
RS – Lecture 17

1

1

Lecture 17 – Part 2
Bayesian Econometrics

(for private use, not to be posted/shared online)

• Q: Do we need to restrict our choices of prior distributions to these
conjugate families? No. The posterior distributions are well defined
irrespective of conjugacy. Conjugacy only simplifies computations.

• Outside the conjugate families, we rely on numerical methods for
calculating posterior moments. In these cases, P(𝜃|𝑦) is not
recognized as a (analytical) pdf where we can sample from using a
standard library function.

• Another situation where analytical posteriors are difficult to obtain
is when the model is no longer linear.

• What do we do in these situations? We simulate the behavior of the
model.

Numerical Methods

RS – Lecture 17

2

• It is possible to do Bayesian estimation and inference over
parameters in these situations, for example, with a nonlinear model.

• Steps:
1. Parameterize the model
2. Propose the likelihood conditioned on the parameters
3. Propose the priors – joint prior for all model parameters
4. As usual, the posterior is proportional to likelihood times prior.
(Usually, it requires conjugate priors to be tractable. But, very likely,
complicated P(𝜃|𝑦).)
5. Sample –i.e., draw observations- from the posterior to study its
characteristics.

Q: How do we draw? MCMC.

Numerical Methods: Simulation

• Sampling from the joint posterior P(𝜃|𝑦) may be difficult or
impossible. For example, in the CLM, assuming a normal prior for β,
and an inverse-gamma prior for 𝜎ଶ, we get a complicated joint
posterior distribution for (, 𝜎ଶ).

• To do simulation based estimation, we need joint draws on (, 𝜎ଶ).
But, if P(𝜃|𝑦) is complicated we cannot easily draw from it.

• For these situations, many methods have been developed that make
the process easier, including Gibbs sampling, Data Augmentation,
and the Metropolis-Hastings (MH) algorithm.

• All three are examples of Markov Chain-Monte Carlo (MCMC)
methods.

Numerical Methods: MCMC

RS – Lecture 17

3

Numerical Methods: MCMC Preliminaries

• Monte Carlo (first MC): A simulation. We take quantities of
interest of a distribution from simulated draws from the distribution.

Example: Monte Carlo integration

We have a posterior distribution P(𝜃|𝑦) that we want to take
quantities of interest from. We can evaluate the integral analytically, I:

I = ∫ ℎሺ𝜃ሻ P(𝜃) dθ

where ℎሺ𝜃ሻ is some function of 𝜃.

But when P(𝜃|𝑦) is complicated, we approximate the integral via MC
Integration using the plug-in estimator, obtained by simulating 𝑀
values from P(𝜃|𝑦) and calculating:

𝐼ெ = ∑ ℎሺ𝜃ሻ/𝑀
ெ
ୀଵ

Numerical Methods: MCMC Preliminaries

• From, the LLN, the MC approximation 𝐼ெ is a consistent
(simulation) estimator of the true value I. That is, 𝐼ெ→ I as 𝑀→∞.

Q: But, to apply the LLN we need independence. What happens if we
cannot generate independent draws?

• Suppose we want to draw from our posterior P(𝜃|𝑦), but we cannot
sample independent draws from it. But, we may be able to sample
draws from P(𝜃|𝑦) that are “slightly” dependent.

If we can sample slightly dependent draws using a Markov chain,
then we can still find quantities of interests from those draws.

RS – Lecture 17

4

Numerical Methods: MCMC Preliminaries

• Monte Carlo (first MC): A simulation.

• Markov Chain (the second MC): A stochastic process in which
future states are independent of past states given the present state.

• Recall that a stochastic process is a consecutive set of random
quantities defined on some known state space, Θ.

- Θ: our parameter space

- Consecutive implies a time component, indexed by 𝑡.

• A draw 𝜃௧ describes the state at time (iteration) t. The next draw
𝜃௧ାଵ is dependent only on 𝜃௧. This is because of the Markov
property:

P(𝜃௧ାଵ|𝜃௧) = P(𝜃௧ାଵ|𝜃௧, 𝜃௧ିଵ, 𝜃௧ିଶ, ... , 𝜃ଵ)

Numerical Methods: MCMC Preliminaries

• The state of a Markov chain (MC) is a random variable indexed by
𝑡, say, 𝜃௧. The state distribution is the distribution of 𝜃௧: 𝑝௧ሺ𝜃ሻ.

A stationary distribution of the chain is a distribution 𝜋 such that, if

𝑝௧ሺ𝜃ሻ = 𝜋 𝑝௧ା௦ሺ𝜃ሻ = 𝜋 for all 𝑠.

• Under “certain conditions” a chain will have the following properties:

– A unique stationary distribution.

– Converge to that stationary distribution 𝜋 as 𝑡→ ∞.

– Ergodic. That is, averages of successive realizations of θ will
converge to their expectations with respect to 𝜋.

A lot of research has been devoted to establish the certain conditions.

RS – Lecture 17

5

MCMC – Ergodicity (P. Lam)

• Usual “certain conditions” for ergodicity:

The Markov chain is aperiodic, irreducible (it is possible to go from
any state to any other state), and positive recurrent (eventually, we
expect to return to a state in a finite amount of time).

Ergodic Theorem

• Let 𝜃ሺெሻ={𝜃ଵ, 𝜃ଶ, 𝜃ଷ, ... , 𝜃ெ} be M values from a Markov chain
that is aperiodic, irreducible, and positive recurrent –i.e., chain is
ergodic–, and E[𝑔ሺ𝜃ሻ] < ∞. Then, with probability 1:

∑ 𝑔ሺ𝜃ሻ/𝑀
ெ
ୀଵ → ∫Θ 𝑔ሺ𝜃ሻ 𝜋 𝜃 𝑑𝜃

This is the Markov chain analog to the SLLN. It allows us to ignore
the dependence between draws of the Markov chain when we
calculate quantities of interest from the draws (like MC Integration).

MCMC - Ergodicity (P. Lam)

• Aperiodicity

A Markov chain is aperiodic if the only length of time for which the
chain repeats some cycle of values is the trivial case with cycle length
equal to one.

Let A, B, and C denote the states (analogous to the possible values of
θ) in a 3-state Markov chain. The following chain is periodic with
period 3, where the period is the number of steps that it takes to
return to a certain state.

As long as the chain is not repeating an identical cycle, then the
chain is aperiodic.

RS – Lecture 17

6

MCMC - Irreducibility and Stationarity

• Irreducibility

A Markov chain is irreducible if there no absorbing states or states in
which the chain gets trapped.

• Stationarity (Theorem)

If 𝑝 > 0 (strictly positive) for all 𝑖, 𝑗, then the chain is irreducible

and there exists a stationary distribution, 𝜋, such that

lim
௧→ஶ

𝜋0 𝐏
௧ = 𝜋

and

𝜋 P = 𝜋.

Since the elements of P are all positive and each row sums to one, the
maximum eigenvalue of 𝐏் is 1 and 𝜋 is determined by the
corresponding eigenvector, R1, and the corresponding row vector
from the inverse of the matrix for eigenvectors, R-1.

MCMC - Irreducibility and Stationarity

Proof: Using an eigenvalue decomposition:

P = R Λ R-1

where R is a matrix of eigenvectors and Λ is a diagonal matrix of
corresponding eigenvalues, λ.

Recall: ሺ𝐏்ሻ = R Λ R-1, since

ሺ𝐏்ሻ = R Λ R-1 ... R Λ R-1 = R Λ R-1.

• Then, the long-run steady-state is determined by max{λ(𝐏்)} and in
the direction of the corresponding vector from R-1(if the remaining
λ‘s < 1, then λm → 0 and their corresponding inverse eigenvectors’
influence on direction dies out).

Since max{λሺ𝐏்ሻ}=1, with a large M 𝜋0 Pt → 𝜋0 x 1 = 𝜋.

That is, after many iterations the Markov chain produces draws from
a stationary distribution if the chain is irreducible.

RS – Lecture 17

7

MCMC: Markov Chain - Example

• A chain is characterized by its transition kernel whose elements
provide the conditional probabilities of 𝜃௧ାଵ given the values of 𝜃௧.
• The kernel is denoted by P(𝑥,𝑦). (The rows add up to 1.)

 90110100*6.100*3.,100*4.100*7.

6.4.

3.7.
100100

6.4.

3.7.

100100

0011

00

BBBA

ABAA/
0

/
1

BBBA

ABAA

/
0

PP

PP

:by given isB &at A employees ofnumber the 1,tAt

PP

PP
P

P toaccording B & A between move andstay employees The

B & A plants twoover ddistribute are 0tat Employees:Example

BAPBA

BA

Note: Recall that under “certain conditions,” as 𝑡→ ∞, 𝐏௧

converges to the stationary distribution. That is, 𝜋 = 𝜋 P.

 m
mm PBA

BAPBA

BAPBA

/
0

/
k

BBBA

ABAA

BBBA

ABAA/
0

BBBA

ABAA/
0

 : yearsmtAfter

PP

PP

PP

PP

PP

PP

2,tAt

87113

6.4.

3.7.
90110

6.4.

3.7.
100100

90110

2

00
2

22

0011

MCMC: Markov Chain - Example

RS – Lecture 17

8

MCMC: General Idea

• We construct a chain, or sequence of values, 𝜃, 𝜃ଵ, . . . , such that
for large 𝑚, 𝜃 can be viewed as a draw from the posterior
distribution of 𝜃, 𝑃ሺ𝜃|𝑿ሻ, given the data 𝑿 = {𝑋ଵ, . . . , 𝑋ே}.

