RS — Lecture 17

Lecture 17 — Part 1
Bayesian Econometrics

Bayesian Econometrics: Introduction

* Idea: We are not estimating a parameter value, 0, but rather updating
(changing) our subjective beliefs about 0.

* The centerpiece of the Bayesian methodology is Bayes theorem:

P(A|B) = P(ANB)/P(B) = P(B|A) P(A)/P(B).

* Think of B as “something known” —say, the data- and A as
“something unknown” —e.g., the coefficients of a model.

* Our interest: Value of the parameters (0), given the data (y).

* Reversing Bayes’s theorem, we write the joint probability of 8 and y:

P@ Ny) =P(y|06) P©)
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Bayesian Econometrics: Introduction

* Then, we wtite: P(0|y) = P(y|0) P(0)/P(y)  (Bayesian learning)

* For estimation, we can ignore the term P(y) (a normalizing constani),
since it does not depend on the parameters. Then, we can write:

P@|y) = P(y|0) x P(8)

¢ Terminology:

- P(y | 0): Density of the data, y, given the parameters, 8. Called the
likelihood function. (L1l give you a value for 8, you should see y.)

- P(0): Prior density of the parameters. Prior belief of the researcher.

- P(8|y): Posterior density of the parameters, given the data. (A mixture
of the prior and the “current information” from the data.)

Note: Posterior is proportional to likelihood times prior.

Bayesian Econometrics: Introduction

¢ The typical problem in Bayesian statistics involves obtaining the
posterior distribution:

P@|y) = P(y|6) x P(8)

To get P(0|y), we need:

- The likelihood, P(y | 8), will be assumed to be known. The likelihood
carries all the current information about the parameters and the data.

- The prior, P(0), will be also known. Q: Where does it come from?

Note: The posterior distribution embodies all that is “believed” about
the model:

Posterior = f(Model | Data)
= Likelihood(f,Data) x Prior(0) / P(Data)
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Bayesian Econometrics: Introduction

* We want to get P(0]y) o« P(y |0) x P(0). There are two ways to
proceed to estimate P(0|y):

(1) Pick P(0) and P(y | 0) in such a manner that P(0|y) can be
analytically derived. This is the “old” way.

(2) Numerical approach. Randomly draw from P(0|y) and, then,
analyze the ED for 0. This is the modern way.

* Note: Nothing controversial about Bayes’ theorem. For RVs with
known pdfs, it is a fact of probability theory. But, the controversy
starts when we model unknown pdfs and “#pdate’ them based on data.

Good Intro Reference (with references): “Introduction to Bayesian
Econometrics and Decision Theory” by Karsten T. Hansen (2002).

Bayes’ Theorem: Summary of Terminology

* Recall Bayes’ Theorem:

_P(y10)r(®)

Ploly)= P(y)

- P(O): Prior probability about parameter 6.

- P(y | 0): Probability of observing the data, y, conditioning on 6.
This conditional probability is called the /ke/ihood —i.e., probability of
event y will be the outcome of the experiment depends on 6.

- P(O\y): Posterior probability -i.e., probability assigned to 6, after y is
observed.

- P(y): Marginal probability of y. This the prior probability of
witnessing the data y under all possible scenarios for €, and it depends
on the prior probabilities given to each 6. (A normalizing constant
from an estimation point of view.)
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Bayes’ Theorem: Example

Example: Player’s skills evaluation in sports.
S: Event that the player has good skills (& be recruited by the team).

T Formal tryout performance (say, good or bad).

After seeing videos and scouting reports and using her previous
experience, the coach forms a personal belief about the player’s skills.
This initial belief is the prior, P(S).

After the formal tryout performance, the coach (event T) updates her
prior beliefs. This update is the posterior:

P(T|S)P(S)

P(T)

P(S|7T )=

Bayes’ Theorem: Example

Example: Player’s skills evaluation in sports.

- P(S): Coach’s personal estimate of the probability that the player
has enough skills to be drafted —i.e., a good player- , based on
evidence other than the tryout. (Say, .40.)

- P(T'=go0d| 5): Probability of seeing a good tryout performance if
the player is actually good. (Say, .80.)

- T'is related to S:
P(T=good| S (go0d player)) = .80
P(T=good| S (bad player)) = .20

- After the tryout, the coach updates her beliefs : P(§'| T=good)
becomes our new prior. That is:

P(S|T=good) P(S) __ .80 * .40

P(S|T = good) = P(T=good) .80 40+ .20 .60

=.7272
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Bayesian Econometrics: Sequential Learning

* Consider the following data from IN=50 Bernoulli trials:
00100100000101110000101000100000000000011000010100

If 0 is the probability of a “1" at any one trial then the likelihood of
any sequence of s trials containing y ones is

p (v]0) = 0" (1-0)>
Let the prior be a uniform: p(8)=1. Then, after 5 trials the posterior is:
p©@|y) <6 (1-0)*x1=0(1-0)*
and after 10 trials the posterior is
p (0]y) <6 (1-0)*x6 (1-0)* = 62 (1-06)®
and after 40 trials the posterior is
p (0]y) < 68 (1-0)22 x 62 (1-0)3 = 610 (1-0)30
and after 50 trials the posterior is
p (0]y) < 6* (1-0)° x 61 (1-0)% = 64 (1-0)3°

Bayesian Econometrics: Sequential Learning

first 5 trials first 10 trials
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first 40 trials first 50 trials

T T T T = T T T T
00 02 04 06 08 10 oo 02 04 08 0B 10

13 tv

* Notes:
- The previous posterior becomes the new prior.
- Beliefs tend to become more concentrated as IN increases.

- Posteriors seem to look more normal as N increases.
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Likelihood

¢ It represents the probability of observing the data, y, conditioning
on O. It is also called sampling model.

Example: Suppose the data follows a binomial distribution with
probability of success 8. That is, Y1, Y3, ..., V7 ~ iid. Bin(1,0) —i.e.,
Bernouilli.

Then, the likelihood is: S -y,
Ly|&)=6" (1-0) -

Note: In this binomial case, it can be shown that the sum of
successes, Z{zl ¥i, is a sufficient statistic for 8 & p(y1, ¥2, -, V7| ).
Moreover, Y1_; y; follows a Bin(T, @). These results are to be used
later.

Likelihood: Normal

* Suppose y; ~ iid. N(0, 0%, then the likelihood is:
Ly|0.6%)=(1/270*) *expi_ (1, ~0))

* There is a useful factorization, when y; ~ Zi.d. N(0, 6%), which uses:
D=0 = [ -V)=(0-V)F =D (Y, ~-Y) ' +T(0-Y)’ =(T-Ds*+T(6-Y)’
where s = sample variance. Then, the likelihood can be written as:
L(y|6,6°)=(1/270")"* exp {—2—12[(T—1)s2 +T(O-Y)']}
o

Note: Bayesians work with h = 1/02, which is called “precision.”” A
gamma prior is usually assumed for h. Then,

L(y|0,0%) o (h)T/zeXp{—%[(T—l)Sz+T(9—7)2]}

o (h)'"? exp{—g(T—l)f} X exp{—zl(g_f)z}
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Priors

* A prior represents the (prior) belief of the researcher about 0, before
seeing the data (X, ). These prior subjective probability beliefs about
the value of 0 are summatized with the prior distribution, P(0).

Example: Suppose Y1, V2, ..., Y7 ~ iid. Bin(1, 6). We know that
YT ¥i ~ Bin(T, 6). Suppose we observe {¥1—; ¥; = s}. Suppose

from our prior information, we assume 6 ~Beta(a, fB). That is,

But, we could have assumed something different. For example, our
ptior information for @ tells us that all subintervals of [0,1] with the
same length also have the same probability:

P(a<@<b)=Pla+c<O0=<b+c) for0<a<b<b+c<=<I,
which leads to a uniform for 0 = P(0)=1 for all 8 € [0,1].

Aside: The Beta Distribution
_I(a+p) 0% (1- )/

* Beta’s pdf: p(0)=——""-
P T(a)T(B)
i | RN e e
\ am=1l1l B=3 —
2 | \ e —
N 1.5 \\
Lt N

o 0.2 0.4 0.6 o.e 1

*Elf] =a/(B +a)
Var[0] = a!ﬁ/[(ﬂ+a’)2 (@+ B+ D] =E[0](1-E[6)/(a+f+1)

* When a & [ are high, the Beta distribution can be approximated by
a Normal.
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Priors: Improper and Proper

* We can have Improper and Proper priots.
Prob (y |6, ) Prob (8,)
> Prob (v 6, )Prob (9, )
If we multiply P(6) and P(6)) by a constant, the posterior probabilities

will still integrate to 1 and be a proper distribution. But, now the
priors do not integrate to 1. They are no longer proper.

