RS — Lecture 10

Lecture 10
GMM

Method of Moments (MM): Review

¢ Idea: Population moment conditions provide information which
can be used to estimate population parameters.

* Suppose we want to estimate the population mean | vatiance 62 of
a random variable v;. These parameters satisfy the population
moment conditions:

Ev]-p =0
E[vf] - (@*+1) = 0

* We move from population conditions to their analogous sample
moment conditions:

IyT - _1lyr

T t=1 V¢ —ux= 0 :H*_Fthlvt

1 T 2 o _ 1T 2
;Zi=1 Vi— (0% + pux?) =0 = o* = ;Zt=1(vt — p*)
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Method of Moments: Review

* Example: A supply and demand system for wheat:

a0 =ope tue

i =PBine + By +uf

a = q; = q:
where qP, g; are quantity demanded and supplied; p; is price, 1z is a
weather variable. We want to estimate a.

Problem: Endogeneity, OLS —i.e., regress qP against p;— will not
work

Solution: IV. Find z? such that cov(z?, u?P) = 0.
Then,

COV(Z?’ Qt) -« COV(Zt]:)’ pt) =0

Method of Moments: Review

Example (continuation): cov(Z,? ,qr) —a cov(Z,? ,Pe) =0
Then, if E[uP] = 0, we have:
E[zP q:] -2 E[zf p:] =0  (population condition)

The MM leads to

_1gT 1T .
a* = ;Zi=1 ZtDCIt /;Zi=1 ZtDpt (IV estimator)
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Method of Moments: Review

* Population moment condition: A vector of observed variables, V¢,
and vector of k parameters 6, satisfy a kx1 element vector of
conditions E[f (V¢, )] = 0 for all t

¢ The MM estimator & solves the analogous sample moment
conditions

gr(09) = = Ty f (v, 07) = 0 M

where T'is the sample size.

p
* Under the usual regularity conditions, 0 — 6,,
where 6, is the solution of (1).

Note: We have £ unknowns and £ equations => unique solution.

Generalized Method of Moments (GMM)

* Now, suppose fis a gx1 vector and g> k. That is, we have k
unknowns and ¢ equations = not a unique solution.

*  GMM picks a value for #such that it comes closest to satisfy

gr(00) = N1 f(we, 0) = 0

* We define “closeness” by

Qe = [ XI=1 f (e, )] Wi | Iy f (v, 7))
=gr(6«) Wy gr(6)

where W is psd & plim(W7) = W pd
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GMM: Example 1

* Power utility based asset pricing model —Hansen and Singleton
(1982)

- Theory condition:

E[{B(cer1/ce)? (1 + Ripyq) — 1}] = 0 with unknown
parameters [3, y

- The g population unconditional moment conditions are

E[Zj¢ {Bcer1/co)? (1 + Ripyq) =131 =0 Jj=1...,q

where Zj ¢ are instruments in the information set

- The q sample moment conditions are

1 . ]
P Yi-1Z; (B (ces1/C)'T (1 + Rippq) -1} = 0.

GMM: Example 2

e The CAPM
- Theory condition:

E[Tit41 - 2(1-B) = Birmit+11=10

- The g population moment conditions (Market efficiency):
B[(7ie41 - 2(1-B) = Brmes1) Zjel =0 j=1....q

- The ¢ sample moment conditions:

1 * *
T Z?=1{7”i,t+1 —hor (1= B) —Bir "me+1) Zj,t} = 0.
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GMM: Example 3 - MLE

* Suppose the conditional probability density function of the
continuous stationary random vector v,, given V ;= {v,_,v, ...} is

p (Vt; 00’Vt41)

* The MLE of 6, based on the conditional log likelihood function is
the value of which maximizes L(6) = Zln{p(v;0V, )}

= solving 0L.(6)/00 =0

¢ That is, the MLE is just the GMM estimator based on the
population moment condition

E[dlnip(v;6,V 1);/00} ] =

GMM: Summary

* The GMM estimator 6= argminﬂE 0Q (0 generates the f.o.c.
of
2T LS W S f v, ) = =)

Of (v, 6) . Ofi(we 0

where === is a qxk matrix with 7/ element ——,—= ~ 0

* There is typically no closed form solution for so it must be
obtained through numerical optimization methods.

