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Lecture 11
GLS

(for private use, not to be posted/shared online)

• Recall the CLM Assumptions

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X) = 𝑘–, where T ≥ 𝑘.

• OLS estimation: b = (X′X)-1X′ 𝒚 
Var[b|X] = σ2 (X′X)-1

 b unbiased and efficient (MVUE)

• If  (A5) |X ~N(0, σ2IT)  b|X ~N(, σ2(X′X)-1)

Now, b is also the MLE (consistency, efficiency, invariance, etc). (A5)
gives us finite sample results for b (and for tests: t-test, F-test, Wald tests). 

CLM: Review
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CLM: Review - Relaxing the Assumptions

• Relaxing the CLM Assumptions:

(1) (A1) – Lecture 5. Now, we allow for some non-linearities in DGP. 

 as long as we have intrinsic linearity, b keeps its nice properties. 

(2) (A4) and (A5) – Lecture 7. Now, X stochastic: {𝑥௜ , ε௜} 𝑖 = 1, 2, ...., 
T  is a sequence of  independent observations. We require X to have 
finite means and variances. Similar requirement for ε, but we also 
require E[]=0. Two new assumptions:

(A2’) plim (X′/T) = 0.

(A4’) plim (XX/T)=Q.

 We only get asymptotic results for b (consistency, asymptotic 
normality). Tests only have large sample distributions. Boostrapping or 
simulations may give us better finite sample behavior.

(3) (A2’) – Lecture 8. Now, a new estimation is needed: IVE/2SLS. We 
need to find a set of  l variables, Z such that 

(1) plim(Z′X/T)  0 (relevant condition)
(2) plim(Z′/T) = 0 (valid condition –or exogeneity)

b2SLS = (𝑿෡′𝑿෡)-1𝑿෡′𝒚
bIV = (Z′X)-1Z ′ 𝒚

 We only get asymptotic results for b2SLS (consistency, asymptotic 
normality). Tests only have asymptotic distributions. Small sample 
behavior may be bad. Problem: Finding Z.

(4) (A1) again! – Lecture 9. Any functional form is allowed. General 
estimation framework: M-estimation, with only asymptotic results. A 
special case: NLLS. Numerical optimization needed.

CLM: Review - Relaxing the Assumptions



RS -11 – GLS

3R Susmel, 2020. Not to be shared/posted online without authorization

• Now, we go back to the CLM Assumptions:

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank – rank(X) = 𝑘 –, where T ≥ 𝑘.

• We will relax (A3).  The CLM assumes that observations are 
uncorrelated and all are drawn from a distribution with the same 
variance, σ2. Instead, we will assume:

(A3’) Var[|X] = Σ = 2. where  ≠ IT

• The generalized regression model (GRM) allows the variances to 
differ across observations and allows correlation across observations.

Generalized Regression Model (GRM)

• Now, we relax (A3).  The CLM assumes that errors are uncorrelated 
and all are drawn from a distribution with the same variance, σ2. 

(A3) Var[|X] = 2IT

Instead, we will assume:

(A3’) Var[|X] = Σ (sometimes written= 2, where  ≠ IT)

Σ = 

σଵ
ଶ ଵଶ ⋯ ଵ்

ଶଵ σଶ
ଶ ⋯ ଶ்

⋮ ⋮ ⋮ ⋮
்ଵ ்ଶ ⋯ σ்

ଶ

• Two Leading Cases:

– Pure heteroscedasticity: We model only the diagonal elements. 

– Pure autocorrelation: We model only the off-diagonal elements. 11

Generalized Regression Model (GRM)
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• Two Pure Cases:

– Pure heteroscedasticity:     E[𝜀௜  𝜀௝|X] = ௜௝ = ௜
ଶ if  𝑖 = 𝑗

= 0 if  𝑖 ≠ 𝑗

 Var[𝜀௜|X]  =  ௜
ଶ

Σ = 

σଵ
ଶ 0 ⋯ 0

0 σଶ
ଶ ⋯ 0

⋮ ⋮ ⋮ ⋮
0 0 ⋯ σ்

ଶ

• This type of  variance-covariance structure is common in time series, 
where we observe the variance of  the errors changing over time or 
subject to different regimes (say, bear and bull regimes).

GRM: Pure Heteroscedasticity

7

• Relative to pure heteroscedasticity, LS gives each observation a 
weight of  1/T.  But, if  the variances are not equal, then some 
observations (low variance ones) are more informative than others.

X3 X5X4X1 X2

1

Y

8

GRM: Pure Heteroscedasticity
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• Two Pure Cases:

– Pure cross/auto-correlation: E[𝜀௜  𝜀௝|X] = ௜௝ if  𝑖 ≠ 𝑗
= 2 if  𝑖 = 𝑗

Σ = 

σଶ ଵଶ ⋯ ଵ்
ଶଵ σଶ ⋯ ଶ்
⋮ ⋮ ⋮ ⋮

்ଵ ்ଶ ⋯ σଶ

• This type of  variance-covariance structure is common in cross 
sections, where errors can show strong correlations, for example, 
when we model returns, the errors of  two firms in the same industry 
can be subject to common (industry) shocks. Also common in time 
series, where we observe clustering of  shocks over time.

GRM: Pure Cross-correlation

9

• Relative to pure cross/auto-correlation, LS is based on simple sums, 
so the information that one observation (today’s) might provide about 
another (tomorrow’s) is never used.

Note: Heteroscedasticity and autocorrelation are different problems 
and generally occur with different types of  data. But, the implications 
for OLS are the same.

10

GRM: Pure Cross-correlation
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GRM: Different Variance

• From (A3) Var[|X] = σ2 IT  Var[b|X] = σ2 (XX)-1.

•  The true variance of  b under (A3’) should be:
VarT[b|X]  = E[(b – )(b – )|X]

= (XX)-1 E[XεεX|X] (XX)-1

= (XX)-1 XΣX (XX)-1

Example: We compute the true variance for the simplest case, a 
regression with only one explanatory variable and hetereoscedastic  :

𝒚 = X  + , i ~ D(0, σ௜
ଶ)

 VarT[b|X] = ଵ

∑ ሺ௫೔ି௫̅ሻమ
೅
೔

ଶ
∑ σ௜

ଶሺ𝑥௜ െ 𝑥̅ሻଶ்
௜ୀଵ .

vs. Var[b|X] = 
஢మ

∑ ሺ௫೔ି௫̅ሻమ
೅
೔

≠ VarT[b|X]. 

GRM: Different Variance

• Under (A3’), the OLS estimator of  Var[b|X] –i.e., s2 (XX)-1– is 
biased. 

• If  we want to use OLS, we need to estimate VarT[b|X]. 

• To avoid the bias of  inference based on OLS, we would like to 
estimate the unknown Σ. 

• But, Σ has Tx(T+1)/2 parameters. Too many to estimate with only T 
observations! 

Note: We used (A3) to derive our test statistics. A revision is needed! 
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• Unbiased
Given assumption (A2), the OLS estimator b is still unbiased. (Proof 
does not rely on Σ):

E[b|X] = E[ (X′X)-1X′ 𝒚|X] =  + (XX)-1 E[X|X] = 0.

• Consistency 
We relax (A2). Now, we assume use (A2’) instead. To get consistency, 
we need VarT[b|X] → ∞ as T → ∞:

VarT[b|X]  = (XX)-1 XΣX (XX)-1

= (1/T )(XX/T)-1 (XΣX/T) (XX/T)-1

Assumptions:
- plim (XX/T) =  QXX a pd matrix of finite elements
- plim (XΣX/T) =  QXΣX a finite matrix.

Under these assumptions, we get consistency for OLS.

GRM: OLS Properties

• Asymptotic normality?  
√T (b – ) = (XX/T)-1 (X/√T)

Asymptotic normality for OLS followed from the application of the 
CLT to X /√T:

where QXΣX = limT→∞Var[
ଵ

்
∑ 𝒙௧்
௧ୀଵ t].

• In the context of the GR Model:

- Easy to do for heteroscedastic data. We can use the Lindeberg-
Feller (assuming only independence) version of the CLT. 

- Difficult for autocorrelated data, since X/ 𝑇 is not longer an 
independent sum. We need more assumptions to get asymptotic 
results.

GRM: OLS Properties

),(
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• Σ = 2 is unknown. It has Tx(T+1)/2 elements to estimate. Too 
many! A solution? Be explicit about (A3’): we model Σ.  

• But, models for autocorrelation and/or heteroscedasticity may be 
incorrect. The robust approach estimates VarT[b|X], without 
specifying (A3’) –i.e., a covariance robust to misspecifications of (A3’). 

• We need to estimate VarT[b|X] = (X’X)-1 XΣX (X’X)-1

• It is important to notice a distinction between estimating 

Σ, a (TxT) matrix  difficult with T observations.

& estimating

XΣX =∑ ∑ ௜௝  𝒙௜
்
௜ୀଵ 𝒙௝

்
௝ୀଵ , a (𝑘x𝑘) matrix  easier!

GRM: Robust Covariance Matrix

• We will not be estimating Σ = 2. That is, we are not estimating 
Tx(T+1)/2 elements. Impossible with T observations!

• We will estimate XΣX = ∑ ∑ ௜௝  𝒙௜
்
௜ୀଵ 𝒙௝

்
௝ୀଵ , a (𝑘x𝑘) matrix. That 

is, we are estimating [𝑘x(𝑘 ൅ 1ሻ/2] elements.

• This distinction is very important in modern applied econometrics: 

– The White estimator

– The Newey-West estimator

• Both estimators produce a consistent estimator of VarT[b|X]. To get 
consistency, they both rely on the OLS residuals, 𝒆. Since b
consistently estimates , the OLS residuals, 𝒆, are also consistent 
estimators of . We use 𝒆 to consistently estimate XΣX. 

GR Model: Robust Covariance Matrix



RS -11 – GLS

9R Susmel, 2020. Not to be shared/posted online without authorization

• Q: How does XΣX look like? Time series intuition.

We look at the simple linear model, with only one regressor (in this 
case, 𝒙௜௜ is just a scalar). Assume 𝒙௜௜is covariance stationary (see 
Lecture 13) with autocovariances γj. Then, we derive XΣX:

XΣX = Var[X /√T] = Var[(1/√T) (𝒙ଵଵ+ 𝒙ଶଶ + ... + 𝒙்்)]

= (1/T) [Tγ0 + (T -1)(γ1+γ-1)+(T -2)(γ2+γ-2)+... +1 (γT-1+γ1-T)]

where γj is the autocovariance of 𝒙௜௜ at lag j (γ0= σ2 = Var[𝒙௜௜]). 

GR Model: XΣX 
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Under some conditions (autocovariances are “l-summable”, so 
j j|γj|<∞), then

Note: In the frequency domain, we define the spectrum of  x’e at 
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Then, Q*= 2π S(0) (Q* is called the long-run variance.)

