
RS – Lecture 12

1

1

Lecture 12
Heteroscedasticity
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Heteroscedasticity
• Assumption (A3) is violated in a particular way:  has unequal 
variances, but i and j are still not correlated with each other. Some 
observations (lower variance) are more informative than others 
(higher variance).
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Heteroscedasticity

• Now, we have the CLM regression with hetero-(different) scedastic
(variance) disturbances.
(A1) DGP: 𝒚 = X  +  is correctly specified. 
(A2) E[|X] = 0
(A3’) Var[௜]  =  2 ௜ , ௜ > 0. (CLM ௜= 1, for all 𝑖.)
(A4) X has full column rank – rank(X)=𝑘–, where 𝑇 ≥ 𝑘.

• Popular normalization:  ∑ ௜்
௜ୀଵ = 1.  (A scaling, absorbed into 2.)

• A characterization of the heteroscedasticity:  Well defined 
estimators and methods for testing hypotheses will be obtainable if 
the heteroscedasticity is “well behaved” in the sense that

௜/ ∑ ௜்
௜ୀଵ → 0  as  T → .   -i.e., no single observation 

becomes dominant.
(1/T) ∑ ௜்

௜ୀଵ → some stable constant.  (Not a plim!)

GR Model and Testing

• Implications for conventional OLS and hypothesis testing:

1.  b is still unbiased. 

2.  Consistent?  We need the more general proof.  Not difficult.

3.  If plim b = , then plim 𝑠ଶ = 2 (with the normalization).

4. Under usual assumptions, we have asymptotic normality.

• Two main problems with OLS estimation under heterocedasticity:

(1) The usual standard errors are not correct. (They are biased!)

(2) OLS is not BLUE.

• Since the standard errors are biased, we cannot use the usual t-
statistics or F–statistics or LM statistics for drawing inferences. This 
is a serious issue. 



RS – Lecture 12

3

Heteroscedasticity: Inference Based on OLS

• Q: But, what happens if we still use  𝑠ଶ(XX)-1?  

A: It depends on XX – XX.  If they are nearly the same, the OLS 
covariance matrix will give OK inferences.  

But, when will XX – XX be nearly the same? The answer is based 
on a property of weighted averages.  Suppose i is randomly drawn 
from a distribution with  E[௜] = 1.  Then, 

ଵ

்
∑ ௜  𝑥௜

ଶ்
௜ୀଵ   

   ௣  
E[𝑥ଶ] –just like 

ଵ

்
∑  𝑥௜

ଶ்
௜ୀଵ .

• Remark: For the heteroscedasticity to be a significant issue for 
estimation and inference by OLS, the weights must be correlated with 
𝒙 and/or  𝑥௜

ଶ.  The higher correlation, heteroscedasticity becomes 
more important (b is more inefficient). 

• There are several theoretical reasons why the ௜
ଶ may be related to 

some explanatory variables 𝑧ଵ,  . . . , 𝑧௝ and/or 𝑧ଵ2,…, 𝑧௝2. 

Examples:

1. Following the error-learning models, as people learn, their errors of 
behavior become smaller over time. Then, ௜

ଶ is expected to 
decrease.6

2. As data collecting techniques improve, ௜
ଶ is likely to decrease. 

Companies with sophisticated data processing techniques are likely to 
commit fewer errors in forecasting customer’s orders. 

3. As companies grow, companies expand and tend to be more 
diversified and, thus, safer. Hence, ௜

ଶ is likely to decrease with size. 

4. Companies with larger profits tend to have greater variability in 
their dividend/buyback policies than companies with lower profits. 

Finding Heteroscedasticity
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• Heteroscedasticity can also be the result of model misspecification.

• It can arise as a result of the presence of outliers (either very small or 
very large). The inclusion/exclusion of an outlier,  especially if T is 
small, can affect the results of regressions.

• Violations of  (A1) – model is correctly specified-–, can produce 
heteroscedasticity,  due to omitted variables from the model. 

• Skewness in the distribution of one or more regressors included in 
the model can induce heteroscedasticity. Examples are economic 
variables such as income, wealth, and education. 

• David Hendry notes that heteroscedasticity can also arise because of 

– (1) incorrect data transformation (e.g., ratio or first difference). 

– (2) incorrect functional form (e.g., linear vs log–linear models).

Finding Heteroscedasticity

• Heteroscedasticity is usually modeled using one the following 
specifications: 

– H1 : ௧ଶ is a function of past ε௧
ଶ and past ௧ଶ (ARCH models).

– H2 : ௧ଶ increases monotonically with one (or several) exogenous 
variable(s) (𝑧ଵ,,  . . . , 𝑧௝).

– H3 : ௧ଶ decreases monotonically with Size (Market Cap).

– H4 : ௧ଶ is the same within p subsets of the data but differs across 
the subsets (grouped heteroscedasticity). This specification allows for 
structural breaks.

• These are the usual alternatives hypothesis (H1) in the 
heteroscedasticity tests.

Finding Heteroscedasticity
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• Visual test

In a plot of residuals against dependent variable or other variable will 

often produce a fan shape.
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Finding Heteroscedasticity

Testing for Heteroscedasticity

• We can use OLS along the White estimator for consistent 
inferences. Then,  why do we want to test for heteroscedasticity?

• The GLS/FGSL estimator has a lower asymptotic variance. 

• We want to test: H0: E(௜
ଶ|xଵ, xଶ, …, x௞) = 2

• H1 and the structure of the test depend on what we consider the 
drivers of ௜

ଶ – i.e., in the previous examples: H1, H2, H3, H4, etc

• The key is whether E[௜
ଶ] = ௜

ଶ is related to 𝑿 and/or 𝑿2. Suppose 
we suspect a particular independent variable, say 𝒙௝ , is driving ௜

ଶ: 

௜
ଶ = f(𝒙௝)

• Then, a simple test: Check the RSS for large values of 𝒙௝ , and the 
RSS for small values of 𝒙௝ . This is the Goldfeld-Quandt (GQ) test.
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• The Goldfeld-Quandt test

GQ tests H0: ௜
ଶ = 2

H1: ௜
ଶ f𝒙௝)

• Easy to compute: 

– Step 1. Arrange the data from small to large values of the 
independent variable suspected of causing heteroscedasticity, 𝒙௝ .

– Step 2. Run two separate regressions, one for small values of 𝒙௝
and one for large values of 𝒙௝ , omitting d middle observations (d ≈ 
20%). Get the RSS for each regression: RSS1 for small values of 𝒙௝
and RSS2 for large 𝒙௝ ’s.

– Step 3. Calculate the F ratio

GQ = 
RSS2
RSS1

, ~ 𝐹ௗ௙,ௗ௙, with 𝑑𝑓=[(T – d) – 2(𝑘 +1)]/2   (A5 holds)

Testing for Heteroscedasticity

• The Goldfeld-Quandt test

If (A5) does not hold, the F distribution becomes an approximation. 
Other tests may be preferred.

Note: When we suspect more than one variable is driving the ௜ ’s, 
this test is not very useful.

• But, the GQ test is a popular to test for structural breaks (two 
regimes) in variance. For these tests, we rewrite step 3 to allow for a 
different sample size in the sub-samples 1 and 2.

- Step 3. Calculate the F-test ratio

GQ = [RSS2/ (T2 – k)]/[RSS1/ (T1 – k)]

Testing for Heteroscedasticity
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Example: We test if the 3-factor FF model for IBM and GE returns 
shows heteroscedasticity with a GQ test, using gqtest in package lmtest.

• IBM returns

> library(lmtest)

> gqtest(ibm_x ~ Mkt_RF + SMB + HML, fraction = .20)

Goldfeld-Quandt test

data:  ibm_x ~ Mkt_RF + SMB + HML

GQ = 1.1006, df1 = 224, df2 = 223, p-value = 0.2371  cannot reject H0 at 5% level.

alternative hypothesis: variance increases from segment 1 to 2

• GE returns
gqtest(ge_x ~ Mkt_RF + SMB + HML, fraction = .20)

Goldfeld-Quandt test

data:  ge_x ~ Mkt_RF + SMB + HML

GQ = 2.744, df1 = 281, df2 = 281, p-value < 2.2e-16  reject H0 at 5% level.

alternative hypothesis: variance increases from segment 1 to 2
23

Testing for Heteroscedasticity: GQ Test

• The Likelihood Ratio Test

Let’s define the likelihood function, assuming normality, for a 
general case, where we have g different variances:

We have two models: 

(R) Restricted under H0: i
2 = 2. From this model, we calculate ln L

(U) Unrestricted. From this model, we calculate the log likelihood.

Testing for Heteroscedasticity: LR Test
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• Now, we can estimate the Likelihood Ratio (LR) test:

Under the usual regularity conditions, LR is approximated by a χ௚ିଵ
ଶ .

• Using specific functions for ௜
ଶ, this test has been used  by 

Rutemiller and Bowers (1968) and in Harvey’s (1976) groupwise
heteroscedasticity paper.

Testing for Heteroscedasticity: LR Test
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• Score LM tests

• We want to develop tests of H0: E(௜
ଶ|xଵ, xଶ, …, x௞) = 2

against an H1 with a general functional form.

• Recall the central issue is whether E[௜
ଶ] = ௜

ଶ is related to 𝑿 and/or 
𝑿2. Then, a simple strategy is to use OLS residuals to estimate 
disturbances and look for relationships between e௜

ଶ and 𝑥௜ and/or x௜
ଶ.

• Suppose that the relationship between ε2 and X is linear:

௜
ଶ= 𝒙௜′α + 𝑣௜

Then, we test: H0: α = 0 against H1: α ≠ 0.

• We base the test on how the squared OLS residuals, e, correlate 
with X.

Testing for Heteroscedasticity
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• Popular heteroscedasticity LM tests:

- Breusch and Pagan (1979)’s LM test (BP).  

- White (1980)’s general test.  

• Both tests are based on OLS residuals. That is, calculated under H0: 
No heteroscedasticity.

• The BP test is an LM test, based on the score of the log likelihood 
function, calculated under normality. It is a general tests designed to 
detect any linear forms of heteroskedasticity.

• The White test is an asymptotic Wald-type test, normality is not 
needed. It allows for nonlinearities by using squares and 
crossproducts of all the 𝑥’s in the auxiliary regression.

Testing for Heteroscedasticity

• Let’s start with a general form of heteroscedasticity: 

hi(α0 + 𝑧௜,ଵ αଵ+ 𝑧௜,ଶ αଶ+ .... + 𝑧௜,௠ α௠) = ௜
ଶ

• We want to test:  H0: E(௜
ଶ|𝑧ଵ, 𝑧ଶ,…, 𝑧௠) = hi(𝒛௜′α) = 2

or H0: αଵ= α2 = ... = α௠=  (m restrictions)

• Assume normality. That is, the log likelihood function is:

log L = constant + ½ Σ log ௜
ଶ – ½ Σ ௜

ଶ/௜
ଶ

Then, construct an LM test:

LM = S(θR)’ I(θR)-1 S(θR) θ= (β,α)

S(θ)=∂log L/∂θ’=[-Σi
-2X’εi ;-½Σ(∂h/∂α)zii

-2+½Σi
-4 εi

2(∂h/∂α)zi]

I(θ) = E[- ∂2log L/∂θ∂θ’] 

• We have block diagonality, we can rewrite the LM test, under H0: 
LM = S(α0,0)’ [I22 – I21 I11 I21]-1 S(α0,0)

Testing for Heteroscedasticity: BP Test
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• We have block diagonality, we can rewrite the LM test, under H0: 
LM = S(α0,0)’ [I22 – I21 I11 I21]-1 S(α0,0)

S(α0,0) = -½ Σi (∂h/∂α|α0,R,0)z′ ோିଶ + ½ Σi ோ
ିସ𝑒௜

ଶ (∂h/∂α |α0,R,0)z′

= ½ 𝑒௜
ଶ/ோିଶ (∂h/∂α |α0,R,0) ∑ 𝒛௜(𝑒௜

ଶ/ோଶ  – 1)்
௜ୀଵ

= ½ 𝑒௜
ଶ/ோିଶ (∂h/∂α |α0,R,0) ∑ 𝒛௜𝑤௜

்
௜ୀଵ

𝑤௜ = 𝑒௜
ଶ/ோଶ – 1 

I22(α0,0) = E[- ∂2log L/∂ α∂ α’] = ½ [ோିଶ (∂h/∂α |α0,R,0 )]2∑ 𝒛௜𝒛௜′
்
௜ୀଵ

I21(α0,0) = 0
ோଶ = (1/T)∑ 𝑒௜

ଶ்
௜ୀଵ (MLE of under H0).

Then,

LM = ½ (∑ 𝒛௜𝑤௜
்
௜ୀଵ )′ [∑ 𝒛௜𝒛௜′

்
௜ୀଵ ]-1 (∑ 𝒛௜𝑤௜

்
௜ୀଵ ) 

= ½ W′Z (Z′Z)-1 Z′W ~ χ௠
ଶ

Note: Recall R2 = [y′X (X′X)-1 X′y – T 𝑦തଶ]/[y′y – T 𝑦തଶ] = ESS/TSS

Testing for Heteroscedasticity: BP Test

•   Since under H0: E[𝑤௜] = 0, E[ωi
2] = 1. 

