Lecture 14 SUR

Panel Data Sets

- A panel data set, or longitudinal data set, is one where there are repeated observations on the same units. Now, we have $\left\{\mathrm{y}_{\mathrm{it}}, \mathbf{x}_{\mathrm{it}}\right\}$, where $i=1,2, \ldots ., N$ and $t=1,2, \ldots ., T_{i}$ usually, $N>T_{i}$
- The units -the i is- may be individuals, households, firms, countries, or any set of entities that remain stable through time.
- Repeated observations create a potentially very large panel data sets. With N units and T time periods \Rightarrow Number of observations: NT.
- Advantage: Large sample! Great for estimation.
- Disadvantage: Dependence! Observations are likely not independent
- Modeling the potential dependence creates different models.

Panel Data Sets

- The National Longitudinal Survey (NLS) of Youth is an example. The same respondents were interviewed every year from 1979 to 1994. Since 1994 they have been interviewed every two years.
- The CRSP database has daily and monthly stock and index returns from 1962 on for over 5,000 stocks $(N=5,000$ and T (monthly) $=600)$.

Panel Data Sets

- Panel data sets are often very large. If there are N units and T time periods, the potential number of observations is $N T$ (for the CRSP dataset, we have over 3 million observations). Potentially, great for estimation!

$$
\begin{gathered}
\text { Cross section } \\
\text { Time }\left[\begin{array}{cccccc}
y_{11} & y_{21} & \cdots & y_{i 1} & \cdots & y_{N 1} \\
y_{12} & y_{22} & \cdots & y_{i 2} & \cdots & y_{N 2} \\
\vdots & \vdots & \ddots & \vdots & & \vdots \\
\text { series } & \\
y_{1 t} & y_{2 t} & \cdots & y_{i t} & \cdots & y_{N t} \\
\vdots & \vdots & & \vdots & \ddots & \vdots \\
y_{1 T} & y_{2 T} & \cdots & y_{i T} & \cdots & y_{N T}
\end{array}\right]=\left[\begin{array}{llllll}
\mathbf{y}_{1} & \mathbf{y}_{2} & \cdots & \mathbf{y}_{i} & \cdots & \mathbf{y}_{N}
\end{array}\right]
\end{gathered}
$$

Panel Data Sets

- Notation:
$y_{1}=\left[\begin{array}{c}y_{11} \\ y_{12} \\ \vdots \\ y_{1 t} \\ \vdots \\ y_{1 T}\end{array}\right] ; \ldots ; y_{i}=\left[\begin{array}{c}y_{i 1} \\ y_{i 2} \\ \vdots \\ y_{i t} \\ \vdots \\ y_{i T}\end{array}\right] \quad X_{1}=\left[\begin{array}{cccc}x_{11} & x_{21} & \ldots & x_{k 1} \\ x_{12} & x_{22} & \ldots & x_{k 2} \\ \vdots & \vdots & \ldots & \vdots \\ x_{1 t} & x_{2 t} & \ldots & x_{k 2} \\ \vdots & \vdots & \vdots & \vdots \\ x_{1 T_{1}} & x_{2 T_{1}} & \ldots & x_{k T_{1}}\end{array}\right] ; \ldots ; X_{i}=\left[\begin{array}{cccc}w_{11} & w_{21} & \ldots & w_{k 1} \\ w_{12} & w_{22} & \ldots & x_{k 2} \\ \vdots & \vdots & \ldots & \vdots \\ w_{1 t} & w_{2 t} & \ldots & w_{k 2} \\ \vdots & \vdots & \vdots & \vdots \\ w_{1 T_{j}} & w_{2 T_{j}} & \ldots & w_{k T_{j}}\end{array}\right]$
- A standard panel data set model stacks the \mathbf{y}_{i} 's and the \mathbf{x}_{i} 's:

$$
y=X \beta+c+\varepsilon
$$

\mathbf{X} is a $\sum_{\mathrm{i}} T_{\mathrm{i}} \mathrm{x} k$ matrix
β is a $k x 1$ matrix
\mathbf{c} is $\Sigma_{\mathrm{i}} T_{\mathrm{i}} \mathrm{x} 1$ matrix, associated with unobservable variables.
\mathbf{y} and $\boldsymbol{\varepsilon}$ are $\Sigma_{\mathrm{i}} \mathrm{T}_{\mathrm{i}} \mathrm{x} 1$ matrices

Panel Data Sets

- Longitudinal data (Large N)
- National longitudinal survey of youth (NLS)
- British household panel survey (BHPS)
- Panel Study of Income Dynamics (PSID)
- Time series cross section (TSCS) data (Large T)
- Grunfeld's investment data
- Penn world tables
- Financial data
- COMPUSTAT provides financial data by firm ($N=99,000$) and by quarter ($T=$ 1962:I, 1962:II, ..., $)$
- Exchange rate data, essentially infinite $T, N=160+$
- Datastream provides economic and financial data for countries. It also covers bonds and stock markets around the world.
- OptionMetrics is a database of historical prices, implied volatility for listed stocks and option markets.

