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Lecture 17 – Part 1
Bayesian Econometrics 

Bayesian Econometrics: Introduction

• Idea: We are not estimating a parameter value, θ, but rather updating 
(changing) our subjective beliefs about θ.

• The centerpiece of the Bayesian methodology is Bayes theorem:

P(A|B) = P(A∩B)/P(B) = P(B|A) P(A)/P(B).

• Think of B as “something known” –say, the data- and A as 
“something unknown” –e.g., the coefficients of a model.

• Our interest: Value of the parameters (𝜃), given the data (𝑦).

• Reversing Bayes’s theorem, we write the joint probability of 𝜃 and 𝑦:

P(𝜃 ∩ 𝑦) = P(𝑦|𝜃) P(𝜃)
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• Then, we write:   P(𝜃|𝑦) = P(𝑦|𝜃) P(𝜃)/P(𝑦)      (Bayesian learning)

• For estimation, we can ignore the term P(𝑦) (a normalizing constant),
since it does not depend on the parameters. Then,  we can write:

P(𝜃|𝑦)  P(𝑦|𝜃) x P(𝜃)

• Terminology:

- P(𝑦|𝜃): Density of the data, y, given the parameters, 𝜃. Called the 
likelihood function. (I’ll give you a value for 𝜃, you should see 𝑦.)

- P(𝜃): Prior density of the parameters. Prior belief of the researcher. 

- P(𝜃|𝑦): Posterior density of the parameters, given the data. (A mixture 
of the prior and the “current information” from the data.)

Note: Posterior is proportional to likelihood times prior.

Bayesian Econometrics: Introduction

• The typical problem in Bayesian statistics involves obtaining the 
posterior distribution:

P(𝜃|𝑦) ∝ P(𝑦|𝜃) x P(𝜃)

To get P(𝜃|𝑦), we need:
- The likelihood, P(𝑦|𝜃), will be assumed to be known. The likelihood 
carries all the current information about the parameters and the data.
- The prior, P(𝜃), will be also known. Q: Where does it come from?

Note: The posterior distribution embodies all that is “believed” about 
the model:

Posterior = f(Model|Data)

= Likelihood(𝜃,Data) x Prior(𝜃) / P(Data)

Bayesian Econometrics: Introduction
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• We want to get P(θ|𝑦) ∝ P(𝑦|θ) x P(θ). There are two ways to 
proceed to estimate P(θ|𝑦):

(1) Pick P(θ) and P(𝑦|θ) in such a manner that P(θ|𝑦) can be 
analytically derived. This is the “old” way.

(2) Numerical approach. Randomly draw from P(θ|𝑦) and, then, 
analyze the ED for θ. This is the modern way.

• Note: Nothing controversial about Bayes’ theorem. For RVs with 
known pdfs, it is a fact of probability theory. But, the controversy 
starts when we model unknown pdfs and “update” them based on data.

Good Intro Reference (with references): “Introduction to Bayesian 
Econometrics and Decision Theory” by Karsten T. Hansen (2002).

Bayesian Econometrics: Introduction

• Recall Bayes’ Theorem:

Bayes’ Theorem: Summary of  Terminology
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- P(): Prior probability about parameter .

- P(𝑦|): Probability of  observing the data, 𝑦, conditioning on . 
This conditional probability is called the likelihood –i.e., probability of  
event y will be the outcome of  the experiment depends on .

- P(𝑦): Posterior probability -i.e., probability assigned to , after 𝑦 is 
observed.

- P(𝑦): Marginal probability of  y. This the prior probability of  
witnessing the data y under all possible scenarios for , and it depends 
on the prior probabilities given to each (A normalizing constant 
from an estimation point of  view.)
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Example: Player’s skills evaluation  in sports.

S: Event that the player has good skills (& be recruited by the team). 

T: Formal tryout performance (say, good or bad). 

After seeing videos and scouting reports and using her previous 
experience, the coach forms a personal belief about the player’s skills. 
This initial belief is the prior, P(S).

After the formal tryout performance, the coach (event T) updates her 
prior beliefs. This update is the posterior:

Bayes’ Theorem: Example 
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Bayes’ Theorem: Example

Example: Player’s skills evaluation in sports.

- P(S): Coach’s personal estimate of  the probability that the player
has enough skills to be drafted –i.e., a good player- , based on
evidence other than the tryout. (Say, .40.)

- P(T=good|S): Probability of  seeing a good tryout performance if  
the player is actually good. (Say, .80.)

- T is related to S:
P(T=good|S (good player)) = .80
P(T=good|SC (bad player)) = .20

- After the tryout, the coach updates her beliefs : P(S|T=good)
becomes our new prior. That is:

𝑃 𝑆 𝑇 ൌ 𝑔𝑜𝑜𝑑 ൌ  ሺௌ|்ୀௗሻ ሺௌሻ

ሺ்ୀௗሻ
ൌ  .𝟖𝟎 ∗ .ସ 

.𝟖𝟎 ∗ .ସା .ଶ ∗ .
ൌ .7272
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• Consider the following data from N=50 Bernoulli trials: 

00100100000101110000101000100000000000011000010100

If θ is the probability of a “1" at any one trial then the likelihood of 
any sequence of s trials containing 𝑦 ones is 

p (𝑦|θ) = θy (1−θ)s-𝑦

Let the prior be a uniform: p(θ)=1. Then, after 5 trials the posterior is:

p (θ|𝑦) ∝ θ (1−θ)4 x 1 = θ (1−θ)4 

and after 10 trials the posterior is

p (θ|𝑦) ∝ θ (1−θ)4 x θ (1−θ)4 = θ2 (1−θ)8

and after 40 trials the posterior is

p (θ|𝑦) ∝ θ8 (1−θ)22 x θ2 (1−θ)8 = θ10 (1−θ)30

and after 50 trials the posterior is

p (θ|𝑦) ∝ θ4 (1−θ)6 x θ10 (1−θ)30 = θ14 (1−θ)36

Bayesian Econometrics: Sequential Learning

• Notes:

- The previous posterior becomes the new prior.

- Beliefs tend to become more concentrated as N increases.

- Posteriors seem to look more normal as N increases.

Bayesian Econometrics: Sequential Learning
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Likelihood 

• It represents the probability of  observing the data, 𝑦, conditioning 
on . It is also called sampling model.

Example: Suppose the data follows a binomial distribution with 
probability of  success . That is, 𝑦ଵ, 𝑦ଶ, ..., 𝑦் ~ i.i.d. Bin(1,θ) –i.e., 
Bernouilli.

Then, the likelihood is:

Note: In this binomial case, it can be shown that the sum of 
successes, ∑ 𝑦

்
ୀଵ , is a sufficient statistic for  & p(𝑦ଵ, 𝑦ଶ, ..., 𝑦்| ).  

Moreover, ∑ 𝑦
்
ୀଵ follows a Bin(T,  ). These results are to be used 

later.
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Likelihood: Normal 

• Suppose 𝑦 ~ i.i.d. N(θ, σ2), then the likelihood is:
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Note: Bayesians work with ℎ = 1/σ2, which is called “precision.” A 
gamma prior is usually assumed for ℎ. Then,
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• There is a useful factorization, when 𝑦 ~ i.i.d. N(θ, σ2), which uses: 

where s2 = sample variance. Then, the likelihood can be written as:
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• A prior represents the (prior) belief of the researcher about θ, before 
seeing the data (X, 𝒚). These prior subjective probability beliefs about 
the value of θ are summarized with the prior distribution, P().

Example: Suppose 𝑦ଵ, 𝑦ଶ, ..., 𝑦் ~ i.i.d. Bin(1, θ). We know that 
∑ 𝑦
்
ୀଵ ~ Bin(T,  ). Suppose we observe {∑ 𝑦

்
ୀଵ = 𝑠}. Suppose 

from our prior information, we assume  Beta(𝛼, 𝛽). That is,

Priors

11 )1(
)()(
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)(  




  

p

But, we could have assumed something different. For example, our 
prior information for  tells us that all subintervals of  [0,1] with the 
same length also have the same probability:

which leads to a uniform for θ  P(θ)=1 for all θ ∈ [0,1].

)()( cbcaPbaP   for 0 ≤ 𝑎 < 𝑏 < 𝑏  𝑐 ≤ 1,

• Beta’s pdf: 

• E[θ] = 𝛼/(𝛽  𝛼)

Var[θ] = 𝛼 𝛽/[(𝛽  𝛼)2 (𝛼 + 𝛽 + 1)] = E[θ] (1 - E[θ])/(𝛼 + 𝛽 + 1) 

• When 𝛼 & 𝛽 are high, the Beta distribution can be approximated by 
a Normal.