LM = ½ W′Z (Z′Z)-1 Z′W = ½ ESS

ESS = Explained SS in regression of 𝑤௜  (= 𝑒௜
ଶ/ோଶ – 1) against zi. 

• Under the usual regularity conditions, and under H0, 

√T (αML – α) 
    ௗ     

N(0, 2 4 (Z′Z/T)-1)

Then,

LM-BP= (2 ோସ )-1 ESSe

    ௗ     
 χ௠
ଶ .

ESSe = ESS in regression of 𝑒௜
ଶ against 𝒛௜. 

Since  ோସ
    ௣     

4  LM-BP  
    ௗ     

 χ௠
ଶ

Testing for Heteroscedasticity: BP Test
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Note: Recall R2= [y′X (X′X)-1 X′y – T𝑦തଶ]/[y′y – T 𝑦തଶ]

Under H0: E[ωi]=0, E[ωi
2]=1, the LM test is equivalent to a T R2. 

(Think of 𝑦ത ൌ 0 & 𝒚′𝒚/T=1 above).

• Variations: 

(1) Glesjer (1969) test. Use absolute values instead of 𝑒௜
ଶ to estimate 

the varying second moment. Following our previous example, 

|𝑒௜|= α0 + αଵ 𝑧௜,ଵ + αଶ 𝑧௜,ଶ + .... + α௠ 𝑧௜,௠ + 𝑣௜

(2) Harvey-Godfrey (1978) test. Use ln(𝑒௜
ଶ). Then, the implied model 

for ௜
ଶ is an exponential model.

ln(𝑒௜
ଶ) = α0 + αଵ 𝑧௜,ଵ + αଶ 𝑧௜,ଶ + .... + α௠ 𝑧௜,௠ + 𝑣௜

Note: Implied model for ௜
ଶ = exp{α0 + αଵ𝑧௜,ଵ +.... + α௠𝑧௜,௠ + 𝑣௜}.

Testing for Heteroscedasticity: BP Test

• Variations: 

(3) Koenker’s (1981) studentized LM test. A usual problem with 
statistic LM is that it crucially depends on the assumption that ε is 
normal. Koenker (1981) proposed studentizing the statistic LM-BP 
by

LM-S = (2 ோସ ) LM-BP/[(∑ (ε௜
ଶ –  ோଶ ))2்

௜ୀଵ /T] 
    ௗ     

 χ௠
ଶ

The studentized version of the test is asymptotically equivalent to a 
T*R2 test, where R2 is calculated from a regression of 𝑒௜

ଶ/ோଶ on the 
variables Z. (Omitting ோଶ from the denominator is OK.) 

Testing for Heteroscedasticity: BP Test



RS – Lecture 12

12

• We have the following steps: 

- Step 1. Run OLS on DGP:

y = X  + . – Keep 𝑒௜ and compute ோଶ = RSS/T

- Step 2. (Auxiliary Regression). Run the regression of ei
2 on the m 

explanatory variables, z. In our example, 

𝑒௜
ଶ/ோଶ = α଴ + αଵ 𝑧ଵ,௜ + .... + α௠ 𝑧௠,௜ + 𝑣௜ – Keep R2.

- Step 3. Use the R2 from Step 2. Let’s call it 𝑅௘ଶ
ଶ . Calculate

LM = T * 𝑅௘ଶ
ଶ   ௗ  

χ௠
ଶ .

Testing for Heteroscedasticity: BP Test

27

Example: We suspect that squared Mkt_RF (x1) –a measure of the 
overall market’s variance- drives heteroscedasticity. We do a 
studentized LM-BP test for IBM in the 3-factor FF model:

fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB + HML) # Step 1 – OLS in DGP (3-factor FF model)

e_ibm <- fit_ibm_ff3$residuals # Step 1 – keep residuals

e_ibm2 <- e_ibm^2 # Step 1 – squared residuals

Mkt_RF2 <- Mkt_RF^2

fit <- lm (e_ibm2 ~ Mkt_RF2) # Step 2 – Auxiliary regression

Re_2 <- summary(fit_BP)$r.squared # Step 2 – keep R^2

LM_BP_test <- Re2 * T

> LM_BP_test # Step 3 – Compute LM-BP test: R^2 * T

[1] 0.25038

>  p_val <- 1 - pchisq(LM_BP_test, df = 1)  # p-value of LM_test 

>  p_val

[1] 0.6168019

LM-BP Test: 0.25028  cannot reject H0 at 5% level (χ2
[1],.05≈3.84); 

with a p-value= .6168. 

Testing for Heteroscedasticity: Example – IBM 
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Example (continuation): The bptest in the lmtest package performs a 
studentized LM-BP test for the same variables used in the model 
(Mkt, SMB and HML). For IBM in the 3-factor FF model:

> bptest(ibm_x ~ Mkt_RF + SMB + HML) #bptest only allows to test H1:௜
ଶfxi=model variables)

studentized Breusch-Pagan test

data:  ibm_x ~ Mkt_RF + SMB + HML

BP = 4.1385, df = 3, p-value = 0.2469

LM-BP Test: 4.1385  cannot reject H0 at 5% level (χ2
[3],.05≈7.815); 

with a p-value = 0.2469.

Note: Heteroscedasticity in financial time series is very common. In 
general, it is driven by squared market returns or squared past errors.

Testing for Heteroscedasticity: Example – IBM 

Example: We suspect that squared Market returns drive 
heteroscedasticity. We do an LM-BP (studentized) test for Disney:

lr_dis <- log(x_dis[-1]/x_dis[-T]) # Log returns for DIS
dis_x <- lr_dis – RF # Disney excess returns

fit_dis_ff3 <- lm (dis_x ~ Mkt_RF + SMB + HML) # Step 1 – OLS in DGP (3-factor FF model)

e_dis <- fit_dis_ff3$residuals # Step 1 – keep residuals

e_dis2 <- e_dis^2 # Step 2 – squared residuals

fit <- lm (e_dis2 ~ Mkt_RF2) # Step 2 – Auxiliary regression 

Re_e2 <- summary(fit_BP)$r.squared # Step 2 – Keep R^2 from Auxiliary reg

LM_BP_test <- Re_e2 * T # Step 3 – Compute LM Test: R^2 * T

> LM_BP_test

[1] 14.15224

>  p_val <- 1 - pchisq(LM_BP_test, df = 1)  # p-value of LM_test 

>  p_val

[1] 0.0001685967

LM-BP Test: 14.15  reject H0 at 5% level (χ2
[1],.05≈3.84); with a p-

value = .0001. 

Testing for Heteroscedasticity: Example – DIS 

26



RS – Lecture 12

14

27

Example (continuation): We do the same test, but with SMB 
squared for Disney:

SMB2 <- SMB^2

fit <- lm (e_dis2 ~ SMB2)

Re_e2 <- summary(fit_BP)$r.squared

LM_BP_test <- Re_e2 * T

> LM_BP_test

[1] 7.564692

>  p_val <- 1 - pchisq(LM_BP_test, df = 1)  # p-value of LM_test 

>  p_val

[1] 0.005952284

LM-BP Test: 7.56  reject H0 at 5% level (χ2
[1],.05≈3.84); with a p-

value= .006. 

Testing for Heteroscedasticity: Example – DIS 

• Based on the difference between OLS and true OLS variances: 

2 (XX – XX)= X𝚺X – 2XX = ∑ (E[௜
ଶ] – ଶ)𝒙௜′𝒙௜

்
௜ୀଵ

• Empirical counterpart: (1/T) ∑ (𝑒௜
ଶ–𝑠ଶ) 𝒙௜′𝒙௜

்
௜ୀଵ

• We can express each element of the 𝑘(𝑘+1) matrix as:

(1/T) ∑ (𝑒௜
ଶ–𝑠ଶ) ψ௜′

்
௜ୀଵ ψ௜ : Kolmogorov-Gabor polynomial

where

ψi = (ψଵ௜ ψଶ௜ , ..., ψ௠௜)’ ψ௟௜ = ψ௤௜  ψ௣௜, 𝑝 ≥ 𝑞,  𝑝, 𝑞 = 1, 2,..., 𝑘
𝑙 = 1, 2,...,  𝑚 & 𝑚 = 𝑘*(𝑘 െ 1ሻ/2

• Let DT = Var [
ଵ

்
∑ (𝑒௜

ଶ–𝑠ଶ) ψ௜′
்
௜ୀଵ ] . Then, White LM test:

W = [
ଵ

்
∑ (𝑒௜

ଶ–𝑠ଶ) ψ௜′
்
௜ୀଵ ]′ DT

-1 [
ଵ

்
∑ (𝑒௜

ଶ–𝑠ଶ) ψ௜′
்
௜ୀଵ ] 

    ௗ     
 χ௠
ଶ

Testing for Heteroscedasticity: White Test
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• White heteroscedasticity test:

W = [
ଵ

்
∑ (𝑒௜

ଶ–𝑠ଶ) ψ௜′
்
௜ୀଵ ]′ DT

-1 [
ଵ

்
∑ (𝑒௜

ଶ–𝑠ଶ) ψ௜′
்
௜ୀଵ ] 

    ௗ     
 χ௠
ଶ

where 

DT = Var [
ଵ

்
∑ (𝑒௜

ଶ–𝑠ଶ) ψ௜′
்
௜ୀଵ ] 

Note: W is asymptotically equivalent to a T R2 test, where R2 is 
calculated from a regression of 𝑒௜

ଶ/ோଶ on the ψi’s.

Testing for Heteroscedasticity: White Test

•  Usual calculation of the White test

– Step 1. Run OLS on DGP:

y = X  + . –Keep residuals, 𝑒௜.

– Step 2. (Auxiliary Regression). Regress 𝑒2 on all the explanatory 
variables (𝑥௝), their squares (𝑥௝2), & all their cross products ሺ𝑥௝  ∗ 𝑥௜ሻ. 

For example, when the model contains 𝑘 = 2 explanatory variables, 
the test is based on: 

𝑒௜
ଶ = β0 + β1 𝑥ଵ,௜ + β2 𝑥ଶ,௜ + β3 𝑥ଵ,௜

ଶ + β4 𝑥ଶ,௜
ଶ + β5 𝑥ଵ,௜𝑥ଶ,௜ + 𝑣௜

Let m be the number of regressors in auxiliary regression (in the 
above example, 𝑚 = 5). Keep R2, say 𝑅௘ଶ

ଶ .

– Step 3. Compute the LM statistic: LM = T * 𝑅௘ଶ
ଶ   ௗ  

χ௠
ଶ .

Testing for Heteroscedasticity: White Test



RS – Lecture 12

16

Example: White Test for 3-factor FF model residuals for IBM: 

HML2 <- HML^2; 

Mkt_HML <- Mkt_RF*HML

Mkt_SMB <- Mkt_RF*SMB

SMB_HML <- SMB*HML

xx2 <- cbind(Mkt_RF2, SMB2, HML2, Mkt_HML, Mkt_SMB, SMB_HML)

fit_ibm_W <- lm(e_ibm2 ~ xx2) # Not including original variables OK

r2_e2 <- summary(fit_ibm_W)$r.squared # Keep R^2 from Auxiliary regression

> r2_e2

[1] 0.0166492

lm_t <- T * r2_e2 # Compute LM test: R^2 * sample size (T)

> lm_t

[1] 10.93483

df_lm <- ncol(xx2)

qchisq(.95, df = df_lm)

LM-White Test: 10.93  cannot reject H0 at 5% level (χ2
[6],.05≈12.59). 

Testing for Heteroscedasticity: White Test

31

Example (continuation): Now, we do a White Test for the 3 factor 
F-F model for DIS and GE returns.

• For DIS, we get:
fit_dis_W <- lm (e_dis2 ~ xx2)

Re_2W <- summary(fit_dis_W)$r.squared

LM_W_test <- Re_2W * T

> LM_W_test

[1] 25.00148  reject H0 at 5% level (χ2
[6],05 ≈ 12.59).

>qchisq(.95, df = df_lm)

[1] 12.59159

>  p_val <- 1 - pchisq(LM_W_test, df = 6)  # p-value of LM_test

>  p_val

[1] 0.0003412389

• For GE, we get:
LM-White Test: 20.15 (p-value=0.0026)  reject H0 at 5% level.

Testing for Heteroscedasticity: White Test

32
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Example: We do a White Test for the residuals in the encompassing 
(IFE + PPP) model for changes in the USD/GBP (T=363): 

fit_gbp <- lm(lr_usdgbp ~ inf_dif + int_dif)

e_gbp <- fit_gbp$residuals

e_gbp2 <- e_gbp^2  

int_dif2 <- int_dif^2 

inf_dif2 <- inf_dif^2  

int_inf_dif <- int_dif*inf_dif

fit_W <- lm (e_gbp2 ~ int_dif2 + inf_dif2+ int_inf_dif)

Re_e2W <- summary(fit_W)$r.squared

LM_W_test <- Re_e2W * T

p_val <- 1 - pchisq(LM_W_test, df = 3)  # p-value of LM_test

> LM_W_test

[1] 15.46692 

> p_val

[1] 0.001458139  reject H0 at 5% level

Testing for Heteroscedasticity: White Test

33

• Drawbacks of the Breusch-Pagan test: 

- It has been shown to be sensitive to violations of the normality 
assumption.