Balanced and Unbalanced Panels

- Notation:

$$
\mathrm{y}_{\mathrm{i}, \mathrm{t},} i=1, \ldots, \mathrm{~N} ; t=1, \ldots, T_{\mathrm{i}}
$$

- Mathematical and notational convenience:
- Balanced: NT
(that is, every unit is surveyed in every time period.)
- Unbalanced: $\sum_{i=1}^{N} T_{i}$

Q : Is the fixed T_{i} assumption ever necessary? SUR models.

- The NLS of Youth is unbalanced because some individuals have not been interviewed in some years. Some could not be located, some refused, and a few have died. CRSP is also unbalanced, some firms are listed from 1962, others started to be listed later.

Panel Data Model: CLM Revisited

- The DGP of the CLM is slightly modified:
(A1)

$$
\begin{array}{ll}
y_{\mathrm{it}}=\mathbf{x}_{\mathrm{it}}^{\prime} \beta_{\mathrm{i}}+\varepsilon_{\mathrm{it}} & \\
i=1,2, \ldots ., N & \text { - we have } N \text { individual, groups or firms. } \\
t=1,2, \ldots, T_{i} & \text { - usually, } N>T_{i}
\end{array}
$$

That is, the classical linear relation applies to each of N equations and T observations. If we assume (A2) to (A4), the y's are independent. No gain from a system estimation $\Rightarrow N$ OLS estimations are all we need!

Example: The CAPM:

$$
\mathrm{r}_{\mathrm{it}}-\mathrm{r}_{\mathrm{ft}}=\alpha_{\mathrm{i}}+\beta_{\mathrm{i}}\left(\mathrm{r}_{\mathrm{mt}}-\mathrm{r}_{\mathrm{ft}}\right)+\varepsilon_{\mathrm{it}}
$$

In the CAPM, $\mathbf{x}_{\mathrm{it}}=\mathbf{x}_{\mathrm{t}} \Rightarrow$ Explanatory variables are common across i. Note: In economics, N is traditionally small - 50 states, few developed countries. But, no for the CAPM: N is in the thousands!

Panel Data Model: CLM Revisited - Notation

- Rewrite (A1) DGP using matrix notation.

$$
\mathbf{y}_{\mathrm{i}}=\mathbf{X}_{\mathrm{i}} \boldsymbol{\beta}_{\mathrm{i}}+\boldsymbol{\varepsilon}_{\mathrm{i}} \quad i=1,2, \ldots, N
$$

- Dimensions:
\mathbf{X}_{i} is a $T_{i} \mathrm{x} k$ matrix
$\boldsymbol{\beta}_{\mathrm{i}}$ is a kx1 matrix
\mathbf{y}_{i} and $\boldsymbol{\varepsilon}_{\mathrm{i}}$ are $T_{i} \mathrm{x} 1$ matrices
- Now, stacking all the equations:

$$
y=X \beta+\varepsilon
$$

- Dimensions:

$$
\mathbf{X} \text { is a } \Sigma_{\mathrm{i}} T_{\mathrm{i}} \mathrm{x} N k \text { matrix } \quad\left(\text { if } T_{i}=T \text { for all } i=>\mathbf{X} \text { is } N T \mathrm{x} N k\right. \text {) }
$$

β is a $N k x 1$ matrix
\mathbf{y} and $\boldsymbol{\varepsilon}$ are $\Sigma_{\mathrm{i}} \mathrm{T}_{\mathrm{i}} \mathrm{x} 1$ matrices

Panel Data Model: CLM Revisited - (A3')

- DGP: (A1) $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
where \mathbf{X} is a $\Sigma_{\mathrm{i}} T_{\mathrm{i}} \mathrm{x} N k$ matrix, $\boldsymbol{\beta}$ is a $N k \times 1$ matrix, and \mathbf{y} and $\boldsymbol{\varepsilon}$ are $\Sigma_{\mathrm{i}} T_{\mathrm{i}} \mathrm{x} 1$ matrices
- General formulation for covariance matrix: ($\mathbf{A 3}^{\prime}$) $\mathrm{E}\left[\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime} \mid \mathbf{X}\right]=\mathbf{V}$

Note: V is an $\Sigma_{\mathrm{i}} T_{\mathrm{i}} \mathrm{x} \Sigma_{\mathrm{i}} T_{\mathrm{i}}$ matrix (if $T_{i}=T$ for all i, then it is an $N T \mathrm{x} N T$ matrix): Huge!

