Lecture 16
SEM

Simultaneous Equations Models

* Simultaneous equations models (SEM) differ from those we have seen so
far because in each equation there are 7o or more dependent variables:

y] = Y]I ’Y] + X]IB] + Ej ] = 1, 2, ,M —the DGP

* In this model, we have M endogeneous variables —i.e., M equations-,
and K exogeneous variables. We can write the model as:

y]:Y],Yj+ X],B]+ gj:Wj’8j+ &j j:1,2,...,M

A convenient way of writing the SEM for empirical work is stacking:

Y1 wy 0 - 0 0 €

o w, - 0|5 |e
y2 = e 2 “ee e 2 + 2 - W§ + g

Yu 0 0 - W, ok Ey




Simultaneous Equations Models

* The system looks like a system of regression equations:
y=Wébé+e¢

But, there are endogenous variables = OLS will not be consistent. IV
should be used.

* We can also write the SEM in matrix form as
YI'+XB=E
Dimensions:
Y and E are TxM matrices
X is a TxK matrix

I' and B are MxM and KxM matrices, respectively.

Canonical example: Supply & Demand systems (P & QQ endogenous).

Simultaneous Equations Models

* We write the SEM in matrix form as
YI'+tXB=E *
* The first equation, describing y, —i.e., the first column of the TxM
matrix Y- is given by:
YI' =XB, +¢g
Dimensions:
Y and &, (Ist column of E) are TxM and Tx1 matrices, respectively.
X is a TxK matrix
I', (1st column of I') is an Mx1 matrix.

B, (first column of B) is a Kx1 matrix.

* Economic theory will determine the structure of these models —i.e.,
the structure of I" and B.




Simultaneous Equations Models

* We can follow the CLM and write the SEM’s assumptions:
* The DGP is

YI'+XB=E @) (A1)
Model (*) is called the structure or structural (behavioral) model. It describes

the structure or behavior of the economy. The parameters I" and B are
called structural parameters.

* Let € be the MTx1 stack vector of E, or vec(E). Assume the ¢, are
drawn from an M-variate distribution with

Ele [X] =0 —E[g[X]=0 (A2)
Elg: &'| X¢] = X -Elee'|X] =2, QL (A3

* More complicated forms of heteroscedasticity for e are possible.

Simultaneous Equations Models

* We assume that X is a well-behaved TxK matrix, with full rank:
rank(X) = K (A4)

* But the traditional (A2) is incomplete, since X are not all the
explanatory variables. They are only the exogenous variables. We also
have endogenous variables. That is,

E[g; |Y¢] # 0

* We have endogenous explanatory variables, OLS s #of appropriate
(biased and inconsisten?) in these equations.

* Even if we are only interested in one particular equation -say,
equation 1—, we may have to consider it as part of a system of
equations.




SEM: Reduced Form

* We want to solve the SEM for Y:
YT +XB=E *)
Assume I' is nonsingular. Then, post multiply (*) by I'™:
YIT!'+XBIM'=ETI!
SY=XI+V (*  —Note: IIT = -B

* The formulation (**) is called reduced form. The reduced form of a
model expresses each y variable only in terms of the exogenous
variables, X. The Il matrix is called the reduced form parameter matrix.

* The reduced form model Y = XII +V can be estimated using OLS.

The reduced form estimates KM parameters in IT. But, there are more
parameters in the reduced form model. The covariance parameters.

SEM: Reduced Form

* For the first equation, y;:
y1 =XII + v,
where Il is the first column of the KxM matrix I1.
v, is the first column of the TxM matrix V=E I'"!

* The reduced form estimates KM parameters in I1. But, there are more
parameters in the reduced form model: The covariance parameters.

* Let v; be a draw from the M-variate distribution of E I'"!, with
Ev.v/|X,]=T"'ZT1=Q.
Then, E[w v'|X] = E[vecEI ™) vecE®I)'|X] =T"1Z2T1 Q I;

* Here we have 1/2 M(M + 1) covariance reduced form parametets.




SEM: Reduced Form

* The reduced form estimates a KM + 1/2 M(M + 1) parameters. But,
the structural model has M? + KM + 1/2 M(M + 1).

* We have a problem. This is the identification problem.

* Q: Can we go from the OLS estimates of {II, } to {B,I', X}?

* Nobel Prize winner Haavelmo (1943) wrote the '
classic paper on SEM: “The Statistical Implications of Q“’

a System of Simultaneous Equations,” Econometrica.

Trygve Haavelmo (Norway, 1911— 1999)

Demand and Supply: Example
* Simple supply and demand model (M=2, K=1):

D=a,+oP+a,Y +¢g,

S=B, +BP +¢g;

D=S
D and S: Quantity demanded and supplied in the market, respectively.
P: Market price of the product.
Y: Consumers’ income
&4 and &g: unobservable (Tx1) error terms. Let € be the stack (27x1)
vector of errors (€ = vec([€q &]).

c c
We assume 2:E[st8,']={ dd ds} = Var[e]=2® 1,
Gas Oss

* The structural model is given by the supply and demand equations
above. The parameters @, B and X are the structural parameters.