- Three other popular LM tests: the Glejser test; the Harvey-Godfrey 
test, and the Park test, are also sensitive to such violations.

• Drawbacks of the White test

- If a model has several regressors, the test can consume a lot of df’s. 

- In cases where the White test statistic is statistically significant, 
heteroscedasticity may not necessarily be the cause, but model 
specification errors. 

- It is general. It does not give us a clue about how to model 
heteroscedasticity to do FGLS. The BP test points us in a direction.

Testing for Heteroscedasticity: Remarks
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• Drawbacks of the White test (continuation)

- In simulations, it does not perform well relative to others, especially, 
for time-varying heteroscedasticity, typical of financial time series.

- The White test does not depend on normality; but the Koenker’s test 
is also not very sensitive to normality. In simulations, Koenker’s test 
seems to have more power –see, Lyon and Tsai (1996) for a Monte 
Carlo study of the heteroscedasticity tests presented here.

.

Testing for Heteroscedasticity: Remarks

• General problems with heteroscedasticity tests: 

- The tests rely on the first four assumptions of the CLM being true.

- In particular, (A2) violations. That is, if the zero conditional mean 
assumption, then a test for heteroskedasticity may reject the null 
hypothesis even if Var(y|X) is constant.

- This is true if our functional form is specified incorrectly (omitted 
variables or specifying a log instead of a level). Recall David Hendry’s 
comment.

• Knowing the true source (functional form) of heteroscedasticity 
may be difficult. A practical solution is to avoid modeling 
heteroscedasticity altogether and use OLS along the White 
heterosekdasticity-robust standard errors.

Testing for Heteroscedasticity: Remarks
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Estimation: WLS form of GLS
• While it is always possible to estimate robust standard errors for 
OLS estimates, if we know the specific form of the heteroskedasticity, 
we can obtain more efficient estimates than OLS: GLS.

• GLS basic idea: Efficient estimation through the transform the 
model into one that has homoskedastic errors – called WLS.

• Suppose the heteroskedasticity can be modeled as:

Var[𝜀|𝒙] = 2 ℎሺ𝒙ሻ

• The key is to figure out what ℎ 𝒙 looks like. Suppose that we know 
ℎ௜ . For example, ℎ௜ 𝒙  = 𝑥௜

ଶ. (Make sure ℎ௜ is always positive.)

• Then, use 
ଵ

௫೔
మ

to transform the model.

• Suppose that we know ℎ௜ 𝒙  = 𝑥௜
ଶ.  Then, use 1/√xi

2 to transform 
the model:

Var[
ఌ೔

௫೔
మ
|𝒙] = 2

• Thus, if we divide our whole equation by ℎ௜ 𝒙 we get a 
(transformed) model where the error is homoskedastic. 

• Assuming weights are known, we have a two-step GLS estimation:

- Step 1:  Use OLS, then the residuals to estimate the weights.

- Step 2:  Weighted least squares using the estimated weights.

• Greene has a proof based on our asymptotic theory for the 
asymptotic equivalence of the second step to true GLS.

Estimation: WLS form of  GLS
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• More typical is the situation where we do not know the form of the 
heteroskedasticity. In this case, we need to estimate ℎ௜ 𝒙 .

• Typically, we start by assuming a fairly flexible model, such as  

Var[𝜀|𝒙] = 2 exp(X) –make sure Var[𝜀௜|x] > 0.

But, we don’t know , it must be estimated. By our assumptions: 

𝜺2 = 2 exp(X) 𝒗 with E(𝒗 |X) = 1.

Then, if E(𝒗) = 1

ln(𝜺2 ) = X + u (*)

where E(u) = 0 and u is independent of X.

We know that 𝒆 is an estimate of 𝜺, so we can estimate (*) by OLS.

Estimation: FGLS

•  Now, an estimate of h is obtained as ĥ = exp(ĝ), and the inverse of 
this is our weight. Now, we can do GLS as usual.

• Summary of FGLS

(1) Run the original OLS model, save the residuals, 𝒆. Get ln(𝒆2).

(2) Regress ln(𝒆 2) on all of the independent variables. Get fitted 
values, ĝ.

(3) Do WLS using 1/ exp(ĝ) as the weight.

(4) Iterate to gain efficiency.

• Remark: We are using WLS just for efficiency –OLS is still unbiased 
and consistent. Sandwich estimator gives us consistent inferences.

Estimation: FGLS
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• ML estimates all the parameters simultaneously. To construct the 
likelihood, we assume a distribution for ε.  Under normality (A5):

• Suppose ௜
ଶ = exp(α଴ + αଵ 𝑧ଵ,௜ + .... + α௠ 𝑧௠,௜)= exp(𝒛௜’α)

• Then, the first derivatives of the log likelihood wrt θ=(β, α) are:

• Then, we get the f.o.c. We get a non-linear system of equations.  

Estimation: MLE
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• We take second derivatives to calculate the information matrix :

• Then,  

• We can estimate the model using Newton’s method:

𝜃௝ାଵ = 𝜃௝ – 𝐻௝ -1 𝑔௝ 𝑔௝ = ∂log 𝐿௝/∂𝜃′

Estimation: MLE
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• We estimate the model using Newton’s method:

𝜃௝ାଵ = 𝜃௝ – 𝐻௝ -1 𝑔௝ 𝑔௝ = ∂log 𝐿௝/∂𝜃′

where subscript 𝑗 stands for values computed under iteration 𝑗.

Since 𝐻 is block diagonal, then

β௝ାଵ = β௝  – (X′ Σ௝ -1 X)-1 X′ Σ௝ -1 𝜺௝
𝛼௝ାଵ = 𝛼௝ – (½Z′Z)-1 [½ ∑ 𝒛௜(𝜀௜,௝

ଶ /௜.௝
ଶ  – 1)]்

௜ୀଵ = 𝛼௝ – (Z′Z)-1 Z′𝒗,

where

𝒗 = (𝜀௜,௝
ଶ /௜,௝

ଶ – 1)

Convergence will be achieved when 𝑔௝ = ∂log 𝐿௝/∂𝜃ᇱ is close to zero.

• We have an iterative algorithm  Iterative FGLS = MLE! 

Estimation: MLE

• A log transformation of  the data, can eliminte (or reduce) a certain
type of  heteroskedasticity. 

- Assume - ௧ = E[𝑍௧] 

- Var[𝑍௧] = δ ௧2 (Variance proportional to the
squared mean)

• We log transformed the data: log(𝑍௧). Then, we use the delta 
method to approximate the variance of  the transformed variable. 
Recall: Var[f(X)] using delta method: 

• Then, the variance of  log(𝑍௧) is roughly constant:

  ][)/1()][log( 2
ttt ZVarZVar

Heteroscedasticity: Log Transformations

][)()]([ 2' XVarfXfVar 
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• Until the early 1980s econometrics had focused almost solely on
modeling the conditional (on information set at time 𝑡, I௧) mean:

𝑦௧ = E[𝑦௧| I௧] + 𝜀௧, 𝜀௧~ D(0, 2)

Suppose we have an AR(1) process:
𝑦௧ = 𝛼 + β 𝑦௧ିଵ + 𝜀௧.

Then, the conditional mean, conditioning on I௧ିଵ, is:
E௧ିଵ[𝑦௧| I௧ିଵ] = 𝛼 + β 𝑦௧ିଵ

•  Recall the distinction between conditional moments and 
unconditional ones. The unconditional mean is:

E[𝑦௧] = 
ఈ

ଵ ି ஒ
= constant 

The conditional mean is time varying; the unconditional mean is not!

ARCH Models

• Similar idea for the variance. For the AR(1) process:
𝑦௧ = 𝛼 + β 𝑦௧ିଵ + 𝜀௧.

Unconditional variance: 

Var[𝑦௧] = E[(𝑦௧ – E[𝑦௧])2] = 
஢మ

ଵ ି ஒమ
= constant

Conditional variance:     
Var௧ିଵ[𝑦௧| I௧ିଵ] = E௧ିଵ[𝑦௧ –E[𝑦௧]))2] = E௧ିଵ[𝜀௧

ଶ]

Remark: Conditional moments are time varying; unconditional 
moments are not!

ARCH Models
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• The unconditional variance measures overall uncertainty. In the

AR(1) example, the information set I௧ plays no role: Var[𝑦௧] = 
஢మ

ଵ ି ஒమ

• The conditional variance, Var௧[y௧ାଵ|I௧], is a better measure of
uncertainty at time 𝑡. It is a function of information at time 𝑡, I௧.

mean

Variance

Conditional 
Variance

ARCH Models

Time

𝑦௧

𝑡

- Thick tails - Mandelbrot (1963): leptokurtic (thicker than Normal)

- Volatility clustering - Mandelbrot (1963): “large changes tend to be 
followed by large changes of  either sign.” 

- Leverage Effects – Black (1976), Christie (1982): Tendency for changes 
in stock prices to be negatively correlated with changes in volatility. 

- Non-trading Effects, Weekend Effects – Fama (1965), French and Roll 
(1986) : When a market is closed information accumulates at a 
different rate to when it is open –for example, the weekend effect, 
where stock price volatility on Monday is not three times the volatility 
on Friday. 

ARCH Models: Stylized Facts of  Asset Returns
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- Expected events – Cornell (1978), Patell and Wolfson (1979), etc:
Volatility is high at regular times such as news announcements or
other expected events, or even at certain times of day –for example,
less volatile in the early afternoon.

- Volatility and serial correlation – LeBaron (1992): Inverse relationship 
between the two.

- Co-movements in volatility – Ramchand and Susmel (1998): Volatility is 
positively correlated across markets/assets.

• We need a model that accommodates all these facts.

ARCH Models: Stylized Facts of  Asset Returns

Figure: Descriptive Statistics and Distribution for Monthly S&P500 Returns

Statistic

Mean (%) 0.626332
(p-value: 0.0004)

Standard Dev (%) 4.37721

Skewness -0.43764

Excess Kurtosis 2.29395

Jarque-Bera 145.72
(p-value: <0.0001)

AR(1) 0.0258
(p-value: 0.5249) 

• Easy to check leptokurtosis (Stylized Fact #1)

ARCH Models: Stylized Facts of  Asset Returns
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• Easy to check Volatility Clustering (Stylized Fact #2)

ARCH Models: Stylized Facts of  Asset Returns

ARCH Models: Engle (1982) 

• We start with assumptions (A1) to (A5), but with a specific (A3’):

𝑦௧ ൌ 𝛾𝑋௧ ൅ 𝜀௧, 𝜀௧ ~ 𝑁 0,𝜎௧ଶ

(A3’) 𝜎௧ଶ ൌ 𝑉𝑎𝑟௧ିଵ 𝜀௧ ൌ 𝐸௧ିଵ 𝜀௧
ଶ ൌ 𝜔 ൅ 𝛼ଵ𝜀௧ିଵ

ଶ ൅ ⋯൅ 𝛼௤𝜀௧ି௤
ଶ ,

which we can write, using the L operator, as:

𝜎௧ଶ ൌ ∑ 𝛼௜𝜀௧ି௜
ଶ௤

௜ୀଵ ൌ 𝜔 ൅ 𝛼ሺ𝐿ሻ𝜀ଶ

• We can write the model in terms of  an AR(q) for 𝜀௧
ଶ. Define 

𝜈௧ ≡ 𝜀௧
ଶ െ 𝜎௧

ଶ, -an error term for the variance.
Then,

𝜀௧
ଶ ൌ 𝜔 ൅ 𝛼ሺ𝐿ሻ𝜀௧

ଶ ൅ 𝜈௧

• Correlated 𝜀௧
ଶ’s: High (low) past 𝜀௧

ଶ’s produce a high (low) 𝜀௧
ଶ today.

52
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ARCH Models: Engle (1982) 

• The model

𝜎௧ଶ ൌ ∑ 𝛼௜𝜀௧ି௜
ଶ௤

௜ୀଵ ൌ 𝜔 ൅ 𝛼ሺ𝐿ሻ𝜀ଶ

is an AR(q) model for squared innovations, 𝜀௧
ଶ. We have the ARCH

model: Auto-Regressive Conditional Heteroskedasticity.

• The ARCH(q) model estimates the unobservable (latent) variance. 

• Non-negative constraints: Since we are dealing with a variance, we 
usually impose 

𝜔 > 0 and 𝛼௜ > 0 for all 𝑖.

