Lecture 14
SUR

R. Susmel, 2023 (for private use, not to be posted/shared online).

Panel Data Sets

* A panel data set, or longitudinal data set, is one where there are
repeated observations on the same units. Now, we have {y; ¢, X; ¢},
where i = 1,2, .., Nand t =1, 2, ..., 7;, usually, N > 7.

* The units —the i's— may be individuals, households, firms, countries,
or any set of entities that remain stable through time —i.e., the ¢cross-
section.

* Repeated observations create a potentially very large panel data sets.
With N units and T time periods = Number of observations: NT.

— Advantage: Large sample! Great for estimation.

— Disadvantage: Dependence! Observations are likely not independent

* Modeling the potential dependence creates different models.




Panel Data Sets

¢ The National Longitudinal Survey (NLS) of Youth is an example.
The same respondents were interviewed every year from 1979 to 1994.
Since 1994 they have been interviewed every two years.

* The CRSP database has daily and monthly stock and index returns
from 1962 on for over 5,000 stocks (N=5,000 and T (monthly)=600).

Panel Data Sets

* Panel data sets are often very large. If there are N units and T time
periods, the potential number of observations is NT' (for the CRSP
dataset, we have over 3 million observations). Potentially, great for

estimation!
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Panel Data Sets

* Notation:
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* A standard panel data set model stacks the y;s and the x;'s:
y=XB+c+ e
Xisa YN, Tixk matrix
B is a kx1 matrix

cis Z{=1 7;x1 matrix, associated with unobservable variables.

y and g are Y-, Tix1 matrices

Panel Data Sets

* Longitudinal data (Large IN)
— National longitudinal survey of youth (NLS)
— British household panel survey (BHPS)
— Panel Study of Income Dynamics (PSID)

* Time series cross section (TSCS) data (Large T)
—  Grunfeld’s investment data
— Penn world tables

* Financial data

— COMPUSTAT provides financial data by firm (IN = 99,000)
and by quarter (T'= 1962:1, 1962:11, ...,)

— Exchange rate data, essentially infinite T, N=160+
—  Datastream provides economic and financial data for countries.
It also covers bonds and stock markets around the world.

—  OptionMetrics is a database of historical prices, implied volatility
for listed stocks and option markets.




Balanced and Unbalanced Panels

* Notation:
Yie2., i=1,..,N; t=1,.., T
* Mathematical and notational convenience:
- Balanced: NT
(that is, every unit is surveyed in every time period.)
- Unbalanced: X4 T
Q: Is the fixed 7; assumption ever necessary? SUR models.

* The NLS of Youth is #nbalanced because some individuals have not
been interviewed in some years. Some could not be located, some
refused, and a few have died. CRSP is also #nbalanced, some firms are
listed from 1962, othets started to be listed later.

Panel Data Model: CLLM Revisited

* The DGP of the CLLM is slightly modified:

AD)  yie =20 B+ €t
i=1,2,..,N - we have N individual, groups ot firms.
t=12,..,7 -usually, N > 7;.

That is, the classical linear relation applies to each of N equations and T’

observations. If we assume (A2) to (A4), the y;’s are independent. No
gain from a system estimation = N OLS estimations are all we need!

Example: The CAPM:
Tig —Tp= o + Bi(Mme — 77) + €

In the CAPM, X; ;= X; = Explanatory variables are common across L.

Note: In economics, N is traditionally small — 50 states, 150 countries &
few developed countries. But, no for the CAPM: N is in the thousands!




Panel Data Model: CLM Revisited - Notation
* Rewrite (A1) DGP using matrix notation.
y; = X;Bi t g i=1,2.,N
- Dimensions:
X; is a T;xk matrix
B; is a kx1 matrix

y; and &; are 7;x1 matrices

* Now, stacking all the equations:
y=XB+e
- Dimensions:
Xisa YN, TixNk matrix  (if 77 =T forall i = X is NTx Nk)
B is a Nkx1 matrix

y and € are YV, Tix1 matrices

Panel Data Model: CLM Revisited — (A3’)

*DGP: Ay =XP+e
where X'is a Zliv=1 T;xNk matrix, B is a Nk x1 matrix, and y and € are
Z?Izl 7;x1 matrices.