GR Model: XΣX 
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• The White estimator simplifies the estimation since it assumes 
heteroscedasticity only –i.e., γj =0 (for j≠0). That is, Σ is a diagonal 
matrix, with diagonal elements σ௜

ଶ. Thus, we need to estimate:

Q* = (1/T) XΣX = (1/T)∑ σ௜
ଶ𝒙௜𝒙௜்

௜ୀଵ

where

Q*= XΣX = 
∑ 𝒙𝟏𝒊

𝟐்
௜ୀଵ σ௜

ଶ ⋯ ∑ 𝒙𝟏𝒊𝒙𝒌𝒊σ௜
ଶ்

௜ୀଵ
⋮ ⋱ ⋮

∑ 𝒙𝒌𝒊𝒙𝟏𝒊
்
௜ୀଵ σ௜

ଶ ⋯ ∑ 𝒙𝒌𝒊
𝟐 σ௜

ଶ்
௜ୀଵ

= ∑ σ௜
ଶ𝒙௜𝒙௜𝑻

𝒊ୀ𝟏

• The OLS residuals, 𝒆, are consistent estimators of  . This suggests 
using 𝑒௜

ଶ to estimate σ௜
ଶ.  That is, 

we estimate Q* = (1/T)∑ σ௜
ଶ 𝒙𝒊𝒙𝒊

்
௜ୀଵ 

with S0 = (1/T) ∑ 𝑒௜
ଶ 𝒙௜𝒙௜

்
௜ୀଵ 

Covariance Matrix: The White Estimator

• White (1980) shows that a consistent estimator of  Var[b|X] is 
obtained if  the squared residual in observation i –i.e., 𝑒௜

ଶ– is used as 
an estimator of  σ௜

ଶ. Taking the square root, one obtains a 
heteroscedasticity-consistent (HC) standard error.

• Sketch of  proof. 

Suppose we observe i. Then, each element of  Q* would be equal to 

E[ε௜
ଶ 𝒙௜𝒙௜|𝒙௜].

Then, by LLN plim (1/T)∑ σ௜
ଶ𝒙௜𝒙௜்

௜ୀଵ = plim (1/T) ∑ ε௜
ଶ𝒙௜𝒙௜்

௜ୀଵ

Q: Can we replace ε௜
ଶ by 𝑒௜

ଶ? Yes, since the residuals 𝒆 are consistent.

Then, the estimated HC variance is:

Est. VarT[b|X] = ( 1/T) (XX/T)-1 [∑ 𝑒௜
ଶ𝒙𝒊𝒙𝒊

்
௜ୀଵ /T] (XX/T)-1

Covariance Matrix: The White Estimator
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• Note that (A3) was not specified. That is, the White estimator is 
robust to a potential misspecifications of  heteroscedasticity in (A3). 

• The White estimator allows us to make inferences using the OLS 
estimator b in situations where heteroscedasticity is suspected, but we 
do not know enough to identify its nature.  

• Since there are many refinements of  the White estimator, the White 
estimator is usually referred as HC0 (or just “HC”):

HC0 = (XX)-1 X Diag[𝑒௜
ଶ] X (XX)-1

Note: The HC estimator is also called the sandwich estimator

or the White estimator (also known as Eiker-Huber-White 

estimator).

Covariance Matrix: The White Estimator

Halbert White (1950-2012, USA)

(1) The White estimator is consistent, but it may not perform well in 
finite samples –see, MacKinnon and White (1985). A good small 
sample adjustment, HC3, following the logic of  analysis of  outliers: 

HC3 = (XX)-1 X’ Diag[𝑒௜
ଶ/(1 - ℎ௜௜)2] X (XX)-1

where ℎ௜௜ = 𝒙௜  (XX)-1 𝒙௜.
HC3 is also recommended by Long and Ervin (2000).

(2) The White estimator is biased (show it!). Biased corrections are 
popular –see above & Wu (1986).

(3) In large samples, SEs, t-tests and F-tests are asymptotically valid.

(4)  The OLS estimator remains inefficient. But inferences are 
asymptotically correct. 

(5) The HC SE’s can be larger or smaller than the OLS SE’s (in 
general, HC SE’s are larger when positively correlated to 𝒙௜ or 𝒙௜2). It 
can make a difference to the tests.

The White Estimator: Some Remarks
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The White Estimator: Some Remarks

(6) It is used, along the Newey-West estimator,  in almost all papers. 
Included in all the packaged software programs. In R, you can use the 
library “sandwich,” to calculate White SEs. They are easy to program:

# White SE in R

White_f  <- function(y,X,b) {

T <- length(y); k <- length(b);

yhat <- X%*%b 

e <- y-yhat

hhat <- t(X)*as.vector(t(e))

G <- matrix(0,k,k)

za <- hhat[,1:k]%*%t(hhat[,1:k])

G <- G + za 

F <- t(X)%*%X

V <- solve(F)%*%G%*%solve(F)

white_se <- sqrt(diag(V))

ols_se <- sqrt(diag(solve(F)*drop((t(e)%*%e))/(T-k)))

l_se = list(white_se,olse_se)

return(l_se) }

The White Estimator: Application 1 – IBM

Example: We estimate t-values using OLS and White SE, for the 3 
factor F-F model for IBM returns: 

(𝑟௜ୀூ஻ெ,௧ – 𝑟௙) = 0 + 1 (𝑟௠,௧ – 𝑟௙) + 2 𝑆𝑀𝐵௧ + 3 𝐻𝑀𝐿௧+ ௧

fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML) # OLS Regression with lm

b_i <-fit_ibm_ff3$coefficients # Extract OLS coefficients from fit_ibm

SE_OLS <- sqrt(diag(vcov(fit_ibm_ff3))) # Extract OLS SE from fit_ibm

t_OLS <- b_i/SE_OLS # Calculate  OLS t-values

> b_i

(Intercept)       Mkt_RF SMB          HML 

-0.005191356  0.910379487 -0.221385575 -0.139179020 

> SE_OLS

(Intercept)      Mkt_RF SMB         HML 

0.002482305 0.056784474 0.084213761 0.084060299 

> t_OLS

(Intercept)      Mkt_RF SMB         HML 

-2.091345   16.032190   -2.628853   -1.655705
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Example (continuation): 
> library(sandwich)
White <- vcovHC(fit_ibm_ff3, type = "HC0")
SE_White <- sqrt(diag(White)) # White SE HC0
t_White <- b_i/SE_White

> SE_White
(Intercept)      Mkt_RF SMB         HML 
0.002505978 0.062481080 0.105645459 0.096087035 
> t_White
(Intercept)      Mkt_RF SMB         HML 

-2.071589   14.570482   -2.095552   -1.448468

> White <- vcovHC(fit_ibm_ff3, type = "HC3") # White SE HC3 (refinement)
> SE_White <- sqrt(diag(White))# White SE HC0
> t_White <- b_i/SE_White
> SE_White
(Intercept)      Mkt_RF SMB         HML 
0.002533461 0.063818378 0.108316056 0.098800721 
> t_White
(Intercept)      Mkt_RF SMB         HML 

-2.049116   14.265162   -2.043885   -1.408684

The White Estimator: Application 1 – IBM

The White Estimator: Application 2 – iMX

Example: We estimate Mexican interest rates, 𝑖ெ௑,௧, with a linear 
model including US interest rates, 𝑖௎ௌ,௧, changes in exchange rates 
(MXN/USD), 𝑒௙,௧, Mexican inflation, 𝑚𝑥_𝐼௧, and Mexican GDP 
growth, 𝑚𝑥_𝑦௧, using quarterly data 1978:II – 2020:II (T=166): 

𝑖ெ௑,௧ = 0 + 1 𝑖௎ௌ,௧ + 2 𝑒௙,௧ + 3 𝑚𝑥_𝐼௧ + 4 𝑚𝑥_𝑦௧ + ௧
FMX_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/FX_USA_MX.csv", head=TRUE, 
sep=",")

us_i <- FMX_da$US_int # US short-term interest rates (iUS)

mx_CPI <- FMX_da$MX_CPI # Mexican CPI

mx_M1 <- FMX_da$MX_M1 # Mexican Money Supply (M1)

mx_i <- FMX_da$MX_int # Mexican short-term interest rates (iMX)

mx_GDP <- FMX_da$MX_GDP # Mexican GDP

S_mx <- FMX_da$MXN_USD # St = exchange rates (MXN/USD) 

T <- length(mx_CPI)

mx_I <- log(mx_CPI[-1]/mx_CPI[-T]) # Mexican Inflation: Log  changes in CPI

mx_y <- log(mx_GDP[-1]/mx_GDP[-T]) # Mexican growth: Log  changes in GDP
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Example (continuation): 
mx_mg <- log(mx_M1[-1]/mx_M1[-T]) # Money growth: Log  changes in M1

e_mx <- log(S_mx[-1]/S_mx[-T]) # Log changes in St.

us_i_1 <- us_i[-1]/100 # Adjust sample size.

mx_i_1 <- mx_i[-1]/100

mx_i_0 <- mx_i[-T]/100

fit_i <- lm(mx_i_1 ~ us_i_1 + e_mx + mx_I + mx_y)

> summary(fit_i)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.04022 0.01506   2.671  0.00834 ** 

us_i_1    0.85886 0.31211  2.752  0.00661 ** 

e_mx -0.01064 0.02130  -0.499  0.61812    

mx_I 3.34581 0.19439  17.212  < 2e-16 ***

mx_y -0.49851 0.73717  -0.676  0.49985    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The White Estimator: Application 2 – iMX

Example (continuation): 
White <- vcovHC(fit_i, type = "HC0")

SE_White <- sqrt(diag(White))# White SE HC0

t_White <- b_i/SE_White

> SE_White

(Intercept)      us_i_1        e_mx mx_I mx_y

0.009665759 0.480130221 0.026362820 0.523925226 1.217901733 

> t_White

(Intercept)      us_i_1        e_mx mx_I mx_y

4.1613603   1.7888018 -0.4035554   6.3860367  -0.4093221 ⟹ iUS,t not longer significant at 5% level.

White3 <- vcovHC(fit_i, type = "HC3") # Using popular refinement HC3

SE_White3 <- sqrt(diag(White3)) # White SE HC3

t_White <- b_i/SE_White3

> t_White3

(Intercept)      us_i_1        e_mx mx_I mx_y

3.6338983   1.5589936 -0.2117600   5.4554986  -0.3519886 ⟹ iUS,t not longer significant at 10% level

The White Estimator: Application 2 – iMX



RS -11 – GLS

15R Susmel, 2020. Not to be shared/posted online without authorization

Baltagi and Griffin’s Gasoline Data (Greene)

World Gasoline Demand Data, 18 OECD Countries, 19 years
Variables in the file are

COUNTRY = name of  country 
YEAR = year, 1960-1978
LGASPCAR = log of  consumption per car
LINCOMEP = log of  per capita income
LRPMG = log of  real price of  gasoline 
LCARPCAP = log of  per capita number of  cars 

See Baltagi (2001, p. 24) for analysis of  these data. The article on 
which the analysis is based is Baltagi, B. and Griffin, J., "Gasolne 
Demand in the OECD: An Application of  Pooling and Testing 
Procedures," European Economic Review, 22, 1983, pp. 117-
137. The data were downloaded from the website for Baltagi's text. 

Groupwise Heteroscedasticity: Gasoline (Greene)

Regression of  log of  per capita gasoline use on log of  per 
capita income, gasoline price and number of  cars per capita for 
18 OECD countries for 19 years. The standard deviation varies 
by country.  The “solution” is “weighted least squares.”