• This is implemented through an algorithm that, given a current
value of the parameter vector 𝜃, and given 𝑿, draws a new value
𝜃ାଵ from a distribution 𝑓ሺ. ሻ indexed by 𝜃 and the data:

𝜃ାଵ ∼ 𝑓ሺ𝜃|𝜃, 𝑿)

• We do this in a way that if the original 𝜃 came from the posterior
distribution, then so does 𝜃ାଵ. That is,

𝜃|𝑿 ∼ 𝑃ሺ𝜃|𝑿ሻ, 𝜃ାଵ|𝑿 ∼ 𝑃ሺ𝜃|𝑿ሻ.

• In many cases, irrespective of where we start −irrespective of 𝜃−
as 𝑚→ ∞, it will be the case that the distribution of the parameter
conditional only on the data, 𝑿, converges to the posterior
distribution as 𝑚→ ∞:

𝜃|𝑿
 ௗ

 𝑝ሺ𝜃|𝑿),

• Then just pick a 𝜃 and approximate the mean and standard
deviation of the posterior distribution as:

E[𝜃|𝑿] = 1/(𝑀 − 𝑀* + 1) ∑ 𝜃ெ
ୀெ∗

Var(𝜃|𝑿) = 1/(𝑀 − 𝑀* + 1) ∑ ሼ𝜃െE(𝜃|𝑿)}ெ
ୀெ∗

2

• Usually, the first 𝑀* − 1 iterations are discarded to let the algorithm
converge to the stationary distribution without the influence of
starting values, 𝜃 (burn-in).

MCMC: General Idea

RS – Lecture 17

9

• As a matter of practice, most people throw out a certain number of
the first draws, 𝜃ଵ, 𝜃ଶ, 𝜃ଷ, ... , 𝜃ெ∗, known as the burn-in. This is to
make our draws closer to the stationary distribution and less
dependent on the starting point.

• Think of it as a method to pick initial values.

• However, it is unclear how much we should burn-in since our draws
are all slightly dependent and we do not know exactly when
convergence occurs.

• Not a lot of theory about it.

MCMC: Burn-in (P. Lam)

In order to break the dependence between draws in the Markov
chain, some have suggested only keeping every 𝑑௧ draw of the chain.
That is, we keep 𝜃ሺௗሻ = {𝜃ଵௗ, 𝜃ଶௗ, 𝜃ଷௗ, ... , 𝜃ௌ}

• This is known as thinning.

- Pros:

- We may get a little closer to i.i.d. draws.

- It saves memory since you only store a fraction of the draws.

- Cons:

- It is unnecessary with ergodic theorem.

- Shown to increase the variance of your MC estimates.

MCMC: Thinning the Chain (P. Lam)

RS – Lecture 17

10

• In classical stats, we usually focus on finding the stationary
distribution, given a Markov chain.

• MCMC methods turn the theory around: The invariant density is
known (maybe up to a constant multiple) –it is the target density,
𝜋ሺ. ሻ, from which samples are desired–, but the transition kernel is
unknown.

• To generate samples from 𝜋ሺ. ሻ, the methods find and utilize a
transition kernel P(𝑥, 𝑦), whose 𝑀th iteration converges to 𝜋(.) for
large 𝑀.

MCMC - Remarks

• The process is started at an arbitrary 𝑥 and iterated a large number
of times. After this, the distribution of the observations generated
from the simulation is approximately the target distribution.

• Then, the problem is to find an appropriate P(𝑥, 𝑦) that works!

• Once we have a Markov chain that has converged to the stationary
distribution, then the draws in our chain appear to be like draws from
P(𝜃|𝑦), so it seems like we should be able to use Monte Carlo
Integration methods to find quantities of interest.

• Our draws are not independent, which we required for MC
Integration to work (remember LLN). For dependent draws, we rely
on the Ergodic Theorem.

MCMC - Remarks

RS – Lecture 17

11

• Our draws are dependent, the autocorrelation in the chain can be a
problem for the MCMC estimators.

• Compared to MC estimators (MC simulations are the “gold standard”,
since the draws are independent), MCMC estimators tend to have a
higher variance and, then, worse approximations.

MCMC - Remarks

• When we sample directly from the conditional posterior distributions, the
algorithm is known as Gibbs Sampling (GS).

• The Gibbs sampler partitions the vector of parameters 𝜃 into two
(or more) blocks or parts, say 𝜃 = (𝜃ଵ, 𝜃ଶ, 𝜃ଷ). Instead of sampling
𝜃ାଵ directly from the (known) joint conditional distribution of

f(𝜃|𝜃; X),

it may be easier to sample θ from the (known) full conditional
distributions, P(𝜃|𝜃ି

 ; X): (𝜃ି
 = 𝜃

, 𝜃
)

- first sample 𝜃ଵ
ାଵ from P(𝜃ଵ|𝜃ଶ

, 𝜃ଷ
; X).

- then sample 𝜃ଶ
ାଵ from P(𝜃ଶ|𝜃ଵ

ାଵ, 𝜃ଷ
; X).

- then sample 𝜃ଷ
ାଵ from P(𝜃ଷ|𝜃ଵ

ାଵ, 𝜃ଶ
ାଵ; X).

• Remark: If 𝜃 is from the posterior distribution, then so is 𝜃ାଵ.

MCMC: Gibbs Sampling

RS – Lecture 17

12

• Q: How can we know the joint distribution simply by knowing the
full conditional distributions?

A: The Hammersley-Clifford Theorem shows that we can write the
joint density, P(𝑥, 𝑦), in terms of the conditionals P(𝑥|𝑦) and P(𝑦|𝑥).

• Then, how do we figure out the full conditionals?

Suppose we have a posterior P(𝜃|𝑦). To calculate the full
conditionals for each 𝜃, do the following:

1. Write out the full posterior ignoring constants of proportionality.

2. Pick a block of parameters (say, 𝜃ଵ). Drop everything that does not
depend on 𝜃ଵ (we call this block 𝜃ିଵ).

3. Figure out the normalizing constant (and, thus, the full conditional
distribution P(𝜃ଵ|𝜃ିଵ, 𝑦)).

4. Repeat steps 2 and 3 for all parameters.

MCMC: Gibbs Sampling (P. Lam)

Example: In the previous MVN model, we derived the full
conditional posteriors for μ & 𝚺:

• Now, we draw θ = (μ, 𝚺) using a GS. GS steps:

Step 1: Start with an arbitrary starting value θ0 =(μ0, 𝚺0). Set prior
values for: μ, 𝚲, 𝑣, 𝑺.

Step 2: Generate a sequence of θ ’s, following:

- Sample μାଵ from p(μ| 𝚺; X) ~ Normal(μே, ΛN)

- Sample 𝚺ାଵfrom p(𝚺|μାଵ; X) ~ IW(𝑣ே, 𝑺ே -1)

Step 3: Repeat Step 2 for 𝑚 = 1, 2,, 𝑀.

MCMC: Gibbs Sampling - Steps

NN bA

N eyyp
''

2

1

1),,...,|(

.||),,...,|(
)]([

2

1
)1(

2

1

1

1
00

SStrkvN

N eyyp

RS – Lecture 17

13

Example: GS steps:

Step 1: Set arbitrary starting value θ0 =(μ0, 𝚺0) & μ, 𝚲, 𝑣, 𝑺.

Step 2: Generate a sequence of θ ’s, following:

- Sample μାଵ from P(μ| 𝚺; X) ~ Normal(μN, 𝚲ே)

- Sample 𝚺ାଵfrom P(𝚺|μାଵ; X) ~ IW(𝑣ே, 𝑺ே -1)

Step 3: Repeat Step 2 for 𝑚 = 1, 2, 𝑀.

Update Notation:

𝚲ே= Aே
-1 = (𝚲-1 + N 𝚺-1)-1

μே = AN
-1 bN = 𝚲ே (𝚲-1 μ0 + N 𝚺-1 yത)

S𝛍 = ∑ (𝑦– 𝛍) (𝑦– 𝛍)′ே
ୀଵ

𝑣ே = N + 𝑣
𝑺ே = 𝑺 + S𝛍.

MCMC: Gibbs Sampling - Steps

Example (continuation): We are interested in the monthly correlation
between the returns of IBM and DIS from 1990-2016. That is, we
want to learn about 𝚺.

• Priors. We use data on Kellogg’s & SPY to set up the priors:

μ = (.0066, 0065)

𝚲 = S0 = rbind(c(.0017, .00065), c(.00065, .0034))

𝑣 = K + 2 = 4

• Data

– y̅ = (0.0089, 0.01)

– 𝚺 = rbind(c(.0061, .002), c(.002, .0054))

• Posterior (𝑀 = 10,000; 𝑀* = 𝑀 = 1,000)

– correlation = ρ = 0.3546. (sample value: 0.3541)

– 95% CI: (0.2567, 0.4477)

MCMC: GS – MVN Example

RS – Lecture 17

14

Example (continuation): We also check the histogram and traceplot,
plotting the correlation as a function of M.

MCMC: GS – MVN Example

Example (continuation): We may also be interested in knowing
which stock is more volatile. We can answer this question by
constructing a 95% CI for SDIBM - SDDIS: (-0.00297, 0.012525).

MCMC: GS – MVN Example

IBM seems to be more volatile
(88.12% of the time, IBM has
higher SD. But, careful here:
this does not mean the
difference is ‘economically’
large).