* General formulation for covariance matrix: (A3’) Eleg’|X] =V

Note: Visana Y0y 77 x XN, 7 matrix (if 77 = Tforalli =V is NTx
NT): Huge!

* We can have different elements in (A3’):
(1) Standard groupwise heteroscedasticity (diagonal elements)
(2) Autocorrelated errors (off-diagonal 7 elements)

(3) Contemporaneously cross-correlated errors (off-diagonal ij
elements)

(4) Time-varying cross-correlated errors (off-diagonal ij elements)




Seemingly Unrelated Regressions (SUR)
* In the SUR model we assume a specific form for V:

Al) y=XB+e

(A2)  E[g[X] =0,

(A3) Varlg|X] = o’ I, =c; L, — groupwise heteroscedasticity.

Elei €j¢ | X] = 045 — contemporaneous correlation
Elgir 5| X] = 0 (t#s) — no autocorrelation
Eleir €5 |X] = 0 (t#s) — no time-varying cross-correlation

(A4) Rank(X) = full rank Nk

* In (Al1)-(A4), we have a GR model.

* In (Al), individual 7 seems independent of individual . But, they are
not. They are related through the covariance matrix in (A3).

SUR: Formulation
* Q: What kind of theoretical structure produces a SUR DGP?

A: We need a model where there is a specific, heteroscedastic 7 factor
and a common factor to all individuals. This common factor causes
contemporaneous correlation only. It causes no correlations over time.

In finance, the variation in excess returns is affected both by firm
specific factors and by the economy as a whole.

* The SUR model is a GR model. A rich model with (assume 7; = 7):

(1) Different coefficient vectors for each i = Nk parameters
(2) Different variances for each i = N parameters
(3) Cortrelation across i at each t = N(N-1)/2 parameters

Note: We have NT observations to estimate (Nk + N + N(N-1)/2)
parameters. We need T to be reasonably big.




SUR: Formulation

* In (Al), individual 7 seems independent of individual /. But, they are
not. They are related through the covariance matrix in (A3’).

* Rewrite the contemporaneous correlation structure in (A3):

Elgicgje | X] = 045 —contemporaneous correlation
Eleirgis [ X] =0 when t#s
€€ €8y .. €8y c;, 0 .. 0
€;€1; €9i€y; ... EniEp 0 o; ... O
E(Sig/"):E i01j 2192 o7 | _ i
€n€l; €r€y - Erfy 0 0 .. o4
ZGZ-J-]T

* This covariance matrix for the model is an NTxNT matrix (if 7;=17).
To get the final SUR formulation, stack the equations = GR model.

Example: The SUR Model (2x2 case)

Congider a two equation gystem.

1 = Xip) + &

v2 = Xofo + €2
. vi| [Xi 0B |a
Now, stack theze two equations: = 7 ‘ ‘ + =Xp+e
V2 0 X, \By L&

The disturbance covariance matrix is
r r |'/ \\
var {51}_]5{5151 5152} ~ ‘ ol ol ‘
: — =
r r
£ £,8 £,8, Ol ol

G2 =V.
(The G2 is there just to use the notation we are used to for the GR model.




SUR Estimation: OLS and GLS

e Since OLS is consistent, each equation can be fit by OLS. HAC
estimator can be used for inferences.

* GLS Estimation: ,BFGLsz(X I}_l)()_lX' I}_ly

Q: Why do GLS? Efficiency improvement.
BlBors—BBors—BY)= AV xoveerxoer-xy)
=XV ) xvrrixxvx?
=X
* Gains to GLS:
- Efficiency gains increase as the cross equation correlation increases.

- But, no gains if identical regressors —for example, in the CAPM.
= GLS is the same as OLS.

SUR: GLS Estimation

* Derivation of the GLS estimator for the 2x2 case:
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Notation: Kronecker Products

* A Kronecker product is a matrix product, denoted A @ B , in which
in the result, each element of A multiplies the entire matrix B. That is,
A Q@ B creates a matrix of matrices.

allB a21B xle
A® B — alzzB az:zB akzzB
alTB aZTB b akTB

Note: There is no requirement for conformability in this operation.
The Kronecker product can be computed for any pair of matrices.

* In the SUR case V=XQI;

Notation: Kronecker Products

* For the Kronecker product,
(AQB) ! = A"'@®B! (This is the important result for GLS.)

