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Lecture 16
SEM

• Simultaneous equations models (SEM) differ from those we have seen so 
far because in each equation there are two or more dependent variables: 

𝑦௝ = 𝒀௝′ γ௝ +  𝑿௝′௝ +  𝜀௝ 𝑗 ൌ 1, 2, … ,𝑀 –the DGP

• In this model, we have 𝑀 endogeneous variables –i.e., 𝑀 equations-, 
and K exogeneous variables. We can write the model as:

𝑦௝ = 𝒀௝′ γ௝ +  𝑿௝′௝ +  𝜀௝ = 𝑾௝′𝛅௝ +  𝜀௝ 𝑗 ൌ 1, 2, … ,𝑀

A convenient way of writing the SEM for empirical work is stacking:

Simultaneous Equations Models
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• The system looks like a system of regression equations:

𝒚 = 𝑾 δ + 𝜺
But, there are endogenous variables ⇒ OLS will not be consistent. IV 
should be used. 

• We can also write the SEM in matrix form as

Y  + X B = E

Dimensions:

Y and E are Tx𝑀 matrices

X is a Tx𝐾 matrix

 and B are 𝑀x𝑀 and 𝐾x𝑀 matrices, respectively.

Canonical example: Supply & Demand systems (P & Q endogenous). 

Simultaneous Equations Models

• We write the SEM in matrix form as

Y  +X B = E (*)

• The first equation, describing y1 –i.e., the first column of the TxM
matrix Y- is given by:

Y 1 = X B1 + 𝜺1

Dimensions:

Y and 𝜺1 (1st column of E) are TxM and Tx1 matrices, respectively.

X is a TxK matrix

1 (1st column of ) is an Mx1 matrix.

B1 (first column of B) is a Kx1 matrix.

• Economic theory will determine the structure of these models –i.e., 
the structure of  and B. 

Simultaneous Equations Models
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• We can follow the CLM and write the SEM’s assumptions:  

• The DGP is

Y  +X B = E (*) (A1) 

Model (*) is called the structure or structural (behavioral) model. It describes 
the structure or behavior of the economy. The parameters  and B are 
called structural parameters.

• Let 𝜺 be the MTx1 stack vector of E, or vec(E). Assume the εt are 
drawn from an M-variate distribution with

E[𝜺௧|𝑿௧] = 0 – E[𝜺|X] = 0 (A2) 

E[𝜺௧ 𝜺௧′|𝑿௧] = Σ – E[𝜺 𝜺′|X] = ΣMxM ⊗ IT (A3) 

• More complicated forms of heteroscedasticity for ε are possible. 

Simultaneous Equations Models

• We assume that X is a well-behaved TxK matrix, with full rank:

rank(X) = K (A4) 

• But the traditional (A2) is incomplete, since X are not all the 
explanatory variables. They are only the exogenous variables. We also 
have endogenous variables. That is,

E[𝜺௧|𝒀௧] ≠ 0 

• We have endogenous explanatory variables, OLS is not appropriate 
(biased and inconsistent) in these equations. 

• Even if we are only interested in one particular equation -say, 
equation 1–, we may have to consider it as part of a system of 
equations. 

Simultaneous Equations Models
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• We want to solve the SEM for Y:

Y  + X B = E (*)

Assume  is nonsingular. Then, post multiply (*) by 1:

Y  1 + X B 1 = E 1

 Y = X  + V (**) – Note:    = -B

• The formulation (**) is called reduced form. The reduced form of a 
model expresses each y variable only in terms of the exogenous 
variables, X. The  matrix is called the reduced form parameter matrix.

• The reduced form model Y = X  +V can be estimated using OLS.

The reduced form estimates KM parameters in . But, there are more 
parameters in the reduced form model. The covariance parameters. 

SEM: Reduced Form

• For the first equation, 𝒚ଵ:

𝒚ଵ = X 1 + 𝒗ଵ
where 1 is the first column of the KxM matrix .

𝒗ଵ is the first column of the TxM matrix V = E 1

• The reduced form estimates KM parameters in . But, there are more 
parameters in the reduced form model: The covariance parameters. 

• Let 𝒗௧ be a draw from the M-variate distribution of E 1, with 

E[𝒗௧ 𝒗௧′|Xt ] = 1Σ 1 = Ω.

Then, E[𝒗 𝒗′|X] = E[vec(E1) vec(E1)′|X] = 1Σ 1 ⊗ IT

• Here we have 1/2 M(M + 1) covariance reduced form parameters.

SEM: Reduced Form
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• The reduced form estimates a  KM + 1/2 M(M + 1) parameters. But, 
the structural model has M2 + KM + 1/2 M(M + 1).

• We have a problem. This is the identification problem.

• Q: Can we go from the OLS estimates of  {, Ω} to {B, , Σ}?

SEM: Reduced Form

Trygve Haavelmo (Norway, 1911– 1999)

• Nobel Prize winner Haavelmo (1943) wrote the 
classic paper on SEM: “The Statistical Implications of  
a System of  Simultaneous Equations,” Econometrica.

Demand and Supply: Example

do YPD  21

so PS  1

SD 

D and S: Quantity demanded and supplied in the market, respectively.
P: Market price of  the product.
Y: Consumers’ income 
𝜺ௗ and 𝜺𝒔: unobservable (Tx1) error terms. Let 𝜺 be the stack (2Tx1)
vector of  errors (𝜺 = vec([𝜺ௗ 𝜺௦]).

We assume 

• The structural model is given by the supply and demand equations 
above. The parameters α, β and Σ are the structural parameters.