Countries 
are ordered 
by the 
standard 
deviation 
of  their 19 
residuals.
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White Estimator vs. Standard OLS (Greene)

BALTAGI & GRIFFIN DATA SET

Standard OLS
+--------+--------------+----------------+--------+--------+
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| 
+--------+--------------+----------------+--------+--------+
Constant|    2.39132562       .11693429    20.450   .0000
LINCOMEP|     .88996166       .03580581    24.855   .0000 
LRPMG   |    -.89179791       .03031474   -29.418   .0000 
LCARPCAP|    -.76337275       .01860830   -41.023   .0000 

| White heteroscedasticity robust covariance matrix |
+----------------------------------------------------+
Constant|    2.39132562       .11794828 20.274   .0000
LINCOMEP|     .88996166       .04429158 20.093   .0000 
LRPMG   |    -.89179791       .03890922 -22.920   .0000 
LCARPCAP|    -.76337275       .02152888 -35.458   .0000

logG=β1 + β2logPg + β3logY + β4logPnc + β5logPuc + ε

Autocorrelated Residuals: Gasoline Demand
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• Now, we also have autocorrelation. We need to estimate 
Q* = (1/T) XΣX  = (1/T) ∑ ∑ ௜௝  𝒙௜

்
௜ୀଵ 𝒙௝

்
௝ୀଵ 

• Newey and West (1987) follow White (1980) to produce a HAC 
(Heteroscedasticity and Autocorrelation Consistent) estimator of  Q*, 
also referred as long-run variance (LRV): Use 𝑒௜ 𝑒௝ to estimate ௜௝

 natural estimator of  Q*: (1/T) ∑ ∑  𝒙௜
்
௜ୀଵ 𝑒௜ 𝑒௝ 𝒙௝

்
௝ୀଵ 

Using time series notation, estimator of  Q*: ∑ ∑  𝒙௧்
௦ୀଵ 𝑒௧ 𝑒௦ 𝒙௦்

௧ୀଵ 

• That is, we have a sum of  the estimated autocovariances of  xtεt, Гj:

Newey-West Estimator


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• Natural estimator of  Q*: ST = (1/T) ∑ ∑  𝒙௧𝑒௧்
௦ୀଵ  𝑒௦𝒙௦்

௧ୀଵ 

Note: If   𝒙௧ε௧ are serially uncorrelated, the autocovariances vanish. 
We are left with the White estimator.

Under some conditions (autocovariances are “l-summable”), then

Newey-West Estimator
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
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

• Natural estimator of  Q*:

• We can estimate Q* in two ways: 
(1) parametrically, assuming a model to calculate γj.
(2) non-parametrically, using kernel estimation. 

Note: (1) needs a specification of  (A3’); while (2) does not.

)(ˆ jS
j

TT 





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• The parametric estimation uses an ARMA model – say, an AR(2) –
to calculate γj.

• The non-parametric estimation uses:

• Issues:
– Order of  ARMA in parametric estimation or number of  lags (L) in 
non-parametric estimation.
– Choice of  k(j) weights –i.e., kernel choice.
– The estimator, ST, needs to be psd.

• NW propose a robust –no model for (A3’) needed– non-parametric 
estimator.

Newey-West Estimator








j

jt
TjtjtttT

L

Lj
TT jjexex

T
jjjkS

1

).0()(ˆ1
)(ˆwhere,)(ˆ)(

• Natural estimator of  Q*:

Issue 1: This sum has T2 terms. It is difficult to get convergence.

Solution: We need to make sure the sum converges. Cutting short the
sum is one way to do it, but we need to careful, for consistency the
sum needs to grow as T→∞ (we need to sum infinite Гj’s).

• Trick: Use a truncation lag, L, that grows with T but at a slower rate
–i.e., L=L(T); say, L=0.75*(T)1/3-1. Then, as T →∞ and L/T→ 0:

*
)(

)(

* )( QjQ p
TL

TLj
TT  



Newey-West Estimator

)(ˆ jS
j

TT 






• Replacing Г(j) by its estimate, we get ST, which would be consistent 
for Q* provided that L(T) does not grow too fast with T.
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• Issue 2 (& 3): ST needs to be psd to be a proper covariance matrix. 

• Newey-West (1987): Based on a quadratic form and using the 
Bartlett kernel produce a consistent psd estimator of  Q*:

where is the Bartlett kernel or window,

and L(T) is its bandwidth. 

• Intuition for Bartlett kernel: Use weights in the sum that imply that 
the process becomes less autocorrelated as time goes by –i.e, the 
terms have a lower weight in the sum as the difference between t and 
s grows.

Newey-West Estimator
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• Other kernels work too. Typical requirements for k(.): 
– | 𝑘(𝑥)|≤ 1; 
– 𝑘(0) = 1; 
– 𝑘(𝑥) = 𝑘(−𝑥) for all 𝑥 ∈ R, 
– ∫|𝑘(𝑥)| d𝑥 <∞; 
– 𝑘(.) is continuous at 0 and at all but a finite number of  other points 
in R, and

Newey-West Estimator

The last  condition is bit technical and ensures psd, see Andrews 
(1991).


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• Two components for the NW HAC estimator:
(1) Start with Heteroscedasticity Component:

S0 = (1/T) ∑ 𝑒௜
ଶ𝒙௜𝒙௜

்
௜ୀଵ  – the White estimator.

(2) Add the Autocorrelation Component
ST = S0 + (1/T)∑ 𝑘ሺ𝑙ሻ  ∑ ሺx௧ି௟𝑒௧ି௟𝑒௧x௧+ xt𝑒௧𝑒௧ି௟x௧ି௟

்
௧ୀ௟ାଵ

௅
௟ୀଵ ) 

where

𝑘ሺ ௝

௅ሺ்ሻ
ሻ ൌ ௅ାଵ ି|௝|

௅ାଵ
–The Bartlett kernel

 linearly decaying weights.

Then,
Est. Var[b] = (1/T) (X’X/T)-1 ST (X’X/T)-1 –NW’s HAC Var.

• Under suitable conditions, as L, T → ∞, and L/T→ 0, ST → Q*. 
Asymptotic inferences on β, based on OLS b, can be done with t-test
and Wald tests using N(0,1) and χ2 critical values, respectively. 

Newey-West Estimator

• The sum-of-covariance estimator can alternatively be computed in 
the frequency domain as a weighted average of  periodogram ordinates 
(an estimator of  the spectrum at frequency (2π j/T). To be discussed 
in Time Series lectures.): 

where                                     and Ixe is the periodogram of  xtet at 
frequency ω:

• Under suitable conditions, as L & T → ∞ and L/T→ 0, 

SWP
T → Q*.

NW Estimator: Alternative Computation
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• Other kernels, 𝑘௅ሺ𝑙ሻ, besides the Bartlett kernel, can be used: 

- Parzen kernel  –Gallant (1987).

-
Quadratic spectral (QS) kernel –Andrews (1991): 

𝑘௅ሺ𝑙ሻ = 25/(12π2l2)[sin(6 π l/5)/(6 π l) - cos(6 π l/5)]

- Daniell kernel –Ng and Perron (1996):
𝑘௅ሺ𝑙ሻ = sin(π 𝑙)/(π 𝑙)

• These kernels are all symmetric about the vertical axis. The Bartlett 
and Parzen kernels have a bounded support [−1, 1], but the other 
two have unbounded support.

NW Estimator: Kernel Choice

otherwise0

2/1||0for)||1(2

2/1||0for||661)(
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• Q: In practice –i.e., in finite samples– which kernel to use? And 
L(T)? Asymptotic theory does not help us to determine them. 

• Andrews (1991) finds optimal kernels and bandwidths by 
minimizing the (asymptotic) MSE of  the LRV. The QS kernel is 
8.6% more efficient than the Parzen kernel; the Bartlett kernel is the 
worst one. (BTW, different kernels have different optimal L.)

NW Estimator: Kernel Choice

kL(x)

x
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• Today, the HAC estimators are usually referred as NW estimators, 
regardless of  the kernel used if  they produce a psd covariance matrix.

• All econometric packages (SAS, SPSS, Eviews, etc.) calculate NW 
SE. In R, you can use the library “sandwich,” to calculate NW SEs:
> NeweyWest(x, lag = NULL, order.by = NULL, prewhite = TRUE, adjust = FALSE, 
diagnostics = FALSE, sandwich = TRUE, ar.method = "ols", data = list(), verbose = FALSE)

Example:
## fit investment equation using the 3 factor Fama French Model for IBM returns, 
fit <- lm(y ~ x -1) 

## NeweyWest computes the NW SEs. It requires lags=L & suppression of  prewhitening
NeweyWest(fit, lag = 4, prewhite = FALSE)

Note: It is usually found that the NW SEs are downward biased.

NW Estimator: Remarks

• You can also program the NW SEs yourself. In R:

NW Estimator: Remarks

NW_f <- function(y,X,b,lag)
{
T <- length(y); 
k <- length(b);
yhat <- X%*%b 
e <- y - yhat
hhat <- t(X)*as.vector(t(e))
G <- matrix(0,k,k)
a <- 0
w <- numeric(T)
while (a <= lag) {
Ta <- T - a
ga <- matrix(0,k,k)
w[lag+1+a] <- (lag+1-a)/(lag+1)
za <- hhat[,(a+1):T] %*% t(hhat[,1:Ta])
ga <- ga + za
G <- G + w[lag+1+a]*ga

a <- a+1
}

F <- t(X)%*%X
V <- solve(F)%*%G%*%solve(F)
nw_se <- sqrt(diag(V))
ols_se <- sqrt(diag(solve(F)*drop((t(e)%*%e))/(T-k)))
l_se = list(nw_se,ols_se)
return(l_se) 
}

NW_f(y,X,b,lag=4)
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NW Estimator: Application 1 – IBM
Example: We estimate the 3 factor F-F model for IBM returns:
> t_OLS
(Intercept)      Mkt_RF SMB         HML 

-2.091345   16.032190  -2.628853   -1.655705 ⟹ with SE_OLS: SMB significant at 1% level

NW <- NeweyWest(fit_ibm_ff3, lag = 4, prewhite = FALSE)
SE_NW <- diag(sqrt(abs(NW)))
> t_NW <- b_i/SE_NW
> SE_NW
(Intercept)      Mkt_RF SMB         HML 
0.002527425 0.069918706 0.114355320 0.104112705 
> t_NW
(Intercept)      Mkt_RF SMB         HML 

-2.054010   13.020543   -1.935945   -1.336811 ⟹ SMB close to significant at 5% level

• If  we add more lags in the NW function(lag = 8) 
NW <- NeweyWest(fit_ibm_ff3, lag = 8, prewhite = FALSE)
SE_NW <- diag(sqrt(abs(NW)))
t_NW <- b_i/SE_NW
> t_NW
(Intercept)      Mkt_RF SMB         HML 

-2.033648   12.779060   -1.895993   -1.312649 ⟹ not very different results. 

Example: Mexican short-term interest rates
NW <- NeweyWest(fit_i, lag = 4, prewhite = FALSE)

SE_NW <- diag(sqrt(abs(NW)))

t_NW <- b_i/SE_NW

> SE_NW

(Intercept)      us_i_1        e_mx mx_I mx_y

0.01107069  0.55810758  0.01472961  0.51675771  0.93960295 

> t_NW

(Intercept)      us_i_1        e_mx mx_I mx_y

3.6332593   1.5388750 -0.7222770   6.4746121  -0.5305582  ⟹ iUS,t not longer significant at 10% level

• If  we add more lags in the text (lag = 8) 

NW <- NeweyWest(fit_i, lag = 8, prewhite = FALSE)

SE_NW <- diag(sqrt(abs(NW)))

t_NW <- b_i/SE_NW

> t_NW

(Intercept)      us_i_1        e_mx mx_I mx_y

3.0174983   1.4318654 -0.8279016   6.5897816  -0.5825521 ⟹ similar results.

NW Estimator: Application 2 – iMX
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• Parametric estimators of  Q* are simple and perform reasonably 
well. But, we need to specify the ARMA model. Thus, they are not 
robust to misspecification of  (A3’). This is the appeal of  White & NW.

• NW SEs perform poorly in Monte Carlo simulations: 
- NW SEs tend to be downward biased. 
- The finite-sample performance of  tests using NW SE is not well 
approximated by the asymptotic theory. 
- Tests have serious size distortions.

• A key assumption in establishing consistency is that L → ∞ as 
T → ∞, but L/T→ 0. But, in practice, the fraction L/T is never equal 
to 0, but approaches some positive fraction b (b є (0,1]). Under this 
situation, we need new asymptotics to derive properties of  estimator.