RS – Lecture 17

15

Note: The sequence {𝜃ሺெሻ} is a Markov chain with transition kernel

𝜋ሺ𝜃ାଵ|𝜃)= Pሺ𝜃ଶ
ାଵ|𝜃ଵ

ାଵ; X) x P(𝜃ଵ
ାଵ|𝜃ଶ

; X)

This transition kernel is a conditional distribution function that
represents the probability of moving from 𝜃 to 𝜃ାଵ.

• Under general conditions, the realizations from a Markov Chain as
𝑀→ ∞ converge to draws from the ergodic distribution of the chain
𝜋 𝜃 satisfying

𝜋ሺ𝜃ାଵሻ= ∫ 𝜋ሺ𝜃ାଵ|𝜃) 𝜋ሺ𝜃) 𝑑𝜃

MCMC: GS – Details

• Convergence can be a problem for MCMC methods. It is important
to check the robustness of the results before start using the output:

- Use different 𝜃 (check traceplots for different sequences & GR)

- Use different 𝑀0, 𝑀 (may use the “effective sample size,” ESS)

- Plot 𝜃as a function of 𝑗 (check the auto-/cross-correlations in
the sequence and across parameters).

• Run Diagnostics Tests. There are many:

- Geweke (1992): A Z-test, comparing the means of the first 10% of
sequence and the last 50% of the sequence.

- Gelman and Rubin (GR, 1992): A test based on comparing different
sequences, say N. The statistic is called Shrink factor is based on the
ratio of the variance of the N posterior means sequences and the
average of the posterior 𝑠ଶ of the N sequences.

MCMC: GS – Diagnostics

RS – Lecture 17

16

Example: Back to the monthly correlation between the returns of
IBM and DIS from 1990-2016. We present traceplots for different θ0:

MCMC: GS – Diagnostics

μ = (0, 0)

𝚲 = S0 = rbind(c(.2^2, 0), c(0, .2^2))

⟹ 95% CI for ρ: (0.2469, 0.4406)

μ = (0, 0)

𝚲 = S0 = rbind(c(.6^2, -0.1), c(-0.1, .6^2))

⟹ 95% CI for ρ: (0.1460, 0.3500)

μ = (.04, .04)

𝚲 = S0 = rbind(c(.05^2, -0.1), c(-0.1, .05^2))

⟹ 95% CI for ρ: (0.1967, 0.3932)

Example: We also present ACF and traceplots for different M0:

MCMC: GS – Diagnostics

 No autocorrelation problem.

M0 = 100

 95% CI for ρ: (0.2565, 0.4478)

M0 = 4,000

 95% CI for ρ: (0.2573, 0.4483)

RS – Lecture 17

17

• We sample from the known conditional posterior pdf of each
parameter. We sample from them using a standard library function.

• Conjugacy is very helpful in this process. For example, if the
conditional posterior distributions are all normal, gamma, or beta,
then the GS makes sampling from the joint posterior easy.

• To take advantage of the simplicity of the GS, there are situations
where drawing from the conditionals is not possible, but it may be
possible to convert the problem into one where the GS works (see
Albert and Chib’s (1993) probit regression set up).

MCMC: GS – Simplicity

Three usual concerns:

(1) Even if we have the full posterior joint pdf, it may not be possible
or practical to derive the conditional distributions for each of the RVs
in the model.

(2) Even if we have the posterior conditionals for each variable, it
might be that they are not of a known form, and, thus, there is not a
straightforward way to draw samples from them.

(3) There are cases where GS is very inefficient. That is, the “mixing"
of the GS chain might be very slow, -i.e., the algorithm spends a long
time exploring a local region with high density, and takes a very long
to explore all regions with significant probability mass.

MCMC: GS – Limitations

RS – Lecture 17

18

GS – Example 1: Bivariate Normal

1 1 1

2 2 2r r

1 2

0 1Draw a random sample from bivariate normal ,
0 1

v u u
(1) Direct approach: where are two

v u u
1 0

 independent standard normal draws (easy) and =

2
1 2

2
1 2 2

2
2 1 1

1 such that '= . , 1 .
1

(2) Gibbs sampler: v | v ~ N v , 1

 v | v ~ N v , 1

• R Code
initialize constants and parameters

M <- 5,000 # length of chain
burn <- 1,000 # burn-in length
X <- matrix(0, M, 2) # the chain, a bivariate sample

rho <- -.75 # correlation
mu1 <- 0
mu2 <- 0
sigma1 <- 1
sigma2 <- 1
s1 <- sqrt(1-rho^2)*sigma1
s2 <- sqrt(1-rho^2)*sigma2

GS – Example 1: Bivariate Normal

RS – Lecture 17

19

generate the chain
X[1,] <- c(mu1, mu2) #initialize
for (i in 2:M) {

x2 <- X[i-1, 2]
m1 <- mu1 + rho * (x2 - mu2) * sigma1/sigma2
X[i, 1] <- rnorm(1, m1, s1)
x1 <- X[i, 1]
m2 <- mu2 + rho * (x1 - mu1) * sigma2/sigma1
X[i, 2] <- rnorm(1, m2, s2)

}

b <- burn + 1
x <- X[b:M,]

compare sample statistics to parameters
colMeans(x)
cov(x)
cor(x)
plot(x, main="", cex=.5, xlab=bquote(X[1]),

ylab=bquote(X[2]), ylim=range(x[,2]))

GS – Example 1: Bivariate Normal

> colMeans(x)
[1] 0.03269641 -0.03395135
> cov(x)

[,1] [,2]
[1,] 1.0570041 -0.8098575
[2,] -0.8098575 1.0662894
> cor(x)

[,1] [,2]
[1,] 1.0000000 -0.7628387
[2,] -0.7628387 1.0000000

GS – Example 1: Bivariate Normal

RS – Lecture 17

20

GS – Example 2: CLM

In the CLM, we assume a normal prior for β and a gamma for ℎ, with
the usual assumptions for the prior values of (𝑚, Σ) and (𝛼, λ),
respectively. The joint posterior is complicated. We use the
conditional posteriors to get the joint posterior:

})()'(
2

exp{),,(

*)}(**)'[(
2

1
exp{),,(

0
12/ 0 hXβyXβy

h
hβhf

mβmβhβf

T

Xy|

Xy|

where 𝑚∗= Σ∗ሺΣ
ିଵ𝑚 ℎ X′𝒚ሻ & Σ∗= ሺΣ

ିଵ ℎ X′X)-1.

That is, we get for β ~ MVN(𝑚∗, Σ∗)
ℎ ~ Г(𝛼 + T/2, λ + (𝒚 – Xβ)’(𝒚 – Xβ)/2).

• The GS samples back and forth between the two conditional
posteriors.

GS – Example 2: CLM

Simulate data: y & X
set.seed(33)
T <- 300
beta.true <- c(1, 2)
sigma.true <- 5
X <- matrix(c(rep(1, T), rnorm(T, sd = sigma.true)), nrow = T)
y <- rnorm(T, X %*% beta.true, sigma.true)
k_par <- 2

Set M* (burn-in) and M (number of draws after M*)
M_star <- 1000
M <- 5000

Initialize Priors
m_0 <- c(0.1,0.1) # priors for beta's mean
Sigma2_0 <- diag(k_par) # priors for beta's Variance
T0 <- 1 # priors for shape
D0 <- 0.1

Set Initial Values
beta <- c(0,0) # initial value
sigma2 <- 1 # initial value

XX = t(X) %*% X # To be used later

RS – Lecture 17

21

GS – Example 2: CLM

GS: Iterate over beta and sigma^2 draws

Assign storage space for holding the GS draws (Output)
beta_out <- matrix(data=NA, nrow= M, ncol= k_par)
sigma_out <- matrix(data = NA, nrow = M, ncol=1)

for (i in 1:M){
V_beta <- solve(solve(Sigma2_0) + (1/sigma2)*(t(X)%*%X))
m_beta <- V_beta%*%(solve(Sigma2_0)%*%m_0 + (1/sigma2)*t(X)%*%y)
beta <- rmvnorm(n=1, m_beta, V_beta) # Beta ~ N(m_beta, V_beta)

resid <- (y - X %*% t(beta))
T1 <- T0 + T

D1 <- D0 + t(resid) %*% resid
sigma2 <- rinvgamma(1, T1, D1) # sigma2 ~IG(T1,D1)

save the results.
beta_out[i,] <- beta
sigma_out[i,] <- sigma2

}

gs_reg <- lm(y ~ X - 1)
summary(gs_reg)
posterior_means <- apply(beta_out1, 2, mean)
print(cbind(posterior_means, gs_reg$coefficients))

GS – Example 2: CLM

posterior_means <- apply(beta_out1, 2, mean)
> print(cbind(posterior_means, gs_reg$coefficients))

posterior_means
X1 1.015181 1.092160
X2 2.032915 2.040219

posterior_sds <- apply(beta_out1, 2, sd)std_errs <-
sqrt(diag(vcov(gs_reg)))print(cbind(posterior_sds, std_errs))
> print(cbind(posterior_sds, std_errs))

posterior_sds std_errs
X1 0.27549964 0.27967721
X2 0.05352739 0.05307753

RS – Lecture 17

22

GS – Example 3: Logistic Regression

• A standard Bayesian logistic regression model (e.g., modelling the
probability of a merger) can be written as follows:

• To use GS, from the complicated posterior, we write down the
conditional posterior distributions, as usual. Say, for β0:

),0(~),,0(~

)(

),(~

1100 mNmN

Xplogit

pnBinomialy

i

iii

?~),|(

)
2

exp(
1

)exp(1

1

)exp(1

)exp(

)(),|(),|(

10

0

2
0

01010

10

01010

yp

mmxx

x

pypyp

i

yn

i

y

i

i

iii

• But, this distribution is not a standard distribution. It cannot be
simply simulated from a standard library function. Thus, the GS
cannot be used here.

