
RS – Lecture 13 - Autocorrelation

1RS 2024 - Not to be posted/shared online without written authorization from author.

1

Lecture 13
Auto/cross-correlation

RS 2024 (for private use, not to be posted/shared online).

• The generalized regression model's assumptions:  

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3’) Var[|X] = Σ = 2. 

(A4) X has full column rank – rank(X) = 𝑘 –, where T ≥ 𝑘.

• We assume that the ’s in the sample are not longer generated 
independently of each other. Ignoring hetersocedasticity, we have a 
new Σ:

E[𝜀௜  𝜀௝|X] = 2 if 𝑖 = 𝑗

= ௜௝ if 𝑖 ≠ 𝑗

Generalized Regression Model
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• In general, we find autocorrelation (or serial correlation) in time 
series, shocks are persistent over time: It takes time to absorb a shock.

• The shocks can also be correlated over the cross-section, causing 
cross-correlation. For example, if  an unexpected new tax is imposed 
on the technology sector, all the companies in the sector are going to 
share this shock.

• Usually, we model autocorrelation using two model: autoregressive 
(AR) and moving averages (MA). 

• In an AR model, the errors, εt, show a correlation over time. In an 
MA model, the errors, 𝜀௧, are a function (similar to a weighted 
average) of  previous errors, now denoted 𝑢௧’s.

Auto-correlation

3

Examples: 
- First-order autoregressive autocorrelation: AR(1)

𝜀௧ = 𝜀௧ିଵ ൅ 𝑢௧

- 𝑝th-order autoregressive autocorrelation: AR(𝑝)
𝜀௧ = 𝜀௧ିଵ ൅ 𝜀௧ିଶ ൅ ⋯൅ p𝜀௧ି௣ ൅ 𝑢௧

- Third-order moving average autocorrelation: MA(3)
𝜀௧ = 𝑢௧λ𝑢௧ିଵ ൅ λ𝑢௧ିଶ ൅ λ3𝑢௧ିଷ

Note: The last example is described as third-order moving average 
autocorrelation, denoted MA(3), because it depends on the three 
previous innovations as well as the current one.

Auto-correlation

4
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• Plot data, usually residuals from a regression, to see if  there is a 
pattern:

- Positive autocorrelation: A positive (negative) observation tends to 
be followed by a positive (negative) observation. We tend to see 
continuation in the series.

- Negative autocorrelation: A positive (negative) observation tends 
to be followed by a negative (positive) observation. We tend to see 
reversals.

- No autocorrelation: A positive (negative) observation has the same 
probability of  being followed by a negative or positive (positive or 
negative) observation. We tend to no pattern.

Auto-correlation – Visual Check

5

Example: I simulate a 𝑦௧ series:
𝑦௧ = 𝑦௧ିଵ ൅ 𝑢௧, with u௧ ~ WN(0, σ2=1)

Three cases:
(1) Positive autocorrelation:  
(2) Negative autocorrelation:  
(3) No correlation:  

• R code for simulation:
T_sim <- 200
u <- rnorm(200) # Draw T_sim normally distributed errors
y_sim <- matrix(0,T_sim,1)
rho <- .7 # Change to create different correlation patterns
a <- 2 # Time index for observations
while (a <= T_sim) {

y_sim[a] = rho * y_sim[a-1] + u[a] # y_sim simulated autocorrelated values
a <- a + 1
} 
plot(y_sim, type="l", col="blue", ylab ="Simulated Series", xlab ="Time")
title("Visual Test: Autocorrelation?") 6

Auto-correlation – Visual Check
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Example (continuation):
(1) Positive autocorrelation  

(2) Negative autocorrelation  

7

Auto-correlation – Visual Check

Example (continuation):
(3) No autocorrelation:  

8

Auto-correlation – Visual Check
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Example: Residual plot for the 3 factor F-F model for IBM returns:

9

Auto-correlation – Visual Check: IBM

• It looks like a small , but not very clear pattern from the graphs. 

Example: Residual plot for the 3 factor F-F model for GE returns:

• It looks like a small , but not very clear pattern from the graphs. 
10

Auto-correlation – Visual Check: GE
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Example: Residual plot for the encompassing model (IFE + PPP) 
for changes in the USD/GBP:

• Again, it looks like a small , but not very clear pattern. 
11

Auto-correlation – Visual Check: GBP

Implications for OLS

• Similar to the heteroscedasticity results for OLS:  

- Unbiased, consistent (with additional assumptions), asymptotic 
normality (with additional assumptions & definitions), but inefficient. 

- OLS standard errors are incorrect, often biased downwards.

• Important exception: The lagged dependent variable
𝑦௧ = α + β 𝑥௧ + 𝛾 𝑦௧ିଵ + ε௧, ε௧ =   ε௧ିଵ+  u௧.  

Now, Cov[𝑦௧ିଵ, ε௧]  0  IV Estimation

• Useful strategy: OLS estimates with the Newey-West (NW) SE. 
Recall NW’s HAC estimator of Q*:

S0 = (1/T) ∑ 𝑒௜
ଶ𝒙௜𝒙௜

்
௜ୀଵ  – the White estimator.

ST = S0 + (1/T)∑ 𝑘ሺ𝑙ሻ  ∑ ሺ𝒙௧ି௟𝑒௧ି௟  𝑒௧x௧+𝒙௧𝑒௧ 𝑒௧ି௟𝒙௧ି௟்
௧ୀ௟ାଵ

௅
௟ୀଵ ) 
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Implications for OLS: Relative Efficiency

• We define relative efficiency of GLS against OLS as:

• Let 𝑦௧ = α + β 𝑥௧ + 𝛾 𝑦௧ିଵ + ε௧, ε௧ =   ε௧ିଵ+  u௧, u௧ ~ WN

Also, let 𝑥௧ also follow an AR(1) process: 𝑥௧ = θ 𝑥௧ିଵ + ξ௧,  ξ௧ ~ WN

Then, when T is large, it can be shown that

• The relative efficiency can be very poor for large  for any given θ.

Example: Let  = θ = 0.7  RE ≈ 0.3423. 
Suppose SE[GLS]= 1  SE[b] = 1.71 (= sqrt[1/0.3423])   
 OLS SE is about 71% > GLS SE.
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• OLS estimators can be reasonable for low degrees of autocorrelation 
for any given θ, for example, when  = .3 & θ=.9, then RE ≈ 0.9510.

• The inefficiency of OLS is difficult to generalize. We tend to see 
increase inefficiency with increasing values of the error variances.

• In practice, it is  worst in low frequency -i.e., long period (year)- slowly 
evolving data.  Can be extremely bad.  GLS vs. OLS, the efficiency 
ratios can be 3 or more.

• Given the potential efficiency gain, it makes sense to test for 
autocorrelation.
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Implications for OLS: Relative Efficiency
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Newey-West estimator

• The performance of NW estimators depends on the choice of the 
kernel function –i.e., k(𝑙) – and truncation lag (L). These choices 
affect the resulting test statistics and render testing results fragile.