NW Estimator: Remarks

• There are estimators of  Q* that are not consistent, but with better 
small sample properties. See Kiefer, Vogelsang and Bunzel (2000).

• The SE based on these inconsistent estimators of  Q* that are used 
for testing are referred as Heteroskedasticity-Autocorrelation Robust 
(HAR) SE. 

• More on this topic in Lecture 13.

References: Müller (2014) & Sun (2014). There is a review (not that 
technical) paper by Lazarus, Lewis, Stock & Watson (2016) with 
recommendations on how to use these HAR estimators.

NW Estimator: Remarks
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logG=β1 + β2logPg + β3logY + β4logPnc + β5logPuc + ε

Autocorrelated Residuals: Gasoline Demand

NW Estimator vs. Standard OLS (Greene)
BALTAGI & GRIFFIN DATA SET
--------+--------------------------------------------------
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t] 
Standard OLS
-------+---------------------------------------------------
Constant|   -21.2111***       .75322      -28.160   .0000

LP|    -.02121          .04377        -.485   .6303
LY|    1.09587***       .07771       14.102   .0000

LPNC|    -.37361**        .15707       -2.379   .0215
LPUC|     .02003          .10330         .194   .8471

--------+------------------------------------------------
--------+--------------------------------------------------
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t] 
Robust VC Newey-West, Periods = 10
--------+--------------------------------------------------
Constant|   -21.2111***      1.33095 -15.937   .0000

LP|    -.02121          .06119 -.347   .7305  
LY|    1.09587***       .14234 7.699   .0000  

LPNC|    -.37361**        .16615 -2.249   .0293  
LPUC|     .02003          .14176 .141   .8882  

--------+--------------------------------------------------
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Generalized Least Squares (GLS)

• Assumptions (A1), (A2), (A3’) & (A4) hold. That is,
(A1) DGP: 𝒚 = X  +  is correctly specified. 
(A2) E[|X] = 0
(A3’) Var[|X] = Σ = σ2  ( is symmetric  TT= )

(A4) X has full column rank –i.e., rank(X) = 𝑘–, where T ≥ 𝑘.

Note:  is symmetric  exists T ∋ TT =   T-1  T-1= I 

• We transform the linear model in (A1) using P = -1/2.  
P =  -1/2  PP = -1    

P𝒚 = PX + P or  
𝒚*  = X* + *.
E[**’|X*] = P E[’|X*] P = P E[’|X] P = σ2 P  P

= σ2 -1/2  -1/2 = σ2 IT  back to (A3)

• The transformed model is homoscedastic:

Var[*|X*] = E[**|X*]= PE[|X*]P = σ2 PP = σ2 IT

• We have the CLM framework back  we can use OLS!  

• Key assumption:  is known, and, thus, P is also known; otherwise 
we cannot transformed the model.

• Q: Is  known?

Generalized Least Squares (GLS)

Alexander C. Aitken (1895 –1967, NZ)
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• Aitken Theorem (1935): The Generalized Least Squares estimator.

Py =  PX + P or  

y*  =  X* + *.

E[**’|X*] = σ2IT

We can use OLS in the transformed model.  It satisfies G-M theorem.

Thus, the GLS estimator is:

bGLS = b* = (X*X*)-1 X* 𝒚* = (XP PX)-1 XP P𝒚
= (XΩ-1X)-1 XΩ-1𝒚

Note I: bGLS ≠ b.  bGLS is BLUE by construction, b is not.

Note II: Both unbiased and consistent. In practice, both estimators 
will be different, but not that different. If they are very different, 
something is rotten in Denmark.

Generalized Least Squares (GLS)

• Check unbiasedness:
bGLS = (XΩ-1X)-1 XΩ-1𝒚 =  +(X’Ω-1X)-1 X’Ω-1 
E[bGLS |X]= 

• Efficient Variance
Var[bGLS |X] = E[(bGLS - )(bGLS - )’|X] 

= E[(XΩ-1X)-1 X’Ω-1  ’ X’Ω-1 (XΩ-1X)-1 |X]
= (XΩ-1X)-1 X’Ω-1 E[’|X] Ω-1X (XΩ-1X)-1

= σ2(XΩ-1X)-1

Note: bGLS is BLUE. This “best” variance can be derived  from 
Var[bGLS|X] = σ2(X*’X*)-1 = σ2 (XΩ-1X)-1

Then, the usual variance of the OLS estimator is biased and 
inefficient!

Generalized Least Squares (GLS)
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• If we relax the CLM assumptions (A2) and (A4), as we did in 
Lecture 7, we only have asymptotic properties for GLS:

– Consistency - “well behaved data.”

– Asymptotic distribution under usual assumptions. 

(easy for heteroscedasticity, complicated for autocorrelation.)

– Wald tests and F-tests with usual asymptotic χ2 distributions. 

Generalized Least Squares (GLS)

Consistency (Green)
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Consistency – Autocorrelation case (Green)

• If  the {Xt} were uncorrelated –i.e., ρk=0–, then Var[bGLS|X] → 0. 

• We need to impose restrictions on the dependence among the Xt’s. 
Usually, we require that the autocorrelation, ρk, gets weaker as t-s 
grows (and the double sum becomes finite). 
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  distribution with mean and fixed va
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x
riance - some recent treatments.)

Autocorrelation case?
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n n1
i j i ii 1 j 1

1

For the autocorrelation case
1 1'  
n n

Does the double sum converge?  Uncertain.  Requires elements
of  to become small as the distance between i and j increases.
(Has to resem


 



   ijX Ω ε = Ω  x x

Ω
ble the heteroscedasticity case.)

• The dependence is usually broken by assuming {𝒙௜௜} form a mixing
sequence. The intuition behind mixing is simple; but, the formal 
details and its application to the CLT can get complicated. 

• Intuition: {Zt} is a mixing sequence if  any two groups of  terms of  the 
sequence that are far apart from each other are approximately 
independent --and the further apart, the closer to being independent.  

Asymptotic Normality – Autocorrelation case

Brief Detour: Time Series 

• With autocorrelated data, we get dependent observations. Recall, 

ε௧=   ε௧ିଵ +  𝑢௧

• The independence assumption (A2’) is violated. The LLN and the 
CLT cannot be easily applied, in this context. We need new tools 
and definitions.

• We will introduce the concepts of stationarity and ergodicity. The 
ergodic theorem will give us a counterpart to the LLN.

• To get asymptotic distributions, we also need a CLT for dependent 
variables, using the concept of mixing and stationarity. Or we can 
rely on the martingale CLT. We will leave this as “coming attractions.”
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• Consider the joint probability distribution of  the collection of  RVs:

𝐹 𝑦௧భ ,𝑦௧మ , … ,𝑦௧೅ ൌ 𝐹 𝑌௧భ ൑ 𝑦௧భ ,𝑌௧మ ൑ 𝑦௧మ , … ,𝑌௧೅ ൑ 𝑦௧೅

To do statistical analysis with dependent observations, we need some 
extra assumptions. We need some form of  invariance on the structure 
of  the time series. 

If  the distribution F is changing with every observation, estimation 
and inference become very difficult. 

• Stationarity is an invariant property: the statistical characteristics of  
the time series do not change over time. 

• There different definitions of  stationarity, they differ in how strong is 
the invariance of  the distribution over time.

Time Series: Stationarity 

• We say that a process is stationary of    

1st order if  𝐹 𝑦௧భ ൌ 𝐹 𝑦௧భశೖ for any 𝑡1, k

2nd order if 𝐹 𝑦௧భ ,𝑦௧మ ൌ 𝐹 𝑦௧భశೖ ,𝑦௧మశೖ for any 𝑡1, 𝑡2, k

Nth-order if 𝐹 𝑦௧భ , … ,𝑦௧೅ ൌ 𝐹 𝑦௧భశೖ , … ,𝑦௧೅శೖ for any 𝑡1, ..., 𝑡T, k

• Nth-order stationarity is a strong assumption (& difficult to verify in 
practice). 2nd order stationarity is weaker: only consider mean and 
covariance (easier to verify in practice). 

• Moments describe a distribution. We calculate moments as usual:  
Eሾ𝑌௧ሿ ൌ μ

Var 𝑌௧ ൌ σଶ ൌ 𝐸ሾሺ𝑌௧െμሻଶሿ

Cov 𝑌௧భ ,𝑌௧మ ൌ  𝐸ሾሺ𝑌௧భ െ μሻሺ𝑌௧మെμሻሿ = γሺ𝑡1 
−𝑡2ሻ

Time Series: Stationarity 
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• Stationarity requires the moments to be constant. 

Terminology: 
Cov 𝑌௧భ ,𝑌௧మ = γ 𝑡1 

− 𝑡2 is called the auto-covariance function.

Notes: γ 𝑡1 
− 𝑡2 is a function of  𝑘 = 𝑡1 

−𝑡2. 
γ(0) is the variance.

• The autocovariance function is symmetric. That is, 
γ 𝑡1 

− 𝑡2 ൌ Cov 𝑌௧భ ,𝑌௧మ = Cov 𝑌௧మ ,𝑌௧భ = γ 𝑡2 
− 𝑡1

Remark: The autocovariance measures the (linear) dependence between 
the 𝑌௧ ’s separated by 𝑘 periods.

Time Series: Stationarity & Autocovariances

• From the autocovariances, we derive the autocorrelations:

Corr 𝑌௧భ ,𝑌௧మ ൌ ρ 𝑌௧భ ,𝑌௧మ ൌ ஓሺ௧1 
−௧2ሻ 

஢೟భ஢೟మ
ൌ ஓሺ௧1 

−௧2ሻ 
ஓ(0)

the last step takes assumes: σ௧భ ൌ σ௧మൌ γሺ0ሻ

• Corr 𝑌௧భ ,𝑌௧మ ൌ ρ 𝑌௧భ ,𝑌௧మ is called the auto-correlation function 
(ACF), –think of  it as a function of  𝑘 = 𝑡1 

−𝑡2. The ACF is also 
symmetric.

• Unlike autocovoriances, autocorrelations are not unit dependent. It is 
easier to compare dependencies across different time series.

• Stationarity requires all these moments to be independent of  time. If  
the moments are time dependent, we say the series is non-stationary.

Time Series: Stationarity & Autocorrelations 
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Time Series: Stationarity & Constant Moments 

• For strictly stationary process (constant moments), we need:
μ௧ ൌ μ
σ௧ ൌ σ

because 𝐹 𝑦௧భ ൌ 𝐹 𝑦௧భశೖ  μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ

Then, 
𝐹 𝑦௧భ ,𝑦௧మ ൌ 𝐹 𝑦௧భశೖ ,𝑦௧మశೖ  Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

 ρ 𝑡ଵ, 𝑡ଶ ൌ ρ 𝑡ଵ ൅ 𝑘, 𝑡ଶ ൅𝑘

Let 𝑡ଵ ൌ 𝑡 െ 𝑘  & 𝑡ଶ ൌ 𝑡 
 ρ 𝑡ଵ, 𝑡ଶ ൌ ρ 𝑡 െ 𝑘, 𝑡 ൌ ρ 𝑡, 𝑡 െ 𝑘 = ρ 𝑘  = ρ௞

The correlation between any two RVs depends on the time difference. 
Given the symmetry, we have ρ 𝑘 = ρ െ𝑘 .

22.55698

Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ
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Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ

Time Series: Weak Stationary 

• A Covariance stationary process (or 2nd -order weakly stationary) has:
- constant mean
- constant variance
- covariance function depends on time difference between RVs.