Notation: 𝐸௧ିଵ 𝜀௧
ଶ = 𝐸 𝜀௧

ଶ| I௧

Useful result: Since E[𝜀௧] = 0, then 𝐸௧ିଵ[𝜀௧
ଶ] = 𝜎௧

ଶ

Robert F. Engle (1942, USA) 53

ARCH Models: Unconditional Variance

• The unconditional variance is determined by:

𝜎ଶ ൌ 𝐸ሾ𝜎௧ଶሿ ൌ 𝜔 ൅෍𝛼௜𝐸ሾ𝜀௧ି௜
ଶ ሿ ൌ

௤

௜ୀଵ

𝜔 ൅෍𝛼௜𝜎ଶ
௤

௜ୀଵ
That is, 

𝜎ଶ ൌ  ఠ

ଵ ି ∑ ఈ೔
೜
೔సభ

To obtain a positive σ2, we impose another restriction: (1 െ ∑ 𝛼௜
௤
௜ୀଵ ) > 0

Example: ARCH(1)

𝑌௧ ൌ 𝛽𝑋௧ ൅ 𝜀௧, 𝜀௧ ~ 𝑁 0,𝜎௧ଶ

𝜎௧ଶ ൌ 𝜔 ൅ 𝛼ଵ𝜀௧ିଵ
ଶ  𝜎ଶ ൌ ఠ

ଵ ି ఈభ

• We need to impose restrictions: 𝜔 > 0, 𝛼ଵ> 0,  &  (1 – 𝛼ଵ) > 0. 54
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• Errors may be serially uncorrelated, but they are not independent: 
There will be volatility clustering, which produces fat tails.  

We want to calculate the kurtosis of  the errors:

𝜅ሺ𝜀௧ሻ ൌ 𝐸ሾ𝜀௧
ସሿ/𝐸ሾ𝜀௧

ଶሿଶ

• We define standardized errors: 𝑧௧ ൌ
ఌ೟
ఙ೟

They have conditional mean zero and a time invariant conditional 
variance equal to 1. That is, 𝑧௧ ~ N(0, 1).

• From the definition of  𝑧௧ we have: 𝜀௧ = 𝑧௧𝜎௧

Now, we compute the fourth (also central, since E[𝜀௧]=0) moment: 
𝐸ሾ𝜀௧

ସሿ ൌ 𝐸ሾ𝑧௧
ସሿ𝐸ሾ𝜎௧

ସሿ

ARCH Models: Leptokurtosis

55

•  Then, using Jensen’s inequality:

𝐸ሾ𝜀௧
ସሿ ൌ 𝐸ሾ𝑧௧

ସሿ𝐸ሾ𝜎௧
ସሿ ൐ 𝐸ሾ𝑧௧

ସሿ𝐸ሾ𝜎௧
ଶሿଶ ൌ 𝐸ሾ𝑧௧

ସሿ𝐸ሾ𝜀௧
ଶሿଶ

ൌ 3 𝐸ሾ𝜀௧
ଶሿଶ

𝜅ሺ𝜀௧ሻ ൌ 𝐸ሾ𝜀௧
ସሿ/𝐸ሾ𝜀௧

ଶሿଶ ൐ 3.

where we have used the fact that since E[𝜀௧] = 0, then E[𝜀௧
ଶ] = E[𝜎௧

ଶ]

Technical point: It can be shown that for an ARCH(1), the 4th

moment for an ARCH(1):

𝜅 𝜀௧ ൌ
3 1 െ 𝛼ଶ

1 െ 3𝛼ଶ
   if 3𝛼ଶ ൏ 1.

ARCH Models: Leptokurtosis

56
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• More convenient, but less intuitive, presentation of the ARCH(1) 
model:

𝜀௧ ൌ 𝜎௧
ଶ 𝑧௧

where 𝜐௧ is i.i.d. with mean 0, and Var[𝑧௧]=1. Since  𝑧௧ is i.i.d., then:

𝐸௧ିଵሾ𝜀௧
ଶሿ ൌ 𝐸௧ିଵሾ𝜎௧

ଶ𝑧௧
ଶሿ ൌ 𝐸௧ିଵሾ𝜎௧

ଶሿ𝐸௧ିଵሾ𝑧௧
ଶሿ ൌ 𝜔 ൅ 𝛼ଵ𝜀௧ିଵ

ଶ

• It turns out that 𝜎௧
ଶ is a very persistent process. Such a process can 

be captured with an ARCH(𝑞), where 𝑞 is large. This is not efficient.

• In practice, 𝑞 is often large. A more parsimonious representation is 
the Generalized ARCH model or GARCH(𝑞, 𝑝):

𝜎௧
ଶ ൌ 𝜔 ൅ ∑ 𝛼௜𝜀௧ି௝

ଶ௤
௜ୀଵ ൅ ∑ 𝛽௝𝜎௧ି௝

ଶ௣
௝ୀଵ

ൌ 𝜔 ൅ 𝛼ሺ𝐿ሻ𝜀ଶ ൅ 𝛽ሺ𝐿ሻ𝜎ଶ

ARCH Models: Alternative Representation

GARCH: Bollerslev (1986)

• A more parsimonious representation is the GARCH(q, p):
𝜎௧
ଶ ൌ 𝜔 ൅ ∑ 𝛼௜𝜀௧ି௝

ଶ௤
௜ୀଵ ൅ ∑ 𝛽௝𝜎௧ି௝

ଶ௣
௝ୀଵ

which is an ARMA(max(𝑝, 𝑞), 𝑝) model for the squared innovations.

• Popular GARCH model: GARCH(1,1):
𝜎௧ାଵ
ଶ ൌ 𝜔 ൅ 𝛼ଵ𝜀௧

ଶ ൅ 𝛽ଵ𝜎௧
ଶ

with an unconditional variance: Var[𝜀௧
ଶ] = σଶ = 

ఠ

ଵ ି ఈభ ି ఉభ

 Restrictions: 𝜔 > 0, 𝛼ଵ> 0, 𝛽ଵ> 0; (1 െ 𝛼ଵ െ 𝛽ଵ) > 0.

• Technical details: This is covariance stationary if  all the roots of  
𝛼(L) + 𝛽(L) = 1

lie outside the unit circle. For the GARCH(1,1) this amounts to
𝛼ଵ + 𝛽ଵ< 1.
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• Bollerslev (1986) showed that if  3α1
2 + 2α1β1 + β1

2 < 1, the 
second and 4th (unconditional) moments of  εt exist:
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GARCH: Bollerslev (1986)

• In the GARCH-X model, exogenous variables are added to the 
conditional variance equation. 

Consider the GARCH(1,1)-X model:
𝜎௧ାଵ
ଶ ൌ 𝜔 ൅ 𝛼ଵ𝜀௧

ଶ ൅ 𝛽ଵ𝜎௧
ଶ + 𝛿 𝑓ሺ𝑋௧ିଵ

఑ ሻ

where f(𝑋௧,𝜃) is strictly positive for all 𝑡. Usually, 𝑋௧, is an observed 
economic variable or indicator, say liquidity index, and f(.) is a non-
linear transformation, which is non-negative.

Examples: Glosten et al. (1993) and Engle and Patton (2001) use 3-
mo T-bill rates for modeling stock return volatility. Hagiwara and 
Herce (1999) use interest rate differentials between countries to 
model FX return volatility.  The US congressional budget office uses 
inflation in an ARCH(1) model for interest rate spreads.

GARCH-X



RS – Lecture 12

31

• Recall the technical detail: The standard GARCH model:

𝜎௧
ଶ ൌ 𝜔 ൅ 𝛼ሺ𝐿ሻ𝜀ଶ ൅ 𝛽ሺ𝐿ሻ𝜎ଶ

is covariance stationary if  𝛼ሺ1ሻ + 𝛽ሺ1ሻ < 1

• But strict stationarity does not require such a stringent restriction 
(That is, that the unconditional variance does not depend on t).

In the GARCH(1,1) model, if  𝛼ଵ + 𝛽ଵ = 1, we have the Integrated 
GARCH (IGARCH) model. In practice, in many applications, 𝛼ଵ + 
𝛽ଵ are close to one.

• Implication: Shocks to the conditional variance are “persistent.”

This can be seen in the variance forecasts: 𝐸௧ሾ𝜎௧ା௝
ଶ ሿ ൌ 𝜎௧

ଶ ൅ 𝑗𝜔
 Today’s variance remains important for all future forecasts

IGARCH

• In practice, it is often found that 𝛼ଵ ൅ 𝛽ଵ are close to 1.

• It is often argued that IGARCH is a product of  omitted variables;   
for example, structural breaks. 

IGARCH
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• The time-varying variance affects mean returns:
Mean equation: 𝑦௧ ൌ 𝑋௧𝛾 ൅  𝛿 𝜎௧

ଶ ൅ 𝜀௧, 𝜀௧ ~ N(0, 𝜎௧
ଶ)

Variance equation: 𝜎௧
ଶ ൌ 𝜔 ൅  𝛼ଵ𝜀௧ିଵ

ଶ ൅ 𝛽ଵ𝜎௧ିଵ
ଶ

• We have a dynamic mean-variance relations. It describes a specific 
form of the risk-return trade-off.

• Finance intuition says that 𝛿 has to be positive and significant. 
However, in empirical work, it does not work well: 𝛿 is not significant 
or negative.

63

GARCH: Variations – GARCH-in-mean

• GJR-GARCH model – Glosten, Jagannathan & Runkle (JF, 1993):

𝜎௧
ଶ ൌ 𝜔 ൅෍𝛼௜𝜀௧ି௜

ଶ

௤

௜ୀଵ

൅෍𝛾௜𝜀௧ି௜
ଶ ∗ 𝐼௧ି௜

௤

௜ୀଵ

൅෍𝛽௝𝜎௧ି௝
ଶ

௣

௝ୀଵ

where 𝐼௧ି௜ = 1 if  𝜀௧ି௜ < 0; 
= 0 otherwise.

• Using the indicator variable 𝐼௧ି௜, this model captures sign 
(asymmetric) effects in volatility: Negative news (εt-i < 0) increase the 
conditional volatility (leverage effect).

• The GARCH(1,1) version:

𝜎௧
ଶ ൌ 𝜔 ൅  𝛼ଵ𝜀௧ିଵ

ଶ  ൅  𝛾ଵ𝜀௧ିଵ
ଶ  𝐼௧ିଵ ൅  𝛽ଵ𝜎௧ିଵ

ଶ

where 𝐼௧ିଵ = 1 if  𝜀௧ିଵ < 0; 
= 0 otherwise.

GARCH: Variations – Asymmetric GJR 

64
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• The GARCH(1,1) version:

𝜎௧
ଶ ൌ 𝜔 ൅  𝛼ଵ𝜀௧ିଵ

ଶ  ൅  𝛾ଵ𝜀௧ିଵ
ଶ  𝐼௧ିଵ ൅  𝛽ଵ𝜎௧ିଵ

ଶ

When ε௧ିଵ < 0   𝜎௧
ଶ ൌ  𝜔 ൅  ሺ𝛼ଵ ൅ 𝛾ଵሻ 𝜀௧ିଵ

ଶ ൅ 𝛽ଵ𝜎௧ିଵ
ଶ

ε௧ିଵ > 0   𝜎௧
ଶ ൌ  𝜔 ൅  𝛼ଵ 𝜀௧ିଵ

ଶ  ൅  𝛽ଵ𝜎௧ିଵ
ଶ

• This is a very popular variation of the GARCH models. The 
leverage effect is significant.

• There is another variation, the Exponential GARCH, or EGARCH, 
that also captures the asymmetric effect of  negative news on the 
conditional variance.

GARCH: Variations – Asymmetric GJR 
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• EGARCH model – Nelson (Econometrica, 1991). 
It models an exponential function for the time-varying variance:







 
p

j
jtj

q

i
itititit zEzz

1

2

1

2 )log(|))||(|()log( 

where z is a standardized i.i.d. D(0, 1) innovation.

• By design, we have the variance follows an exponential function. 
Thus, no non-negative restrictions on the parameters are imposed.

• Negative news (𝑧௧ି௜ < 0) increase 𝜎௧
ଶ (leverage effect).

Note: Nelson provides formulas of  the unconditional moments, 
under the GED. But, under leptokurtic distributions such as the 
Student-t the unconditional variance does not exist. (Intuition: we 
have an exponential formulation, with a large shock it can explode.)

GARCH: Variations – EGARCH
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• Non-linear ARCH model NARCH – Higgins and Bera (1992) and 
Hentschel (1995).

These models apply the Box-Cox-type transformation to the 
conditional variance:

𝜎௧
ఊ ൌ 𝜔 ൅෍𝛼௜|𝜀௧ି௜ െ 𝜅|ఊ

௤

௜ୀଵ

൅෍𝛽௝𝜎௧ି௝
ఊ

௣

௝ୀଵ

Special case: γ = 2 (standard GARCH model).

Note: The variance depends on both the size and the sign of  the 
variance which helps to capture leverage type (asymmetric) effects.