• Simple supply and demand model (M=2, 𝐾=1): 

T
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Demand and Supply: Example

• The model for the covariance matrix Var[𝜺 |X] is very simple:

• We assume no autocorrelation or time-varying cross-correlations 
across equations. We have a SUR-type structure for Var[𝜺 |X]. 

Σ ൌ 𝐸ሾ𝜀௧𝜀௧′ሿ ൌ
𝜎ௗௗ 𝜎ௗௌ
𝜎ௗௌ 𝜎ௌௌ

 ⇒ 𝑉𝑎𝑟ሾ𝜀ሿ ൌ Σ⊗ 𝐼்

• We have a two equation model with two endogenous variables (Q, P) 
and one exogenous variable (Y).

• Since E[P′ 𝜺௦] ≠ 0 (& plim(P′𝜺௦/T) ≠ 0), OLS in the supply equation  
would result in a biased (& inconsistent) estimator of  β1.

• We express the system in matrix form and solve for Q and P: 

• We cannot separately observe D and S, we only observe equilibrium 
quantities. Let’s call this Q. Replacing by Q:

Demand and Supply: Example

𝑄  ൌ 𝛼ଵ𝑃  ൅ 𝛼ଶ𝑌  ൅ 𝜀ௗ
𝑄  ൌ  𝛽ଵ𝑃  ൅ 𝜀ௌ

1 െ𝛼ଵ
1 െ𝛽ଵ

𝑄
𝑃

ൌ
𝛼ଶ𝑌 ൅ 𝜀ௗ

 𝜀ௌ
 ⇒  𝑄

𝑃
ൌ

1 െ𝛼ଵ
1 െ𝛽ଵ

ିଵ

 
𝛼ଶ𝑌 ൅ 𝜀ௗ

 𝜀ௌ
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Demand and Supply: Example

where w is the new error term.

• This formulation is the reduced form. The  vector is the reduced form 
parameter vector.

• Since Y is uncorrelated with the error w –i.e., E[Y’w] = 0–, we can
use OLS to obtain unbiased (and consistent) estimates of  .

• Recall the identification problem: Can we go from the OLS estimates 
of   to estimates of  α and β? 

• Solving for Q and P as a function of  Y:

𝑄
𝑃

ൌ
1 െ𝛼ଵ
1 െ𝛽ଵ

ିଵ

 
𝛼ଶ𝑌 ൅ 𝜀ௗ

 𝜀ௌ
ൌ  

𝜋ଵ𝑌 ൅ 𝑤ଵ
 𝜋ଶ𝑌 ൅ 𝑤ଶ

ൌ 𝜋𝑌 ൅ 𝑤

• It is easy to  derive the exact relation between  and the structural 
parameters α and β. We work out the solution to the system: 

• Then, equating terms with the reduced form, we get the following 
relationships between  and the structural parameters, α and β:

Demand and Supply: Example

• As expected, we also get a relation between w and ε:
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• With this framework, we can calculate the bias in the OLS estimation 
of  equation 2. Recall, the bias is given by E[P′ 𝜺௦]. 

OLS Bias - Calculation:

𝐸ሺ𝑃𝜀ௌሻ ൌ 𝐸ሾሺ𝜋ଶ𝑌 ൅ 𝑤ଶሻሺ𝜀ௌሻሿ ൌ 𝜋ଶ𝐸ሾ𝑌𝜀ௌሿ ൅ 𝐸ሾ𝑤ଶ𝜀ௌሿ ൌ 𝐸ሾ𝑤ଶ𝜀ௌሿ

Now since 𝑤ଶ ൌ
 ିఌ೏ାఌೄ
ఈభିఉభ

𝐸ሾ𝑤ଶ𝜀ௌሿ ൌ 𝐸
 െ𝜀ௗ ൅ 𝜀ௌ
𝛼ଵ െ 𝛽ଵ

𝜀ௌ ൌ
 𝐸ሾሺ𝜀ௌሻଶሿ െ 𝐸ሾ𝜀ௗ𝜀ௌሿ

𝛼ଵ െ 𝛽ଵ
ൌ
 𝜎ௌ

ଶ െ 𝜎ௌௗ
𝛼ଵ െ 𝛽ଵ

് 0

Demand and Supply: Example - Bias

• Since β1 > 0, α1< 0, unless σSd is high and positive, the bias is likely 
negative.   

• We can also calculate the relation between Σ and Ω:

• In this case, we will say that the structural form parameter β1 is 
identified. That is, it can be recovered through the vector .

Demand and Supply: Example - Identification

𝐸 𝑤௧𝑤௧
ᇱ ൌ

𝜔ଵଵ 𝜔ଵଶ
𝜔ଶଵ 𝜔ଶଶ

ൌ
ଵ

ሺఈభିఉభሻమ
𝛽ଵ

ଶ𝜎ௗௗ ൅ 𝛼ଵଶ𝜎ௌௌ െ 2𝛽ଵ𝛼ଵ𝜎ௌௗ 𝛽ଵ𝜎ௗௗ ൅ 𝛼ଵ𝜎ௌௌ െ ሺ𝛽ଵ ൅ 𝛼ଵሻ𝜎ௌௗ
𝛽ଵ𝜎ௗௗ ൅ 𝛼ଵ𝜎ௌௌ െ ሺ𝛽ଵ ൅ 𝛼ଵሻ𝜎ௌௗ 𝜎ௗௗ ൅ 𝜎ௌௌ െ 2𝜎ௌௗ

• Going back to the issue of  identification. We want to use  to 
identify α and β. We have 2 equations and 3 unknowns (β1, α1 , α2). 
Complicated. But, we can recover β1 from π1 and π2:

𝜋ଵ
𝜋ଶ

ൌ

𝛼ଶ𝛽ଵ
ሺ𝛽ଵ െ 𝛼ଵሻ

𝛼ଶ
ሺ𝛽ଵ െ 𝛼ଵሻ

ൌ 𝛽ଵ
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• Intuition: We were able to identified –i.e., recover from the reduced 
form estimation- the slope of  the supply equation, β1. Our model has 
an implicit assumption: the exogenous variable, Y, only affects demand. 