• NW SEs perform poorly in Monte Carlo simulations: the finite-
sample performance of tests using NW SE is not well approximated 
by the asymptotic theory (big size problems), especially when 𝒙t𝑒௧
shows moderate or high persistence:

- The kernel weighting scheme yields negative bias –i.e., NW SEs are 
downward biased–, which could be big in finite samples.

- The tests based on the NW SE usually over-reject H0. 

- A relatively small L is needed to minimize MSE, which leads to 
considerable bias of the Q* estimator (&, then, distorts the size the 
tests). Minimizing size distortions needs a larger L.

Newey-West estimator: Implementation

• To implement the HAC estimator, we need to determine: lag order –
i.e., truncation lag (L) or bandwidth–, and kernel choice (kl (L)).

(1) Truncation lag (L) 
No optimal formula; though selecting L to minimize MSE is popular.

To determine L, we use: 
- Trial and error, informed guess.
- Rules of thumb. For example: L = 0.75T1/3- 1.
- Automatic selection rules, following Andrews (1991), Newey 

and West (1994) or Sun et al. (2008). 

The choice of L matters. In general, for ARMA models we have: 
- Shorter lags: Larger Bias, Smaller Variance
- Longer lags: Smaller Bias, Larger Variance
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Newey-West estimator: Implementation

• Usual practical advise regarding L: Choose L (lags) a little longer 
than you might otherwise. 

• Sun et al. (2008) give some intuition for a longer L than the optimal 
MSE L, by expanding the probability of a test. Simple example: 

Let z ~ N(0, σ2), s2 is an estimator of σ2 (assume independent of z).
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 Equal weight MSE + Bias. Long L minimizes the Bias; better size!

Newey-West estimator: Implementation

(2) Kernel Choice
- In theory, the kernel choice matters.
- In practice, at least for psd kernels, it does not seem to matter.

kL(x)

x
• Based on the work of  Andrews (1991), where he finds a HAC that 
minimizes the AMSE of  the LRV, the QS kernel tends to be the default 
kernel in computations of  HAC SE. 
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NW Estimator: Improvements

• Other than finding a good kernel and a (long) L, the performance of 
HAC estimators may be improved by:

(1) Pre-whitening the data -Andrews and Monahan (1992). Regress 
xiet on its lagged values. Some arbitrary choice in the selection of the 
lag order to do the regression.

(2) Use forecast errors –Kuan and Hsieh (2006). Computing sample 
autocovariances based on forecast errors, instead of OLS residuals. 
Replace 𝑒௧ with one-step-ahead forecast errors: f𝑒௧ = 𝑦௧– Xt’  𝒃௧ିଵ, 
where  𝒃௧ିଵ is the recursive OLS estimators based on the subsample 
of the first 𝑡 െ 1 observations.

Example: We compute different NW SE for the 3 factor F-F model 
for IBM returns, with bandwidth selected as in Andrews (1991):

> library(sandwich)
> reg <- lm(y ~ x -1)
> reg$coefficients

x           xx1           xx2           xx3 
-0.2331470817  0.0101872239  0.0009802843 -0.0044459013 ⟹ OLS b

> sqrt(diag(kernHAC(reg, prewhite = 0, bw = bwAndrews, kernel = "Quadratic Spectral", verbose = TRUE)))

x         xx1         xx2         xx3 

0.020959375 0.002848645 0.003983330 0.005310548 ⟹ & Bandwidth chosen: 3.035697 

> sqrt(diag(kernHAC(reg, prewhite = 0, bw = bwAndrews, kernel = "Bartlett", verbose = TRUE)))

x         xx1         xx2         xx3 

0.020344074 0.002828663 0.003995942 0.005177482 ⟹ & Bandwidth chosen: 3.507051 

> sqrt(diag(kernHAC(reg, prewhite = 0, bw = bwAndrews, kernel = "Parzen", verbose = TRUE)))

x         xx1         xx2         xx3 

0.022849506 0.002839034 0.003954436 0.005427730 ⟹ & Bandwidth chosen: 6.110888 

NW Estimator: Improvements - Example
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Example: Now, we also pre-white the data (prewhite = 1):

> sqrt(diag(kernHAC(reg, prewhite = 1, bw = bwAndrews, kernel = "Quadratic Spectral", verbose = TRUE)))

x         xx1         xx2         xx3 

0.043339699 0.002908898 0.004029606 0.005783013 ⟹ & Bandwidth chosen: 0.8118876 

> sqrt(diag(kernHAC(reg, prewhite = 1, bw = bwAndrews, kernel = "Bartlett", verbose = TRUE)))

x         xx1         xx2         xx3 

0.042943572 0.002912273 0.004022336 0.005786720 ⟹ & Bandwidth chosen: 0.516233

> sqrt(diag(kernHAC(reg, prewhite = 1, bw = bwAndrews, kernel = "Parzen", verbose = TRUE)))

x         xx1         xx2         xx3 

0.040963950 0.002912789 0.004006919 0.005767432 ⟹ & Bandwidth chosen: 1.634337  

• Note: Pre-whitening tends to increase the standard errors (& 
decrease the bandwidth). Nice result, given that the usual NW SEs 
tend to be downward biased. 

NW Estimator: Improvements - Example

Newey-West estimator: Inconsistency

• Recall that a key assumption in establishing consistency for ST is that 
L → ∞ as T → ∞, but L/T → 0. 

• In practice, L/T is never equal to 0, but some positive fraction, b (b є
(0,1]). Under this situation, the NW estimator is no longer consistent. 

• Thus, t- and F-tests no longer converge in distribution to Normal 
and χ2 RVs, but they do converge in distribution to a RV that have 
non-standard distribution; which do not depend on the unknown 
value of Ω. Tests are still possible. 

• To get asymptotic distributions (& critical values) we use “fixed-b” 
asymptotics. Under fixed-b asymptotics, the truncation parameter, L,
is treated as proportional to T, so L =bT, where b is fixed –see, Kiefer, 
Vogelsang & Bunzell (KVB, 2000), Kiefer & Vogelsang (2002, 2005).
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Newey-West estimator: Inconsistency

• Under fixed-b asymptotics, typically ST → Q*½ Ξ Q*½, where Ξ is a 
RV with E[Ξ]=Ip. Ξ has a non-standard distribution.

• Kiefer and Vogelsang (2005) derive limiting distribution for ST, 
which is complicated, but the 95% critical values (CV) for t-tests can 
be constructed using the following polynomial (b = L/T):

CV (L/T) = 1.96 + 2.9694 b + 0.416 b2 – .05324 b3. 

Note: As b → 0, the standard t critical values apply.

• Since non-standard distributions are not popular, work has been 
devoted to find simple and intuitive estimators of Q* that can be used 
in tests with traditional distributions (say, N(0, 1) and χ2).

Newey-West estimator: Inconsistency

• When the frequency domain kernel weights are equal and truncated 
after the first B/2 periodogram ordinates (an estimator of the spectrum at 
frequency (2π j/T)), the limiting fixed-b distribution of ST is a χ஻

ଶ/B. 