- We can have different elements in ($\mathbf{A 3}^{\mathbf{3}}$):
(1) Standard groupwise heteroscedasticity (diagonal elements)
(2) Autocorrelated errors (off-diagonal i elements)
(3) Contemporaneously cross-correlated errors (off-diagonal $i j$ elements)
(4) Time-varying cross-correlated errors (off-diagonal $i j$ elements)

Seemingly Unrelated Regressions (SUR)

- In the SUR model we assume a specific form for \mathbf{V} :
(A1) $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
(A2) $\mathrm{E}\left[\boldsymbol{\varepsilon}_{\mathbf{i}} \mid \mathbf{X}\right]=\mathbf{0}$,
(A3') $\operatorname{Var}\left[\varepsilon_{\mathrm{i}} \mid \mathbf{X}\right]=\sigma_{\mathrm{i}}^{2} \mathbf{I}_{\mathrm{T}}=\sigma_{\mathrm{ii}} \mathbf{I}_{\mathrm{T}} \quad$ - groupwise heteroscedasticity.
$\mathrm{E}\left[\varepsilon_{\mathrm{it}} \varepsilon_{\mathrm{jt}} \mid \mathbf{X}\right]=\sigma_{\mathrm{ij}} \quad$ - contemporaneous correlation
$\mathrm{E}\left[\varepsilon_{\mathrm{it}} \varepsilon_{\mathrm{is}} \mid \mathbf{X}\right]=0(t \neq s) \quad$ - no autocorrelation $\mathrm{E}\left[\varepsilon_{\mathrm{it}} \varepsilon_{\mathrm{js}} \mid \mathbf{X}\right]=0(t \neq s) \quad$ - no time-varying cross-correlation
(A4) $\quad \operatorname{Rank}(\mathbf{X})=$ full rank Nk
- In (A1)-(A4), we have a GR model.
- In (A1), individual i seems independent of individual j. But, they are not. They are related through the covariance matrix in ($\mathbf{A} \mathbf{3}^{\mathbf{\prime}}$).

SUR: Formulation

- Q: What kind of theoretical structure produces a SUR DGP?

A: We need a model where there is a specific, heteroscedastic i factor and a common factor to all individuals. This common factor causes contemporaneous correlation only. It causes no correlations over time.

In finance, the variation in excess returns is affected both by firm specific factors and by the economy as a whole.

- The SUR model is a GR model. A rich model with (assume $T_{i}=T$):
(1) Different coefficient vectors for each $i \quad \Rightarrow N k$ parameters
(2) Different variances for each $i \quad \Rightarrow N$ parameters
(3) Correlation across i at each $t \quad \Rightarrow N(N-1) / 2$ parameters

Note: We have $N T$ observations to estimate $(N k+N+N(N-1) / 2)$ parameters. We need T to be reasonably big.

SUR: Formulation

- In (A1), individual i seems independent of individual j. But, they are not. They are related through the covariance matrix in ($\mathbf{A} \mathbf{3}^{\prime}$).
- Rewrite the contemporaneous correlation structure in ($\mathbf{A} \mathbf{3}^{\mathbf{3}}$):

$$
\begin{aligned}
& \mathrm{E}\left[\varepsilon_{\mathrm{it}} \varepsilon_{\mathrm{jt}} \mid \mathbf{X}\right]=\sigma_{\mathrm{ij}} \quad \text {-contemporaneous correlation } \\
& \mathrm{E}\left[\varepsilon_{\mathrm{it}} \varepsilon_{\mathrm{js}} \mid \mathbf{X}\right]=0 \quad \text { when } t \neq s \\
& \mathrm{E}\left(\varepsilon_{i} \varepsilon_{j}{ }^{\prime}\right)=E\left(\begin{array}{cccc}
\varepsilon_{1 i} \varepsilon_{1 j} & \varepsilon_{1 i} \varepsilon_{2 j} & \cdots & \varepsilon_{1 i} \varepsilon_{T j} \\
\varepsilon_{2 i} \varepsilon_{1 j} & \varepsilon_{2 i} \varepsilon_{2 j} & \cdots & \varepsilon_{2 i} \varepsilon_{T j} \\
\vdots & \vdots & \ddots & \vdots \\
\varepsilon_{T i} \varepsilon_{1 j} & \varepsilon_{T i} \varepsilon_{2 j} & \cdots & \varepsilon_{T i} \varepsilon_{T j}
\end{array}\right)=\left(\begin{array}{cccc}
\sigma_{i j} & 0 & \cdots & 0 \\
0 & \sigma_{i j} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{i j}
\end{array}\right) \\
& =\sigma_{i j} I_{T}
\end{aligned}
$$

- This covariance matrix for the model is an NTxNT matrix (if $T_{i}=T$). To get the final SUR formulation, stack the equations \Rightarrow GR model.

