RS - Econometrics I - Lecture 1 (OLS)

Lecture 1
Least Squares

(for private use, not to be posted/shared online)

What is Econometrics?

* Ragnar Frisch, Econometrica Vol.1 No. 1 (1933) revisited
“Experience has shown that each of these three view-points, that of
statistics, economic theory, and mathematics, is a necessary, but not by itself a
sufficient, condition for a real understanding of the quantitative
relations in modern economic life.

It is the unification of all three aspects that is powerful. And it is this
unification that constitutes econometrics.”

Mathematical Statistics Econometrics

Dat .
o Economic Theory

Not to be posted/distributed online without written consent from author.



RS - Econometrics I - Lecture 1 (OLS)

What is Econometrics?

* Economic Theory:

- The CAPM: E[T'i - T'f] = Bi E[(TM - rf)]

* Mathematical Statistics:

- Method to estimate CAPM. For example,
Linear regression: ri-tr =+ By -15) T &

- Properties of b; (the LS estimator of [3;)

- Properties of different tests of CAPM. For example, a t-test for
Hy: o, = 0.

* Data: 13, 17, and 1y

- Typical problems: Missing data, Measurement errors, Survivorship
bias, Auto- and Cross-correlated returns, Time-varying moments.

Data: Population and Sample

Definition: Sample

The sample is a (manageable) subset of elements of the population.

Example: The total returns of the stocks on the S&P 500 index.

Get a sample
Population >

(DGP) Sample (size N or T)

Samples are collected to learn about the population. The process of
collecting information from a sample is referred to as sampling.

Definition: Random Sample

A random sample is a sample where the probability that any individual
member from the population being selected as part of the sample is
exactly the same as any other individual member of the population.

4
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Data: Population and Sample

Example: The total returns of the stocks on the S&P 500 index is #o?
a random sample of stock returns.

In mathematical terms, given a random variable X with distribution F,
a random sample of length N is a set of IN independent, identically
distributed (7.z.d.) random variables with distribution F.

* We will estimate population parameters using sample analogues:
mean, sample mean; vatiance, sample variance; B, b; etc.

¢ In general, in finance and economics, we do not deal with random
samples. The collected observations will have issues that make the
sample not a truly a random sample.

Data: Samples and Types of Data

* The samples we collect are classified in three groups:

* Time Series Data: Collected over time on one or more variables,
with a particular frequency of observation.

Example: We record for 10 years the monthly S&P 500 returns, or 10
IBM returns.

Usual notation: X¢, t=1,2,...,T.

* Cross-sectional Data: Collected on one or more variables collected
at a single point in time.

Example: Today we record all closing returns for the members of the
S&P 500 index.

Usual notation: X;, i=1,2,...,N.
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Data: Samples and Types of Data

¢ Panel Data: Cross-sectional data collected over time.

Example: The CRSP database collects daily prices of all U.S. traded
stocks since 1962.

Usual notation: x;,, [(=1,2,...,.N & t=1,2,...,T.

* The different types of data will present different problems; for
example, autocorrelation is a common problem in time series, while
cross-correlation is a common problem in cross-sections.

Estimation

* Two philosophies regarding models (assumptions) in statistics:
(1) Parametric statistics.

It assumes data come from a type of probability distribution and makes
inferences about the parameters of the distribution. Models are
parameterized before collecting the data.

Example: Maximum likelihood estimation.

(2) Non-parametric statistics.

It assumes no probability distribution —i.e., they are “distribution free.”
Models are not imposed « priori, but determined by the data.

Examples: histograms, kernel density estimation.

* In general, in parametric statistics we make more assumptions.
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Least Squares Estimation

¢ Old method: Gauss (1795, 1801) used it in

astronomy.

GS182
Idea: Carl E. Gauss (1777 — 1855, Germany)
* We model the behavior of a dependent variable y as a function of k
explanatory variables X. This function depends on ¢ unknown

parameters, 0. The relation between y and X is not exact; there is an
error, €. We have T observations of Y and X.

* We assume that the functional form is known. The model is:
Vi = j(xl’i, xz,i, ces xk,i; 9) + €, i = 1, 2, ceees T.

