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Lecture 10
GMM

• Idea: Population moment conditions provide information which 
can be used to estimate population parameters. 

• Suppose we want to estimate the population mean  variance 2 of 
a random variable 𝑣௧. These parameters satisfy the population 
moment conditions:

E𝑣௧] -  =  0

E[𝑣௧
ଶ] – (2+2) = 0

• We move from population conditions to their analogous sample 
moment conditions:

ଵ

்
∑ 𝑣௧ െ ்
௧ୀଵ =   0   = 

ଵ

்
 ∑ 𝑣௧்

௧ୀଵ

ଵ

்
∑ 𝑣௧

ଶ்
௜ୀଵ – ( 2 +  2 ) = 0  2 = 

ଵ

்
 ∑ ሺ𝑣௧ െ ሻ்

௧ୀଵ
ଶ

Method of  Moments (MM): Review
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• Example: A supply and demand system for wheat:

𝑞௧
஽ = α 𝑝௧ + 𝑢௧

஽

𝑞௧
ௌ = 1 𝑛௧ + 2 𝑝௧ + 𝑢௧

ௌ

𝑞௧
஽ = 𝑞௧

ௌ = 𝑞௧
where 𝑞௧

஽, 𝑞௧
ௌ are quantity demanded and supplied; 𝑝௧ is price, 𝑛௧ is a 

weather variable. We want to estimate α. 

Problem: Endogeneity, OLS –i.e., regress 𝑞௧
஽ against 𝑝௧– will not 

work

Solution: IV. Find 𝑧௧
஽ such that cov(𝑧௧

஽ , 𝑢௧
஽) = 0. 

Then,

cov(𝑧௧
஽, 𝑞௧) – α cov(𝑧௧

஽, 𝑝௧) = 0

Method of  Moments: Review

Example (continuation): cov(𝑧௧
஽, 𝑞௧) – α cov(𝑧௧

஽, 𝑝௧) = 0

Then, if E[𝑢௧
஽] = 0, we have:

E[𝑧௧
஽ 𝑞௧] – α E[𝑧௧

஽ 𝑝௧ t] = 0  (population condition)

The MM leads to 

a*  = 
ଵ

்
∑ 𝑧௧

஽𝑞௧
்
௜ୀଵ  /ଵ

்
∑ 𝑧௧

஽𝑝௧
்
௜ୀଵ (IV estimator)

Method of  Moments: Review
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• Population moment condition: A vector of observed variables, 𝒗௧, 
and vector of 𝑘 parameters θ, satisfy a 𝑘x1 element vector of 
conditions E[𝑓ሺ𝒗௧, θ)] = 0 for all t

• The MM estimator θ*T solves the analogous sample moment 
conditions 

gT(θ*) = 
ଵ

்
 ∑ 𝑓ሺ𝒗௧, θ்

∗ ) ்
௧ୀଵ = 0 (1)

where T is the sample size.

• Under the usual regularity conditions, θ் 
∗    ௣   

θ0, 
where θ0 is the solution of (1).

Note: We have k unknowns and k equations  unique solution.

Method of  Moments: Review

• Now, suppose f is a 𝑞x1 vector and 𝑞> 𝑘. That is, we have 𝑘
unknowns and 𝑞 equations  not a unique solution.

• GMM picks a value for θ such that it comes closest to satisfy 

𝒈்ሺθ∗ሻ = 
ଵ

்
 ∑ 𝑓ሺ𝒗௧ , θ்

∗ ) ்
௧ୀଵ = 0

• We define “closeness” by

QT(θ) = [
ଵ

்
∑ 𝑓ሺ𝒗௧ , θ்

∗ )்
௧ୀଵ ]′ 𝑾் [

ଵ

்
 ∑ 𝑓ሺ𝒗௧ , θ்

∗ )] ்
௧ୀଵ

= 𝒈்ሺθ∗ሻ′ 𝑾் 𝒈்ሺθ∗ሻ 

where 𝑾் is psd &  plim(𝑾்) = 𝑾 pd

Generalized Method of  Moments (GMM)
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GMM: Example 1