GARCH: Variations – NARCH
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• Threshold ARCH (TARCH) – Rabemananjara & Zakoian (1993)

Large events –i.e., large errors- have a different effect from small 
events. We use 2 indicator variables, 𝐼 𝜀௧ି௜ ൐ 𝜅 & 𝐼 𝜀௧ି௜ ൏ 𝜅 : one 
for “large events,” 𝜀௧ି௜ ൐ 𝜅 , & one for “small events,” 𝜀௧ି௜ ൏ 𝜅 :

𝜎௧
ଶ ൌ 𝜔 ൅  ෍ 𝛼௜

ା 𝐼 𝜀௧ି௜ ൐ 𝜅 ൅ 𝛼௜
ି 𝐼 𝜀௧ି௜ ൏ 𝜅  𝜀௧ି௜

ଶ  ൅  ෍𝛽௝𝜎ଶ௧ି௝

௣

௝ୀଵ

௤

௜ୀଵ

• We can modify the model in many ways. For example, we can allow 
for the asymmetric effects of  negative news.

There are two variances:

𝜎௧
ଶ ൌ 𝜔 ൅෍𝛼௜

ା𝜀௧ି௜
ଶ ൅෍𝛽௝𝜎ଶ௧ି௝

௣

௝ୀଵ

௤

௜ୀଵ

,   if 𝜀௧ି௜ ൐ 𝜅

𝜎௧
ଶ ൌ 𝜔 ൅෍𝛼௜

ି𝜀௧ି௜
ଶ ൅෍𝛽௝𝜎ଶ௧ି௝

௣

௝ୀଵ

௤

௜ୀଵ

,   if 𝜀௧ି௜ ൏ 𝜅

GARCH: Variations – TARCH

68
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• Switching ARCH (SWARCH) – Hamilton and Susmel (JE, 1994).

Intuition: σt
2 depends on the state of the economy –regime. It’s based on 

Hamilton’s (1989) time series models with changes of regime:

The key is to select a parsimonious representation:

GARCH: Variations – SWARCH
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• Consider the forecast in a GARCH(1,1) model
𝜎௧ାଵ
ଶ ൌ 𝜔 ൅ 𝛼ଵ𝜀௧

ଶ ൅ 𝛽ଵ𝜎௧
ଶ = 𝜔 ൅𝜎௧

ଶሺ𝛼ଵ𝑧௧
ଶ ൅ 𝛽ଵሻ 𝜀௧

ଶ ൌ  𝜎௧
ଶ 𝑧௧

ଶ

Taking expectation at time 𝑡
 𝐸௧ሾ𝜎௧ାଵ

ଶ ሿ ൌ 𝜔 ൅  𝜎௧
ଶሺ 𝛼ଵ 1 ൅ 𝛽ଵሻ

Then, by repeated substitutions:

𝐸௧ሾ𝜎௧ା௝
ଶ ሿ ൌ 𝜔 ൅ 𝜎௧ା௝ିଵ

ଶ ሺ𝛼ଵ ൅ 𝛽ଵሻ=𝜔 ൅  𝜔 ൅  𝜎௧ା௝ିଶ
ଶ 𝛼ଵ ൅ 𝛽ଵ 𝛼ଵ ൅ 𝛽ଵ

ൌ 𝜔 1 ൅  𝛼ଵ ൅ 𝛽ଵ ൅ 𝜎௧ା௝ିଶ
ଶ 𝛼ଵ ൅ 𝛽ଵ ଶ

ൌ 𝜔∑ 𝛼ଵ ൅ 𝛽ଵ ௜௝ିଵ
௜ୀ଴ ൅ 𝜎௧

ଶ 𝛼ଵ ൅ 𝛽ଵ ௝

Assuming (𝛼ଵ ൅ 𝛽ଵ) < 1, as 𝑗→ ∞, the forecast reverts to the 
unconditional variance: 

σଶ = 
ఠ

ଵ ି ఈభ ି ఉభ

GARCH: Forecasting and Persistence
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• Today’s forecast in a GARCH(1,1) model for horizon 𝑗 :

𝐸௧ሾ𝜎௧ା௝
ଶ ሿ ൌ 𝜔∑ 𝛼ଵ ൅ 𝛽ଵ ௜௝ିଵ

௜ୀ଴ ൅ 𝜎௧
ଶ 𝛼ଵ ൅ 𝛽ଵ ௝

When 𝛼ଵ ൅ 𝛽ଵ ൌ 1, today’s volatility affect future forecasts for all 
horizons:

𝐸௧ሾ𝜎௧ାଵ
ଶ ሿ ൌ 𝜎௧

ଶ ൅ 𝑗𝜔

A shock to 𝜎௧
ଶ stays forever in the forecast!

GARCH: Forecasting and Persistence

• All of  these models can be estimated by maximum likelihood. First 
we need to construct the sample likelihood. 

• Since we are dealing with dependent variables, we use the 
conditioning trick to get the joint distribution:
𝑓 𝑦ଵ,𝑦ଶ, … ,𝑦்;𝛉 ൌ 𝑓 𝑦ଵ 𝐱𝟏;𝛉 𝑓 𝑦ଶ 𝑦ଵ, 𝐱ଶ, 𝐱ଵ;𝛉 𝑓 𝑦ଷ 𝑦ଶ,𝑦ଵ, 𝐱ଷ, 𝐱ଶ, 𝐱ଵ;𝛉  ...
          . . . 𝑓ሺ𝑦்|𝑦்ିଵ, … ,𝑦ଵ, 𝐱்ିଵ, … , 𝐱ଵ;𝛉ሻ.

Taking logs:
𝐿 ൌ logሺ 𝑓ሺ𝑦ଵ,𝑦ଶ, . . . ,𝑦்;𝛉ሻሻሻሻ ൌ logሺ 𝑓ሺ𝑦ଵ|𝐱𝟏;𝛉ሻሻ ൅ logሺ 𝑓ሺ𝑦ଶ|𝑦ଵ, 𝐱ଶ, 𝐱ଵ;𝛉ሻሻ

           ൅  … ൅ logሺ 𝑓ሺ𝑦்|𝑦்ିଵ, … ,𝑦ଵ, 𝐱்ିଵ, … , 𝐱ଵ;𝛉ሻሻ

             ൌ෍ logሺ 𝑓ሺ𝑦௧|𝑌௧ିଵ,𝑋௧;𝛉ሻሻ

்

௧ୀଵ

• We maximize this function with respect to the 𝑘 mean parameters 
(γ) and the 𝑚 variance parameters (𝜔,𝛼ଵ,𝛽ଵ). Let 𝛉 =(γ, 𝜔,𝛼ଵ,𝛽ଵ). 

ARCH Estimation: MLE
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• We compute f.o.c.’s:  
డ௅

డθ ൌ S(𝑦௧, θ) = 0 -S(.) = Score vector.

- We have a (𝑘+𝑚 x 𝑘+𝑚) system. But, it is a non-linear system. We 
use numerical optimization. Gauss-Newton or BHHH (approximates 
H also by the outer product of S(𝑦௧, θ)) can be easily implemented.

- Given the AR structure, we will need to make assumptions about 
σ଴ (and ε଴, εଵ, ..., ε௣ if we assume an AR(𝑝) process for the mean).

- Alternatively, we take σ଴ (& ε଴, εଵ, ..., ε௣) as parameters to estimate.

Note: The 
డ௅

డ𝛄
ൌ 0 (𝑘 x1 vector of f.o.c.’s) will give us GLS (or WLS).

డ௅

డ𝛄
ൌ െ∑ 𝑿′௧𝜀௧்

௧ୀଵ /𝜎௧,ெ௅ா
ଶ = ∑ 𝑿′௧ሺ𝑦௧ െ 𝑿௧𝜸ெ௅ா்

௧ୀଵ ሻ/𝜎௧,ெ௅ா
ଶ = 0

ൌ ∑ 𝑿ᇱ೟
ఙ೟,ಾಽಶ

ሺ
௬೟

ఙ೟,ಾಽಶ
 െ

𝑿೟
ఙ೟,ಾಽಶ

்
௧ୀଵ 𝜸ெ௅ாሻ = 0

ARCH Estimation: MLE

• MLE = GLS for mean parameters; 𝑦௧ & 𝑿௧ weighted by 1/ 𝜎௧,ெ௅ா .

• If the conditional density is well specified and θ0 belongs to Ω, then
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• Under the correct specification assumption, A0 = B0, where
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We estimate A0 and B0 by replacing θ0 by its estimated MLE value.

• The estimator B0 has a computational advantage over A0.: Only first 
derivatives are needed.  But A0 = B0 only if  the distribution is 
correctly specified. This is very difficult to know in practice.

ARCH Estimation: MLE
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Example: ARCH(1) model.
Mean equation: 𝑦௧ ൌ 𝑿௧𝜸 ൅ 𝜀௧, 𝜀௧ ~ N(0, 𝜎௧

ଶ)
Variance equation: 𝜎௧

ଶ ൌ 𝜔 ൅ 𝛼ଵ𝜀௧ିଵ
ଶ

We write the pdf  for the normal distribution, 

𝑓 𝜀௧|𝛾, 𝜔, 𝛼ଵ ൌ ଵ

ଶగఙ೟
మ

exp െ ఌ೟
మ

ଶఙ೟
మ = 

ଵ

ଶగఙ೟
మ

exp െ ௬೟ ି ௑೟𝜸 మ

ଶఙ೟
మ

We form the likelihood L (the joint pdf):

L  ൌ ∏ ଵ

ଶగఙ೟
మ

 exp െ ఌ೟
మ

ଶఙ೟
మ

்
௧ୀଵ ൌ ሺ2𝜋ሻି்/ଶ ∏ ଵ

ఙ೟
మ

exp െ ఌ೟
మ

ଶఙ೟
మ

்
௧ୀଵ

We take logs to form the log likelihood, 𝐿 = log L:

𝐿 ൌ෍ logሺ 𝑓௧ሻ

்

௧ୀଵ

ൌ െ
𝑇
2

logሺ 2𝜋ሻ െ
1
2
෍ logሺ 𝜎௧

ଶሻ െ
1
2
෍𝜀ଶ௧/𝜎௧

ଶ

்

௧ୀଵ

்

௧ୀଵ

Then, we maximize 𝐿 with respect to θ = (𝛾, 𝜔, 𝛼ଵ) the function 𝐿.

ARCH Estimation: MLE – ARCH(1)
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Example (continuation): ARCH(1) model.

𝐿 ൌ െ
𝑇
2

logሺ2𝜋ሻ െ
1
2
෍ logሺ𝜔 ൅ 𝛼ଵ𝜀௧ିଵ

ଶ ሻ െ
1
2
෍

𝜀௧
ଶ

ሺ𝜔 ൅ 𝛼ଵ𝜀௧ିଵ
ଶ ሻ

்

௧ୀଵ

்

௧ୀଵ

Taking derivatives with respect to θ = (𝜔, 𝛼ଵ, 𝛄), where 𝛄 is a vector 
of  𝑘 mean parameters:

𝜕𝐿
𝜕𝜔

ൌ െ
1
2
෍

 1
 𝜔 ൅ 𝛼ଵ𝜀௧ିଵ

ଶ െ ሺെ
1
2
ሻ 

்

௧ୀଵ

෍
𝜀௧
ଶ

ሺ𝜔 ൅ 𝛼ଵ𝜀௧ିଵ
ଶ ሻଶ

்

௧ୀଵ

𝜕𝐿
𝜕𝛼ଵ

ൌ െ
1
2
෍  

𝜀௧ିଵ
ଶ

 𝜔 ൅ 𝛼ଵ𝜀௧ିଵ
ଶ െ ሺെ

1
2
ሻ෍

𝜀௧
ଶ𝜀௧ିଵ

ଶ

ሺ𝜔 ൅ 𝛼ଵ𝜀௧ିଵ
ଶ ሻଶ

்

௧ୀଵ

்

௧ୀଵ

డ௅

డ𝛄
ൌ െ∑ 𝑿௧𝜀௧்

௧ୀଵ /𝜎௧
ଶ (𝑘x1 vector of  derivatives)

ARCH Estimation: MLE – ARCH(1)
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• Log likelihood of  AR(1)-GARCH(1,1) Model:

ARCH Estimation: MLE – Example (in R)

log_lik_garch11 <- function(theta, data) {
mu <- theta[1]; rho1 <- theta[2]; alpha0 <- abs(theta[3]); alpha1 <- abs(theta[4]); beta1 <-
abs(theta[5]);  
chk0 <- (1 - alpha1 - beta1)
r <- ts(data)
n <- length(r)

u <- vector(length=n);  u <- ts(u)
for (t in 2:n)
{u[t] = r[t]- mu – rho*r[t-1]} # this setup allows for ARMA in mean

h <- vector(length=n);  h <- ts(h)
h[1] = alpha0/chk0 # set initial value for h[t] series
if  (chk0==0) {h[1]=.000001} # check to avoid dividing by 0
for (t in 2:n)
{h[t] = abs(alpha0 + alpha1*(u[t-1]^2) + beta1*h[t-1])
if  (h[t]==0) {h[t]=.00001} } #check to avoid log(0)

return(-sum(- 0.5*log(abs(h[2:n])) - 0.5*(u[2:n]^2)/abs(h[2:n]))) # ignore constants
}

Example 1: AR(1)-GARCH(1,1) model for changes in CHF/USD. 
We will use R function optim (mln also OK) to maximize the function.