Note: The points cluster around S, due to shifts in D as Y varies.

Demand and Supply: Example - Identification

• Using the OLS estimates of  , we estimate β1 (Indirect LS). Steps:

(1) Estimate the reduced form 

(2) Solve for the structural form parameters mathematically. 

Note: This method does not provide standard errors for the structural 
form parameter estimates. The delta method should be used.

• Given that we have E[P′ 𝜺௦] ≠ 0, why not use 2SLS to estimate β1? 

2SLS Steps:

(1) Regress the endogenous variable, P, on the exogenous variables, Y.

(2) Regress Q against 𝑃෠. 

Note: We cannot use 2SLS to estimate α1. The 2nd step will not work.

Demand and Supply: Example - Identification
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• Delta Method – Review

When using Indirect LS, to calculate SE we need to use the delta 
method. In this case, the multivariate version.

• We have a vector 𝑅௡ = [𝜋ଵ 𝜋ଶ]’, with 

• The multivariate delta method formula:

g(𝑅௡) 
  ௔  

N(𝑔ሺ𝑅௡ሻ, [𝑔′ሺ𝑅௡ሻ]’ Σ 𝑔′ሺ𝑅௡ሻ)

• We have a ratio of  random variables:  𝑔ሺ𝑥௡ሻ = ଵ = 
గభ
గమ

Demand and Supply: Example - Identification
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Define 𝑅௡ = 𝑥௡/𝑦௡.
Q:  What is the Var(𝑅௡) =  ?

(1) Calculate the plims of  𝑔ሺ𝑅௡ሻ and 𝑔′ሺ𝑅௡ሻ:
𝑔ሺ𝑅௡ሻ = 𝑥௡/𝑦௡ ⇒ plim 𝑔ሺ𝑅௡ሻ = (𝜃௫/𝜃௬)
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(2) Multivariate delta method: 𝑔ሺ𝑅௡ሻ
௔
→ N(𝑔ሺ𝑅௡ሻ, [𝑔′ሺ𝑅௡ሻ]’ Σ 𝑔′ሺ𝑅௡ሻ)
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Demand and Supply: Example - Identification



11

• We use the delta method for the ratio: 𝑔ሺ𝑅௡ሻ = ଵ = 
గభ
గమ

𝑔ሺ𝑅௡ሻ
௔
→ N(𝑔ሺ𝑅௡ሻ, [𝑔′ሺ𝑅௡ሻ]’ Σ 𝑔′ሺ𝑅௡ሻ)

Let 𝑅௡ = 𝑥௡/𝑦௡. Then, the variance of  𝑅௡ is given by:

To do inferences, we replace the θ’s and 𝜔’s by the estimated values 
from the Indirect LS:

𝑉𝑎𝑟ሺ𝑅
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Demand and Supply: Example - Identification
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• We have used two equations to identify the structural parameters:

• We could have also used the estimates of  Ω to help us in the 
identification process. The estimates of  Ω add 3 more equations:

𝜔ଵଵ ൌ ሺ𝛽ଵ
ଶ𝜎ௗௗ ൅ 𝛼ଵଶ𝜎ௌௌ െ 2𝛽ଵ𝛼ଵ𝜎ௌௗሻ/ሺ𝛽ଵ െ 𝛼ଵሻଶ

𝜔ଵଶ ൌ ሺ𝛽ଵ𝜎ௗௗ ൅ 𝛼ଵ𝜎ௌௌ െ ሺ𝛽ଵ ൅ 𝛼ଵሻ𝜎ௌௗሻ/ሺ𝛽ଵ െ 𝛼ଵሻଶ

𝜔ଶଶ ൌ ሺ𝜎ௗௗ ൅ 𝜎ௌௌ െ 2𝜎ௌௗሻ/ሺ𝛽ଵ െ 𝛼ଵሻଶ

Demand and Supply: Example - Identification

𝜋ଵ
𝜋ଶ

ൌ
1

ሺ𝛽ଵ െ 𝛼ଵሻ
𝛼ଶ𝛽ଵ
𝛼ଶ

• Now, we have 5 equations, with 6 unknowns (β1, α1, α2, σdd, σSS, σdS). 

• We also know β1 –from the ratio 1/2. But, this does not help for α; 
given the structure of  the equations, we cannot solve for α1 and α2.
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• In general, we  say that the structural form parameters are identified if  
we can solve for them algebraically using information about the 
reduced form parameters.

• We say that an equation is:
- under-identified (or not identified) if  its structural parameters cannot 
be expressed in terms of  the reduced form parameters. 
- exactly identified if  its structural parameters can be uniquely 
expressed in terms of  the reduced form parameters. 
- over-identified if  there is more than one solution for expressing its 
structural parameters in terms of  the reduced form parameters.

In the previous example, the supply equation is exactly identified but 
the demand function is not identified.