Demand and Supply: Example

* The model for the covariance matrix Var[€ | X] is very simple:

Odda Ods

L =Elge] = [Uds Oss

] = Var[e] =2 Q I

* We assume no autocorrelation or time-varying cross-correlations
across equations. We have a SUR-type structure for Var[g | X].

Demand and Supply: Example

* We cannot separately observe D and S, we only observe equilibrium
quantities. Let’s call this Q. Replacing by Q:

Q = 4P + a,Y + ¢4
Q = BP + &

* We have a two equation model with two endogenous variables (Q, P)
and one exogenous variable (Y).

* Since E[P' &5] # 0 (& plim(P'eg/T) # 0), OLS in the supply equation
would result in a biased (& inconsistent) estimator of B,.

* We express the system in matrix form and solve for Q and P:

[ e B 1 Y el [




Demand and Supply: Example

* Solving for Q and P as a function of Y:

-1
Q1 _ [1 —al] [azY + ed] _ [nlY + Wl] _
[P] - 1 _Bl &g - 7T2Y+W2 =nY+w

where wis the new error term.

* This formulation is the reduced form. The T vector is the reduced form
parameter vector.

* Since Y is uncorrelated with the error w —i.e., E[Y’w| = 0—, we can
use OLS to obtain unbiased (and consistent) estimates of 7.

* Recall the identification problem: Can we go from the OLS estimates
of T to estimates of @ and 7

Demand and Supply: Example

* [tis easy to derive the exact relation between ©t and the structural
parameters @ and . We work out the solution to the system:

I e B e e WA

* Then, equating terms with the reduced form, we get the following
relationships between © and the structural parameters, o and B:

1 wp
o) == ]

* As expected, we also get a relation between w and e:

[W1] 1 —Pi&a + alfs]
Wo a, — '81 —&q + &




Demand and Supply: Example - Bias

* With this framework, we can calculate the bias in the OLS estimation
of equation 2. Recall, the bias is given by E[P' &].

OLS Bias - Calculation:

E(Pes) = E[(m2Y +wy)(&5)] = maE[Y&5] + E[w,es] = E[w,&s]

—Eqtés

Now since Wy =
a1-P1

E[Wzss] =F *0

( —&q + 55>g ] _ E[(g5)%] — E[gq¢s] _ 0§ — Tsq
a — B s a, — P a, — B

e Since 3, > 0, a,< 0, unless oy, is high and positive, the bias is likely
negative.

Demand and Supply: Example - Identification

* We can also calculate the relation between X and Q:

w11 W12
Elw.w/] = ]
(wewe] Wpy Wog
2
__ 1 B1°04q + 1?05 — 2B10105q  B10aq + @105 — (By + @1)0sq
(@1=BV? | B104q + @105 — (B1 + a1)0sq Oqa + 0ss — 205q

* Going back to the issue of identification. We want to use Tt to
identify @ and B. We have 2 equations and 3 unknowns (8, o, , ).
Complicated. But, we can recover 3, from n; and n,:

a1
T _ (fri—a) _ B
T, as -

(Br — 1)

* In this case, we will say that the structural form parameter B, is
identified. That is, it can be recovered through the vector 7.




Demand and Supply: Example - Identification

* Intuition: We were able to identified —i.e., recover from the reduced
form estimation- the slope of the supply equation, 3;. Our model has
an implicit assumption: the exogenous variable, Y, only affects demand.

Note: The points cluster around S, due to shifts in D as Y varies.

Demand and Supply: Example - Identification

* Using the OLS estimates of T, we estimate 3, (Indirect LS). Steps:
(1) Estimate the reduced form

(2) Solve for the structural form parameters mathematically.

Note: This method does not provide standard errors for the structural
form parameter estimates. The de/ta method should be used.

* Given that we have E[P' &] # 0, why not use 2SLS to estimate 3,?
2SLS Steps:

(1) Regress the endogenous variable, P, on the exogenous variables, Y.
(2) Regress Q against P.

Note: We cannot use 2SLS to estimate «,. The 2°¢ step will not work.




Demand and Supply: Example - Identification

* Delta Method — Review

When using Indirect LS, to calculate SE we need to use the delta
method. In this case, the multivariate version.

* We have a vector R,, = |1 5], with

X Hx a)xx a)x
{ n } a N { } , { y }
y n ey a)yx wyy

* The multivariate delta method formula:

sRy) = N@GR), [9'R)] = g'(Rn))

* We have a ratio of random variables: g(x,) = Bq = %
2

Demand and Supply: Example - Identification

Let
Xp1 @ 0, Wyx a)xy])
yn] N ([ey] ' [wyx Wyy
Define R, = X,/ V.
Q: What is the Var(Ry) = ?