Prob (6[|y):

* When this happens, the prior is called an iproper prior. However, the
posterior pdf need not be a proper pdf if the prior is improper.

“Improper priors are not true pdfs, but if we pretend that they are, we will compute
posterior pdfs that approximate the posteriors that we would have obtained using
proper conjugate priors with extreme values of the prior hyperparameters,” from
Degroot and Schervish’s (2011) textbook.

Priors: Informative and Non-informative

* In a previous example, we assumed a prior P(§) —i.e., a coach’s prior
belief about a playet’s skills, before tryouts.

* This is the Achilles heel of Bayesian statistics: Where do they came
from?

* Priors can have many forms. We usually divide them in #on-
informative and informative priors for estimation of parameters

—Non-informative priors: There is a total lack of prior belief in
the Bayesian estimator. The estimator becomes a function of the
likelihood only.

— Informative prior: Some prior information enters the estimator.
The estimator mixes the information in the likelihood with the
prior information.
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Priors: Informative and Non-informative
* Many statistitians like non-informative priors. Usual justification:

“Let the data speak for itself.” According to this view, priors should play
a small role in the posterior distribution.

* Non-informative priors can be called diffuse, vague, flat, reference priors.

* Uniform (f/af) priors are usually taken as non-informative. There
may be, however, other “less informative” priors.

* A formal definition of a non-informative prior is given by Jeffreys

(1946).

* In general, with a lot of data the choice of flat priors should not
matter, but when there is not a lot of data the choice of prior matters.

Priors: Informative and Non-informative

Example: Suppose we have zid Normal data, Y; ~ ii.d. N(0, 02).
Assume 02 is known. We want to learn about 6, that is, we want to
get P(6] y). We need a prior for 0.

We assume a normal prior for 0: P(0) ~ N(@,, 68).

- B¢ is our best guess for 0, before seeing y.

- 0¢ states the confidence in our prior. Small ¢ shows big

confidence. It is common to relate 6& to 02, say 6¢ = sqrt{c>M}.

This prior gives us some flexibility. Depending on 6¢, this prior can
be informative or diffuse. A small 6§ represents the case of an
informative prior. As 6 increases, the prior becomes more diffuse.

Q: Where do we get 8, 0&? Previous data sets/a priori information?
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Priors: Diffuse Prior - Example

Example: Suppose Y1, V2, ..., Y7 ~ iid. Bin(1, 6). We know that
T yi ~ Bin(T, 9). Suppose we observe (X! y;=s}. Our prior
information is not very good, it points towards a diffuse prior.

We formalize this information with a uniform distribution: P(8)=1
for all 8 € [0,1].

Detail for later: We can think of the Uniform as a special case of the
Beta. Recall that the Beta(a, B) pdf is given by:

_ (a+pB) ,ua -1
OH=—"—"-6“"(1-6
p(0) M) (1-0)

Then, setting @ = 1 and ff = 1, delivers P(8) = 1.

Priors: Jeffreys’ Non-informative Prior

* Jeffreys (19406) provides a definition of non-informative priors,
based on one-to-one transformations of the parameters.

* Jeffreys’ general principle is that any rule for determining the prior
pdf should yield an equivalent posterior if applied to the transformed
parameters. The posterior should be invariant to the prior.

* Jeffreys’ principle leads to defining the non-informative prior as =
P(8) o [1(8)]'/2, where 1(8) is the Fisher information for 8:

_ |(elgP@)\ | .| @
I(H)—EH—@H J } E[aez log P(@)}

If we take [1(9)]1/ 2 as our prior, we call it the Jeffreys’ prior for the
likelihood P(y | 6).
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Priors: Jeffreys’ Non-informative Prior

Example: Suppose V1, Vo, ..., Y7 ~ Zi.d. Bin(1, 0). Then,
T_1yi ~ Bin(T, 0), with a log-likelihood:
log P(s|0)=c+slog@+ (T —s)log(1-0)

Then,

o’ T

Jeffreys’ prior: P(0) & 67/2(1-0)1/2 = a Beta(1/2,1/2).

Q: Non-informative? The uniform used before is a Beta(1, 1). You
can check later that Jeffreys’ prior gives a lower weight to the prior
information in the posterior. In this sense, it is “/ess informative.”

Priors: Conjugate Priors

* When the posterior distributions P(0]y) are in the same family F as
the prior probability distributions, P(6), the prior and posterior are
then called conjugate distributions.

* Formally, let P(0) € F = P(0|y) € F. Then, F is conjugate prior for
likelihood model P(y |6).

Examples:

- The beta distribution conjugates to itself (or se/f-conjugate) with
respect to the Binomial likelihood.

- The normal family is conjugate to itself with respect to a normal
likelihood function.

¢ Good! We know a lot about the normal and beta distributions.
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Priors: Conjugate Priors

* Another good results: We can also generate values from these
distributions with R (or other programs, like Matlab, Gauss, etc.). For
example, rbeta and rmorm do the trick in R for the beta and normal
distributions.

* Conjugate priors help to produce tractable posteriors.

* Q: What happens when we do not have conjugacy? We may have to
deal with complicated posteriors —i.e., not easy to analytically
integrate. In these cases, we will rely on numerical solutions.

Priors: Conjugate Priors - Example

Example: Suppose yq, V2, ..., Y7 ~ iid. Bin(1, 6). Then,

T yi ~ Bin(T, 8). We observe {Y1_, y; = s}. We assume 6 ~
Beta(at, B). That is,
L(a+f) ,a 61
p(O0)=—"———"-60""(1-0)
L(@)'(f)

Then, the posterior is:

T]e‘ 1-6" «L@*P) g 1-6)""
s L(@I'(B)

P(s)
which looks, ignoring constants, like a Beta(s + a, T+ f — s).

p(0| S) — ( o Hﬁ-a—l (1 _ 9)T—S+ﬁ—l

Note: When a & f are high, the Beta distribution can be
approximated by a Normal. If a previous data set/prior info implies a
mean and variance, they can be used to get the prior (a, ) values.
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Priors: Hierarchical Models

* Bayesian methods can be effective in dealing with problems with a
large number of parameters. In these cases, it is convenient to think
about the prior for a vector parameters in stages.

* Suppose that 6 = (0, 0, ..., 0) and X is a another parameter vector,
of lower dimension than 6. A maybe a parameter of a prior or a
random quantity. The prior p(0) can be derived in stages:

p©,%) = pO|Mp®).
Then,

p©®)= [p© %) p(h) dA

We can write the joint as:

p®, %, y) =py [0, pO[D) p().

Priors: Hierarchical Models

* We can think of the joint p(8, A, y) as the result of a Hierarchical (or
“Multilevel’) Model:

p®, %, y) = py[0.4) pOL) = p[0.1) pO[H) p).

The prior p(0,1) is decomposed using a prior for the prior, p(A), a
hyperprior. Under this interpretation, we call A a hyperparameter.

* Hierarchical models can be very useful, since it is often easier to
work with conditional models than full joint models.

Example: In many stochastic volatility models, we estimate the time-
varying variance (H) along with other parameters (0). We write the

.0)f(0)

joint as:

f(H,,0)c f(Y|H,)[(H,
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Priors: Hierarchical Models - Example

* Supposee we have zzd. Normal data, y; ~ N(0, 0'2). We want to
learn about (0, 0‘2) ot, using h = 1/02, @=(0, h). That is, we want to
get P(@ |y). We need a joint prior for @.

It can be easier to work with P(¢@) = P(0|h) P(h).

For 0| h, we assume P(0| k) ~ N8y, 68), where 0§ = sqrt{a2M}.

For 0%, we assume an inverse gamma (IG). Then, for h = 07 %, we
have a gamma distribution, which is function of (x, A):
a T/2
fan="— v e = =22
I'(a) I'(T/2)
where @ = T/2 & A = 1/(2n%)=d /2 are usual priors (n? is related to
the variance of the T'N(0, n?) variables we are implicitly adding).

