, 𝑦௜ = (0, 1), for example, 
enroll/not enroll in an MBA program. We also have a vector of  
explanatory variables, 𝒙௜ , for example, work experience and age.

We use a linear model. Then, E[𝑦௜] = 𝒙௜β. (We call this a linear 
probability model). This  model has two main limitations: 

1) Fitted values may get out of  range. 

2) Marginal effects are constant.
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Example: We simulate binary data (0, 1) for the dependent variable,
𝑦, & a continuous variable for 𝑥 . We plot the regression (fitted) line 
in the scatter plot of  the data.

Limited Dependent Variables

Limited Dependent Variables

Discrete Dependent Variable Continuous dependent variable

Truncated/
Censored 

Regr. Models

Discrete 
Choice 

Models (DCM)
Duration 
(Hazard)
Models

• With limited dependent variables, the conditional mean is rarely 
linear. We need to use adjusted models and adjust interpretations. For 
example, with binary data, we think of  the the dependent variable, 𝑦, 
in terms of  probabilities.

• Different types of  discontinuities generate different models:
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Limdep: Discrete Choice Models (DCM)

• We usually study discrete data that represent a decision, a choice.

• Sometimes, there is a single choice. Then, the data come in binary 
form with a “1” representing a decision to do something and a “0” 
being a decision not to do something.

 Single Choice (binary choice models): Binary Data 

Data: 𝑦௜ = 1 (yes/accept) or 0 (no/reject)

Examples: Trade a stock or not, for or against a board nominee, etc.

• Or we can have several choices. Then, the data may come as 1, 2, 
..., 𝐽, where 𝐽 represents the number of choices.

 Multiple Choice (multinomial choice models)

Data: 𝑦௜ = 1(opt. 1), 2 (opt. 2), ....., 𝐽 (opt. 𝐽) 
Examples: CEO candidates, transportation modes, etc.

Limdep: DCM – Binary Choice - Example
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Fly Ground

Limdep: DCM – Mulinomial Choice - Example

Limdep: Truncated/Censored Models

• Truncated variables:

We only sample from (observe/use) a subset of the population. The 
variable is observed only beyond a certain threshold level (‘truncation 
point’).

Examples: Store expenditures, Capex, labor force participation, 
income below poverty line.

• Censored variables:

Values in a certain range are all transformed to/grouped into (or 
reported as) a single value.

Examples: hours worked, exchange rates under CB intervention.

Note: Censoring is a “defect” in the sample data. Presumably, if they 
were not censored, the data would be a representative sample from 
the population of interest.
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0 = Not Healthy 1 = Healthy

Limdep: Censored Health Satisfaction Data

Limdep: Duration/Hazard Models

• We model the time between two events.

Examples:

–Time between two trades.

–Time between cash flows withdrawals from a Mutual fund.

–Time until a consumer becomes inactive/cancels a subscription.

–Time until a consumer responds to direct mail or a questionnaire.
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• Consumers maximize utility. The fundamental choice problem:  

Max U(𝑥ଵ, 𝑥ଶ, …) s. t. prices and budget constraints

• A Crucial Result for the Classical Problem:

–Indirect Utility Function: V = V(p, I)

–Demand System of Continuous Choices

• The Integrability Problem: Utility is not revealed by demands.

Microeconomics behind Discrete Choice
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• Theory is silent about discrete choices.

• Translation to discrete choice.

- Existence of well defined utility indexes: Completeness of rankings

- Rationality: Utility maximization

- Axioms of revealed preferences

• Choice and consideration sets: Consumers simplify choice situations

• Implication for choice among a set of discrete alternatives

• Commonalities and uniqueness

– Does this allow us to build “models?”

– What common elements can be assumed?

– How can we account for heterogeneity?

• Revealed choices do not reveal utility, only rankings which are scale 
invariant.

Theory for Discrete Choice
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• We will model discrete choice. We observe a discrete variable 𝑦௜ and 
a set of variables connected with the decision 𝑥௜ , usually called 
covariates. We want to model the relation between 𝑦௜ and 𝑥௜ .

• It is common to distinguish between covariates 𝑧௜ that vary by units 
(individuals or firms), and covariates that vary by choice (and possibly 
by individual), 𝑤௜௝ . 

Example of 𝒛𝒊′s: individual characteristics, such as age or education. 

Example of 𝒘𝒊𝒋: the cost associated with the choice, for example the 
cost of investing in bonds/stocks/cash, or the price of a product. 