• This corresponds to the equal-weighted periodogram estimator of 
𝑸* (the Daniell window): 

Now, the usual t-test, , has a tB asymptotic 
distribution under H0.

• The EWP estimator has the nice property that fixed-b asymptotic 
inference can be conducted using standard t and F distributions. 
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Newey-West estimator: Inconsistency

• In addition, the EWP estimator is psd with probability 1.

• Müller (2007) and Sun (2013) note that other estimators of Q* can 
be derived by replacing the Fourier functions in 𝑆்

ாௐ௉ by other basis 
functions of a general orthonormal set of basis function for L2[0,1].

• Then, we can see 𝑆்
ாௐ௉as a especial case of:

• Different 𝜙j basis functions (say, cosine), different estimators.

Note: Since 𝑆்
஻ி is computed using an outer product, it is psd.
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Newey-West estimator: KVB

• The (kernel) HAC estimation requires the choices of the kernel 
function and L. Such choices are somewhat arbitrary in practice. 

• To avoid these difficulties, Kiefer, Vogelsang, and Bunzel (2000), 
KVB, proposed an approach that yields an asymptotically pivotal test 
without consistent estimation of the asymptotic covariance matrix. 

• Idea: Use a normalizing matrix to eliminate the nuisance parameters 
in 𝑸*½, the matrix square root of 𝑸்

∗ & impose no truncation (b=1). 
Let

𝝋௝ = ଵ
்
∑ 𝒙௝𝑒௝  
்
௝ୀଵ -a 𝑘x1 vector

Normalizing matrix:

CT = 
ଵ

்
∑ 𝝋௝  𝝋௝′
்
௝ୀଵ = 

ଵ

்మ
 ∑ (∑ 𝒙௝𝑒௝

்
௝ୀଵ ) (∑ 𝒙௝𝑒௝

்
௝ୀଵ )′்

௝ୀଵ  
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Newey-West estimator: KVB

• Normalizing matrix:

CT = 
ଵ

்
∑ 𝝋௝  𝝋௝′
்
௝ୀଵ = 

ଵ

்మ
 ∑ (∑ 𝒙௝𝑒௝

்
௝ୀଵ ) (∑ 𝒙௝𝑒௝

்
௝ୀଵ )′்

௝ୀଵ  

This normalizing matrix is inconsistent for Q*
T but it is free from the 

choice of kernel and L. (Note: There is no truncation, L=T  Good 
for size of test!)

• We use this CT matrix to calculate tests. For example, to test J
restrictions H0: (R β− q=0), we have the following statistic

𝑾்
ற = T (R bT− q)’[R (X’X)−1 CT (X’X)−1 R] -1 (R bT− q).

Although the asymptotic distribution of 𝑾்
ற is non-standard, it can be 

simulated -Lobato (2001).

Newey-West estimator: KVB

• KV (2002) showed that 2CT is algebraically equivalent to 𝑸்
∗,஻

(where 𝐵 stands for Bartlett kernel) without truncation (b=1) - i.e., 
L(T)=T.  Then, usual W based on 𝑸்

∗,஻ without truncation is the same 
as 𝑾்

ற/2.

• KVB derive the (non-standard) asymptotic distribution of the 
conventional t-test of H0: 𝛽௜ =  𝛽௜

଴; but using their robust version, 𝑡ற: 

𝑡ற ൌ
்ሺ௕೔,೅ ି ఉ೔

బሻ 

ఋ෡೔

   ௗ   
  ௐሺଵሻ 

׬ ஻ ௥ మௗ௥
భ
బ ሿమ

. 

where 𝛿௜ is the 𝑖-th diagonal element of (X’X)−1 CT (X’X)−1, 𝑊 is a 
standard Wiener process, and 𝐵 𝑟 is a Brownian Bridge –i.e., 𝐵 𝑟 = 
𝑊 𝑟 −𝑟 𝑊 1 , 0 ≤ 𝑟 ≤ 1. This distribution is symmetric, but more 
disperse than the N(0,1).
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Newey-West estimator: KVB

• KVB report the quantiles of the asymptotic distribution of the usual 
t-test, using CT and using the NW SE, without truncation. (Notation: 
𝑸்
∗,௞௘௥௡௘௟= Σ்

௞௘௥௡௘௟)

Remark: KV (2002) shows that under certain assumptions the t-test
with NW’s SE without truncation are also asymptotically pivotal. 

Newey-West estimator: KVB - Remarks

• An advantage of testing with KVB’s CT matrix is that its asymptotic 
distribution usually provides good approximation to its finite-sample 
counterpart. That is, the empirical size is close to the nominal size (α). 

• This is not the case for the NW HAC SE: in finite samples, they are 
downward biased. Tests are usually over-sized –i.e., not conservative.

• KV (2002b) show that, for 𝑸்
∗,௞ with the truncation lag equal to 

sample size, T, 𝑸்
∗,஻compares favorably with 𝑸்

∗,ொௌ in terms of power. 
This is in contrast with the result in HAC estimation, where the latter 
is usually preferred to other kernels.

• Reference: Kiefer, N. M., T. J. Vogelsang and H. Bunzel (2000). 
“Simple robust testing of regression hypothesis,” Econometrica, 68, 
695–714.
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• There are several autocorrelation tests, with an AR(𝑝) model as H1: 
𝜀௧ = 𝜀௧ିଵ ൅ 𝜀௧ିଶ ൅ ⋯൅ p𝜀௧ି௣ ൅ 𝑢௧

Under H0 (no autocorrelation of order 𝑝):  p = 0.

• Breusch–Godfrey (1978) LM test. Similar to the BP test, based on 
OLS residuals:

– Step 1. (Same as BP’s Step 1). Run OLS on DGP:

y = X  + . - Keep residuals, 𝑒௧.
– Step 2. (Auxiliary Regression). Run the regression of 𝑒௧ on all the 

explanatory variables, X:

𝑒௧ = 𝒙௧’ γ + α1 𝑒௧ିଵ + .... + αp 𝑒௧ି௣ + 𝑣௧ - Keep R2 (𝑅௘ଶ)

– Step 3. Keep 𝑅௘ଶ. Then, calculate:

LM = (T- p) * 𝑅௘ଶ
ௗ
→ χ௣

ଶ . 31

Testing for Autocorrelation: LM Test 

Example: LM-AR Test for the 3 factor F-F model for IBM returns 
(p=12 lags):

fit_ibm<- lm(ibm_x ~ Mkt_RF + SMB + HML) # OLS regression

e <- fit_ibm$residuals # OLS residuals

p_lag <- 12 # Select # of lags for test (set p)

e_lag <- matrix(0,T-p_lag,p_lag) # Matrix to collect lagged residuals

a <- 1

while (a<=p_lag) { # Do loop creates matrix (e_lag) with lagged e

za <- e[a:(T-p_lag+a-1)]

e_lag[,a] <- za

a <- a+1

}

Mkt_RF_p <- Mkt_RF[(p_lag+1):T] # Adjust for new sample size: T – p_lag

SMB_p <- SMB[(p_lag+1):T]

HML_p <- HML[(p_lag+1):T]

fit1 <- lm(e[(p_lag+1):T] ~ e_lag + Mkt_RF_p + SMB_p + HML_p) # Auxiliary Regression

r2_e1 <- summary(fit1)$r.squared # get R^2 from Auxiliary Regression

lm_t <- (T-p_lag )* r2_e1 # LM-test wih p lags

Testing for Autocorrelation: LM Test 

32
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Example (continuation):
lm_t # print lm_t

df <- ncol(e_lag) # degrees of freedom of test

1 - pchisq(lm_t,df) # p-value of lm_t

> r2_e1 <- summary(fit1)$r.squared

> r2_e1

[1] 0.0303721 

> (T-p_lag)

[1] 557

> lm_t <- (T - p_lag) * r2_e1

> lm_t

[1] 16.91726 

> df <- ncol(e_lag) # degrees of freedom for the LM Test

> 1-pchisq(lm_t,df)

[1] 0.1560063

LM-AR(12) Test: 16.91726  cannot reject H0 at 5% level (p-value > .05).