• Power utility based asset pricing model –Hansen and Singleton 
(1982)

- Theory condition:

Et[{β(𝑐௧ାଵ/𝑐௧)-γ (1 + 𝑅௜,௧ାଵ) – 1}] = 0 with unknown 
parameters , γ

- The q population unconditional moment conditions are

Et[𝑍௝,௧ {β(𝑐௧ାଵ/𝑐௧)-γ (1 + 𝑅௜,௧ାଵ) – 1}] = 0 𝑗 =1,…, 𝑞

where 𝑍௝,௧ are instruments in the information set

- The 𝑞 sample moment conditions are 
ଵ

்
 ∑ 𝑍௝ {β்

∗  (𝑐௧ାଵ/𝑐௧)
γ
೅
∗

  (1 + 𝑅௜,௧ାଵ) – 1}்
௧ୀଵ ൌ 0.

• The CAPM 

- Theory condition: 

E[ 𝑟௜,௧ାଵ - 0(1- i) – i𝑟௠,௧ାଵ ] = 0

- The q population moment conditions (Market efficiency):

E[( 𝑟௜,௧ାଵ - 0(1- i) – i𝑟௠,௧ାଵ ) 𝑍௝,௧] ൌ 0 𝑗 =1,…, 𝑞

- The q sample moment conditions:
ଵ

்
 ∑ ሼ𝑟௜,௧ାଵ −଴,்

∗  (1− i) – β௜.்
∗  𝑟௠,௧ାଵ ) 𝑍௝,௧ሽ்

௧ୀଵ ൌ 0.

GMM: Example 2
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• Suppose the conditional probability density function of the 
continuous stationary random vector vt, given Vt-1={vt-1,vt-2,…} is 
p(vt;θ0,Vt-1)

• The MLE of θ0 based on the conditional log likelihood function is 
the value of  which maximizes  LT(θ) = ln{p(vt;θ,Vt-1)}

 solving  ∂LT(θ)/∂θ = 0

• That is, the MLE is just the GMM estimator based on the 
population moment condition

E[ ∂ln{p(vt;θ,Vt-1)}/∂θ} ] =0

GMM: Example 3 - MLE

• The GMM estimator θ்
∗ = argminθ ε QT(θ) generates the f.o.c. 

[
ଵ

்
∑ ∂௙ሺ𝒗೟,θ೅∗ ሻ

∂θ´
்
௧ୀଵ ]′ 𝑾் [

ଵ

்
 ∑ 𝑓ሺ𝒗௧, θ்

∗ )] ்
௧ୀଵ = 0 (**)

where 
∂௙ሺ𝒗೟,θ೅∗ ሻ
∂θ´ is a 𝑞x𝑘 matrix with i,j element 

∂௙𝒊ሺ𝒗೟,θ೅∗ ሻ
∂θೕ

• There is typically no closed form solution for θ்
∗ so it must be 

obtained through numerical optimization methods.

Note: From (**), the GMM estimator is the MM estimator based on 
population moments: 

{E[
∂௙ሺ𝒗೟,θ0ሻ

∂θ´ ]}′ 𝑾 {E[𝑓ሺ𝒗௧ , θ0)] } = 0

GMM: Summary
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Example: IV estimation of linear model

• Linear IV framework:
𝒚 = X θ0 

+ ε, with E[X´ε] ≠ 0.

• Let Z be a 𝑇x𝑞 vector of IV –i.e.,  E[Z´ε] = 0. and E[Z´X] ≠ 0.