Identification 

Identification - Restrictions 

• Recall that we estimate 𝐾𝑀 + 1/2 𝑀(𝑀 + 1) reduced form 
parameters. But, the structural model has 𝑀2 + 𝐾𝑀 + 1/2 𝑀(𝑀 + 1).

• We need to reduce the number of  unknown structural parameters we 
want to estimate. That is, we need restrictions to identify the model.

• First Order Restrictions
1. Normalization: Reduces the number of  unknown parameters in Γ to 
𝑀2 – 𝑀.
2. Identities: Reduces the number of  known parameters by a structure 
specific amount. Example, D = S = Q.
3. Exclusion restrictions: Reduces the number of  unknown parameters 
by a structure specific amount. Example, Y is not in the supply 
equation.
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4. Linear restrictions –for example, coefficients add to a given value. 

• Second Order Restrictions
5. Restrictions on Σ. Apart from VAR systems, this restriction is not 
used very much.

• Higher Order Moments Restrictions
6. Non-linearities: Outside of  this course. They have been used to deal 
with the errors-in-variables problem.

Identification - Restrictions

• WLOG, we study identification of  a single equation, say equation 1:
Y 1 = X B1 + 𝜺1

 𝒚ଵ = Y(-1) (-1) + X B1 + 𝜺1

where Y(-1) is the Tx(𝑀 – 1) matrix that excludes the first column of  Y.

• The normalization condition will be imposed. We will add exclusion 
restrictions. Excluded variables will have an * added. 

Then, we have the equivalences:
# exogenous (predetermined) variables = 𝑘ଵ + 𝑘ଵ* = K
# endogenous variables = 𝑚ଵ + 𝑚ଵ* = 𝑀 – 1 –γ11=1.

• We partition the first equation accordingly 
𝒚ଵ1 = Y(-1) (-1) + Y(-1)* (-1)* + X1 ℬ1 + X1* ℬ1* + 𝜺1

Identification – Single Equation
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𝒚ଵ = Y(-1) (-1) + Y(-1)* (-1)* + X1 ℬ1 + X1* ℬ1* + 𝜺1

Be careful with the dimensions. For example, Y(-1)* is a Tx𝑚ଵ* matrix, 
X1* is a Tx𝑘ଵ* matrix, etc. 

• By definition (-1)* = 0 and ℬ1* = 0. Now, the number of  parameters 
in the equation is 𝑘ଵ + 𝑚ଵ – 1.

• We write the reduced form of  the structural equation.
[𝒚ଵ Y1 Y1*] = [X1 X1* ] 1 + V1

Using   = -B, we have:

Identification – Single Equation










































 0
0

1

~

~
1

)1(*
1

1
*
1

1
*
1

1 β




• First equation: 𝑘ଵ + 𝑚ଵ − 1 unknowns with 𝑘ଵ equations.
- If  (-1) is known, we have a 𝑘ଵx𝑘ଵ system  ℬ1 can be found. 
- Otherwise, ℬ1 and (-1) can take on arbitrary values and still satisfy it. 

• Second equation: 𝑘ଵ∗ equations with 𝑚ଵ − 1 unknowns ((-1)).
- If  we know π1∗ and Π1∗, we can potentially recover (-1). Once (-1) is 
found, it can be used to get ℬ1. 

• This result is known as the order condition (a necessary condition).
We can recover (-1) (and, then, ℬ1) if  𝑘ଵ∗ ≥ 𝑚ଵ − 1. 

“The number of  excluded exogenous variables must be at least as great as the 
number of  RHS included endogenous variables.”

Identification – Single Equation

0)1(
*
1

*
1

1)1(11











 β

• Thus, we have two equations relating the parameters:
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• The order condition (𝑘ଵ∗ ≥ 𝑚ଵ − 1) is only a necessary condition. 

• A necessary and sufficient condition known as the rank condition:
rank(π1∗ П1

∗) = rank(П1
∗) = 𝑚ଵ − 1

• Using matrix notation, we can generalize the restrictions 

where Φ is a gx(𝑚ଵ+𝑘ଵ) matrix of  linear restrictions, and Θ is a gx1 
non-zero vector. Then, the rank condition can be expressed as: 

Identification – Single Equation
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Identification - Conditions

• Order condition for identification of  equation 𝑗:
𝑘௝∗ ≥ 𝑚௝ − 1

The number of  exogenous variables excluded from equation 𝑗 must be 
at least as large as the number of  endogenous variables included in 
equation 𝑗.

It ensures that the second equation has at least one solution. It does 
not ensure that it has only one solution. It is a necessary condition.

• Rank condition:
rank(πj∗ Пj∗ ) = rank(Пj∗) = 𝑚௝− 1

The rank condition ensures that there is exactly one solution for the 
structural parameters given the reduced-form parameters.
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Identification - Conditions

• Rank condition:
rank(πj∗ Пj∗) = rank(Пj∗) = 𝑚௝ − 1

• Consider the set of  variables excluded from the equation 𝑗. The 
matrix of  coefficients for these variables in the other equations must 
have full row rank.

“For each equation: Each of  the variables excluded from the equation must appear 
in at least one of  the other equations (no zero columns). Also, at least one of  the 
variables excluded from the equation must appear in each of  the other equations (no 
zero rows).”

The rank condition ensures that there is exactly one solution for the 
structural parameters given the reduced-form parameters.

Identification - Conditions

• Rank condition is complicated to calculate. 