• But, we can simulate it using MH methods.

• The R package MCMCpack can estimate this model. Also, Bayesian
software OpenBUGS, JAGS, WinBUGS, and Stan, which link to R,
can fit this model using MCMC.

See R link: https://cran.r-project.org/web/views/Bayesian.html

GS – Example 3: Logistic Regression

RS – Lecture 17

23

MCMC: Data Augmentation

• Situation: It is difficult or impossible to sample 𝜃 directly from the
posterior, P 𝜃 𝑌 , but there exists an unobservable/latent variable 𝑍,
such that it is possible to conditionally sample from Pሺ𝜃|𝑍,𝑌ሻ &
P(𝑍|𝜃,𝑌). Then, we can use the GS to draw from P 𝜃,𝑍 𝑌 .

• 𝑍 is introduced to simplify (sometimes, to improve) the sampler.

• Data augmentation (DA): Methods for constructing iterative
optimization or sampling algorithms through the introduction of
unobserved data or latent variables.

• DA was popularized by Dempster, Laird, and Rubin (1977), in their
article on the EM algorithm, and by Tanner and Wong (1987). Chib
(1992) is the first application in econometrics (in a Tobit model).

MCMC: Data Augmentation

• Typical application in economics/finance: Censored data.

• A DA algorithm starts with the construction of the so-called
augmented data, 𝑌௨, which are linked to the observed data, 𝑌௦,
via a many-to-one mapping M: 𝑌௨ ⟶ 𝑌௦.

• Now, we have “complete data.” But, we require that the marginal
distribution of 𝑌௦ implied by Pሺ𝑌௨|𝜃ሻ must be the original model
Pሺ𝑌௦|𝜃). That is, we relate the “observed data” posterior
distribution to the “complete data”:

Pሺ𝜃|𝑌௦, M) = 𝑓ሺ𝜃,𝑌௨|𝑌௦, M) 𝑑𝑌௨
𝑓ሺ𝜃|𝑌௨ = , 𝑌௦, M)𝑓ሺ𝑌௨|𝑌௦, M)𝑑𝑌௨

RS – Lecture 17

24

MCMC: Data Augmentation

• Now, we have “complete data.” But, we require that the marginal
distribution of 𝑌௦ implied by Pሺ𝑌௨|𝜃ሻ must be the original model
Pሺ𝑌௦|𝜃). That is, we relate the “observed data” posterior
distribution to the “complete data”:

Pሺ𝜃|𝑌௦, M) = 𝑓ሺ𝜃,𝑌௨|𝑌௦, M) 𝑑𝑌௨
𝑓ሺ𝜃|𝑌௨ = , 𝑌௦, M)𝑓ሺ𝑌௨|𝑌௦, M)𝑑𝑌௨

• We introduce the RV 𝑌௨ because it helps. We have a situation
where the GS can be used to simulate P(𝜃|𝑌௦, M). Two steps:

– Draw 𝑌௨ from their joint posterior, P(𝑌௨|𝑌௦, M)

– Draw 𝜃 from its completed-data posterior: P(𝜃|𝑌௦, 𝑌௨, M)

Q: Under which conditions, inference from completed data and
inference from observed data are the same?

MCMC: Data Augmentation – Example 1

Suppose we are interested in estimating the parameters of a censored
regression. There is a latent variable:

𝑌* = 𝑋 + , |𝑋 ∼ iid N(0, 1) 𝑖 = 1, 2, ..., 𝐾, ..., 𝐿

• We observe 𝑌 = max(0, 𝑌*), and the regressors 𝑋 . Suppose we
observe ሺ𝐿 െ 𝐾ሻ zeroes. (We do not observe the negative 𝑌*’s.)

• Assume prior distribution for ~ N(μ, Ω). But, the posterior
distribution for does not have a closed form expression.

Remark: We view both the vector 𝒀* = (𝑌ଵ*,..., 𝑌ே*) & as unknown
RV. With an appropriate choice of P(𝒀*|data,) & P(| 𝒀*), we can
use a Gibbs sample to get the full posterior P(, 𝒀*|data).

RS – Lecture 17

25

MCMC: Data Augmentation – Example 1

• The GS consists of two steps:

Step 1 (Imputation): Draw all the missing –i.e., with negative values-
elements of 𝒀* given the current value of the parameter , say :

𝑌*|, data ∼ TN(𝑋 , 1; 0) (an ሺ𝐿 െ 𝐾ሻ x 1vector)

if observation 𝑖 is truncated, where TN(μ, 𝜎ଶ; c) denotes a truncated
normal distribution with mean μ, variance 𝜎ଶ, and truncation point c
(truncated from above). See Botev (2017) for an algorithm to draw
from a TN.

Note: Only draw missing elements. That is, if 𝑌 > 0, set 𝑌* = 𝑌.

Step 2 (Posterior): Draw a new value for the parameter, ାଵ given
the data and given the (partly drawn) 𝒀*:

Pሺ|data, 𝒀*)∼ N((𝑿ᇱ𝑿+ Ω−1)-1 (𝑿′𝒀 + Ω−1μ), (𝑿′𝑿 + Ω−1)-1)

MCMC: Data Augmentation – Example 2

Example: Incomplete univariate data

Suppose that 𝑌ଵ, ..., 𝑌 ~ Binomial (1, 𝜃)

Prior for 𝜃 ~ Beta(𝛼,)

Then, the posterior of 𝜃 is also Beta:

Pሺ𝜃|𝑌ሻ ~ Beta(𝛼 + ∑ 𝑌

ୀଵ , 𝐿 െ ∑ 𝑌

ୀଵ)

Suppose 𝐿 െ 𝐾 observations are missing. That is, 𝑌௦= {𝑌ଵ, ... , 𝑌}.

Then, Pሺ𝜃|𝑌௦ሻ ~ Beta(𝛼 ∑ 𝑌

ୀଵ , 𝐾 െ ∑ 𝑌

ୀଵ)

Step 1: Draw all the missing elements of 𝒀* given the current value of
the parameter 𝜃, say 𝜃.

Step 2: Draw a new value for the parameter, 𝜃ାଵ given the data and
given the (partly drawn) 𝒀*.

RS – Lecture 17

26

MCMC: Data Augmentation – Example 3

Example: Auxiliary Variable

Suppose that 𝑌ଵ, ..., 𝑌ே ~ iid N(𝜇, 𝜎ଶ) where 𝑖 ൌ 0, 1
We have a mixture of normals, with a mixture proportion, 𝜋.

Priors:

𝜋 ~ Beta(𝛼,).

𝜇 ~ N(𝑚, 𝑙ିଵ)

Likelihood:

The pdf of 𝑌:
𝑝ሺ𝑦| 𝜇, 𝜋ሻ ൌ 1 െ 𝜋 ∗ 𝑁ሺ𝑦|𝜇,𝜎ଶሻ + 𝜋 ∗ 𝑁ሺ𝑦|𝜇ଵ,𝜎ଶሻ

A complicated likelihood, that makes the posterior complicated.

MCMC: Data Augmentation – Example 3

Example (continuation):

We define an equivalent model, using an auxiliary, latent variable, 𝑍 :
𝜋 ~ Beta(𝛼,).

𝑍ଵ, ..., 𝑍ே ~ Bernouille(𝜋)

𝑌ଵ, ..., 𝑌ே ~ iid N(𝜇ሺ𝑧ሻ, 𝜎ଶ)

The pdf:

𝑝ሺ𝑦| 𝜇, 𝜋ሻ ൌ 𝑝 𝑦 𝑍 ൌ 0,𝜇, 𝜋 𝑝 𝑍 ൌ 0 𝜇, 𝜋
𝑝 𝑦 𝑍 ൌ 1,𝜇, 𝜋 𝑝 𝑍 ൌ 1 𝜇, 𝜋

ൌ 1 െ 𝜋 ∗ 𝑁ሺ𝑦|𝜇,𝜎ଶሻ + 𝜋 ∗ 𝑁ሺ𝑦|𝜇ଵ,𝜎ଶሻ

We can use this pdf to build a Gibbs sampler:

𝑝ሺ𝜋|𝒚, 𝒛, 𝜇ሻ ൌ Beta(𝜋|𝛼 𝑁, 𝑁ଵ). (𝑁 ൌ ∑ 𝐼ሺ𝑍
ே
ୀଵ ൌ 𝑗ሻ)

Given 𝒛, we know where 𝑦 is drawn from. We have two normals.

RS – Lecture 17

27

MCMC: Data Augmentation – Example 3

Example (continuation): Conditional posteriors:

• 𝑝ሺ𝜋|𝒚, 𝒛, 𝜇ሻ ൌ Beta(𝜋|𝛼 𝑁, 𝑁ଵ). (𝑁 ൌ ∑ 𝐼ሺ𝑍
ே
ୀଵ ൌ 𝑗ሻ)

• Given 𝒛, we know where 𝑦 is drawn from. We have two
independent Normal-normal models:

𝜇|𝜇ଵ, 𝜋,𝒚, 𝒛 ~ N(𝑚, 𝑙
ିଵ)

𝜇ଵ|𝜇, 𝜋,𝒚, 𝒛 ~ N(𝑚ଵ, 𝑙ଵ
ିଵ)

where

𝑙 ൌ 𝑙 𝑁 ℎ (ℎ ൌ 𝜎ଶ)

𝑚 ൌ ሺ𝑙 𝑚 ℎ ∑ 𝑦ሻ/ሺ𝑙
ே
,௭ୀ /𝑁 ℎሻ

• 𝑝ሺ𝑧|𝒚,𝜋, 𝜇ሻ ൌ Bernoulli(𝑧|𝛼,ଵ/ሺ𝛼, 𝛼,ଵሻ

where 𝛼, = 1 െ 𝜋 ∗ 𝑁ሺ𝑦|𝜇, 𝜎ଶሻ & 𝛼,ଵ = 𝜋 ∗ 𝑁ሺ𝑦|𝜇ଵ, 𝜎ଶሻ

MCMC: Data Augmentation – Example 3

Example (continuation): Application to data of heights of Dutch
men (562) and women (695). Traceplots for 𝜇 and 𝜋:

RS – Lecture 17

28

MCMC: Data Augmentation – Example 3

Example (continuation): Histogram of heights:

• MH is an alternative, and more general, way to construct an MCMC
sampler (to draw from the posterior). The Gibbs sampler is a
simplified version of the MH algorithm (so simplified, it does not look
like it).