2

Lo o
(G 2) 2 e (®/2)o

Priors: Hierarchical Models - Example

Then, the joint prior, P(¢) can be written as:

T/2

(9_ 00)2} < (CD/2) (072)(7/271) e,(q)/z)a—z

f(6:07) =20’ M) expl-—— 1 T(T/2)
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Priors: Inverse Gamma for 62

* The usual prior for a2 is the inverse-gamma (1G). Recall that if X has
aI'(e, A) distribution, then 1/X has an IG distribution with
parameters @ (shape) and A (scale). That is:

03

xX;o,N) = x4 () x>0.

S ) o)

* Then, h = 1/02 is distributed as I'(a,A):
f(x=0a,1)= A x e x>0.

')
* Q: Why do we choose an IG prior for 6%?
1) p(c?) =0 fora?<0.
(2) Flexible shapes for different values for (¢, A4) —recall, when
a=v/2 & A=Y, the gamma distribution becomes the y,2.
(3) Conjugate prior = the posterior of 672 | X will also be T'(a¥, A%).

Aside: The Inverse Gamma Distribution

}\’(X
e IG’ . x;0,h) = x4 =M x> 0.
1G’s pdf: T
s . .
a=1, L=1
4.5 a=2, h=1
4 a=3, L=1 -
as | a=3, 1=05 )
1
2.5 | -
e 'K-\
_— I~ ||I \ =
1.5 II.' \\ ]
1 I| \\\ -
0os | — .
o Wi . -
i 5 | | =z 2.5 ]
* Mean[x] = A/(a- 1) (a>1).

Varx] = 22/[(a- D)(@-2)] (a>2).

* A multivariate generalization of the IG distribution is the znverse-
Wishart IW) distribution.
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Prior Information: Intuition

¢ (From Jim Hamilton.) Assume CLLM with £=1. A student says:
“There is a 95% probability that B is between b +1.96 sqrt{c? (X X)'1}.”

A classical statistician says: “No!/ B is a population parameter. It either
equals 1.5 or it doesn’t. There is no probability statement about 3.”

“What is true is that if we use this procedure to construct an interval in thousands
of different samples, in 95% of those samples, our interval will contain the true

B.”

* OK. Then, we ask the classical statistician:
- “Do you know the true 32 “No.”

- “Choose between these options. Option A: I give you $5 now.
Option B: I give you $10 if the true 8 is in the interval between 2.5
and 3.5.” “T’ll take the §5, thank you.”

Prior Information: Intuition

* OK. Then, we ask the classical statistician, again:

- “Good. But, how about these? Option A: I give you $5 now.
Option B: I give you $10 if the true $ is between -8.0 and +13.9.”
“OK, I'll take option B.”

* Finally, we complicate the options a bit:

- “Option A: I generate a uniform number between 0 and 1. If the
number is less than w, I give you §5.

Option B: I give you $5 if the true {3 is in the interval (2.0, 4.0). The

value of 7 is 0.2”
“Option B.”

- “How about if © = 0.8?”
“Option A.”
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Prior Information: Intuition

* Under certain axioms of rational choice, there will exist a unique 7*,
such that he chooses Option A if 1 > r*, and Option B otherwise.
Consider m* as the statistician’s subjective probability.

* We can think of 7* as the statistician’s subjective probability that 3
is in the interval (2.0, 4.0).

Posterior

¢ The goal is to say something about our subjective beliefs about 6;
say, the mean 0, after seeing the data (y). We characterize this with the
posterior distribution:

PO[y) = P(y[0) PO)/P(y)

¢ The posterior is the basis of Bayesian estimation. It takes into
account the data (say, ¥ & X) and our prior distribution (say, 6,).

*P(0]|y) is a pdf. It is common to describe it with the usual classical
measures. For example: the mean, median, variance, etc. Since they
are functions of the data, they are Bayesian estimators.

* Under a quadratic loss function, it can be shown that the posterior
mean, E[0|y], is the optimal Bayesian estimator of 0.
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Posterior: Optimal Estimator

* We assume a loss function, g(8, 8), where 8 is an estimate. Let 6
solve the minimization problem:

min, [ 2(0,0) p@|y)dd  where 8 €0
0 o g0,0)p@|y)

Different loss functions, produce different optimal estimators.

Example: Quadratic loss function with scalar case: g(6, )= — )?
By [0-01 = E,y [0 - E[0|y] + E[6]y] -0

= By, [0 - B[O |y + E[B|y]-0)* +

+ 2B, ,[6 - E[B|y])] E[B]|y]-6)]

=By, [0 - B[O |y + E[B|y]-6)?
which is minimized at 8 = E[0]y].

* Similar calculations for g(8, 8) = |8 - 8 | produce the median as 8.

Posterior: Example — Binomial-Uniform

Example: Data: Y, Y, ..., Y7 ~ zi.d. Bin(1, 0). Then,
T yi ~ Bin(T, 8). We observe {Y1_,y; = s}.
T N T—s
s Likelihood: L(Y=s[0)=| |°(1-0)
s
* Prior. For 8 ~Unif[0, 1]. That is, P(8)=1 for all 0 € [0,1].

e Posterior. [ zkelihood x Prior:

[T}» (-6 x1
s S (1_ T-s
p@|s)= o) =c(s)0"(1-0)

where ¢(S) is a constant independent of 6. We recognize P(0|Y=5) as
a Beta (up to a constant), witha = (s + 1) & B = (T'—s + 1).

© RS 2020 — Not to be posted/shared online without written authorization.
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Posterior: Example — Binomial-Uniform

Example (continuation):

We can derive ¢(s) since P(0|y) should integrate to 1. To recover the
constant we use:

jle“(l _ e)ﬁ—lda _ ['(a)(B)
0 I'a+p)
Then,
_ (T +2) Sl T _ B
p(9|s)_F(S+I)F(T—s+1)H (1-6) 7 =Beta(s+1,T —s+1)

Note: Uniform prior + Bernoulli/Binomial likelihood = Beta
posterior.

Posterior: Presentation of Results

* P(0y) is a pdf. For the simple case, the one parameter 0, it can be
graphed. But, if 0 is a vector of many parameters, the multivariate pdf
cannot be presented in a graph of it.

* Itis common to present measures analogous to classical point
estimates and confidence intervals (“credibility intervals,” also C.1.).

For example:

W E@|y)=]0p@|y) d6 - postetior mean
(2) Var(8|y) = E(6?|y) — {E@ |y)}? -- postetior variance
(3) pk;> 0 > &y|y) =lippoiop@]y) 6 —CLL

* In general, it is not possible to evaluate these integrals analytically.
We rely on numerical methods.
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Posterior: Presentation of Results - Example

Example: In the Binomial-Uniform previous example, we obtained
the posterior P(8 |y = s) = Beta(s + 1, T— s + 1).

From this Beta posterior, we can calculate the usual descriptive
statistics:

Ef|y]=a/(f+a) =($+)/[(T — s+ D)+(s+D)] = (s + 1)/(T+2)

Var[0]y] = a f/[(B+a)? (a++1)] = E[0] y] 1-E[0|y])/ @+ +1) =
= (s + D(T— s + D]/[(T+2)? (T+3)]

Posterior: Presentation of Results - Example

Example (continuation): Suppose we have a sample of T =25
adults with MBA degrees, with s = 15 of them trading stocks.

That is, we have a Beta(16,11) posterior. We can easily calculate the
postetior mean, the postetior variance and CI {0.1, 0.4}:

E[0|s =15 =a/(B + a) = 16/27 = .5927
Var[f|s = 15] =a B/[(B + @)? (@ + B + 1)]
= 16*11/[(27)> *(28)]= 0.00862
POII (0.55 >6> 0.65|s = 15) = 0.4014529. (=pbeta(.65,16,11)-pbeta(.55,16,11), in R)

¢ Check normal approximation, with N(.5927, sqrt(.009)), in R:
> pnorm(.65, .5927, sqrt(.009)) - pnorm(.55, .5927, sqrt(.009))
[1] 0.4007565
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Posterior: Hypothesis Testing

* In the context of C.I., we calculate the probability of 0 being in
some interval. This allows for some easy hypothesis tests.

For example, we are interested in testing H: 6>0 against H;: 6<0. We
can test H, by computing Py, (6>0) and check if it is lower than
some small level a. If it is lower, we reject H,: 6>0 in favor of H,.

Example: In the Binomial-Uniform model, we derive the posterior
P |y=s) as Beta(s + 1, T— s + 1). Suppose we are interested in
testing H: 6 < 0.3 against H;: 6 > 0.3. Suppose T =25and s = 15.

Then,
Beta(® < 0.3|16,11) = .00085 (too small!)
= reject Hy: 6 < 0.3 in favor of H: 6 > 0.3.