In practice, we follow these simple steps to calculate it: 
1) Write down the system in tabular form (Rank Condition Table).
2) Strike out the coefficients corresponding to the equation to be 

identified.
3) Strike out the columns corresponding to those coefficients in Step 2 

which are non-zero.
4) The entries left in the table will give only the coefficients of  the 

variables included in the system, but not in the equation under 
consideration. From these coefficients form all possible A matrices 
of  order M − 1 and obtain a corresponding determinant. If  at least 
one of  these determinants is non-zero then that equation is 
identified.
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Identification – Conditions – Example

• Suppose we have the following system, with 𝑀 = 3 and 𝐾 = 3:

- Order condition − There are 3 exogenous variables in the system 
(𝑿ଵ; 𝑿ଶ; 𝑿ଷ) & no more than 3 slope coefficients in any one equation.  

- Rank condition – Steps to get the rank of  submatrices.
(1) We use a table (Rank Condition Table) in which an X indicates a 
variable appears in the given equation and a 0 indicates a variable does 
not appear in the given equation.

(2) Strike from the matrix the column of  equation of  interest.

(3) Keep only the rows with a 0.

334131213

224133212

1331211






XXYY

XXYY

XXY

Identification – Conditions – Example

• Rank Condition Table
X: a variable appears in the given equation 
0: a variable does not appear in the given equation:

• Then, for equation 𝑗:
1) Select the columns corresponding to the variables that do not 
appear in equation𝑗. From this submatrix, delete row 𝑗. 

2) If  the rank of  remaining submatrix is ≥ 𝑚 − 1 => rank condition is 
satisfied for equation 𝑗 --and parameters of  equation 𝑗 are identified.
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Identification – Conditions – Example

• Rank Condition Table

• Equation 1: (Y2; Y3; 𝑿ଶ) are excluded, so the relevant submatrix is

Rank of  the submatrix is 2. Equation 1 is identified. 
• Equation 3: (Y2; 𝑿ଶ) are excluded, so the relevant submatrix is

Rank of  the submatrix is 1. Equation 3 is not identified.

Identification – Conditions – Example

• What would restore identification? We need rank 2 for the submatrix.  
One way to do this is to replace 𝑿ଵ with 𝑿ଶ. 

The solution seems natural as now each of  the 3 equations has 
different exogenous shifters. 

• The other way is to add Y2 to the equation 1. (By adding Y2 we have 
made Y1 a function of  𝑿ଶ.)

Note: It is clear that the distribution of  the exogenous variables 
depends on the distribution of  the endogenous variables.
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Identification - Terminology

• The usual terminology regarding identification in the SEM context is 
that equations or systems are over-identified, under-identified - or exactly
identified.

These are formally defined as:
- Under-identified Structure:  𝑘௝∗ < 𝑚௝ − 1
- Exactly identified Structure: 𝑘௝∗ = 𝑚௝ − 1
- Over-identified Structure: 𝑘௝∗ > 𝑚௝ − 1

Identification – Covariance Restrictions

• So far, all the information provided by Ω is used in the estimation of
Σ. But, for given , the relationship between Ω and Σ is one-to-one. 
Recall that ’ Ω  = Σ.

• If  restrictions are placed on Σ, we have more information in the 
unrestricted Ω than is needed for estimation of  Σ. In many cases, the 
excess information can be used to identify B, .

• Recall that the OLS bias arises because E[𝑦௜′ 𝜀௝] ≠ 0. This can 
happen in 2 ways:
(1) Direct relation: ௜௝ ≠ 0.
(2) Indirect relation:  ௜௝ = 0, but  E[𝜀௜′𝜀௞] ≠ 0 and ௞௝≠ 0.

Example: Zero covariance restrictions σij = 0. In the Demand and 
Supply example this information can be used to identify the system.
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Identification – Covariance Restrictions

• We incorporate the covariance restrictions to the system. That is, 
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where Φ is a (𝑘ଵ* x  𝑚ଵ+ 𝑘ଵ) matrix of  exclusion restrictions. 

• Note that the term -1Σ is related to the OLS bias: 

plim(Y’E/T) = plim((XΠ+V)’E /T) = plim((Π’X’E/T) +V’E/T)
= 0 + plim(1′E’E/T) = -1Σ

Identification – Covariance Restrictions

• The matrix -1Σ can identify if  variable 𝑗 can be an instrument in 
equation 𝑖. 

Let’s define [-1′ Σi]j = Σk (-1)jk′ σki = (-1)j1′ σ1i + (-1)j2′ σ2i +...

⇒ If  [-1′Σi]j = 0, 𝒚௝ can be used as an IV in equation 𝑖.
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Identification – Remarks

• Showing that an equation in an SEM with more than two equations is 
identified is generally difficult. It is easy to see when certain equations 
are not identified.

• An equation in any SEM that does not satisfies the order condition, it 
is not identified.  This is an easy condition to check.

• For identification, the order condition is only necessary, not 
sufficient, for identification. 

• To obtain sufficient conditions, we need to extend the rank condition. 
For big systems, it can be complicated. 

• In practice, it is usual to assume that an equation that satisfies the 
order condition is identified.

Single Equation Estimation – 2SLS

• WLOG, we assume we are interested in estimating equation 1.
𝒚ଵ = Y1 1 + X1 B1 + 𝜺1 = W1 δ1 + 𝜺1 (*)

• Given that E[Y1’ε1] ≠ 0, OLS is inconsistent for 1 and B1. We need 
IV –we need an instrument for Y1– to estimate 1 and B1 consistently.

The reduced form Y1 = X Π1 + V1 gives us a clue how to proceed: Ŷ1.
Ŷ1 = X (X'X)-1X’ Y1  E[Ŷ1’ 𝜺1 ] = 0.

