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Lecture 10
GMM

• Idea: Population moment conditions provide information which 
can be used to estimate population parameters. 

• Suppose we want to estimate the population mean  variance 2 of 
a random variable 𝑣 . These parameters satisfy the population 
moment conditions:

E𝑣 ] -  =  0

E[𝑣 ] – (2+2) = 0

• We move from population conditions to their analogous sample 
moment conditions:

∑ 𝑣  =   0   =  ∑ 𝑣

∑ 𝑣 – ( 2 +  2 ) = 0  2 =  ∑ 𝑣 

Method of  Moments (MM): Review
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• Example: A supply and demand system for wheat:

𝑞 = α 𝑝 + 𝑢

𝑞 = 1 𝑛 + 2 𝑝 + 𝑢
𝑞 = 𝑞 = 𝑞

where 𝑞 , 𝑞 are quantity demanded and supplied; 𝑝 is price, 𝑛 is a 
weather variable. We want to estimate α. 

Problem: Endogeneity, OLS –i.e., regress 𝑞 against 𝑝 – will not 
work

Solution: IV. Find 𝑧 such that cov(𝑧 , 𝑢 ) = 0. 

Then,

cov(𝑧 , 𝑞 ) – α cov(𝑧 , 𝑝 ) = 0

Method of  Moments: Review

Example (continuation): cov(𝑧 , 𝑞 ) – α cov(𝑧 , 𝑝 ) = 0

Then, if E[𝑢 ] = 0, we have:

E[𝑧 𝑞 ] – α E[𝑧 𝑝 t] = 0  (population condition)

The MM leads to 

a*  = ∑ 𝑧 𝑞  / ∑ 𝑧 𝑝 (IV estimator)

Method of  Moments: Review
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• Population moment condition: A vector of observed variables, 𝒗 , 
and vector of 𝑘 parameters θ, satisfy a 𝑘x1 element vector of 
conditions E[𝑓 𝒗 , θ)] = 0 for all t

• The MM estimator θ*T solves the analogous sample moment 
conditions 

gT(θ*) =  ∑ 𝑓 𝒗 , θ∗ ) = 0 (1)

where T is the sample size.

• Under the usual regularity conditions, θ  
∗       

θ0, 
where θ0 is the solution of (1).

Note: We have k unknowns and k equations  unique solution.

Method of  Moments: Review

• Now, suppose f is a 𝑞x1 vector and 𝑞> 𝑘. That is, we have 𝑘
unknowns and 𝑞 equations  not a unique solution.

• GMM picks a value for θ such that it comes closest to satisfy 

𝒈 θ∗  =  ∑ 𝑓 𝒗 , θ∗ ) = 0

• We define “closeness” by

QT(θ) = [ ∑ 𝑓 𝒗 , θ∗ )]′ 𝑾 [  ∑ 𝑓 𝒗 , θ∗ )] 

= 𝒈 θ∗ ′ 𝑾 𝒈 θ∗  

where 𝑾 is psd &  plim(𝑾 ) = 𝑾 pd

Generalized Method of  Moments (GMM)
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GMM: Example 1

• Power utility based asset pricing model –Hansen and Singleton 
(1982)

- Theory condition:

Et[{β(𝑐 /𝑐 )-γ (1 + 𝑅 , ) – 1}] = 0 with unknown 
parameters , γ

- The q population unconditional moment conditions are

Et[𝑍 , {β(𝑐 /𝑐 )-γ (1 + 𝑅 , ) – 1}] = 0 𝑗 =1,…, 𝑞

where 𝑍 ,  are instruments in the information set

- The 𝑞 sample moment conditions are 

 ∑ 𝑍  {β∗  (𝑐 /𝑐 )
γ∗

  (1 + 𝑅 , ) – 1} 0.