• This distinction is important for the interpretation of these models 
using utility maximizing choice behavior. We may put restrictions on 
the way covariates affect utilities: the characteristics of choice 𝑖
should affect the utility of choice 𝑖, but not the utility of choice 𝑗.

Discrete Choice Models (DCM)

• The modern literature goes back to the work by Daniel McFadden 
in the seventies and eighties (McFadden 1973, 1981, 1982, 1984).

• Usual Notation:

𝑛 = decision maker

𝑖, 𝑗 = choice options

𝑦 = decision outcome

𝑥 = explanatory variables/covariates

 = parameters

𝜀௜ = error term

I[zz] = indicator function (= 1 if zz is true, 0 otherwise). 

Example: I[𝑦 =𝑗| 𝑥] = 1 if 𝑗 was selected (given x)

= 0 otherwise

Discrete Choice Models (DCM)
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• Q: Are the characteristics of  consumers/firms relevant?

• Predicting behavior

- Individual – for example, will a person buy the add-on insurance?

- Aggregate – for example, what proportion of  the population will buy 
the add-on insurance?

• Analyze changes in behavior when  attributes change. For example, 
how will changes in education change the proportion of  who buy the 
insurance?

DCM – What Can we Learn from the Data? 

Application: Health Care Usage (Greene)

German Health Care Usage Data, N = 7,293, Varying Numbers of  Periods
Data downloaded from Journal of  Applied Econometrics Archive. This is an 
unbalanced panel with 7,293 individuals. This is a large data set. There are altogether 
27,326 observations. The number of  observations ranges from 1 to 7. (Frequencies 
are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987). (Downloaded from 
the JAE Archive)
Variables in the file are

DOCTOR  =  1(Number of doctor visits > 0)
HOSPITAL =  1(Number of hospital visits > 0)
HSAT       = health satisfaction, coded 0 (low) - 10 (high) 
DOCVIS    = number of doctor visits in last three months
HOSPVIS  = number of hospital visits in last calendar year
PUBLIC    = insured in public health insurance = 1; otherwise = 0
ADDON = insured by add-on insurance = 1; otherswise = 0
HHNINC = household nominal monthly net income in German marks / 10000.

(4 observations with income=0 were dropped)
HHKIDS =  children under age 16 in the household = 1; otherwise = 0
EDUC = years of schooling 
AGE =  age in years
FEMALE =  1 for female headed household, 0 for male
EDUC =  years of education
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Application: Binary Choice Data (Greene)

Q: Does income affect doctor’s visits? What is the effect of age on 
doctor’s visits? Is gender relevant?

27,326 Observations –
– 1 to 7 years, panel 
– 7,293 households observed 
– We use the 1994 year => 3,337 household observations

Descriptive Statistics
=========================================================
Variable     Mean       Std.Dev.     Minimum      Maximum
--------+------------------------------------------------

DOCTOR|  .657980      .474456      .000000      1.00000
AGE|  42.6266      11.5860      25.0000      64.0000

HHNINC|  .444764      .216586      .340000E-01  3.00000
FEMALE|  .463429      .498735      .000000      1.00000

Application: Health Care Usage (Greene)
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DCM: Setup – Choice Set

1. Characteristics of the choice set

- Alternatives must be mutually exclusive: No combination of choice 
alternatives. For example, no combination of different investments 
types (bonds, stocks, real estate, etc.). 

- Choice set must be exhaustive: all relevant alternatives included. If we 
are considering types of investments, we should include all: bonds; 
stocks; real estate; hedge funds; exchange rates; commodities, etc. If 
relevant, we should include international and domestic financial 
markets.

- Finite (countable) number of alternatives.

DCM: Setup – RUM

2. Random utility maximization (RUM)

Assumption: Revealed preference. The decision maker selects the 
alternative that provides the highest utility. That is,

Decision maker 𝑛 selects choice 𝑖 if   𝑈௡௜ > 𝑈௡௝  𝑗  𝑖

Decomposition of utility: A deterministic (observed), 𝑉௡௝ , and 
random (unobserved) part, 𝜀௡௝ :

𝑈௡௝ = 𝑉௡௝ + 𝜀௡௝

- The deterministic part, 𝑉௡௝ , is a function of some observed 
variables, 𝒙௡௝ (age, income, sex, price, etc.):

𝑉௡௝ =  + 1 𝐴𝑔𝑒௡ + 2 𝐼𝑛𝑐𝑜𝑚𝑒௡௝ + 3 𝑆𝑒𝑥௡ + 4 𝑃𝑟𝑖𝑐𝑒௡௝

- The random part, 𝜀௡௝ , follows a distribution. For example, a normal.
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DCM: Setup – RUM

2. RUM (continuation)

• We think of an individual’s utility as an unobservable variable, with 
an observable component, 𝑉௡, and an unobservable (tastes?) random 
component, 𝜀௡. 