Aside: The Beta Distribution
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• We can have Improper and Proper priors.

If we multiply P(θi) and P(θj) by a constant, the posterior probabilities 
will still integrate to 1 and be a proper distribution. But, now the 
priors do not integrate to 1. They are no longer proper.

• When this happens, the prior is called an improper prior. However, the 
posterior pdf need not be a proper pdf if the prior is improper. 

“Improper priors are not true pdfs, but if we pretend that they are, we will compute 
posterior pdfs that approximate the posteriors that we would have obtained using 
proper conjugate priors with extreme values of the prior hyperparameters,” from 
Degroot and Schervish’s (2011) textbook.

Priors: Improper and Proper 
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• In a previous example, we assumed a prior P(S) –i.e., a coach’s prior 
belief about a player’s skills, before tryouts. 

• This is the Achilles heel of Bayesian statistics: Where do they came 
from?

• Priors can have many forms. We usually divide them in non-
informative and informative priors for estimation of parameters

–Non-informative priors:  There is a total lack of prior belief in 
the Bayesian estimator.  The estimator becomes a function of the 
likelihood only.

– Informative prior:  Some prior information enters the estimator.  
The estimator mixes the information in the likelihood with the 
prior information.

Priors: Informative and Non-informative
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• Many statistitians like non-informative priors.  Usual justification: 
“Let the data speak for itself.” According to this view, priors should play 
a small role in the posterior distribution.

• Non-informative priors can be called diffuse, vague, flat, reference priors.

• Uniform (flat) priors are usually taken as non-informative. There 
may be, however, other “less informative” priors.

• A formal definition of a non-informative prior is given by Jeffreys
(1946).

• In general, with a lot of data the choice of flat priors should not 
matter, but when there is not a lot of data the choice of prior matters.

Priors: Informative and Non-informative

Example: Suppose we have i.i.d. Normal data, Yi ~ i.i.d. N(θ, 𝜎ଶ). 
Assume 𝜎ଶ is known. We want to learn about θ, that is, we want to 
get P(θ| 𝑦). We need a prior for θ.  

We assume a normal prior for θ: P(θ) ~ N(𝜃, 𝜎
ଶ). 

- 𝜃 is our best guess for θ, before seeing 𝑦. 

- 𝜎
ଶ states the confidence in our prior. Small 𝜎

ଶshows big 
confidence. It is common to relate 𝜎

ଶ to 𝜎ଶ, say 𝜎
ଶ= sqrt{σ2 M}.

This prior gives us some flexibility. Depending on 𝜎
ଶ, this prior can 

be informative or diffuse. A small 𝜎
ଶ represents the case of an 

informative prior. As 𝜎
ଶ increases, the prior becomes more diffuse.

Q: Where do we get 𝜃, 𝜎
ଶ? Previous data sets/a priori information?

Priors: Informative and Non-informative
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Example: Suppose 𝑦ଵ, 𝑦ଶ, ..., 𝑦் ~ i.i.d. Bin(1, θ). We know that 
∑ 𝑦
்
ୀଵ ~ Bin(T,  ). Suppose we observe {∑ 𝑦

்
ୀଵ = 𝑠}. Our prior 

information is not very good, it points towards a diffuse prior.

We formalize this information with a uniform distribution: P(θ)=1 
for all θ ∈ [0,1].

Detail for later: We can think of the Uniform as a special case of the 
Beta. Recall that the Beta(𝛼, 𝛽) pdf is given by:

Then, setting 𝛼 = 1 and 𝛽 = 1, delivers P(θ) = 1. 

Priors: Diffuse Prior - Example
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• Jeffreys (1946) provides a definition of non-informative priors, 
based on one-to-one transformations of the parameters. 

• Jeffreys’ general principle is that any rule for determining the prior 
pdf should yield an equivalent posterior if applied to the transformed 
parameters. The posterior should be invariant to the prior.

• Jeffreys’ principle leads to defining the non-informative prior as ⇒
P(θ) ∝ [I(θ)]1/2, where I(θ) is the Fisher information for θ:

If we take [I(θ)]1/2 as our prior, we call it the Jeffreys’ prior for the 
likelihood P(𝑦 |θ).

Priors: Jeffreys’ Non-informative Prior
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Example: Suppose 𝑦ଵ, 𝑦ଶ, ..., 𝑦் ~ i.i.d. Bin(1, θ). Then, 

∑ 𝑦
்
ୀଵ ~ Bin(T, , with a log-likelihood:

Then,

Jeffreys’ prior:  P(θ) ∝ θ-1/2 (1- θ)-1/2  a Beta(1/2,1/2).

Q: Non-informative? The uniform used before is a Beta(1, 1). You 
can check later that Jeffreys’ prior gives a lower weight to the prior 
information in the posterior. In this sense, it is “less informative.” 

Priors: Jeffreys’ Non-informative Prior
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• When the posterior distributions P(θ|𝑦) are in the same family ℱ as 
the prior probability distributions, P(θ), the prior and posterior are 
then called conjugate distributions.

• Formally, let P(θ) ∈ ℱ ⇒ P(θ|𝑦) ∈ ℱ. Then, ℱ is conjugate prior for 
likelihood model P(𝑦|θ). 

Examples:

- The beta distribution conjugates to itself (or self-conjugate) with 
respect to the Binomial likelihood.

- The normal family is conjugate to itself with respect to a normal 
likelihood function. 

• Good! We know a lot about the normal and beta distributions.

Priors: Conjugate Priors
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• Another good results: We can also generate values from these 
distributions with R (or other programs, like Matlab, Gauss, etc.). For 
example, rbeta and rnorm do the trick in R for the beta and normal 
distributions.

• Conjugate priors help to produce tractable posteriors.

• Q: What happens when we do not have conjugacy? We may have to 
deal with complicated posteriors –i.e., not easy to analytically 
integrate. In these cases, we will rely on numerical solutions.

Priors: Conjugate Priors

Example: Suppose 𝑦ଵ, 𝑦ଶ, ..., 𝑦் ~ i.i.d. Bin(1, θ). Then, 

∑ 𝑦
்
ୀଵ ~ Bin(T,  We observe {∑ 𝑦

்
ୀଵ = 𝑠}. We assume 

Beta(𝛼, 𝛽). That is,

Then, the posterior is:
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which looks, ignoring constants, like a Beta(𝑠  𝛼, T + 𝛽 െ 𝑠).

Note: When 𝛼 & 𝛽 are high, the Beta distribution can be 
approximated by a Normal. If a previous data set/prior info implies a 
mean and variance, they can be used to get the prior (𝛼, 𝛽) values. 

Priors: Conjugate Priors - Example
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• Bayesian methods can be effective in dealing with problems with a 
large number of parameters. In these cases, it is convenient to think 
about the prior for a vector parameters in stages.

• Suppose that θ = (θ1, θ2, ..., θK) and λ is a another parameter vector, 
of lower dimension than θ. λ maybe a parameter of a prior or a 
random quantity. The prior p(θ) can be derived in stages:  

p(θ, λ) = p(θ|λ)p(λ).

Then,

p(θ)= p(θ|λ) p(λ) dλ

We can write the joint as:

p(θ, λ, y) = p(y|θ,λ) p(θ|λ) p(λ).

Priors: Hierarchical Models

• We can think of the joint p(θ, λ, y) as the result of a Hierarchical (or 
“Multilevel”) Model:

p(θ, λ, y) = p(y|θ,λ) p(θ,λ) = p(y|θ,λ) p(θ|λ) p(λ).

The prior p(θ,λ) is decomposed  using a prior for the prior, p(λ), a 
hyperprior. Under this interpretation, we call λ a hyperparameter. 

• Hierarchical models can be very useful, since it is often easier to 
work with conditional models than full joint models.

Example: In many stochastic volatility models, we estimate the time-
varying variance (Ht) along with other parameters (). We write the 
joint as:

Priors: Hierarchical Models

)(),()(),(  fHfHYfHf tttt 
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• Supposee we have i.i.d. Normal data,  𝑦 ~ N(θ, 𝜎ଶ). We want to 
learn about (θ, 𝜎ଶ) or, using ℎ = 1/𝜎ଶ, φൌ(θ, ℎ).  That is, we want to 
get P(φ |y). We need a joint prior for φ.  

It can be easier to work with P(φ) = P(θ|ℎ) P(ℎ).

For θ|ℎ, we assume P(θ|ℎ) ~ N(𝜃, 𝜎
ଶ), where 𝜎

ଶ = sqrt{𝜎ଶM}.