That is, 𝑍௧ is covariance stationary if:

E 𝑍௧ = constant = μ 

Var 𝑍௧ = constant = 𝜎ଶ 

Cov 𝑍௧భ ,𝑍௧మ ൌ E[(𝑍௧భ െ μ௧భ)(𝑍௧మ െ  μ௧మ)] = 𝛾ሺ𝑘 ൌ 𝑡ଵ െ 𝑡ଶሻ

Remark: Covariance stationarity is only concerned with the covariance 
of  a process, only the mean, variance and covariance are time-invariant. 
Nth-order stationarity is stronger and assumes that the whole distribution 
is invariant over time.
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Example 1: Assume ε௧ ~ WN(0, σ2).

𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧. (AR(1) process)

•  Mean
Taking expectations on both sides:

E[ 𝑦௧] = 𝜙 E[𝑦௧ିଵ] + E[ε௧] 
μ = 𝜙 μ + 0
E[ 𝑦௧ ] = μ = 0 (assuming 𝜙 ≠ 1)

•  Variance
Applying the variance operator on both sides:

Var[𝑦௧] = γ 0 ൌ  𝜙ଶ  Var[𝑦௧ିଵ] + Var[ε௧] 

γሺ0ሻ =
ఙమ

ଵ ି థమ
(assuming |𝜙 |< 1)

Time Series: Stationarity – Examples 

Example 1 (continuation): 𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧ (AR(1) process)

•  Covariance
γሺ1ሻ = Cov[𝑦௧, 𝑦௧ିଵ] = E[𝑦௧ 𝑦௧ିଵ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଵ] 

= 𝜙 E[𝑦௧ିଵଶ] = 𝜙 Var[𝑦௧ିଵଶ] = 𝜙 γሺ0ሻ
= 𝜙 [𝜎ଶ/(1 െ 𝜙ଶ)]

γሺ2ሻ = Cov[𝑦௧, 𝑦௧ିଶ] = E[𝑦௧ 𝑦௧ିଶ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଶ] 
= 𝜙 E[𝑦௧ 𝑦௧ିଵ] = 𝜙 Cov[𝑦௧, 𝑦௧ିଵ] = 𝜙ଶ γሺ0ሻ
= 𝜙2 [𝜎ଶ/(1 െ 𝜙ଶ)]

⋮

γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

 If  |𝜙 |< 1, the process is covariance stationary: mean, variance 
and covariance are constant.

Note: If  |𝜙 |< 1, the dependence gets weaker as k increases.

Time Series: Stationarity – Examples 
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Example 1 (continuation): 𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧ (AR(1) process)

•  Covariance
γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

Note: From the autocovariance function, we can derive the auto-
correlation function:

ρ 𝑘 ൌ ஓሺ௞ሻ 
ஓ(0) ൌ

థೖ ஓሺ଴ሻ
ஓ(0) ൌ 𝜙௞

Time Series: Stationarity – Examples 

Example 2: Assume ε௧ ~ WN(0, σଶ).

𝑦௧ = θଵ 𝜀௧ିଵ + 𝜀௧ (MA(1) process)

•  Mean
Taking expectations on both sides:

E[ 𝑦௧] = μ = θଵE[𝜀௧ିଵ] + E[ε௧] = 0

•  Variance
Applying the variance operator on both sides:

Var[𝑦௧] = γሺ0ሻ = 𝜎ଶ+ θଵ
ଶ 𝜎ଶ= 𝜎ଶ (1+ θଵ

ଶ)

•  Covariance
Cov[𝑦௧, 𝑦௧ିଵ] = γሺ1ሻ = E[𝑦௧ 𝑦௧ିଵ] 

= E[(θ1𝜀௧ିଵ+𝜀௧) * (θଵ𝜀௧ିଶ+𝜀௧ିଵ)] = θଵσ2 

Time Series: Stationarity – Examples 
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Example 2 (continuation): 𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧ (AR(1) process)

•  Covariance
γሺ1ሻ = E[𝑦௧ 𝑦௧ିଵ] 

= E[(θ1𝜀௧ିଵ + 𝜀௧) * (θଵ𝜀௧ିଶ + 𝜀௧ିଵ)] = θଵσ2 

γሺ2ሻ = E[𝑦௧ 𝑦௧ିଶ] 
= E[(θ1𝜀௧ିଵ + 𝜀௧) * (θଵ 𝜀௧ିଷ+ 𝜀௧ିଶ)] = 0

⋮

γሺ𝑘ሻ = E[𝑦௧ 𝑦௧ି௞] = E[(θ1𝜀௧ିଵ+𝜀௧) * (θଵ𝜀௧ିሺ௞ାଵሻ+𝜀௧ି௞)] = 0 
(for 𝑘 > 1)

MA(1) is stationary. (It generalizes: MA(q) is always stationary.)

Remark: For |𝑘| > 1, γሺ𝑘ሻ = 0. That is, after lag q , all 
autocovariances are 0.

Time Series: Stationarity – Examples 

Stationary Series: Examples

Examples 3: Assume ε௧ ~ WN(0, σ2). 
𝑦௧ ൌ 0.08 ൅ 𝜀௧ ൅ 0.4 𝜀௧ିଵ - MA(1) process
𝑦௧ ൌ 0.13 𝑦௧ିଵ ൅ 𝜀௧  - AR(1) process
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Example: Assume ε௧~ WN(0, σ2).

𝑦௧ = μ ൅  𝑦௧ିଵ + ε௧ (Random Walk with drift process)

Doing backward substitution:
𝑦௧ = μ + (μ + 𝑦௧ିଶ + ε௧ିଵ) + ε௧

= 2 * μ + 𝑦௧ିଶ + ε௧ + ε௧ିଵ
= 2 * μ + (μ + 𝑦௧ିଷ + ε௧ିଶ) + ε௧+ ε௧ିଵ
= 3 * μ + 𝑦௧ିଷ + ε௧+ ε௧ିଵ+ ε௧ିଶ

 𝑦௧ = μ  𝑡 + ∑ ε௧ି௝
௧ିଵ
௝ୀ଴ + 𝑦଴

•  Mean & Variance
E[𝑦௧] = μ  𝑡 + 𝑦଴
Var[𝑦௧] = γሺ0ሻ = ∑ σ2௧ିଵ

௝ୀ଴ = σ2 𝑡

 the process is non-stationary: moments are time dependent.

Time Series: Non-Stationarity – Example 

Non-Stationary Series: Examples

Examples: Assume ε௧ ~ WN(0, σ2).

𝑦௧ ൌ 𝜇 𝑡 ൅ 𝜙ଵ 𝑦௧ିଵ ൅ 𝜙ଶ 𝑦௧ିଶ ൅ 𝜀௧ - AR(2) with deterministic trend
𝑦௧ ൌ 𝜇 ൅ 𝑦௧ିଵ ൅ 𝜀௧     - Random Walk with drift
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• The main characteristic of  time series is that observations are 
dependent.

• To analyze time series, however, we need to assume that some features 
of  the series are not changing. If  we have non-stationary series (say, 
mean or variance are changing with each observation), it is not possible 
to make inferences.  

• Stationarity is an invariant property: the statistical characteristics of  
the time series do not vary over time.

• If  IBM is weak stationary, then, the returns of  IBM may change 
month to month or year to year, but the average return and the variance 
in two equal lengths time intervals will be more or less the same.

Time Series: Stationarity – Remarks

• In the long run, say 100-200 years, the stationarity assumption may 
not be realistic. After all, technological change has affected the return 
of  IBM over the long run. But, in the short-run, stationarity seems 
likely to hold.

• In general, time series analysis is done under the stationarity 
assumption.

Time Series: Stationarity – Remarks



RS -11 – GLS

40R Susmel, 2020. Not to be shared/posted online without authorization

• We want to allow as much dependence as the LLN allows us to do it.

• But, stationarity is not enough, as the following example shows:

• Example: Let {𝑈௧} be a sequence of  i.i.d. RVs uniformly distributed 
on [0, 1] and let Z ~ N(0, 1) independent of  {𝑈௧}.

Define 𝑌௧ = Z + 𝑈௧. Then, 𝑌௧ is stationary (why?), but

𝑌 ൌ
∑ ௒೟
೅
೟సభ

்

   ௣  
E[𝑌௧] = 1/2

𝑌 െ 𝑍
   ௣  

1/2

The problem is that there is too much dependence in the sequence {𝑌௧}. 
In fact the correlation between 𝑌ଵ and 𝑌௧ is always positive for any 
value of  𝑡.

Time Series: Ergodicity 

• Intuition behind Ergodicity:
We go to a casino to play a game with 20% return, but on average, one 
gambler out of  100 goes bankrupt. If  100 gamblers play the game, 
there is a 99% chance of  winning and getting a 20% return. This is the 
ensemble scenario. Suppose that gambler 35 is the one that goes bankrupt. 
Gambler 36 is not affected by the bankruptcy of  gamble 35.

Suppose now that instead of  100 gamblers you play the game 100 times. 
This is the time series scenario. You keep winning 20% every day until day 
35 where you go bankrupt. There is no day 36 for you.

Result: The probability of  success from the group (ensemble scenario) 
does not apply to one person (time series scenario). 

Ergodicity describes a situation where the ensemble scenario outcome 
applies to the time series scenario.

Time Series: Ergodicity of  mean 
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• With dependent observations, we cannot use the LLN used before. 
The ergodicity theorem plays the role of  the LLN with dependent 
observations.

The formal definition of  ergodicity is complex and is seldom used in 
time series analysis. One consequence of  ergodicity is the ergodic 
theorem, which is extremely useful in time series. 

It states conditions under which if  𝑍௧ is an ergodic stochastic process 
then

ଵ

்
∑ 𝑔ሺ𝑍௧ሻ ௧ୀଵ

௔.௦
E[𝑔ሺ𝑍ሻ]

for any function 𝑔ሺ. ሻ. And, for any time shift 𝑘
ଵ

்
∑ 𝑔ሺ𝑍௧భା௞ ,𝑍௧మା௞ , … ,𝑍௧ഓା௞ሻ ௧ୀଵ

௔.௦
E[𝑔ሺ𝑍௧భ ,𝑍௧మ , … ,𝑍௧ഓሻሻ]

where a.s. means almost sure convergence, a strong form of  convergence.

Time Series: Ergodicity of  mean 

• We want to estimate the mean of  the process {𝑍௧}, μ(𝑍௧). But, we 
need to distinguishing between ensemble average (with 𝑚 observations) 
and time average (with 𝑇 = 𝑛 observations):

- Ensemble Average: 𝑧̿ ൌ
∑ ௓೔
೘
೔సభ

௠

- Time Series Average: 𝑧 ൌ
∑ ௓೟
೙
೟సభ

௡

Q: Which estimator is the most appropriate? 
A: Ensemble Average. But, it is impossible to calculate. We only observe 
one 𝑍௧ , with dependent observations.

• Q: Under which circumstances we can use the time average (with only 
one realization of  {𝑍௧})? Is the time average an unbiased and consistent 
estimator of  the mean? The Ergodic Theorem gives us the answer.

Time Series: Ergodicity of  mean 
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• Recall the sufficient conditions for consistency of  an estimator: the 
estimator is asymptotically unbiased and its variance asymptotically 
collapses to zero.