If I run the test with p=4 lags, I get
LM-AR(4) Test: 2.9747 (p-value = 0.56) cannot reject H0 at 5% level (p-value > .05).

Testing for Autocorrelation: LM Test 
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Example (continuation):
The package lmtest, performs this test, bgtest, (and many others, used in 
this class, encompassing, jtest, waldtest, etc). You need to install it 
first: install.packages(“lmtest”), then call the library(lmtest).

> library(lmtest)
> bgtest(ibm_x ~ Mkt_RF + SMB + HML, order=12)

Breusch-Godfrey test for serial correlation of  order up to
12

data:  lr_ibm ~ Mkt_RF + SMB + HML
LM test = 16.259, df = 12, p-value = 0.1797 (minor difference with the previous test, likely due to 

multiplication by T. Results do not change much)

Note: If you do not include in the Auxiliary Regression the original 
regressors (Mkt_RF, SMB, HML) the test do not change much. You 
get LM-AR(12) Test: 16.83253  very similar. Not entirely 

correct, but it works well. 

Testing for Autocorrelation: LM Test 

34
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Example (continuation):
Autocorrelation is very common. If I run the test for Disney, CNP, 
or GE, instead, we get significant test results. For DIS: 

lr_dis <- log(x_dis[-1]/x_dis[-T])
dis_x <- lr_dis – RF

> bgtest(dis_x ~ Mkt_RF + SMB + HML, order=4)
Breusch-Godfrey test for serial correlation of order up to  4

data:  dis_x ~ Mkt_RF + SMB + HML
LM test = 8.6382, df = 4, p-value = 0.07081  cannot reject H0 at 5% level (p-value >.05)

> bgtest(dis_x ~ Mkt_RF + SMB + HML, order=12)
Breusch-Godfrey test for serial correlation of order up to  12

data:  dis_x ~ Mkt_RF + SMB + HML
LM test = 30.068, df = 12, p-value = 0.002728  reject H0 at 5% level (p-value < .05)

Testing for Autocorrelation: LM Test 
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Example (continuation):
LM tests for autocorrelation (with 12 lags) for  GE and CNP again 
show significant test results:

lr_ge <- log(x_ge[-1]/x_ge[-T]); ge_x <- lr_ge – RF
lr_cnp <- log(x_cnp[-1]/x_cnp[-T]); cnp_x <- lr_cnp – RF

> bgtest(ge_x ~ Mkt_RF + SMB + HML, order=4)
Breusch-Godfrey test for serial correlation of order up to  4

data:  ge_x ~ Mkt_RF + SMB + HML
LM test = 28.257, df = 4, p-value = 0.005073  cannot reject H0 at 5% level (p-value >.05)

> bgtest(cnp_x ~ Mkt_RF + SMB + HML, order=12)
Breusch-Godfrey test for serial correlation of order up to  12

data:  cnp_x ~ Mkt_RF + SMB + HML
LM test = 31.718, df = 12, p-value = 0.00153  reject H0 at 5% level (p-value < .05)

Testing for Autocorrelation: LM Test 

36
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• Q: How many lags are needed in the test? In general, enough to 
make sure there is no auto-correlation left in the residuals. Using some 
criteria for optimal (“automatic”) selection is possible.

• There are some popular rule of thumbs: for daily data, 5 or 20 lags; 
for weekly, 4 or 12 lags; for monthly data, 12 lags; for quarterly data, 4 
lags.

Testing for Autocorrelation: LM Test 
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Testing for Autocorrelation: Durbin-Watson

• The Durbin-Watson (1950) (DW) test for AR(1) autocorrelation:  

H0: ଵ = 0 against H1: ଵ ≠ 0. Based on simple correlations of  𝒆.

𝑑 =  
∑ ሺ௘೟ ି ௘೟షభሻమ
೅
೟సమ

∑ ௘೟
మ೅

೟సభ

• It is easy to show that when T → ∞, 𝑑  2(1 - ଵ).  

•  is estimated by the sample correlation r.

• Under H0, = 0. Then, d should be distributed randomly around 2.

• Values of 𝑑 close to 0 or to 4 lead to rejection of H0. The 
distribution depends on X. DW derived bounds for the test. Today, 
almost all packages compute DW p-values.

• In the presence of lagged dependent variables, Durbin’s (1970) ℎ
test should be used: ℎ = r sqrt{T/(1 – T s2)}
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Example: DW Test for the 3 factor F-F model for IBM returns

fit_dw <- lm(ibm_x ~ Mkt_RF + SMB + HML) # OLS regression

e <- fit_dw$residuals # OLS residuals

> RSS <- t(e)%*%e # RSS
> DW <- sum((e[1:(T-1)]-e[2:T])^2)/RSS # DW stat
> DW
[1] 2.042728  DW statistic ≈2   No evidence for autocorrelation of order 1.
> 2*(1-cor(e[1:(T-1)],e[2:T])) # approximate DW stat
[1] 2.048281

• Similar finding for Disney returns:
> DW

[,1]
[1,] 2.1609  DW statistic ≈2   But, DIS suffers from autocorrelation!

 This is why DW are not that informative. They only test for AR(1) in residuals.

Note: The package lmtest performs this test too, dwtest:

> dwtest(y ~ Mkt_RF + SMB + HML)

DW = 2.0427, p-value = 0.7087

Testing for Autocorrelation: DW Test 
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Example: DW Test for the residuals of the encompassing model 
(IFE + PPP) for changes in USD/GBP:

fit_gbp <- lm(lr_usdgbp ~ inf_dif + int_dif)

e_gbp <- fit_gbp$residuals
> dwtest(fit_gbp)

Durbin-Watson test

data:  fit_gbp
DW = 1.8588, p-value = 0.08037  not significant at 5% level.
alternative hypothesis: true autocorrelation is greater than 0

Testing for Autocorrelation: DW Test 

40
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Testing for Autocorrelation: Portmanteu tests

• Portmanteu tests are tests with a well-defined H0, but not specific 
H1. We will present two: Box-Pierce Q test and the Ljung-Box test.

• Box-Pierce (1970) test (Q test).