ARCH Estimation: MLE – Example (in R)

PPP_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/ppp_2020_m.csv",head=TRUE,sep=",")

x_chf  <- PPP_da$CHF_USD # CHF/USD 1971-2020 monthly data
T <- length(x_chf)
z <- log(x_chf[-1]/x_chf[-T])

theta0 = c(-0.002,  0.026,   0.001,   0.19,   0.71) # initial values
ml_2 <- optim(theta0,  log_lik_garch11, data=z, method="BFGS", hessian=TRUE)

logL_g11 <- log_lik_garch11(ml_2$par, z) # value of  log likelihood
logL_g11

ml_2$par # estimated parameters 

I_Var_m2 <- ml_2$hessian
eigen(I_Var_m2) # check if  Hessian is pd.
sqrt(diag(solve(I_Var_m2))) # parameters SE

chf_usd <- ts(z, frequency=12, start=c(1971,1))
plot.ts(chf_usd) # time series plot of  data
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ARCH Estimation: MLE – Example (in R)

Example 1 (continuation):
> logL_g11 # Log likelihood value
[1] –1745.197

> ml_2$par # Extract from ml_2 function parameters
[1] -0.0021051742  0.0260003610  0.00012375 0.1900276519  0.7100718082

> I_Var_m2 <- ml_2$hessian # Extract Hessian (matrix of  2nd derivatives)

> eigen(I_Var_m2) # Check if  Hessian is pd to invert.
eigen() decomposition
$values # Eigenvalues: if  positives => Hessian is pd
[1] 1.687400e+08 6.954454e+05 7.200084e+03 5.120984e+02 2.537958e+02 

$vectors
[,1]        [,2]      [,3]  [,4]        [,5]

[1,]  4.265907e-05  9.999960e-01 -0.0011397586  0.0018331957 -0.0018541203
[2,] -3.333961e-06 -2.188159e-03 -0.0010048203  0.9769058449 -0.2136566699
[3,]  9.999998e-01 -4.223001e-05 -0.0003544245  0.0001291633  0.0005770707
[4,] -3.599974e-06 -1.702277e-03 -0.8603563865 -0.1097470278 -0.4977344477
[5,] -6.893837e-04  6.416141e-04 -0.5096905472  0.1833226197  0.8405994743

79

ARCH Estimation: MLE – Example (in R)

Example 1 (continuation):
> sqrt(diag(solve(I_Var_m2))) # Invert Hessian: Parameters Var on diag
[1] 1.203690e-03 4.419049e-02 7.749756e-05 5.014454e-02 3.955411e-02

> t_stats <- ml_2$par/sqrt(diag(solve(I_Var_m2)))
> t_stats
[1] -1.7489333  0.5883701  1.5967743  3.7895984 17.9519078
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Example 1 (continuation): Summary for CHF/USD changes

e௙,௧ = [log(St) - log(St-1)] = a0 + a1 e௙,௧ିଵ+ 𝜀௧, 𝜀௧It-1 ~ N(0, 𝜎௧
ଶ)

𝜎௧
ଶ ൌ  𝝎 ൅  𝜶𝟏  𝜀௧ିଵ

ଶ  ൅  𝜷𝟏 𝜎௧ିଵ
ଶ

• T: 562 (January 1971 - July 2020, monthly).

The estimated model for e௙,௧ is given by:
e௙,௧ = -0.00211 + 0.02600  e௙,௧ିଵ,

(.0012) (0.044)
𝜎௧
ଶ = 0.00012 + 0.19003  𝜀௧ିଵ

ଶ + 0.71007 𝜎௧ିଵ
ଶ .

(0.00096)* (0.050)* (0.040)*
Unconditional σ2 = 0.00012 /(1- 0.19003 - 0.71007) = 0.001201201
Log likelihood: 1745.197

Note: α1 + ß1 = .90 < 1. (Persistent.)

ARCH Estimation: MLE – Example (in R)

81

ARCH Estimation: MLE – Example (in R)
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Example 2: Using Robert Shiller’s monthly data set for the S&P 500 
(1871:Jan - 2020:Aug, T=1,795), we estimate an AR(1)-GARCH(1,1) 
model: 

𝑟௧ = [log(Pt) - log(Pt-1)] = a0 + a1 𝑟௧ିଵ + 𝜀௧, 𝜀௧It-1 ~ N(0, 𝜎௧
ଶ)

𝜎௧
ଶ ൌ  𝝎 ൅  𝜶𝟏  𝜀௧ିଵ

ଶ  ൅  𝜷𝟏 𝜎௧ିଵ
ଶ

The estimated model for st is given by:
𝑟௧ = 0.338 + 0.278 𝑟௧ିଵ,

(.08)* (0.025)*
𝜎௧
ଶ = 0.756 + 0.126  𝜀௧ିଵ

ଶ + 0.826  𝜎௧ିଵ
ଶ .

(0.151)* (0.017)* (0.021)*
Unconditional σ2 = 0.756 /(1 - 0.126 - 0.826) = 15.4630
Log likelihood: 4795.08

Note: α1 + ß1 = .952 < 1. (Very persistent.)

ARCH Estimation: MLE – Example (in R)
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ARCH Estimation: MLE – Example (in R)

Example 2: Below, we plot the time-varying variance. Certain events 
are clearly different, for example, the 1930 great depression, with a 
peak variance of  282 (18 times unconditional variance!). The covid-19 
volatility similar to the 2008-2009 financial crisis recession: 
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Note: The appeal of MLE is the optimal properties of the resulting 
estimators under ideal conditions.

• Crowder (1976) gives one set of sufficient regularity conditions for 
the MLE in models with dependent observations to be consistent 
and asymptotically normally distributed. 

• Verifying these regularity conditions is very difficult for general 
ARCH models - proof for special cases like GARCH(1,1) exists. 

Example: For the GARCH(1,1) model: if E[ln(α1zt
2 +β1)] < 0, the 

model is strictly stationary and ergodic. See Nelson (1990) & 
Lumsdaine (1996).

ARCH Estimation: MLE – Regularity Conditions

• Block-diagonality
In many applications of  ARCH, the parameters can be partitioned 
into mean parameters,  θ1, and variance parameters, θ2.

Then, δμt(θ)/δθ2 = 0 and, although,  δσt(θ)/δθ1≠0, the Information 
matrix is block-diagonal (under general symmetric distributions for zt

and for particular ARCH specifications).

Not a bad result:
- Regression can be consistently done with OLS.
- Asymptotically efficient estimates for the ARCH parameters can be 
obtained on the basis of  the OLS residuals.

ARCH Estimation: MLE – Regularity Conditions
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• But, block diagonality cannot buy everything:
- Conventional OLS standard errors could be terrible. 

- When testing for serial correlation, in the presence of  ARCH, the 
conventional Bartlett s.e. – T-1/2– could seriously underestimate the 
true standard errors.

ARCH Estimation: MLE – Remarks

• The basic GARCH model allows a certain amount of  leptokurtosis. 
It is often insufficient to explain real world data. 

Solution: Assume a distribution other than the normal which help to 
allow for the fat tails in the distribution.

• t Distribution - Bollerslev (1987)
The t distribution has a degrees of  freedom parameter which allows 
greater kurtosis. The t likelihood function is

)ln(5.0)))2(1()2()5.0())1(5.0(ln( 22/)1(12/11
t

v
tt vzvvvl  

where Γ is the gamma function and v is the degrees of  freedom.
As υ→∞,  this tends to the normal  distribution.

• GED Distribution - Nelson (1991)

ARCH Estimation: Non-Normality
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• Suppose we have an ARCH(𝑞). We need moment conditions:
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Note: (1) refers to the  conditional mean, (2) refers to the conditional 
variance, and (3) to the unconditional mean.

• GMM objective function:
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ARCH Estimation: GMM

• γ has 𝑘 free parameters; α has 𝑞 free parameters. Then, we have J = 
𝑘 + 𝑞 + 1 parameters. Note that:

m(θ; X, 𝒚) has J = 𝑘 + 𝑞 + 1 equations.

Dimensions: Q is 1x1; E[m(θ; X, 𝒚)] is Jx1; W is JxJ. 

• Problem is over-identified: more equations than parameters so cannot 
solve E[m(θ; X, 𝒚)]=0, exactly.

• Choose a weighting matrix W for objective function and minimize 
using numerical optimization.

• Optimal weighting matrix: W = {E[m(θ; X, 𝒚)] E[m(θ; X, 𝒚)]’}-1.
Var(θ) = (1/T)[DW-1D’]-1,

where D = δE[m(θ; X, 𝒚)]/δθ’ –expressions evaluated at θGMM.

ARCH Estimation: GMM
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• Standard BP test, with auxiliary regression given by:
𝑒௧
ଶ = α଴+ αଵ 𝑒௧ିଵ

ଶ + .... + α௤ 𝑒௧ି௤
ଶ + 𝑣௧ -Keep R2.

H0: αଵ= αଶ = ... = α௤= 0 (No ARCH). It is not possible to do 
GARCH test, since we are using the same lagged squared residuals. 

Then, the LM test is (T - 𝑞)* R2
   ௗ   

χ௤
ଶ – Engle’s (1982). 

• In ARCH Models, testing as usual: LR, Wald, and LM tests.

Reliable inference from the LM, Wald and LR test statistics
generally does require moderately large sample sizes of at least two
hundred or more observations.

ARCH Estimation: Testing

• Issues:

- Non-negative constraints must be imposed. θ0 is often on the

boundary of Ω. (Two sided tests may be conservative.)

- Lack of identification of certain parameters under H0 creates a

singularity of the Information matrix under H0. For example, under

H0: αଵ= 0 (No ARCH), in the GARCH(1,1), ω and βଵ are not jointly

identified. See Davies (1977).

• Ignoring ARCH

- You suspect 𝑦௧ has an AR structure: 𝑦௧ = γ0 + γ1 𝑦௧ିଵ + 𝜀௧
Hamilton (2008) finds that OLS t-test with no correction for ARCH  
spuriously reject H0: γ1= 0 with arbitrarily high probability for 
sufficiently large T.  White’s (1980) SE help. NW SE help less.

ARCH Estimation: Testing
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Figure. From Hamilton (2008). Fraction of  samples in which OLS t-
test leads to rejection of  H0: γ1= 0 as a function of  T for regression 
with Gaussian errors (solid line) and Student’s t errors (dashed line). 
Note: H0 is actually true and test has nominal size of  5%.

ARCH Estimation: Testing

• ARCH Test for the 3 factor F-F model for IBM returns (T=320), 
with one lag: 

𝑟௜,௧ – 𝑟௙ = 𝛼௜ + βଵ (𝑟௠,௧ – 𝑟௙) + βଶ 𝑆𝑀𝐵௧ + βଷ 𝐻𝑀𝐿௧ +  ௜,௧

> b <- solve(t(x)%*% x)%*% t(x)%*%y #OLS regression

> e <- y - x%*%b

> e2 <- e^2

> xx1 <- e2[1:T-1]

> fit2 <- lm(e2[2:T]~xx1)

> r2_e2 <- summary(fit2)$r.squared

> r2_e2

[1] 0.2656472

> lm_t <- (T-1)*r2_e2

> lm_t

[1] 84.74147

LM-ARCH Test: 84.74  reject H0 at 5% level (χ2
[1],05≈3.84), the 

usual result for financial time series. 