• The deterministic part is usually intrinsic linear in the parameters:

𝑉௡௝ =  + 1 𝐴𝑔𝑒௡ + 2 𝐼𝑛𝑐𝑜𝑚𝑒௡௝ + 3 𝑆𝑒𝑥௡ + 4 𝑃𝑟𝑖𝑐𝑒௡௝

- In this formulation, the parameters, , are the same for all 
individuals. There is no heterogeneity. This is a useful assumption for 
estimation. It can be relaxed.

2. RUM (continuation)

Probability Model: Since both 𝑈’s are random, the choice is random. 
Then, 𝑛 selects 𝑖 over 𝑗 if:

𝑃௡௜ ൌ න 𝐼 ௡௝ െ ௡௜ ൐ 𝑉௡௜ െ  𝑉௡௝ ,∀ 𝑖 ് 𝑗  𝑓 ௡  𝑑௡

 𝑉௡௝ = 𝐹ሺ𝑋, ሻ is a CDF.

• 𝑉௡௜ െ 𝑉௡௝ = ℎሺ𝑋, ሻ. ℎሺ. ሻ is usually referred as the index function.

• To evaluate the CDF, 𝐹ሺ𝑋, ሻ, 𝑓ሺ𝜀௡ሻ: needs to be specified. 
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DCM: Setup - RUM
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DCM: Setup - RUM

ℎሺ𝑋, ሻ

• To evaluate the integral, 𝑓ሺ𝜀௡ሻ needs to be specified. Many 
possibilities:

– Normal:      Probit Model, natural for behavior.

– Logistic:      Logit Model, allows “thicker tails.”

– Gompertz:  Extreme Value Model, asymmetric distribution.

• We can use non-parametric or semiparametric methods to estimate 
the CDF F(X, ). These methods impose weaker assumptions than 
the fully parametric model described above.

• In general, there is a trade-off: Less assumptions, weaker 
conclusions, but likely more robust results.

DCM: Setup - RUM
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DCM: Setup – RUM – Different 𝒇ሺ𝜺𝒏ሻ

DCM: Setup - RUM

• Note: Probit? Logit?

A one standard deviation change in the argument of a standard 
Normal distribution function is usually called a “Probability Unit” or 
Probit for short.  “Probit” graph papers have a normal probability 
scales on one axis. 

The Normal qualitative choice model  became known as the Probit
model. The “it” was transmitted to the Logistic Model (Logit) and the 
Gompertz Model (Gompit).
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DCM: Setup - Distributions

• Many candidates for CDF –i.e., 𝑃௡(𝑥௡β) = F(𝑍௡),:

– Normal (Probit Model) = Φ(𝑍௡) 

– Logistic (Logit Model) = 1/[1+exp(-𝑍௡)] 

– Gompertz (Gompit Model) = 1 – exp[-exp(𝑍௡)]

• Suppose we have binary (0, 1) data. Assume  > 0. 

- Probit Model: Prob(𝑦௡ = 1) approaches 1 very rapidly as X and 
therefore 𝑍 increase. It approaches 0 very rapidly as X & 𝑍 decrease.

- Logit Model: It approaches the limits 0 and 1 more slowly than 
does the Probit. 

- Gompit Model: Its distribution is strongly negatively skewed, 
approaching 0 very slowly for small values of 𝑍, and 1 even more 
rapidly than the Probit for large values of 𝑍. 

DCM: Setup - Distributions

• Comparisons: Probit vs Logit
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Note: Not all the parameters may be identified.

• Suppose we are interested in whether an agent chooses to visit a 
doctor or not –i.e., (0, 1) data. 

If 𝑈௩௜௦௜௧ > 0, an agent visits a doctor, set 𝑌 = 1 if 𝑈௩௜௦௜௧ > 0 . Then,

𝑈௩௜௦௜௧ > 0  + 1 𝐴𝑔𝑒+ 2 𝐼𝑛𝑐𝑜𝑚𝑒+ 3 𝑆𝑒𝑥 +  > 0

  > -( + 1 Age+ 2 Income+ 3 Sex)

where  has zero mean and Var[] = 2.              

• Now, divide everything by .