* We estimate 6 by minimizing a sum of squared errors:

) 2 2
min, {S(x; 0) = ZiT=1 & = 2?:1()’1’ — (X1, X205 - Xk i3 0)) }

Least Squares Estimation: OLS

* The estimator obtained is called the Least Squares (LS) estimator.

* LS is a general estimation method. It can be applied to almost any
function fx;, ).

* The functional form, fx;, 0), is dictated by theory or experience. In
this lecture, we work with the linear case:

Jxi,0) =By xq; By X0 FByxg; T+ By X
* Now, we estimate the vector 0 = {B,, B,, ..., B;} by minimizing
ey = VT 2 T 2
S(x; 8) = X1 & = Xi=1 (Vi — Br X, — Ba Xz — - — B Xi0)

In this case, we call this estimator the Ordinary Least Squnares (OLS)
estimator. (Ordinary = Linear functional form.)
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Least Squares Estimation: Example

Example: We want to study the effect of a CEO’s education (x) on a
firm’s CEO’s compensation (y). We build a CEO’s compensation
model including a CEO’s education (x) and other “control variables’
(W: experience, gender, etc.), controlling for other features that make
one CEO’s compensation different from another. That is,

yi= fxi, W, 0 +¢g, i=1,2, ., T

The term g, represents the effects of individual variation that have not
been controlled for with W, or x; and @1is a vector of parameters.

Usually, fix, 0) is linear. Then, the compensation model becomes:

yi =a+B x +y, Wyt v, Wy, +.. tg
We are interested in estimating 3, our parameter of interest, which
measures the effect of a CEO’s education on a CEO’s compensation.

Least Squares Estimation: Linear Algebra

* We will use linear algebra notation. That is,

y=/X0)+e
Vectors will be column vectors: ¥, X, and € are Tx1 vectors:
Y1
y=1: = Y =W1Y2 Y1l
yr
Xk1
X, = : = xk’: [Xk1 Xg e ka]
Xkt
€1
e=|+ = e = [g & ... €7]
er
X is a Txk matrix. = X = [x1 X3 ... Xg]
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Least Squares Estimation: Linear Algebra

X is a Txk matrix. Its columns are the k Tx1 vectors Xp. It is
common to treat X; as vector of ones:

X11 1
x,= =] =  x=[11..1=?
X1t 1

Note: Pre-multiplying a vector (1xT) by t (or * x, ) produces a scalar:

xk’ (=0 Xy =Xg1 T Xk T oo T Xgop = Z] xkj

Least Squares Estimation: Assumptions

¢ Typical Assumptions
(A1) DGP: y = fIX, 0) + € is correctly specified.
For example, f(x, ) = X B
(A2) Elg|X] = 0
(A3) Var[e|X] = o L;
(A4) X has full column rank —rank(X) = k—, where T = k.

* Assumption (Al) is called correct specification. We know how the data is
generated. We call y = fX, 0) + € the Data Generating Process (DGP).

Note: The errors, €, are called disturbances. They are not something we
add to fX, 6) because we don’t know precisely AX, ). No. The errors
are part of the DGP.
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Least Squares Estimation: Assumptions

 Assumption (A2) is called regression.

From Assumption (A2) we get:

® Ee[X]=0 = E[y[X]= fX, 0+ E[e|X] = /X, 0)
That is, the observed y will equal E[y | X] + random variation.

(if) Using the Law of Iterated Expectations (LIE):
Ele] = Ex[E[e| X]] = Ex[0] = 0

(iii) There is no information about € in X = Cov(g, X)=0.
Cov(e, X) = € - )X - py)] = E[eX]
= B[eX] = Ex[E[eX|X]] = Ex[X E[¢|X]] =0 (using LIE)
= Thatis, E[eX]=0 >elX

Least Squares Estimation: Assumptions

* From Assumption (A3)

o2 0 0
2
Varle|X]=2=[0 © Of=c21,
0 0 02

From (A3) we get
Var[e | X] = o°L; = Var[g] = 6?1,
Proof: Var[e] = E [Var[e|X]] + Var, [E[e|X]] = o*L;. =

This assumption implies
(i) homoscedasticity = E[e?|X] = 62 for all i.

(ii) no serial/ cross correlation = Elg; g |X] =0  for i#j.
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Least Squares Estimation: Assumptions

* From Assumption (A4) = the k independent variables in X are
linearly independent. Then, the kxk matrix X’X will also have full
rank —i.e., rank(X°X) = k.

