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Lecture 14
SUR

R. Susmel, 2023 (for private use, not to be posted/shared online).

• A panel data set, or longitudinal data set, is one where there are 
repeated observations on the same units. Now, we have {𝑦௜,௧, 𝒙௜,௧}, 
where 𝑖 = 1, 2, ...., 𝑁 and 𝑡 = 1, 2, ...., T௜, usually, 𝑁 > T௜.

• The units –the 𝑖′s– may be individuals, households, firms, countries, 
or any set of entities that remain stable through time –i.e., the cross-
section.

• Repeated observations create a potentially very large panel data sets.   
With N units and T time periods  Number of observations: 𝑁𝑇. 

– Advantage: Large sample!  Great for estimation.

– Disadvantage: Dependence! Observations are likely not independent

• Modeling the potential dependence creates different models.

Panel Data Sets
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• The National Longitudinal Survey (NLS) of Youth is an example.  
The same respondents were interviewed every year from 1979 to 1994.  
Since 1994 they have been interviewed every two years.

• The CRSP database has daily and monthly stock and index returns 
from 1962 on for over 5,000 stocks (𝑁=5,000 and 𝑇 (monthly)=600).

Panel Data Sets

• Panel data sets are often very large. If there are N units and T time 
periods, the potential number of observations is NT (for the CRSP 
dataset, we have over 3 million observations). Potentially, great for 
estimation!

Panel Data Sets
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• A standard panel data set model stacks the 𝑦௜
ᇱ𝑠 and the 𝒙௜′𝑠: 

𝒚 = X + c + 
X is a ∑ T௜ே

௜ୀଵ x𝑘 matrix

 is a 𝑘x1 matrix

c is ∑ T௜
௝
௜ୀଵ x1 matrix, associated with unobservable variables.

𝒚 and  are ∑ T௜ே
௜ୀଵ x1 matrices

Panel Data Sets
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• Longitudinal data (Large N)
– National longitudinal survey of youth (NLS)
– British household panel survey (BHPS)
– Panel Study of Income Dynamics (PSID)

• Time series cross section (TSCS) data (Large T)
– Grunfeld’s investment data
– Penn world tables

• Financial data 
– COMPUSTAT provides financial data by firm (N = 99,000)

and by quarter (T = 1962:I, 1962:II, ..., )
– Exchange rate data, essentially infinite T, N=160+
– Datastream provides economic and financial data for countries. 

It also covers bonds and stock markets around the world.
– OptionMetrics is a database of historical prices, implied volatility 

for listed stocks and option markets.

Panel Data Sets
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Balanced and Unbalanced Panels

• Notation:

𝑦௜,௧, 𝑖 = 1,…, 𝑁;  𝑡 = 1,…, T௜
• Mathematical and notational convenience:

- Balanced: 𝑁𝑇
(that is, every unit is surveyed in every time period.) 

- Unbalanced: ∑ T௜ே
௜ୀଵ

Q: Is the fixed T௜ assumption ever necessary?  SUR models.

• The NLS of Youth is unbalanced because some individuals have not 
been interviewed in some years.  Some could not be located, some 
refused, and a few have died. CRSP is also unbalanced, some firms are 
listed from 1962, others started to be listed later.

Panel Data Model: CLM Revisited

• The DGP of the CLM is slightly modified:

(A1) 𝑦௜,௧ = 𝒙௜,௧′i + 𝜀௜,௧
𝑖 = 1, 2, ...., 𝑁 - we have 𝑁 individual, groups or firms.

𝑡 = 1, 2, ...., T௜ - usually, 𝑁 > T௜.
That is, the classical linear relation applies to each of N equations and T
observations.  If we assume (A2) to (A4), the yi’s are independent. No 
gain from a system estimation  N OLS estimations are all we need!

Example:  The CAPM:

𝑟௜,௧ – 𝑟௙= αi + β௜(𝑟௠,௧ – 𝑟௙ሻ + ௜,௧
In the CAPM, 𝒙௜,௧= 𝒙௧  Explanatory variables are common across 𝑖.

Note: In economics, N is traditionally small – 50 states, 150 countries & 
few developed countries. But, no for the CAPM: 𝑁 is in the thousands! 
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• Rewrite (A1) DGP using matrix notation. 