•  We want to estimate θ0 using GMM. Then, the GMM estimator
θ்
∗ = argminθ ε  {QT(θ) = [T-1 ε(θ)′Z] 𝑾் [T-1Z′ε(θ)]}

(𝑘x1) f.o.c.: 

(X′Z/T) WT (Z′ε(θ்
∗ )/T) = 0

(X′Z/T) WT (Z′ (𝒚 – X θ்∗ )/T) = 0
or

 (X′Z/T) 𝑾் (Z’𝒚/T) = (X′Z/T) 𝑾் (Z′X/T) θ்
∗

Example: IV estimation of linear model
• From f.o.c.: (X′Z/T) 𝑾் (Z’𝒚/T) = (X′Z/T) 𝑾் (Z′X/T) θ்

∗

CASE 1: 𝑞 = 𝑘 -i.e., just-identified- and (T-1Z’X) is nonsingular then
θ் 
∗ = (Z′X/T) (Z’𝒚/T) 

independently of the weighting matrix 𝑾்.

CASE 2: 𝑞 > 𝑘 -i.e., over-identified.
θ்
∗ = {(X′Z/T) 𝑾் ((Z′X/T)}-1 (X′Z/T)  𝑾் (Z’𝒚/T) 

Note: GMM = MM based on (kx1) population moment conditions 
E[X′Z] 𝑾 E[Z′ ε(θ0)] = 0

(1) When 𝑞 = 𝑘 GMM = MM based on E[Z′ ε(θ0)] = 0.
(2) When 𝑞> 𝑘 GMM sets 𝑘 linear combinations of E[Z′ ε(θ0)] = 0.
But, in order to estimate θ0, we only need 𝑘 conditions!
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• Recall (**). The GMM estimator is the MM estimator based on 
(kx1) population moments 

{E[
∂௙ሺ𝒗೟,θ0ሻ

∂θ´ ]}′ 𝑾 {E[𝑓ሺ𝒗௧ , θ0)] } = 0 (***)

• Let F(θ0) = 𝑾½ E[
∂௙ሺ𝒗೟,θ0ሻ

∂θ´ ] (a 𝑞x𝑘 matrix), with rank(F(θ0))= 𝑘. 
(The rank condition is necessary for identification of θ0).  

• Rewrite (***) as
F(θ0) 𝑾½ E[𝑓ሺ𝒗௧ , θ0)] = 0 or

F(θ0)[F(θ0)′F(θ0)]-1F(θ0)′ 𝑾½ E[𝑓ሺ𝒗௧ , θ0)] = PF′ 𝑾½ E[𝑓ሺ𝒗௧ , θ0)] = 0

• The LS projection of 𝑾½ E[𝑓ሺ𝒗௧, θ0)] on to the column space of 
F(θ0) is 0. 

•

Identifying and overidentifying restrictions

• That is, the GMM estimator is based on rank{PF}= 𝑘 restrictions 
on the (𝑞 x1) (transformed) population moment condition

𝑾½ E[𝑓ሺ𝒗௧, θ0)].  

• These are the identifying restrictions; GMM picks θ்
∗ to satisfy them.

• The restrictions that are left over are
{Iq – PF}′ 𝑾½ E[𝑓ሺ𝒗௧ , θ0)] = 0

• That is, the projection of 𝑾½ E[𝑓ሺ𝒗௧, θ0)] on to the orthogonal 
complement of F(θ0) is zero, generating q-k restrictions on the 
transformed population moment condition.  

• These over-identifying restrictions are ignored by the GMM estimator!

Identifying and overidentifying restrictions
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• The over-identifying restrictions are ignored by the GMM estimator, so 
they need not be satisfied in the sample.

• From (**),  

𝑾்
½ [

ଵ

்
 ∑ 𝑓ሺ𝒗௧ , θ்

∗ )] ்
௧ୀଵ = {Iq – PF}′ 𝑾்

½ [
ଵ

்
 ∑ 𝑓ሺ𝒗௧, θ்

∗ )] ்
௧ୀଵ

Thus, QT(θ்
∗ ) is like a sum of squared residuals, and can be 

interpreted as a measure of how far the sample is from satisfying the 
over-identifying restrictions.

