

Method of Moments (MM): Review

• <u>Idea</u>: Population moment conditions provide information which can be used to estimate population parameters.

• Suppose we want to estimate the population mean μ variance σ^2 of a random variable v_t . These parameters satisfy the population moment conditions:

$$E\boldsymbol{v}_t] - \boldsymbol{\mu} = 0$$
$$E[\boldsymbol{v}_t^2] - (\sigma^2 + \boldsymbol{\mu}^2) = 0$$

• We move from population conditions to their analogous sample moment conditions:

 $\frac{1}{T}\sum_{t=1}^{T} v_t - \mu * = 0 \qquad \Rightarrow \mu * = \frac{1}{T}\sum_{t=1}^{T} v_t$ $\frac{1}{T}\sum_{i=1}^{T} v_t^2 - (\sigma *^2 + \mu *^2) = 0 \qquad \Rightarrow \sigma *^2 = \frac{1}{T}\sum_{t=1}^{T} (v_t - \mu *)^2$

Method of Moments: Review

• **Example**: A supply and demand system for wheat:

$$q_t^D = \alpha p_t + u_t^D$$

$$q_t^S = \beta_1 n_t + \beta_2 p_t + u_t^S$$

$$q_t^D = q_t^S = q_t$$

where q_t^D , q_t^S are quantity demanded and supplied; p_t is price, n_t is a weather variable. We want to estimate α .

<u>Problem</u>: Endogeneity, OLS –i.e., regress q_t^D against p_t – will not work

<u>Solution</u>: IV. Find z_t^D such that $cov(z_t^D, u_t^D) = 0$. Then,

$$\operatorname{cov}(\boldsymbol{z}_t^D, \boldsymbol{q}_t) - \alpha \operatorname{cov}(\boldsymbol{z}_t^D, \boldsymbol{p}_t) = 0$$

Method of Moments: Review

Example (continuation): $\operatorname{cov}(z_t^D, q_t) - \alpha \operatorname{cov}(z_t^D, p_t) = 0$

Then, if $E[u_t^D] = 0$, we have: $E[z_t^D q_t] - \alpha E[z_t^D p_{t_t}] = 0$ (population condition)

The MM leads to

$$a^* = \frac{1}{T} \sum_{i=1}^{T} z_t^D q_t / \frac{1}{T} \sum_{i=1}^{T} z_t^D p_t \qquad \text{(IV estimator)}$$

Method of Moments: Review

- <u>Population moment condition</u>: A vector of observed variables, \boldsymbol{v}_t , and vector of k parameters $\boldsymbol{\theta}$, satisfy a $k \ge 1$ element vector of conditions $\mathbb{E}[f(\boldsymbol{v}_t, \boldsymbol{\theta})] = \mathbf{0}$ for all t
- The MM estimator θ^*_{T} solves the analogous sample moment conditions

$$\mathbf{g}_{\mathrm{T}}(\boldsymbol{\theta}^{*}) = \frac{1}{T} \sum_{t=1}^{T} f(\boldsymbol{\nu}_{t}, \boldsymbol{\theta}_{T}^{*}) = \mathbf{0}$$
(1)

where T is the sample size.

• Under the usual regularity conditions, $\theta_T^* \xrightarrow{p} \theta_0$, where θ_0 is the solution of (1).

<u>Note</u>: We have k unknowns and k equations \Rightarrow unique solution.

Generalized Method of Moments (GMM)

- Now, suppose **f** is a $q \ge 1$ vector and $q \ge k$. That is, we have k unknowns and q equations \Rightarrow not a unique solution.
- GMM picks a value for θ such that it comes closest to satisfy

$$\boldsymbol{g}_T(\boldsymbol{\theta}^*) = \frac{1}{T} \sum_{t=1}^T f(\boldsymbol{v}_t, \boldsymbol{\theta}_T^*) = 0$$