Example: The SUR Model (2×2 case)

Consider a two equation system.

$$
\begin{aligned}
& \mathrm{y}_{1}=\mathrm{X}_{1} \beta_{1}+\varepsilon_{1} \\
& \mathrm{y}_{2}=\mathrm{X}_{2} \beta_{2}+\varepsilon_{2}
\end{aligned}
$$

Now, stack these two equations: $\left[\begin{array}{l}\mathrm{y}_{1} \\ \mathrm{y}_{2}\end{array}\right]=\left[\begin{array}{cc}\mathrm{X}_{1} & 0 \\ 0 & \mathrm{X}_{2}\end{array}\right]\binom{\beta_{1}}{\beta_{2}}+\left[\begin{array}{l}\varepsilon_{1} \\ \varepsilon_{2}\end{array}\right]=\mathrm{x} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$.
The disturbance covariance matrix is

$$
\begin{aligned}
& \text { Var }\left[\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2}
\end{array}\right]=\mathrm{E}\left[\begin{array}{ll}
\varepsilon_{1} \varepsilon_{1}^{\prime} & \varepsilon_{1} \varepsilon_{2}^{\prime} \\
\varepsilon_{2} \varepsilon_{1}^{\prime} & \varepsilon_{2} \varepsilon_{2}^{\prime}
\end{array}\right]=\left(\begin{array}{ll}
\sigma_{11} \mathbf{I} & \sigma_{12} \mathbf{I} \\
\sigma_{12} \mathbf{I} & \sigma_{22} \mathbf{I}
\end{array}\right) \\
& \sigma^{2} \Omega=\mathbf{V} .
\end{aligned}
$$

(The σ^{2} is there just to use the notation we are used to for the GR model.

SUR Estimation: OLS and GLS

- Since OLS is consistent, each equation can be fit by OLS. HAC estimator can be used for inferences.
- GLS Estimation: $\hat{\beta}_{F G L S}=\left(X^{\prime} \hat{V}^{-1} X\right)^{-1} X^{\prime} \hat{V}^{-1} y$

Q: Why do GLS? Efficiency improvement.

$$
\begin{aligned}
E\left(\left(\hat{\beta}_{G L S}-\beta\right)\left(\hat{\beta}_{G L S}-\beta\right)^{\prime}\right) & =E\left(\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} e e^{\prime} V^{-1} X\left(X^{\prime} V^{-1} X\right)^{-1}\right) \\
& =\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} V V^{-1} X\left(X^{\prime} V^{-1} X\right)^{-1} \\
& =\left(X^{\prime} V^{-1} X\right)^{-1}
\end{aligned}
$$

- Gains to GLS:
- Efficiency gains increase as the cross equation correlation increases.
- But, no gains if identical regressors -for example, in the CAPM. \Rightarrow GLS is the same as OLS.