• The CAPM 

- Theory condition: 

E[ 𝑟 , - 0(1- i) – i𝑟 , ] = 0

- The q population moment conditions (Market efficiency):

E[( 𝑟 , - 0(1- i) – i𝑟 , ) 𝑍 , ] 0 𝑗 =1,…, 𝑞

- The q sample moment conditions:

 ∑ 𝑟 ,  − ,
∗  (1− i) – β .

∗  𝑟 ,  ) 𝑍 , 0.

GMM: Example 2
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• Suppose the conditional probability density function of the 
continuous stationary random vector vt, given Vt-1={vt-1,vt-2,…} is 
p(vt;θ0,Vt-1)

• The MLE of θ0 based on the conditional log likelihood function is 
the value of  which maximizes  LT(θ) = ln{p(vt;θ,Vt-1)}

 solving  ∂LT(θ)/∂θ = 0

• That is, the MLE is just the GMM estimator based on the 
population moment condition

E[ ∂ln{p(vt;θ,Vt-1)}/∂θ} ] =0

GMM: Example 3 - MLE

• The GMM estimator θ∗ = argminθ ε QT(θ) generates the f.o.c. 

[ ∑ ∂ 𝒗 ,θ∗
∂θ´ ]′ 𝑾 [  ∑ 𝑓 𝒗 , θ∗ )] = 0 (**)

where 
∂ 𝒗 ,θ∗
∂θ´ is a 𝑞x𝑘 matrix with i,j element 

∂ 𝒊 𝒗 ,θ∗
∂θ

• There is typically no closed form solution for θ∗ so it must be 
obtained through numerical optimization methods.

Note: From (**), the GMM estimator is the MM estimator based on 
population moments: 

{E[
∂ 𝒗 ,θ0
∂θ´ ]}′ 𝑾 {E[𝑓 𝒗 , θ0)] } = 0

GMM: Summary
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Example: IV estimation of linear model

• Linear IV framework:
𝒚 = X θ0 

+ ε, with E[X´ε] ≠ 0.

• Let Z be a 𝑇x𝑞 vector of IV –i.e.,  E[Z´ε] = 0. and E[Z´X] ≠ 0.

•  We want to estimate θ0 using GMM. Then, the GMM estimator
θ∗ = argminθ ε  {QT(θ) = [T-1 ε(θ)′Z] 𝑾 [T-1Z′ε(θ)]}

(𝑘x1) f.o.c.: 

(X′Z/T) WT (Z′ε(θ∗ )/T) = 0
(X′Z/T) WT (Z′ (𝒚 – X θ∗ )/T) = 0

or
 (X′Z/T) 𝑾 (Z’𝒚/T) = (X′Z/T) 𝑾 (Z′X/T) θ∗

Example: IV estimation of linear model
• From f.o.c.: (X′Z/T) 𝑾 (Z’𝒚/T) = (X′Z/T) 𝑾 (Z′X/T) θ∗

CASE 1: 𝑞 = 𝑘 -i.e., just-identified- and (T-1Z’X) is nonsingular then
θ  
∗ = (Z′X/T) (Z’𝒚/T) 

independently of the weighting matrix 𝑾 .

CASE 2: 𝑞 > 𝑘 -i.e., over-identified.
θ∗ = {(X′Z/T) 𝑾 ((Z′X/T)}-1 (X′Z/T)  𝑾 (Z’𝒚/T) 

Note: GMM = MM based on (kx1) population moment conditions 
E[X′Z] 𝑾 E[Z′ ε(θ0)] = 0

(1) When 𝑞 = 𝑘 GMM = MM based on E[Z′ ε(θ0)] = 0.
(2) When 𝑞> 𝑘 GMM sets 𝑘 linear combinations of E[Z′ ε(θ0)] = 0.
But, in order to estimate θ0, we only need 𝑘 conditions!
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• Recall (**). The GMM estimator is the MM estimator based on 
(kx1) population moments 

{E[
∂ 𝒗 ,θ0
∂θ´ ]}′ 𝑾 {E[𝑓 𝒗 , θ0)] } = 0 (***)

• Let F(θ0) = 𝑾½ E[
∂ 𝒗 ,θ0
∂θ´ ] (a 𝑞x𝑘 matrix), with rank(F(θ0))= 𝑘. 