𝑈௩௜௦௜௧ > 0  
 > -[


 + 

1
 𝐴𝑔𝑒 + 

2
 𝐼𝑛𝑐𝑜𝑚𝑒 + 

3
 𝑆𝑒𝑥] > 0

or     𝑤 > -[ + 1 𝐴𝑔𝑒 + 2 𝐼𝑛𝑐𝑜𝑚𝑒 + 3 𝑆𝑒𝑥]  > 0 

DCM: Setup - Normalization

• 𝑌 = 1 if 𝑈௩௜௦௜௧ > 0

𝑈௩௜௦௜௧ > 0    
 > -[


 + 

1
 𝐴𝑔𝑒 + 

2
 𝐼𝑛𝑐𝑜𝑚𝑒 + 

3
 𝑆𝑒𝑥] > 0

or    𝑤 > -[ + 1 𝐴𝑔𝑒 + 2 𝐼𝑛𝑐𝑜𝑚𝑒 + 3 𝑆𝑒𝑥]  > 0

where Var[𝑤] = 1.  

Same data.  The data contain no information about the variance. We 
could have assigned the values (1, 2) instead of (0, 1) to 𝑦௡. It is 
possible to produce any range of values in 𝑦௡.

• Normalization: Assume Var[] = 1.

DCM: Setup - Normalization 
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Note: Aggregation can be problematic

- Biased estimates when aggregate values of the explanatory variables 
are used as inputs: 

𝐸ሾ𝑃ଵሺ𝑥௜ሻሿ  ്  𝑃ଵሾ𝐸ሾ𝑥௜ሿሿ 

- But, when the sample is exogenously determined, consistent 
estimates can be obtained by sample enumeration:

- Compute probabilities/elasticities for each decision maker
- Compute (weighted) average of these values. 

𝑃ଵ ൌ  
∑ 𝑃ଵሺ𝑥௜ሻ
ே
௜ୀଵ

𝑁

• More on this later.

DCM: Setup - Aggregation

Example (from Train (2002)): Suppose there are two types of  
individuals, 𝑎 and 𝑏, equally represented in the population, with

a aV x 

b bV x 

then

 
Pr 1a i a

a

P y x

F x

   
  

Pr 1b i b

b

P y x

F x

   


but,

𝑃ത ൌ  ଵ
ଶ
ሺ𝑃𝒂 ൅ 𝑃𝒃ሻ ് 𝑃ሺ𝑥̅ሻ ൌ 𝐹ሾᇱ 𝒙ഥሿ

DCM: Setup – Aggregation
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DCM: Setup – Aggregation

In general, 𝑃ሺ𝑉തሻ will tend to (underestimate) overestimate 𝑃ത when 
probabilities are (high) low.

Graph: Average probability (2.1) vs. Probability of the average (2.2)

DCM: Setup - Aggregation
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3. Identification problems

a. Only differences in utility matter

Choice probabilities do not change when a constant is added to each 
alternative’s utility.

Implication: Some parameters cannot be identified/estimated.

Alternative-specific constants; coefficients of variables that

change over decision makers but not over alternatives.

b. Overall scale of utility is irrelevant

Choice probabilities do not change when the utility of all alternatives 
are multiplied by the same factor.

Implication: Coefficients of different models (data sets) are not 
directly comparable.

Normalization of parameters and/or Var[] done for identification.

DCM: Setup - Identification

DCM: Estimation 

• Since we specify a pdf, ML estimation seems natural to do. But, it 
can get complicated.

• In general, we assume the following distributions: 

– Normal:  Probit Model = Φ(𝑥௡′β) 

– Logistic: Logit Model = 
exp(௫೙ᇱβ)

1 + exp(௫೙ᇱβ)  

– Gompertz: Extreme Value Model = 1 – exp[-exp(𝑥௡′β)] 

• Methods

- ML estimation (Numerical optimization)

- Bayesian estimation (MCMC methods)

- Simulation-assisted estimation
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Example: Logit Model

Suppose we have binary (0, 1) data. The logit model follows from:

𝑃[𝑦௡ = 1| 𝑥] = 
௘௫௣ሺ𝒙೙ᇱ𝜷)

ଵ ା ௘௫௣ሺ𝒙೙ᇱ𝜷) = 𝐹ሺ𝒙௡′𝛃) 

𝑃[𝑦௡ = 0| 𝑥] = 
ଵ

ଵ ା ௘௫௣ሺ𝒙೙ᇱ𝜷) = 1 െ 𝐹ሺ𝒙௡′𝛃) 

- Likelihood function

L() = ∏  ሺ1 െ 𝑃[𝑦௡ = 1| 𝑥ሿሻ ∗ 𝑃[𝑦௡ = 1| 𝑥]  ௡

- Log likelihood 

Log L() = ∑ 𝑙𝑜𝑔ሺ1 െ 𝐹ሺ𝒙௡′𝛃ሻ௡ ሺ௪௜௧௛ ௬ୀ଴ሻ ሻ ൅  ∑ 𝑙𝑜𝑔ሺ𝐹ሺ𝒙௡′𝛃ሻ௡ ሺ௪௜௧௛ ௬ୀଵሻ ሻ
 

- Numerical optimization to get . 