Thus, X°X is invertible. We will need this result to solve a system of
equations given by the 1%-order conditions of Least Squares
Estimation.

Note: To get asymptotic results we will need more assumptions about

>

Least Squares Estimation: F.o.c.

* General functional form:

f(x;, 0 -0 is a vector of k parametets.

e Model:
yi=f(x,0) + ¢

* Objective function:

S5 ) = Sl £f = Sl = O, O
= 01— fOe, OY + 2 = fO2, OY + ... + {yr — f(xp, O
* We minimize S(x, 6) with respect to 6

d
S(;;, 6)' =2{y1—f e, DY —f'(x1,0) + -+ 2 {yr—f (7, D}—f'(x1,0))

= =21y, — f(xi, O} f'(x;, 0)}
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Least Squares Estimation: F.o.c.

* We minimize S(x, 6) with respect to &

Pl 23T~ fo O} f(xi, 0))

e We set the f.o.c.’s:
—2 ZiT{Yi - f(xirGLS)} f,(xirGLS)} =0
STy — f(x,00)} /(i 005)} =0 (normal equations)

* The normal equations (a kxk system) do not always have an analytic
solution. When f (x;, 6) is linear, we get an explicit solution, 8.5 = b.

* When f (x;, 0) is non-linear, we do not have an explicit solution for
0.5. The system can be solved numerically. In this case, the estimator
is usually referred as Non-linear 1 east Squares estimator, Oy ;.

CLM - OLS: Assumptions and Setup

* Suppose we assume a linear functional form for £x, 0):
(A)DGP: y =X, ) + e =X +¢

Now, we have all the assumptions behind classical linear regression model
(CLM):

(A1) DGP:y =X B + ¢ s correctly specified.

(A2) E[¢|X] = 0

(A3) Var[e|X] = o I;

(A4) X has full column rank —rank(X) = k, where T = k.

Objective function: S(x; 0) = Zg;l 8? =ge=y-XB)'y-Xp)
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CLM - OLS: Rules for Vector Derivatives

e Recall the rules for vector differentiation of linear functions and
quadratic forms:

(1) Linear function: y=f(x)=x'B+ o

where x and B are k-dimensional vectors and ® is a constant. Then,
Vi(x)=p

(2) Quadratic form: q=f(x)=x'Ax

where X is kx1 vector and A is a kxk matrix, with @;; elements. Then,

VFix)=A'x+Ax=A"+Ax

If A is symmetric, then Vf(x) =2 A x

Now, we apply them to S(x; ) = Y1_, €7 = €'e = (y — XB)' (y - XP)
=0y -BXy - yXp + pXXp)

CLM - OLS: Derivation

* Objective function: S(x; 0) = (y'y - BX'y — yXB + BXXB)
=(c—p'd—dp+ PAp)
=(c-2dp + BAP

* First derivative w.r.t. B: VSx; 0) = (2d +2AB)  (kx1 vector)

* F.o.c. (normal equations): -2 X'y — XX b) =0
= XX)b = Xy

* Assuming (X'X) is non-singular —i.e., invertible-, we solve for b:

=b=XX)'Xy (a kx1 vector)

Note: b is called the Ordinary Least Squares (OLS) estimator.
(Ordinary = fX, 0) is linear)
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CLM - OLS

* Example: One explanatory variable model.
(A1) DGP:y =B+ B,x + ¢

Objective function:  S(x;, 0) = Yrey €2 = Yi(yi — By — B x;)°

F.o.c. (2 equations, 2 unknowns):
By): 2% (i —by—byx;) (1) =0 =X, (y; —b; —bx;)) =0 O
By: 2% (Vi —by —byxy) (-x) =0 = X ;%= byx;—b,x?) =0 (2)

From(l): Ziyi—zib1—b22ixi20 :b1:}_/—b2f

From (2): % yi x— (b, X) Xix b, 5 x> = 0= b, = ?gl:gil

or, more elegantly, b, = Zl(;i(_,z)_(;)lz_ 2 = CEZS(IZSL')