(1) Calculate the plims of g(R) and g'(Ry):
J(Rn) = Xn/Yn = plim g(Ry) = (ex/ey)

' L _Xn : ' L _ Oy
g (Ry) = [Yn ynz] = plim g'(Ry,) [9y 9y2]

(2) Multivariate delta method: g(Rp,) = N(g(Rp), [g"(Ru)] £ g'(Ry))
1

2
Var (R ) = L - 79/‘ wﬁ wxy 9«" — a)xx _ axa)x}r _ exwxy + 0; w,\’,\;
n 6, 0! |0, o, _ 0. 6’ 0’ 0 o7
92 - h
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Demand and Supply: Example - Identification

T
T2

* We use the delta method for the ratio: g(Ry,) = B = —

9(Rp) S N@GR), [9'R)T Z g' (Ry))

Let Ry, = X5, /Y. Then, the variance of Ry, is given by:

1

(0] ., 0_ 2] 2l 92 B
Var (Rn) = L — 9; > W y _ @, _ Xa)xy xa)xy 4 xa)y}
0 0 |o, o,] _0

y ¥

o, 0> 0> o 0
Y

To do inferences, we replace the 65 and @%by the estimated values
from the Indirect LS:

A
2 2.2
v IA? _ Sm, 214 Sp,m, T1Sm,
ar(R,) =%, " s + ,
5 U3 U

Demand and Supply: Example - Identification

* We have used two equations to identify the structural parameters:

”1] _ 1 [‘1231]
Br—a)l @2

* We could have also used the estimates of & to help us in the

identification process. The estimates of £ add 3 more equations:

Ty

w11 = (B1°04q + 12055 — 2B104050) [ (By — a1)?
w1z = (B10aqq + 1055 — (B + a1)0sq)/(B1 — @1)?
Wyp = (0gq + 055 — 205q) /(B — 1)?

* Now, we have 5 equations, with 6 unknowns (3, @, 0, 644, Ogs, Oys)-

* We also know B, —from the ratio m,/m,. But, this does not help for a;
given the structure of the equations, we cannot solve for a,; and o,,.

11



Identification

* In general, we say that the structural form parameters are identified if
we can solve for them algebraically using information about the
reduced form parameters.

* We say that an equation is:

- under-identified (or not identified) if its structural parameters cannot
be expressed in terms of the reduced form parameters.

- exactly identified if its structural parameters can be uniquely
expressed in terms of the reduced form parameters.

- over-identified if there is more than one solution for expressing its
structural parameters in terms of the reduced form parameters.

In the previous example, the supply equation is exactly identified but
the demand function is not identified.

Identification - Restrictions

* Recall that we estimate KM + 1/2 M(M + 1) reduced form
parameters. But, the structural model has M? + KM + 1/2 MM + 1).

* We need to reduce the number of unknown structural parameters we
want to estimate. That is, we need restrictions to identify the model.

* First Order Restrictions

1. Normalization: Reduces the number of unknown parameters in I to
M?-M.

2. Identities: Reduces the number of known parameters by a structure
specific amount. Example, D =8 = Q.

3. Exclusion restrictions: Reduces the number of unknown parameters
by a structure specific amount. Example, Y is not in the supply
equation.

12



Identification - Restrictions

4. Linear restrictions —for example, coefficients add to a given value.

* Second Order Restrictions
5. Restrictions on X. Apart from VAR systems, this restriction is not
used very much.

* Higher Order Moments Restrictions
6. Non-linearities: Outside of this course. They have been used to deal
with the errors-in-variables problem.

Identification — Single Equation

* WLOG, we study identification of a single equation, say equation 1:
YI'=XB, +¢g
= =Y, [, +XB +g

where Y is the Tx(M — 1) matrix that excludes the first column of Y.

¢ The normalization condition will be imposed. We will add exclusion
restrictions. Excluded variables will have an * added.

Then, we have the equivalences:
# exogenous (predetermined) variables = ky + k;* =K
# endogenous variables = my + my*=M — 1 —v1=1.

* We partition the first equation accordingly

Vi, = Y(,l) 1"(,1) + Y<-1)* F<_1)* +X, B, +X*B+ g

13



Identification — Single Equation
y1=Y Iy +Y " T "+ X B +X*B" + ¢

Be careful Wlth the dimenSiOﬂS. For example, Y - *isa ITxm mattix
5 -1) 1 )
Xl isa Rkl matrix, etc.

* By definition I' ;* = 0 and B, = 0. Now, the number of parameters
in the equation is kq +my — 1.

* We write the reduced form of the structural equation.
yv: Y, Y1 =X X*] I, +V,

Using I T" = -B, we have:

7[1 Hl ﬁ] —F — Bl
SH S A A

Identification — Single Equation

* Thus, we have two equations relating the parameters:
I, = B,

m T, =0
* First equation: k; + my — 1 unknowns with k; equations.
-If Iy is known, we have a kyxkq system = B, can be found.