SUR: GLS Estimation

- Derivation of the GLS estimator for the 2×2 case:
$\hat{\beta}_{G L S}=\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} y=\left(\left(\begin{array}{cc}X_{1}^{\prime} & 0 \\ 0 & X_{2}^{\prime}\end{array}\right)\left(\begin{array}{cc}\sigma_{1}^{2} I_{T} & \sigma_{12} I_{T} \\ \sigma_{21} I_{T} & \sigma_{2}^{2} I_{T}\end{array}\right)^{-1}\left(\begin{array}{cc}X_{1} & 0 \\ 0 & X_{2}\end{array}\right)\right)^{-1}\left(\begin{array}{cc}X_{1}^{\prime} & 0 \\ 0 & X_{2}^{\prime}\end{array}\right)\left(\begin{array}{cc}\sigma_{1}^{2} I_{T} & \sigma_{12} I_{T} \\ \sigma_{21} I_{T} & \sigma_{2}^{2} I_{T}\end{array}\right)^{-1}\binom{y_{1}}{y_{2}}$
$=\left(\left(\begin{array}{cc}X_{1}^{\prime} & 0 \\ 0 & X_{2}^{\prime}\end{array}\right)\left(\begin{array}{ll}\frac{\sigma_{22}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} I_{T} & \frac{-\sigma_{12}}{\sigma_{11} \sigma_{22}-\sigma_{12}} I_{T} \\ \frac{-\sigma_{12}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} I_{T} & \frac{\sigma_{11}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} I_{T}\end{array}\left(\begin{array}{cc}X_{1} & 0 \\ 0 & X_{2}\end{array}\right)\right)^{-1}\left(\begin{array}{cc}X_{1}^{\prime} & 0 \\ 0 & X_{2}^{\prime}\end{array}\right)\left(\begin{array}{lll}\frac{\sigma_{22}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} I_{T} & \frac{-\sigma_{12}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} I_{T} \\ \frac{-\sigma_{21}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} I_{T} & \frac{\sigma_{11}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} I_{T}\end{array}\right)\binom{y_{1}}{y_{2}}\right.$
$=\left(\begin{array}{ll}\frac{\sigma_{22}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} X_{1}^{\prime} X_{1} & \frac{-\sigma_{12}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} X_{1}^{\prime} X_{2} \\ \frac{\sigma_{21}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} X_{2}^{\prime} X_{1} & \frac{\sigma_{11}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} X_{2}^{\prime} X_{2}\end{array}\right)^{-1}\binom{\frac{\sigma_{22}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} X_{1}^{\prime} y_{1}-\frac{\sigma_{12}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} X_{1}^{\prime} y_{2}}{\frac{-\sigma_{21}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} X_{2}^{\prime} y_{1}+\frac{\sigma_{11}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} X_{2}^{\prime} y_{2}}$

Notation: Kronecker Products

- A Kronecker product is a matrix product, denoted $\mathrm{A} \otimes \mathrm{B}$, in which in the result, each element of A multiplies the entire matrix B. That is, $A \otimes B$ creates a matrix of matrices.

$$
A \otimes B=E\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 K} B \\
a_{21} B & a_{22} B & \cdots & a_{2 K} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{T 1} B & a_{T 2} B & \cdots & a_{T K} B
\end{array}\right)
$$

Note: There is no requirement for conformability in this operation. The Kronecker product can be computed for any pair of matrices.

- In the SUR case $\quad \mathbf{V}=\boldsymbol{\Sigma} \otimes \mathbf{I}_{\mathrm{T}}$

Notation: Kronecker Products

- For the Kronecker product,
$(\mathbf{A} \otimes \mathbf{B})^{-1}=\mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$ (This is the important result for GLS.)
If \mathbf{A} is $M \times M$ and \mathbf{B} is $n \times n$, then
$|\mathbf{A} \otimes \mathbf{B}|=|\mathbf{A}|^{n} \times|\mathbf{B}|^{M}$,
$(\mathbf{A} \otimes \mathbf{B})^{\mathrm{T}}=\mathbf{A}^{\mathrm{T}} \otimes \mathbf{B}^{\mathrm{T}}$
$\operatorname{trace}(\mathbf{A} \otimes \mathbf{B})=\operatorname{tr}(\mathbf{A}) \times \operatorname{tr}(\mathbf{B})$.
For $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} such that the products are defined is $(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D})=\mathbf{A C} \otimes \mathbf{B D}$.
- Then, in the SUR case, the GLS estimator becomes

$$
\begin{aligned}
\hat{\beta}_{G L S} & =\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} y=\left(X^{\prime}[\Sigma \otimes I]^{-1} X\right)^{-1} X^{\prime}[\Sigma \otimes I]^{-1} y \\
& =\left(X^{\prime}\left[\Sigma^{-1} \otimes I\right] X\right)^{-1} X^{\prime}\left[\Sigma^{-1} \otimes I\right] y
\end{aligned}
$$

SUR - Special Case: Identical Regressors

- Back to the 2 x 2 case. Now, suppose the equations involve the same \mathbf{X} matrices. A typical example, the CAPM.

For the two equation model, if $\mathrm{X}_{1}=\mathrm{X}_{2}$, then

$$
\left[\mathrm{X}^{\prime} \mathrm{V}^{-1} \mathrm{X}\right]^{-1}=\left[\begin{array}{ll}
\sigma^{11} \mathrm{X}^{\prime} \mathrm{X} & \sigma^{12} \mathrm{X}^{\prime} \mathrm{X} \\
\sigma^{12} \mathrm{X}^{\prime} \mathrm{X} & \sigma^{22} \mathrm{X}^{\prime} \mathrm{X}
\end{array}\right]^{-1}=\left(\Sigma^{-1} \otimes \mathrm{X}^{\prime} \mathrm{X}\right)^{-1}
$$