It tests H0 p = 0 using the sample correlation, 𝑟௝ = 
ఊෝೕ
ఊෝబ

where (using time series notation)

𝛾ො௝ = Sample covariance between 𝑦௧ & 𝑦௧ି௝ = 
∑ ሺ௬೟ ି ௬തሻሺ௬೟షೕ ି ௬തሻ೅
೟సೕశభ

்ି௝

𝛾ො଴ = Sample variance.

Then, under H0:

Q = T  ∑ 𝑟௝
ଶ௣

௝ୀଵ

ௗ
→ χ௣

ଶ .
41

Testing for Autocorrelation: Portmanteu tests

• Ljung-Box (1978) test (LB test). 

A variation of the Box-Pierce test. It has a small sample correction.

LB = T * (T + 2) * ∑
௥ೕ
మ

்ି௝
௣
௝ୀଵ  

  ௗ  
χ௣
ଶ .

• The asymptotic distribution of both tests is based on the fact that, 

under the null of independent data, 𝑇 𝒓
  ௗ  

N(0, I). 

Note: When analyzing residuals, 𝑒௧, of a regression we compute 𝑟௝ as: 

𝑟௝ = 
ఊෝೕ
ఊෝబ

= 
∑ ௘೟ ௘೟షೕ
೅షೕ
ೕసభ

∑ ௘ೕ
మ೅

ೕసభ

• The LB statistic is widely used. But, the BG (1978) LM tests 
conditions on X. Thus, it is more powerful.  42



RS – Lecture 13 - Autocorrelation

22RS 2024 - Not to be posted/shared online without written authorization from author.

Example: Q and LB tests with 𝑝 = 12 lags for the residuals in the 3-
factor FF model for IBM excess returns:
RSS <- sum(e_ibm^2)

r_sum <- 0

lb_sum <- 0

p_lag <- 12

a <- 1

while (a <= p_lag) {

za <- as.numeric(t(e_ibm[(p_lag+1):T]) %*% e_ibm[a:(T-p_lag+a-1)])

r_sum <- r_sum + (za/RSS)^2 #sum cor(e[(p_lag+1):T], e[a:(T-p_lag+a-1)])^2

lb_sum <- lb_sum + (za/RSS)^2/(T-a) 

a <- a + 1

} 

Q <- T*r_sum

LB <- T*(T+2)*lb_sum

> Q

[1] 16.39559 (p-value = 0.1737815)  cannot reject H0 at 5% level. 

> LB

[1] 16.46854 (p-value = 0.1707059)  cannot reject H0 at 5% level. 

Testing for Autocorrelation: Portmanteu tests
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Example (continuation): The Box.test function computes Q & LB:
• Q  test
> Box.test(e_ibm, lag = 12, type="Box-Pierce")

Box-Pierce test

data:  e

X-squared = 16.304, df = 12, p-value = 0.1777

• LB test
> Box.test(e_ibm, lag = 12, type="Ljung-Box")

Box-Ljung test

data:  e

X-squared = 16.61, df = 12, p-value = 0.1649

Note: There is a minor difference between the previous code and the code 
in Box.test. They are based on how the correlations of 𝑒 are computed 
(centered around the mean, or assumed zero mean).

Testing for Autocorrelation: Portmanteu tests

44
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45

Example (continuation): Same tests (𝑝 = 12 lags) & same model:
• For DIS (dis_x), we get:
> Q

[1] 28.76842 (p-value = 0.004264043)  reject H0 at 5% level. 

> LB

[1] 29.05072 (p-value = 0.003872236)  reject H0 at 5% level. 

• For GE (ge_x), we get
> Q

[1] 24.20958 (p-value = 0.01904602)  reject H0 at 5% level. 

> LB

[1] 24.33922 (p-value = 0.01828389)  reject H0 at 5% level. 

• Autocorrelation in financial asset returns is a usual finding in 
monthly, weekly and daily data.  

Testing for Autocorrelation: Portmanteu tests

Testing for Autocorrelation: Portmanteu tests

• Q & LB tests are widely use, but they have two main limitations: 

(1) The test was developed under the independence assumption. 

If 𝑦௧ shows dependence, such as heteroscedasticity, the asymptotic 
variance of 𝑇 𝒓 is no longer I, but a non-diagonal matrix.

There are several proposals to “robustify” both Q & LB tests, see 
Diebold (1986), Robinson (1991), Lobato et al. (2001). The 
“robustified” Portmanteau statistic uses 𝑟௝෥ instead of 𝑟௝ :

𝑟௝෥ = 
ఊෝೕ
మ

தೕ  
= 

∑ ሺ௬೟ ି ௬തሻሺ௬೟షೕ ି  ௬തሻ೅
೟సೕశభ

∑ ሺ௬೟ ି ௬തሻమ ሺ௬೟షೕ ି ௬തሻమ೅
೟సೕశభ

Thus, for Q we have:

Q* = T  ∑ 𝑟̃௝
ଶ௣

௝ୀଵ

ௗ
→ χ௣

ଶ . 46
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Testing for Autocorrelation: Portmanteu tests

(2) The selection of the number of autocorrelations 𝑝 is arbitrary.

The traditional approach is to try different 𝑝 values, say 3, 6 & 12. 
Another popular approach is to let the data “select” 𝑝, for example, 
using AIC or BIC, an approach sometimes referred as “automatic 
selection.” 

Escanciano and Lobato (2009) propose combining BIC’s and AIC’s 
penalties to select 𝑝 in Q* (BIC for small and AIC for bigger .

• It is common to reach different conclusion from Q and Q*. 

47

48

Example: Q* tests with automatic selection of p for the residuals in 
the 3-factor FF model for IBM & DIS excess returns. We use 
Auto.Q funcition in R package vrtest.

- For IBM (e_ibm), we get:

> library(vrtest)

> Auto.Q(e_ibm, 12) #Maximum potential lag = 12

> $Stat

[1] 0.2781782

$Pvalue

[1] 0.5978978

- For DIS (e_dis), we get:

> Auto.Q(e_dis, 12)

$Stat

[1] 2.649553

$Pvalue

[1] 0.103579  Reversal for DIS

Testing for Autocorrelation: Portmanteu tests



RS – Lecture 13 - Autocorrelation

25RS 2024 - Not to be posted/shared online without written authorization from author.

GLS: The AR(1) Model

• (A1) holds: 𝒚 = X  + 
But,  is no longer white noise:

𝜀௧ =  𝜀௧ିଵ+ 𝑢௧, || < 1. 𝑢௧ ~ WN (0, σ௨ଶ )

Note: This characterizes the disturbances, not the regressors.

Notation: Let L be the  lag operator, such that 𝐿௤  𝑧௧ = 𝑧௧ି௤ . Then, 
(1 – 𝐿) 𝜀௧ = 𝑢௧.

• We will get Var[𝜀௧] in a different way. After some algebra, we get
𝜀௧ =  𝑢௧ +   𝑢௧ିଵ+ 2  𝑢௧ିଶ + 3 𝑢௧ିଷ + ...