- Otherwise, By and I' ;) can take on arbitrary values and still satisfy it.

* Second equation: kq* equations with m; — 1 unknowns (I" 1)
- If we know m;* and I1;*, we can potentially recover I' ;). Once I, is
found, it can be used to get B,.

* This result is known as the order condition (a necessary condition).
We can recover I ;) (and, then, B)) if ky* = my — 1.

“The number of excluded exogenons variables must be at least as great as the

number of RHS included endogenous variables.”

14



Identification — Single Equation
* The order condition (ky* = my — 1) is only a necessary condition.

* A necessary and sufficient condition known as the rank condition:
rank(m;* 1) = rank(I1,*) = my — 1

* Using matrix notation, we can generalize the restrictions

o) Le]

where @ is a gx(m4 +k4) matrix of linear restrictions, and © is a gx1
non-zero vector. Then, the rank condition can be expressed as:

nm I
mnk{ }2m1+k1—1
)

Identification - Conditions

* Order condition for identification of equation j:
k]* > m] -1

The number of exogenous variables excluded from equation j must be
at least as large as the number of endogenous variables included in
equation j.

It ensures that the second equation has at least one solution. It does
not ensure that it has only one solution. It is a necessary condition.

* Rank condition:
rank(mx II* ) = rank(I1*) = m;— 1

The rank condition ensures that there is exactly one solution for the
structural parameters given the reduced-form parameters.

15



Identification - Conditions

¢ Rank condition:
rank(mx I1¥) = rank(ITx) =m; — 1

* Consider the set of variables excluded from the equation j. The
matrix of coefficients for these variables in the other equations must
have full row rank.

“For each equation: Each of the variables excluded from the equation must appear
in at least one of the other equations (no ero colummns). Also, at least one of the
variables excluded from the equation must appear in each of the other equations (no
zero rows).”

The rank condition ensures that there is exactly one solution for the
structural parameters given the reduced-form parameters.

Identification - Conditions

* Rank condition is complicated to calculate.

In practice, we follow these simple steps to calculate it:

1) Write down the system in tabular form (Rank Condition Table).

2) Strike out the coefficients corresponding to the equation to be
identified.

3) Strike out the columns corresponding to those coefficients in Step 2
which are non-zero.

4) The entries left in the table will give only the coefficients of the
variables included in the system, but not in the equation under
consideration. From these coefficients form all possible A matrices
of order M — 1 and obtain a corresponding determinant. If at least
one of these determinants is non-zero then that equation is
identified.

16



Identification — Conditions — Example

* Suppose we have the following system, with M = 3 and K = 3:

Yo =B +B2Y; +B3X, +B4X, + ¢,
Yy =y, +7v,0 + 73X +74X; + &5

- Order condition — There are 3 exogenous variables in the system
(X1; X3; X3) & no more than 3 slope coefficients in any one equation.

- Rank condition — Steps to get the rank of submatrices.

(1) We use a table (Rank Condition Table) in which an X indicates a
variable appears in the given equation and a 0 indicates a variable does
not appear in the given equation.

(2) Strike from the matrix the column of equation of interest.

(3) Keep only the rows with a 0.

Identification — Conditions — Example

* Rank Condition Table
X: a variable appears in the given equation
0: a variable does not appear in the given equation:

Equation Ylt }fgt -},:':'I' XU .:\.-23 -"L-gt

1 * 0 0 ¥ 0 ®
2 0 * b4 ¥ * 0
3 * 0 ® ® 0 *

¢ Then, for equation j:
1) Select the columns corresponding to the variables that do not
appear in equationj. From this submatrix, delete row j.

2) If the rank of remaining submatrix is = m — 1 => rank condition is
satisfied for equation j --and parameters of equation j are identified.

17



Identification — Conditions — Example

* Rank Condition Table
Equati.on Ylt -}fgt }/.-?1" Xlt -"L-gt .:\.-3-3

1 * 0 0 ® 0 *®
2 0 * * ® % 0
3 * 0 ® ® 0

* Equation 7: (Y,; Y5; X3) are excluded, so the relevant submatrix is

Rank of the submatrix is 2. Equation 1 is identified.
* Equation 3: (Y,; X5) are excluded, so the relevant submatrix is

v v

Rank of the submatrix is 1. Equation 3 is not identified.

Identification — Conditions — Example

¢ What would restore identification? We need rank 2 for the submattrix.
One way to do this is to replace X; with X.

The solution seems natural as now each of the 3 equations has
different exogenous shifters.

* The other way is to add Y, to the equation 7. (By adding Y, we have
made Y, a function of X;.)

Note: It is clear that the distribution of the exogenous variables
depends on the distribution of the endogenous variables.

18



Identification - Terminology

* The usual terminology regarding identification in the SEM context is
that equations or systems are over-identified, under-identified - or exactly

identified.