Then, 𝒚ଵ = Ŵ1 δ1 + ξ1 with Ŵ1 = [Ŷ1 X1], δ1 = [1 B1 ]′

Note that δ can be consistently estimated by OLS:
d1,2SLS = (Ŵ1' Ŵ1)-1Ŵ1' 𝒚ଵ – this is the 2SLS estimator.

To estimate the variance, we need σε12. It should be estimated using (*).
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Single Equation Estimation – 2SLS

• To estimate the variance, we need σε12. It should be estimated using 
equation (*). That is, using Y1 not Ŷ1:

SLSSLSSLS BXYye 2,112,1112,1
ˆˆ 

• Note: The 2SLS is a limited information (LI) method, since it looks at 
information in one equation one at a time. Full information (FI) 
methods look at all equations jointly and simultaneously together. 

• For example, suppose there is a correlation across equations. That is, 
E[𝜀௜′𝜀௝|Xi ] ≠ 0,   for i ≠ 𝑗.

Then, from SUR theory, LI methods like 2SLS will not be efficient, in 
general. To gain efficiency, we need a FI method.

2SLS – Identification (again)

• Let’s go back to the identification issue. Suppose that X = X1 –i.e., 
there are no excluded exogenous variables; they are all in equation 1. 
Then, 

𝒚ଵ = Ŷ1 1 + X1 B1 + ξ1 = (X ) 1 + X1 B1 + ξ1

• We cannot estimate both 1 and B1 since the same regressors are 
attached to each parameter (albeit recombined in the case of  1). 

• We must have more regressors in X than appear in X1. In particular, 
to estimate 1 we must have at least 𝑚ଵ − 1 more regressors, leading to 
the rule K − 𝑘௝∗ ≥ 𝑚௝− 1 (the order condition for identification).

• The rank condition is needed since having 𝑚ଵ − 1 “extra regressors” 
is not enough, as       may assign them zero weight, or induce 
dependencies.

1̂

1̂
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2SLS – Identification (again)

• Identification as lack of  IV
- To do 2SLS, we must have (at least) as many instruments as we have 
variables we need instruments for -i.e., dim(Z) = dim(X). Otherwise, in 
the identified case (Z'X) would not be square and, thus, invertible.

- In SEM, when wouldn’t we have enough IVs? In X we have X1 

(exogenous variables included in equation 1) and X1* (those excluded).

- If  none were excluded, then, X = X1    Π෡ଵX1 = Π෡ଵ X,  

which are just linear combinations of  the X1 –i.e., there are no extra 
IVs above X1 and (Z'X) would be singular.

- We need other instruments besides X1. We need them for Y1, thus, we 
need to have at least as many IV as dim(1). 

2SLS – Identification (again)

• We need other instruments besides X1. We need them for Y1, thus, 
we need dim(1). Then, the number of  extra instruments needed 
dim(X1*) = (K − 𝑘ଵ) must be at least as big as dim(1)= 𝑚ଵ− 1. 

This is the order condition.

• Also note that (Z'X) could be singular if  the instruments were 
uncorrelated with the Ŵ = [Ŷ1 X1]. 

This would be a failure of  the rank condition.

“An equation (with associated restrictions) is identified if  and only if  there exists a 
consistent IV estimator for the parameters in the equation -i.e., if  there are 
sufficient instruments for the RHS endogenous variables that are fully correlated 
with these variables.” 
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2SLS – Application

• Epple and McCallum (2005) estimate the canonical example for the 
market for chickens. They add a price of  a producing factor (W) in the 
supply. They use 1950-2001 USDA annual data to estimate the system:

dod YPQ   21

soS WPQ   11

• Two endogenous variables (Q and P), two exogenous variables (Y 
and W): M = 2 and K = 2.

• Both equations are identified: There is a missing exogenous variables 
in each equation: 𝑘ଵ* = 𝑘ଶ* = 1.

2SLS – Application

• Epple and McCallum (2005) use the USDA per capita consumption 
of  chicken as Q for demand. EM first report the OLS estimates (OLS 
estimates are biased and inconsistent).

OLS Qd = per capita consumption of  chicken ΔQd

Constant -4.860 (0.67) -4.679 (0.68) 5.939 (0.19) -

Y (ΔY) 0.871 (.07) 0.852 (.07) 0.272 (0.27) 0.771 (0.15)

Price (ΔP) -0.277 (0.07) -0.264 (0.07) -.307 (0.07) -0.374 (0.06)

PBeef  (ΔPb) - -0.118 (0.08) 0.247 (0.08) 0.251 (0.07)

ε(-1) - - 0.997 (0.02) -

R2 0.980 0.981 .995 .331

DW 0.343 0.443 2.396 2.380



25

2SLS – Application

• EM for supply they want to use a production aggregate. EM use 
QA = Q + log(Population). The OLS estimates:

OLS QA = Q + log(Population)

Constant 9.185 (0.03) 2.652 (0.61) 2.478 (0.70)

W=Price Corn -0.338 (.08) -0029 (.02) -

Price -1.203 (0.11) -0.143 (0.05) -.041 (0.05)

Time (technology) - 0.010 (0.003) 0.010 (0.004)

QA(-1) - 0.629 (0.09) 0.647 (0.11)

W=Price Young - - -0.083 (0.03)

R2 0.942 0.997 .997

DW 0.591 2.054 1.883

2SLS – Application

• EM report the 2SLS estimates. In the last two columns, Q also is 
adjusted to account for exports (Exports = Qprod - QA).