Posterior: Example — Binomial-Beta

Example: Same binomial data as before. We observe {Y1_; ¥; = S}.

* Prior. We change. Now, we assume 6 ~Beta(a, f8). That is,

@+ p) o B
O)=—"=6""(1-6
p(0) ) (1-6)

* Posterior. Likelihood x Prior (ignoring constants):

o T\ o s « L@+h) poiyy o o G5 (1— GYPHT-51
p@|y=s) (Sjﬁ (1-06) l—‘(a’)r(ﬂ)ga (1-6) & (1-6)

which is a Beta(a + s, f + T — s). (Not a sutprise, we used a
conjugate prionl). We write the usual descriptive moments; for example:
Ef|ly=s]=(a+s)/(f@+s+B+T—s)=(a+s)/(a+L+T)

Remark: We think of the Binomial-Uniform model as a special case
of the Binomial-Beta model, with the Unif[0,1] as a Beta(a =1, f =1).
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Posterior: Combining Information

¢ In the Binomial-Beta model, the posterior P(0y) is:
p(9| y= S) oc 90#371 (1 _e)ﬂJrTfol

* The posterior P(8|y) combines prior information («, 3) and data (7,
s), which can be seen by writing E[0| YX1_; y; = 5] as:

E[g|s]_i

= x Pior Expectation +
(a+p+T)

_r x Data Average
(a+p+T)

Usually, a is thought of “the prior number of 1’s;” while f is thought
of as “the prior number of 0’s” (= = “prior sample size.”)

Then, the prior expectation is a/(f + @).

* Role of T: As T grows = Data dominates.
= E[0|y=s]=s/T
= Var[b|y=s]=s/T? *[1 - (5/T)]

Posterior: Constants

* In the previous example, we derive the postetior for fin a
“Binomial-Beta model,” ignoring constants:

plOly=s)c " (1-0)"T

* To be a well-defined Beta pdf —i.e., integrates to 1-, we find the
constant of proportionality as we did for the Binomial-Uniform case:
[a+p+T)
[a+s)I(B+T-s)

* Bayesians use this trick to recognize posteriors. That is, once you
recognize that the posterior distribution is proportional to a known
probability density, then it must be identical to that density.

Note: The constant of proportionality must be constant with respect

to O.
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Posterior: Example - Normal-Normal
* Likelihood. We have 7.zd. normal data: y; ~ N(0, ¢?). Then:
LOIy.0*) @ (" exp{-5 3 (%, -0))

* Priors. We need a joint prior: ff, 6?). In the Normal-Normal
model, we assume o known (usually, we work with h =1/6?). Thus,
we only specify a normal prior for 0: 18) ~ N(8,, o@).

* 0§ states the degree of confidence in our prior.
* In realistic applications, we add a ptior for f{o%). Usually, an 1G.

e Posterior = Likelihood x Prior:

_ 2
! exp{— © 63))
o, 20,

FOly.0)a B exp=2 0,07} x }

Posterior: Example - Normal-Normal

* Or using the Likelihood factorization:

_ 2
! exp{- © 920)
20, 20,

f@ly,0*) o (" eXp{—g[(T—l)Sz+T(9—17)2]}X

0 (h)r/2 exp{—%(T—l)sz} X exp{—Zh(é’—Y)Z}xz;_0 exp{- 20_5

Oo(l)mL
o

(‘9 _ 60 )2
o

exp{—21 ~(T-1)s’} xexp{- r

20, o 207 ©- }7)2 -
0

}
* A little bit of algebra, using:

a(x—b) +e(x—d)’ =(a+c)x—22+4
a+c

Y4 (b—dy
a+c
we get for the 2nd expression inside the exponential:

T \%a (0_6)2 2 2 n\2 1 a 2
—(O-Y) +—=2Y—=[T +1/ 0-0)y +————( -6,
0_2( ) O'é [ /O- UO]( ) O'(?+O'2/T( 0)

(0_‘90)2

}
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Posterior: Normal-Normal

T =, (0-6)" 1 =5 =
—O-Y)Y+—=—(0-0) +——-5—=( -6,
az( ' oo EZ( )+O'02+GZ/T( )
where 5:@/02)?+(1/G§)90 & Ez:;
T/6” +1/0p T/6’ +1/0,

* Since we only need to include the terms in 0, then:

1@y, %) oo(l)miexp{—%(T—l)sz}xexp{—%(@—é)z— 1 Y -6,)%
o) 2 20 2

20, o (o;+0°/T)
0w ex {—L(e—é)z}
P

That is, the posterior is: N(6,57)

* The postetior mean, @, is the Bayesian estimator. It takes into
account the data (y) and our prior distribution. It is a weighted average
of our prior 0, and Y.

Posterior: Bayesian Learning
(T/c*)Y +(1/0,)6,
T/6* +1/0;

* Update formula for 6: 6 =Y +(1-w)6,

T/6®) o}
T/6’+1/0;, oi+0’/T

where =

¢ The posterior mean is a weighted average of the usual estimator and
the prior mean, 8.

Results:

-As'T > oo, the posterior mean 0 converges to Y.

- As 6¢ — ©, our prior information is worthless.

-As 0§ — 0, complete certainty about our prior information.

This result can be interpreted as Bayesian learning, where we combine
our prior with the observed data. Our prior gets updated! The extent
of the update will depend on our prior distribution.
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Posterior: Bayesian Learning

* As more information is known or released, the prior keeps changing.

Example: In R.

bayesian_updating <- function(data,mu_0,sigma2_0,plot=FALSE) {
require("ggplot2")

T = length(data) # length of data
xbar = mean(data) # mean of data
sigma?2 = sd(data)"2 # variance of data

# Likelihood (Normal)

xx <- seq(xbar-2*sqrt(sigma2), xbar+2*sqrt(sigma2),sqrt(sigma2)/40)
yy <- 1/(sqrt(2*pi*sigma2/T))*exp(-1/(2 *sigma2/T)*(xx - xbar)"2 )
#yy <- 1/(xbar+4*sqrt(sigma2)-xbar+4*sqrt(sigma2))

df likelihood <- data.frame(xx,yy,1) # store data

type <- 1

dfl <- data.frame(xx,yy,type)

# Prior (Normal)

xx <- seq(mu_0-4*sqrt(sigma2_0), mu_0+4*sqrt(sigma2_0),(sqrt(sigma2_0)/40))
yy = l/(sqrt(2*pi*sigma2_0))*exp(-1/(2 *sigma2_0)*(xx - mu_0)"2)

type <- 2

df2 <- rbind(df1,data.frame(xx,yy,type))

Posterior: Bayesian Learning

Example (continuation):

# Posterior
omega <- sigma2_0/(sigma2_0 + sigma2/T)
pom = omega * xbar + (1-omega)*mu_0 # posterier mean
pov = 1/(T/sigma2 + 1/sigma2_0) # posterior variance
xx = seq(pom -4*sqrt(pov), pom + 4*sqrt(pov),(sqrt(pov)/40))
yy = 1/(sqrt(2 * pi * pov))*exp(-1./(2 *pov)* (xx - pom)"2 )
type <- 3
df3 <- rbind(df2,data.frame(xx,yy,type))
df3$type <- factor(df3$type,levels=c(1,2,3),
labels = ¢("Likelihood", "Prior", "Posterior"))

if(plot==TRUE){
return(ggplot(data=df3, aes(x=xx, y=yy, group=type, colour=type))
+ ylab("Density")
+ xlab("x")
+ ggtitle("Bayesian updating")
+ geom_line()+theme(legend.title=element blank()))
} else {
Nor <- matrix(c(pom,pov), nrow=1, ncol=2, byrow = TRUE)
return(Nor)
}
}
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Posterior: Bayesian Learning

Example (continuation):

dat <- 5*rnorm(20,0,sqrt(2)) # generate normal data T= 20, mean=0, var=50
# xbar = -2.117, 62 = 54.27

# Scenario 1 — Precise prior (0,=7, 6,2 =2)
df <- bayesian_updating(dat,7,2,plot=TRUE) # priors mu_0=7, sigma2_0=2
df # w=.4243, pom =3.1314, pov=1.1514

# Scenario 2 — Difusse prior (0,=7, 5,2 =40)
df <- bayesian_updating(dat,7,40,plot=TRUE)  # priors mu_0=7, sigma2_0=40
df #w=.9365, pom =-1.5382, pov =2.5411

Scenario 1 - Sigma2_0=2 Scenario Z - SigmaZ_0=40

-
e
|
c

Densty
—
[
S
)
7

Posterior: James-Stein Estimator

Let x; ~ N(ug, 02) for t = 1,2,...., T. Then, let MLE (also OLS) be
f;. Let mq, my, ..., mp be any numbers.
* Define

S =Xl (xe —my)?