OLS Estimation: Second Order Condition

* OLS estimator: b= XX)!' X'y
Note: (i) b=Bqs (Ordinary LS. Ordinary = linear)
(i) b is a (linear) function of the data (y;, x;).
(i) X'(y - Xb) = X'y - XX(X'X) X'y =Xe =0 =elX

* QQ: Is b is a minimum? We need to check the s.o.c.

o(y - Xb)'(y - Xb)

o = -2X'(y - Xb)
5 ( A(y - Xb)'(y - Xb)j
02 (y - Xb)'(y - Xb) ob

obob’ - ob’
0 column vector

0 row vector

= 2X'X
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OLS Estimation: Second Order Condition

T 2 T T
. Tiogxip  ZimqXpnXiz ..o Zim1Xi1Xig
0<e'e T T .2 T
T T _ox'x = 2| Zi=ixieXin ZimaXiz oo EimgXiaXik
dbob’
T T T 2
Tio1XigXi1  Zi=1XigXiz .- Zi=1Xig

If there were a single b, we would require this to be positive, which
it would be: 2 x’'x =2¥1_, x? > 0.

The matrix counterpart of a positive number is a positive definite

(pd) matrix.

A square matrix (mxm) A “takes the sign” of the quadratic form, z'A z,
where z is an »x1 vector. Then, z'A z is a scalar.

OLS Estimation: Second Order Condition

2 T T
Yo Xy ZimiXpXip ..o ZimqXiXik
T T 2 T
X'X = | Zi=1¥i2Xi1n  Zi=1Xiz .o Zi=XioXik
T T T 2
Yo XigXi1 TiqXigXiz - ZimqXig
2 . . . .
Xi1 Xi1Xi2 -+ Xij1Xig
2
=3I, Xi2Xi1 Xi2 e XipXik
. . . . 2
XigXi1 XigXiz -~ Xig

Definition: A matrix A is positive definite (pd) if z'A z >0 for any z.

For some matrices, it is easy to check. Let A = X'X (a kxk matrix).

Then, z'Az=2'X'Xz=vv=Y_,v?>0. W=Xz is Tx1)
= X'Xispd = bisa min!
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OLS Estimation: Second Order Condition

* A typical pd matrix has positive diagonal positive elements and the
off-diagonal elements are not too large in absolute value relative to
the diagonal elements. Keep in mind for later, that the diagonal
elements are positive.

* If Ais pd, then Al is also pd. Thus, (X'X)! is also pd.

* In multivariate calculus, the 2°¢ order condition requires the
evaluation of the matrix of second derivatives, the Hessian. If all the
leading principal minors are positive, then the critical point obtained
is a minimum. In our case, this means that the Hessian is pd.

Note: In general, we need eigenvalues of A to check this. If all the
eigenvalues are positive, then A is pd.

OLS Estimation — Properties

* The LS estimator of B, when fx, ) = X B is linear is
b=XX)'X'y = bisa (lincar) function of the data (y,,x)).
b= (XX)'X'y = (XX)! XX +5) = b+ (XX) "X

Under the typical assumptions, we can establish properties for b.

1) Expected value
E[b|X] = E[B|X] + E[XX)'X'e |X] =

That is, b is #nbiased (on average, we get the population parameter).
Recall, bias of an estimator, 8, is defined as: Bias(®, 0) = E[0] — 0

2) Variance
Var[b|X] = E[(b - B) (b - B)'| X] =XX)"! X’E[e ¢'| X] XX'X)"
= o2 (X'X)!
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OLS Estimation — Properties

3) BLUE (Best Linear Unbiased Estimator, or MVLUE).
Theorem: b is BLUE (Best Linear Unbiased Estimator, or MVLUE)).

Proof:
Letb*=Cy (linear in y)

E[b*|X] = E[Cy|X] = E[C(XB + €)|X] = B (unbiased if CX=I)
Var[b*|X] = E[(b* - B)(b* — B)'| X] = E[Ce £'C'| X] = 0> CC'

Now, let D = C - XX)' X' (note DX=0 & D'D a pd mattix)

Then, Var[b*|X] =o*D + XX)'X) D'+ XXX)1)
= DD’ + & (XX)" = Var[b|X] + DD, »

This result is known as the Gauss-Markov theorem.

OLS Estimation — Properties

4) Normal Distribution (under additional assumptions for €)
If we make an additional assumption:
(A5) g|X ~iid N(0, 6°L)

we can derive the distribution of b.