Identifying and overidentifying restrictions

Asymptotic properties of GMM IVE

•  Under the usual regularity conditions, it can be shown that:

(1) θ்
∗    ௣   

θ଴

(2)  (θ்,௜
∗ – θ଴,௜)/[ V்,௜௜

∗ /T] 
   ௗ   

N(0,1) 

where V்
∗ = (X′Z𝑾்Z′X)-1X′Z𝑾் S்∗ 𝑾்Z′X (X′Z𝑾்Z′X)-1

S்
∗ = limT→∞ Var[Z′ε/T]

• Assuming ε is serially uncorrelated

Var[Z´ε/T] = E[{
ଵ

்
∑ z௧ε௧
்
௧ୀଵ }{

ଵ

்
∑ z௧ε௧
்
௧ୀଵ }′]

= 
ଵ

்
∑ 𝐸ሾε௧

ଶz௧z௧′ሿ ்
௧ୀଵ

• Thus,

S்
∗ = 

ଵ

்
[∑ εሺθ்

∗ ሻ௧
ଶz௧z௧′ሿ ்

௧ୀଵ
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GMM: Two-step estimator

• The asymptotic variance depends on the weighting matrix 𝑾்.

• The optimal choice is 𝑾் = S்
∗ -1 to give V்

∗ = (X′Z S்
∗ -1Z′X)-1 

• But we need θ்
∗ to construct S்

∗ This suggests a two-step (iterative) 
GMM procedure:

(1) Start with sub-optimal 𝑾்(0) , say  I     

(2) Using 𝑾்(0) estimate θ்
∗ (1) & S்

∗ (1)

(3) Estimate with 𝑾்(1)= S்
∗ (1)-1

(4) Using 𝑾்T(j) repeat steps (2)-(3) to get θ்
∗ (j+1) & S்

∗ (j+1) until 
convergence.

• Note that if ε is homoskedastic: var[ε|X] = 2IT  S்
∗ = s*2ZZ′

where s*2 is a consistent estimator of 2.

• Choosing this S்
∗ to construct the weighting matrix 𝑾் = S்

∗ -1. 
Then,

θ்
∗ = {X′Z(Z′Z)-1Z′X)}-1 X′Z(Z′Z)-1Z′y

={𝑿෡′𝑿෡}-1 𝑿෡ᇱ𝒚

where  𝑿෡ = PzX is the predicted value of X from a regression of X on 
Z.  This is the 2SLS estimator.

GMM: Two-step estimator
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Model specification test

• Identifying restrictions are satisfied in the sample regardless of 
whether the model is correct.

• Over-identifying restrictions are not imposed in the sample. We can 
use them to test the model.

Recall the qx1 population moment conditions E[Z’ε(θ0)] = 0. We can 
construct a Wald-type test to check if these q conditions are met in 
sample. The overidentifying restrictions test:

JT = T QT(θ்
∗ ) = T-½ εሺθ்

∗ ሻ′Z S்
∗ -1 T-½ Z′εሺθ்

∗ ሻ

Under H0: E[Z′ε(θ0)] = 0, JT  

   ௗ   
χ௤ି௞
ଶ

Testing C-CAPM: GMM

• GMM can naturally be applied in the C-CAPM. The Euler’s 
equation, gives us a starting point for a moment condition:

1 = Et[𝑚ሺ𝒙௧ାଵ, θ଴) (1 + 𝑅௜,௧ାଵ) – 1] 

• Let 𝒁௧ be a set of 𝑙(𝑙 ≥ 𝑘) instruments, available at time 𝑡. Then, for 
each asset 𝑖 :

Et[𝑍௝ {β(𝑐௧ାଵ/𝑐௧)-γ (1 + 𝑅௜,௧ାଵ) – 1}] = 0 𝑖 =1,…, 𝑁; 𝑗 =1,…, 𝑙.

Note: Now we have a lot of moments: 𝑙x𝑁!