Note: From (**), the GMM estimator is the MM estimator based on
population moments:

E2LDy W g v, 0]} = 0
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Example: IV estimation of linear model

e Linear IV framework:
y=X6,+¢ with E[X'g] #0.

* Let Z be a Txq vector of IV —i.e., E[Z'€] = 0. and E[ZX] # 0.

¢ We want to estimate 0, using GMM. Then, the GMM estimator
Or = argmin, . o {Qr(0) = [T £(6)'Z] Wr [T'Z'e(6)]}
(kx1) fo.c.:
(X'Z/T) Wy (2'e(65)/T) = 0
X'Z/Ty Wy (Z' (y-X 07)/T) = 0

or

= XZ/ YWy Zy/T) = X'Z/T) Wy (Z'X/T) 6;

Example: IV estimation of linear model
« From fo.c. X'Z/TYWy Zy/T) = X'Z/T) Wy (Z'X/T) 6

CASE 1. q = k -.c., just-identified- and (T''2’X) is nonsingular then
0= @X/T) Zy/T)
independently of the weighting matrix Wy.

CASE 2: q > k -i.e., over-identified.
0 = (X'Z/T) Wy (ZX/ D)} XZ/T) Wy @y/T)

Note: GMM = MM based on (£x1) population moment conditions
EX'ZIW E[Z' &) =0

(1) When g = k GMM = MM based on E[Z' €(6,)] = 0.

(2) When g> k GMM sets k linear combinations of E[Z" &(6,)] = 0.

But, in order to estimate 6, we only need k conditions!
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Identifying and overidentifying restrictions

* Recall (**). The GMM estimator is the MM estimator based on
(#x1) population moments

B W B (v, 4] ) = (oe)

*Let F(6) = W”E| | (a qxk matrix), with rank(F(0,))= k.

Of @i, 0)
od
(The rank condition is necessary for identification of 6).

* Rewrite (***) as
F(6) W”E[f (v, §)] = 0 or
F(0)[F(6,) F(G)]'F(8)" W E[f (v, 6)] = Py’ W*E[f (v, §)] =

* The LS projection of W E[f (v, 6,)] on to the column space of
F(8) is 0.

Identifying and overidentifying restrictions

* That is, the GMM estimator is based on rank{Pp}= k restrictions
on the (q x1) (transformed) population moment condition

W EIf (v, 0)].
* These are the identifying restrictions; GMM picks @ to satisfy them.

* The restrictions that are left over are

{I,— P} W*E[f (v, §)] =

* That is, the projection of W2 E[f (v, 6,)] on to the orthogonal
complement of F() is zero, generating g-£ restrictions on the
transformed population moment condition.

* These over-identifying restrictions are ignored by the GMM estimator!
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Identifying and overidentifying restrictions

* The over-identifying restrictions are ignored by the GMM estimator, so
they need not be satisfied in the sample.

* From (**),

wr” [% t=1f (v, O7)] = {Iq_PF}, wr” [% t=1f (v, 07)]

Thus, Q(6f) is like a sum of squared residuals, and can be
interpreted as a measure of how far the sample is from satisfying the
over-identifying restrictions.

Asymptotic properties of GMM IVE

 Under the usual regularity conditions, it can be shown that:
1) 6 = b
@) i 000/ Vea/ Tl > NOY
where Vi = X'ZWZ'X)'X'ZW S§ W Z'X X'ZW ;1 Z2'X)!
Sy =limy_,,, Var[Z'e/T]
* Assuming € is serially uncorrelated
Var[Z'¢/T] = E[{\/if Y128} {\/if Y178}

1
-7 Z{=1 E[S%tht,]

* Thus,

1 ’
Sr = T [ ?:1 S(H;")%tht ]
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GMM: Two-step estimator

* The asymptotic variance depends on the weighting matrix Wr.