0=1-[(T-2) c%/S]

m; =04 +(1-0)m;

Theorem: Under the previous assumptions,
B[Xi=i(xe —mD)? < EE{ (e — )7

Remark: Some kind of shrinkage can always reduce the MSE relative
to OLS/MLE.

Note: The Bayes estimator is the posterior mean of 6. This is a

shrinkage estimator.
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Predictive Posterior

* The posterior distribution of 8 is obtained, after the data y is
observed, by Bayes' Theorem::

P@|y) = P(y|6) x P(6)

Suppose we have a new set of observations, z, independent of y
given 6. That is,
P(z,y|0) =Pz [0) x P(y|0)
Then,
Pz|y) = [ P(z,0]y)d0 = [ Pz|0,y) P@|y) df
=/ P@|0)P@|y) do = E, [P(z|6)]

P(z|y) is the predictive posterior distribution, the distribution of new
(unobserved) observations. It is equal to the conditional (over the
posterior of 8 |y) expected value of the distribution of the new data,
Z.

Predictive Posterior: Example 1

Example: Player’s skills evaluation in sports.

Suppose the player is drafted. Before the debut, the coach observes
his performance in practices. Let Z be the performance in practices
(again, good or bad). Suppose Z depends on S as given below:
P(Z=good|§) = .95

P(Z=good| 5¢) = .10

(We have previously determined: P(S| 1" = g) = 0.72727.)

Using this information, the coach can compute predictive posterior

of Z, given T. For example, the coach can calculate the probability

of observing Z=bad, given T=good:

P(Z=b|T=g) = P(Z=b|T=g, 5) P(S¢| T=9) + P(Z=b|T=g,5) P(§|T=y)
=P(Z=b| 5 P(S¢| T=g) + P(Z=b|S) P(§| 1=y
=.90x 0.27273 + .05 x 0.72727 = .28182

Note: Z and T are conditionally independent.
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Predictive Posterior: Example 2

Example: We have Yy, ¥, ..., Vr—z5 ~ i.id. Bin(1, 6). Let Yi_, y; =
S. We derive the predictive posterior of new data, Y*, as:
P(Y*=11y1, ¥2, ., yr) = BIO|y = 5] = (@+s)/ @+B+T)
PY*=01y1, ¥2, -, yr) = 1 =P(Y*=1|y = 5] = B+1=s)/ (4B +1)

Suppose we assume a=3=1, s=15 and T'= 25. Then,
P(Y*=1| s) = 16/27 = 0.5926

Note: A Jeffreys’ prior —i.e., a Beta(.5,.5)— is slightly less informative!

Remark: The predictive distribution does not depend upon unknown
quantities. It depends on prior information and the observed data.
The observed data gives us information about the new data, Y*.

Multivariate Models: Multivariate Normal

* So far, our models have been univariate models. Suppose, we are
interested in the correlation between mutual fund returns. For this we
need a multivariate setting.

¢ Likelihood: the most popular likelihood is the Multivariate normal
model (MVN). We say Y, a k-dimensional data vector, has a MVN
distribution if its sampling pdf is:

1 -1
*E(y*#)E (y—)

1
)=— ¢
p(ylu )(MyﬂZW

where p is the mean and X is the covariance matrix. Or

Y~ N, (1,5

* Recall a property of a MVN: The marginal distribution of each
variable is also normal: y; ~ N(yj, 6%).
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Multivariate Models: MVN — Prior for p

¢ Prior: Following the univariate models and intuition, we propose a
MVN prior for p:

P(W) ~ Ny(pro, Ay).
where p, is the prior mean and A is the prior covatiance matrix of .

We can write the prior as:

1 1 1
M Ayp+p'by

p(p)xe
where Ag= Ay and b, = Ay py. (= A=Ayt &py=Ay! by).

* Note that using a similar algebra and under the zz4. sampling

model, we can write the joint likelihood as:
— K Ayptp'h

p(yla"-ayN|/‘laz)oce ?
where 4, = NXZ'and b, = NZ'y.

Multivariate Models: MVN = P(u |y, ,..., Y &)

* Posterior: Likelihood x Prior. Then, the (conditional) posterior:

L ) [ ) L, )
A b —H Aoptp'by H Ayp+p'by
X e

P Yss Yy, 2)C €

where Ay = A, +A; = A1+ NEXL
by=by+ b =A'py+ NZ'1y.

A MVN with mean Ayl by and covariance Ay!. That is,
CoV[I| Y15 Yoy weos Y1 B] = Ay = Ay = (A1 + N IZH)!
B[] Y15 Yoy v V7> B = Uy = Ax Dy = Ay (A o+ NZ1y)

e Similar to the univariate case: The posterior precision (Ay) is the
sum of the prior precision and data precision. The posterior
expectation is a weighted average of the prior expectation and the
sample mean.
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Multivariate Models: MVN — Wishart PDF

* The results are conditional on X. In general, we are also interested in
learning about X. Thus, we need a prior for X (a £x£ symmetric pd
matrix). We base our results on the multivariate version of the gamma
distribution, the Wishart distribution.

* Similar to a gamma pdf, the Wishart pdf is a (semi-)conjugate prior
for the precision matrix Z1. Then, the conjugate prior for X is the
inverse-Wishart (IW).

* Conditions for X ~ IW(y,, Sy!) distribution (with #, a positve integer,
called degrees of freedom, and S, a kxk symmetric pd matrix):

- Sample: z, ..., z,,~ i.i.d. N, (0, Sy

LL =Y B =¥=(2Z)!

Then, Z1~ W(y, Sy)-

Multivariate Models: MVN — IW Prior for X

* The prior density for X, an IW(z,, SpY), is:

J(v0+k+1) %tr(soz*)

pE)oc|X]? x e
* Properties:
E[E] =1,
E[X] = Sy/(y,-4-1)

* Q: What are good values for 4, & S;?

A: The larger 4, the stronger the prior beliefs. For example, if we are
confident that the true X is near some value, X, then choose 2, large
and set 5y=(y,-4-1) X, (the distribution is tightly centered around X ).

Vague IW priors, which make the correlations uniform, tend to
associate large absolute correlations and large SDs. Potential problem!
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Multivariate Models: MVN — IW Prior for X
* The prior density for X, an IW(v,, Sy, is:

N 0w )

p(ylﬂ“'oy]v |ﬂ,2) OC|2 |77 e

N 1 4
-2 s,z
m|2| 2e2tr u

where 8, = Xi_1 o v (i — W(; — W)’ is the RSS matrix for the vectors
Y1 5 Yo 1if the population mean is presumed to be p.

To get the above result, we use the following property of traces:

ix,.'Axl. =tr(XAX'")=tr(X' XA)
i=l

Multivariate Models: MVN - PX |y, ,..., Vo W)

* Now, we can derive the conditional postetior for X :

1

N -1 1 1 -1
EEARE R —(vy+k+1) —tr (82
p(EIyl,...,yN,ﬂ)OC{IEI 2e? " }X{IZI 2 xe? }

1 1 _
—(N+vy+k+1) —Etr([SO-%-S”]E 1

=Z]? e

which looks like a TW (2, Si"), where 2y =N+z;and Sy¢ = S+ S,
Similar to the results for p, the posterior combines prior and data
information. Then,

E[Z]y) s Yoo B = Sp + 8/ (N + 25— £ - 1)

* We got the full conditional posteriors of p and X. Later, we will go

over a numerical method (Gibbs sampler) that easily estimates the
joint density.
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Multivariate Models: Alternative Prior for X

* Barnard, McCulloch and Meng (2000) present a workaround to
avoid the problem of using a vague IW prior. They propose an
alternative to the IW prior, based on a decomposition of X:

X = diag(S) R diag($),
where Sis the £X1 vector of SDs, diag($) is the diagonal matrix with
diagonal elements 8, and Ris the £X£ correlation matrix.

¢ A hierchical prior structure is used:

PSR = p(R|S) p(S).

¢ Then, impose a prior for S, for example, an independent log normal
—i.e., log(§~N(& A)— and impose a diffuse prior on R, for example, a

uniform.