1. Q: Is the time average asymptotically unbiased? Yes.

E[𝑧̅] ൌ
∑ ாሾ௓೟ሿ
೅
೟సభ

்
ൌ 𝜇

2. Q: Is the variance going to zero as 𝑇 grows? It depends.
varሾ 𝑧 ሿ ൌ varሾ ሺ𝑧ଵ൅𝑧ଶ ൅ ⋯൅ 𝑧்ሻ/𝑇ሿ

ൌ varሾ 𝑧ଵ ൅ var 𝑧ଶ ൅ ⋯൅ var 𝑧்
൅2 cov 𝑧ଵ, 𝑧ଶ ൅ 2 cov 𝑧ଵ, 𝑧ଷ ൅⋯൅ 2 cov 𝑧ଵ, 𝑧்
൅2 cov 𝑧ଶ, 𝑧ଷ ൅ 2 cov 𝑧ଶ, 𝑧ସ ൅  …൅ 2 cov 𝑧ଶ, 𝑧்
൅2 cov 𝑧ଷ, 𝑧ସ  ൅ 2 cov 𝑧ଷ, 𝑧ହ ൅ …൅ 2 cov 𝑧ଷ, 𝑧் ൅
…
൅2 cov 𝑧்ିଵ, 𝑧் ሽ/𝑇ଶ

Time Series: Ergodicity of  mean 

• Dividing the RHS by 𝛾଴, and recalling that 𝜌௞=𝜌ି௞, we get:

varሾ 𝑧 ሿ ൌ ఊబ
்మ

{𝑇𝜌଴ ൅ 2 𝑇 െ 1 𝜌ଵ ൅ 2 𝑇 െ 2 𝜌ଶ ൅  …൅ 2 𝜌்ିଵሽ

ൌ ఊబ
்మ
ሼ𝑇𝜌଴ ൅ 2 ∑ ሺ𝑇 െ 𝑘ሻ𝜌௞

்ିଵ
௞ୀଵ ሽ 

ൌ ఊబ
்మ
∑ ሺ𝑇 െ |𝑘|ሻ𝜌௞
்ିଵ
௞ୀ்ିଵ

ൌ ఊబ
்
∑ ሺ1 െ ௞

்
ሻ𝜌௞

்ିଵ
௞ୀ்ିଵ

Then,

lim
்→ஶ

varሾ 𝑧 ሿ = lim
்→ஶ

ఊబ
்
∑ ሺ1 െ ௞

்
ሻ𝜌௞௞ୀ଴

    ?    
 0

• If  𝑍௧ were uncorrelated, the variance of  the time average would be 
O(n-1). Since independent random variables are necessarily uncorrelated 
(but not vice versa), we have just recovered a form of  the LLN for 
independent data. 

Time Series: Ergodicity of  mean 
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Q: How can we make the remaining part, the sum over the upper 
triangle of  the covariance matrix, go to zero as well? 

A: We need to impose conditions on  𝜌௞. Conditions weaker than 
"they are all zero;" but, strong enough to exclude the sequence of  
identical copies. 

• We use two inequalities to put upper bounds on the variance of  the 
time average: 

∑ ∑  𝜌௞
்ି௧
௞ୀଵ ൑ ்ିଵ

௧ୀଵ ∑ ∑  |𝜌௞|்ି௧
௞ୀଵ ൑ ்ିଵ

௧ୀଵ ∑ ∑  |𝜌௞|ஶ
௞ୀଵ

்ିଵ
௧ୀଵ

Covariances can be negative, so we upper-bound the sum of  the actual 
covariances by the sum of  their magnitudes. Then, we extend the 
inner sum so it covers all lags. This might of  course be infinite 
(sequence-of-identical-copies). 

Time Series: Ergodicity of  mean 

• Definition: A covariance-stationary process is ergodic for the mean if

𝑧̅
௣
→ E[𝑍௧] = 𝜇

Ergodicity Theorem: Then, a sufficient condition for ergodicity for 
the mean is

ρ௞ → 0, as 𝑘→ ∞

• A sufficient condition to ensure ergodicity for second moments is:

∑  |𝜌௞| ൏்ିଵ
௞ୀ்ିଵ ∞

A process which is ergodic in the first and second moments is usually 
referred as ergodic in the wide sense.

Time Series: Ergodicity of  mean 
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• Ergodicity under Gaussian Distribution

If {𝑍௧}is a stationary Gaussian process, 
∑  |𝜌௞| ൏்ିଵ
௞ୀ்ିଵ ∞

is sufficient to ensure ergodicity for all moments.

Note: Recall that only the first two moments are needed to describe 
the normal distribution.

Time Series: Ergodicity of  2nd moments 

Review: GLS

• GRM: Assumptions (A1), (A2), (A3’) & (A4) hold. That is,
(A1) DGP: 𝒚 = X  +  is correctly specified. 
(A2) E[|X] = 0
(A3’) Var[|X] = Σ = σଶ  ( is symmetric  PP = -1)
(A4) X has full column rank –i.e., rank(X)=k–, where T ≥ k.

• We transform the linear model in (A1) using P = -1/2.  
Py = PX + P or  
𝒚*  = X* + *.

E[**’|X*] = P E[|X* ]P = P E[|X] P = σଶ PP
= σଶ-1/2  -1/2 = σଶ IT  back to (A3)

• The transformed model is homoscedastic: We have do OLS: 

bGLS = b* = (X*X*)-1 X*𝒚*

= (XPPX)-1 XPP𝒚 = (XΩ-1X)-1 XΩ-1𝒚
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• The GLS estimator is: 

bGLS = (XΩ-1X)-1 XΩ-1𝒚

Note I: bGLS ≠ b.  bGLS is BLUE by construction, b is not.

• Properties: Unbiased & Consistent

• Efficient Variance
bGLS is BLUE. The “best” variance can be derived  from 

Var[bGLS|X] = σଶ (X* X*)-1 = σଶ(XΩ-1X)-1

Then, the usual OLS variance for b is biased and inefficient!

Note II: Both unbiased and consistent. In practice, both estimators 
will be different, but not that different.

Review: GLS – Properties

• Steps for GLS:

Step 1. Find transformation matrix P = -1/2 (in the case of 
heteroscedasticity, P is a diagonal matrix).

Step 2. Transform the model: X* = PX  & 𝒚* = P𝒚.

Step 3. Do GLS; that is, OLS with the transformed variables.

• Key step to do GLS: Step 1, getting the transformation matrix: 
P = -1/2.

GLS: Steps
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(Weighted) GLS: Pure Heteroscedasticity 

(A3’)  𝑉𝑎𝑟 𝜀 ൌ 𝚺 ൌ σଶ 𝛀 ൌ σଶ

𝜔ଵ 0 . . . 0
0 𝜔ଶ . . . 0
0 0  0
0 0 . . . 𝜔்

               𝛀െ1/2 ൌ 𝐏 ൌ

1/ 𝜔ଵ 0 . . . 0
0 1/ 𝜔ଶ . . . 0
0 0 . . . 0
0 0 . . . 1/ 𝜔்

• Now, transform y & X:

𝒚∗ ൌ 𝐏𝒚 ൌ

1/ ωଵ 0 . . . 0
0 1/ ωଶ . . . 0
0 0 . . . 0
0 0 . . . 1/ ω୘

∗

yଵ
yଶ
⋮

y୘

ൌ

yଵ/ னభ
yଶ/ னమ

⋮
y୘/ ω୘

• Find the transformation matrix P = -1/2.

(Weighted) GLS: Pure Heteroscedasticity 

• Each observation of  𝑦, 𝑦௜, is divided by 𝜔௜. Similar 
transformation occurs with X:

𝑿∗ ൌ 𝐏𝐗 ൌ

1/ 𝜔ଵ 0 . . . 0
0 1/ 𝜔ଶ . . . 0
0 0 . . . 0
0 0 . . . 1/ 𝜔்

∗

1 𝑥ଶଵ ⋯ 𝑥௞ଵ
1 𝑥ଶଶ ⋯ 𝑥௞ଶ
⋮ ⋮ ⋯ ⋮
1 𝑥ଶ் ⋯ 𝑥௞்

ൌ

ൌ

1/ 𝜔ଵ 𝑥ଶଵ/ 𝜔ଵ . . . 𝑥௞ଵ/ 𝜔ଵ
1/ 𝜔ଶ 𝑥ଶଶ/ 𝜔ଶ . . . 𝑥௞ଶ/ 𝜔ଶ

⋮ ⋮ . . . ⋮
1/ 𝜔் 𝑥ଶ்/ 𝜔் . . . 𝑥௞்/ 𝜔்

• Now, we can do OLS with the transformed variables:

bGLS = b* = (X* X*)-1 X* 𝒚* = (XΩ-1X)-1 XΩ-1𝒚
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(Weighted) GLS: Pure Heteroscedasticity 

• In the case of  heteroscedasticity, GLS is also called Weighted Least 
Squares (WLS): Think of  [ωi]-1/2 as weights. The GLS estimator is:

𝐛ୋ୐ୗ ൌ (XΩ−1X)−1 XΩ−1𝒚 ൌ ∑ ଵ

ఠ೔
𝒙௜𝒙௜

ᇱ்
௜ୀଵ

ିଵ
∑ ଵ

ఠ೔
𝒙௜𝑦௜

்
௜ୀଵ

Observations with lower (bigger) variances –i.e., lower (bigger) ωi– are 
given higher (lower) weights in the sums: More precise observations, 
more weight!

• The GLS variance is given by:

𝜎ොீ௅ௌ
ଶ ൌ

∑
𝑦௜ െ 𝒙௜

ᇱ 𝐛ୋ୐ୗ
𝜔௜

்
௜ୀଵ

ଶ

𝑇 െ 𝐾

(Weighted) GLS: Pure Heteroscedasticity 

Example: It is common to find that squared market returns 
(Mkt_RF^2) influence the heteroscedasticity in stock returns. We use 
DIS returns. Suppose we assume: (A3’) ௜

ଶ = (Mkt_RTi)2.

Steps for GLS:

1. Find transformation matrix, P, with ith diagonal element: 1/ ௜
ଶ

2. Transform model: Each yi and xi is divided (“weighted”) by 
௜ ൌ sqrt[(Mkt_RTi)2]. 

3. Do GLS, that is, OLS with transformed variables.
dis_x <- lr_dis – RF # Disney’s excess returns
T <- length(dis_x)
Mkt_RF2 <- Mkt_RF^2 # (A3’)
y_w <- dis_x/sqrt(Mkt_RF2) # transformed y = y*
x0 <- matrix(1,T,1)
xx_w <- cbind(x0, Mkt_RF, SMB, HML)/sqrt(Mkt_RF2) # transformed X = X*
fit_dis_wls <- lm(y_w ~ xx_w) # GLS
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(Weighted) GLS: Pure Heteroscedasticity 

Example (continue): 
> summary(fit_dis_wls)

Call:
lm(formula = y_w ~ xx_w)

Residuals:
Min      1Q  Median      3Q     Max 

-59.399  -0.891   0.316   1.503  77.434 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

xx_w      -0.006607   0.001586  -4.165 3.59e-05 ***
xx_wMkt_RF 1.588057 0.334771   4.744 2.66e-06 ***  OLS b: 1.26056
xx_wSMB -0.200423   0.067498  -2.969  0.00311 **  OLS b: -0.028993 
xx_wHML -0.042032   0.072821  -0.577  0.56404  OLS b: 0.174545 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.984 on 566 degrees of  freedom
Multiple R-squared:  0.09078,   Adjusted R-squared:  0.08435 
F-statistic: 14.13 on 4 and 566 DF,  p-value: 5.366e-11

GLS: First-order Autocorrelation Case

• We assume an AR(1) process for the ε௧:
ε௧ =   ε௧ିଵ +  𝑢௧, 𝑢௧: non-autocorrelated error ~ D(0, ௨ଶ )

Steps for GLS:

Step 1: Find P. We need to derive the implied (A3’) based on the 
AR(1) process for t:

(Step 1.1) Find diagonal elements of : Var[t] = ௜௜ ൌ ఌଶ

ε௧ =   ε௧ିଵ +  𝑢௧ (the autoregressive form)

 Var[𝜀௧] =  2 Var[𝜀௧ିଵ] + Var[𝑢௧] (Var[𝜀௧]=Var[𝜀௧ିଵ] ൌ ఌଶ)

  ఌଶ = ௨ଶ/(1 - 2) –we need to assume  ||< 1. 