• It provides a form of generalized rejection sampling, where values
are drawn –i.e., the 𝜃’s– from approximate distributions and
“corrected” so that, asymptotically they behave as random
observations from the target distribution –for us, the posterior.

• MH sampling algorithms sequentially draw candidate observations
from a ‘proposal’ distribution, conditional on the current observations,
thus inducing a Markov chain.

MCMC: Metropolis-Hastings (MH)

RS – Lecture 17

29

• We deal with Markov chains: The distribution of the next sample
value, say 𝑦 = 𝜃ାଵ, depends on the current sample value, say 𝑥 =
𝜃.

• In principle, the algorithm can be used to sample from any integrable
function. But, its most popular application is sampling from a
posterior distribution.

• The MH algorithm jumps around the parameter space, but in a way
that the probability to be at a point is proportional to the function we
sample from –i.e., the target function.

• Named after Metropolis et al. (1953), which first proposed it and
Hastings (1970), who generalized it. Rediscovered by Tanner and
Wong (1987) and popularized by Gelfand and Smith (1990).

MCMC: Metropolis-Hastings (MH)

• We want to find a function P(𝑥,𝑦). from where we can sample, that
satisfies the (time) reversibility condition (equation of balance), a sufficient
condition for stationarity of 𝜋ሺ. ሻ:

𝜋ሺ𝑥ሻ P(𝑥,𝑦). = 𝜋ሺ𝑦ሻ P(𝑦, 𝑥).

• The proposal (or candidate-generating) density is denoted 𝑞ሺ𝑥,𝑦ሻ, where
 𝑞 𝑥,𝑦 𝑑𝑦 ൌ 1.

Interpretation: When a process is at the point 𝑥 (=𝜃), the density
generates a value 𝑦 (=𝜃ାଵ) from 𝑞ሺ𝑥,𝑦ሻ. It tells us how to move
from current 𝑥 to new 𝑦. Alternative notation for 𝑞ሺ𝑥,𝑦ሻ = 𝑞ሺ𝑦|𝑥ሻ.

• Idea: Suppose P is the true density. We simulate y using 𝑞ሺ𝑥,𝑦ሻ. We
‘accept’ it only if it is “likely.” If it happens that 𝑞ሺ𝑥,𝑦ሻ itself satisfies
the reversibility condition for all (𝑥,𝑦), we are done.

MCMC: MH – Proposal Distribution

RS – Lecture 17

30

• But, for example, we might find that for some ሺ𝑥,𝑦ሻ:
𝜋ሺ𝑥ሻ 𝑞ሺ𝑥,𝑦ሻ > 𝜋ሺ𝑦ሻ 𝑞ሺ𝑦, 𝑥ሻ (*)

In this case, speaking somewhat loosely, the process moves from 𝑥 to
𝑦 too often and from 𝑦 to 𝑥 too rarely.

• We want balance. To correct this situation by reducing the number
of moves from 𝑥 to 𝑦 with the introduction of a probability ሺ𝑥,𝑦ሻ <
1 that the move is made:

𝑎ሺ𝑥,𝑦ሻ = probability of move from 𝑥 to 𝑦.

If the move is not made, the process again returns 𝑥 as a value from
the target distribution.

• Then, transitions from 𝑥 to 𝑦 (𝑦 ≠ 𝑥) are made according to

𝑝ெுሺ𝑥,𝑦ሻ = 𝑞ሺ𝑥,𝑦ሻ 𝑎ሺ𝑥,𝑦ሻ 𝑦 ≠ 𝑥

MCMC: MH – Proposal Distribution

Example: We focus on a single parameter 𝜃 and its posterior
distribution 𝜋ሺ𝜃). We draw a sequence {𝜃ଵ, 𝜃ଶ, 𝜃ଷ, ...} from a MC.

– At iteration 𝑚, let 𝜃 = 𝜃. Then, propose a move: 𝜃*. That is,
generate a new value 𝜃* from a proposal distribution 𝑞ሺ𝜃, 𝜃*).

– Rejection rule:
Accept 𝜃* (& let 𝜃ାଵ = 𝜃*) with (acceptance) probability 𝑎ሺ𝜃,𝜃*)

Reject 𝜃* with probability 1െ𝑎 (& set 𝜃ାଵ= θm)

 We have defined an acceptance function!

Note: It turns out that the acceptance probability, 𝑎ሺ𝑥,𝑦ሻ, is a
function of 𝜋ሺ𝑦ሻ/𝜋ሺ𝑥ሻ –the importance ratio. This ratio helps the
sampler to visit higher probability areas under the full posterior.

MCMC: MH – Algorithm Rejection Step

RS – Lecture 17

31

MCMC: MH – Probability of Move
• We need to define 𝑎ሺ𝑥,𝑦ሻ, the probability of move.

• In our example (*), to get movements from 𝑥 to 𝑦, we define
𝑎ሺ𝑦, 𝑥ሻ to be as large as possible (with upper limit 1!). Now, the
probability of move 𝑎ሺ𝑥,𝑦ሻ is determined by requiring that
𝑝ெுሺ𝑥,𝑦ሻ satisfies the reversibility condition. Then,

𝜋ሺ𝑥ሻ 𝑞ሺ𝑥,𝑦ሻ 𝑎ሺ𝑥,𝑦ሻ = 𝜋ሺ𝑦ሻ 𝑞ሺ𝑦, 𝑥ሻ 𝑎ሺ𝑦, 𝑥ሻ = 𝜋ሺ𝑦ሻ 𝑞ሺ𝑦, 𝑥ሻ

 𝑎ሺ𝑥,𝑦ሻ =
గሺ௬ሻ ሺ௬,௫ሻ

గሺ௫ሻ ሺ௫,௬ሻ
Note: If (*) is reversed, we set 𝑎ሺ𝑥,𝑦ሻ = 1 and 𝑎ሺ𝑦, 𝑥ሻ as above.

• Then, in order for 𝑝ெுሺ𝑥,𝑦ሻ to be reversible, 𝑎ሺ𝑥,𝑦ሻ must be

𝑎ሺ𝑥,𝑦ሻ = min{
గሺ௬ሻ ሺ௬,௫ሻ

గሺ௫ሻ ሺ௫,௬ሻ , 1} if 𝜋ሺ𝑥ሻ 𝑞ሺ𝑥,𝑦ሻ>0,

= 1 otherwise.

MCMC: MH – Probability of Move
• If 𝑞ሺ. ሻ is symmetric, then 𝑞ሺ𝑥,𝑦ሻ = 𝑞ሺ𝑦, 𝑥ሻ. Then, the probability
of move 𝑎ሺ𝑥,𝑦ሻ reduces to 𝜋ሺ𝑦ሻ/𝜋ሺ𝑥ሻ –the importance ratio. Thus, the
acceptance function:

- If 𝜋ሺ𝑦ሻ ≥ 𝜋ሺ𝑥ሻ, the chain moves to 𝑦.

- Otherwise, it moves with probability given by 𝜋ሺ𝑦ሻ/𝜋ሺ𝑥ሻ.

Note: This case, with 𝑞ሺ. ሻ symmetric, is called Metropolis Sampling.

• This acceptance function plays 2 roles:

1) It helps the sampler to visit higher probability areas under the full
posterior –we do this through the ratio 𝜋ሺ𝑦ሻ/𝜋ሺ𝑥ሻ.

2) It should explore the space and avoid getting stuck at one site –i.e.,
it can reverse its previous move. This constraint is given by the ratio
𝑞ሺ𝑦, 𝑥ሻ/𝑞ሺ𝑥,𝑦ሻ.

RS – Lecture 17

32

MCMC: MH – At Work

• We consider moves from 𝑥 (note that 𝑞ሺ𝑥,𝑦ሻ is symmetric):

– A move to candidate 𝑦ଵ is made with certainty –i.e., 𝜋ሺ𝑦ଵሻ>𝜋 𝑥
 We always say yes to an “up-hill” jump!

– A move to candidate 𝑦ଶ is made with probability 𝜋ሺ𝑦ଶሻ/𝜋ሺ𝑥ሻ.

Note: The 𝑞ሺ𝑥,𝑦ሻ distribution is also called jumping distribution.

MCMC: MH – Transition Kernel
• In order to complete the definition of the transition kernel for the
MH chain, we consider the possibly non-zero probability that the
process remains at 𝑥 :

𝑟ሺ𝑥ሻ = 1 െ ∫R 𝑞ሺ𝑥,𝑦ሻ 𝑎ሺ𝑥,𝑦ሻ 𝑑𝑥.