= ∑ 𝒋 𝑢௧ି௝்
௝ୀ଴ = ∑ ሺL)𝒋 𝑢௧

்
௝ୀ଴ (a moving average) 

• Var[𝜀௧] = ∑ ଶ𝒋 𝑉𝑎𝑟ሾ𝑢௧ି௝ሿ்
௝ୀ଴ ൌ σ௨ଶ/(1 – 2)

GLS: AR(1) Case – Autocorrelation Matrix Σ

(A3’) 𝜎ଶΩ ൌ ఙೠమ

ଵିఘమ

1 𝜌 𝜌ଶ ⋯ 𝜌்ିଵ

𝜌 1 𝜌 ⋯ 𝜌்ିଶ

𝜌ଶ 𝜌 1 ⋯ 𝜌்ିଷ

⋮ ⋮ ⋮ ⋱ ⋮
𝜌்ିଵ 𝜌்ିଶ 𝜌்ିଷ ⋯ 1

Ωିଵ/ଶ ൌ

1 െ 𝜌ଶ 0 0 . . . 0
െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0

• Now, we get (A3’) Σ = σ2 .

1.  Then, we can get the transformation matrix P = -1/2:
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𝐏 ൌ 𝛀ିଵ/ଶ ൌ

1 െ 𝜌ଶ 0 0 . . . 0
െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0

𝒚* ൌ 𝐏 𝒚 ൌ

1 െ 𝜌ଶ 𝑦ଵ
𝑦ଶ െ 𝜌𝑦ଵ
𝑦ଷ െ 𝜌𝑦ଶ

. . .
𝑦் െ 𝜌்ିଵ

2. With P = -1/2, we transform the data to do GLS.

 GLS: Transformed y*. 

:

GLS: AR(1) Case – Transformed 𝒚 & X: 𝒚* & X*

𝐏 ൌ 𝛀ିଵ/ଶ ൌ

1 െ 𝜌ଶ 0 0 . . . 0
െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0

𝒙௞
∗ ൌ 𝐏 𝒙௞ ൌ

1 െ 𝜌ଶ  𝑥௞ଵ
𝑥௞ଶ െ 𝜌 𝑥௞ଵ
𝑥௞ଷ െ 𝜌 𝑥௞ଶ

. . .
𝑥் െ 𝜌 𝑥்ିଵ

2. Transformed xk column (independent variable k) of  matrix X is:

3. GLS is done with transformed data. In (A3’) we assume 𝜌 known. 

 GLS: Transformed X*. 

GLS: AR(1) Case – Transformed y & X: y* & X*
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GLS: The Autoregressive Transformation

• With AR models, sometimes it is easier to transform the data by 
taking pseudo differences. 

• For the AR(1) model, we multiply the DGP by ρ and subtract it 
from it. That is, 

𝑦௧  ൌ   𝒙୲′𝛃 ൅    𝜀௧, 𝜀୲ ൌ 𝜌𝜀௧ିଵ ൅ 𝑢௧
𝜌𝑦௧ିଵ ൌ 𝜌𝒙୲ିଵ′𝛃 ൅ 𝜌𝜀௧ିଵ
െെെെെെെെെെെെെെെെെെെെെെെെെ
𝑦௧ െ 𝜌𝑦௧ିଵ ൌ ሺ𝒙୲ െ 𝜌𝒙୲ିଵሻ′𝛃 ൅ ሺ𝜀௧ െ 𝜌𝜀௧ିଵሻ

𝒚𝒕
∗ ൌ 𝒙𝒕

∗′𝛃 ൅ 𝑢௧
Now, the errors, 𝑢௧, which are uncorrelated. We can do OLS with the 
pseudo differences.

Note: 𝑦௧
∗ ൌ 𝑦௧ െ 𝜌𝑦௧ିଵ &  𝒙௧

∗ ൌ 𝒙୲ െ 𝜌𝒙୲ିଵ are pseudo differences.

FGLS: Unknown 

• The problem with GLS is that  is unknown. For example, in the 
AR(1) case,  is unknown.  

• Solution: Estimate .  Feasible GLS (FGLS).

• In general, there are two approaches for GLS

(1) Two-step, or Feasible estimation: - First, estimate  first. 

- Second, do GLS. 

Similar logic to HAC procedures: We do not need to estimate , 
difficult with T observations. We estimate (1/T)X-1X.

– Nice asymptotic properties for FGLS estimator. Not longer BLUE

(2) ML estimation of , 2, and  at the same time (joint estimation 
of all parameters). With some exceptions, rare in practice.
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FGLS: Specification of 

•  must be specified first.

•  is generally specified (modeled) in terms of a few parameters. 
Thus,  = () for some small parameter vector . Then, we need to 
estimate .

Example: i with AR(1) process. We have already derived 2  as a 
function of .

Technical note: To achieve full efficiency, we do not need an efficient
estimate of the parameters in , only a consistent one.  

• For the AR(1) case, there is a simple estimation technique, the 
Cochrane-Orcutt method.

FGLS Estimation: Cochrane-Orcutt

• 𝑦௧ െ 𝜌𝑦௧ିଵ = (𝑿௧ – 𝑿௧ିଵ)’  + 𝜀୲ െ 𝜌𝜀௧ିଵ
 𝑦௧ = 𝜌𝑦௧ିଵ + 𝑿௧’  – 𝑿௧ିଵ’  ൅ 𝑢௧

• We have a linear model, but it is nonlinear in parameters. This is not 
a problem: Non-linear estimation is possible. 

• Before today’s computer power, Cochrane–Orcutt’s (1949) iterative 
procedure was an ingenious way to do NLLS.  Steps:

(1) Do OLS. Get residuals, 𝒆. Then estimate  with a regression of  
𝒆௧ against 𝒆௧ିଵ. We use r to denote the estimator of  .

(2) FGLS Step. Using r transform the model to get 𝒚* and X*. Do 
OLS  get b to estimate . Get residuals, 𝒆*. Go back to (1).

(3) Iterate until convergence.
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Example: Cochrane-Orcutt in R

# C.O. function requires Y, X (with constant), OLS b.

c.o.proc <- function(Y,X,b_0,tol){

T <- length(Y)

e <- Y - X%*%b_0 # OLS residuals

rss <- sum(e^2) # Initial RSS of  model, RSS9 

rss_1 <- rss # RSS_1 will be used to reset RSS after each iteration

d_rss = rss # initialize d_rss: difference between RSSi & RSSi-1

e2 <- e[-1] # adjust sample size for et

e3 <- e[-T] # adjust sample size for et-1

ols_e0 <- lm(e2 ~ e3 - 1) # OLS to estimate rho

rho <- ols_e0$coeff[1] # initial value for rho, 0

i<-1

while (d_rss > tol) { # tolerance of  do loop. Stop when diff  in RSS < tol

rss <- rss_1 # RSS at iter (i-1)