Bayesian vs. Classical: Review

* The goal of a classical statistician is getting a point estimate for the
unknown fixed population parameter 0, say using OLS.

These point estimates will be used to test hypothesis about a model,
make predictions and/or to make decisions —say, consumer choices,
monetary policy, portfolio allocation, etc.

¢ In the Bayesian world, 6 is unknown, but it is not fixed. A Bayesian
statistician is interested in a distribution, the posterior distribution,
P(6]y); not a point estimate.

“Estimation:” Examination of the characteristics of P(0|y):
— Moments (mean, variance, and other moments)

— Intervals containing specified probabilities
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Bayesian vs. Classical: Review

¢ The posterior distribution will be incorporated in tests of hypothesis
and/or decisions.

In general, a Bayesian statistician does not separate the problem of
how to estimate parameters from how to use the estimates.

* In practice, classical and Bayesian inferences are often very similar.

¢ There are theoretical results under which both worlds produce the
same results. For example, in large samples, under a uniform prior, the
posterior mean will be approximately equal to the MLE.

¢ The formal statement of this remarkable result is known as the
Bernstein-1"on Mises theorenm.

Bayesian vs. Classical: Bernstein-Von Mises
Theorem

* Bernstein-Von Mises theorem:

- The posterior distribution converges to normal with covariance
mattix equal to 1/7T times the information matrix —same as classical
MLE.

Note: The distribution that is converging is the posterior, not the
sampling distribution of the estimator of the posterior mean.

— The posterior mean (empirical) converges to the mode of the
likelihood function —same as the MLE. A proper prior disappears
asymptotically.

— Asymptotic sampling distribution of the posterior mean is the same
as that of the MLE.
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Bayesian vs. Classical: Bernstein-Von Mises
Theorem

e That is, in large samples, the choice of a prior distribution is not
important in the sense that the information in the prior distribution
gets dominated by the sample information.

That is, unless your prior beliefs are so strong that they cannot be
overturned by evidence, at some point the evidence in the data
outweights any prior beliefs you might have started out with.

* There are important cases where this result does not hold, typically
when convergence to the limit distribution is not uniform, such as unit
roots. In these cases, there are differences between both methods.

Bayesian vs. Classical: Interpretation

* In practice, classical and Bayesian inferences and concepts are often
similar. But, they have different interpretations.

* Likelihood function
— In classical statistics, the likelihood is the density of the observed
data conditioned on the parameters.
- Inference based on the likelihood is usually “maximum
likelihood.”
— In Bayesian statistics, the likelihood is a function of the parameters
and the data that forms the basis for inference — not really a
probability distribution.
- The likelihood embodies the current information about the
parameters and the data.
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Bayesian vs. Classical: Interpretation

¢ Confidence Intervals (C.I.)

— In a regular parametric model, the classical C.I. around MLEs —for
example, b + 1.96 sqrt{s? (X> X)'}— has the property that whatever

the true value of the parameter is, with probability 0.95 the confidence

interval covers the true value, B.

— This classical C.I. can also be also interpreted as an approximate
Bayesian probability credibility interval. That is, conditional on the data and
given a range of prior distributions, the posterior probability that the
parameter lies in the C.I. is approximately 0.95.

Bayesian vs. Classical: Interpretation

* Asymptotics
— In classical statistics, we use the LLN and the CLT. Typical use of
the LLN:

Consider a random sample, X, X,, ..., Xy. Then,

as N — 0, h(X) — EhX)].

— In Bayesian statistics, we use the LLN and the CLT too. But, with
the size of the simulation, M, — 0. Typical use of the LLN:

Consider a random sample, 0!, 62, 63, ..., 6™. Then,

as M — 0, h(0) — E[h(0)].

Note: In Bayesian statistics, the asymptotics are based on M (size of
simulation determined by researcher) not on N (the sample size).
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Linear Model: Classical Setup
¢ Consider the simple linear model:
y.=XB+e, 8t|Xtvyt~N(O>c’2)

To simplify derivations, assume X is fixed. We want to estimate {3.

¢ Classical OLS (MLE=MM) estimation
b=XX)'X'y & b|X~NB,o’XX)"
- The estimate of o2is s2 = (y - Xb)'(y - Xb)/(T — k)

- The uncertainty about b is summarized by the regression coefficients

standard errors —i.e., the diagonal of the matrix: Var(b|X) = s2(XX) L.

e Testing: If V, is the £-th diagonal element of Var(b | X), then
(b - 0)/(sV .3 = br_g -the basis for hypothesis tests.

Linear Model: Bayesian Setup

* For the normal linear model, we assume f (V¢ | e, 02):
ye ~ N, 02) for r=1,., T

where pe = B+ By X oo+ B Xpee = X B

Bayesian goal: Get the posterior distribution of the parameters (B, 62).

* By Bayes’ Theorem, we know that this is simply:

S8, 02|y, X) o< [Tioq f (Ve | 1e, 0%) X B, 07%)

= we need to choose a prior distribution for £, 0‘2).

* To simplify derivations, we assume X is fixed.
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Linear Model: Likelihood

« In our linear model y; = x; B + &, with & ~ iid N(0, 0%). Then,

(y—XB)'(y— XP)

20*

-2 Xy XX
o

fYIX,B.0%)=Q2n0) " exp{- }

|
oo (—) " exp{-
o

* Recall that we can write: y — XB = (y —Xb) - X (B —b)

= TSS = (y — Xb)’(y — Xb) + (B — by’X’X(8 — b) —

—2@-bX (y - XP)
=us?+ B-b’X’X (B-b)

Rss _ (y—Xb) (y— Xb)

P P ando=T —k

where s% =

Linear Model: Likelihood

¢ The likelihood can be factorized as:

2

1
207

1%, p.0%) = (uzmm(g)“ expl-— (B—b)' X'X(8 —b)}x%)"” expl= 2

20"
hus’
}
2

a (b exp {—g(ﬁ —b)'X'X(f - b)} x (h)”* exp{-
where h = 1/a?2.
* The likelihood can be written as a product of a normal and a

density of form f0) = » 6 exp{-A/0}. This is an inverted gamma (1G)
distribution.
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Linear Model: Prior Distribution for 3
* We choose a conjugate MVN prior for B: f(B) ~ N(m, X):

£B) =W| 5[ exp{—%(ﬂ—m)'zluf—m)}

— m s our best guess for B, before seeing ¥ and X.

— X measures the confidence in our guess. It is common to relate X to
o2, say X = {02Q}.

* This assumption for /{B) gives us some flexibility: Depending on X,
this prior can be informative (small X) or diffuse (big X).

* But, we could have assumed a different prior distribution, say a
uniform. Remember, priors are the Achilles heel of Bayesian statistics.

Linear Model: Prior Distribution for A

* The usual prior for 62 is an IG. Then, h = 1/0?2 is distributed as
(o, Ag):

A"
I'(e,)

ag-1 —Agx

x>0.

f(sz_z;am/Io):

* Usual values for (0, 4): 0y = T/2 and A, = 1/(27%) = ®/2, where 7
is related to the variance of the T'N(0, 77) variables we are implicitly
adding.

* You may recognize this parameterization of the gamma as a non-
central y,? distribution. Then,
T/2 r
(@/2) ( 6—2)(5‘1) (@257

-2\ _
SO =172
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Linear Model: Joint Prior Distribution for 0

* We have 8 = (B, 0%). We need the joint prior P(8) along with the
likelihood, P(y | 8), to obtain the postetior P(6 | y).

In this case, we can write P(8) = P(B|h = 072) P(c?), ignoring
constants:

L myst 5
—2(,8 m)L™ (f-m)} % hao_l e_/ioh

f(B.o)oce

Then, we write the postetior as usual: P( |y) < P(y | 8) P(6).

Linear Model: Assumptions

* So far, we have made the following assumptions:

— Likelihood: Data is 7.i.d. Normal: y; ~ N(ug, 62) fort =1,.., T
— DGP for p¢ is known: e = By + By Xqp T T B X = X B

— X is fixed.

— Prior disttibutions: h = 1/0?% ~ I(xg, 4) & B~ N(m, 2).

Note: A subtle point regarding this Bayesian regression setup. A full
Bayesian model includes a distribution for X, AX|'¥). Thus, we have
a joint likelihood Ay, X |V, B, 6) and joint prior A'¥,B, ©).