(Step 1.2) Find the off-diagonal elements of : ௜௝= γ௟ୀ௝ି௜: 
 ௜௝ = γ௟ = Cov[𝜀௜ , 𝜀௝] = E[𝜀௜  𝜀௝] 𝑙 ൌ 𝑗 െ 𝑖
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GLS: First-order Autocorrelation -AR(1)- Case
• Another alternative to derive  ఌଶ = ௨ଶ/(1- 2)

ε௧ =   ε௧ିଵ +  𝑢௧
=  ( ε௧ିଶ + 𝑢௧ିଵ) +  𝑢௧
= 2 ε௧ିଶ +  𝑢௧ିଵ +  𝑢௧
= ... 
=  𝑢௧+  𝑢௧ିଵ + 2 𝑢௧ିଶ + 3 𝑢௧ିଷ + ...
= ∑ ௝𝑢௧ି௝௧

௝ୀ଴ (a moving average) 

Var[t] = ∑ ଶ௝𝑉𝑎𝑟ሾ𝑢௧ି௝௧
௝ୀ଴ ሿ = ∑ ଶ௝௨ଶ௧

௝ୀ଴

= 
ೠమ

(1 – 2) –we need to assume  ||< 1. 

GLS: AR(1) Case – Autocovariances

(Step 1.2) Find ௜௝ =  γ௟. ሺγ௟: autocovariance at lag 𝑙 = 𝑗 െ 𝑖; 
computed as the autocorrelation between two errors separated in time 
by 𝑙 periods:

௜௝ = γ௟ = Cov[𝜀௜, 𝜀௝] = E[𝜀௜ 𝜀௝] 𝑙 = 𝑗 െ 𝑖

γଵ ൌ 𝐶𝑜𝑣ሾ𝜀௧, 𝜀௧ିଵሿ ൌ 𝐸ሾሺ𝜌𝜀௧ିଵ ൅ 𝑢௧ሻ 𝜀௧ିଵሿ
ൌ 𝜌 𝐸ሾ𝜀௧ିଵ 𝜀௧ିଵሿ ൅ 𝐸ሾ𝑢௧ 𝜀௧ିଵሿ
ൌ 𝜌 Varሾ𝜀௧ିଵሿ ൌ 𝜌 ఌଶ 

ൌ ఘఙೠమ

ሺଵିఘమሻ

γଶ ൌ 𝐶𝑜𝑣 𝜀௧ , 𝜀௧ିଶ  ൌ 𝐸 ሺ𝜌𝜀௧ିଵ ൅ 𝑢௧  𝜀௧ିଶሿ
ൌ 𝜌 𝐸ሾ𝜀௧ିଵ 𝜀௧ିଶሿ ൅ 𝐸ሾ𝑢௧ 𝜀௧ିଶሿ
ൌ 𝜌 𝐶𝑜𝑣ሾ𝜀௧ , 𝜀௧ିଵሿ ൌ 𝜌 γଵ
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GLS: AR(1) Case – Autocovariances

γଶ= 𝜌 γଵ ൌ 
𝜌ଶ𝜎௨ଶ

ሺ1 െ 𝜌ଶሻ

γଷ= 𝐶𝑜𝑣ሾ𝜀௧ , 𝜀௧ିଷሿ ൌ 𝐸ሾ 𝜌𝜀௧ିଵ ൅ 𝑢௧  𝜀௧ିଷሿ
ൌ 𝜌 𝐸 𝜀௧ିଵ 𝜀௧ିଷ ൅ 𝐸 𝑢௧ 𝜀௧ିଷ
ൌ 𝜌 𝐶𝑜𝑣ሾ𝜀௧ ,  𝜀௧ିଶ ሿ ൌ 𝜌 γଶ
ൌ 𝜌ଶγଵ ൌ

ఘయఙೠమ

ሺଵିఘమሻ

⋮
γ௟ ൌ 𝐶𝑜𝑣 𝜀௧ , 𝜀௧ି௟  ൌ 𝜌௟ିଵ γଵ

• If  we define γ଴ = ఌଶ = ௨ଶ/(1 - 2), then
γ௟ൌ 𝜌௟ γ଴

GLS: AR(1) Case – Autocorrelation Matrix Σ

(A3’) 𝜎ଶΩ ൌ ఙೠమ

ଵିఘమ

1 𝜌 𝜌ଶ ⋯ 𝜌்ିଵ

𝜌 1 𝜌 ⋯ 𝜌்ିଶ

𝜌ଶ 𝜌 1 ⋯ 𝜌்ିଷ

⋮ ⋮ ⋮ ⋱ ⋮
𝜌்ିଵ 𝜌்ିଶ 𝜌்ିଷ ⋯ 1

Ωିଵ/ଶ ൌ

1 െ 𝜌ଶ 0 0 . . . 0
െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0

• Now, we get (A3’) Σ = σ2 .

(Step 1.3): Invert  to get the transformation matrix P = -1/2:
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𝐏 ൌ 𝛀ିଵ/ଶ ൌ

1 െ 𝜌ଶ 0 0 . . . 0
െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0

𝒚* ൌ 𝐏 𝒚 ൌ

1 െ 𝜌ଶ 𝑦ଵ
𝑦ଶ െ 𝜌𝑦ଵ
𝑦ଷ െ 𝜌𝑦ଶ

. . .
𝑦் െ 𝜌்ିଵ

Step 2: With P = -1/2, transform the data to do GLS.

 GLS: Transformed y*. 

:

GLS: AR(1) Case – Transformed y & X: y* & X*

𝐏 ൌ 𝛀ିଵ/ଶ ൌ

1 െ 𝜌ଶ 0 0 . . . 0
െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0

𝒙௞
∗ ൌ 𝐏 𝒙௞ ൌ

1 െ 𝜌ଶ  𝑥௞ଵ
𝑥௞ଶ െ 𝜌 𝑥௞ଵ
𝑥௞ଷ െ 𝜌 𝑥௞ଶ

. . .
𝑥் െ 𝜌 𝑥்ିଵ

2. Transformed  𝒙௞ column (independent variable k) of  matrix X is:

:

Step 3: Do GLS (OLS 𝒚* & X*). In (A3’) we assume 𝜌 known. 

 GLS: Transformed X*. 

GLS: AR(1) Case – Transformed y & X: y* & X*
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GLS: The Autoregressive Transformation

• With AR models, sometimes it is easier to transform the data by 
taking pseudo differences. 

• For the AR(1) model, we multiply the DGP by ρ and subtract it 
from it. That is, 

𝑦௧ ൌ   𝒙୲′𝛃 ൅  𝜀௧, 𝜀୲ ൌ 𝜌𝜀௧ିଵ ൅ 𝑢௧
𝜌𝑦௧ିଵ ൌ 𝜌𝒙୲ିଵ′𝛃 ൅ 𝜌𝜀௧ିଵ
െെെെെെെെെെെെെെ

𝑦௧ െ 𝜌𝑦௧ିଵ ൌ ሺ𝒙୲ െ 𝜌𝒙୲ିଵሻ′𝛃 ൅ ሺ𝜀௧ െ 𝜌𝜀௧ିଵሻ
𝑦௧
∗ ൌ 𝒙௧

∗′𝛃 ൅ 𝑢௧
Now, we have the errors, 𝑢௧, which are uncorrelated. We can do OLS 
with the pseudo differences.

Note: 𝑦௧
∗ ൌ 𝑦௧ െ 𝜌𝑦௧ିଵ &  𝒙௧

∗ ൌ 𝒙୲ െ 𝜌𝒙୲ିଵ are pseudo differences.

FGLS: Unknown 

• The problem with GLS is that  is unknown. For example, in the 
AR(1) case,  is unknown.  

• Solution: Estimate .  Feasible GLS (FGLS).

• In general, there are two approaches for GLS

(1) Two-step, or Feasible estimation: - First, estimate  first. 

- Second, do GLS. 

Similar logic to HAC procedures: We do not need to estimate , 
difficult with T observations. We estimate (1/T) X-1X.

– Nice asymptotic properties for FGLS estimator. Not longer BLUE

(2) ML estimation of , 2, and  at the same time (joint estimation 
of all parameters). With some exceptions, rare in practice.
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FGLS: Two-Step Estimation (Green)

• The general result for estimation when  is estimated.

• GLS uses   [X-1X]-1 X -1 𝒚 which converges in probability to .

• We seek a vector which converges to the same thing that this does. 
Call it “Feasible GLS” or FGLS, based on [X𝛀෡ି𝟏X]-1 X 𝛀෡ି𝟏𝒚

• The object is to find a set of parameters such that 

[X 𝛀෡ି𝟏 X]-1 X 𝛀෡ି𝟏𝒚 – [X -1 X]-1 X -1 𝒚  0

FGLS: Asymptotic Details (Green)

For FGLS estimation, we do not seek an estimator of 
such that

ˆ                    
ˆThis makes no sense, since  is nxn and does not "converge" to

anything.  We seek a matrix such that
          



Ω

Ω -Ω 0
Ω
Ω 

ˆ (1/n) (1/n)
For the asymptotic properties, we will require that

ˆ            (1/ n) (1/n)
Note in this case, these are two random vectors, which we require
to converge



 

-1 -1

-1 -1

X'Ω X -  X'Ω X 0

X'Ω  -  X'Ω  0

 to the same random vector.
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FGLS: Specification of 

•  must be specified first.

•  is generally specified (modeled) in terms of a few parameters. 
Thus,  = () for some small parameter vector . Then, we need to 
estimate .

Examples: 

(1) Var[𝜀௜|X]  =  σଶ f(𝒛௜). Variance a function of  and some 
variable 𝒛௜ (say, market volatility, firm size, country dummy, etc). In 
general, f is an exponential to make sure the variance is positive.

(2) i with AR(1) process. We have already derived σଶ  as a 
function of .

Technical note: To achieve full efficiency, we do not need an efficient
estimate of the parameters in , only a consistent one.  

FGLS: Estimation – Steps

• Steps for FGLS:
1. Estimate the model proposed in (A3’). Get 𝜎ො௜

ଶ &/𝜎ො௜௝
2. Find transformation matrix, P, using the estimated 𝜎ො௜

ଶ & 𝜎ො௜௝ .
3. Using P from Step 2, transform model: X*= PX and 𝒚*= P𝒚.
4. Do FGLS, that is, OLS with X* & 𝒚*.

Example: In the pure heteroscedasticity case (P is diagonal):
1. Estimate the model proposed in (A3’). Get 𝜎ො௜

ଶ.
2. Find transformation matrix, P, with 𝑖th diagonal element: 1/𝜎ො௜
3. Transform model: Each 𝑦௜ and 𝑥௜ is divided (“weighted”) by 𝜎ො௜ .
4. Do FGLS, that is, OLS with transformed variables.
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Example: Last lecture, we found that Mkt_RF^2 and SMB^2 are 
drivers of  the heteroscedasticity in DIS returns: Suppose we assume: 
(A3’) ௜

ଶ = γ0 + γ1 (Mkt_RTi)2 + γ3 (SMBi)2 

• Steps for FGLS:
1. Use OLS squared residuals to estimate (A3’):
fit_dis_ff3 <- lm(dis_x ~ Mkt_RF + SMB + HML)
e_dis <- fit_dis_ff3$residuals
e_dis2 <- e_dis^2
fit_dis2 <- lm(e_dis2 ~ Mkt_RF2 + SMB2)
summary(fit_dis2)
var_dis2 <- fit_dis2$fitted # Estimated variance vector, with elements ෝ௜

ଶ.