These are formally defined as:
- Under-identified Structure:  kj* <m; — 1
- Exactly identified Structure: kj* =m; — 1
- Over-identified Structure:  kj* >m; — 1

Identification — Covariance Restrictions

* So far, all the information provided by £ is used in the estimation of
2. But, for given I', the relationship between € and X is one-to-one.
Recall that rer==x

e If restrictions are placed on X, we have more information in the
unrestricted £ than is needed for estimation of X. In many cases, the
excess information can be used to identify B, I'.

* Recall that the OLS bias arises because E[y;" €] # 0. This can
happen in 2 ways:

(1) Direct relation: I';; # 0.

(2) Indirect relation: T';; =0, but E[g;'g] # 0 and I';# 0.

Example: Zero covariance testrictions o; = 0. In the Demand and
Supply example this information can be used to identify the system.

19



Identification — Covariance Restrictions
* We incorporate the covariance restrictions to the system. That is,

I, 1T, 0
@ = ©
Q 0| B, ryh'x

where @ is a (k1 *x mq+ kq) matrix of exclusion restrictions.

* Note that the term I'"'X is related to the OLS bias:

plim(Y’E/T) = plim((XIT+VYE /T) = plim(IPX’E/T) +V’E/T)
=0+ plimI'E’E/T)=T"X

Identification — Covariance Restrictions

* The matrix "X can identify if variable j can be an instrument in
equation .

Lets define [T Z] = %, (T, o = T oy + Ty, o+

=1If [['"E],= 0, ¥; can be used as an IV in equation L.

20



Identification — Remarks

* Showing that an equation in an SEM with more than two equations is
identified is generally difficult. It is easy to see when certain equations
are not identified.

* An equation in any SEM that does not satisfies the order condition, it
is not identified. This is an easy condition to check.

* For identification, the order condition is only necessary, not
sufficient, for identification.

* To obtain sufficient conditions, we need to extend the rank condition.
For big systems, it can be complicated.

* In practice, it is usual to assume that an equation that satisfies the
order condition is identified.

Single Equation Estimation — 2SLS

* WLOG, we assume we are interested in estimating equation 1.
y1=Y, I + X, B, +& =W,8, +¢& (%

* Given that E[Y,’s,] # 0, OLS is inconsistent for I'; and B,. We need
IV —we need an instrument for Y,— to estimate I'; and B, consistently.

A

The reduced form Y, = X IT, + V, gives us a clue how to proceed: Y.
Y, =X XX)XY, =E[Y’ &]=0.

Then, y; =W, 8, + & with W, =[Y,X], 8 =[,B,]

Note that 6 can be consistently estimated by OLS:
digs= (W, W) 'W,'y;  —thisis the 2SLS estimator.

To estimate the variance, we need o2 It should be estimated using (¥).

21



Single Equation Estimation — 2SLS

* To estimate the vatiance, we need o,,2. It should be estimated using
equation (¥). That is, using Y, not Y;:

€1 as5Ls = V1~ erl,zSLS — X By 1515
* Note: The 2SLS is a limited information (L.I) method, since it looks at

information in one equation one at a time. Full information (FI)
methods look at all equations jointly and simultaneously together.

* For example, suppose there is a correlation across equations. That is,
E[gi’gj |X1] # O, forz#]

Then, from SUR theory, LI methods like 2SLS will not be efficient, in
general. To gain efficiency, we need a FI method.

2SLS - Identification (again)

* Let’s go back to the identification issue. Suppose that X = X, —i.e.,
there are no excluded exogenous variables; they are all in equation 1.
Then, A

y1 =Y, [ +X B, +§=XII) T + X, B +§

* We cannot estimate both I'; and B, since the same regressors are
attached to each parameter (albeit recombined in the case of I').

* We must have more regressors in X than appear in X. In particular,
to estimate I'; we must have at least m; — 1 more regressors, leading to
the rule K — kj* = m;— 1 (the order condition for identification).

¢ The rank condition is needed since having m; — 1 “extra regressors”
is not enough, as I1; may assign them zero weight, or induce
dependencies.

22



2SLS - Identification (again)

* Identification as lack of IV

- To do 28LS, we must have (at least) as many instruments as we have
variables we need instruments for -i.e., dim(Z) = dim(X). Otherwise, in
the identified case (Z'X) would not be square and, thus, invertible.

- In SEM, when wouldn’t we have enough IVs? In X we have X
(exogenous variables included in equation 1) and X, * (those excluded).

- If none were excluded, then, X =X, = ﬁlxl = ﬁl X,

which are just linear combinations of the X, —i.e., there are no extra
IVs above X, and (Z'X) would be singular.

- We need other instruments besides X,. We need them for Y, thus, we
need to have at least as many IV as dim(I'").

2SLS - Identification (again)

* We need other instruments besides X,. We need them for Y, thus,
we need dim(I'";). Then, the number of extra instruments needed
dimX,*) = (K — k;) must be at least as big as dim(I"))= m;— 1.

This is the order condition.

* Also note that (Z'X) could be singular if the instruments were
uncorrelated with the W = [¥; X,].