A key assumption of this linear model is that y | X, B, ©) and f{X|'P)
are independent in their priors. Then, the posterior factors into:
SE, B, 0|y, X) =/B,cly, X) [¥]y,X)
=B, oy, X) < B, 0) [y | B, 5.X)
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Linear Model: Joint Posterior Distribution for 6

* Posterior: I ikelihood x Prior.

2

h
“(B-b)X'X(S-b)} -
2 x h''%e 2

101y, X) o i e

1 -1
{==(B-m)L" (B-m)} 9 -
X e 2 x hao 1 e Aoh

* Then, simple algebra delivers:

1 -1
——{h(B-b)X'X(B-b -m)'Z -
0 1y.X) o B2 SR BBy X X(f=b)+(f=m)E " (f-m))

2
s
LI
w fploran)2-l, =+ 4o}

which we do not recognize as a standard distribution —i.e., a
“complicated posterior.© This posterior does not lead to convenient
expressions for the marginals of f and h.

Linear Model: Conditional Posteriors

* When facing complicated posteriors, we usually rely on numerical
methods to say something about P(8|y). A popular numerical
method, the Gibbs Sampler, uses the conditional posteriors.

* In our setting, it is easy to get the analytical expressions for the

conditional posteriors |y, X) and fh|y.X).

» First, we derive f{B |y, X, h). Again, to get the conditional postetiors,
we use: Likelihood x Prior, but with a conditional prior ]| h).

f(Bly.X,0%) o h"?exp{-

2 T y=20 X'y + X XB]}
o

x GXP{—%(ﬂ—m)'E'I(ﬂ—m)}
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Linear Model: Conditional Posterior /B |y,X, /)

* A little bit of algebra delivers:

fBly.X,0") o« h"expH{Z i’ -

)ﬂ'

1
mexpw(’; 'm) - /z'( Xz

1 ' 1
—# Ayp+p'by

Recall: p(u) <e
Then, we recognize the conditional posterior as proportional to an
MVN with:

' -1
z, =Vaip|y,X,0’] =(X 2X +Z'j
o

X'Xb

=E[B1y.X,0°]=Z, +2'm)

)2(

* That s, fB|y, X, h) is N, (m,, Z,).

Linear Model: Conditional Posterior £ |y,X, /)
f(Bly.X.0") b | A" +h(X"X)["” exp {—g(ﬁ' —m,) (h(X'X)+ A7) —m,)

wherte m = (E!1+ h X°X))'(Z! %+ h X°X) b).

In other words, the pdf of B, conditioning on the data, is normal with
mean 7, and variance matrix (h (X°X)+ X)L,

* Similar work for f{h |y, X, B) delivers a gamma distribution. (Do it!).
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Linear Model: Bayesian Learning

* The mean m, takes into account the data (X and y) and our prior
distribution. It is a weighted average of our prior 7 and b (OLS):
m = Z1+ hXX)'E ! m+ h XX) b).

* Bayesian learning: We combine prior information (¥, m) with the
data (X, b). As more information is known, we update our beliefs!

e If our prior distribution is very diffuse (say, the elements of X are
large), our prior, m, will have a lower weight.

As prior becomes more diffuse, m,— b (prior info is worthless)
As prior becomes more certain, m, — m (prior dominates)

* Note that with a diffuse prior, we can say now:
“Having seen the data, there is a 95% probability that § is in the interval b £
1.96 sqrt{c* X* X)1}.”

Linear Model: Remarks

* We get a normal conditional posterior, a nice recognizable
distribution, because we made clever distributional assumptions:

— We assumed an Zz4. normal distribution for (¥ | X, o).

— We picked a normal prior for B (= the normal (conjugate) prior was a
very convenient choice).

* We can do similar calculations when we impose another prior. But,
the results would change.

e If not exact results are possible, numerical solutions will be used.
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Linear Model: Remarks

* When we setup our probability model, we are implicitly
conditioning on a model, call it H, which represents our beliefs about
the data-generating process. Thus,

/B, o |y, X,H) « B, 5| H) Ay | B,0.X,H)

It is important to keep in mind that our inferences are dependent on
H.

¢ This is also true for the classical perspective, where results can be
dependent on the choice of likelihood function, covariates, etc.

Linear Model: Interpretation of Priors

* Suppose we had an earlier sample, {y", X"}, of T” observations,
which ate independent of the current sample, {y,X}.

¢ The OLS estimate based on all information available is:

, -1 ,
N T . T, T v T
b*= thlxzxt +Z[:lxtxl thlsz’t +Z[:1x1J’t

and the variance is

, -1
T T
Varlh*]= o’ [Zz:] XX+ Zz:] XXy ')

* Let  be the OLS estimate based on the prior sample {y",X"}:
-1

, -1 , ,
T T T
(S o) (S r) and vatm=o (5 ) =o'
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Linear Model: Interpretation of Priors

* Then,

. -1 ,
b*= ZT XX '+ZT xx,' ZT X,y '+ZT x,y,'
=1 tt =1 vt =1 trt =1 trt
41
_ r ' A—l r ' A—l
= thlx,xt + thlxtyt +A4A m
¢ This is the same formula for the posterior mean 7*.

* Thus, the question is what priors should we use?

* There are a lot of publications, using the same data. To form priors,
we cannot use the results of previous research, if we are not going to
use a correlated sample!

The Linear Regression Model — Example 1

* Again, let’s go over the multivariate linear model. Now, we impose a

diffuse uniform prior for 6 = (B, h). Say, /B, h) < h'.
Now, f(0]y.X)ec ™" exp{—g[uf F(B-bY X' X(B-b)]}x I

e If we are interested in B, we can integrate out the nuisance parameter
b to get the marginal posterior of By, X):
S(B 1y, X) e J‘hT/H exp{ —g[vsz +(f=b)' X" X(p - b)]} dh
(B=b) X" X(S -~ b)]fr/z
2

S

oc [1+

where we use the following integral result (I'(s,x): the incomplete I'):

jx“ exp{—xbtdx =b" " [[(a+1)-T(a+1,b)]
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The Linear Regression Model — Example 1

* The marginal posterior f(f]y,X) < [1+

(B-0) X" X(p - b)]fr/z
vs?

is the kernel of a multivariate # distribution. That is,

fB1y.X)=1,(B1b,s* (X' X))

Note: This is the equivalent to the repeated sample distribution of b.
* Similarly, we can get f{h |y,X) by integrating out B:
SO pX) o [H7 expl = 2 us +.(f - b X X(p - D)} dp
b7 expt - Tus®} [expl ~ (8 - b X X(S - b))} dp
SRS

which is the kernel of a I'(a,4) distribution, with = v/2 and A =0s?/2.

The Linear Regression Model — Example 1

* The mean of a gamma distribution is o/ A. Then,

E[h|y, X] = [v/2]/[vs%/2] = 1/s%.

* Now, we interpret the prior f{B, h) « h" as non-informative: The
marginal posterior distributions have properties closely resembling the
corresponding repeated sample distributions.
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The Linear Regression Model — Example 2

* Let’s go over the multivariate linear model. Now, we impose a diffuse
uniform prior for 8 and an inverse gamma for o°.

Likelihood

L(B,02y,X)=[2n0? "2 (/o Ny-Xe) (r-Xe)]
Transformation using d=(N-K) and s> = (1/d)(y — Xb)'(y — Xb)
[— %] (y - XB)(y - XB) = (—%ds][cij Lo b)'(é XXJ (B-b)

Diffuse uniform prior for B, conjugate gamma prior for c*
Joint Posterior

2 [dsz]v+z i ! —ds?(1/6%) -K /2 2 -11-1/2
f(B, o Iv,X)ocr(d+2) =| ¢ [2r]"" | o (X'X) |

xexp{~(1/2)(B-b)'[c*(XX)"'T"(B-b)}

The Linear Regression Model — Example 2

* From the joint posterior, we can get the marginal posterior for .

After integrating o out of the joint posterior:
[ds?]*T(d +K /2) K12 wry |-1/2
2 X'X
r(d +2) =] 7 1XX]
[ds? + 1 (B - b)X'X(B - b)]"**/?

F(Bly,X) o

Multivariate t with mean b and variance matrix %[SZ(X'X)*]

The Bayesian 'estimator' equals the MLE. Of course; the prior was
noninformative. The only information available is in the likelihood.
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Presentation of Results

* P(0y) is a pdf. For the simple case, the one parameter 0, it can be
graphed. But, if 0 is a vector, the multivariate pdf cannot be graphed.