Since b = B + (X'X)'X'e, we have that b is a linear combination of
normal variables

= b|X ~id N(B, 62 (X’ X))

Note: From (1) & (2), we compute the MSE (Mean square error)
MSE[b|X] = E[[[(b - B)[?] = E[(b - B)" (b B)]

After some algebra, we get:

= MSE[b|X] = tr(Vatiance) + squared bias = tr[o? (X'X) ]
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OLS Estimation — MSE

* For a scalar estimator, 6, the MSE (Mean square error) is:
MSE[D|X] = E[0®-0)3 = E[{®-E[0)) + E[0]-0)}7
= B0 - B8] + E[0] - 67+ 2%0
= Var[0] + (Bias(®, 0))2

Note: The detivation can be done using Var[Z] = E[Z?] — (E[Z])?,
which generalizes to vectors Var[Z] = E[Z Z'| — E|Z] E|Z]'

* For a vector of estimators, 0, we compute the MSE as:

MSE[®] = E[|| @ - 0)]7] = E[® - 8) @ - 0)]

* Now, we compute the MSE of OLS b as:
MSE[b|X] = E[[|(b - B)||*|X] = E[(b - B)' (b - B) | X]

OLS Estimation — MSE

* The MSE of OLS b is:
MSE[b|X] = E[[|(b - B)[|*|X] = E[(b - B)' (b - B)|X]

From Properties (1) & (2), we can derive:
= MSE[b|X] = tr(Vat[b|X]) + squared bias = tr[o* (X'X)]

Note: In the derivation, we used the following result:
E[Z'AZ] = tr(A Var[Z]) + E[Z]' AE|Z]

where Z, is a random vector and A a comformable non-random

mattrix
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OLS Estimation — Variance
Example: One explanatory variable model.

(A1) DGP: y = B+ B,x + ¢

Varp | X] = o® (XX = o [Zl 1x; Zixiz Zixi2

— g2 —=tn g2 Azl
Vatb, | X] = o T(X; x?-Tx2) N Xi(xi—x)?

) 1 = 2—1
Varlba | X] = 0" ey = S

il X 1xil_1_ Z[T Tx ]_1
=0 _
Tx

Algebraic Results
* Important Matrices

(1) “Residual maker” M = I,- XXX)'X
My =y — X(X'X)'X'y = y — Xb = e (residuals)
MX =0

- M is symmetric -M=M
- M is idempotent -M*M =M
- M is singular — M does not exist. = rank(M) = T—k
(M does not have full rank. We have already proven this result.)
- Special case: X =i
MO=T—i(' )yt =1-ii'/T
My=y-i(')y't'y=y-iy

M? = de-meaning matrix.
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Algebraic Results
* Important Matrices

(2) “Projection matrix” P = XXX)'X'
Py =XXX)'X'y=Xb=y (fitted values)
Py is the projection of y into the column space of X.
PM=MP =0 (Projectyizon matrix)

PX=X
- P is symmetric -P=P
- P is idempotent -P*P =P
- P is singular —P!does notexist. = rank(P) = k
Algebraic Results

* Disturbances and Residuals
In the population: EX'g]=0.
In the sample: X'e =X'(y—Xb) =Xy - XXXX) X'y
=1/TX' e) = 0.

* We have two ways to look at y:

y = E[y|X] + &€ = Conditional mean + disturbance
y = Xb + e = Projection + residual
Y

Not to be posted/distributed online without written consent from author.
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Results when X Contains a Constant Term

¢ Let the first column of X be a column of ones. That is

X =[txy ... Xg]

]

* Then,
(1) Since X'e =0 = x,'e = 0 —the residuals sum to zero.
(2) Sincey =Xb + e =i{y=iXb+i{e=iXb

—=y=X%b

That is, the regression line passes through the means.

Note: These results are only true if X contains a constant term!