• GMM works with sample analogues of the population moments:

gሺ𝒗௧ , θ்
∗ ሻ = 

ଵ

்
 ∑ 𝑍௝ {β்

∗  (𝑐௧ାଵ/𝑐௧)
γ
೅
∗

  (1 + 𝑅௜,௧ାଵ) – 1}்
௧ୀଵ ൌ 0.
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• Q: How do we choose Zt the l instruments? Not a  trivial question. 
In general, predetermined regressors are viewed as OK.

• Note: Weak instruments are a problem. In theory, we only need 
small correlation between Z and the model’s variables. However, the 
bigger the correlation, the better: 

 50 weak instruments are no substitute for a good IV!

• Advantages of  GMM approach:
- All we need is a moment condition.
- No need to log-linearize anything.
- Non-linearities are not a problem.
- Robust to heteroscedasticiy and distributional assumptions.

Testing C-CAPM: GMM - Remarks

• Practical Considerations:
- We need at least as many moment conditions as parameters  (just-
identified case).

- If  there are more moments –the usual case-, we have “over-
identifying restrictions.” Use them to test the model (J-test):

J = T QT(θ்
∗ ) = T-½ gሺ𝒗௧ ,θ்∗ ሻ′ S்

∗ -1 g 𝒗௧ ,θ்∗ ~ χ௅୶ேି௞
ଶ

where S்
∗ = Var[gሺ𝒗௧,θ்∗ ሻ] 

- Too many moments are not desirable in practice.

- The instruments (conditioning information) matter. 

Testing C-CAPM: GMM - Remarks
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• Practical Considerations:
- Estimating S is tricky. In general, the moments will be serially 
dependent. Newey-West (1987) does not work well when the 
dimensions of  the system is large. Small changes to S produces big 
swings in estimated θ. (Sometimes is better to work with W=I!)

- Some questions regarding the small sample properties of  GMM.

- The over-identifying restrictions are subject to a “which moments to 
choose?” critique.

- The J test also depends crucially on S; difficult to estimate accurately

- Not surprisingly, the J test rejects a lot of  models. We should be 
aware of  its problems.

Testing C-CAPM: GMM - Remarks

• Taken from Hansen and Singleton (1982).
For each asset 𝑖, H&S have:

Etሾ 𝑍௧ {β(𝑐௧ାଵ/𝑐௧)-γ (1 + 𝑅௜,௧ାଵ) – 1}] = 0, 𝑖 =1,…, 𝑁.

𝑅௜,௧ = NYSE stock returns (VW and EW).
𝑐௧= Consumption (Non-durables (ND) & ND plus services (NDS).)
 𝑍௧= lagged Rt+1 and ct+1/ct. (H&S use 1, 2, 4 and 6 lags.)

Findings: β ൎ 1 (around .99) and γ small (between .32 to .03.) J-tests 
reject C-CAPM.

• General problem with IVE of  the C-CAPM: weak instruments. It’s 
difficult to find IVs highly correlated with consumption growth. 

• According to Hall’s (1978) consumption follows a random walk:
lagged Rt+1 and ct+1/ct should have low correlation with ct+1/ct!

Testing C-CAPM: GMM - Example
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GMM estimation – General Case

• Go back to GMM estimation but let f be a vector of continuous 
nonlinear functions of the data and unknown parameters.

• In our case, we have N assets and the moment condition is: 
E[{𝑚ሺ𝒙௧, θ଴) (1 + 𝑅௜,௧) – 1} 𝑧௝,௧ିଵ] = E[ε௧ 𝑧௝,௧ିଵ] = 0, 

using (lagged) instruments 𝑧௝,௧ିଵ for each asset 𝑖 = 1, … , N and 
each instrument 𝑗 = 1 , … , 𝑞. 