* Itis common to present measures analogous to classical point
estimates and Cls. For example:

M E®@|y) =[6P(6ly)do -- posterior mean

(2) Var(8 |y) = E(6%|y)- {E@ |y)}> -- postetior vatiance
k

(3 plki>0 >k |y) = [, > P(6ly) db -~ ClIL.

* In many cases, it is not possible to evaluate these integrals
analytically. Typically, we rely on numerical methods to approximate
an integral as a (weighted) sum:

I=[f(6)do =X w; 0

Presentation of Results: MC Integration

* In the Math Review, we covered different numerical integration
methods (trapezoid rule, Gaussian quadrature, etc), where we pick the
8;’s and the w;’s in some fixed (deterministic) way.

* In this section, we will use Monte Carlo (MC) methods to integrate.
MC Integration is based on selecting 8;’s randomly (from some pdf).

Example: We can compute the expected value of a Beta(3,3):

I'a+p) o e a 1
E@)=|—"=-6"(1-0"do=—— = E@)=—
@ J.1“(05)1"(/3) (1-6) a+p @ 2
or via Monte Carlo methods (R Code):
M <- 10000

beta.sims <- rbeta(M, 3, 3)
sum(beta.sims)/M
[1] 0.4981763
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Presentation of Results: MC Integration

Q: What is the advantage of MC methods? The LLN tells us that the
MC approximation is a consistent (simulation) estimator of the value
population value E[8]. The following #raceplot illustrates the point:

Mean of Beta(3,3)

055
|

050
|

Eftheta)

045
|

T T T
0 500 1000 1500 2000

Sample size (M)

Note: The CLT can be used too!

MC Integration

* Obviously, we will not use MC methods to get the mean and
variance of a Beta(3,3)! It will be used when we face integrals that

involve complicated posteriors.

Example: Suppose Y ~ N(0,1) and we have a Cauchy (0,1) prior.
That is, 6 ~ Ca(0,1). Then,

1 2
@) 1 So-or 1 1 2"
=—2¢ X =
PO = g 7(1+6%) 722 (1+6%)
—l(v—@)2
20
m—
(1+6°)

which we do not recognize as a known distribution. Suppose we are
interested in E[h(0]y)]. MC Integration can compute this integral.
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MC Integration: Plug-in estimator

* Idea: We start with a postetior, P(@ |y): m(0) = P(y|0) P(0)/P(y).
We want to get moments of some function of 6, say

E.[h@)] = [h ) m(0) do.

«1f0M =91, 92,03, ..., 0M}is an iid random sample from n(0),
then

_ M
hmzﬁZh(@’”)—)Eﬂ[h(é’)] as M —> oo,
m=l1

* The h,, average over 8 is called the plug-in estimator for E_[h(0)].
Note that when h(6) = 8, we get the mean; when h(6) = [0 — E(0)]?,
we get the variance, etc.

* Using the plug-in estimator, we can approximate almost any aspect
of the posterior to arbitrary accuracy, with large enough M.

MUC Integration: MC Standard Errors

* We can get MC standard errors to evaluate the accuracy of
approximations to the posterior mean.

* Let 0 be the sample mean of the M MC samples. Then, by CLT:
0 ~ N, Var[0|y]/M).

We approximate the 02 = Var|0|y]:

6’ = 7 12(6’"" 0) —>Varo|y,,....y;]

m=1

= MC SE[8] = /62/M.

We can select M to give us a desired precision relative to the posterior
moment we are interested.
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MC Integration: MC Standard Errors

Example: We generate a MC sample of size M = 200 with 8 = .78
and 62= 0.35. Then, the approximate MC SE is given by:

MC SE = sqrt[0.35/200] = 0.0418.

We can do a 95% C.I. for the posterior mean of 0:
[.78 & 1.96 * .0418]

* If we want the difference between E[0|y] and its MC estimate to be
less than 0.005 with high probability, we need to increase M such that
1.96* sqrt[0.35/M] < .005 = M > 53,782

Note: The plug-in estimator may have a large variance (MC error). In

these cases, a very large M is needed.

MC Integration: Sampling Problems

* MC integration relies on being able to draw from P(6 |y). To do
this, we need P(6 | ) to be a pdf that is represented by a standard
library function, which allows us to get draws, say rorm or rbeta in R.

* Q: What happens when P(8|y) is not in the library?

A: There are several methods to work around this situation. For
example, the method of inversion (based on the probability integral
transformation) and the usual Bayesian tool, Markov chain Monte
Carlo, or MCMC (coming soon).

* There are also MC methods to calculate posterior quantities of
interest without the need to draw directly from the posterior. For
example, importance sampling (1S).

© RS 2020 — Not to be posted/shared online without written authorization.

50



RS — Lecture 17

MC Integration: Importance Sampling (IS)

* We want to calculate the (posterior) expectation:

E.[h(6)] = [h(6) (6) db.
It can be easier to compute this integral by sampling from another
pdf, q(.), an importance function, also called a proposal function. Then,

£ o) = [*27Dq 010

If H(M)={91 62, 63, ..., 0M}is a random sample from q(8), then

Z”‘gn;)e’fn(‘gm) A;me'")h(em)aEﬁ[h(e)] as M —> o,

where w(@™) = w(0™)/ q(@™) is called importance weight. These
weights give more iportance to some ™ than to others!

* The 1S estimator —i.e., the weighted sum— approximates E_[h(0)].

MC Integration: IS - Remarks

* In principle, any proposal q(60) can be used. But, some q(6)’s are
more efficient than others. Choosing q () close to the target, m(0),
works well (may be “op#imal,” by reducing the variance of the MC
estimator).

This variance reduction property of the IS estimator may be appealing
over the plug-in estimator.

* Heavy-tailed q(.), relative to m(0), are very efficient. The weights for
thinner-tailed q(;) will be dominated by large |8™ .

* IS can be turned into “importance sampling resampling” by using an
additional resampling step based on the weights.
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MC Integration: IS - Example

Example: We want to use importance sampling (IS) to evaluate the
integral x> over the range [0,1] (we know the answer: 2):

# Without Importance Sampling .
set.seed(90) \
M =1,000 ‘ \

lambda = 3 : ‘

X <- runif(M,0.001,1) T
h <- X*(:0.5) # h(x) ‘

c( mean(h), var(h) )

# Importance sampling Monte Catlo with an exponential
w <- function(x) dunif(x, 0.001, 1)/dexp(x,rate=lambda) * pexp(1, rate=lambda) # [pi(x)/q)]

h_f <- function(x) x"(-0.5) # h(x)
X <- rexp(M,rate=lambda)
X <- X[X<=1]

Yh <- wX)*h_f(X)
c(mean(Y.h), var(Y.h))

Note: Make sure that q(x) is a well defined pdf —i.e., it integrates to 1.

This is why above we use q(x)= dexp(x,lambda)/ pexp(1,Jambda).

MC Integration: IS - Example

Example (continuation): Below, we plot the mean as a function of
the sample size, M.

Mean of x*-0.5

i e \l'r

!,”WWM N‘N‘WNM"W}’N’FWWWWW

T T T T T T
o 200 400 600 800 1000

Sample size

Note: After M = 400, the mean stabilizes close to 2. A graph like this
can be used to evaluate/determine M in MC integration.
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MC Integration: IS — Importance weights

« If () is improper, w(@™) is normalized by XX _; w,, (8™)
(normalized W's.)

Example: Suppose y ~ N(0, 1) and we use a Cauchy (0,1) prior. That
is, 0 ~ Ca(0,1). Then, Loy
e 2

(1+6%)

We set q(0) as N(y, 1). Then, the importance weights are given by:
_m(@) e y 1 _ N27
q(@) (1+6% 1 egww (1+6%)
N27m

p(@|y) <

1 2
——(y-0
2(y )

w(0)

which we need to normalize:

NEYa

Sogmyo w@") _ (1+6")
RO ST s ir
" — (1+6m)

MC Integration: IS — Importance weights

Example (continuation): Now, we can calculate E[0|y] = 0.558493.

Code in R

> M = 1000

>y=1#Data

> pi_th = function(theta,y) {

+ post_out = exp(-(y-theta)"2/2) /(1 +theta™2)
+ return(post_out)

+3

>

> # Draw theta from N(y,1)

> theta = rnorm(M,y,1)

>

> # Determine weights & post expectation
> w <- sqrt(2*pi)/(1+theta™2)

> w_norm <- w/sum(w)

>

> h = function(theta) theta

> sum(w_norm*h(theta))

[1] 05584926
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