(The rank condition is necessary for identification of θ0).  

• Rewrite (***) as
F(θ0) 𝑾½ E[𝑓 𝒗 , θ0)] = 0 or

F(θ0)[F(θ0)′F(θ0)]-1F(θ0)′ 𝑾½ E[𝑓 𝒗 , θ0)] = PF′ 𝑾½ E[𝑓 𝒗 , θ0)] = 0

• The LS projection of 𝑾½ E[𝑓 𝒗 , θ0)] on to the column space of 
F(θ0) is 0. 

•

Identifying and overidentifying restrictions

• That is, the GMM estimator is based on rank{PF}= 𝑘 restrictions 
on the (𝑞 x1) (transformed) population moment condition

𝑾½ E[𝑓 𝒗 , θ0)].  

• These are the identifying restrictions; GMM picks θ∗ to satisfy them.

• The restrictions that are left over are
{Iq – PF}′ 𝑾½ E[𝑓 𝒗 , θ0)] = 0

• That is, the projection of 𝑾½ E[𝑓 𝒗 , θ0)] on to the orthogonal 
complement of F(θ0) is zero, generating q-k restrictions on the 
transformed population moment condition.  

• These over-identifying restrictions are ignored by the GMM estimator!

Identifying and overidentifying restrictions
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• The over-identifying restrictions are ignored by the GMM estimator, so 
they need not be satisfied in the sample.

• From (**),  

𝑾 ½ [  ∑ 𝑓 𝒗 , θ∗ )] = {Iq – PF}′ 𝑾 ½ [  ∑ 𝑓 𝒗 , θ∗ )] 

Thus, QT(θ∗ ) is like a sum of squared residuals, and can be 
interpreted as a measure of how far the sample is from satisfying the 
over-identifying restrictions.

Identifying and overidentifying restrictions

Asymptotic properties of GMM IVE

•  Under the usual regularity conditions, it can be shown that:

(1) θ∗
      

θ

(2)  (θ ,
∗ – θ , )/[ V ,

∗ /T] 
      

N(0,1) 

where V∗ = (X′Z𝑾 Z′X)-1X′Z𝑾  S∗ 𝑾 Z′X (X′Z𝑾 Z′X)-1

S∗ = limT→∞ Var[Z′ε/T]

• Assuming ε is serially uncorrelated

Var[Z´ε/T] = E[{ ∑ z ε }{ ∑ z ε }′]

= ∑ 𝐸 ε z z ′  

• Thus,

S∗ = [∑ ε θ∗ z z ′  
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GMM: Two-step estimator

• The asymptotic variance depends on the weighting matrix 𝑾 .

• The optimal choice is 𝑾 = S∗ -1 to give V∗ = (X′Z S∗ -1Z′X)-1 

• But we need θ∗ to construct S∗ This suggests a two-step (iterative) 
GMM procedure:

(1) Start with sub-optimal 𝑾 (0) , say  I     

(2) Using 𝑾 (0) estimate θ∗ (1) & S∗ (1)

(3) Estimate with 𝑾 (1)= S∗ (1)-1

(4) Using 𝑾 T(j) repeat steps (2)-(3) to get θ∗ (j+1) & S∗ (j+1) until 
convergence.

• Note that if ε is homoskedastic: var[ε|X] = 2IT  S∗ = s*2ZZ′
where s*2 is a consistent estimator of 2.

• Choosing this S∗ to construct the weighting matrix 𝑾 = S∗ -1. 
Then,

θ∗ = {X′Z(Z′Z)-1Z′X)}-1 X′Z(Z′Z)-1Z′y

={𝑿′𝑿}-1 𝑿 𝒚

where  𝑿 = PzX is the predicted value of X from a regression of X on 
Z.  This is the 2SLS estimator.

GMM: Two-step estimator
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Model specification test

• Identifying restrictions are satisfied in the sample regardless of 
whether the model is correct.