DCM: ML Estimation

• The usual problems with numerical optimization apply. The 
computation of the Hessian, H, may cause problems.

• Recall, ML estimators are consistent, asymptotic normal and 
efficient. These properties are the big appeal of MLE.

DCM: ML Estimation
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39

• How can we estimate the covariance matrix, 𝚺ఉభ?
Using the usual conditions, we can use the information matrix:

• The NR and BHHH are asymptotically equivalent, but, in small 
samples they often produce different estimates for the same model.
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DCM: ML Estimation – Covariance Matrix

DCM: ML Estimation

• Numerical optimization - Steps:

(1) Start by specifying the likelihood for one observation: 𝐹௡ሺX, 𝛃ሻ
(2) Get the joint likelihood function: L(𝛃) ൌ  ∏ 𝐹௡ሺX, 𝛃ሻ௡

(3) It is easier to work with the log likelihood function:

Log L(𝛃) = ∑ 𝑙𝑜𝑔ሺ𝐹௡ X, 𝛃௡ ሻ 
(4) Maximize Log L(𝛃) with respect to 𝛃
- Set the score equal to 0   no closed-form solution.

- Numerical optimization, as usual:

(i) Starting values 𝛃଴. 

(ii) Determine new value 𝛃௧ାଵ= 𝛃௧ + update, such that 

Log L(𝛃௧ାଵ) > Log L(𝛃௧). 
Say, N-R’s updating step: 𝛃௧ାଵ= 𝛃௧- λt H-1 𝑓ሺ𝛃௧ሻ

(iii) Repeat step (ii) until convergence. 
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DCM: Bayesian Estimation

• The Bayesian estimator will be the mean of the posterior density:

- 𝑓ሺ𝛃, 𝛾ሻ is the prior density for the model parameters

- 𝑓ሺ𝑦 |X, 𝛃, 𝛾ሻ is the likelihood. 

• As usual we need to specify the prior and the likelihood: 

- The priors are usually non-informative (flat), say 𝑓ሺ𝛃, 𝛾ሻ α 1.

- The likelihood depends on the model in mind. For a Probit Model, 
we will use a normal distribution. If we have binary data, then, 

𝑓ሺ𝑦 |X, 𝛃, 𝛾ሻ = n (1 - Φ[𝑦௡|𝑥, 𝛃, 𝛾]) Φ[𝑦௡|𝑥, 𝛃, 𝛾] 
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DCM: Bayesian Estimation

• Let 𝜽 = ሺ𝛃, 𝛾ሻ. Suppose we have binary data with 

𝑃௡[𝑦௡ = 1| 𝑥, 𝜽] = 𝐹௡ሺX, 𝜽ሻ. 

The estimator of 𝜽 is the mean of the posterior density. 

Under a flat prior assumption:

• Evaluation of the integrals is complicated. We evaluate them using 
MCMC methods. Much simpler. 
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• ML Estimation is likely complicated due to the multidimensional 
integration problem. Simulation-based methods approximate the 
integral. Relatively easy to apply.

• Simulation provides a solution for dealing with problems involving 
an integral. For example:

Eሾℎሺ𝑢ሻሿ ℎሺ𝑢ሻ׬ = 𝑓 𝑢  𝑑𝑢.

• All GMM and many ML problems require the evaluation of an 
expectation. In many cases, an analytic solution or a precise numerical 
solution is not possible. But, we can always simulate E[ℎሺ𝑢ሻ]: 
- Steps

- Draw 𝑅 pseudo-RV from 𝑓 𝑢 : 𝑢ଵ, 𝑢ଶ, ... , 𝑢ோ (𝑅: repetitions)

- Compute Ê[ℎሺ𝑢ሻ] = (1/𝑅) ∑ ℎሺ𝑢௡ሻோ
௡ୀଵ

MP Model – Simulation-based Estimation

• We call Ê[ℎሺ𝑢ሻ] a simulator.