For 𝜎ଶ, we assume an inverse gamma (IG). Then, for ℎ = 𝜎ିଶ, we 
have a gamma distribution, which is function of (α, λ):

where 𝛼 = T/2 & λ = 1/(2𝜂ଶ)=Φ/2 are usual priors (𝜂ଶ is related to 
the variance of the T N(0, 𝜂ଶ) variables we are implicitly adding).

Priors: Hierarchical Models - Example
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Then,  the joint prior, P(φ) can be written as:
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Priors: Hierarchical Models - Example
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• The usual prior for 𝜎ଶ is the inverse-gamma (IG). Recall that if X has 
a Γ(, ) distribution, then 1/X has an IG distribution with 
parameters  (shape) and -1 (scale). That is:

.0
)(

),;( )/(1 



 



xexxf x

• Then, ℎ = 1/𝜎ଶ is distributed as Γ(α,λ):

.0
)(

),;( 12 
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• Q: Why do we choose an IG prior for σ2?

(1) p(𝜎ଶ) = 0 for 𝜎ଶ< 0.

(2) Flexible shapes for different values for (, ) –recall, when 

= /2  &  = ½, the gamma distribution becomes the ν2. 
(3) Conjugate prior ⇒ the posterior of 𝜎ିଶ|X will also be Γ(*, *).

Priors: Inverse Gamma for 2

• IG’s pdf: .0
)(

),;( )/(1 



 



xexxf x

• Mean[𝑥] = /(- 1) (> 1).
Var[𝑥] = 2/[(- 1)(- 2)] (> 2).

• A  multivariate generalization of  the IG distribution is the inverse-
Wishart (IW) distribution.  

α =1,   λ = 1
α =2,   λ = 1
α =3,   λ = 1
α =3,   λ = 0.5

Aside: The Inverse Gamma Distribution
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• (From Jim Hamilton.) Assume CLM with k=1. A student says: 
“There is a 95% probability that  is between b ± 1.96 sqrt{𝜎ଶ(X’ X)-1}.”

A classical statistician says: “No!  is a population parameter. It either 
equals 1.5 or it doesn’t. There is no probability statement about .”

“What is true is that if we use this procedure to construct an interval in thousands 
of different samples, in 95% of those samples, our interval will contain the true 
.”

• OK. Then, we ask the classical statistician:

- “Do you know the true β?” “No.”

- “Choose between these options.  Option A: I give you $5 now.  
Option B: I give you $10 if the true β is in the interval between 2.5 
and 3.5.” “I’ll take the $5, thank you.”

Prior Information: Intuition 

• OK. Then, we ask the classical statistician, again:

- “Good. But, how about these? Option A: I give you $5 now.  

Option B: I give you $10 if the true β is between -8.0 and +13.9.” 

“OK, I’ll take option B.”

• Finally, we complicate the options a bit:

- “Option A: I generate a uniform number between 0 and 1.  If the 
number is less than π, I give you $5.  

Option B: I give you $5 if the true β is in the interval (2.0, 4.0).  The 
value of π is 0.2” 

“Option B.”

- “How about if π = 0.8?”

“Option A.”

Prior Information: Intuition
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• Under certain axioms of rational choice, there will exist a unique π*, 
such that he chooses Option A if π > π*,  and Option B otherwise. 
Consider π* as the statistician’s subjective probability.

• We can think of π* as the statistician’s subjective probability that 
is in the interval (2.0, 4.0).

Prior Information: Intuition

• The goal is to say something about our subjective beliefs about θ; 
say, the mean θ, after seeing the data (𝒚). We characterize this with the 
posterior distribution:

P(θ|𝑦) = P(𝑦|θ) P(θ)/P(𝑦)

• The posterior is the basis of Bayesian estimation. It takes into 
account the data (say, 𝒚 & X) and our prior distribution (say, θ0). 

• P(θ|𝑦) is a pdf. It is common to describe it with the usual classical 
measures. For example: the mean, median, variance, etc. Since they 
are functions of the data, they are Bayesian estimators. 

• Under a quadratic loss function, it can be shown that the posterior 
mean, E[θ|𝑦], is the optimal Bayesian estimator of θ.

Posterior
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• We assume a loss function, g(𝜃, 𝜃), where 𝜃 is an estimate. Let 𝜃
solve the minimization problem:

minθ ∫Θ g(𝜃, 𝜃) p(𝜃|𝑦) 𝑑𝜃 where 𝜃 ∈ Θ
Different loss functions, produce different optimal estimators.

Example: Quadratic loss function with scalar case: g(𝜃, 𝜃)=(𝜃 െ  𝜃)2

Eθ|y[𝜃- 𝜃 ]2 = Eθ|y[𝜃 - E[𝜃|𝑦] + E[𝜃|𝑦] -𝜃]2

= Eθ|y[(𝜃 - E[𝜃|𝑦])2] + (E[𝜃|𝑦] - 𝜃 )2 + 

+ 2 Eθ|y[(𝜃 - E[𝜃|𝑦])]  (E[𝜃|𝑦] - 𝜃 )] 

= Eθ|y[(𝜃 - E[𝜃|𝑦])2] + (E[𝜃|𝑦] - 𝜃 )2

which is minimized at 𝜃 = E[𝜃|𝑦].

• Similar calculations for g(𝜃, 𝜃) = |𝜃 - 𝜃|produce the median as 𝜃.

Posterior: Optimal Estimator

Example: Data: 𝑦ଵ, 𝑦ଶ, ..., 𝑦் ~ i.i.d. Bin(1, θ). Then, 

∑ 𝑦
்
ୀଵ ~ Bin(T,  We observe {∑ 𝑦

்
ୀଵ = 𝑠}. 

• Likelihood: 

• Prior. For θ ~Unif[0, 1]. That is, P(θ)=1 for all θ ∈ [0,1]. 

• Posterior. Likelihood x Prior : 
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Posterior: Example – Binomial-Uniform
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where 𝑐(𝑠) is a constant independent of . We recognize P(θ|Y=𝑠) as 
a Beta (up to a constant), with α = (𝑠 + 1) & β = (T – 𝑠 + 1). 
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Example (continuation):

We can derive 𝑐(𝑠) since P(θ|𝑦) should integrate to 1. To recover the 
constant we use:

Then,

Note: Uniform prior + Bernoulli/Binomial likelihood ⇒ Beta 
posterior.
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Posterior: Example – Binomial-Uniform
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• P(𝜃|𝑦) is a pdf. For the simple case, the one parameter 𝜃, it can be 
graphed. But, if θ is a vector of many parameters, the multivariate pdf 
cannot be presented in a graph of it.

• It is  common to present measures analogous to classical point 
estimates and confidence intervals (“credibility intervals,” also C.I.). 

For example:

(1) E(𝜃|𝑦) = ∫ 𝜃 p(𝜃|𝑦)  d𝜃 -- posterior mean

(2) Var(𝜃|𝑦) = E(𝜃2|𝑦) – {E(𝜃|𝑦)}2 -- posterior variance

(3) p(k1 > 𝜃 > k2|𝑦) = ∫k1>θ>k2 p(𝜃|𝑦)  d𝜃 -- C.I.

• In general, it is not possible to evaluate these integrals analytically. 
We rely on numerical methods. 

Posterior: Presentation of  Results



RS – Lecture 17

20© RS 2020 – Not to be posted/shared online without written authorization.

Posterior: Presentation of Results - Example

Example: In the Binomial-Uniform previous example, we obtained 
the posterior P(𝜃|𝑦 = 𝑠) = Beta(𝑠  1, Tെ 𝑠  1). 

From this Beta posterior, we can calculate the usual descriptive 
statistics: 

E[θ|𝑦] = 𝛼/ሺ𝛽  𝛼ሻ ൌ (𝑠+1)/[(𝑇 െ  𝑠  1)+(𝑠+1)] = (𝑠  1)/(T+2) 

Var[θ|𝑦] = α 𝛽/[(𝛽+α)2 (α+𝛽+1)] = E[θ|𝑦] (1-E[θ|𝑦])/(α+𝛽 +1) =

= (𝑠  1)(Tെ 𝑠  1)]/[(T+2)2 (T+3)]

Posterior: Presentation of Results - Example

Example (continuation): Suppose we have a sample of 𝑇 = 25 
adults with MBA degrees, with 𝑠 = 15 of them trading stocks. 