YY <- Y[2:T] - rho * Y[1:(T-1)] # pseudo-diff  Y

XX <- X[2:T, ] - rho * X[1:(T-1), ] # pseudo-diff  X

ols_yx <- lm(YY ~ XX - 1) # adjust if  constant included in X

FGLS Estimation: Cochrane-Orcutt in R

Example (continuation): 

b <- ols_yx$coef # updated OLS b at iteration i

#  b[1] <- b[1]/(1-rho) # If  constant not pseudo-differenced remove tag #

e1 <- Y - X%*%b # updated residuals at iteration i
e2 <- e1[-1] # adjust sample size for updated et

e3 <- e1[-T] # adjust sample size for updated e_t-1 (lagged et)
ols_e1 <- lm(e2~e3-1) # updated regression to value for rho at iteration i
rho <- ols_e1$coeff[1] # updated value of  rho at iteration i, i

rss_1 <- sum(e1^2) # updated value of  RSS at iteration i, RSSi

d_rss <- abs(rss_1 - rss) # diff  in RSS (RSSi - RSSi-1)
i <- i+1

}

result <-list()
result$Cochrane-Orc.Proc <- summary(ols_yx)
result$rho.regression <- summary(ols_e1)
#  result$Corrected.b_1 <- b[1]
result$Iterations < -i-1
return(result)
}

FGLS Estimation: Cochrane-Orcutt in R
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Example: In the model for Mexican interest rates (iMX), we suspect 
an AR(1) in the residuals: 

iMX,t = 0 + 1 iUS,t + 2 et + 3 mx_It + 4 mx_yt + 𝜀୲
𝜀୲ ൌ 𝜌𝜀௧ିଵ ൅ 𝑢௧

• Cochrane-Orcutt estimation. 
y <- mx_i_1
T_mx <- length(mx_i_1)
xx_i <- cbind(us_i_1, e_mx, mx_I, mx_y)
x0 <- matrix(1,T_mx,1)
X <- cbind(x0,xx_i) # X matrix
fit_i <- lm(mx_i_1 ~ us_i_1 + e_mx + mx_I + mx_y)
b_i <-fit_i$coefficients # extract coefficients from lm
> summary(fit_i)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.04022    0.01506   2.671  0.00834 ** 
us_i_1  0.85886    0.31211  2.752  0.00661 ** 
e_mx -0.01064    0.02130  -0.499  0.61812    
mx_I 3.34581    0.19439  17.212 < 2e-16 ***
mx_y -0.49851    0.73717  -0.676  0.49985

FGLS Estimation: Cochrane-Orcutt – iMX

Example (continuation): 
> c.o.proc(y,X,b,.0001)

$Cochrane.Orcutt.Proc

Call:

lm(formula = YY ~ XX - 1)

Residuals:

Min       1Q   Median       3Q      Max 

-0.69251 -0.02118 -0.01099  0.00538  0.49403 

Coefficients:

Estimate Std. Error t value Pr(>|t|)  

XX     0.16639    0.07289   2.283   0.0238 *

XXus_i_1 1.23038    0.76520   1.608   0.1098   not longer significant at 5% level.

XXe_mx -0.00535    0.01073  -0.499   0.6187  

XXmx_I 0.41608    0.27260   1.526   0.1289   not longer significant at 5% level.

XXmx_y -0.44990    0.53096  -0.847   0.3981  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

FGLS Estimation: Cochrane-Orcutt – iMX
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Example (continuation): 
Residual standard error: 0.09678 on 160 degrees of  freedom

Multiple R-squared:  0.1082,    Adjusted R-squared:  0.08038 

F-statistic: 3.884 on 5 and 160 DF,  p-value: 0.002381

$rho

e3 

0.8830857  very high autocorrelation. 

$Corrected.b_1

XX 

0.1663884  Constant corrected if  X does not include a constant

$Number.Iteractions

[1] 10  algorithm converged in 10 iterations. 

FGLS Estimation: Cochrane-Orcutt – iMX

• SE[bCO] and SE[rCO] are obtained from the regression in the last 
iteration. If  the constant is not pseudo-differentiatted, the estimated 
bCO,0 has to be adjusted by (1- rCO). Similar correction for SE[bCO,0]. 

• If  we do not want to lose the first observation, we can use the Prais-
Winsten (1945) transformation of  the first observation:

sqrt{1 – 2} y1 &  sqrt{1 – 2} X1

• A grid search around  can speed up the algorithm considerably. 
This is the Hildreth-Lu (1960) procedure.

• The iterative two-step estimation procedure can be easily extended 
to AR(p) models.

FGLS Estimation: Cochrane-Orcutt
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• Note: Cochrane-Orcutt works well if  the specified AR(p) structure 
is correct. Otherwise, we are in the presence of  a missspecified model.

Example: For the 3 FF factor model for IBM returns we run C-O 
with an AR(1) process for 𝜀୲: 𝜀୲ ൌ 𝜌𝜀௧ିଵ ൅ 𝑢௧.

Then, after the final run, we do an LM-AR(3) test on the residuals, ut.
We do this by adding in the C-O procedure (& add to the list the last 
line: result$LM.AR3.test_u <- lm_t_u:
## lm_t for AR(3) in u

ols_u <- lm(u[4:T] ~ u[1:(T-3)] + u[2:(T-2)] + u[3:(T-1)])

r2_u <- summary(ols_u)$r.squared

lm_t_u <- (T-3)*r2_u

$LM.AR3.test_u

[1] 56.29834  Very significant. We need to use a higher AR(p) model.

FGLS Estimation: Cochrane-Orcutt

FGLS & MLE Estimation

• We need to estimate   We need a model for  = (θ). 

 In the AR(1) model, we had  = (). 

- FGLS estimation is done using Cochrane-Orcutt or NLLS.

- MLE can also be done, say assuming a normal distribution for ut, to 
estimate  and  simultaneously. For the AR(1) problem, the MLE 
algorithm works like the Cochrane-Orcutt algorithm.

• For an AR(2) model, Beach-Mackinnon (1978) propose an MLE 
algorithm that is very fast to converge.

• For an AR(p) models, with p > 3, MLE becomes complicated. Two-
step estimation is usually done.
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• Log likelihood of  ARMA(1,1)-GARCH(1,1) Model:

log_lik_garch11 <- function(theta, data) {
mu <- theta[1]; delta <- theta[2]; gamma <- theta[3]; alpha0 <- abs(theta[4]); 
alpha1 <- abs(theta[5]); beta1 <- abs(theta[6]);  chk0 <- (1 - alpha1 - beta1)
r <- ts(data)
n <- length(r)

u <- vector(length=n); 
u <- ts(u)
u[1] <- r[1] - mu # set initial value for u[t] series
for (t in 2:n)
{u[t] = r[t] - mu - delta*r[t-1] - gamma*u[t-1]}

h <- vector(length=n);  h <- ts(h)
h[1] = alpha0/chk0 # set initial value for h[t] series
if  (chk0==0) {h[1]=.00001} #check to avoid dividing by 0
for (t in 2:n)
{h[t] = abs(alpha0 + alpha1*(u[t-1]^2)+ beta1*h[t-1])
if  (h[t]==0) {h[t]=.00001} } #check to avoid log(0)

return(-sum(-0.5*log(2*pi) - 0.5*log(abs(h[2:n])) - 0.5*(u[2:n]^2)/abs(h[2:n])))
}