• If ℎሺ. ሻ is continuous and differentiable, then Ê[ℎሺ𝑢ሻ] will be 
continuous and differentiable.

• Under general conditions, Ê[ℎሺ𝑢ሻ] provides an unbiased (& most of 
the times consistent) estimator for Eሾℎሺ𝑢ሻሿ.

• The variance of Ê[ℎሺ𝑢ሻ] is equal to Var[ℎሺ𝑢ሻ] /𝑅.

• There are many simulators. But the idea is the same: compute an 
integral by drawing pseudo-RVs, never by integration.

MP Model – Simulation-based Estimation
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• In general, the β’s do not have an interesting interpretation. β௞ does 
not have the usual marginal effect interpretation. 

• To make sense of β’s, we calculate:  

Partial effect   = 
ఋ௉ሺఈା ஒభ ூ௡௖௢௠௘ା … ሻ 

ఋ௫ೖ
(derivative)

Marginal effect = 
୉ሾ௬೙|௫ሿ

ఋ௫ೖ

Elasticity ൌ ఋ௟௢௚௉ሺఈା ఉభ ூ௡௖௢௠௘ା … ሻ 
ఋ୪୭୥ ሺ௫ೖሻ

= Partial effect  *  
௫ೖ

௉ሺఈା ఉభ ூ௡௖௢௠௘ା … ሻ

• These effects vary with level of 𝒙: larger near the center of the 
distribution, smaller in the tail.

• Use delta method to calculate standard errors for these effects.

DCM: Partial Effects

• We know the distribution of 𝑏௡, with mean 𝜃 and variance σ2/𝑛,
but we are interested in the distribution of 𝑔ሺ𝑏௡ሻ, where 𝑔ሺ𝑏௡ሻ is a 
continuous differentiable function, independent of 𝑛.)

• After some work (“inversion”), we obtain:

𝑔ሺ𝑏௡ሻ 
  ௔  

N(𝑔ሺ𝜃ሻ, [𝑔′ሺ𝜃ሻ]ଶ σ2/𝑛)

When 𝑏௡ is a vector, 𝑔ሺ𝒃௡ሻ  
  ௔  

Nሺ𝑔ሺ𝜽ሻ, ሾ𝐺ሺ𝜽ሻሿ′ Var[𝒃௡] ሾ𝐺ሺ𝜽ሻሿሻ,

where ሾ𝐺ሺ𝜽ሻሿ is the Jacobian of 𝑔ሺ. ሻ.

• In the DCM case, 𝑔ሺ𝑏௡ሻ =𝐹ሺ𝑥௡′𝛃) 

• Note: A bootstrap can also be used.

DCM: Partial Effects – Delta Method
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• The partial and marginal effects will vary with the values of 𝒙. 

• It is common to calculate these values at, say, the sample means of 
the 𝒙. For example:

Estimated Partial effect = 𝑓ሺ𝛼 ൅  βଵ 𝐼𝑛𝑐𝑜𝑚𝑒 ൅  … ሻ -𝑓ሺ. ሻ =pdf

• The marginal effects can also be computed as the average of the 
marginal effects at every observation. 

• In principle, different models will have different effects.

• Practical Question: Does it make a difference the P(.) used?

DCM: Partial Effects – Sample Means or Average 

• Q: How well does a DCM fit? 

In the regression framework, we used R2. But, with DCM, there are 
no residuals or RSS. The model is not computed to optimize the 
fit of the model:  There is no R2.

• “Fit measures” computed from log L:

- Let Log L(0) only with constant term. Then, define Pseudo R²:
Pseudo R² = 1 – Log L()/Log L(0) (“likelihood ratio index”)

(This McFadden’s Pseudo R² . There are many others.)

- LR-test : LR = -2(Log L(0) – Log L()) ~ χ௞
ଶ

- Information Criterion: AIC, BIC

 sometimes conflicting results

DCM: Goodness of Fit 
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DCM: Goodness of Fit 

• “Fit measures” computed from accuracy of predictions

Direct assessment of the effectiveness of the model at predicting the 
outcome –i.e., a 1 or a 0.