That is, we have a Beta(16,11) posterior. We can easily calculate the 
posterior mean, the posterior variance and CI {0.1, 0.4}: 

E[θ|𝑠 = 15] = 𝛼/ሺ𝛽  𝛼ሻ ൌ 16/27 = .5927

Var[θ|𝑠 = 15] = 𝛼 𝛽/[(𝛽  𝛼)2 (𝛼 + 𝛽 + 1)] 

= 16*11/[(27)2 *(28)]= 0.00862

Pθ|s (0.55 >θ> 0.65|𝑠 = 15) = 0.4014529. (=pbeta(.65,16,11)-pbeta(.55,16,11), in R)

• Check normal approximation, with N(.5927, sqrt(.009)), in R:
> pnorm(.65, .5927, sqrt(.009)) - pnorm(.55, .5927, sqrt(.009))

[1] 0.4007565
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Posterior: Hypothesis Testing

• In the context of C.I., we calculate the probability of θ being in 
some interval. This allows for some easy hypothesis tests.

For example, we are interested in testing H0: θ>0 against H1: θ0. We 
can test H0 by computing Pθ|y=s (θ>0) and check if it is lower than 
some small level α. If it is lower, we reject H0: θ>0 in favor of H1.

Example: In the Binomial-Uniform model, we derive the posterior 
P(θ|𝑦=𝑠) as Beta(𝑠  1, Tെ 𝑠  1). Suppose we are interested in 
testing H0: θ 0.3 against H1: θ 0.3. Suppose 𝑇 = 25 and 𝑠 = 15 . 

Then,

Beta(θ 0.3|16,11) = .00085 (too small!)

⇒ reject H0: θ 0.3 in favor of H1: θ 0.3. 

Example: Same binomial data as before. We observe {∑ 𝑦
்
ୀଵ = 𝑠}. 

• Prior. We change. Now, we assume   Beta(𝛼, 𝛽). That is,
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• Posterior. Likelihood x Prior (ignoring constants):

which is a Beta(𝛼  𝑠, 𝛽  𝑇 െ  𝑠). (Not a surprise, we used a 
conjugate prior!). We write the usual descriptive moments; for example:

E[θ|𝑦 = 𝑠] = ሺ𝛼  𝑠ሻ/(𝛼  𝑠  𝛽  𝑇 െ  𝑠) = ሺ𝛼  𝑠ሻ/(𝛼  𝛽  𝑇) 

Remark:  We think of the Binomial-Uniform model as a special case 
of the Binomial-Beta model, with the Unif[0,1] as a Beta(𝛼 =1, 𝛽 =1).

Posterior: Example – Binomial-Beta
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• In the Binomial-Beta model, the posterior P(θ|𝑦) is:
11 )1()|(   sTssp   y

• The posterior P(θ|𝑦) combines prior information (α, β) and data (T,
𝑠), which can be seen by writing E[θ|∑ 𝑦

்
ୀଵ = 𝑠] as:

Posterior: Combining Information

 geData Avera  nExpectatioPior 
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Usually, 𝛼 is thought of “the prior number of 1’s;” while 𝛽 is thought 
of as “the prior number of 0’s” ( ൎ “prior sample size.”) 
Then, the prior expectation is 𝛼/ሺ𝛽  𝛼ሻ.  

• Role of T: As T grows  Data dominates. 
 E[θ|𝑦 = 𝑠] ൎ 𝑠/T 
 Var[θ|𝑦 = 𝑠] ൎ 𝑠/T2 * [1 – (𝑠/T )]

Posterior: Constants

11 )1()|(   sTssp   y

• In the previous example, we derive the posterior for  in a 
“Binomial-Beta model,” ignoring constants: 

• To be a well-defined Beta pdf –i.e., integrates to 1-, we find the 
constant of proportionality as we did for the Binomial-Uniform case:

)()(

)(

sTs
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• Bayesians use this trick to recognize posteriors. That is, once you 
recognize that the posterior distribution is proportional to a known 
probability density, then it must be identical to that density.

Note: The constant of  proportionality must be constant with respect 
to .
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• Likelihood. We have i.i.d. normal data:  𝑦 ~ N(𝜃, σ2). Then:

Posterior: Example - Normal-Normal
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• Priors. We need a joint prior: f(𝜃, σ2). In the Normal-Normal 
model, we assume σ2 known (usually, we work with ℎ =1/σ2). Thus, 
we only specify a normal prior for θ: f(𝜃) ~ N(𝜃, 𝜎

ଶ). 

• 𝜎
ଶ states the degree of confidence in our prior. 

• In realistic applications, we add a prior for f(σ2). Usually, an IG.

• Posterior = Likelihood x Prior: 
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• Or using the Likelihood factorization:
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• A little bit of algebra, using:

we get for the 2nd expression inside the exponential:
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Posterior: Example - Normal-Normal
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where

2
022

0

2
22

0

2
02

2
)(

/

1
)(

1)(
)( 














 Y

T
Y

T

2
0

2
2

2
0

2

0
2
0

2

/1

1
&

/1

)/1()
















T/T/

(T/ Y

• Since we only need to include the terms in θ, then:
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That is, the posterior is: ),( 2N

• The posterior mean,    , is the Bayesian estimator. It takes into 
account the data (𝑦) and our prior distribution. It is a weighted average 
of  our prior θ0 and    .Y



Posterior: Normal-Normal

Posterior: Bayesian Learning

• Update formula for θ:

where 

• The posterior mean is a weighted average of the usual estimator and 
the prior mean, 𝜃. 

Results: 
- As T → ∞, the posterior mean converges to .
- As 𝜎

ଶ → ∞, our prior information is worthless.
- As 𝜎

ଶ → 0, complete certainty about our prior information.

This result can be interpreted as Bayesian learning, where we combine 
our prior with the observed data. Our prior gets updated! The extent 
of  the update will depend on our prior distribution.
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Posterior: Bayesian Learning

• As more information is known or released, the prior keeps changing.

Example: In R.
bayesian_updating <- function(data,mu_0,sigma2_0,plot=FALSE) {
require("ggplot2")

T = length(data) # length of data
xbar = mean(data) # mean of data
sigma2 = sd(data)^2 # variance of data

# Likelihood (Normal)
xx <- seq(xbar-2*sqrt(sigma2), xbar+2*sqrt(sigma2),sqrt(sigma2)/40)
yy <- 1/(sqrt(2*pi*sigma2/T))*exp(-1/(2 *sigma2/T)*(xx - xbar)^2 )
# yy <- 1/(xbar+4*sqrt(sigma2)-xbar+4*sqrt(sigma2))
df_likelihood <- data.frame(xx,yy,1) # store data
type <- 1
df1 <- data.frame(xx,yy,type)

# Prior (Normal)
xx <- seq(mu_0-4*sqrt(sigma2_0), mu_0+4*sqrt(sigma2_0),(sqrt(sigma2_0)/40))
yy = 1/(sqrt(2*pi*sigma2_0))*exp(-1/(2 *sigma2_0)*(xx - mu_0)^2)
type <- 2
df2 <- rbind(df1,data.frame(xx,yy,type))

Posterior: Bayesian Learning

Example (continuation): 

# Posterior
omega <- sigma2_0/(sigma2_0 + sigma2/T)
pom = omega * xbar + (1-omega)*mu_0 # posterier mean
pov = 1/(T/sigma2 + 1/sigma2_0) # posterior variance
xx = seq(pom -4*sqrt(pov), pom + 4*sqrt(pov),(sqrt(pov)/40))
yy = 1/(sqrt(2 * pi * pov))*exp(-1./(2 *pov)* (xx - pom)^2 )
type <- 3
df3 <- rbind(df2,data.frame(xx,yy,type))
df3$type <- factor(df3$type,levels=c(1,2,3),

labels = c("Likelihood", "Prior", "Posterior"))

if(plot==TRUE){
return(ggplot(data=df3, aes(x=xx, y=yy, group=type, colour=type))

+ ylab("Density")
+ xlab("x")
+ ggtitle("Bayesian updating")
+ geom_line()+theme(legend.title=element_blank()))

} else {
Nor <- matrix(c(pom,pov), nrow=1, ncol=2, byrow = TRUE)     
return(Nor)
}

}
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Posterior: Bayesian Learning

Example (continuation): 
dat <- 5*rnorm(20,0,sqrt(2)) # generate normal data T= 20, mean=0, var=50

# xbar = -2.117, σ2 = 54.27

# Scenario 1 – Precise prior (θ0=7, σ0
2 =2)

df <- bayesian_updating(dat,7,2,plot=TRUE) # priors mu_0=7, sigma2_0=2
df # ω = .4243, pom = 3.1314, pov = 1.1514

# Scenario 2 – Difusse prior (θ0=7, σ0
2 =40)

df <- bayesian_updating(dat,7,40,plot=TRUE) # priors mu_0=7, sigma2_0=40
df # ω = .9365, pom = -1.5382, pov = 2.5411

Posterior: James-Stein Estimator

Let 𝑥௧ ~ N(𝜇௧, 𝜎ଶ) for 𝑡 = 1, 2,...., 𝑇.  Then, let MLE (also OLS) be 
𝜇௧ෝ . Let 𝑚ଵ, 𝑚ଶ, ..., 𝑚் be any numbers.
• Define 

𝑆 = ∑ ሺ𝑥௧  െ𝑚௧ሻଶ
்
ୀଵ

𝜃 =  1 – [(T – 2) 𝜎ଶ/S]
𝑚௧
∗ = θ 𝜇௧ෝ + (1 – θ) 𝑚௧

Theorem: Under the previous assumptions,
E[∑ ሺ𝑥௧  െ𝑚௧

∗ሻଶ்
ୀଵ ] <  E[∑ ሺ𝑥௧  െ 𝜇௧ෝ ሻଶ

்
ୀଵ ]

Remark: Some kind of shrinkage can always reduce the MSE relative 
to OLS/MLE.