Testing for Heteroscedasticity: ARCH 
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• Consider the forecast in a GARCH(1,1) model:

𝜎௧ାଵ
ଶ ൌ 𝜔 ൅ 𝛼ଵ𝜀௧

ଶ ൅ 𝛽ଵ𝜎௧
ଶ ൌ 𝜔 ൅ 𝜎௧

ଶ 𝛼ଵ𝑧௧
ଶ ൅ 𝛽ଵ    ሺ𝜀௧

ଶ ൌ 𝜎௧
ଶ𝑧௧

ଶሻ

Taking expectation at time 𝑡 

𝐸௧ሾ𝜎௧ାଵ
ଶ ሿ ൌ 𝜔 ൅ 𝜎௧

ଶሺ𝛼ଵ1 ൅ 𝛽ଵሻ

Then, by repeated substitutions:

𝐸௧ 𝜎௧ା௝
ଶ ൌ 𝜔 ሾ∑ ሺ𝛼ଵ ൅ 𝛽ଵሻ௜ሿ

௝ିଵ
௜ୀ଴ ൅ 𝜎௧

ଶሺ𝛼ଵ ൅ 𝛽ଵሻ௝

• When 𝛼ଵ ൅ 𝛽ଵ= 1, today’s volatility affect future forecasts forever:

𝐸௧ሾ𝜎௧ା௝
ଶ ሿ ൌ 𝜎௧

ଶ ൅ 𝑗𝜔

GARCH: Forecasting and Persistence (Again)

Example 1: We want to forecast next month (September 2020) 
variance for CHF/USD changes. Recall we estimated 𝜎௧

ଶ:
𝜎௧
ଶ = 0.00012 + 0.19003 𝜀௧ିଵ

ଶ + 0.71007 𝜎௧ିଵ
ଶ . 

getting 𝜎ଶ଴ଶ଴:ଽ
ଶ = 0.003672220 (=𝜎ଶ଴ଶ଴:ଽ = sqrt(0.00367) = 6.1%)

We based the 𝜎ଶ଴ଶ଴:ଵ଴
ଶ forecast on:

𝐸௧ 𝜎௧ା௝
ଶ ൌ 𝜔 ∗ ሾ∑ ሺ𝛼ଵ ൅ 𝛽ଵሻ௜ሿ

௝ିଵ
௜ୀ଴ ൅ 𝜎௧

ଶሺ𝛼ଵ ൅ 𝛽ଵሻ௝

Then, ሺ𝛼ଵ ൅ 𝛽ଵሻ = 0.190 + 0.710 = 0.900

𝐸ଶ଴ଶ଴:ଽ 𝜎ଶ଴ଶ଴:ଵ଴
ଶ ൌ  0.00012 ൅  0.00367 ∗ ሺ0.9) = 0.003423

We also forecast 𝜎ଶ଴ଶ଴:ଵଶ
ଶ

𝐸ଶ଴ଶ଴:ଽ 𝜎ଶ଴ଶ଴:ଵଶ
ଶ ൌ 0.00012 ∗ {1+ (0.9)+ (0.9)2} + 0.00367 ∗ (0.9)3

= 0.00300063

GARCH: Forecasting and Persistence

96
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Example 1 (continuation):
We forecast volatility for March 2021:
𝐸ଶ଴ଶ଴:଺ 𝜎ଶ଴ଶଵ:଴ଷ

ଶ ൌ 0.00012 ∗ {1 + (0.9) + (0.9)2+ …  + (0.9)5} +

+ 0.00367 ∗ (0.9)6 = 0.002512659 

Remark: We observe that as the forecast horizon increases (j → ∞), 
the forecast reverts to the unconditional variance: 

𝜔/(1 – α1 – β1) = 0.00012/(1 − 0.9) = 0.0012

 𝜎 = sqrt(0.0012) = 0.0346 (3.46% ≈ close to sample 
SD = 3.36%) 

GARCH: Forecasting and Persistence
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Example 2: On August 2020, we forecast the December’s variance 
for the S&P500 changes. Recall we estimated 𝜎௧

ଶ:
𝜎௧
ଶ = 0.756  +  0.125 𝜀௧ିଵ

ଶ + 0.826  𝜎௧ିଵ
ଶ

. 

getting 𝜎ଶ଴ଶ଴:଼
ଶ = 43.037841

We based the 𝜎ଶ଴ଶ଴:ଵଶ
ଶ forecast on:

𝐸௧ 𝜎௧ା௝
ଶ ൌ 𝜔 ∗ ሾ∑ ሺ𝛼ଵ ൅ 𝛽ଵሻ௜ሿ

௝ିଵ
௜ୀ଴ ൅ 𝜎௧

ଶ ሺ𝛼ଵ ൅ 𝛽ଵሻ௝

Then, since ሺ𝜶𝟏 ൅ 𝜷𝟏ሻ = 0.952
𝐸ଶ଴ଶ଴:଼ 𝜎ଶ଴ଶ଴:ଵଶ

ଶ ൌ 0.756 ∗ {1+ (0.952) + (0.952)2 
+ (0.952)3} +

+ 43.037841 ∗ (0.952)4 = 38.02797

Lower variance forecasted for the end of  the year, but still far from 
the unconditional variance of  15.4.

GARCH: Forecasting and Persistence

98
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• Questions
1) Lots of ARCH models. Which one to use?
2) Choice of p and q. How many lags to use?

• Hansen and Lunde (2004) compared lots of ARCH models:

- It turns out that the GARCH(1, 1) is a great starting model. 

- Add a leverage effect for financial series and it’s even better.

- A t-distribution is also a good addition.

ARCH: Which Model to Use

• The idea of realized volatility is to estimate the latent (unobserved) 
variance using the realized data, without any modeling. Recall the 
definition of sample variance: 

𝒔𝟐 ൌ
1

ሺ𝑇 െ 1ሻ
 ෍ሺ𝒙𝒊 െ 𝒙ഥሻ𝟐
𝑻

௜ୀଵ

• Suppose we want to calculate the daily variance for stock returns. We 
know how to compute it: we use daily information, for T days, and 
apply the above definition. 

• Alternatively, we use hourly data for the whole day (with 𝑘 hours). 
Since hourly returns are very small, ignoring 𝒙ഥ seems OK. We use 𝑟௧,௜

ଶ

as the 𝑖th hourly variance on day 𝑡. Then, we add 𝑟௧,௜
ଶ over the day:

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒௧ ൌ෍𝑟௧,௜
ଶ

௞

௜ୀଵ

RV Models: Intuition

10
0
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• In more general terms, we use higher frequency data to estimate a 
lower frequency variance:

𝑅𝑉௧ ൌ෍𝑟௧,𝒊
ଶ

௞

௜ୀଵ
where 𝑟௧,௜ is the realized returns in (higher frequency) interval 𝑖 of the 
(lower frequency) period 𝑡. We estimate the 𝑡-frequency variance, using 
𝑘 𝑖-intervals. If we have daily returns and we want to estimate the 
monthly variance, then, 𝑘 is equal to the number of days in a month.

• It can be shown that as the interval 𝑖 becomes smaller (𝑖 → 0), 
𝑅𝑉௧ → Return Variation [𝑡 െ 1, 𝑡].

That is, with an increasing number of observations we get an accurate 
measure of the latent variance.

RV Models: Intuition

10
1

• Note that RV is a model-free measure of  variation –i.e., no need for 
ARCH-family specifications. The measure is called realized variance (RV). 
The square root of  the realized variance is the realized volatility (RVol, 
RealVol):

𝑅𝑉𝑜𝑙௧ ൌ 𝑠𝑞𝑟𝑡ሺ𝑅𝑉௧ሻ

• Given the previous theoretical result, RV is commonly used with 
intra-daily data, called high frequency (HF) data.

• It lead to a revolution in the field of  volatility, creating new models 
and new ways of  thinking about volatility and how to model it. 

• We usually associate realized volatility with an observable proxy of  the 
unobserved volatility.

RV Models: High Frequency

10
2
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• The theory behind realized variation measures dictates that the 
sampling frequency, or 𝑘 in the 𝑅𝑉௧ formula above, goes to ∞. Then, 
use highest frequency available, say millisecond to millisecond returns.

• Intra-daily data applications are the most common. But, when using 
intra-daily data, RV calculations are affected by microstructure effects: bid-
ask bounce, infrequent trading, calendar effects, etc. 𝑟௧,௜ does not look 
uncorrelated.

Example: The bid-ask bounce induces serial correlation in intra-day 
returns, which biases 𝑅𝑉௧. 

• As the sampling frequency increases, the “noise” (microstructure 
effects) becomes more dominant and swallows the “signal” (true 
volatility).

RV Models: High Frequency – Tick Data

10
3

• In practice, sampling a typical stock price every few seconds can 

overestimate the true volatility by a factor of  two or more.

• The usual solutions:

(1) Filter data using an ARMA model to get rid of  the autocorrelations 
and/or dummy variables to get rid of  calendar effects. 

Then, used the filtered data to compute 𝑅𝑉௧.

(2) Sample at frequencies where the impact of  microstructure effects is 
minimized and/or eliminated. 

We follow solution (2).

RV Models: High Frequency – Tick Data

10
4
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• In intra-daily RV estimation, it is common to use 10’ intervals. They 
have good properties. However, there are estimations with 1’ intervals.

• Some studies suggest using an optimal frequency, where optimal 
frequency is the one that minimizes the MSE.

• Hansen and Lunde (2006) find that for very liquid assets, such as the 
S&P 500 index, a 5’ sampling frequency provides a reasonable choice. 
Thus, to calculate daily RV, we need to add 78 five-minute intervals.

RV Models: High Frequency – Practice

10
5

Example: Based on TAQ (Trade and Quote) NYSE data, we use 5’ 
realized returns to calculate 30’ variances –i.e., we use six 5’ intervals. 
Then, the 30’ variance, or 𝑅𝑉௧ୀଷ଴ି௠௜௡, is:

𝑅𝑉௧ୀଷ଴ି௠௜௡ ൌ ∑  𝑟௧,௝
ଶ௞ୀ଺

௝ୀଵ ,   𝑡 ൌ 1, 2, . . . . ,𝑇 = 13

𝑟௧,௝ is the 5’ return during the 𝑗th interval on the half  hour 𝑡. Then, we 
calculate 30’ variances for the whole day –i.e., we calculate 13 variances, 
since the trading day goes from 9:30 AM to 4:00 PM.

The Realized Volatility, 𝑅𝑉𝑜𝑙, is:
𝑅𝑉𝑜𝑙௧ୀଷ଴ି௠௜௡ ൌ 𝑅𝑉௧ୀଷ଴ି௠௜௡

RV Models: High Frequency – TAQ

10
6
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Example: Below, we show the first transaction of  the SPY TAQ 
(Trade and Quote) data (tick-by-tick trade data) on January 2, 2014.  

SYMBOL DATE TIME PRICE SIZE

SPY 20140102 9:30:00 183.98 500

SPY 20140102 9:30:00 183.98 500

SPY 20140102 9:30:00 183.98 200

SPY 20140102 9:30:00 183.98 500

SPY 20140102 9:30:00 183.98 1000

SPY 20140102 9:30:00 183.98 1000

SPY 20140102 9:30:00 183.98 800

SPY 20140102 9:30:00 183.98 100

SPY 20140102 9:30:00 183.98 100

SPY 20140102 9:30:00 183.97 200

SPY 20140102 9:30:00 183.98 100

SPY 20140102 9:30:00 183.97 200

SPY 20140102 9:30:00 183.98 1000

SPY 20140102 9:30:00 183.97 100

SPY 20140102 9:30:00 183.98 1000

SPY 20140102 9:30:00 183.98 2600

SPY 20140102 9:30:00 183.98 1000

SPY 20140102 9:30:00 183.97 400

RV Models: High Frequency – TAQ
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Example: Below, we show the first transaction of  the AAPL TAQ 
(Trade and Quote) data (tick-by-tick quote data) on January 2, 2014: 4 AM  

RV Models: High Frequency – TAQ

SYMBOL DATE TIME BID OFR BIDSIZ OFRSIZ MODE EX

AAPL 20140102 4:00:00 455.39 0 1 0 12T

AAPL 20140102 4:00:00 553.5 558 2 2 12P

AAPL 20140102 4:00:01 455.39 561.02 1 2 12T

AAPL 20140102 4:00:45 552.1 558 1 2 12P

AAPL 20140102 4:00:51 552.1 558.4 1 2 12P

AAPL 20140102 4:00:51 552.1 558.8 1 2 12P

AAPL 20140102 4:00:51 552.1 559 1 1 12P

AAPL 20140102 4:01:14 553 559 1 1 12P

AAPL 20140102 4:01:30 553.01 561.02 1 2 12T

AAPL 20140102 4:01:43 553.01 559 1 1 12T

AAPL 20140102 4:01:44 553.05 559 1 1 12P

AAPL 20140102 4:01:49 455.39 559 1 1 12T

AAPL 20140102 4:01:49 553.61 559 1 1 12T

AAPL 20140102 4:02:02 553.05 559 1 2 12P

AAPL 20140102 4:02:04 455.39 559 1 1 12T

AAPL 20140102 4:02:04 548.28 559 1 1 12T

AAPL 20140102 4:02:33 553.05 558.83 1 2 12P

AAPL 20140102 4:02:33 555.17 558.83 2 2 12P

AAPL 20140102 4:03:50 555.2 558.83 5 2 12P
10
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Example (continuation): We read SPY trade data for 2014:Jan.
> HF_da <- read.csv("c:/Financial Econometrics/SPY_2014.csv", head=TRUE, sep=",")
> summary(HF_da)

SYMBOL             DATE                TIME             PRICE            SIZE              G127  
SPY:6800865   Min.   :20140102 9:30:00 :  21436 Min.   :176.6   Min.   :      1 Min.   :0  

1st Qu.:20140110 16:00:00: 11352 1st Qu.:178.9 1st Qu.:    100 1st Qu.:0  
Median :20140121 9:30:01 : 5922 Median :182.6 Median :    100 Median :0  
Mean   :20140119 15:59:59: 4090 Mean   :181.4 Mean   :    337 Mean   :0  
3rd Qu.:20140128 15:59:55: 3198 3rd Qu.:183.5 3rd Qu.:    300   3rd Qu.:0  
Max.   :20140131   15:50:00: 2916 Max.   :189.2 Max.   :4715350 Max.   :0  

(Other) :6751951                                                
CORR         COND               EX         

Min.   :0.0e+00 @  :3351783 T      :1649158  
1st Qu.:0.0e+00 F      :2888182   P      :1335135  
Median :0.0e+00 : 524409 Z      :1182126  
Mean   :1.9e-04 O     :  18057 D      :1062382  
3rd Qu.:0.0e+00 4   :   9098 K      : 437900  
Max.   :1.2e+01 6    :   8142 J      : 356539  

(Other):   1194   (Other): 777625 

RV Models: High Frequency – TAQ
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Example (continuation): Using the SPY trade data, we calculate 
using 5’-returns a daily realized volatility for the first 4 days in 2014 
(2014:01:02 - 2014:01:07). Originally, we have T = 1,048,570.