𝒚௜ = 𝑿௜  ௜ + 𝜺௜ 𝑖 = 1, 2,..., 𝑁
- Dimensions:

𝑿௜ is a T௜x𝑘 matrix

௜ is a 𝑘x1 matrix

𝒚௜ and 𝜺௜ are T௜x1 matrices

• Now, stacking all the equations:

𝒚 = 𝑿  + 
- Dimensions:

𝑿 is a ∑ T௜ே
௜ୀଵ x𝑁𝑘 matrix (if T௜ =T for all 𝑖  𝑿 is 𝑁𝑇x 𝑁𝑘)

 is a 𝑁𝑘x1 matrix

𝒚 and  are ∑ T௜ே
௜ୀଵ x1 matrices

Panel Data Model: CLM Revisited - Notation

• DGP: (A1) 𝒚 = 𝑿  + 
where X is a ∑ T௜ே

௜ୀଵ x𝑁𝑘 matrix,  is a 𝑁𝑘 x1 matrix, and 𝒚 and  are 
∑ T௜ே
௜ୀଵ x1 matrices.

• General formulation for covariance matrix: (A3’)  E[ ’|X] = V 

Note: V is an a ∑ T௜ே
௜ୀଵ x ∑ T௜ே

௜ୀଵ matrix (if T௜ = T for all 𝑖  𝑉 is 𝑁𝑇x
𝑁𝑇): Huge! 

• We can have different elements in (A3’): 

(1) Standard groupwise heteroscedasticity (diagonal elements)

(2) Autocorrelated errors (off-diagonal i elements)

(3) Contemporaneously cross-correlated errors (off-diagonal 𝑖𝑗
elements)

(4) Time-varying cross-correlated errors (off-diagonal 𝑖𝑗 elements)

Panel Data Model: CLM Revisited – (A3’)
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• In the SUR model we assume a specific form for V:

(A1)  𝒚 = 𝑿  + 
(A2) E[𝜺𝒊|X]  =  0,

(A3’) Var[𝜀௜|X] = σ௜
ଶ IT = ௜௜  IT – groupwise heteroscedasticity.

E[𝜀௜௧ 𝜀௝௧|X] = ௜௝ – contemporaneous correlation

E[𝜀௜௧ 𝜀௜௦|X] = 0 (𝑡≠𝑠) – no autocorrelation

E[𝜀௜௧ 𝜀௝௦|X] = 0 (𝑡≠𝑠) – no time-varying cross-correlation

(A4) Rank(X) = full rank 𝑁𝑘

• In (A1)-(A4), we have a GR model. 

• In (A1), individual i seems independent of individual j. But, they are 
not. They are related through the covariance matrix in (A3’).

Seemingly Unrelated Regressions (SUR)

SUR: Formulation
• Q: What kind of theoretical structure produces a SUR DGP? 

A: We need a model where there is a specific, heteroscedastic i factor 
and a common factor to all individuals. This common factor causes 
contemporaneous correlation only. It causes no correlations over time.

In finance, the variation in excess returns is affected both by firm 
specific factors and by the economy as a whole. 

• The SUR model is a GR model. A rich model with (assume T௜ = T): 

(1) Different coefficient vectors for each 𝑖  𝑁𝑘 parameters

(2) Different variances for each 𝑖  𝑁 parameters

(3) Correlation across 𝑖 at each 𝑡  𝑁(𝑁-1)/2 parameters

Note: We have 𝑁T observations to estimate (𝑁𝑘 + 𝑁 + 𝑁(𝑁-1)/2) 
parameters. We need T to be reasonably big. 
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SUR: Formulation

• In (A1), individual i seems independent of individual j. But, they are 
not. They are related through the covariance matrix in (A3’).

• Rewrite the contemporaneous correlation structure in (A3’):

E[𝜀௜௧𝜀௝௧|X] = ௜௝ –contemporaneous correlation

E[𝜀௜௧𝜀௝௦|X] = 0 when 𝑡≠𝑠
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• This covariance matrix for the model is an NTxNT matrix (if  T௜=T). 
To get the final SUR formulation, stack the equations  GR model.
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Example: The SUR Model (2x2 case)
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SUR Estimation: OLS and GLS

• Since OLS is consistent, each equation can be fit by OLS. HAC 
estimator can be used for inferences. 