Note: The Bayes estimator is the posterior mean of θ.  This is a 
shrinkage estimator.
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Predictive Posterior
• The posterior distribution of 𝜃 is obtained, after the data 𝑦 is 
observed, by Bayes' Theorem::

P(𝜃|𝑦) ∝ P(𝑦|𝜃) x P(𝜃)

Suppose we have a new set of  observations, 𝑧, independent of  𝑦
given 𝜃. That is,

P(𝑧, 𝑦|𝜃) = P(𝑧 |𝜃) x P(𝑦|𝜃)
Then,

P(𝑧|𝑦)  =  P(𝑧, 𝜃|𝑦) d𝜃 ,P(𝑧|𝜃  = 𝑦) P(𝜃|𝑦) d𝜃
P(𝑧|𝜃) P(𝜃|𝑦) d𝜃  = = Eθ|y [P(𝑧|𝜃)] 

P(𝑧|𝑦) is the predictive posterior distribution, the distribution of  new 
(unobserved) observations. It is equal to the conditional (over the 
posterior of  𝜃|𝑦) expected value of  the distribution of  the new data, 
𝑧.

Predictive Posterior: Example 1

Example: Player’s skills evaluation in sports.
Suppose the player is drafted. Before the debut, the coach observes
his performance in practices. Let Z be the performance in practices
(again, good or bad). Suppose Z depends on S as given below:
P(Z=good|S) = .95
P(Z=good|SC) = .10
(We have previously determined: P(S|T = g) = 0.72727.)

Using this information, the coach can compute predictive posterior 
of  Z, given T. For example, the coach can calculate the probability 
of  observing Z=bad, given T=good:
P(Z=b|T=g) = P(Z=b|T=g, SC) P(SC|T=g) + P(Z=b|T=g,S) P(S|T=g)

= P(Z=b|SC) P(SC|T=g) + P(Z=b|S) P(S|T=g)
= .90 x 0.27273 + .05 x 0.72727 = .28182

Note: Z and T are conditionally independent.
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Predictive Posterior: Example 2

Example: We have 𝑦ଵ, 𝑦ଶ, ..., 𝑦்ୀଶହ ~ i.i.d. Bin(1,  𝜃). Let ∑ 𝑦
்
ୀଵ =

𝑠. We derive the predictive posterior of new data, Y*, as: 

P(Y*=1|𝑦ଵ, 𝑦ଶ, ..., 𝑦்) = E[𝜃|𝑦 = 𝑠] = (α+𝑠)/(α+β+T) 

P(Y*=0|𝑦ଵ, 𝑦ଶ, ..., 𝑦்) = 1 – P(Y*=1|𝑦 = 𝑠] = (β+T–𝑠)/(α+β+T)

Suppose we assume α=β=1, 𝑠=15 and T = 25. Then,

P(Y*=1| 𝑠) = 16/27 = 0.5926

Note: A Jeffreys’ prior –i.e., a Beta(.5,.5)– is slightly less informative!

Remark: The predictive distribution does not depend upon unknown 
quantities. It depends on prior information and the observed data. 
The observed data gives us information about the new data, Y*.

• So far, our models have been univariate models. Suppose, we are 
interested in the correlation between mutual fund returns. For this we 
need a multivariate setting. 

• Likelihood: the most popular likelihood is the Multivariate normal 
model (MVN). We say Y, a 𝑘-dimensional data vector, has a MVN 
distribution if its sampling pdf is:

Multivariate Models: Multivariate Normal
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where μ is the mean and Σ is the covariance matrix.  Or 

Y ~ Np (μ, Σ). 

• Recall a property of  a MVN: The marginal distribution of  each 
variable is also normal:  𝑦 ~ N(𝜇𝒋, σ2

j). 
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• Prior: Following the univariate models and intuition, we propose a 
MVN prior for μ:

p(μ) ~ Nk(μ0, 𝚲0). 

where μ0 is the prior mean and 𝚲0 is the prior covariance matrix of  μ. 
We can write the prior as:

Multivariate Models: MVN – Prior for μ
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where A0 = 𝚲0
-1 and b0 = 𝚲0

-1 μ0. ( 𝚲0= A0
-1 & μ0 = A0

-1 b0).

• Note that using a similar algebra and under the i.i.d. sampling 
model, we can write the joint likelihood as:
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where A1 = N 𝚺-1 and  b1 = N 𝚺-1 yത. 

• Posterior: Likelihood x Prior. Then,  the (conditional) posterior:

Multivariate Models: MVN – P(μ|y1 ,..., yN, 𝚺)

where AN = A0 + A1 = 𝚲0
-1 + N 𝚺-1.

bN = b0 + b1 = 𝚲0
-1 μ0 + N 𝚺-1 𝒚ഥ.

A MVN with mean AN
-1 bN and covariance AN

-1. That is,

Cov[μ|𝑦ଵ, 𝑦ଶ, ..., 𝑦் , 𝚺] = ΛN = AN
-1 = (𝚲0

-1 + N 𝚺-1)-1

E[μ|𝑦ଵ, 𝑦ଶ, ..., 𝑦், 𝚺] = μN = AN
-1 bN = ΛN (𝚲0

-1 μ0 + N 𝚺-1 𝒚ഥ)

• Similar to the univariate case: The posterior precision (AN) is the 
sum of  the prior precision and data precision. The posterior 
expectation is a weighted average of  the prior expectation and the 
sample mean.

NN bAbAbA

N eeeyyp
''

2

1
''

2

1
''

2

1

1

0011

),,...,|(









RS – Lecture 17

30© RS 2020 – Not to be posted/shared online without written authorization.

• The results are conditional on 𝚺. In general, we are also interested in 
learning about 𝚺. Thus, we need a prior for 𝚺 (a kxk symmetric pd
matrix). We base our results on the multivariate version of the gamma 
distribution, the Wishart distribution.

• Similar to a gamma pdf, the Wishart pdf is a (semi-)conjugate prior 
for the precision matrix 𝚺-1. Then, the conjugate prior for 𝚺 is the 
inverse-Wishart (IW).

• Conditions for 𝚺 ~ IW(v0, S0
-1) distribution (with v0 a positve integer, 

called degrees of  freedom,  and S0 a kxk symmetric pd matrix):

- Sample: z1 ,..., zv0 ~ i.i.d. Nk ሺ0, S0
-1)

- Z’Z = Σiൌ1 to v0 zi zi’  𝚺 = (Z’Z)-1

Then, 𝚺-1 ~ W(v0, S0).  

Multivariate Models: MVN – Wishart PDF

• The prior density for 𝚺, an IW(v0, S0
-1), is:

Multivariate Models: MVN – IW Prior for 𝚺
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• Properties:

E[𝚺-1] = v0 S0
-1

E[𝚺] = S0/(v0-k-1)

• Q: What are good values for v0 & S0? 

A:  The larger v0, the stronger the prior beliefs. For example, if  we are 
confident that the true 𝚺 is near some value, 𝚺0, then choose v0 large 
and set S0=(v0-k-1) 𝚺0 (the distribution is tightly centered around 𝚺0).

Vague IW priors, which make the correlations uniform, tend to 
associate large absolute correlations and large SDs. Potential problem!



RS – Lecture 17

31© RS 2020 – Not to be posted/shared online without written authorization.