• Then, the transition kernel of the MH chain, denoted by 𝑝ெுሺ𝑥,𝑦ሻ
is given by:

𝑝ெுሺ𝑥,𝑦ሻ=𝑞ሺ𝑥,𝑦ሻ 𝑎ሺ𝑥,𝑦ሻ 𝑑𝑦 ሾ 1 െ ∫R 𝑞ሺ𝑥,𝑦ሻ 𝑎ሺ𝑥,𝑦ሻ 𝑑𝑦] Ixሺ𝑦ሻ

where the indicator function Ixሺ𝑦ሻ = 1 if 𝑥 ൌ 𝑦
= 0 otherwise.

RS – Lecture 17

33

MCMC: MH Algorithm

• MH Algorithm

We know 𝜋ሺ𝜃ሻ = P(𝜃|𝑦ሻ = P(𝑦|𝜃) x P(𝜃)/P(𝑦), a complicated
posterior. For example, from the CLM with Yi i.i.d. normal, normal
prior for β and gamma prior for ℎ. 𝜃 = (β, ℎ).

Then,

P(𝑦), the normalizing constant, plays no role. Again, we ignore it.

Assumptions:

- Symmetric 𝑞ሺ. ሻ –i.e., 𝑞ሺ𝜃, 𝜃ାଵሻ = 𝑞ሺ𝜃ାଵ, 𝜃).

 𝑎ሺ𝜃, 𝜃ାଵ) = 𝜋ሺ𝜃ାଵሻ/𝜋ሺ𝜃ሻ.
- A starting value for 𝜃: 𝜃 (𝑚 = 0).

.
)()|(

)()|(

)(

)(
1

11

mm

mm

m

m

PyP

PyP

MCMC: MH Algorithm

• MH Algorithm – Steps:

(1) Initialized with the starting value 𝜃0 (𝑚=0):

(2) Generate 𝜃* from q(𝜃, .) and draw 𝑢 from U(0, 1).

- If 𝑢 ≤ 𝑎ሺ𝜃, 𝜃*) = 𝜋ሺ𝜃* ሻ/𝜋ሺ𝜃ሻ set 𝜃ାଵ = 𝜃*.

Else set 𝜃ାଵ = 𝜃.

(3) Repeat for 𝑚 = 1 , 2 ,. . . , 𝑀.

• Return the values {𝜃ሺெሻ} = (𝜃ଵ, 𝜃ଶ, 𝜃ଷ, ... , 𝜃, 𝜃ାଵ, ... , 𝜃ெ).

RS – Lecture 17

34

MCMC: MH Algorithm – CLM Example

• (From Florian Hartig) Suppose we have the CLM with

Data: 𝑌 ൌ 𝛼 + β 𝑋 , |𝑋~ iid N(0, σ2).

Priors: β ~ U(0,10); 𝛼 ~ N(m=0, σ0
2=9); & σ2 ~ U(0.001,30)

 θ = (𝛼, β, σ2).

• We simulate the data, with 𝛼=1, β=2, σ=5, & T=50.

• Proposal densities: 3 Normals with θ0 = (2,0,7) &

SD = (0.1,0.5,0.3).

• Iterations = M =10,000 & Burn-in = M0 = 5,000.

• OLS: a = 1.188 (0.68), b = 1.984 (.047).

MCMC: MH Algorithm – CLM Example

RS – Lecture 17

35

• We pick proposal distributions, 𝑞ሺ𝑥,𝑦ሻ, that are easy to sample.
But, remarkably, 𝑞ሺ𝑥,𝑦ሻ can have almost any form.

• It is usually a good idea to choose 𝑞ሺ𝑥,𝑦ሻ close to the posterior,
𝜋 . .

• There are some exceptions; but assuming that the proposal allows
the chain to explore the whole posterior and does not produce a
recurrent chain we are OK.

• We tend to work with symmetric 𝑞ሺ𝑥,𝑦ሻ, but the problem at hand
may require asymmetric 𝑞ሺ𝑥,𝑦ሻ; for instance, to accommodate a
particular constraints in the model. For example, to estimate the
posterior distribution for a variance parameter, we require that our
proposal does not generate values smaller than 0.

MCMC: MH – Remarks about q(.)

• Three special cases of MH algorithm are:
1. Random walk metropolis sampling. That is,

𝑦 = 𝑥 𝑧, 𝑧 ~ 𝑞ሺ𝑧ሻ

2. Independence sampling. That is,
𝑞ሺ𝑥,𝑦ሻ = 𝑞ሺ𝑦ሻ.

3. Gibbs sampling. (We never reject from the proposals –i.e., the
conditional posteriors!)

• Critical decision: Selecting the spread and location of 𝑞ሺ𝑥,𝑦ሻ. Note
that difference choices deliver different acceptance rates –i.e., the
fraction of candidate draws that are accepted.

Changing the spread and location of 𝑞ሺ𝑥,𝑦ሻ to get a desired
acceptance rate is called tuning.

MCMC: MH – Special Cases

RS – Lecture 17

36

MCMC: MH – Random Walk Metropolis

• This is a pure Metropolis sampling –see Metropolis et al. (1953).

– Let 𝑞ሺ𝑥,𝑦ሻ = 𝑞(|𝑦 – 𝑥|) 𝑞(.) is a multivariate symmetric pdf.

– 𝑦 = 𝑥 𝑧 , where 𝑧 ~ 𝑞. (It is called a random walk chain!)

• Typical RW proposals: Normal distribution centered around the
current value of the parameter –i.e., 𝑞ሺ𝑥, 𝑦ሻ ~ N(𝑥, 𝑠ଶ), where 𝑠ଶ is
the (fixed) proposal variance that can be tuned to give particular
acceptance rates. Multivariate t-distributions are also used.

• The RW MH is a good alternative, usual default for the algorithm.

MCMC: MH Algorithm – RW Example

Example: (From P. Lam.) We use a RW MH algorithm to sample
from a Gamma(1.7, 4.4) distribution with 𝑞ሺ𝑥,𝑦ሻ ~ N(𝑥, [SD=2]2).

mh.gamma <- function(M.sims, start, burnin, cand.sd, shape, rate) {

theta.cur <- start

draws <- c()

theta.update <- function(theta.cur, shape, rate) {

theta.can <- rnorm(1, mean = theta.cur, sd = cand.sd) # RW θm+1?

accept.prob <- dgamma(theta.can, shape, rate)/dgamma(theta.cur, shape, rate) # a()

if (runif(1) <= accept.prob) theta.can # reject?

else theta.cur

}

for (i in 1:M.sims) {

draws[i] <- theta.cur <- theta.update(theta.cur, shape,rate)

}

return(draws[(burnin + 1):M.sims])

}

mh.draws <- mh.gamma(10000, start = 1, burnin = 1000, cand.sd = 2, shape = 1.7, rate = 4.4)

RS – Lecture 17

37

MCMC: MH Algorithm – RW Example

Example (continuation):
> mean(mh.draws)

[1] 0.3962097 # theoretical mean = 1.7/4.4 = 0.3863636

> hist(mh.draws, main="Histogram for RW Metropolis for Gamma(1.7,4.4)",xlab="Theta", breaks=50)

MCMC: MH – Independence Sampler

• The independence sampler is so called as each proposal is
independent of the current parameter value. That is,

𝑞ሺ𝑥,𝑦ሻ = 𝑞ሺ𝑦ሻ (an independent chain –see Tierney (1994).)

That is, all our candidate draws y are drawn from the same
distribution, regardless of where the previous draw was.

This leads to acceptance probability

Note that to determine 𝑎ሺ𝑥, 𝑦), we use a ratio of importance weights.

• Distributions used for 𝑞 . : A Normal based around the ML
estimate with inflated variance. A Multivariate-t.

.
)()(

)()(
,1min),(

yqx

xqy
yxa

RS – Lecture 17

38

MCMC: MH – Independence Sampler

Example: We use an independence sampler MH algorithm to sample
from a Gamma(1.7, 4.4) distribution with 𝑞ሺ𝑦ሻ ~ N(0, [SD=2]2).

Code in R: Same code, but the theta.update function changes to

theta.update <- function(theta.cur, shape, rate) {

theta.can <- rnorm(1, mean = cand.mu, sd = cand.sd) # IS θm+1?

accept.prob <- dgamma(theta.can, shape, rate)*dnorm(theta.cur, cand.mu, cand.sd)/
(dgamma(theta.cur, shape, rate)*dnorm(theta.can, cand.mu, cand.sd)) # a(.)

if (runif(1) <= accept.prob) theta.can # reject?

else theta.cur

}

MCMC: MH – Independence Sampler

Example (continuation): Below, we draw the traceplot and histogram
for the generated draws. The generated ED looks fine. That is, it can
be used to calculate quantities of interest.

RS – Lecture 17

39

MCMC: MH – Independence Sampler

Example (continuation): Now, suppose we start with x0=3 and use
𝑞ሺ𝑦ሻ ~ N(2, [SD=6]2). To check the chain, we show below the
traceplot and histogram:

Note: No clear convergence. The chain seems stuck in some values.
 The chain may not be a good approximation to π(θ).

MCMC: MH – Independence Sampler

• The independence sampler can sometimes work very well but can
also work very badly!

• The efficiency depends on how close the jumping distribution is to
the posterior.

• Generally speaking, the chain will behave well only if the q(.)
proposal distribution has heavier tails than the posterior and has
similar shape to π(.) .

RS – Lecture 17

40

MCMC: MH – Acceptance Rates

• It is important to monitor the acceptance rate (the fraction of
candidate draws that are accepted) of the MH algorithm:

– If the acceptance rate is too high, the chain is likely not mixing
well –i.e., not moving around the parameter space enough.