This would be a failure of the rank condition.

“An equation (with associated restrictions) is identified if and only if there exists a
consistent IV estimator for the parameters in the equation -i.e., if there are
sufficient instruments for the RELS endogenons variables that are fully correlated
with these variables.”

23



2SLS — Application

* Epple and McCallum (2005) estimate the canonical example for the
market for chickens. They add a price of a producing factor (W) in the
supply. They use 1950-2001 USDA annual data to estimate the system:

O =a,+aP+aY+¢g,
Os,=p6,+pP+ LW +¢,

* Two endogenous variables (QQ and P), two exogenous variables (Y
and W): M =2 and K= 2.

* Both equations are identified: There is a missing exogenous variables
in each equation: kq* = k,*= 1.

2SLS — Application

* Epple and McCallum (2005) use the USDA per capita consumption
of chicken as Q for demand. EM first report the OLS estimates (OLS
estimates are biased and inconsistent).

OLS Qg = per capita consumption of chicken AQy
Constant -4.860 (0.67) | -4.679 (0.68) | 5.939 (0.19) -

Y (AY) 0.871 (.07) 0.852 (.07) 0.272 (0.27) | 0.771 (0.15)
Price (AP) -0.277 (0.07) | -0.264 (0.07) | -.307 (0.07) | -0.374 (0.06)
PBeef (APb) - -0.118 (0.08) | 0.247 (0.08) | 0.251 (0.07)
e(-1) - - 0.997 (0.02) -

R? 0.980 0.981 .995 331
DW 0.343 0.443 2.396 2.380
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2SLS — Application

* EM for supply they want to use a production aggregate. EM use
QA= Q + log(Population). The OLS estimates:

OLS Q"= Q + log(Population)

Constant 9.185 (0.03) 2.652 (0.61) 2.478 (0.70)
W=Price Corn -0.338 (.08) -0029 (.02) -
Price -1.203 (0.11) -0.143 (0.05) -.041 (0.05)
Time (technology) - 0.010 (0.003) 0.010 (0.004)
QACD) - 0.629 (0.09) 0.647 (0.11)
W=Price Young - - -0.083 (0.03)
R? 0.942 0.997 .997
DW 0.591 2.054 1.883

2SLS — Application

* EM report the 2SLS estimates. In the last two columns, Q also is
adjusted to account for exports (Exports = Qprod - QY).

2SLS AQ, Qr AQ, Qprod?
Constant - 2371 (0.77) - 2.030 (0.70)
(AY)/W(PYoung) | 0.843 (14) | -0.113 (0.04) | 0.841(14) | -0.146 (.05)
AP/Price -0.404 (09) | 0.105 (0.08) | -0.397 (09) | 0.221 (0.11)
APb 0.279 (0.09) - 0.274 (0.09) -
Time - 0.012 (0.004) - 0.018 (0.006)
QM-1)/Qpri(-1) - 0.640 (.12) - 0.631 (.13)
R? 0.291 0.996 0.299 0.996
DW 1.929 1.869 2.011 2,011
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System Estimation — 3SLS

* In some cases, we want to estimate the whole system. We have M
equations:

y]:Y]"Y]+ X]’B]+ Ej:WjI5j+ Sj j:1,2,...,M

* Writing the system in stack form:

Y, w, 0 ... 0 0, &

o w, ... 0 o g
ylz - . 32 . . 32 + :2 =Ws+e
Vu o o0 ... wW,|ld, Ey

with E[€ |X]=0 and E[e&'|X]=V=ZXZ,,,QIL;

¢ The OLS estimator (equation-by-equation) is inconsistent. We can do
2SLS. But, 28LS ignores V = 28LS will be inefficient.

System Estimation — 3SLS

* Similar to SUR, 3SLS allows us to estimate the error covariance
matrix of dimension MxM, which will be used to do FGLS.

* Steps:

(1) 2SLS in each equation.
(1.2) Regress each endogenous variable (column of Y) on a//
exogenous vatiables X to get Yi =X X’X)'X’Y, = Py Y,
(1.b) Using Wi = [SA(j Xi], estimate d; 5 5. Keep residuals €; 551

(2) Using €; 551, calculate 2z (the MXM covariance matrix)

(3) Stack the data. Do FGLS as usual for the whole system:
Sssus= (WYY Wy = ERIT Y ESLT !y
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System Estimation — 3SLS

* The FGLS third stage for the 3SLS estimator can be done by OLS on
transformed data.

Steps:

1) pCholesky decomposition of X! (from step 2) and Py

Let L be a lower triangular Cholesky factor of X! (from step 2) and Q

be a lower triangular Cholesky factor X(X'X)'X'. That is,
LoQ)LeQ) = &' oX(XX)'X).

(2) Transtform the stacked system CLeQ y=LeQ Wb +e

(3) Apply OLS to this system to get the 3SLS estimators.