• The prior density for 𝚺, an IW(v0, S0
-1), is:

Multivariate Models: MVN – IW Prior for 𝚺
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where S𝛍 = Σiൌ1 to N (yi – μ)(yi – μ)’ is the RSS matrix for the vectors 
y1 ,..., yN, if  the population mean is presumed to be μ. 

To get the above result, we use the following property of traces:
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• Now, we can derive the conditional posterior for 𝚺 :

Multivariate Models: MVN – P(𝚺|y1 ,..., yN, μ)
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which looks like a IW(vN, SN
-1), where vN=N+v0 and SN  = S0 + S𝛍.  

Similar to the results for μ, the posterior combines prior and data 
information. Then,

E[𝚺|y1 ,..., yN, μ] = (S0 + S𝛍)/(N + v0 – k - 1)

• We got the full conditional posteriors of  μ and 𝚺. Later, we will go 
over a numerical method (Gibbs sampler) that easily estimates the 
joint density. 
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• Barnard, McCulloch and Meng (2000) present a workaround to 
avoid the problem of using a vague IW prior. They propose an 
alternative to the IW prior, based on a decomposition of 𝚺: 

𝚺 = diag(S)R diag(S),
where S is the k×1 vector of  SDs, diag(S) is the diagonal matrix with 
diagonal elements S, and R is the k×k correlation matrix. 

• A hierchical prior structure is used:  

p(S,R) = p(R|S) p(S).

• Then, impose a prior for S, for example, an independent log normal 
–i.e., log(S)~N(ξ, Λ)– and impose a diffuse prior on R, for example, a 
uniform.

Multivariate Models: Alternative Prior for 𝚺

• The goal of a classical statistician is getting a point estimate for the 
unknown fixed population parameter θ, say using OLS. 

These point estimates will be used to test hypothesis about a model, 
make predictions and/or to make decisions –say, consumer choices, 
monetary policy, portfolio allocation, etc. 

• In the Bayesian world, θ is unknown, but it is not fixed. A Bayesian 
statistician is interested in a distribution, the posterior distribution, 
P(θ|y); not a point estimate.

“Estimation:” Examination of the characteristics of P(θ|y): 

– Moments (mean, variance, and other moments)

– Intervals containing specified probabilities

Bayesian vs. Classical: Review
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• The posterior distribution will be incorporated in tests of hypothesis 
and/or decisions. 

In general, a Bayesian statistician does not separate the problem of 
how to estimate parameters from how to use the estimates.

• In practice, classical and Bayesian inferences are often very similar.

• There are theoretical results under which both worlds produce the 
same results. For example, in large samples, under a uniform prior, the 
posterior mean will be approximately equal to the MLE.

• The formal statement of this remarkable result is known as the 
Bernstein-Von Mises theorem. 

Bayesian vs. Classical: Review

• Bernstein-Von Mises theorem: 

- The posterior distribution converges to normal with covariance 
matrix equal to 1/T times the information matrix –same as classical 
MLE.

Note: The distribution that is converging is the posterior, not the 
sampling distribution of the estimator of the posterior mean.

– The posterior mean (empirical) converges to the mode of the 
likelihood function –same as the MLE.  A proper prior disappears 
asymptotically.

– Asymptotic sampling distribution of the posterior mean is the same 
as that of the MLE.

Bayesian vs. Classical: Bernstein-Von Mises 
Theorem
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• That is, in large samples, the choice of a prior distribution is not 
important in the sense that the information in the prior distribution 
gets dominated by the sample information. 

That is, unless your prior beliefs are so strong that they cannot be 
overturned by evidence, at some point the evidence in the data 
outweights any prior beliefs you might have started out with.

• There are important cases where this result does not hold, typically 
when convergence to the limit distribution is not uniform, such as unit 
roots. In these cases, there are differences between both methods.

Bayesian vs. Classical: Bernstein-Von Mises 
Theorem

• In practice, classical and Bayesian inferences and concepts are often 
similar. But, they have different interpretations.

• Likelihood function

– In classical statistics, the likelihood is the density of the observed 
data conditioned on the parameters.

- Inference based on the likelihood is usually “maximum 
likelihood.”

– In Bayesian statistics, the likelihood is a function of the parameters 
and the data that forms the basis for inference – not really a 
probability distribution. 

- The likelihood embodies the current information about the 
parameters and the data.

Bayesian vs. Classical: Interpretation
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• Confidence Intervals (C.I.) 

– In a regular parametric model, the classical C.I. around MLEs –for 
example, b ± 1.96 sqrt{𝑠ଶ (X’ X)-1}– has the property that whatever 
the true value of the parameter is, with probability 0.95 the confidence 
interval covers the true value, β.

– This classical C.I. can also be  also interpreted as an approximate 
Bayesian probability credibility interval. That is, conditional on the data and 
given a range of prior distributions, the posterior probability that the 
parameter lies in the C.I. is approximately 0.95. 

Bayesian vs. Classical: Interpretation

• Asymptotics

– In classical statistics, we use the LLN and the CLT. Typical use of 
the LLN: 

Consider a random sample, X1, X2, ..., XN. Then,  

as N → ∞,  ℎത(X) → E[h(X)].

– In Bayesian statistics, we use the LLN and the CLT too. But, with 
the size of the simulation, M, → ∞. Typical use of the LLN:

Consider a random sample, θ1, θ2, θ3, ..., θM. Then, 

as M → ∞, ℎത(θ) → E[h(θ)].

Note: In Bayesian statistics, the asymptotics are based on M (size of 
simulation determined by researcher) not on N (the sample size).

Bayesian vs. Classical: Interpretation
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• Consider the simple linear model:

To simplify derivations, assume X is fixed. We want to estimate β.

• Classical OLS (MLE=MM) estimation

b = (X′X)-1X′ 𝒚 & b|X ~N(, 𝜎ଶ(X’ X)-1)

- The estimate of 𝜎ଶis 𝑠ଶ = (𝒚 - Xb)′(𝒚 - Xb)/(𝑇 െ 𝑘)

- The uncertainty about b is summarized by the regression coefficients 
standard errors –i.e., the diagonal of the matrix: Var(b|X) = 𝑠ଶ(X’X)-1.

• Testing: If Vkk is the k-th diagonal element of Var(b|X), then 

(𝑏 - 0)/(sVkk
1/2) = 𝑏்ି --the basis for hypothesis tests.

),0(~,|, 2 NyXXy tttttt

Linear Model: Classical Setup 

• For the normal linear model, we assume 𝑓ሺ𝑦௧|𝜇௧, 𝜎ଶሻ:
𝑦௧ ~ N(𝜇௧, 𝜎ଶ) for t = 1,..., T

where  𝜇௧ = β0 + β1 𝒙ଵ௧ +… + βk 𝒙௧ = 𝒙௧ β

Bayesian goal: Get the posterior distribution of the parameters (β, 𝜎ଶ).

• By Bayes’ Theorem, we know that this is simply:

f(β, 𝜎ଶ|𝒚, X) ∝ ∏ 𝑓ሺ𝑦௧|𝜇௧, 𝜎ଶሻ்
௧ୀଵ  f(β, 𝜎ଶ) 

 we need to choose a prior distribution for f(β, 𝜎ଶ).

• To simplify derivations, we assume X is fixed. 

Linear Model: Bayesian Setup 
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• In our linear model  𝑦௧ = 𝒙௧ β  𝜀௧, with 𝜀௧ ~ i.i.d. N(0, 𝜎ଶ). Then,

Linear Model: Likelihood 
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• Recall that we can write: 𝒚 – Xβ = (𝒚 – Xb) – X (β – b)

⇒ TSS = (𝒚 – Xb)’(𝒚 – Xb) + (β – b)’X’X(β – b) –
– 2(β – b)’X’ (𝒚 – Xβ)

= υ 𝑠ଶ + (β – b)’ X’X (β – b)

where 𝑠ଶ = 
ோௌௌ

்ି
= 

(𝒚 – Xb)ᇱ (𝒚 – Xb) 

்ି
;  and υ = 𝑇 െ 𝑘

Linear Model: Likelihood 

• The likelihood can be factorized as:
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where h = 1/𝜎ଶ.

• The likelihood can be written as a product of  a normal and a 
density of  form f(𝜃) = κ 𝜃-λ exp{-λ/𝜃}. This is an inverted gamma (IG) 
distribution.
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• We choose a conjugate MVN prior for β:  f(β) ~ N(m, Σ):

Linear Model: Prior Distribution for β
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– m is our best guess for β, before seeing 𝒚 and X. 

– Σ measures the confidence in our guess. It is common to relate Σ to 
2, say Σ = {𝜎ଶQ}.

• This assumption for f(β) gives us some flexibility:  Depending on Σ, 
this prior can be informative (small Σ) or diffuse (big Σ). 