• Over-identifying restrictions are not imposed in the sample. We can 
use them to test the model.

Recall the qx1 population moment conditions E[Z’ε(θ0)] = 0. We can 
construct a Wald-type test to check if these q conditions are met in 
sample. The overidentifying restrictions test:

JT = T QT(θ∗ ) = T-½ ε θ∗ ′Z S∗ -1 T-½ Z′ε θ∗

Under H0: E[Z′ε(θ0)] = 0, JT  

      
χ

Testing C-CAPM: GMM

• GMM can naturally be applied in the C-CAPM. The Euler’s 
equation, gives us a starting point for a moment condition:

1 = Et[𝑚 𝒙 , θ ) (1 + 𝑅 , ) – 1] 

• Let 𝒁 be a set of 𝑙(𝑙 ≥ 𝑘) instruments, available at time 𝑡. Then, for 
each asset 𝑖 :

Et[𝑍 {β(𝑐 /𝑐 )-γ (1 + 𝑅 , ) – 1}] = 0 𝑖 =1,…, 𝑁; 𝑗 =1,…, 𝑙.

Note: Now we have a lot of moments: 𝑙x𝑁!

• GMM works with sample analogues of the population moments:

g 𝒗 , θ∗ =  ∑ 𝑍  {β∗  (𝑐 /𝑐 )
γ∗

  (1 + 𝑅 , ) – 1} 0.
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• Q: How do we choose Zt the l instruments? Not a  trivial question. 
In general, predetermined regressors are viewed as OK.

• Note: Weak instruments are a problem. In theory, we only need 
small correlation between Z and the model’s variables. However, the 
bigger the correlation, the better: 

 50 weak instruments are no substitute for a good IV!

• Advantages of  GMM approach:
- All we need is a moment condition.
- No need to log-linearize anything.
- Non-linearities are not a problem.
- Robust to heteroscedasticiy and distributional assumptions.

Testing C-CAPM: GMM - Remarks

• Practical Considerations:
- We need at least as many moment conditions as parameters  (just-
identified case).

- If  there are more moments –the usual case-, we have “over-
identifying restrictions.” Use them to test the model (J-test):

J = T QT(θ∗ ) = T-½ g 𝒗 ,θ∗ ′ S∗ -1 g 𝒗 ,θ∗ ~ χ

where S∗ = Var[g 𝒗 ,θ∗ ] 

- Too many moments are not desirable in practice.

- The instruments (conditioning information) matter. 

Testing C-CAPM: GMM - Remarks
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• Practical Considerations:
- Estimating S is tricky. In general, the moments will be serially 
dependent. Newey-West (1987) does not work well when the 
dimensions of  the system is large. Small changes to S produces big 
swings in estimated θ. (Sometimes is better to work with W=I!)

- Some questions regarding the small sample properties of  GMM.

- The over-identifying restrictions are subject to a “which moments to 
choose?” critique.

- The J test also depends crucially on S; difficult to estimate accurately

- Not surprisingly, the J test rejects a lot of  models. We should be 
aware of  its problems.

Testing C-CAPM: GMM - Remarks

• Taken from Hansen and Singleton (1982).
For each asset 𝑖, H&S have:

Et  𝑍 {β(𝑐 /𝑐 )-γ (1 + 𝑅 , ) – 1}] = 0, 𝑖 =1,…, 𝑁.

𝑅 , = NYSE stock returns (VW and EW).
𝑐 = Consumption (Non-durables (ND) & ND plus services (NDS).)
 𝑍 = lagged Rt+1 and ct+1/ct. (H&S use 1, 2, 4 and 6 lags.)

Findings: β  1 (around .99) and γ small (between .32 to .03.) J-tests 
reject C-CAPM.

• General problem with IVE of  the C-CAPM: weak instruments. It’s 
difficult to find IVs highly correlated with consumption growth. 

• According to Hall’s (1978) consumption follows a random walk:
lagged Rt+1 and ct+1/ct should have low correlation with ct+1/ct!