• We define "closeness" by

$$Q_{\mathrm{T}}(\boldsymbol{\theta}) = \left[\frac{1}{T}\sum_{t=1}^{T} f(\boldsymbol{v}_{t}, \boldsymbol{\theta}_{T}^{*})\right]' \boldsymbol{W}_{T} \left[\frac{1}{T}\sum_{t=1}^{T} f(\boldsymbol{v}_{t}, \boldsymbol{\theta}_{T}^{*})\right]$$
$$= \boldsymbol{g}_{T}(\boldsymbol{\theta}^{*})' \boldsymbol{W}_{T} \boldsymbol{g}_{T}(\boldsymbol{\theta}^{*})$$

where \boldsymbol{W}_T is psd & plim(\boldsymbol{W}_T) = \boldsymbol{W} pd

GMM: Example 1

- Power utility based asset pricing model –Hansen and Singleton (1982)
 - Theory condition:

 $E_{t}[\{\beta(c_{t+1}/c_{t})^{-\gamma}(1+R_{i,t+1})-1\}] = 0 \text{ with unknown}$ parameters β, γ

- The q population unconditional moment conditions are

 $E_{t}[Z_{j,t} \{\beta(c_{t+1}/c_{t})^{-\gamma} (1+R_{i,t+1})-1\}] = 0 \qquad j=1$

$$j = 1, ..., q$$

- where $Z_{j,t}$ are instruments in the information set
- The q sample moment conditions are

$$\frac{1}{T}\sum_{t=1}^{T}Z_{j} \left\{\beta_{T}^{*}\left(c_{t+1}/c_{t}\right)^{\gamma_{T}^{*}}\left(1+R_{i,t+1}\right)-1\right\}=0.$$

GMM: Example 2

- The CAPM
 - Theory condition:

$$\mathbf{E}[\mathbf{r}_{i,t+1} - \lambda_0(1 - \beta_i) - \beta_i \mathbf{r}_{m,t+1}] = 0$$

- The *q* population moment conditions (Market efficiency): $E[(r_{i,t+1} - \lambda_0(1 - \beta_i) - \beta_i r_{m,t+1}) Z_{j,t}] = 0 \qquad j = 1, ..., q$
- The *q* sample moment conditions:

$$\frac{1}{T} \sum_{t=1}^{T} \{ r_{i,t+1} - \lambda_{0,T}^* (1 - \beta_i) - \beta_{i,T}^* r_{m,t+1} \} Z_{j,t} \} = 0.$$

GMM: Example 3 - MLE

• Suppose the conditional probability density function of the continuous stationary random vector v_t , given $V_{t-1} = \{v_{t-1}, v_{t-2}, ...\}$ is $p(v_t; \theta_0, V_{t-1})$

• The MLE of θ_0 based on the conditional log likelihood function is the value of which maximizes $L_T(\theta) = \Sigma \ln \{p(v_t; \theta, V_{t-1})\}$ \Rightarrow solving $\partial L_T(\theta) / \partial \theta = 0$

• That is, the MLE is just the GMM estimator based on the population moment condition

 $E[\partial ln \{p(v_t; \theta, V_{t-1})\} / \partial \theta\}] = 0$

GMM: Summary

• The GMM estimator $\theta_T^* = \operatorname{argmin}_{\theta \in \Theta} Q_T(\theta)$ generates the f.o.c.

$$\left[\frac{1}{T}\sum_{t=1}^{T}\frac{\partial f(\boldsymbol{\nu}_{t},\boldsymbol{\theta}_{T}^{*})}{\partial \boldsymbol{\theta}'}\right]' \boldsymbol{W}_{T}\left[\frac{1}{T}\sum_{t=1}^{T}f(\boldsymbol{\nu}_{t},\boldsymbol{\theta}_{T}^{*})\right] = \boldsymbol{0}$$
(**)

where
$$\frac{\partial f(\boldsymbol{v}_t, \boldsymbol{\theta}_T^*)}{\partial \boldsymbol{\theta}}$$
 is a $q \mathbf{x} k$ matrix with i, j element $\frac{\partial f_i(\boldsymbol{v}_t, \boldsymbol{\theta}_T^*)}{\partial \theta_j}$

• There is typically no closed form solution for θ_T^* so it must be obtained through numerical optimization methods.