– If it is too low, the algorithm is too inefficient –i.e., rejecting too
many draws.

• In general, the acceptance rate falls as the dimension of Pሺ𝜃|𝑦ሻ
increases (especially, for highly dependent parameters) resulting in
slow moving chains and long simulations.

• Simulation times can be improved by using the single component
MH algorithm. Instead of updating the whole 𝜃 together, 𝜃 is divided
in parts –say, (β, ℎ)–, with each component updated separately.

• What is high or low is algorithm specific. One way of finding a
‘good’ 𝑞ሺ. ሻ is to choose a pdf that gives a particular acceptance rate.

• When we scale –i.e., adjust the scale parameters– 𝑞ሺ. ሻ, say σ, to
obtain a particular acceptance rate, we say “we are tuning the MH.”

• In general, tuning is simple: Proposal jump sizes are

- Increased when acceptance rates are high.

- Decreased when rates are low.

• The above mechanism suggests an optimal scale parameter –i.e., the
proposal explores the parameter space efficiently.

MCMC: MH – Acceptance Rates & Tuning

RS – Lecture 17

41

• For RW MH, Roberts, Gelman and Gilks (1997), with Gaussian
proposals and i.i.d components of 𝜃, suggest as “good” acceptance
rate:
– 45% for unidimensional problems.
– 23.4% in the limit (some theoretical support for this result)
– 25% for 6 dimensions.

• 23.4% is often used in practice to tune 𝑞ሺ. ሻ.

• There is a literature, however, –see, Bedard (2008)– arguing that in
many cases 23.4% may be inefficient, for example, hierarchical
models.

• For Independent MH, Muller (1993) suggests a ‘good’ rate is close
to 100%.

MCMC: MH – Acceptance Rates & Tuning

Example: Back to the RW Metropolis algorithm to sample from a
Gamma(1.7, 4.4) distribution with 𝑞ሺ𝑥,𝑦ሻ ~ N(𝑥, SD2). Before, we
used SD=2.

Now, we try two extreme SDs to illustrate the usual trade-off:
- SD=12 (too big), with acceptance rate 2.4% inefficient.
- SD=.12 (too small), with acceptance rate 86% not mixing well.

MCMC: MH – Acceptance Rates & Tuning

RS – Lecture 17

42

MCMC: MH – Acceptance Rates & Tuning

Example: If we use the Roberts et al’s (1994) 23.4% acceptance rate
as a target, then we adjust SD to get close to it. When SD=2, the
acceptance rate was 14.2% (low).

Tuning SD to 1.2, we get a 23.8% acceptance rate. The ED generated
looks better (see the traceplot and histogram below):

MCMC: MH – Tuning: Adaptive Method

• Adaptive Method (ad hoc)
- Before the burn-in, we have an adaptation period, where the
sampler improves the proposal distribution. The adaptive method
requires a desired acceptance rate, for example, 30% and tolerance,
for example, 10% resulting in an acceptable range of (20%, 40%).

- If we are outside the acceptable range, say we reject too much, we
scale the proposal distribution, for example, by changing/reducing
the spread (say, σ).

- Think of it as a method to find starting values.

• MLwiN uses an adaptive method to construct univariate Normal
proposals with an acceptance rate of approximately 50%.

RS – Lecture 17

43

MCMC: MH – Adaptive Method Algorithm

• Run the MH sampler for consecutive batches of 100 iterations.
Compare the number accepted, N with the desired acceptance rate,
R. Adjust variance accordingly:

• Repeat this procedure until 3 consecutive values of N lie within the
acceptable range and then, mark (fixed) this parameter. Check other
parameters.

• When all the parameters are marked the adaptation period is over.

Note: Proposal SDs are still modified after being marked until
adaptation period is over.

)2(, If

)2/(, If

100
100

R
N

oldnew

R
N

oldnew

RN

RN

MCMC: MH – Autocorrelation

• A usual problem in poor MCMC performance is high
autocorrelation, or “stickiness” in the chain.

• Estimators based on MC samples (based on independent draws from
the target) perform better than MCMC samples, which are correlated
samples.

• The SE of both estimators is given by:

VarMC[�̅�|𝑦] = Var[𝜃|𝑦]/M

VarMCMC[�̅�|𝑦] = Var[𝜃|𝑦]/M + 1/M Σm്t E{(𝜃 – 𝜃true) (𝜃
௧– θtrue)}

where �̅� approximates E[θ|𝑦]= 𝜃true. The 2nd term in VarMCMC [�̅�|𝑦]
is, in general, positive (& higher than VarMC[�̅�|𝑦]).

RS – Lecture 17

44

MCMC: MH – Autocorrelation

• Thus, we expect the MCMC approximation to be worse. The higher
the autocorrelation, the less information we have in the chain. We
may need a very large M to get enough information to estimate
quantities of interest from 𝜋ሺ𝜃ሻ.

• That is, a chain with high autocorrelation moves around the
parameter space Θ slowly, taking a long time to achieve the correct
balance of samples to approximate 𝜋ሺ𝜃ሻ.

• It is common practice to adjust the level of correlation by adjusting
𝑞ሺ. ሻ, usually, tuning σ.

• Sample autocorrelation function (ACF) plots are used to determine
how much autocorrelation is in the chain.

MCMC: MH – Autocorrelation: Tuning

Example: MH algorithm sampling from a Gamma(1.7, 4.4) pdf with
𝑞ሺ. ሻ ~ N(., SD2). We plot the first 1,000 values & ACF (SD=6).

RS – Lecture 17

45

MCMC: MH – Autocorrelation: Tuning

Example (continuation): Now, we plot the first 1,000 values & ACF
(SD=1).

MCMC: MH – Autocorrelation: Tuning

Example (continuation): Now, we plot the first 1,000 values & ACF
(SD=.5).

RS – Lecture 17

46

MCMC: MH – Autocorrelation - Remarks

• In practice, we adjust the level of correlation by scaling 𝑞ሺ. ሻ.

• By looking at the previous graphs, it is tempting to reduce σ to get a
lower autocorrelation (and faster convergence). But, as σ → 0, the
acceptance rate goes to 1. That is, the chain never moves (see RW
chain with SD = 0.5).

• That is, there is a trade-off when adjusting σ to control for low
autocorrelation; we want σ to be:

- large enough so that the chain moves quickly throughout Θ.

- but not so large σ that the rejection rate is too high.

MCMC: MH – Diagnostics and Convergence

• Similar diagnostics tools as the ones discussed for the Gibbs
Sampler.

• Convergence is a practical problem for MCMC methods.

– Converge can be slow Let the MH algorithm run.

– There are some formal tests –see Robert and Casella (2004). In the
usual complicated setups they tend to have a Type II error problem
(accept convergence too much/too quickly) Rely on graphs
(traceplots & histograms, correlograms).

Practical advise: Run the algorithm until some iteration M*, where it
looks like the chain is stationary. Then, run it M more times to check!
Discard the first M* iterations. Keep the rest to approximate 𝜋ሺ. ሻ.

RS – Lecture 17

47

MCMC: MH – Remarks

• MH sampling produces a chain, {𝜃ሺெሻ}, with 𝜋ሺ. ሻ as limiting
distribution. The chain allows us to calculate quantities of interest of
𝜋ሺ. ሻ. (moments, C.I., etc.) when i.i.d. simulations cannot be used.

• Pros:
– We need less information about 𝜋ሺ. ሻ than other methods.
– With little tuning, the algorithm works reasonably well.
– Large dimensions problems can be broken into sets of smaller ones.

• Cons:
– Results are only asymptotic (when M → ∞).
– Convergence may be very slow. For practical purposes, the
algorithm may not converge.
– Detecting slow convergence may be difficult.

• We want to simulate values from

• Proposal distribution: RW chain: y = x + z, z ~ bivariate Uniform
on (-δi, δi), for i = 1 ,2. (δi controls the spread)

To avoid excessive move, let δ1=.75 and δ2=1.

• The probability of move (for a symmetric proposal) is:

 1 .9
() exp (1 / 2) ; =

.9 1
f x

-1x'Σ x

.
)}()'(

2
1

exp{

)}()'(
2
1

exp{
,1min),(

1

1

xx

yy
yx

Application 1: Bivariate Normal

RS – Lecture 17

48

Application 1: Bivariate Normal

Application 2: The Probit Model (Greene)

i

i

i i

i

i

(a) y *
~ N[0,1]

(b) y 1 if y * > 0, 0 otherwise
Consider estimation of and y * (data augmentation)
(1) If y* were observed, this would be a linear regression
 (y would not be useful since

i ix β +

β

i

i i

i

i

 it is just sgn(y *).)
 We saw in the linear model before, p(y *, y)
(2) If (only) were observed, y * would be a draw from
 the normal distribution with mean and variance 1.
 But, y

i

β|
β

x β
i i i gives the sign of y * . y * | , y is a draw from

 the truncated normal (above if y=0, below if y=1)
β

• The Probit Model:

RS – Lecture 17

49

i

i

(1) Choose an initial value for (maybe the MLE)
(2) Generate y * by sampling N observations from
 the truncated normal with mean and variance 1,
 truncated above 0 if y 0, from below if y

i

β

x β
i

-1 -1

1.
(3) Generate by drawing a random normal vector with
 mean vector () * and variance matrix ()
(4) Return to 2 10,000 times, retaining the last 5,000
 draws - first 5,000 are the

β
X'X X'y X'X

'burn in.'
(5) Estimate the posterior mean of by averaging the
 last 5,000 draws.
(This corresponds to a uniform prior over .)