• But, we could have assumed a different prior distribution, say a 
uniform. Remember, priors are the Achilles heel of Bayesian statistics.

• The usual prior for σ2 is an IG. Then, ℎ = 1/𝜎ଶ is distributed as 
Γ(α0, λ0):

Linear Model: Prior Distribution for h

• Usual values for (α0, λ0): α0 = T/2 and λ0 = 1/(2η2) = Φ/2, where η2

is related to the variance of the T N(0, η2) variables we are implicitly 
adding. 

• You may recognize this parameterization of the gamma as a non-
central T

2 distribution. Then,
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• We have 𝜃 = (β, 𝜎ଶ). We need the joint prior P(𝜃) along with the 
likelihood, P(𝑦|𝜃), to obtain the posterior P(𝜃|𝑦).

In this case, we can write P(𝜃) = P(β|ℎ ൌ 𝜎ିଶ) P(-2), ignoring 
constants:

Then,  we write the posterior as usual: P(𝜃|𝑦) ∝ P(𝑦|𝜃) P(𝜃).
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Linear Model: Joint Prior Distribution for θ

• So far, we have made the following assumptions:

– Likelihood: Data is i.i.d. Normal:   𝑦௧ ~ N(𝜇௧, 𝜎ଶ) for 𝑡 = 1, ..., 𝑇 
– DGP for 𝜇௧ is known: 𝜇௧ = β0 + β1 𝒙ଵ௧ +… + βk 𝒙௧ = 𝒙௧ β
– X is fixed. 

– Prior distributions: ℎ = 1/𝜎ଶ ~ Γ(α0, λ0)   &   β ~ N(m, Σ).

Note: A subtle point regarding this Bayesian regression setup. A full 
Bayesian model includes a distribution for X, f(X|).  Thus, we have 
a joint likelihood f(𝒚, X|, , ) and joint prior f(,, ). 

A key assumption of  this linear model is that f(𝒚|X, , ) and f(X|) 
are independent in their priors. Then, the posterior factors into: 

f(, , |𝒚, X) = f(, |y, X) f(|𝒚, X)
⇒ f(, |𝒚, X)  f(, ) f(𝒚| , ,X)

Linear Model: Assumptions
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Linear Model: Joint Posterior Distribution for θ

• Posterior: Likelihood x Prior.

which we do not recognize as a standard distribution –i.e., a 
"complicated posterior.“ This posterior does not lead to convenient 
expressions for the marginals of  β and ℎ. 

• Then, simple algebra delivers:
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Linear Model: Conditional Posteriors

• When facing complicated posteriors, we usually rely on numerical 
methods to say something about P(θ|𝒚). A popular numerical 
method, the Gibbs Sampler, uses the conditional posteriors. 

• In our setting, it is easy to get the analytical expressions for the 
conditional posteriors f(β|𝒚,X) and f(ℎ|𝒚,X). 

• First, we derive f(β|y, X, ℎ). Again, to get the conditional posteriors, 
we use: Likelihood x Prior, but with a conditional prior f(β|ℎ).

)}
2

1
exp{

]}'''2[
2

1
exp{),|(

1

2
2/2

mβm)(β

ββyXβyyhβf T





 ('

XX''X,y








RS – Lecture 17

41© RS 2020 – Not to be posted/shared online without written authorization.

Linear Model: Conditional Posterior f(β|y,X, h) 

• A little bit of  algebra delivers:

• That is, f(β|𝒚, X, ℎ) is Nk(mn, 𝚺nሻ. 
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Recall:
Then, we recognize the conditional posterior as proportional to an 
MVN with:
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where mn= (𝚺-1 + ℎ (X’X))-1(𝚺-1 m + ℎ (X’X) b).

In other words, the pdf  of  β, conditioning on the data, is normal with 
mean mn and variance matrix (ℎ (X’X)+ 𝚺-1)-1.

• Similar work for f(ℎ|𝒚, X, β) delivers a gamma distribution. (Do it!).

Linear Model: Conditional Posterior f(β|y,X, h) 
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Linear Model: Bayesian Learning

• The mean mn takes into account the data (X and y) and our prior 
distribution. It is a weighted average of  our prior m and b (OLS):

mn = (𝚺-1 + ℎ(X’X))-1(𝚺-1 m + ℎ (X’X) b).

• Bayesian learning: We combine prior information (𝚺, m) with the 
data (X, b). As more information is known, we update our beliefs! 

• If  our prior distribution is very diffuse (say, the elements of  𝚺 are 
large), our prior, m, will have a lower weight. 

As prior becomes more diffuse, mn→ b (prior info is worthless)
As prior becomes more certain, mn→ m (prior dominates)

• Note that with a diffuse prior, we can say now:
“Having seen the data, there is a 95% probability that β is in the interval b ±
1.96 sqrt{σ2 (X’ X)-1}.”

Linear Model: Remarks

• We  get a normal conditional posterior, a nice recognizable 
distribution, because we made clever distributional assumptions: 
– We assumed an i.i.d. normal distribution for (𝒚|X, σ2).
– We picked a normal prior for β ( the normal (conjugate) prior was a 
very convenient choice).

• We can do similar calculations when we impose another prior. But, 
the results would change. 

• If  not exact results are possible, numerical solutions will be used.
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• When we setup our probability model, we are implicitly 
conditioning on a model, call it H, which represents our beliefs about 
the data-generating process. Thus,

f(, |𝒚,X,H)  f(, |H) f(𝒚|,,X,H)

It is important to keep in mind that our inferences are dependent on 
H.  

• This is also true for the classical perspective, where results can be 
dependent on the choice of  likelihood function, covariates, etc. 

Linear Model: Remarks

Linear Model: Interpretation of Priors

• Suppose we had an earlier sample, {y´,X´}, of T’ observations, 
which are independent of the current sample, {y,X}.

• The OLS estimate based on all information available is:

and the variance is

• Let m be the OLS estimate based on the prior sample {y´,X´}: 
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Linear Model: Interpretation of Priors

• Then,

• This is the same formula for the posterior mean m*.

• Thus, the question is what priors should we use? 

• There are a lot of publications, using the same data. To form priors, 
we cannot use the results of previous research, if we are not going to 
use a correlated sample! 






 





 







 






 



















mAyxAxx

yxyxxxxxb

T

t tt
T

t tt

T

t tt

T

t tt

T

t tt

T

t tt

1

1

1
1

1

1

''

1

1

1

''

1

''

''''*
''

The Linear Regression Model – Example 1 

• Again, let’s go over the multivariate linear model. Now, we impose a 
diffuse uniform prior for θ = (β, ℎ). Say, f(β, ℎ) ∝ ℎ-1.

Now,

• If we are interested in β, we can integrate out the nuisance parameter

h to get the marginal posterior of  f(β|y,X):
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where we use the following integral result (Γ(s,x): the incomplete Γ):

)],1()1([}exp{ 1 baabdxxbx aa  



RS – Lecture 17

45© RS 2020 – Not to be posted/shared online without written authorization.

The Linear Regression Model – Example 1 

• The marginal posterior 2/
2
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which is the kernel of  a Γ(α,λ) distribution, with α= υ/2 and λ =υs2/2.

Note: This is the equivalent to the repeated sample distribution of  b.

• Similarly, we can get f(ℎ |y,X) by integrating out β:

The Linear Regression Model – Example 1 

• The mean of  a gamma distribution is α/ λ. Then,

E[ℎ|𝒚, X] = [υ/2]/[υ𝑠ଶ/2] = 1/𝑠ଶ.

• Now, we interpret the prior f(β, ℎ) ∝ ℎ-1 as non-informative: The 
marginal posterior distributions have properties closely resembling the 
corresponding repeated sample distributions.
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The Linear Regression Model – Example 2 
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Likelihood
L(β,σ |y,X)=[2πσ ] e 

• Let’s go over the multivariate linear model. Now, we impose a diffuse 
uniform prior for β and an inverse gamma for σ2.
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After integrating  out of the joint posterior:
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an 'estimator' equals the MLE. Of course; the prior was 
noninformative.  The only information available is in the likelihood.

• From the joint posterior, we can get the marginal posterior for β. 

The Linear Regression Model – Example 2 
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Presentation of Results

• P(𝜃|𝑦) is a pdf. For the simple case, the one parameter 𝜃, it can be 
graphed. But, if θ is a vector, the multivariate pdf cannot be graphed. 