<u>Note</u>: From (**), the GMM estimator is the MM estimator based on population moments:

$$\{ \mathbb{E}[\frac{\partial f(\boldsymbol{v}_t, \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}'}] \}' \boldsymbol{W} \{ \mathbb{E}[f(\boldsymbol{v}_t, \boldsymbol{\theta}_0)] \} = \boldsymbol{0}$$

Example: IV estimation of linear model • Linear IV framework: $\mathbf{y} = \mathbf{X} \ \theta_0 + \mathbf{\epsilon}$, with $\mathbf{E}[\mathbf{X}'\mathbf{\epsilon}] \neq \mathbf{0}$. • Let \mathbf{Z} be a $T \mathbf{x} q$ vector of IV –i.e., $\mathbf{E}[\mathbf{Z}'\mathbf{\epsilon}] = \mathbf{0}$ and $\mathbf{E}[\mathbf{Z}'\mathbf{X}] \neq \mathbf{0}$. • We want to estimate θ_0 using GMM. Then, the GMM estimator $\theta_T^* = \operatorname{argmin}_{\theta \in \Theta} \{ \mathbf{Q}_T(\theta) = [T^{1} \mathbf{\epsilon}(\theta)'\mathbf{Z}] \ \mathbf{W}_T [T^{1}\mathbf{Z}'\mathbf{\epsilon}(\theta)] \}$ (kx1) f.o.c.: $(\mathbf{X}'\mathbf{Z}/T) \ \mathbf{W}_T (\mathbf{Z}'\mathbf{\epsilon}(\theta_T^*)/T) = \mathbf{0}$ $(\mathbf{X}'\mathbf{Z}/T) \ \mathbf{W}_T (\mathbf{Z}' (\mathbf{y} - \mathbf{X} \ \theta_T^*)/T) = \mathbf{0}$ or $\Rightarrow (\mathbf{X}'\mathbf{Z}/T) \ \mathbf{W}_T (\mathbf{Z}'\mathbf{y}/T) = (\mathbf{X}'\mathbf{Z}/T) \ \mathbf{W}_T (\mathbf{Z}'\mathbf{X}/T) \ \theta_T^*$

Example: IV estimation of linear model

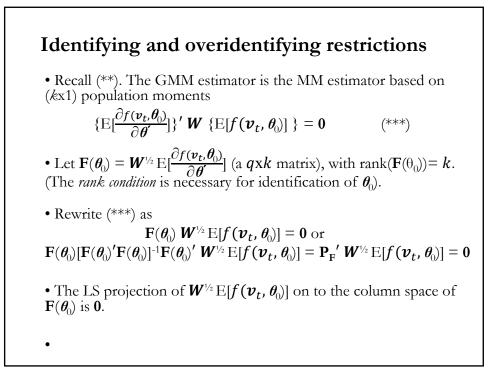
• From f.o.c.: $(\mathbf{X}'\mathbf{Z}/T) \mathbf{W}_T (\mathbf{Z}'\mathbf{y}/T) = (\mathbf{X}'\mathbf{Z}/T) \mathbf{W}_T (\mathbf{Z}'\mathbf{X}/T) \mathbf{\theta}_T^*$

CASE 1: q = k -i.e., *just-identified-* and $(T^{-1}\mathbf{Z'X})$ is nonsingular then $\boldsymbol{\theta}_T^* = (\mathbf{Z'X}/T) (\mathbf{Z'y}/T)$

independently of the weighting matrix \boldsymbol{W}_{T} .

CASE 2: q > k -i.e., over-identified. $\theta_T^* = \{ (\mathbf{X}'\mathbf{Z}/T) \ \mathbf{W}_T \ ((\mathbf{Z}'\mathbf{X}/T)) \}^{-1} \ (\mathbf{X}'\mathbf{Z}/T) \ \mathbf{W}_T \ (\mathbf{Z}'\mathbf{y}/T) \}^{-1} \}^{-1}$

Note: GMM = MM based on (kx1) population moment conditions E[X'Z] W E[Z' ε(θ₀)] = 0
(1) When q = k GMM = MM based on E[Z' ε(θ₀)] = 0.
(2) When q > k GMM sets k linear combinations of E[Z' ε(θ₀)] = 0.
But, in order to estimate θ₀, we only need k conditions!