2. Find transformation matrix, P, with ith diagonal element: 1/𝜎ො௜
w_fgls <- sqrt(var_dis2) # 1/𝜎ො௜

3. Transform model: Each yi and xi is “weighted” by 1/𝜎ො௜ .
y_fw <- dis_x/w_fgls # transformed y
xx_fw <- cbind(x0, Mkt_RF, SMB, HML)/w_fgls # transformed X

FGLS: Estimation – Heteroscedasticity

Example (continuation):
4. Do GLS, that is, OLS with transformed variables.
fit_dis_fgls <- lm(y_fw ~ xx_fw - 1)
> summary(fit_dis_fgls)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

xx_fw -0.003097 0.002696  -1.149    0.251    
xx_fwMkt_RF 1.208067 0.073344  16.471 <2e-16 ***
xx_fwSMB -0.043761 0.105280  -0.416    0.678    
xx_fwHML 0.125125 0.100853   1.241 0.215  not longer significant at 10%.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9998 on 566 degrees of  freedom
Multiple R-squared:  0.3413,    Adjusted R-squared:  0.3366 
F-statistic: 73.31 on 4 and 566 DF,  p-value: < 2.2e-16

FGLS: Estimation – Heteroscedasticity
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Example (continuation): Compare OLS and GLS and FGLS results

• Comments:
- The GLS estimates are quite different than OLS estimates 
(remember OLS is unbiased and consistent). Very likely the assumed 
functional form in (A3’) was not a good one.
- The FGLS results are similar to the OLS, as expected, if  model is 
OK. FGLS is likely a more precise estimator (HML is not longer 
significant at 10%.

bOLS SE bGLS SE bFGLS SE

Intercept 0.00417 0.00279 -0.00661 0.00159 -0.00310 0.00270 

Mkt_RF 1.26056 0.06380 1.58806 0.33477 1.20807 0.07334

SMB -0.02899 0.09461 -0.20042 0.06750 -0.04376 0.10528 

HML 0.17455 0.09444 -0.04203 0.07282 0.12513 0.10085

FGLS: Estimation – Heteroscedasticity

Harvey’s Model of Heteroscedasticity (Green)

• The variance for observation i is a function of 𝒛௜:
Var[௜|X]  = 2 exp(𝒛௜)     

But, errors are not auto/cross correlated: 

Cov[௜, ௝|X] = 0

• The driving variable, z, can be firm size,  a set of dummy variables -
for example, for countries. This example is the one used for the 
estimation of the previous groupwise heteroscedasticity model.

• Then, we have a functional form for Σ = 2 
Σ = diagonal [exp(  + 𝒛௜)],  

 = log(2)

Once we specify  (and can be estimated), GLS is feasible. 
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GLS: AR(1) Model of Autocorrelation (Green)
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• We have already derived Σ = 2  for the AR(1) case.. 

• Now, if  we estimate σu
2 and , we can do FGLS.

. 

⋯ ⋯ ⋯⋯

⋯

⋯

⋯

⋯

⋯

Estimated AR(1) Model (Greene)

AR(1) Model:     e(t) = rho * e(t-1) + u(t)
Initial value of rho       =         .87566
Maximum iterations         =              1
Method = Prais - Winsten
Iter=  1, SS=       .022, Log-L=    127.593
Final value of Rho    =             .959411
Std. Deviation:  e(t) =             .076512
Std. Deviation:  u(t) =             .021577
Autocorrelation: u(t) =             .253173
N[0,1] used for significance levels
--------+-------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]
--------+-------------------------------------------------
Constant|   -20.3373***       .69623      -29.211   .0000

LP|    -.11379***       .03296       -3.453   .0006
LY|     .87040***       .08827        9.860   .0000

LPNC|     .05426          .12392         .438   .6615
LPUC|    -.04028          .06193        -.650   .5154
RHO|     .95941***       .03949       24.295   .0000

--------+-------------------------------------------------
Standard OLS
Constant|   -21.2111***       .75322      -28.160   .0000

LP|    -.02121          .04377        -.485   .6303
LY|    1.09587***       .07771       14.102   .0000

LPNC|    -.37361**        .15707       -2.379   .0215
LPUC|     .02003          .10330         .194   .8471 
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Harvey’s Model (Green)

• Examine Harvey’s model once again.

Estimation: 

(1) Two-step FGLS:  Use the OLS to estimate   ෠. Then,  use  

{X [Ω(෠)]-1 X}-1 X’ [Ω(෠)]-1 𝒚 to estimate .

(2) Full ML estimation.  Estimate all parameters simultaneously.

A handy result due to Oberhofer and Kmenta –the “zig-zag” 
approach. 

Examine a model of groupwise heteroscedasticity.

Andrew C. Harvey, England

Harvey’s Model: Groupwise Heteroscedasticity

• We have a sample,  y௜௚, 𝑥௜௚,…, with

N groups, each with  T௚ observations.

Each group variance: Var[௜௚] = ௚ଶ

• Define a  group dummy variable.

d௝ = 1 if observation 𝑖𝑔 is in group j,

= 0 otherwise.

Then, model variances as:

Var[௜௚]  =   ௚ଶ exp(θ2 d2 + … + θN dே)
Var1 = ௚ଶ –normalized variance (remember dummy trap!) 
Var2 = ௚ଶ exp(θ2) 
... etc.
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Harvey’s Model: Two-Step Procedure (Green)

• OLS is still consistent. Do OLS and keep e.

Step 1. Using e, calculate the group variances. That is,

- Est.Var1 = eଵ′ eଵ/T1 estimates ௚ଶ

- Est.Var2 = eଶ′ eଶ/T2 estimates ௚ଶ exp(θ2)

- Estimator of θ2 is ln[(eଶ′ eଶ/T2)/(eଵ′ eଵ/T1)]

- .... etc.

Step 2. Now, use FGLS –weighted least squares. Keep WLS residuals

Step 3. Using WLS residuals, recalculate variance estimators.

Iterate until convergence between steps 2 and 3.

GLS: General Remarks

• GLS is great (BLUE) if we know . Very rare case.

• It needs the specification of  –i.e., the functional form of 
autocorrelation and heteroscedasticity.

• If the specification is bad  estimates are biased.

• In general,  GLS is used for larger samples, because more 
parameters need to be estimated.

• Feasible GLS is not BLUE (unlike GLS); but, it is consistent and 
asymptotically more efficient than OLS.

• We use GLS for inference and/or efficiency.  OLS is still unbiased 
and consistent.

• OLS and GLS estimates will be different due to sampling error. But, 
if they are very different, then it is likely that some other CLM 
assumption is violated –likely, (A2’).
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Baltagi and Griffin’s Gasoline Data (Greene)

World Gasoline Demand Data, 18 OECD Countries, 19 years
Variables in the file are

COUNTRY = name of  country 
YEAR = year, 1960-1978
LGASPCAR = log of  consumption per car
LINCOMEP = log of  per capita income
LRPMG = log of  real price of  gasoline 
LCARPCAP = log of  per capita number of  cars 

See Baltagi (2001, p. 24) for analysis of  these data. The article on 
which the analysis is based is Baltagi, B. and Griffin, J., "Gasolne 
Demand in the OECD: An Application of  Pooling and Testing 
Procedures," European Economic Review, 22, 1983, pp. 117-
137. The data were downloaded from the website for Baltagi's text. 

Baltagi and Griffin’s Gasoline Data (Greene) -
ANOVA
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White Estimator vs. Standard OLS (Greene)

BALTAGI & GRIFFIN DATA SET

Standard OLS
+--------+--------------+----------------+--------+--------+
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| 
+--------+--------------+----------------+--------+--------+
Constant|    2.39132562       .11693429    20.450   .0000
LINCOMEP|     .88996166       .03580581    24.855   .0000 
LRPMG   |    -.89179791       .03031474   -29.418   .0000 
LCARPCAP|    -.76337275       .01860830   -41.023   .0000 

| White heteroscedasticity robust covariance matrix |
+----------------------------------------------------+
Constant|    2.39132562       .11794828 20.274   .0000
LINCOMEP|     .88996166       .04429158 20.093   .0000 
LRPMG   |    -.89179791       .03890922 -22.920   .0000 
LCARPCAP|    -.76337275       .02152888 -35.458   .0000

----------------------------------------------------------------------
Multiplicative Heteroskedastic Regression Model...
Ordinary     least squares regression ............
LHS=LGASPCAR Mean                 =        4.29624

Standard deviation   =         .54891
Number of observs.   =            342

Model size   Parameters           =              4
Degrees of freedom   =            338

Residuals    Sum of squares       =       14.90436
Wald   statistic [17 d.f.] =        699.43 (.0000)  (Large)
B/P LM statistic [17 d.f.] =        111.55 (.0000)  (Large)
Cov matrix for b is sigma^2*inv(X'X)(X'WX)inv(X'X)
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------
Constant|    2.39133***       .20010 11.951   .0000
LINCOMEP|     .88996***       .07358 12.094   .0000     -6.13943

LRPMG|    -.89180***       .06119 -14.574   .0000      -.52310
LCARPCAP|    -.76337***       .03030 -25.190   .0000     -9.04180
--------+-------------------------------------------------------------

Baltagi and Griffin’s Gasoline Data (Greene) –
Harvey’s Model
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Sigma|     .48196***     .12281        3.924   .0001
D1|   -2.60677***     .72073       -3.617   .0003       .05556
D2|   -1.52919**      .72073       -2.122   .0339       .05556
D3|     .47152        .72073         .654   .5130       .05556
D4|   -3.15102***     .72073       -4.372   .0000       .05556
D5|   -3.26236***     .72073       -4.526   .0000       .05556
D6|    -.09099        .72073        -.126   .8995       .05556
D7|   -1.88962***     .72073       -2.622   .0087       .05556
D8|     .60559        .72073         .840   .4008       .05556
D9|   -1.56624**      .72073       -2.173   .0298       .05556

D10|   -1.53284**      .72073       -2.127   .0334       .05556
D11|   -2.62835***     .72073       -3.647   .0003       .05556
D12|   -2.23638***     .72073       -3.103   .0019       .05556
D13|    -.77641        .72073       -1.077   .2814       .05556
D14|   -1.27341*       .72073       -1.767   .0773       .05556
D15|    -.57948        .72073        -.804   .4214       .05556
D16|   -1.81723**      .72073       -2.521   .0117       .05556
D17|   -2.93529***     .72073       -4.073   .0000       .05556

Baltagi and Griffin’s Gasoline Data (Greene) -
Variance Estimates = log[e(i)’e(i)/T]

--------+-------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]
--------+-------------------------------------------------

|Ordinary Least Squares
|Cov matrix for b is sigma^2*inv(X'X)(X'WX)inv(X'X)

Constant|    2.39133***       .20010 11.951   .0000
LINCOMEP|     .88996***       .07358 12.094   .0000

LRPMG|    -.89180***       .06119 -14.574   .0000
LCARPCAP|    -.76337***       .03030 -25.190   .0000
--------+------------------------------------------------

|FGLS - Regression (mean) function
Constant|    1.56909***       .06744 23.267   .0000
LINCOMEP|     .60853***       .02097 29.019   .0000

LRPMG|    -.61698***       .01902 -32.441   .0000
LCARPCAP|    -.66938***       .01116 -59.994   .0000

• It looks like a substantial gain in reduced standard errors. OLS and 
GLS estimates a bit different  problems?

Baltagi and Griffin’s Gasoline Data (Greene) -
OLS vs. Iterative FGLS