2SLS ΔQd QA ΔQd QprodA

Constant - 2.371 (0.77) - 2.030 (0.70)

(ΔY)/W(PYoung) 0.843 (.14) -0.113 (0.04) 0.841 (.14) -0.146 (.05)

ΔP/Price -0.404 (.09) 0.105 (0.08) -0.397 (.09) 0.221 (0.11)

ΔPb 0.279 (0.09) - 0.274 (0.09) -

Time - 0.012 (0.004) - 0.018 (0.006)

QA(-1)/QprA(-1) - 0.640 (.12) - 0.631 (.13)

R2 0.291 0.996 0.299 0.996

DW 1.929 1.869 2.011 2.011
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System Estimation – 3SLS 

• In some cases, we want to estimate the whole system. We have M
equations:

𝑦௝ = 𝒀௝′ γ௝ +  𝑿௝′௝ +  𝜀௝ = 𝑾௝′𝛿௝ +  𝜀௝ 𝑗 ൌ 1, 2, … ,𝑀
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with E[𝜺 |X] = 0 and E[𝜺 𝜺′|X] = V = ΣMxM ⊗ IT

• The OLS estimator (equation-by-equation) is inconsistent. We can do 
2SLS. But, 2SLS ignores V  2SLS will be inefficient.

• Writing the system in stack form:

System Estimation – 3SLS 

• Similar to SUR, 3SLS allows us to estimate the error covariance 
matrix of  dimension MxM, which will be used to do FGLS.

• Steps:
(1) 2SLS in each equation. 

(1.a) Regress each endogenous variable (column of  Y) on all
exogenous variables X to get Ŷj = X (X’X)-1X’Yj = PX Yj

(1.b) Using Ŵj = [Ŷj Xj], estimate dj,2SLS. Keep residuals 𝒆௝,ଶௌ௅ௌ

(2) Using 𝒆௝,ଶௌ௅ௌ, calculate (the MxM covariance matrix)

(3) Stack the data. Do FGLS as usual for the whole system:

̂

yIWWIWyVWWVWSLS
111111

3 ]ˆ['ˆ)ˆ]ˆ['ˆ('ˆ)ˆ'ˆ(ˆ  
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System Estimation – 3SLS 

• The FGLS third stage for the 3SLS estimator can be done by OLS on 
transformed data. 

Steps:
(1) Cholesky decomposition of  Σ-1 (from step 2) and PX

Let L be a lower triangular Cholesky factor of  Σ-1 (from step 2) and Q
be a lower triangular Cholesky factor X(X'X)-1X'. That is,

(L⊗Q)(L⊗Q)’ = Σ-1 ⊗(X(X'X)-1X'). 

(2) Transform the stacked system (L⊗Q) y = (L⊗Q) W δ + ε

(3) Apply OLS to this system to get the 3SLS estimators.

• Main advantage of  3SLS over 2SLS: A gain in asymptotic efficiency.  
• Main disadvantage: The estimators for a single equation are 
potentially less robust. They will be inconsistent if  the IV assumptions 
that X is predetermined fail in any equation, not just a particular one.

System Estimation – 3SLS 

• The 3SLS is given by:

𝛿መଷௌ௅ௌ ൌ ሾ𝑊′ሺΣ෠ିଵ ⊗ 𝑃௑ሻ𝑊ሿିଵ𝑊′ሺΣ෠ିଵ ⊗ 𝑃௑ሻ𝑦

Notation:

• Then substituting above
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System Estimation – 3SLS 

• Let Z = (Σ-1 ⊗ PX)W. Then,

• That is, 3SLS is an IV estimator.

• Like all IV estimators, it is a consistent estimator. It is also efficient, 
relative to other IV estimators that use only sample information. The 
estimated asymptotic variance is:

Note: It is also possible to iterate the 3SLS computation. But, unlike 
SUR, however, this method does not provide the MLE, nor does it 
improve the asymptotic efficiency.

𝐸𝑠𝑡.  𝐴𝑠𝑦.  𝑉𝑎𝑟ሾ𝛿መଷௌ௅ௌ|𝑋ሿ ൌ ሺ𝑊෡ ′ሾΣ෠ ⊗ 𝐼ሿିଵ𝑊෡ ሻିଵ

𝛿መଷௌ௅ௌ ൌ ሾ𝑊′ሺΣ෠ିଵ ⊗ 𝑃௑ሻ𝑊ሿିଵ𝑊′ሺΣ෠ିଵ ⊗ 𝑃௑ሻ𝑦
  ൌ ሺ𝑍′𝑊ሻିଵ𝑍′𝑦

System Estimation – FIVE 

• Full Information Instrumental Variable (FIVE)
Simple idea:
(1) Do IV estimation in each equation, say 𝑗, using 𝑘௝ instruments 𝒁௝ :

𝒅௝,ூ௏ = (𝒁௝′𝑾௝)-1𝒁௝′𝒚௝  get 𝒆௝,ூ௏

(2) Form 

(3) Do FGLS

• FIVE works in terms of  the estimates of  B and -1, while 3SLS 
works in terms of  Π.

̂

]ˆˆ[ˆ]ˆ['ˆ)]ˆ['ˆ(ˆ 1111
jjjFIVE XXWyIWWIW  



29

System Estimation – FIML

• Full Information Maximum Likelihood (FIML) 

- Write the full system

Y  + X B = E
- Assume E|X ~ N(0, Σ ⊗ IT) –an MxM matrix.