Identifying and overidentifying restrictions

• That is, the GMM estimator is based on rank $\{\mathbf{P}_{\mathbf{F}}\} = k$ restrictions on the $(q \ \text{x1})$ (*transformed*) population moment condition $\boldsymbol{W}^{\frac{1}{2}} \mathbb{E}[f(\boldsymbol{v}_t, \boldsymbol{\theta}_0)].$

• These are the *identifying restrictions*; GMM picks θ_T^* to satisfy them.

- The restrictions that are left over are $\{\mathbf{I}_{q} \mathbf{P}_{F}\}' \ \mathbf{W}^{\frac{1}{2}} \operatorname{E}[f(\mathbf{v}_{t}, \mathbf{\theta}_{0})] = \mathbf{0}$
- That is, the projection of $W^{\frac{1}{2}} \mathbb{E}[f(\boldsymbol{v}_t, \boldsymbol{\theta}_0)]$ on to the orthogonal complement of $\mathbf{F}(\boldsymbol{\theta}_0)$ is zero, generating *q*-*k* restrictions on the transformed population moment condition.

• These over-identifying restrictions are ignored by the GMM estimator!

Identifying and overidentifying restrictions

• The *over-identifying restrictions* are ignored by the GMM estimator, so they need not be satisfied in the sample.

• From (**), $\boldsymbol{W}_{T^{\frac{1}{2}}}[\frac{1}{T}\sum_{t=1}^{T}f(\boldsymbol{v}_{t},\boldsymbol{\theta}_{T}^{*})] = \{\mathbf{I}_{q}-\mathbf{P}_{F}\}' \boldsymbol{W}_{T^{\frac{1}{2}}}[\frac{1}{T}\sum_{t=1}^{T}f(\boldsymbol{v}_{t},\boldsymbol{\theta}_{T}^{*})]$

Thus, $Q_T(\theta_T^*)$ is like a sum of squared residuals, and can be interpreted as a measure of how far the sample is from satisfying the over-identifying restrictions.

Asymptotic properties of GMM IVE

• Under the usual regularity conditions, it can be shown that:

А

(1) $\theta_T^* \xrightarrow{p} \theta_0$

(2)
$$(\theta_{T,i}^* - \theta_{0,i}) / [\sqrt{V_{T,ii}^*} / T] \xrightarrow{u} N(0,1)$$

- where $V_T^* = (\mathbf{X}' \mathbf{Z} \mathbf{W}_T \mathbf{Z}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z} \mathbf{W}_T \mathbf{S}_T^* \mathbf{W}_T \mathbf{Z}' \mathbf{X} (\mathbf{X}' \mathbf{Z} \mathbf{W}_T \mathbf{Z}' \mathbf{X})^{-1}$ $\mathbf{S}_T^* = \lim_{T \to \infty} \operatorname{Var}[\mathbf{Z}' \boldsymbol{\varepsilon} / T]$
- Assuming $\boldsymbol{\varepsilon}$ is serially uncorrelated

$$\operatorname{Var}[\mathbf{Z}'\boldsymbol{\varepsilon}/T] = \operatorname{E}[\{\frac{1}{\sqrt{T}}\sum_{t=1}^{T} z_{t}\varepsilon_{t}\}\{\frac{1}{\sqrt{T}}\sum_{t=1}^{T} z_{t}\varepsilon_{t}\}']$$
$$= \frac{1}{T}\sum_{t=1}^{T} E[\varepsilon_{t}^{2} z_{t} z_{t}']$$

• Thus,

$$S_T^* = \frac{1}{T} \left[\sum_{t=1}^T \varepsilon(\theta_T^*)_t^2 z_t z_t' \right]$$

GMM: Two-step estimator

• The asymptotic variance depends on the weighting matrix \boldsymbol{W}_T .

• The optimal choice is $W_T = S_T^{*-1}$ to give $V_T^* = (\mathbf{X}'\mathbf{Z} \ S_T^{*-1}\mathbf{Z}'\mathbf{X})^{-1}$

• But we need θ_T^* to construct S_T^* This suggests a two-step (iterative) GMM procedure:

(1) Start with sub-optimal $\boldsymbol{W}_{T}(0)$, say **I**

(2) Using $\boldsymbol{W}_{T}(0)$ estimate $\boldsymbol{\theta}_{T}^{*}(1)$ & $\boldsymbol{S}_{T}^{*}(1)$

(3) Estimate with $W_T(1) = S_T^*(1)^{-1}$

(4) Using $\boldsymbol{W}_{TT}(j)$ repeat steps (2)-(3) to get $\boldsymbol{\theta}_{T}^{*}(j+1)$ & $\boldsymbol{S}_{T}^{*}(j+1)$ until convergence.