- Computation

- Use the model to compute predicted probabilities

- Use the model and a rule to compute predicted 𝑦 = 0 or 1

Rule: Predict 𝑦 = 1 if estimated F is “large”, say 0.5 or greater

More general, use 𝑦ො = 1 if estimated F is greater than P* 

Example: Cramer Fit measure

1 1

F̂ = Predicted Probability

ˆ ˆF (1 )Fˆ
N1 N0

ˆ ˆ ˆMean F | when = 1      -     Mean F | when = 0

   = 

N N
i i i iy y

y y

   
  

 
reward for correct predictions minus

    penalty for incorrect predictions

Cross Tabulation of Hits and Misses

Let
ˆ1 0.5

ˆ
ˆ0 0.5

i
i

i

F
y

F

  


Predicted

Actual

ˆ 0.5iF  ˆ 0.5iF 
1iy 
0iy 

• The prediction rule is arbitrary. 
– No weight to the costs of  individual errors made. It may be more 
costly to make an error to classify a “yes” as a “no” than viceversa.  
– In this case, some loss functions would be more helpful than others.
• There is no way to judge departures from a diagonal table.
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DCM: Model Selection

• Model selection based on nested models: 

• Use the Likelihood:

- LR-test

LR = -2(Log L(r) – Log L(u))

r=restricted model; u=unrestricted (full) model

LR ~ χ௞
ଶ  (𝑘 = difference in # of  parameters)

• Model selection based for non-nested models:

• AIC, CAIC, BIC  lowest value 

DCM: Testing

• Given the ML estimation setup, the trilogy of  tests (LR, W, and LM) 
is used:

- LR Test: Based on unrestricted and restricted estimates.

- Distance Measures - Wald test: Based on unrestricted estimates.

- LM tests: Based on restricted estimates.

• Chow Tests that check the constancy of  parameters can be easily 
constructed. 

- Fit an unrestricted model, based on model for the different 
categories (say, female and male) or subsamples (regimes), and 
compare it to the restricted model (pooled model)  LR test.
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DCM: Testing

• Issues: 

- Linear or nonlinear functions of  the parameters

- Constancy of  parameters (Chow Test)

- Correct specification of  distribution

- Heteroscedasticity

• Remember, there are no residuals. There is no F statistic.

DCM: Heteroscedasticity

• In the RUM, with binary data agent 𝑛 selects 

𝑦௡ = 1 iff 𝑈௡ = 𝒙௡′𝛃 + 𝜀௡ > 0,

where the unobserved 𝜀௡ has E[𝜀௡] = 0, and Var[𝜀௡] = 1

• Given that the data do not provide information on σ, we assume 
Var[௡] = 1, an identification assumption. But, implicitly we are 
assuming homoscedasticity across individuals.

• Q: Is this a good assumption?

• The RUM framework resembles a regression, where in the 
presence of  heteroscedasticity, we scale each observation by the 
squared root of  its variance. 
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DCM: Heteroscedasticity

• Q: How to accommodate heterogeneity in a DCM?  

Use different scaling for each individual. We need to know the 
model for the variance.

– Parameterize: Var[௡] = exp(𝒛௡′ 𝛾)

– Reformulate probabilities

Binary Probit or Logit: Pn[𝑦௡ = 1|𝒙] = P(𝒙௡′β/exp(𝒛௡′ 𝛾)) 

• Marginal effects (derivative of  E[𝑦௡] w.r.t. 𝒙௡ and 𝒛௡) are now 
more complicated. If  𝒙௡ = 𝒛௡, signs and magnitudes of  marginal 
effects tend to be ambiguous.

DCM: Heteroscedasticity - Testing

• There is no generic, White-type test for heteroscedasticity. We do 
the tests in the context of  the maximum likelihood estimation.

• Likelihood Ratio, Wald and Lagrange Multiplier Tests are all 
straightforward

• All heteroscedasticity tests require a specification of  the model 
under H1 (heteroscedasticity), say,

H1: Var[𝜀௡]  =  exp(𝒛௡′ 𝛾)
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DCM: Robust Covariance Matrix (Greene)
• In the context of  maximum likelihood estimation, it is common to 
define the Var[bM] = (1/T) H0

-1V0 H0
-1 , where if  the model is 

correctly specified: -H = V. Similarly, for a DCM we can define:

11 22

1

"Robust" Covariance Matrix:    =  

  =  negative inverse of second derivatives matrix  

log Problog
     =  estimated E -

ˆ ˆ

  = matrix sum of outer products of

N i
i

L




   
         


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 first derivatives

log Prob log Problog log
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ˆ ˆ
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ˆ                             = ( )
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    
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
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(Resembles the White estimator in the linear model case.)

N

i i ii
e


          x x

DCM: Robust Covariance Matrix (Greene)

• Q: Is this matrix robust to what?