HF_da <- read.csv("http://www.bauer.uh.edu//rsusmel//4397//SPY_2014.csv", 
head=TRUE, sep=",")
summary(HF_da)
pt <- as.POSIXct(paste(HF_da$DATE, HF_da$TIME), format="%Y%m%d %H:%M:%S")

library(xts)
hf_1 <- xts(x=HF_da, order.by = pt) # Define a specific time series data set

# pt pastes together DATE and Time.
spy_p <- as.numeric(hf_1$PRICE) # Read price data as numeric

T <- length(spy_5_p)
spy_ret <- log(spy_p[-1]/spy_p[-T])
plot(spy_ret, type="l", ylab="Return", main="Tick by Tick Return (2014:01:02 - 2014:01:07)")
mean(spy_ret)
sd(spy_ret)

RV Models: High Frequency – TAQ
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Example (continuation): We plot the tick-by-tick data. 

Very noisy data, with lots of  “jumps”:
Mean tick by tick return: -3.7365e-09
Tick-by-tick SD: 6.3163e-05

RV Models: High Frequency – TAQ

111

Example (continuation): For the whole month of  January 2014:

> mean(spy_ret)
[1] -4.796933e-09
> sd(spy_ret)
[1] 7.804991e-05

RV Models: High Frequency – TAQ

11
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Example (continuation): We plot the autocorrelogram for the TAQ 
SPY data:

> acf_spy_raw

Autocorrelations of  series ‘spy_ret’, by lag

0 1 2 3 4 5 6  7   8 9 10 
1.000 -0.469 -0.013 -0.010  0.014 -0.008  0.000 -0.002 -0.001  0.000  0.000

Note: We have only a significant autocorrelation, the 1st-order 
autocorrelation: -0.459. 

RV Models: High Frequency – TAQ
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Example (continuation): We aggregate the tick-by-tick data in 5’ 
intervals using the function aggregateTrades in the R package 
highfrequency. It needs as an input an xts object (hf_1, for us).

library(highfrequency)
spy_5 <- aggregateTrades(
hf_1,
on = "minutes", # you can use also seconds, days, weeks, etc.
k = 5, # number of  units in for “on”
marketOpen = "09:30:00",
marketClose = "16:00:00",
tz = "GMT"
)

spy_5_p <- as.numeric(spy_5$PRICE)

T <- length(spy_5_p)
spy_5_ret <- log(spy_5_p[-1]/spy_5_p[-T])
plot(spy_5_ret, type="l", ylab="Return", main="5-minute Return (2014:01:02 - 2014:01:07)")

RV Models: High Frequency – TAQ
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Example (continuation): We plot the 5-minute return data. 
Smoother, easier to read.

RVolt=2014:01:02 = 0.0053344
RVolt=2014:01:03 = 0.0043888
RVolt=2014:01:04 = 0.0059836
RVolt=2014:01:05 = 0.0052772

RV Models: High Frequency – TAQ
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Example (continuation): We plot the autocorrelogram for the 5’ 
TAQ SPY data:

> acf_spy_5 <- acf(spy_5_ret, main = "5-minute SPY Data: January 2014")
> acf_spy_5 
Autocorrelations of  series ‘spy_ret’, by lag

0 1 2 3 4 5 6  7   8 9 10 
1.000 -0.105 -0.024 -0.104  0.018 0.147 0.016 -0.024 -0.088  0.048  0.037

Note: We have a negative 1st-order autocorrelation: -0.105, thought not 
significant. However, the autocorrelation of  order 5 is significant. 

RV Models: High Frequency – TAQ
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Example (continuation): We plot the 10-minute return data. 
Smoothing increases.

RVolt=2014:01:02 = 0.005478294
RVolt=2014:01:03 = 0.004256046
RVolt=2014:01:04 = 0.006190508
RVolt=2014:01:05 = 0.005145601

RV Models: High Frequency – TAQ

11
7

Example (continuation): We plot the autocorrelogram for the 10’ 
TAQ SPY data:

Note: Now, none of  the autocorrelations is significant. The 10-minute 
returns look independent.   

RV Models: High Frequency – TAQ
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Example: R script to compute realized volatility
MSCI_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/MSCI_daily.csv", head=TRUE, sep=",")

x_us <- MSCI_da$USAT <- length(x_us)

us_r <- log(x_us[-1]/x_us[-T])

x <- us_r # US log returns from MSCI USA Index

T <- length(x)

rvs=NULL # create vector to fill with RV

i <- 1

k <- 21 # k: observations per period

while (i < T-k) {

s2 <- sum(x[i:(i+k)]^2) # realized variance

i <- k + i

rvs <- rbind(rvs,s2)

}

rvol <- sqrt(rvs) # realized volatility 

mean(rvol) # mean

sd(rvol) # variance

RV Models: R Script

Example: Using daily data we calculate 1-mo Realized Volatility  (𝑘 = 
21 days) for log returns for the MSCI (1970: Jan – 2020: Oct).

> mean(rvol) # average monthly Rvol in the sample
[1] 0.04326531  very close to monthly S&P Volatility: 4.49%
> sd(rvol) # standard deviation of  monthly Rvol in the sample
[1] 0.02592653  dividing by sqrt(T) we get the SE = 0.001 (very small)

RV Models: Monthly RV From Daily Data
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• The log approximations rules for the variance and SD are used to 
change frequencies for the RV and RVOL. For example, suppose we 
are calculating RV based on frequency 𝑗, 𝑅𝑉௧ୀ௝ . Using the 𝑗-period 
𝑅𝑉௧ୀ௝ , we can compute the annualized variance as: 

𝑅𝑉௧ୀ௃ ൌ 𝐽 ∗  𝑅𝑉௧ୀ௝

The 𝑅𝑉𝑂𝐿௧ୀ௝ is the square root of  𝑅𝑉௧ୀ௝ .

RV Models: Log Rules

Example: We calculated using 10’ data the daily realized variance, 
𝑅𝑉௧ୀௗ௔௜௟௬. Then, the annual variance can be calculated as 

𝑅𝑉௧ୀ௔௡௡௨௔௟ ൌ 260 ∗  𝑅𝑉௧ୀௗ௔௜௟௬

where 260 is the number of  trading days in the year. The annualized 
RVOL is the squared root of  𝑅𝑉௔௡௡௨௔௟:

𝑅𝑉𝑂𝐿௧ୀ௔௡௡௨௔௟ ൌ 𝑠𝑞𝑟𝑡ሺ260ሻ  ∗  𝑅𝑉𝑂𝐿௧ୀௗ௔௜௟௬

We can use time series models –say, an ARIMA model- for 𝑅𝑉௧ to 
forecast daily volatility.

RV Models: Log Rules



RS – Lecture 12

62

Example: Using daily data we calculate 3-mo Realized Volatility  (𝑘 = 
66 days) for log returns for the MSCI (1970: March – 2020: Oct).

> mean(rvol) # average monthly Rvol in the sample
[1] 0.07725361  log approximation: sqrt(3) * 0.04326 = 0.07493 (close!)
> sd(rvol) # standard deviation of  monthly Rvol in the sample
[1] 0.02592653

RV Models: Quarterly RV From Daily Data

• Under some conditions (bounded kurtosis and autocorrelation of  
squared returns less than 1), 𝑅𝑉௧ is consistent and m.s. convergent.

• Realized volatility is a measure. It has a distribution.

• For returns, the distribution of  RV is non-normal (as expected). It 
tends to be skewed right and leptokurtic. For log returns, the 
distribution is approximately normal.

• Daily returns standardized by RV measures are nearly Gaussian.

• RV is highly persistent.

• The key problem is the choice of  sampling frequency (or number of  
observations per day).

RV Models: Properties
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• The key problem is the choice of  sampling frequency (or number of  
observations per day).

— Bandi and Russell (2003) propose a data-based method for 
choosing frequency  that minimizes the MSE of  the measurement 
error.
— Simulations and empirical examples suggest optimal sampling is 
around 1-3 minutes for equity returns.

Realized Volatility (RV) Models - Properties

RV Models - Variation

• Another method: AR model for volatility:

The εt are estimated from a first step procedure -i.e., a regression. 
Asymmetric/Leverage effects can also be introduced.

OLS estimation possible. Make sure that the variance estimates are 
positive.

ttt    |||| 1
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• The Parkinson’s (1980) estimator: 
𝑠௧
ଶ = { ∑  ሺln ሺ𝐻௧ሻ – ln ሺ𝐿௧ሻ௧ ሻଶ /(4ln(2)T) },

where 𝐻௧ is the highest price and 𝐿௧ is the lowest price.

• There is an RV counterpart, using HF data: Realized Range (RR): 
RRt = { ∑  ሾ100 ∗ ሺln ሺ𝐻௧,௝ሻ – ln ሺ𝐿௧,௝ሻ௝ ሻଶሿ/ሺ4ln 2 ሻ },

where 𝐻௧,௝ and 𝐿௧,௝ are the highest and lowest price in the 𝑗th interval.

• These “range” estimators are very good and very efficient.

Reference: Christensen and Podolskij (2005).

Other Models - Parkinson’s (1980) estimator

Stochastic volatility (SV/SVOL) models

• Now, instead of  a known volatility at time t, like ARCH models, we 
allow for a stochastic shock to 𝜎𝒕, η௧ or υ௧: 

𝜎𝒕 ൌ 𝜔 ൅ 𝛽ଵ𝜎௧ିଵ + η௧, η௧~ 𝑁ሺ0,𝜎ηଶሻ
Or using logs:

log 𝜎𝒕 ൌ 𝜔 ൅ 𝛽ଵlog 𝜎௧ିଵ + υ௧, υ௧ ~ 𝑁ሺ0,𝜎஥ଶሻ

• The difference with ARCH models: The shocks that govern the 
volatility are not necessarily the shocks to the mean process, ε௧’s. 

• Usually, the standard model centers log volatility around ω:
log 𝜎𝒕 ൌ 𝜔 ൅ 𝛽ଵሺlog 𝜎௧ିଵ – ωሻ +υ௧,

Then, 
E[log(𝜎𝒕)] = 𝜔 
Var[log(𝜎𝒕)] = κ2 ൌ  𝜎஥ଶ/(1 – 𝛽ଵ2).

 Unconditional distribution:  log(𝜎𝒕) ~ N(ω, κ2) 12
8
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Stochastic volatility (SV/SVOL) models

• We have 3 SVOL parameters to estimate: φ = (𝜔, 𝛽ଵ, 𝜎஥ଶ). 

• Like ARCH models, SV models produce returns with kurtosis > 3 
(and, also, positive autocorrelations between squared excess returns):

Var[𝑟௧ሿ = E[(𝑟௧ – E[𝑟௧])2] = E[σ௧
ଶ 𝑧௧

ଶ ] = E[σ௧
ଶ ] E[𝑧௧

ଶ ] 
= E[σ௧

ଶ ] = exp(2𝜔 + 2 κ2 ) (property of  log normal)

kurt[𝑟௧ሿ = E[(𝑟௧ - E[𝑟௧])4] / {(E[(𝑟௧ - E[𝑟௧])2] )2 } 
= E[σ௧

ସ ] E[𝑟௧4] / {(E[σ௧
ଶ ])2 (E[𝑧௧

ଶ ])2 }
= 3 exp(4𝜔 + 8κ2 ) / exp(4𝜔 + 4κ2 ) = 3 exp(4κ2 ) > 3!

• Estimation: 
- GMM: Using moments, like the sample variance and kurtosis of  
returns. Complicated -see Anderson and Sorensen (1996).
- Bayesian: Using MCMC methods (mainly, Gibbs sampling). Modern 
approach. 12

9

Stochastic volatility (SV/SVOL) models

• The Bayesain approach takes advantage of the idea of hierarchical 
structure:
- f(𝒚 |ℎ௧) (distribution of the data given the volatilities)
- f(ℎ௧|φ) (distribution of the volatilities given the parameters)
- f(φ) (distribution of the parameters)

Algorithm: MCMC (JPR (1994).)
Augment the parameter space to include ℎ௧ t. 
Using a proper prior for f(ℎ௧,φ) MCMC methods provides inference 
about the joint posterior f(ℎ௧,φ| 𝒚). We’ll cover this topic in Lecture 17.

Classic references: Jacquier, E., Poulson, N., Rossi, P. (1994), “Bayesian 
analysis of  stochastic volatility models,” Journal of  Business and Economic 
Statistics. (Estimation). Heston, S.L. (1993), “A closed-form solution for 
options with stochastic volatility with applications to bond and currency 
options,” Review of  Financial Studies. (Theory)