GMM: Two-step estimator

• Note that if $\boldsymbol{\varepsilon}$ is homoskedastic: $\operatorname{var}[\boldsymbol{\varepsilon} | \mathbf{X}] = \sigma^2 \mathbf{I}_T \implies \boldsymbol{S}_T^* = s^{*2} \mathbf{Z} \mathbf{Z}'$ where s^{*2} is a consistent estimator of σ^2 .

• Choosing this S_T^* to construct the weighting matrix $W_T = S_T^{*-1}$. Then,

$$\theta_T^* = \{ \mathbf{X}' \mathbf{Z} (\mathbf{Z}' \mathbf{Z})^{-1} \mathbf{Z}' \mathbf{X} \}^{-1} \mathbf{X}' \mathbf{Z} (\mathbf{Z}' \mathbf{Z})^{-1} \mathbf{Z}' \mathbf{y} \\ = \{ \widehat{\mathbf{X}}' \widehat{\mathbf{X}} \}^{-1} \widehat{\mathbf{X}}' \mathbf{y}$$

where $\hat{X} = P_z X$ is the predicted value of X from a regression of X on Z. This is the 2SLS estimator.

Model specification test

• Identifying restrictions are satisfied in the sample regardless of whether the model is correct.

• Over-identifying restrictions are not imposed in the sample. We can use them to test the model.

Recall the qx1 population moment conditions $E[\mathbf{Z}^{2}\varepsilon(\boldsymbol{\theta}_{0})] = \mathbf{0}$. We can construct a Wald-type test to check if these q conditions are met in sample. The *overidentifying restrictions test*:

$$J_{T} = T Q_{T}(\boldsymbol{\theta}_{T}^{*}) = T^{-1/2} \varepsilon(\boldsymbol{\theta}_{T}^{*})^{\prime} \mathbf{Z} \boldsymbol{S}_{T}^{*-1} T^{-1/2} \mathbf{Z}^{\prime} \varepsilon(\boldsymbol{\theta}_{T}^{*})$$

Under H₀: E[**Z**' $\epsilon(\theta_0)$] = 0, J_T $\xrightarrow{d} \chi^2_{q-k}$

Testing C-CAPM: GMM

• GMM can naturally be applied in the C-CAPM. The Euler's equation, gives us a starting point for a moment condition: $1 = E_t[m(\boldsymbol{x}_{t+1}, \boldsymbol{\theta}_0) (1 + R_{i,t+1}) - 1]$

• Let Z_t be a set of $l(l \ge k)$ instruments, available at time t. Then, for each asset i:

$$E_{t}[Z_{j} \{\beta(c_{t+1}/c_{t})^{-\gamma}(1+R_{i,t+1})-1\}] = 0 \qquad i=1,...,N; j=1,...,l.$$

Note: Now we have a lot of moments: *l*x*N*!

• GMM works with sample analogues of the population moments:

$$g(\boldsymbol{\nu}_t, \boldsymbol{\theta}_T^*) = \frac{1}{T} \sum_{t=1}^T Z_j \{ \beta_T^* (c_{t+1}/c_t)^{\gamma_T^*} (1 + R_{i,t+1}) - 1 \} = 0.$$

Testing C-CAPM: GMM - Remarks

• Q: How do we choose \mathbf{Z}_t the / instruments? Not a trivial question. In general, predetermined regressors are viewed as OK.

• <u>Note</u>: Weak instruments are a problem. In theory, we only need small correlation between **Z** and the model's variables. However, the bigger the correlation, the better:

 \Rightarrow 50 weak instruments are no substitute for a good IV!

- Advantages of GMM approach:
 - All we need is a moment condition.
 - No need to log-linearize anything.
 - Non-linearities are not a problem.
 - Robust to heteroscedasticiy and distributional assumptions.

Testing C-CAPM: GMM - Remarks

• Practical Considerations:

- We need at least as many moment conditions as parameters (just-identified case).