- Write the likelihood function:

L(B, , Σ|X) = (2π)-T/2 |Σ|-T/2 exp[tr{- ½ E' Σ-1 E} 

- Or, in stacked form

L = (2π)-MT/2 |Σ⊗IT|-MT/2 exp{- ½ E' (Σ⊗IT)-1 E} 

- Write the log likelihood function:
L = -T/2 ln(2π) – T/2 ln|Σ| – ½tr{(Y +X B)'(Y +X B) Σ-1+ ln|J|}

where J= is the Jacobian from the change in variable (from E to Y).

System Estimation – FIML

L = -T/2 ln(2π) – T/2 ln|Σ| – ½tr{(Y +X B)'(Y +X B) Σ-1+ ln||}

- Take derivatives of  L w.r.t. , B and Σ and set them equal to 0 (foc):

(1) δL /δ' = -Y' (Y +X B) Σ-1 + T -1

 Y'EML/T = ML
-1 ΣML – Bias in OLS due to SEM.

(2) δL /δB' = -X' (Y +X B) Σ-1 

 Z'EML ΣML
-1= 0 – IV condition.

(3) δL /δΣ-1' = T/2 (Σ-1)-1 – ½ (Y +X B)'(Y +X B)

 ΣML= EML' EML/T – Standard formula for Σ.

Under FIML, we solve simulateneously (1)-(3) for , B and Σ.



30

System Estimation – FIML

• Alternative FIML derivation – Greene’s textbook

- Write reduced form system

Y = XΠ + V
- Assume V|X ~ N(0, Ω) –an MTxMT matrix.

- Write the log likelihood function as:
L = ln L(Π, Ω|X) = – MT/2 ln(2π) – T/2 ln|Ω| – ½ tr(Ω-1W )

where Wij = (y - Xπj)’ (y - Xπi)

- Make the substitutions: Π = -B 1  and Ω =1’Σ 1

- Then,
L = - MT/2 ln(2π) – T/2 ln|1′ Σ 1| –

– ½ tr{ ( Σ-1  ’)(Y + X B1)’(Y + X B1)}

= - MT/2 ln(2π) – T/2 ln|Σ|- T/2 x 2 ln|| –

– ½ tr{Σ-1(Y + XB)’ (Y + XB)}

System Estimation – FIML

L = - MT/2 ln(2π) – T/2 ln|Σ|- T ln||-

– ½ tr{Σ-1(Y  + X B)’(Y  + X B)}
= – T/2 {M ln(2π) + ln|Σ|- 2 ln||+ tr(Σ-1 S)}

S =1/T (Y  +X B)’(Y  +X B)       --sij=1/T(Y i+X Bi)’(Y j +X Bj)

- Take derivatives of  L w.r.t. , B and Σ, then get f.o.c.’s and solve for 
the MLE of  , B and Σ.
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System Estimation – FIML

• Take derivatives of  L w.r.t. , B and Σ, then get f.o.c.’s and solve for 
the MLE of  , B and Σ. It turns out the FIML estimator is given by:

System Estimation – FIML & 3SLS

• This result implies that the FIML estimator is an IV estimator. Not a 
surprise, it is one of  the implications from the f.o.c.’s.

• The asymptotic covariance matrix for the FIML estimator follows 
directly from its form as an IV estimator (3SLS). If  normality for errors 
is assumed, 3SLS has the same asymptotic distribution as ML. This 
result is due to Sargan (Econometrica, 1964).

• Implication: The 3SLS estimator is easier to compute. The easier 
computations comes at no cost in asymptotic efficiency.

• Small-sample properties remain ambiguous. We tend to find that 3SLS 
dominates FIML. The 3SLS estimator is robust to non-normality. The 
FIML estimator is not -- because of  the term ln|J| in the log L. 
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System Estimation – FIML & 3SLS

• The 3SLS and FIML estimators are usually quite different numerically.

• Interesting result: If  the system is just identified,
FIVE = 3SLS = FIML = 2SLS

System Estimation – GMM

• GMM is also possible both for single equation or for system 
estimation. 

• As usual we need moments: 
- For a single equation, assume : yjt = z’jt δj + εjt z =[Y, x]

gT(θ*) =E[xtεjt] = E[xt(yjt - z’jt δ)]= 0

- For a system:
q = Σj Σl [et(wt,δj)’X/T] [W]jl [X’et(wt,δj)/T] 

= Σj Σl m(δj)’ [W]jl m(δj)

• W can incorporate different types of  heteroscedasticity, White or NW 
are OK.
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System Estimation – Application (Greene)

System Estimation – Application (Greene)

• Practical Remarks 
- It is often found that OLS estimates are very close to the structural 
estimates.
- OLS estimates can show smaller variances than 2SLS. (MSE issue?)
- Big numerical differences for all the methods. Even signs can be 
different.
- LI estimators can have smaller variances than the FI estimators. (Due 
to propagation of  specification errors?)
- The calculation of  the variance/weighting matrix matters.
- The gains from system estimation in finite samples may be modest.

• Note: All the remarks about OLS and LI estimators are done 
regarding the finite-sample properties; asymptotically IV and any FI 
estimator dominate. 
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DHW Specification Test

Estimator Xj is exogenous Xj is endogenous

δ Consistent and 
Efficient

Inconsistent

δ* Consistent

Inefficient

Consistent

Possibly Efficient

• In Lecture 8 (IV estimation), under an H0:plim(X’ε/T)=0, we have 
one estimator that is efficient (OLS) and one inefficient (IV). We can 
use a Durbin-Hausman-Wu test. 

• In SEM, Hausman bases his version of  the test on δ being the 2SLS 
estimator and δ* being the 3SLS estimator. Shortcoming: we need to 
choose arbitrarily one equation where Xj is not present for the test.