β

β

Application 2: The Probit Model (Greene)

• Gibbs sampler for the probit model:

Aside: Generating Random Draws from F(X)

-1

The inverse probab ility m ethod o f sam pling
random draw s:
If F(x) is the CDF o f random variab le x , then
a random draw on x m ay be obta ined as F (u)
w here u is a draw from the standard un ifo rm (0 ,1).
Exam pl

-1

-1
i i

es:
Exponentia l: f(x)= exp(- x); F(x)= 1-exp(- x)
 x = -(1/)log(1-u)
Norm a l: F(x) = (x); x = (u)
Trunca ted Norm a l: x= + [1-(1-u)* ()] fo r y= 1;
 x -1

i i= + [u (-)] fo r y= 0.

RS – Lecture 17

50

Example: Simulated Probit (Greene)

? Generate raw data
Sample ; 1 - 1000 $
Create ; x1=rnn(0,1) ; x2 = rnn(0,1) $
Create ; ys = .2 + .5*x1 - .5*x2 + rnn(0,1) ; y = ys > 0 $
Namelist; x=one,x1,x2$
Matrix ; xx=x'x ; xxi = <xx> $
Calc ; Rep = 200 ; Ri = 1/Rep$
Probit ; lhs=y;rhs=x$
? Gibbs sampler
Matrix ; beta=[0/0/0] ; bbar=init(3,1,0);bv=init(3,3,0)$$
Proc = gibbs$
Do for ; simulate ; r =1,Rep $
Create ; mui = x'beta ; f = rnu(0,1)

; if(y=1) ysg = mui + inp(1-(1-f)*phi(mui));
(else) ysg = mui + inp(f *phi(-mui)) $

Matrix ; mb = xxi*x'ysg ; beta = rndm(mb,xxi)
; bbar=bbar+beta ; bv=bv+beta*beta'$

Enddo ; simulate $
Endproc $
Execute ; Proc = Gibbs $ (Note, did not discard burn-in)
Matrix ; bbar=ri*bbar ; bv=ri*bv-bbar*bbar' $
Matrix ; Stat(bbar,bv); Stat(b,varb) $

• MLE vs Gibbs Sampler

--> Matrix ; Stat(bbar,bv); Stat(b,varb) $
+---+
|Number of observations in current sample = 1000 |
|Number of parameters computed here = 3 |
|Number of degrees of freedom = 997 |
+---+
+---------+--------------+----------------+--------+---------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] |
+---------+--------------+----------------+--------+---------+
BBAR_1 .21483281 .05076663 4.232 .0000
BBAR_2 .40815611 .04779292 8.540 .0000
BBAR_3 -.49692480 .04508507 -11.022 .0000
+---------+--------------+----------------+--------+---------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] |
+---------+--------------+----------------+--------+---------+
B_1 .22696546 .04276520 5.307 .0000
B_2 .40038880 .04671773 8.570 .0000
B_3 -.50012787 .04705345 -10.629 .0000

Application 2: Simulated Probit (Greene)

RS – Lecture 17

51

Application 3: Stochastic Volatility (SV)

In the SV model, we have

Or in logs,

• We have 3 SV parameters to estimate φ =(ω, , ση2) and the latent ht.

• The difference with ARCH models: The shocks that govern the
volatility are not necessarily mean ௧′s. There is a volatility shock.

• SVOL Estimation is based on the idea of hierarchical structure:
- f(𝑦|ℎ௧) (distribution of the data given the volatilities)
- f(ℎ௧|φ) (distribution of the volatilities given the parameters)
- f(φ) (distribution of the parameters)

),0(~; 2
1 Nhh tttt

ttt hh 1loglog

Bayesian Goal: To get the posterior f(ℎ௧, φ|y)

Priors (Beliefs):
Normal-Gamma for f(φ). (Standard Bayesian regression model)

- Inverse-Gamma for f(ση2)
- Impose (assume) stationarity of ℎ௧. (Truncate as necessary)

Algorithm: MCMC
Augment the parameter space to include ℎ௧.
With a proper prior for f(ℎ௧, φ), the MCMC provides inference about
the joint posterior f(ℎ௧, φ| 𝑦).

• Classic reference: Andersen (1994), Mathematical Finance.

• Application to interest rates: Kalimipalli and Susmel (2004, JEF).

Application 3: Stochastic Volatility (SV)

RS – Lecture 17

52

• Gibbs Algorithm for Estimating SV Model --from K&S (2004).

- In the SV model, we estimate the parameter vector and 1 latent
variable: ={ω, , 1,} and Ht = {h1,...,ht}.

- Parameter set therefore consists of Θ = {Ht, } for all t.

• Using Bayes theorem to decompose the joint posterior density as
follows.

)(),()(),(fHfHYfHf nnnn

1
2

11

2
1

110

)ln()ln(

5.0,

)ˆˆ(

ttt

tttt

ttt

 hh

rhRES

RESraar

Application 3: Stochastic Volatility (SV)

• Next draw the marginals f(𝐻௧|𝑌௧,𝜃) & f(𝜃|𝑌௧, 𝐻௧), using a Gibbs
sampling algorithm:

Step 1: Specify initial values 𝜃(0) ={ω(0),
(0), (0)}. Set 𝑖 = 1.

Step 2:

Draw the underlying volatility using the multi-move simulation
sampler –see, De Jong and Shephard (1995)--, based on parameter
values from step 1.

- The multi-move simulation sampler draws 𝐻௧ for all the data points
as a single block. Recall we can write:

)(),()(),(fHfHYfHf nnnn

1)-(A)ln()ln()ln()ln(2
1

2
tttt rhRES

Application 3: Stochastic Volatility (SV)

RS – Lecture 17

53

where ln(t
2) can be approximated by a mixture of seven normal

variates -Chib, Shephard, and Kim (1998).

- Now, (A-1) can be written as

where 𝑘௧ is one of the seven underlying densities that generates 𝑧௧.

- Once the underlying densities 𝑘௧, for all t, are known, (A-3)
becomes a deterministic linear equation and along with the SV model
can be represented in a linear state space model.

1)-(A)ln()ln()ln()ln(2
1

2
tttt rhRES

 2)-(A 72127041

ln
7

1

2

2

 } ,....,{ i,v.mzf)f(z

z)(ε

i
iiiNt

tt

 3)-(A)ln()ln()ln(1
2 ikzrhRES ttttt

Application 3: Stochastic Volatility (SV)

- If interested in estimating as a free parameter, rewrite (A-1) as

Then, estimate approximating ln(௧2) by a lognormal distribution.
Once is known, follow (A-3) and extract the latent volatility.

Step 3:

Based on output from steps 1 and 2, the underlying 𝑘௧ in (A-3) is
sampled from the normal distribution as follows:

For every observation 𝑡, we draw the normal density from each of the
seven normal distributions {𝑘௧ = 1, 2, .. , 7}. Then, we select a “𝑘”
based on draws from uniform distribution.

)1-(A)ln()ln(2)ln()ln(2
1

2
tttt rhRES

 4)-(A k i ,2704.1)ln()ln(),ln(22 iitiNittit vmhzfqhyzf

Application 3: Stochastic Volatility (SV)

RS – Lecture 17

54

Step 4:

Cycle through the conditionals of parameter vector ={ω, , 1}
for the volatility equation using Chib (1993), using output from steps
1-3. Assuming that f() can be decomposed as:

where -j refers to the parameters excluding the jth parameter.

- The conditional distributions (normal for ω and , inverse gamma
for ση2) are described in Chib (1993). You need to specify the prior
means and standard deviations.

Step 5: Go to step 2. (Now, Set 𝑖 =2.)

5)-(A),,(),,(),,(),(2
2

 nnnnnnnn HYfHYfHYfHYf

Application 3: Stochastic Volatility (SV)

Conclusions (Greene)

• Bayesian vs. Classical Estimation

– In principle, different philosophical views and interpretation

– As practiced, just two different algorithms

– The religious debate is a red herring –i.e., misleading.

• Gibbs Sampler. A major technological advance

– Useful tool for both classical and Bayesian

– New Bayesian applications appear daily

References:

Gelman et al. (2016), "Bayesian Data Analysis" (3rd edition).

Kruschke, John (2014), Doing Bayesian Data Analysis: A Tutorial
with R, JAGS, and Stan (2nd edition).

RS – Lecture 17

55

Standard Criticisms (Greene)

• Of the Classical Approach
– Computationally difficult (ML vs. MCMC)

– It is difficult to pay attention to heterogeneity, especially in
panels when N is large.

Responses: None are true. See, e.g., Train (2003, Ch. 10)

• Of Classical Inference in this Setting

– Asymptotics are “only approximate” and rely on “imaginary
samples.” Bayesian procedures are “exact.”

Response: The inexactness results from acknowledging that we
try to extend these results outside the sample. The Bayesian
results are “exact” but have no generality and are useless except
for this sample, these data and this prior. (Or are they? Trying to
extend them outside the sample is a distinctly classical exercise.)

Standard Criticisms (Greene)

• Of the Bayesian Approach

– Computationally difficult.

Response: Not really, with MCMC and Metropolis-Hastings

– The prior (conjugate or not) is a hoax. It has nothing to do
with “prior knowledge” or the uncertainty of the investigator.

Response: In fact, the prior usually has little influence on the
results. (Bernstein and von Mises Theorem)

• Of Bayesian ‘Inference’

– It is not statistical inference

– How do we discern any uncertainty in the results?

This is precisely the underpinning of the Bayesian method. There
is no uncertainty. It is ‘exact.