• It is  common to present measures analogous to classical point 
estimates and CIs. For example:

(1) E(𝜃|𝑦) = 𝜃 𝑃 𝜃 𝑦  𝑑𝜃 -- posterior mean

(2) Var(𝜃|𝑦) = E(𝜃2|𝑦)- {E(𝜃|𝑦)}2 -- posterior variance

(3) p(𝑘ଵ> 𝜃 > 𝑘ଶ|𝑦) =  𝑃 𝜃 𝑦  𝑑𝜃
మ
భ

-- C.I.

• In many cases, it is not possible to evaluate these integrals 
analytically. Typically, we rely on numerical methods to approximate 
an integral as a (weighted) sum: 

𝐼 ൌ  𝑓 𝜃  𝑑𝜃 ൌ ∑ 𝑤  𝜃

ୀଵ

• In the Math Review, we covered different numerical integration 
methods (trapezoid rule, Gaussian quadrature, etc), where we pick the 
𝜃’s and the 𝑤 ’s in some fixed (deterministic) way.

• In this section, we will use Monte Carlo (MC) methods to integrate. 
MC Integration is based on selecting 𝜃’s randomly (from some pdf). 

Example: We can compute the expected value of a Beta(3,3):

or via Monte Carlo methods (R Code):
M <- 10000

beta.sims <- rbeta(M, 3, 3)

sum(beta.sims)/M

[1] 0.4981763

Presentation of Results: MC Integration
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Q: What is the advantage of MC methods? The LLN tells us that the 
MC approximation is a consistent (simulation) estimator of the value 
population value E[𝜃]. The following traceplot illustrates the point:

Note: The CLT can be used too!

Presentation of Results: MC Integration

• Obviously, we will not use MC methods to get the mean and 
variance of a Beta(3,3)! It will be used when we face integrals that 
involve complicated posteriors.

Example: Suppose Y ~ N(θ,1) and we have a Cauchy (0,1) prior.  
That is, θ ~ Ca(0,1). Then,

which we do not recognize as a known distribution. Suppose we are 
interested in E[h(θ|𝑦)]. MC Integration can compute this integral. 
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MC Integration: Plug-in estimator

• Idea: We start with a posterior, P(𝜃|𝑦):   𝜋ሺሻ = P(𝑦|θ) P(θ)/P(𝑦).

We want to get moments of some function of θ, say 
Eπ[ℎ(𝜃)] = ℎ (𝜃) 𝜋ሺሻ dθ.  

• If 𝜃ሺெሻ={𝜃ଵ, 𝜃ଶ, 𝜃ଷ, ... , 𝜃ெ} is an i.i.d. random sample from π(θ), 
then 

• The ℎMC average over 𝜃 is called the plug-in estimator for Eπ[ℎ(𝜃)]. 
Note that when ℎ(𝜃) = 𝜃, we get the mean; when ℎ(𝜃) = [𝜃 − E(𝜃)]2, 
we get the variance, etc. 

• Using the plug-in estimator, we can approximate almost any aspect 
of  the posterior to arbitrary accuracy, with large enough 𝑀. 
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• We can get MC standard errors to evaluate the accuracy of  
approximations to the posterior mean. 

• Let θത be the sample mean of  the 𝑀 MC samples. Then, by CLT: 

θത ~ N(𝜃, Var[𝜃|𝑦]/𝑀). 

We approximate the 𝜎ଶ = Var[𝜃|𝑦]:

 MC SE[θത] = 𝜎ොଶ/𝑀. 

We can select 𝑀 to give us a desired precision relative to the posterior 
moment we are interested.
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MC Integration: MC Standard Errors

Example: We generate a MC sample of  size 𝑀 = 200 with θത = .78 
and 𝜎ොଶ= 0.35. Then, the approximate MC SE is given by:

MC SE = sqrt[0.35/200] = 0.0418.

We can do a 95% C.I. for the posterior mean of  θ:
[.78 േ 1.96 * .0418]

• If  we want the difference between E[θ|𝑦] and its MC estimate to be 
less than 0.005 with high probability, we need to increase 𝑀 such that 

1.96* sqrt[0.35/𝑀] < .005 𝑀 > 53,782

Note: The plug-in estimator may have a large variance (MC error). In 
these cases, a very large 𝑀 is needed.

MC Integration: Sampling Problems

• MC integration relies on being able to draw from P(𝜃|𝑦). To do 
this, we need P(𝜃|𝑦) to be a pdf that is represented by a standard 
library function, which allows us to get draws, say rnorm or rbeta in R.  

• Q: What happens when P(𝜃|𝑦) is not  in the library?

A: There are several methods to work around this situation. For 
example, the method of inversion (based on the probability integral 
transformation) and the usual Bayesian tool,  Markov chain Monte 
Carlo, or MCMC (coming soon).

• There are also MC methods to calculate posterior quantities of 
interest without the need to draw directly from the posterior. For 
example, importance sampling (IS).
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MC Integration: Importance Sampling (IS)

• We want to calculate the (posterior) expectation: 
Eπ[ℎሺ𝜃ሻ] = ℎሺ𝜃ሻ 𝜋ሺሻ d. 

It can be easier to compute this integral by sampling from another 
pdf, 𝑞(.), an importance function, also called a proposal function. Then,

If 𝜃ሺெሻ={𝜃ଵ, 𝜃ଶ, 𝜃ଷ, ... , 𝜃ெ} is a random sample from 𝑞ሺ𝜃ሻ, then 

where 𝑤(𝜃) = 𝜋(𝜃)/ 𝑞(𝜃) is called importance weight. These 
weights give more importance to some 𝜃 than to others!

• The IS estimator –i.e., the weighted sum– approximates Eπ[ℎ(𝜃)].
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MC Integration: IS - Remarks

• In principle, any proposal 𝑞ሺ𝜃ሻ can be used. But, some 𝑞ሺ𝜃ሻ’s are 
more efficient than others. Choosing 𝑞ሺ𝜃ሻ close to the target, 𝜋ሺሻ, 
works well (may be “optimal,” by reducing the variance of the MC 
estimator).

This variance reduction property of the IS estimator may be appealing 
over the plug-in estimator.

• Heavy-tailed 𝑞(.), relative to 𝜋ሺሻ, are very efficient. The weights for 
thinner-tailed 𝑞(.) will be dominated by large |𝜃|.

• IS can be turned into “importance sampling resampling” by using an 
additional resampling step based on the weights.
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# Without Importance Sampling 
set.seed(90)
M =1,000 
lambda = 3
X <- runif(M,0.001,1) 
h <- X^(-0.5) # h(x)
c( mean(h), var(h) )

# Importance sampling Monte Carlo with an exponential
w <- function(x) dunif(x, 0.001, 1)/dexp(x,rate=lambda) * pexp(1, rate=lambda) # [pi(x)/q(x)] 
h_f <- function(x) x^(-0.5) # h(x)
X <- rexp(M,rate=lambda) 
X <- X[X<=1] 
Y.h <- w(X)*h_f(X) 
c(mean(Y.h), var(Y.h)) 

Example: We want to use importance sampling (IS) to evaluate the 
integral x-0.5 over the range [0,1] (we know the answer: 2):

Note: Make sure that q(x) is a well defined pdf  –i.e., it integrates to 1. 
This is why above we use q(x)= dexp(x,lambda)/ pexp(1,lambda). 

MC Integration: IS - Example

Example (continuation): Below, we plot the mean as a function of  
the sample size, 𝑀.

Note: After 𝑀 = 400, the mean stabilizes close to 2. A graph like this 
can be used to evaluate/determine M in MC integration.
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• If  𝜋ሺ𝜃ሻ is improper, 𝑤(𝜃) is normalized by ∑ 𝑤ሺ𝜃ሻெ
ୀଵ

(normalized 𝑤’s.)

Example: Suppose 𝑦 ~ N(θ, 1) and we use a Cauchy (0,1) prior. That 
is, θ ~ Ca(0,1). Then, 

We set q(θ) as N(𝑦, 1). Then, the importance weights are given by: 

MC Integration: IS – Importance weights
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Example (continuation): Now, we can calculate E[θ|𝑦] = 0.558493.

Code in R
> M = 1000
> y = 1 # Data
> pi_th = function(theta,y) {
+ post_out = exp(-(y-theta)^2/2)/(1+theta^2)
+ return(post_out)
+ }
> 
> # Draw theta from N(y,1)
> theta = rnorm(M,y,1)
> 
> # Determine weights & post expectation
> w <- sqrt(2*pi)/(1+theta^2)
> w_norm <- w/sum(w)
>  
> h = function(theta) theta
> sum(w_norm*h(theta))
[1] 0.5584926 

MC Integration: IS – Importance weights