* Main advantage of 3SLS over 2SLS: A gain in asymptotic efficiency.
* Main disadvantage: The estimators for a single equation are
potentially less robust. They will be inconsistent if the IV assumptions
that X is predetermined fail in any equation, not just a particular one.

System Estimation — 3SLS
e The 3SLS is given by:
S3s1s = W ETQ POW] W' (E™1 ® Px)y

Notation:
oo .. o|[B 0 ..0][m 0 .. o0
0 W .. 0[|0 B .. 0[]0 W .. 0

W=(I®PW W= =

* Then substituting above

83515 =W U®P)E @ DI @ PO T W(I®PyY(E™ ®1)y
=S @POWTWET @ Py )y
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System Estimation — 3SLS

LetZ = (' ® Py)W. Then,

S3s0s = W' ETQ POW] W' (E™1 ® Py)y
=Z'W)Z'y

* That is, 3SLS is an IV estimator.

* Like all IV estimators, it is a consistent estimator. It is also efficient

bl

relative to other IV estimators that use only sample information. The

estimated asymptotic variance is:
Est. Asy. Var[b35.5|X] = W'[EQ I]7'W)~!
Note: It is also possible to iterate the 3SLS computation. But, unlike

SUR, however, this method does not provide the MLE, nor does it
improve the asymptotic efficiency.

System Estimation — FIVE

* Full Information Instrumental Variable (FIVE)

Simple idea:

(1) Do 1V estimation in each equation, say j, using k; instruments Z;:
dj,IV = (Z]II/V])'1 Z]’y] = get e]-‘,V

() Form 2

(3) Do FGLS

Spp=0PE®IT WY WERy W =[xB X))

* FIVE works in terms of the estimates of B and I'"!, while 3SLS
wotks in terms of IT.
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System Estimation — FIML

¢ Full Information Maximum Likelihood (FIML)
- Write the full system

YI'+XB=E
-Assume E| X ~ N0, X ®1,) —an MXM matrix.

- Write the likelihood function:

LB, [, Z|X)=2n) "2 | Z| 2 exp[tr{- . E' Z1E}
- Or, in stacked form

L= Q2n)M7/2 | Z2QL, | M2 exp{- /2 E' (EQL) "' E}

- Write the log likelihood function:
ZL=-T/21n2n) - T/2In|Z| - Yue{(YT+X B)' (Y T+X B) X'+ In|] | }

where J=I"is the Jacobian from the change in variable (from E to Y).

System Estimation — FIML
Z=-T/2102m) - T/21n| | - Yorr {(Y T+X B)'(Y T+X B) =+ In || }

- Take derivatives of .Z wr.t. I', B and X and set them equal to 0 (foc):
) d8L/8"=Y YT+XB) X!+ TT!
=>YE,,/T=T;"'Z\ — Bias in OLS due to SEM.

2)8.Z /B = X' (YT+X B) =

=ZE,; X,,=0 — IV condition.

(3)8.L/dx !l =T/2 (ZH -1 (YT+X B) (Y '+X B)
=>Zu=Eu E./T — Standard formula for X.

Under FIML, we solve simulateneously (1)-(3) for I', B and XZ.
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System Estimation — FIML

e Alternative FIML derivation — Greene’s textbook

- Write reduced form system

Y=XIT+V
- Assume V| X ~ N(0, ) —an MTxMT matrix.

- Write the log likelihood function as:
Z=InLAL Q|X) = -MT/21nQ2n) - T/21n| Q| - V2 tr('W)
where W;; = (y - Xm)” (y - X))
- Make the substitutions: IT = -B T~ and Q =[""'X !
- Then,
L=-MT/21n@2n) - T/21In|ITV"ET| -
~Vote{ T X1 ) (Y +XBI)Y(Y+XBI)}
=-MT/21n@2n) - T/21n|Z|-T/2x21In|T"| —
- Vo te{ (YT + XB) (YI" + XB)}

System Estimation — FIML

Z=-MT/21n@2x) - T/21n|Z|- Tln|T|-

Vot {Z (YT +XBY(YT + X B)}
=_T/2 {MInQn) + In|Z|- 21n|T |+ tr(Z'S)}

S=1/T(YT+XBy(YT+XB) -—5,=1/T(Y+XB)(YT, +XB)

- Take derivatives of .Z w.r.t. I', B and X, then get f.o.cs and solve for
the MLE of T, B and X.




System Estimation — FIML

* Take derivatives of .Z wr.t. I', B and X, then get f.o.c.s and solve for
the MLE of I', B and . It turns out the FIML estimator is given by:

deve = [Z3)(E- @ DZI 2B (B @ y] = [ZZ]' 2y,

where
{'Tllirl ';,lly'tl r}I‘HZ"']
26T 'el = r}ll_r: ,-,:2.7;2 S =%
WMy MIy - MM,
and
Z,=[XN1,X,]

M is computed from the structural estimates:
M, = M, columns of —BF~!
and

Gy = (% —-Z8)Y(y, —Z;8;) and & = (E7Y),,.