If Ais MX M and B is # X 7, then
A®B| = |A]"x [B|",
(A ®B)T=AT Q BT
trace(AQB) = tr(A) x tr(B).

For A, B, C, and D such that the products are defined is
AQ®B)(C®D)=ACQ BD.

* Then, in the SUR case, the GLS estimator becomes
Bos =XV X)XV y=(X[ZI X)X [ER !y
—xElenyy'xEleny




SUR - Special Case: Identical Regressors

* Back to the 2x2 case. Now, suppose the equations involve the same X

matrices. A typical example, the CAPM.
For the two equation model, if Xj = X5, then
XX O'IEX'X:|_ -
c'X'X oPX'X
Using our result for the inverse of a Kronecker product, this is
o, (XX)" e, (XX

o, (X'X)™! UEE(X'X)‘I}

T 0-121\"‘ ‘ Vi ‘ -
1 M)\,

[X:V.lx]-l =

IOX'X)! =

X'Vly= ‘

11 12
c X'y +c°X'y,
O'IEX'}"I +D'22X'}"2

We have augeful result from least squares algebra: X'v = X'Xb. By using thig,

we get a simpler result,
o'X'Xb, + o*X Xbﬂ

X'vly=1| 21
&X' XD, + X' XD,

SUR - Special Case: Identical Regressors

Now, multiply out [X'VIX]! X'V1y, All of the X'X terms
will cancel out, ag matrices multiply theiwr inverses and we can
collect like terms.. What remains is

™,

‘ﬁ ‘ (o'“cr +crucr Yo, + (o0 + o, |
(o‘uo' -|—G"22:'_'J' )bl+(crucr +o'ncrn)bz,-

NL‘I-“" (the rabbit in the hat).
1=

Q

Q
X
l*:‘..
_—
-
=
X

- G12%),
2= Gll".( 311037 - 0122). and
2 =-012/(01162 - 012%).
Multiplying things out once again, we get
G101+0;6H2 =1 (1),
G11014G;61 =0 (),
Gi3014+G,;612 =0 (1) and
G;;ClHGGi =1 (211
S0, GLS equalz OLS in this model.

Q

Q
@
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SUR: Estimation by FGLS

* In general, V is unknown. We need to estimate it. We need to estimate
N variances (the 6;;’s) and N(N-1)/2) covariances (the 6;;’s).

* We can use the usual FGLS two-step method or we can use ML.

(1) Two-step FGLS. It is essentially the same as the group-wise

heteroscedastic model, starting with OLS to get the €’s.

In the 2x2 example:

T ) T ) T

zeﬂ [} zetz ] zetleﬂ [}
0 G _48. p_=a _96. & =1 _4%

""'7-k T-K° 7 T-K T-K P T-K T-K

@ Brs=X VﬁlAX)ilX' Vﬁly

(2) MLE: Usually done under normally distributed errors, just iterate
FGLS.

SUR: Inference About the Coefficient Vectors

¢ Usually based on Wald statistics. F is OK, but

J *F = Wald is often simpler, and is more common.

* If the estimator is MLE, the LR statistic is given by:

LR=T* {10g| Srestricted| - logl Sunrestrictedl }
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SUR: Pooling (Aggregation)

QQ: When can we aggregate the data? Aggregation is great for estimation.

Instead of having T, we have NT observations!

* A special case in which all of the B;’s are the same. That is,
— !
Vit = Xie B+ &t

* Pooling is a restricted version of the SUR model: H: B,= B, =...= By

¢ This null hypothesis can be tested: LR test, F-test. F-test:

F= (RSSpoo1—RSSy)/(N—-1) ~F
RSSy/(NT-N—-k) N-=1NT-N-k

This the original question in Zellner/Grunfeld papers: the effect of
aggregation The idea was to test this proposition —i.e., all coefficient
vectors are the same-, so the regression could be pooled.

SUR: Aggregation - Inference
* Testing a hypothesis about B. The usual results for GLS. Using an

estimate of

X'VIX] L
Use the one we computed to obtain the FGLS or ML estimates.
* Tests are “asymptotic-t” or Wald tests.
e Itis easy to test hypotheses about Z. Use a likelihood ratio test.
Note: Zellner (1962) was the developer of this model and

estimation technique: “/An Efficient Method of Estimating

Seemingly Unrelated Regressions and Tests of Aggregation Bias,”
JASA, 1962, pp. 500-509.