- If there are more moments –the usual case-, we have "overidentifying restrictions." Use them to test the model (J-test):

 $J = T Q_T(\boldsymbol{\theta}_T^*) = T^{-1/2} g(\boldsymbol{v}_t, \boldsymbol{\theta}_T^*)' \boldsymbol{S}_T^{*-1} g(\boldsymbol{v}_t, \boldsymbol{\theta}_T^*) \sim \chi^2_{LxN-k}$ where $\boldsymbol{S}_T^* = \operatorname{Var}[g(\boldsymbol{v}_t, \boldsymbol{\theta}_T^*)]$

- Too many moments are not desirable in practice.

- The instruments (conditioning information) matter.

Testing C-CAPM: GMM - Remarks

• Practical Considerations:

Estimating S is tricky. In general, the moments will be serially dependent. Newey-West (1987) does not work well when the dimensions of the system is large. Small changes to S produces big swings in estimated 0. (Sometimes is better to work with W=I!)

- Some questions regarding the small sample properties of GMM.
- The over-identifying restrictions are subject to a "which moments to choose?" critique.

- The J test also depends crucially on S; difficult to estimate accurately

- Not surprisingly, the J test rejects a lot of models. We should be aware of its problems.

Testing C-CAPM: GMM - Example

Taken from Hansen and Singleton (1982).
For each asset *i*, H&S have: E_t[Z_t {β(c_{t+1}/c_t)^{-γ} (1 + R_{i,t+1}) - 1}] = 0, *i* = 1,..., N.
R_{i,t} = NYSE stock returns (VW and EW). c_t = Consumption (Non-durables (ND) & ND plus services (NDS).) Z_t = lagged R_{t+1} and c_{t+1}/c_t. (H&S use 1, 2, 4 and 6 lags.)
<u>Findings</u>: β ≈ 1 (around .99) and γ small (between .32 to .03.) J-tests reject C-CAPM.
General problem with IVE of the C-CAPM: weak instruments. It's difficult to find IVs highly correlated with consumption growth.
According to Hall's (1978) consumption follows a random walk: lagged R_{t+1} and c_{t+1}/c_t should have low correlation with c_{t+1}/c_t!

GMM estimation – General Case

• Go back to GMM estimation but let **f** be a vector of continuous nonlinear functions of the data and unknown parameters.

• In our case, we have N assets and the moment condition is: $E[\{m(\boldsymbol{x}_t, \boldsymbol{\theta}_0) (1 + R_{i,t}) - 1\} \ \boldsymbol{z}_{j,t-1}] = E[\boldsymbol{\varepsilon}_t \ \boldsymbol{z}_{j,t-1}] = 0,$ using (lagged) instruments $\boldsymbol{z}_{j,t-1}$ for each asset i = 1, ..., N and

each instrument $j = 1, \ldots, q$.

• Collect these as $f(v_t, \theta) = z_{t-1}' \otimes \varepsilon_t(x_t, \theta)$, where z_t is a 1xq vector of instruments and ε_t is a Nx1 vector. f is a column vector with qN elements – it contains the cross-product of each instrument with each element of ε .

• Population moment condition: $E[f(v_t, \theta_0)] = 0$

GMM estimation – General Case

• The population moment condition is

 $\mathrm{E}[\boldsymbol{f}(\boldsymbol{v}_t, \boldsymbol{\theta}_0)] = 0$

- As before, let $\boldsymbol{g}_T(\boldsymbol{\theta}) = [\frac{1}{T} \sum_{t=1}^T f(\boldsymbol{v}_t, \boldsymbol{\theta})]$. The GMM estimator is $\boldsymbol{\theta}_T^* = \operatorname{argmin}_{\boldsymbol{\theta} \in \Theta} Q_T(\boldsymbol{\theta})$
- The FOCs are

 $\mathbf{G}_{\mathrm{T}}(\boldsymbol{\theta}_{T}^{*})' \boldsymbol{W}_{T} \boldsymbol{g}_{T}(\boldsymbol{\theta}_{T}^{*}) = 0$

where $\mathbf{G}_{\mathrm{T}}(\boldsymbol{\theta})$ is a matrix of partial derivatives with i, j element $\delta \boldsymbol{g}_{T,i} / \delta \boldsymbol{\theta}_j$