• GLS Estimation:

Q: Why do GLS?  Efficiency improvement.

• Gains to GLS:
- Efficiency gains increase as the cross equation correlation increases.
- But, no gains if identical regressors –for example, in the CAPM.

 GLS is the same as OLS.    

   

11

111111

111111

)'(

)'(')'(

)'('')'()'ˆ)(ˆ(













XVX

XVXXVVVXXVX

XVXXVeeVXXVXEE GLSGLS

yVXXVXFGLS
111 ˆ')ˆ'(ˆ 

SUR: GLS Estimation








































































































































































































































2
'
22

122211

11
1

'
22

122211

21

2
'
12

122211

12
1

'
12

122211

22

1

2
'
22

122211

11
1

'
22

122211

21

2
'
12

122211

12
1

'
12

122211

22

2

1

2
122211

11
2
122211

21

2
122211

12
2
122211

22

'
2

'
1

1

2

1

2
122211

11
2
122211

21

2
122211

12
2
122211

22

'
2

'
1

2

1

1

2
221

12
2
1

'
2

'
1

1

2

1

1

2
221

12
2
1

'
2

'
1111

0

0

0

0

0

0

0

0

0

0

0

0
')'(ˆ

yXyX

yXyX

XXXX

XXXX

y

y

II

II

X

X

X

X

II

II

X

X

y

y

II

II

X

X

X

X

II

II

X

X
yVXXVX

TT

TT

TT

TT

TT

TT

TT

TT
GLS

























































• Derivation of  the GLS estimator for the 2x2 case: 
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Notation: Kronecker Products

• A Kronecker product is a matrix product, denoted A ⊗𝑩 , in which 
in the result, each element of  A multiplies the entire matrix 𝑩. That is, 
A ⊗𝑩 creates a matrix of  matrices.

Note: There is no requirement for conformability in this operation. 
The Kronecker product can be computed for any pair of  matrices.

• In the SUR case V = Σ⊗ IT

A ⊗𝑩 =

𝑎ଵଵ𝑩 𝑎ଶଵ𝑩 ⋯ 𝑥௞ଵ𝑩
𝑎ଵଶ𝑩 𝑎ଶଶ𝑩 ⋯ 𝑎௞ଶ𝑩
⋮ ⋮ ⋱ ⋮

𝑎ଵ்𝑩 𝑎ଶ்𝑩 ⋯ 𝑎௞்𝑩

Notation: Kronecker Products

• For the Kronecker product,
(A⊗B)−1 = A−1⊗B−1 (This is the important result for GLS.)

If  A is M× M and B is n × n, then
|A ⊗ B| = |A|n x |B|M,
(A ⊗B)T = AT ⊗ BT

trace(A⊗B) = tr(A) x tr(B).

For A, B, C, and D such that the products are defined is
(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

• Then, in the SUR case, the GLS estimator becomes

yIXXIX

yIXXIXyVXXVXGLS
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SUR – Special Case: Identical Regressors

• Back to the 2x2 case. Now, suppose the equations involve the same X
matrices. A typical example, the CAPM.

SUR – Special Case: Identical Regressors
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SUR: Estimation by FGLS

• In general, V is unknown. We need to estimate it. We need to estimate  
N variances (the ௜௜’s) and N(N-1)/2) covariances (the ௜௝ ’s).

• We can use the usual FGLS two-step method or we can use ML. 

(1) Two-step FGLS. It is essentially the same as the group-wise 
heteroscedastic model, starting with OLS to get the e’s. 

In the 2x2 example:

(2) MLE: Usually done under normally distributed errors, just iterate 
FGLS.
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SUR: Inference About the Coefficient Vectors

• Usually based on Wald statistics.  F is OK, but 

J * F = Wald is often simpler, and is more  common.

• If the estimator is MLE, the LR statistic is given by:

LR = T * {log|Srestricted| – log|Sunrestricted|}
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SUR: Pooling (Aggregation)

Q: When can we aggregate the data? Aggregation is great for estimation. 
Instead of having T, we have NT observations!

• A special case in which all of the i’s are the same.  That is,
𝑦௜,௧ = 𝒙௜,௧′i + 𝜀௜,௧

• Pooling is a restricted version of the SUR model: H0: 1= 2 =...= N.