* The optimal choice is W = S;7! to give Vp = (X'Z S;1Z'X)!

* But we need 6 to construct S¢ This suggests a two-step (iterative)
GMM procedure:

(1) Start with sub-optimal W (0), say I

(2) Using W (0) estimate 63(1) & Sp(1)

(3) Estimate with W (1)= 8;(1)"

(4) Using W () repeat steps (2)-(3) to get 0 (+1) & Sp(/+1) until

convergence.

GMM: Two-step estimator

* Note that if & is homoskedastic: var[g|X] = 6?1, = §p = #?ZZ'

where §2 is a consistent estimator of G2.

* Choosing this St to construct the weighting matrix Wy = Sl
Then,

6. = (X'Z(Z'2)"Z'X) ' X' Z(Z'Z)"Z'y
={X'X}' X'y

where X = P_X is the predicted value of X from a regression of X on
Z. This is the 2SLS estimator.
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Model specification test

* Identifying restrictions are satisfied in the sample regardless of
whether the model is correct.

* Over-identifying restrictions are not imposed in the sample. We can
use them to test the model.

Recall the gx1 population moment conditions E[Z’¢(§,)] = 0. We can
construct a Wald-type test to check if these ¢ conditions are met in
sample. The overidentifying restrictions test:

Jr=T Q) = T" e(0r)Z Sy T Z'e(6r)

d
Under Hy E[Z'e(6)] =0,  J1 — X5k

Testing C-CAPM: GMM

* GMM can naturally be applied in the C-CAPM. The Euler’s
equation, gives us a starting point for a moment condition:
1 =E[m(X¢41, 6) (1 + Ripsr) - 1]

* Let Z; be a set of [(I 2 k) instruments, available at time t. Then, for
each asset i :

EJZj {B(Cer1/C)7 (1 + Riprn) =111 =0 i =1 N;j=1,.., L.

Note: Now we have a lot of moments: [xN!

* GMM works with sample analogues of the population moments:

1 . *
g(v, 0r) = p Z:l Zi {Br (Ct+1/Ct)YT (1 +Rijty1) -1} =0.

10
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Testing C-CAPM: GMM - Remarks

* Q: How do we choose Z, the /instruments? Not a trivial question.

In general, predetermined regressors are viewed as OK.

* Note: Weak instruments are a problem. In theory, we only need
small correlation between Z and the model’s variables. However, the
bigger the correlation, the better:

= 50 weak instruments are no substitute for a good IV!

* Advantages of GMM approach:
- All we need is 2 moment condition.
- No need to log-linearize anything.
- Non-linearities are not a problem.
- Robust to heteroscedasticiy and distributional assumptions.

Testing C-CAPM: GMM - Remarks

* Practical Considerations:
- We need at least as many moment conditions as parameters (just-
identified case).

- If there are more moments —the usual case-, we have “over-
identifying restrictions.” Use them to test the model (J-test):

J =T Q) = T g, 0r) Si7' g, 6F) ~ Xixn—k
where Sy = Var[g(vy,0r)]

- Too many moments are not desirable in practice.

- The instruments (conditioning information) matter.

11
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Testing C-CAPM: GMM - Remarks

* Practical Considerations:

- Estimating S is tricky. In general, the moments will be serially
dependent. Newey-West (1987) does not work well when the
dimensions of the system is large. Small changes to S produces big
swings in estimated 0. (Sometimes is better to work with W=I!)

- Some questions regarding the small sample properties of GMM.

- The over-identifying restrictions are subject to a “which moments to
chooser” critique.