Testing C-CAPM: GMM - Example
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GMM estimation – General Case

• Go back to GMM estimation but let f be a vector of continuous 
nonlinear functions of the data and unknown parameters.

• In our case, we have N assets and the moment condition is: 
E[{𝑚 𝒙 , θ ) (1 + 𝑅 , ) – 1} 𝑧 , ] = E[ε 𝑧 , ] = 0, 

using (lagged) instruments 𝑧 , for each asset 𝑖 = 1, … , N and 
each instrument 𝑗 = 1 , … , 𝑞. 

• Collect these as 𝒇 𝒗 , θ) = 𝑧 ′ ε (𝒙 ,θ), where 𝒛 is a 1x𝑞
vector of instruments and ε is a Nx1 vector. 𝒇 is a column vector 
with 𝑞N elements – it contains the cross-product of each instrument 
with each element of ε.

• Population moment condition: E[𝒇 𝒗 , θ )] = 0  

• The population moment condition is  

E[𝒇 𝒗 , θ )] = 0 

• As before, let 𝒈  (θ) = [  ∑ 𝑓 𝒗 , θ)] .  The GMM estimator is 

θ∗ = argminθε QT(θ) 

• The FOCs are

GT(θ∗ )′ 𝑾 𝒈 (θ∗ ) = 0

where GT() is a matrix of partial derivatives with 𝑖, 𝑗 element 
δ𝒈 , /δθ

GMM estimation – General Case
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GMM Asymptotics: General Case

It can be shown that:

(1) θ∗
      

θ

(2) (θ ,
∗ – θ , )/[ V ,

∗ /T] 
      

N(0,1) 

where Asy Var(θ ,
∗ ) = V = M S M’ where

– M = (G0′ 𝑾 G0)-1 G0′𝑾
– G0 = E[∂f(vt,θ0)/∂θ’]

– S = limT→∞ Var[T-½gT(θ0)]

(3) A test of the model’s over-identifying restrictions is given by 

JT = T QT(θ∗ )
      

χ

Covariance matrix estimation for GMM

• In practice V∗ = M∗ S*T M∗ ′ is a consistent estimator of V, where

- M∗ = [GT(θ∗ )′ 𝑾 GT(θ∗ )]-1 GT(θ*T)′𝑾
- S∗ is a consistent estimator of S

- Estimator of S depends on time series properties of  𝑓 𝒗 , 0).  In 
general, it is

S = Γ0 + ( Γi + Γi′)
where Γi = E{𝑓 – E(𝑓 )}{𝑓 – E(𝑓 )}′ = E[𝑓  𝑓 ′] is the 𝑖 -th
autocovariance matrix of 𝑓 = 𝑓 𝒗 , 0). 

• We can consistently estimate S with
S∗ = Γ∗ (θ∗ ) +  {Γ∗(θ∗ ) + Γ∗(θ∗ )′}

where 

Γ∗(θ∗ ) =  ∑ 𝑓 𝒗 , θ∗ ) ∗ 𝑓 𝒗 , θ∗ )′
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• If theory implies that the autocovariances of 𝑓 𝒗 , 0) = 0 for some 
lag 𝑖, then we can exclude these from S∗ –e.g., ε = ε 𝒗 , θ∗ ) are 
serially uncorrelated implies 

S∗ =  ∑ {ε 𝒗 , θ∗ ) ε 𝒗 , θ∗ )′  (𝒛 ′𝒛 )} 

Covariance matrix estimation for GMM

GMM Adjustments

• Iterated GMM is recommended in small samples

• More powerful tests by subtracting sample means of 𝑓 𝒗 , θ∗ ) in 
calculating Γ∗(θ∗ )

• Asymptotic standard errors may be understated in small samples: 
multiply asymptotic variances by “degrees of freedom adjustment” T/(T-k) 
or (N+q)T/{(N+q)T – k} where d = k + ((Nq)2+Nq)/2