• Collect these as 𝒇ሺ𝒗௧, θ) = 𝑧௧ିଵ′ ε௧(𝒙௧,θ), where 𝒛௧ is a 1x𝑞
vector of instruments and ε௧ is a Nx1 vector. 𝒇 is a column vector 
with 𝑞N elements – it contains the cross-product of each instrument 
with each element of ε.

• Population moment condition: E[𝒇ሺ𝒗௧ , θ଴)] = 0  

• The population moment condition is  

E[𝒇ሺ𝒗௧ , θ଴)] = 0 

• As before, let 𝒈் (θ) = [
ଵ

்
 ∑ 𝑓ሺ𝒗௧, θ)] ்

௧ୀଵ .  The GMM estimator is 

θ்
∗ = argminθε QT(θ) 

• The FOCs are

GT(θ்
∗ )′ 𝑾் 𝒈்(θ்

∗ ) = 0

where GT() is a matrix of partial derivatives with 𝑖, 𝑗 element 
δ𝒈்,௜/δθ௝

GMM estimation – General Case
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GMM Asymptotics: General Case

It can be shown that:

(1) θ்
∗    ௣   

θ଴

(2) (θ்,௜
∗ – θ଴,௜)/[ V்,௜௜

∗ /T] 
   ௗ   

N(0,1) 

where Asy Var(θ்,௜
∗ ) = V = M S M’ where

– M = (G0′ 𝑾 G0)-1 G0′𝑾
– G0 = E[∂f(vt,θ0)/∂θ’]

– S = limT→∞ Var[T-½gT(θ0)]

(3) A test of the model’s over-identifying restrictions is given by 

JT = T QT(θ்
∗ )

   ௗ   
χ௤ேି௞
ଶ

Covariance matrix estimation for GMM

• In practice V்
∗ = M்

∗ S*T M்
∗ ′ is a consistent estimator of V, where

- M்
∗ = [GT(θ்

∗ )′ 𝑾் GT(θ்
∗ )]-1 GT(θ*T)′𝑾்

- S்
∗ is a consistent estimator of S

- Estimator of S depends on time series properties of  𝑓ሺ𝒗௧ , 0).  In 
general, it is

S = Γ0 + ( Γi + Γi′)
where Γi = E{𝑓௧ – E(𝑓௧)}{𝑓௧ି௜ – E(𝑓௧ି௜)}′ = E[𝑓௧ 𝑓௧ି௜′] is the 𝑖 -th
autocovariance matrix of 𝑓௧ = 𝑓ሺ𝒗௧ , 0). 

• We can consistently estimate S with
S்
∗ = Γ଴

∗ (θ்
∗ ) +  {Γ௜

∗(θ்
∗ ) + Γ௜

∗(θ்
∗ )′}

where 

Γ௜
∗(θ்

∗ ) = 
ଵ

்
 ∑ 𝑓ሺ𝒗௧, θ்

∗ ) ்
௧ୀଵ ∗ 𝑓ሺ𝒗௧ି௜ , θ்

∗ )′



RS – Lecture 10

15

• If theory implies that the autocovariances of 𝑓ሺ𝒗௧, 0) = 0 for some 
lag 𝑖, then we can exclude these from S்

∗ –e.g., ε௧ = εሺ𝒗௧ , θ்
∗ ) are 

serially uncorrelated implies 

S்
∗ =

ଵ

்
 ∑ {εሺ𝒗௧ , θ்

∗ ) εሺ𝒗௧, θ்
∗ )′  (𝒛௧′𝒛௧)} ்

௧ୀଵ

Covariance matrix estimation for GMM

GMM Adjustments

• Iterated GMM is recommended in small samples

• More powerful tests by subtracting sample means of 𝑓ሺ𝒗௧, θ்
∗ ) in 

calculating Γ௜
∗(θ்

∗ )

• Asymptotic standard errors may be understated in small samples: 
multiply asymptotic variances by “degrees of freedom adjustment” T/(T-k) 
or (N+q)T/{(N+q)T – k} where d = k + ((Nq)2+Nq)/2