Using our result for the inverse of a Kronecker product, this is

$$
\begin{aligned}
& \boldsymbol{\Sigma} \otimes\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}=\left[\begin{array}{ll}
\sigma_{11}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} & \sigma_{12}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \\
\sigma_{12}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} & \sigma_{22}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}
\end{array}\right] . \\
& \mathrm{X}^{\prime} \mathrm{V}^{-1} \mathbf{y}=\left(\begin{array}{cc}
\mathrm{X} & 0 \\
0 & \mathrm{X}
\end{array}\right) \cdot\left(\begin{array}{ll}
\sigma^{11} \mathrm{I} & \sigma^{12} \mathrm{I} \\
\sigma^{12} \mathrm{I} & \sigma^{22} \mathrm{I}
\end{array}\right)\binom{\mathrm{y}_{1}}{\mathrm{y}_{2}}=\left[\begin{array}{l}
\sigma^{11} \mathrm{X}^{\prime} \mathrm{y}_{1}+\sigma^{12} \mathrm{X}^{\prime} \mathrm{y}_{2} \\
\sigma^{12} \mathrm{X}^{\prime} \mathrm{y}_{1}+\sigma^{22} \mathrm{X}^{\prime} \mathrm{y}_{2}
\end{array}\right]
\end{aligned}
$$

We have a useful result from least squares algebra: $\mathrm{X}^{\prime} \mathbf{y}=\mathrm{X}^{\prime} \mathbf{X b}$. By using this, we get a simpler result,

$$
\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{y}=\left[\begin{array}{l}
\sigma^{11} \mathbf{X}^{\prime} \mathbf{X} \mathbf{b}_{1}+\sigma^{12} \mathbf{X}^{\prime} \mathbf{X} \mathbf{b}_{2} \\
\sigma^{12} \mathbf{X}^{\prime} \mathbf{X} \mathbf{b}_{1}+\sigma^{22} \mathbf{X}^{\prime} \mathbf{X} \mathbf{b}_{2}
\end{array}\right]
$$

SUR - Special Case: Identical Regressors

Now, multiply out $\left[X^{\prime} V^{-1} X\right]^{-1} X^{\prime} V^{-1} y$. All of the $X^{\prime} X$ terms will cancel out, as matrices multiply their inverses and we can collect like terms.. What remains is

$$
\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}}=\binom{\left(\sigma_{11} \sigma^{11}+\sigma_{12} \sigma^{12}\right) \mathrm{b}_{1}+\left(\sigma_{11} \sigma^{12}+\sigma_{12} \sigma^{11}\right) \mathrm{b}_{2}}{\left(\sigma_{12} \sigma^{11}+\sigma_{22} \sigma^{12}\right) \mathrm{b}_{1}+\left(\sigma_{12} \sigma^{12}+\sigma_{22} \sigma^{22}\right) \mathrm{b}_{2}} .
$$

Now (the rabbit in the hat).

$$
\begin{aligned}
& \sigma^{11}=\sigma_{22} /\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right), \\
& \sigma^{22}=\sigma_{11} /\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right), \text { and } \\
& \sigma^{12}=-\sigma_{12} /\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right),
\end{aligned}
$$

Multiplying things out once again, we get

$$
\begin{aligned}
& \sigma_{11} \sigma^{11}+\sigma_{12} \sigma^{12}=1(!), \\
& \sigma_{11} \sigma^{12}+\sigma_{12} \sigma^{11}=0(!!), \\
& \sigma_{12} \sigma^{11}+\sigma_{22} \sigma^{12}=0(!!!) \text { and } \\
& \sigma_{12} \sigma^{12}+\sigma_{22} \sigma^{2}=1(\odot!!!!)
\end{aligned}
$$

So, GLS equals OLS in this model.

SUR: Estimation by FGLS

- In general, \mathbf{V} is unknown. We need to estimate it. We need to estimate N variances (the $\sigma_{\mathrm{ii}}{ }^{\prime} \mathrm{s}$) and $N(N-1) / 2$) covariances (the σ_{ij} 's)
- We can use the usual FGLS two-step method or we can use ML.
(1) Two-step FGLS is essentially the same as the group-wise heteroscedastic model, starting with OLS to get the e's.
In the 2×2 example:
(1) $\hat{\sigma}_{1}^{2}=\frac{\sum_{t=1}^{T} e_{t 1}^{2}}{T-K}=\frac{e_{1}^{\prime} e_{1}}{T-K} ; \quad \hat{\sigma}_{2}^{2}=\frac{\sum_{t=1}^{T} e_{t 2}^{2}}{T-K}=\frac{e_{2}^{\prime} e_{2}}{T-K} ; \quad \hat{\sigma}_{12}=\frac{\sum_{t=1}^{T} e_{t 1} e_{t 2}}{T-K}=\frac{e_{1}^{\prime} e_{2}}{T-K}$
(2) $\hat{\beta}_{\text {FGLS }}=\left(X^{\prime} \hat{V}^{-1} X\right)^{-1} X^{\prime} \hat{V}^{-1} y$
(2) Maximum likelihood estimation for normally distributed errors: Just iterate FGLS.