- The ] test also depends crucially on S; difficult to estimate accurately

- Not surprisingly, the J test rejects a lot of models. We should be
aware of its problems.

Testing C-CAPM: GMM - Example

* Taken from Hansen and Singleton (1982).
For each asset i, H&S have:

Bl Z: {BCts1/c)? (1 + Ripy1)—131=0, i=1,..,N.

R;; = NYSE stock returns (VW and EW).
¢¢= Consumption (Non-durables (ND) & ND plus services (NDS).)
Z;=lagged R, and ¢, /c,. (H&S use 1, 2, 4 and 6 lags.)

Findings: = 1 (around .99) and y small (between .32 to .03.) J-tests
reject C-CAPM.

* General problem with IVE of the C-CAPM: weak instruments. It’s
difficult to find IVs highly correlated with consumption growth.

* According to Hall’s (1978) consumption follows a random walk:
lagged R, and ¢, /c, should have low correlation with ¢, /c/!

12
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GMM estimation — General Case

* Go back to GMM estimation but let f be a vector of continuous
nonlinear functions of the data and unknown parameters.

* In our case, we have IN assets and the moment condition is:
E[{m(x¢, ) (1 + Ri¢) =1} Zje—1] = Elgs Zj 1] = 0,
using (lagged) instruments Zj ¢4 for each asseti =1, ..., N and

each instrumentj =1, ..., 4.

* Collect these as f(Vg, ) = zi_1" @ g:(Xt,0), where Z; is a 1xq
vector of instruments and €; is a Nx1 vector. f is a column vector
with N elements — it contains the cross-product of each instrument
with each element of €.

* Population moment condition: E[f(v¢, 65)] =0

GMM estimation — General Case

* The population moment condition is

Elf (v, 60)] = 0

* As before, let g7 0) = [= Xi—1 f (¥, 6)] . The GMM estimator is

1
T
Or = argming.e Q(0)

* The FOCs are
G(0r) Wr gr(0r) =0
where G(0) is a matrix of partial derivatives with i, j element

6gr,i/56;

13
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GMM Asymptotics: General Case

It can be shown that:
(1) b = b
d
2 (Or,i = O0,)/ [y Vri/T) — N@O,1)
where Asy Var(fp;) =V =M S M’ where
- M= (GO' W G))! GO'W
- G, = E[0f(v,0,)/007]
— S =lim_,,, Var[T"g(0)]

(3) A test of the model’s over-identifying restrictions is given by

d
Jr=TQu) — Xan-k

Covariance matrix estimation for GMM

* In practice Vi = My S*. My is a consistent estimator of V, where
- Mp = [G(0r) Wi G(07)] Gr(0%) W
- 87 is a consistent estimator of S
- Estimator of S depends on time series properties of f (¢, 8). In
general, it is
S=T,+%(I,+T))
where T, = E{f; — E(fp)} {ft—i — E(fe—0)}' = Elft fe—i] is the i )

autocovariance matrix of f; = f(vg, 6)).

* We can consistently estimate S with
St =To(fr) + 2 {T;(0r) + Ti(0p)'}

where

T (0) == 21y f (0, ) * f (g, 07

14
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Covariance matrix estimation for GMM

* If theory implies that the autocovatiances of f (v, 8)) = 0 for some
lag i, then we can exclude these from Sy —e.g., & = &(V¢, 0r) are
serially uncorrelated implies

Sr :% Z=1 {e(Ve, Or) e(ve, 07) ® (2,'2,)}

GMM Adjustments

¢ Iterated GMM is recommended in small samples

* More powerful tests by subtracting sample means of f (v, 0r) in
calculating T'; (6f)

* Asymptotic standard errors may be understated in small samples:
multiply asymptotic vatiances by “degrees of freedom adjustment’ T/ (1-£)
ot N+¢9)T/{(N+¢)T — £} where d = £+ (Ng)*+Ng)/2

15