Arnold Zellner (1927-2010, USA)
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Application: Volume and Returns

* Chuang & Susmel (2010, JBF). A bivariate SUR model is estimated to
investigate the causal relation between portfolio volume and market
returns across the low and high institutional ownership portfolios
within each size and volume quartile over the period from January
1996 to May 2007, in Tatwan:

V., =a,+p,DAVR, +p, ,DMAD, +Z;/ +e

ij,t k™ Tmt—k ij,t?
k=1

J = /and /» (Low and High ownership); 7 = 1,..., 4 (Portfolio Size)

V% .. Value-weighted detrended trading volume of portfolio 7,
R :Return on a value-weighted Taiwanese market index,
DAVR + Detrended absolute value of R

7yt

DMAD Detrended value-weighted average of the beta-adjusted
differenées between the returns of stocks in portfolio 7and R .

P : Value-weighted portfolio of size /and institutional ownershlp J-

Application: Volume and Returns

* Tests statistics:

- W-K() ~ x? with K degrees of freedom under H;: Vi = 0, forall £
- W-1(p) ~ % under Hy; > =

- W-(rmyy ~ 33 Hey: S -7,

-0(12): L]ung -Box Q-statistic w1th up to 12 lags for the residuals in
each regression.




Application: Volume and Returns

Pand A Sze-Inegimtionsl ow e rdilp portfolios
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Ooops!: OLS instead of SUR

* OLS is consistent and unbiased. But, it is inefficient.

* QQ: What happens if we use OLS (b and Var, ¢[b])?

We know Var, ¢[b] is incorrect (we should have used the sandwich

estimator). We can calculate the relative efficiency of OLS relative to
SUR (GLS).

Simple 2x2 setting:

Y, =B +Bp Xy, tey,

Yy, =B +BnXy +ey,

fort=12,...
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Ooops!: OLS instead of SUR

* We can show that

A _ %u A _ O»
var \p 2 ors T Var\bx ors )= —— —

m
X1X

Xa X2
T — —
where  m, . = (X”—XiXXﬂ—Xj) fori,j=1,2
t=1
o, m —-o,m.__ |
ﬁlZ,GLS _ 2 227 X 127" x,x)
var| ', = (0'”0'22 —oy)
22,GLS O-Imex 11777 x5 x,
( 2
( 5 )_ 0110 — Oy JO1IN,
var ﬂlz,GLS = 2

2
0,0pM, M, ., —OpMm

XX

2
5 _ (O-l 102, =01y )GZmelxl
var\By, 6.5 )=

2 2
0,0,,m_.m — O, n

xx XX, XXy

Ooops!: OLS instead of SUR

. 1/2 /2
*Using p =0, /(0'11022 ) and r=m, /(mxlxlmXZXZ)’
we can show that

%) 2
var (ﬁlZ,GLS )_ l-p

5 - 2.2
var (1812 LOLS ) 1—p°r

* We can differentiate with respect to 6 = p? and show it is a non-
increasing function of 6.

* We can differentiate with respect to 4 = tZ and show it is a non-
decreasing function of 4.
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Ooops!: OLS instead of SUR
* Efficiency table

P
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 1.00 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 0.19 0.00

0.10 1.00 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 0.19 0.00

0.20 1.00 0.99 0.96 0.91 0.85 0.76 0.65 0.52 0.37 0.20 0.00

0.30 1.00 0.99 0.96 0.92 0.85 0.77 0.66 0.53 0.38 0.20 0.00

0.40 1.00 0.99 0.97 0.92 0.86 0.78 0.68 0.55 0.40 0.22 0.00

’ 0.50 1.00 0.99 0.97 0.93 0.88 0.80 0.70 0.58 0.43 0.24 0.00
0.60 1.00 0.99 0.97 0.94 0.89 0.82 0.74 0.62 0.47 0.27 0.00

0.70 1.00 0.99 0.98 0.95 0.91 0.85 0.78 0.67 0.52 0.32 0.00

0.80 1.00 1.00 0.99 0.97 0.94 0.89 0.83 0.74 0.61 0.39 0.00

0.90 1.00 1.00 0.99 0.98 0.97 0.94 0.90 0.85 0.75 0.55 0.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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