• This null hypothesis can be tested: LR test, F-test. F-test:

F = 
ሺோௌௌು೚೚೗ିோௌௌೆሻ/ሺேିଵሻ

ோௌௌೆ/ሺே்ିேି௞ሻ
~ 𝐹ேିଵ,ே்ିேି௞

This the original question in Zellner/Grunfeld papers: the effect of 
aggregation The idea was to test this proposition –i.e., all coefficient 
vectors are the same-, so the regression could be pooled.

SUR: Aggregation - Inference

• Testing a hypothesis about . The usual results for GLS. Using an 
estimate of 

[XV-1X]-1.

Use the one we computed to obtain the FGLS or ML estimates.

• Tests are “asymptotic-t” or Wald tests.

• It is easy to test hypotheses about .  Use a likelihood ratio test.

Note: Zellner (1962) was the developer of this model and 
estimation technique:  “An Efficient Method of Estimating 
Seemingly Unrelated Regressions and Tests of Aggregation Bias,”  
JASA, 1962, pp. 500-509.

Arnold Zellner (1927-2010, USA) 
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Application: Volume and Returns

• Chuang & Susmel (2010, JBF). A bivariate SUR model is estimated to 
investigate the causal relation between portfolio volume and market 
returns across the low and high institutional ownership portfolios 
within each size and volume quartile over the period from January 
1996 to May 2007, in Taiwan:

j = l and h (Low and High ownership); i = 1,…, 4 (Portfolio Size) 

Vij,t: Value-weighted detrended trading volume of portfolio ij, 
Rm,t : Return on a value-weighted Taiwanese market index,
DAVRm,t: Detrended absolute value of Rm,t
DMADij,t:  Detrended value-weighted average of the beta-adjusted 
differences between the returns of stocks in portfolio ij and Rm. 
Pij : Value-weighted portfolio of size i and institutional ownership j. 

, 1 , 2 , , ,

1

,
K

ij t ij ij m t ij ij t ijk m t k ij t

k

V DAVR DMAD R    
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• Tests statistics:
- W-K() ~ χ2 with K degrees of freedom under H0: ijk = 0, for all k. 
- W-1() ~ χ2

1 under H0:
- W-1(il=ih) ~ χ2

1 H0: 
- Q(12): Ljung-Box Q-statistic with up to 12 lags for the residuals in 
each regression. 

0.
ijkk
 

.
ilk ihkk k
  

Application: Volume and Returns
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Application: Volume and Returns

• OLS is consistent and unbiased. But, it is inefficient.

• Q: What happens if we use OLS (b and VarOLS[b])?

We know VarOLS[b] is incorrect (we should have used the sandwich 
estimator).  We can calculate the relative efficiency of OLS relative to 
SUR (GLS).

Simple 2x2 setting:

Ooops!: OLS instead of  SUR

TtforXY
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• We can show that

Ooops!: OLS instead of  SUR
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• Using                                     and
we can show that

• We can differentiate with respect to θ = ρ2 and show it is a non-
increasing function of θ.

• We can differentiate with respect to λ = r2 and show it is a non-
decreasing function of λ.

Ooops!: OLS instead of  SUR
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• Efficiency table

Ooops!: OLS instead of  SUR

ρ

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

r

0.00 1.00 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 0.19 0.00

0.10 1.00 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 0.19 0.00

0.20 1.00 0.99 0.96 0.91 0.85 0.76 0.65 0.52 0.37 0.20 0.00

0.30 1.00 0.99 0.96 0.92 0.85 0.77 0.66 0.53 0.38 0.20 0.00

0.40 1.00 0.99 0.97 0.92 0.86 0.78 0.68 0.55 0.40 0.22 0.00

0.50 1.00 0.99 0.97 0.93 0.88 0.80 0.70 0.58 0.43 0.24 0.00

0.60 1.00 0.99 0.97 0.94 0.89 0.82 0.74 0.62 0.47 0.27 0.00

0.70 1.00 0.99 0.98 0.95 0.91 0.85 0.78 0.67 0.52 0.32 0.00

0.80 1.00 1.00 0.99 0.97 0.94 0.89 0.83 0.74 0.61 0.39 0.00

0.90 1.00 1.00 0.99 0.98 0.97 0.94 0.90 0.85 0.75 0.55 0.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00