• It is not “robust” to:

– Heteroscedasticity

– Correlation across observations

– Omitted heterogeneity

– Omitted variables (even if  orthogonal)

– Wrong functional form for index function

• In all cases, the estimator is inconsistent so a “robust” covariance 
matrix is pointless.

• (In general, it is merely harmless.)
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DCM: Endogeneity

• It is possible to have in a DCM endogenous covariates. For 
example, many times we include education as part of  an individual’s 
characteristics or the income/benefits generated by the choice as part 
of  its characteristics.

• Now, we divide the covariates in endogenous and exogenous. 
Suppose agent 𝑛 selects 𝑦௡ = 1 iff

U௡ = 𝒙௡′𝛃 + 𝒉௡′θ + 𝜀௡> 0,

where    E[௡|ℎ] ≠ 0 (𝑛 is endogenous)

• There are two cases:

– Case 1: ℎ is continuous (complicated)

– Case 2: ℎ is discrete, say, binary.  (Easier, a treatment effect)

DCM: Endogeneity

• Approaches

- Maximum Likelihood (parametric approach)

- GMM

- Various approaches for case 2. Case 2 is the easier case: SE DCM!

• Concentrate on Case 1 (ℎ is continuous).

The usual problems with endogenous variables are made worse in 
nonlinear models. In a DCM is not clear how to use IVs.  

• If  moments can be formulated, GMM can be used. For example, in 
a Probit Model:  E[(𝑦௡  െ Φ(𝒙௡′ 𝛃))(𝒙௡ 𝒛)]=0

 This moment equation forms the basis of  a straightforward two 
step GMM estimator. Since we specify Φ(.), it is parametric.
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DCM: Endogeneity - ML

• ML estimation requires full specification of  the model, including the 
assumption that underlies the endogeneity of  𝒉௡. For example:

- RUM: 𝑈௡ = 𝒙௡′𝛃 + 𝒉௡′θ + 𝜀௡
- Revealed preference: 𝑦௡ = 1[𝑈௡> 0]     
- Endogenous variable: 𝒉௡ = 𝒛௡ᇱ  𝜶 + 𝑢௡,  with

E[𝜀௡|𝒉] ≠ 0 ⇒ Cov[𝑢, 𝜀] ≠ 0   (ρ = Corr[𝑢, 𝜀])

- Additional Assumptions:

1)
𝜀௡
𝑢௡

 
 ௔ 

 𝑁 ቀ 0
0

, 
1 ρσ௨
ρσ௨ σ௨

ଶ ൰

2) 𝒛 = IV, a valid set of  exogenous variables, uncorrelated with (𝑢, 𝜀).

• ML becomes a simultaneous equations model. 

DCM: Endogeneity - ML

• ML becomes a simultaneous equations model. 

- Reduced form estimation is possible:

- Insert the second equation in the first. If  we use a Probit Model, 
this becomes 𝑃[𝑦௡ = 1|𝒙௡, 𝒛௡] = Φ(𝒙௡′𝛃* + 𝒛௡′α*). 

- FIML is probably simpler: 

- Write down the joint density: 𝑓ሺ𝑦௡|𝒙௡, 𝒛௡ሻ 𝑓ሺ𝒛௡ሻ
- Assume probability model for 𝑓ሺ𝑦௡|𝒙௡, 𝒛௡ሻ, say a Probit Model.

- Assume marginal for 𝑓ሺ𝒛௡ሻ, say a normal distribution.

- Use the projection:    𝜀௡|𝑢௡ = [(ρσ)/σ௨ଶ ] 𝑢௡ + 𝑣௡, σ௩
ଶ = (1- ρ2).

- Insert projection in P(𝑦௡) 

- Replace 𝑢௡ = (𝒉௡ - 𝒛௡′α) in 𝑃ሺ𝑦௡ሻ. 
- Maximize Log L(.) w.r.t. (𝛃, α, θ, ρ, σu)
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DCM: Endogeneity – ML: Probit (Greene)

Probit fit of y to  and  will not consistently estimate ( , )

because of the correlation between h and  induced by the

correlation of u and .  Using the bivariate normality, 
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DCM: Endogeneity – ML: 2-Step LIML

• Two step limited information ML (Control Function) is also 
possible:

- Use OLS to estimate α, σ௨
- Compute the residual 𝑣௡. 

- Plug residuals 𝑣௡ into the assumed model P(𝑦௡)

- Fit the probability model for P(𝑦௡). 

- Transform the estimated coefficients into the structural ones.

- Use delta method to calculate standard errors. 