OLS Estimation — Example in R

Example: 3 Factor Fama-French Model:

Returns <- read.csv("http://www.bauer.uh.edu/rsusmel/phd/K-DIS-IBM.csv",
head=TRUE, sep=",")

y1 <- Returns$IBM; rf <- Returns$Rf;y <- y1 - rf

x1 <- Returns$Rm_Rf; x2 <- Returns$SMB; x3 <- Returns$ HML
T <- length(x1)

x0 <- matrix(1,T,1)

x <- cbind(x0,x1,x2,x3)

k <- ncol(x)

b <- solve(t(x)%*% x)%*% t(x)%*%y #b=XX)'X'y (OLS regtession)
e <-y - x%*%b # regression residuals, e

RSS <- as.numeric(t(e)%o*%e) # RSS

Sigma2 <- as.numeric(RSS/(T-k)) # Estimated 0® = & (See Chapter 2)
Var_b <- Sigma2*solve(t(x)%*% x) # Estimated Vat[b|X] = & (X'X)!
SE_b <- sqrt(diag(Var_b)) # SE[b|X]
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OLS Estimation — Example in R

> RSS
[1] 12.92964
> Sigma?2
[1] 0.03894471
> t(b)
x1 x2 x3

[1,] -0.2258839 1.061934 0.1343667 -0.3574959
>SE_b

x1 x2 x3
0.01095196 0.26363344 0.35518792 0.37631714

Note: You should get the same numbers using R’s linear model command, /# (use
summary(.) to print results):

fit <-lm(y ~ x -1)

summary(fit)

Frisch-Waugh (1933) Theorem

* Context: Model contains two sets of variables:
X = [[1,time] | | other variables) |
= [X; Xy /
* Regression model: Ragnar Frisch (1895 — 1973)
y = XB, +X,B,+ & (population)
= X,b, +X,b, + e (sample)

' ' -1 !

‘ o X'X, X'X, X'y

* OLS solution: b = XX)'X'y = XX XX X,
2“4 2 422 2

Problem in 1933: Can we estimate 3, without inverting the (k,+ k,) x
(k,+ k,) X’X matrix? The F-W theorem helps reduce computation,
by getting simplified algebraic expression for OLS coefficient, b,.
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F-W: Partitioned Solution

* We manipulate the normal equation, (y — Xb)' X = 0:

XX, X’1X2] b1]:[XI1Y]
X5X: X3X;11b; X,y

Then, focusing on the last row, we get
X5X1b; + X5X,b; = X3y
= by = (X3X)' X3(y — X;1by)

Then, b, is estimated with a regression of (y — X1bq) on X,

IfX5X,=0 (X, & X; are orthogonal)
=b, = (X'ZXZ)_l X5y (aregression of ¥ on X).

F-W: Partitioned Solution

* Back to the estimation of b, without inverting (X'X). We start with

’ r -1 ’
b1] _ [X1X: X1X2] [X1}’]
b, XX X5X, X5y

* To get by, we use the partitioned inverse

_ -1
XX, X, X, " [ e
XX, (4K

* With the partitioned inverse, we get:
by =[]y X1y + [T X5y

We need the partitioned inverse of (X'X).
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F-W: Partitioned Solution

* Recall from the Linear Algebra Review:

N Soe Zxy I O] gig I a2y Zxx O
Zyy Zyy 01 Zyx Lyy 0 1

2. Ry —ZyxRy 3 1 ;CIXZXY Z;Cl)( 0
0 ZYY_ZYXZ;(lXZXY _ZYXZ;CIX 1
3. EyZpZaZo] R N 1 z:;(1)(2)(1/ Z;(IX 0
0 I  DEZyuZy) D

where D=2y —Z 1 S vy ]

A Rsisght, |1 0 iy +E I ywDEnEyy ZiyZ D
0 7 — Dy Z oy D

F-W: Partitioned Solution

* Then,

. XX, X'X,
1. Matrix X'X =

XX XX

(G X) ™G X)X XD X (G X)) (G X)X XD
-DX,' X, (X, X,)™ D

where D =[X,'X, _X2')(1()(1')(1)_1)(1')(2]_1 :[Xz'([_X1()(1')(1)_1)(1)')(2]_1

=>D=[X,'M\X,]"

2. Inverse= {

The algebraic resultis: [17,;) = -D X,’X;(X;X))"!
[]_1(2,2) = D= [X,MX,]"

* Then, continuing the algebraic manipulation:

by =110y X\'Y + [ 1Mo X,y =
=-DX)X, X X)' X'y + DX,y = X, M X)X, M,y
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F-W: Partitioned Solution - Results

* Then, continuing the algebraic manipulation:
b, = X, MX,| X, M,y
= X' MM X[ X, M, M,y
= [X*2 'X*Z]-lx*z'y*
where Z* ="M, Z = residuals from a regression of Z on X,.