MLE Estimation: Example in R

• To maximize the likelihood we use optim (mln can also be used):

dat_xy <- read.csv(” http://www.bauer.uh.edu/rsusmel/phd/datastream-K-DIS.csv",head=TRUE,sep=",")
summary(dat_xy)
names(dat_xy)

z <- dat_xy$SP500 # S&P 500 90-2016 monthly data

theta0 = c(0.01,  -0.1, 0.01, -0.001, 0.2,  0.7) # initial values
ml_2 <- optim(theta0,  log_lik_garch11, data=z, method="BFGS", hessian=TRUE)

ml_2$par # estimated parameters 

I_Var_m2 <- ml_2$hessian
eigen(I_Var_m2) #check if  Hessian is pd.
sqrt(diag(solve(I_Var_m2))) # parameters SE

MLE Estimation: Example in R
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Autocorrelation as a Common Factor

• From the first-order autocorrelated model

𝑦௧ = 𝜌𝑦௧ିଵ + 𝑿௧′  – 𝑿௧ିଵ′ 𝜌 ൅ 𝑢௧ (*)

• We can generalize (*) using the lag operator L –i.e., 𝐿௤𝑦௧ = 𝑦௧ି௤:

(1 – 𝜌L) 𝑦௧ = (1 – 𝜌L) 𝑿௧′  + 𝑢௧

Then, dividing  by (1- L):

𝑦௧ = 𝑿௧′  + 𝑢௧/(1 – 𝜌L) = 𝑿௧′  + 𝜀୲

• We can think of  a model with autocorrelation as a misspecified
model. The common factor (1 – L) is omitted. See Mizon (1977).

• We can generalize (*) even more by introducing more common lags:

(1 – B(L)) 𝑦௧ = (1 – B(L)) 𝑿௧′  + 𝑢௧ B(L): function of  L, L2,..., 𝐿௤ ; 

Common Factor Test

• From the AR(1) model: 

(R) 𝑦௧ = 𝜌𝑦௧ିଵ + 𝑿௧′  – 𝑿௧ିଵ′ 𝜌 ൅ 𝑢௧ (*)

• We can think of  (*) as a special case of  a more general specification:

(U) 𝑦௧ = λ1 𝑦௧ିଵ + 𝑿௧′λ2 + 𝑿௧ିଵ′ λ3 + 𝑢௧

Restrictions needed to get (*): λ3 = - λ1 λ2

• Hendry and Mizon (1980) propose testing the validity of  the 
restrictions using a LR test, which has an asymptotic χ2 distribution, 
with degrees of  freedom equal to the number of  restrictions .

LR = T log [RSSR/RSSU]

• The test is known as the common factor (COMFAC) test.
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• We can use an F-test or Wald tests. See Mizon (1995) and McGuirk 
and Spanos (2004).

Note: Since the H0 and H1 models involve lagged yt’s, the test statistics 
do not follow the asymptotic distribution. Bootstraps are a good idea. 

Common Factor Test

• Common Factor Test for 3 FF factor model for IBM returns: 

(U) Fit the unrestricted model: 𝑦௧ = λ1 𝑦௧ିଵ + 𝑿௧′λ2 + 𝑿௧ିଵ′ λ3 + 𝑢௧
> x <- cbind(x0,x1,x2,x3)

> x_l <- cbind(x1,x2,x3)

> reg_u <- lm(y[2:T]~y[1:T-1]+x[2:T,]+x_l[1:(T-1),] -1)

> sum(residuals(reg_u)^2)

[1] 2.92264

(R) Fit the restricted model: 𝑦௧ = 𝜌𝑦௧ିଵ + 𝑿௧′  – 𝑿௧ିଵ′ 𝜌 ൅ 𝑢௧
sum2 <- function(theta, x,y) {

rho1 <- theta[1];  mu <- theta[2]; beta <- theta[3:5]; lambda3 <- (-1)*rho1%*%beta 

r <- ts(y)

T <- length(r)

T1 <- T-1

u <- vector(length=T1);  

u = r[2:T]- rho1*r[1:(T-1)] - x[2:T]*mu - x[2:T,2:4]%*%beta - x[1:(T-1),2:4]%*%t(lambda3)

return(sum(u^2))

}

Common Factor Test - Example
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> theta0 = c(0.5, -.02, 0.01, -0.005,  -0.003)# initial values

> cf_r <- optim(theta0, sum2, x=x, y=y, method="BFGS", hessian=TRUE)

> cf_r$par

[1]  0.875011230 -0.027804863  0.009997961 -0.002767329 -0.003927199

> sum2(cf_r$par, x,y)

[1] 2.927888

> T*log(sum2(cf_r$par, x,y)/sum(residuals(reg_u)^2) # LR COMFAC TEST

[1] 0.5561482

• F-test = [(2.927888 - 2.92264)/3]/[2.92264/311] = 0.1861477 
 cannot reject H0 at 5% level.

Note: The restricted model seems OK. But, we need to check that the 
model is well specified. In this case, does the AR(1) structure is 
enough to remove the autocorrelation in the errors?

Common Factor Test - Example

• We do an LM-AR(5) test to check the errors in the U Model:
> fit_u <- lm(e_u[(5+1):T]~e_u[1:(T-5)]+e_u[2:(T-4)]+e_u[3:(T-3)]+e_u[4:(T-2)]+e_u[5:(T-1)])

> r2_e_u <- summary(fit_u)$r.squared

> lm_t_u <- (T-4)*r2_e_u 

> lm_t_u

[1] 70.75767 ⟹ Very significant (p-value: 1.6e-14). An AR(1) structure is not 
sufficient to remove AR in errors. 

In general, if  we allow for more dynamics in the U Model we do 
better. For example, we use 4 lags in 𝑦௧ and 2 lags in 𝑿௧:

> reg_u4 <- lm(y[5:T]~y[1:(T-4)]+y[2:(T-3)]+y[3:(T-2)]+y[4:(T-1)] +x[5:T,]+x_l[4:(T-1),]+x_l[3:(T-2),] -1)

> e_u4 <- residuals(reg_u4)

> fit_u5 <- lm(e_u4[(5+1):T]~e_u4[1:(T-5)]+e_u4[2:(T-4)]+e_u4[3:(T-3)]+e_u4[4:(T-2)]+e_u4[5:(T-1)])

> r2_e_u5 <- summary(fit_u5)$r.squared

> lm_t_u5 <- (T-5)*r2_e_u5

> lm_t_u5

[1] 6.938392 ⟹ Not significant (p-value: .139).

Common Factor Test - Example
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Building the Model

• Old (pre-LSE school) view:  A feature of the data

– “Account” for autocorrelation in the data.

– Different models, different estimators

• Contemporary view:  Why is there autocorrelation?

– What is missing from the model?

– Build in appropriate dynamic structures

– Autocorrelation should be “built out” of the model

– Use robust procedures (OLS with Newey-West SE) instead of 
elaborated models specifically constructed for the AR errors.