SUR: Inference About the Coefficient Vectors

- Usually based on Wald statistics. F is OK, but $\mathrm{JF}=\mathrm{W}$ ald is often simpler, and is more common.
- If the estimator is MLE, the LR statistic is given by:
$\mathrm{LR}=\mathrm{T} *\left\{\log \left|\mathbf{S}_{\text {restricted }}\right|-\log \left|\mathbf{S}_{\text {unrestricted }}\right|\right\}$

SUR: Pooling (Aggregation)

Q: When can we aggregate the data? Aggregation is great for estimation. Instead of having T, we have NT observations!

- A special case in which all of the $\boldsymbol{\beta}_{\mathrm{i}}$'s are the same. That is,

$$
\mathrm{y}_{\mathrm{it}}=\mathrm{x}_{\mathrm{it}}^{\prime} \beta+\varepsilon_{\mathrm{it}}
$$

- Pooling is a restricted version of the SUR model: $\mathrm{H}_{0}: \boldsymbol{\beta}_{1}=\boldsymbol{\beta}_{2}=\ldots=\boldsymbol{\beta}_{\mathrm{N}}$.
- This null hypothesis can be tested: LR test, F-test. F-test:

$$
F=\frac{\left(R S S_{\text {Pool }}-R S S_{U}\right) /(N-1)}{R S S_{U} /(N T-N-K)} \sim F_{N-1, N T-N-K}
$$

This the original question in Zellner/Grunfeld papers: the effect of aggregation The idea was to test this proposition -i.e., all coefficient vectors are the same-, so the regression could be pooled.

SUR: Aggregation - Inference

- Testing a hypothesis about $\boldsymbol{\beta}$. The usual results for GLS. Using an estimate of

$$
\left[\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right]^{-1}
$$

Use the one we computed to obtain the FGLS or ML estimates.

- Tests are "asymptotic-t" or Wald tests.
- It is easy to test hypotheses about $\boldsymbol{\Sigma}$. Use a likelihood ratio test.

Note: Zellner (1962) was the developer of this model and estimation technique: "An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests of Aggregation Bias," JASA, 1962, pp. 500-509.

Arnold Zellner (1927-2010, USA)

Application: Volume and Returns

- Chuang \& Susmel (2010, JBF). A bivariate SUR model is estimated to investigate the causal relation between portfolio volume and market returns across the low and high institutional ownership portfolios within each size and volume quartile over the period from January 1996 to May 2007, in Taiwan:

$$
V_{i j, t}=\alpha_{i j}+\beta_{i j 1} D A V R_{m, t}+\beta_{i j 2} D M A D_{i j, t}+\sum_{k=1}^{K} \gamma_{i j k} R_{m, t-k}+\varepsilon_{i j, t},
$$

$j=l$ and h (Low and High ownership); $i=1, \ldots, 4$ (Portfolio Size)
$V_{i j, t}$ Value-weighted detrended trading volume of portfolio $i j$, $R_{m, t}$: Return on a value-weighted Taiwanese market index, $D A V \mathrm{R}_{m, i}$ Detrended absolute value of $\mathrm{R}_{m, t}$
$D M A D_{i j, i}$ Detrended value-weighted average of the beta-adjusted differences between the returns of stocks in portfolio $i j$ and R_{m}. $\mathrm{P}_{i j}$: Value-weighted portfolio of size i and institutional ownership j.

Application: Volume and Returns

- Tests statistics:
- $W-K(\gamma) \sim \chi^{2}$ with K degrees of freedom under $\mathrm{H}_{0}: \gamma_{j j k}=0$, for all k.
- $W-1(\gamma) \sim \chi^{2}{ }_{1}$ under $\mathrm{H}_{0}: \sum_{k} \gamma_{\text {jk }}=0$.
- $W-1\left(\gamma_{i}=\gamma_{i b}\right) \sim \chi^{2}{ }_{1} H_{0}: \sum_{k} \gamma_{\gamma_{t}}=\sum_{i} \gamma_{m \omega}$.
- $Q(12)$: Ljung-Box Q-statistic with up to 12 lags for the residuals in each regression.