GMM Asymptotics: General Case

It can be shown that: (1) $\theta_T^* \xrightarrow{p} \theta_0$ (2) $(\theta_{T,i}^* - \theta_{0,i}) / [\sqrt{V_{T,ii}^*} / T] \xrightarrow{d} N(0,1)$ where Asy $Var(\theta_{T,i}^*) = \mathbf{V} = \mathbf{M} \mathbf{S} \mathbf{M}$ ' where $-\mathbf{M} = (\mathbf{G}_0' \mathbf{W} \mathbf{G}_0)^{-1} \mathbf{G}_0' \mathbf{W}$ $-\mathbf{G}_0 = \mathrm{E}[\partial f(v_v, \theta_0) / \partial \theta']$ $-\mathbf{S} = \lim_{T \to \infty} \mathrm{Var}[T^{-1/2} \mathbf{g}_T(\theta_0)]$ (3) A test of the model's over-identifying restrictions is given by $J_T = T Q_T(\theta_T^*) \xrightarrow{d} \chi_{qN-k}^2$

Covariance matrix estimation for GMM

- In practice $V_T^* = M_T^* \mathbf{S}_T^* M_T^*'$ is a consistent estimator of **V**, where - $M_T^* = [\mathbf{G}_T(\boldsymbol{\theta}_T^*)' \boldsymbol{W}_T \mathbf{G}_T(\boldsymbol{\theta}_T^*)]^{-1} \mathbf{G}_T(\boldsymbol{\theta}_T^*)' \boldsymbol{W}_T$
 - S_T^* is a consistent estimator of S
 - Estimator of **S** depends on time series properties of $f(v_t, \theta_0)$. In general, it is

 $\mathbf{S} = \mathbf{\Gamma}_0 + \Sigma(\mathbf{\Gamma}_i + \mathbf{\Gamma}_i')$

where $\Gamma_i = E\{f_t - E(f_t)\}\{f_{t-i} - E(f_{t-i})\}' = E[f_t f_{t-i}']$ is the *i*-th autocovariance matrix of $f_t = f(\boldsymbol{v}_t, \boldsymbol{\theta}_0)$.

• We can consistently estimate S with

$$S_T^* = \Gamma_0^*(\theta_T^*) + \Sigma \{\Gamma_i^*(\theta_T^*) + \Gamma_i^*(\theta_T^*)'\}$$

where

$$\boldsymbol{\Gamma}_{i}^{*}(\boldsymbol{\theta}_{T}^{*}) = \frac{1}{T} \sum_{t=1}^{T} f(\boldsymbol{\nu}_{t}, \boldsymbol{\theta}_{T}^{*}) * f(\boldsymbol{\nu}_{t-i}, \boldsymbol{\theta}_{T}^{*})'$$

Covariance matrix estimation for GMM

• If theory implies that the autocovariances of $f(\boldsymbol{v}_t, \boldsymbol{\theta}_0) = \mathbf{0}$ for some lag *i*, then we can exclude these from S_T^* –e.g., $\boldsymbol{\varepsilon}_t = \boldsymbol{\varepsilon}(\boldsymbol{v}_t, \boldsymbol{\theta}_T^*)$ are serially uncorrelated implies

$$S_T^* = \frac{1}{T} \sum_{t=1}^T \left\{ \varepsilon(\boldsymbol{v}_t, \boldsymbol{\theta}_T^*) \, \varepsilon(\boldsymbol{v}_t, \boldsymbol{\theta}_T^*)' \otimes (\boldsymbol{z}_t' \boldsymbol{z}_t) \right\}$$

GMM Adjustments

• Iterated GMM is recommended in small samples

• More powerful tests by subtracting sample means of $f(\boldsymbol{v}_t, \boldsymbol{\theta}_T^*)$ in calculating $\Gamma_i^*(\boldsymbol{\theta}_T^*)$

• Asymptotic standard errors may be understated in small samples: multiply asymptotic variances by "*degrees of freedom adjustment*" T/(T-k)or $(N+q)T/\{(N+q)T-k\}$ where $d = k + ((Nq)^2+Nq)/2$