System Estimation — FIML & 3SLS

* This result implies that the FIML estimator is an I'V estimator. Not a
surprise, it is one of the implications from the f.o.c.s.

* The asymptotic covariance matrix for the FIML estimator follows
directly from its form as an IV estimator (3SLS). If normality for errors
is assumed, 3SLS has the same asymptotic distribution as ML. This
result is due to Sargan (Econometrica, 1964).

e Implication: The 3SLS estimator is easier to compute. The easier
computations comes at no cost in asymptotic efficiency.

* Small-sample properties remain ambiguous. We tend to find that 3SLS
dominates FIML. The 3SLS estimator is robust to non-normality. The
FIML estimator is not -- because of the term In|]| in the log L.
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System Estimation — FIML & 3SLS

e The 3SLS and FIML estimators are usually quite different numerically.

¢ Interesting result: If the system is just identified,
FIVE = 3SLS = FIML = 28LS

System Estimation — GMM

* GMM is also possible both for single equation or for system
estimation.

¢ As usual we need moments:
. . . — —
- For a single equation, assume : y;, = 2% §; + ¢, z =[Y, x|

gr(0") =E[xsg] = E[x(y; - 2% 8)]= 0

- For a system:
q =% %) [e(w,.8)X/T] W] [X’e,(w,.6,)/T]
=% 2m(5) [W]' m(8,)

* W can incorporate different types of heteroscedasticity, White or NW
are OK.
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System Estimation — Application (Greene)

TABLE 15.3 Estimates of Klein's Model | (Estimated Asymptotic Standard

Errors in Parentheses)
Limited-Information Estimates Full-Information Estimates
28LS ISLS
(S X 0017 0216 0.810 16.4 0.125 0.163 07%
(1.32) (0.118) (0.107)  {0.040) (1.30) (0.108)  (0.100)  (0.033)
1 203 0150 0616  -0.158 282 -0013 0756  -0.19%
(7.54) (0.173) (0.162)  (0.036) 679 (0.162) (0.153) (0.038)
WF 150 043 0147 0.130 1.80 0.400 0.181 0.150
(L.15) (0.036) (0.039)  (0.029) (1.12) (0.032)  (0.034) (0.028)
LIML FIML
C 17.1 -0222 0306 183 -0.232 0388 0.802
(1.84) {0,202y (0.174) (2.49) {0312) o2amn (0036)
1 26 0075 0680 2713 -0.801 1052 -0.146
(9.24) (0.219) 3) (7.94) (0.491) (0.353) (0.30)
Wr 153 0434 57 0.234 0285 0235
(2.40) (0137 (0.135) {0.065) (1.80) (0.049) (0.045) (0.035)
GMM (H2SLS) GMM (H3SLS)
C 143 0.0% 0143 0.864 157 0,088 0.167 082
(0.897) (0.062) (0.065) (0U029) (D.951) (0.091) (0.080) (0.033)
I 235 0.146 0591 -0.171 206 0213  -0520 -0.157
(6.40) (0.120)  (0.120)  (0031) (4.89) (0087)  (0.099)  (0.025)
Wr 306 0455 0.106 0.130 200 0,446 0.131 0112
(0.64) (0.028) (0.030)  (0022) (0.510) (0.019) (0.021) (0.021)
oLs 13SLS
C 162 0193 0000 166 0.165 0177 0766
(1.30) (0.091) (0.091) (122) (0.096)  (0.090) (0.035)
I 10.1 0.480 0333 429 —-0.356 101 -0.260
(5.47) (0.097)  (0.101) (10.6) (0260) (0.249) (0.051)
Wwr 150 0439 0.146 282 0375 0.194 0.168
(1.27) (0.032) (0.037) (1.20) {0.031) (0.032) (0.029)

System Estimation — Application (Greene)

* Practical Remarks

- It is often found that OLS estimates are very close to the structural
estimates.

- OLS estimates can show smaller variances than 2SLS. (MSE issue?)

- Big numerical differences for all the methods. Even signs can be
different.

- LI estimators can have smaller variances than the FI estimators. (Due
to propagation of specification errorsr)

- The calculation of the variance/weighting matrix matters.

- The gains from system estimation in finite samples may be modest.

* Note: All the remarks about OLS and LI estimators are done
regarding the finite-sample properties; asymptotically IV and any FI
estimator dominate.
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DHW Specification Test

Estimator X is exogenous X, is endogenous

6 Consistent and Inconsistent
Efficient

o Consistent Consistent
Inefficient Possibly Efficient

* In Lecture 8 (IV estimation), under an H:plim(X’e/T)=0, we have
one estimator that is efficient (OLS) and one inefficient (IV). We can
use a Durbin-Hausman-Wu test.

* In SEM, Hausman bases his version of the test on & being the 2SLS
estimator and 6* being the 3SLS estimator. Shortcoming: we need to
choose arbitrarily one equation where X; is not present for the test.
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