Application: Volume and Returns

Ooops!: OLS instead of SUR

- OLS is consistent and unbiased. But, it is inefficient.
- Q: What happens if we use OLS (b and $\left.\operatorname{Var}_{\mathrm{OLS}}[\mathbf{b}]\right)$?

We know $\operatorname{Var}_{\mathrm{OLS}}[\mathbf{b}]$ is incorrect (we should have used the sandwich estimator). We can calculate the relative efficiency of OLS relative to SUR (GLS).

Simple 2×2 setting:

$$
\begin{aligned}
& Y_{1 t}=\beta_{11}+\beta_{12} X_{1 t}+\varepsilon_{1 t} \\
& Y_{2 t}=\beta_{21}+\beta_{22} X_{2 t}+\varepsilon_{2 t} \quad \text { for } t=1,2, \ldots, T
\end{aligned}
$$

Ooops!: OLS instead of SUR

- We can show that
$\operatorname{var}\left(\hat{\beta}_{12, O L S}\right)=\frac{\sigma_{11}}{m_{x_{1} x_{1}}} \quad \operatorname{var}\left(\hat{\beta}_{22, O L S}\right)=\frac{\sigma_{22}}{m_{x_{2} x_{2}}}$
where $\quad m_{x_{1} x_{1}}=\sum_{t=1}^{T}\left(X_{i t}-\bar{X}_{i}\right)\left(X_{j t}-\bar{X}_{j}\right) \quad$ for $i, j=1,2$
$\operatorname{var}\binom{\hat{\beta}_{12, G L S}}{\hat{\beta}_{22, G L S}}=\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right)\left[\begin{array}{cc}\sigma_{22} m_{x_{1} x_{1}} & -\sigma_{12} m_{x_{1} x_{2}} \\ -\sigma_{12} m_{x_{1} x_{2}} & \sigma_{11} m_{x_{2} x_{2}}\end{array}\right]^{-1}$
$\operatorname{var}\left(\hat{\beta}_{12, G L S}\right)=\frac{\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right) \sigma_{11} m_{x_{2} x_{2}}}{\sigma_{11} \sigma_{22} m_{x_{1} x_{1}} m_{x_{2} x_{2}}-\sigma_{12}^{2} m_{x_{1} x_{2}}^{2}}$
$\operatorname{var}\left(\hat{\beta}_{22, G L S}\right)=\frac{\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right) \sigma_{22} m_{x_{1} x_{1}}}{\sigma_{11} \sigma_{22} m_{x_{1} x_{1}} m_{x_{2} x_{2}}-\sigma_{12}^{2} m_{x_{1} x_{2}}^{2}}$

Ooops!: OLS instead of SUR

- Using $\rho=\sigma_{12} /\left(\sigma_{11} \sigma_{22}\right)^{1 / 2}$ and $r=m_{x_{1} x_{2}} /\left(m_{x_{1} x_{1}} m_{x_{2} x_{2}}\right)^{1 / 2}$
show that

$$
\frac{\operatorname{var}\left(\hat{\beta}_{12, G L S}\right)}{\operatorname{var}\left(\hat{\beta}_{12, O L S}\right)}=\frac{1-\rho^{2}}{1-\rho^{2} r^{2}}
$$

- We can differentiate with respect to $\theta=\varrho^{2}$ and show it is a nonincreasing function of θ.
- We can differentiate with respect to $\lambda=r^{2}$ and show it is a nondecreasing function of λ.

Ooops!: OLS instead of SUR

- Efficiency table

		ρ										
		0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
r	0.00	1.00	0.99	0.96	0.91	0.84	0.75	0.64	0.51	0.36	0.19	0.00
	0.10	1.00	0.99	0.96	0.91	0.84	0.75	0.64	0.51	0.36	0.19	0.00
	0.20	1.00	0.99	0.96	0.91	0.85	0.76	0.65	0.52	0.37	0.20	0.00
	0.30	1.00	0.99	0.96	0.92	0.85	0.77	0.66	0.53	0.38	0.20	0.00
	0.40	1.00	0.99	0.97	0.92	0.86	0.78	0.68	0.55	0.40	0.22	0.00
	0.50	1.00	0.99	0.97	0.93	0.88	0.80	0.70	0.58	0.43	0.24	0.00
	0.60	1.00	0.99	0.97	0.94	0.89	0.82	0.74	0.62	0.47	0.27	0.00
	0.70	1.00	0.99	0.98	0.95	0.91	0.85	0.78	0.67	0.52	0.32	0.00
	0.80	1.00	1.00	0.99	0.97	0.94	0.89	0.83	0.74	0.61	0.39	0.00
	0.90	1.00	1.00	0.99	0.98	0.97	0.94	0.90	0.85	0.75	0.55	0.00
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