This is Frisch and Waugh’s result - the double residunal regression. We
have a regression of residuals on residuals!

* Back to original context. Two ways to estimate b,:
(1) Detrend the other variables. Use detrended data in the regression.

(2) Use all the original variables, including constant and time trend.

Detrend: Compute the residuals from the regressions of the variables
on a constant and a time trend.

Frisch-Waugh Result: Implications

* FW result:
b, = [X*,' X*,|'1X*,) y*
= X, M XX, My = [X,M,' M X,|'X,' M,'M,y

* Implications

- We can isolate a single coefficient in a regression.

- It is not necessary to ‘partial’ the other Xs out of y (M, is
idempotent)

- Suppose X, L X, (= X,'M, = X"). Then, we have the orthogonal
regression:

b, = X, X)X,y
b, = XXX,y
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Frisch-Waugh Result: Implications

Example: De-mean
LetX, =1 =P =ifd)li'=it(Mi=ii/T
=>Mz=z-ii'z/T=2z-1Z (M, demeans
z)
b, = X;MM,X,|"'X,'M,' M, y

Note: We can do linear regression on data in mean deviation form.

Application: Detrending G and PG

* Example taken from Greene
G: Consumption of Gasoline

PG: Price of Gasoline

Regression line is G = + 4.54239YEAR Regression line is PG =-211.06149 + _.10T90YEAR
325 R R R FR 45 [
00—+ s 409
77534 e 457
3.07
2503 S o
2 : L 25%--
[ ]
5 2 § 201
1 <
200 1 G-
1767 1.09----
1507 T | ! | B 59
25 i i i i i et 0 f—t—t———t ——t ——t
1955 1960 1985 1970 1975 1980 1985 1990 1995 200C 1855 19680 1965 1870 1975 1930 1985 1990 19885 2000
YEAR YEAR
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Application: Detrending Y

Regression line is Y = —— +167.952TTYEAR
13000 1 T T :

120007
110007
,100007-
3
Sa0001-
5
“a000-
7000

60007

5000 t t t : : : t t
1855 19680 1985 1970 1975 1980 1985 1990 1885 2000

YEAR

Y: Income
Y* =Y — (bR + 167.95277* Year)

Application: Detrended Regression

Regression of detrended Gasoline (M,;G) on detrended Price of
Gasoline (M,PG) detrended Income (M,Y)

namelist;xl=one, years

regr; lhs=pg;rhs=x1;res=pgstars
regr; lhs=y ;rhs=xl;res=ystar$
regr;lhs=g ;rhs=xl;res=gstar$
regr; lhs=gstar;rhs=pgstar, ystars

e Fomm Fomm o R Fomm +
|Variakle | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X|
f TR R Fom T T T —— o fomm +
PGSTAR -11.98265151 2.1171860 -5.660 L0000 .87954335E-14
TSTAR L4781809512E-01 .45261498E-02 10.565 L0000 -.48506384E-11

From the Gasoline data in Notes 3.

tommmm - o B ettt o B B it +
|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X|
tomm tmm e e o tmm tmmm - +
Constant 4154.597719 1748.6561 2.376 0237

YEAR -2.195824001 20679770 -2.422 .0213 1877.5000

PG -11.98265151 2.182345%4 -5.491 .0000 2.3166111

Y .4781809512E-01 .46654484E-02 10.249 0000 9232.8611
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Goodness of Fit of the Regression

* After estimating the model, we would like to judge the adequacy of
the model. There are two ways to do this:

- Visual: plots of fitted values and residuals, histograms of
residuals.

- Numerical measures: R?, adjusted R?, AIC, BIC, etc.

* Numerical measures. In general, they are simple and easy to
compute. We call them goodness-of-fit measures. Most popular: R2

* Definition: Variation

In the context of a model, we consider the variation of a
variable as the movement of the variable, usually associated with
movement of another variable.

Goodness of Fit of the Regression

* Total variation = Y;(y; — )% = y'My.

where M? = T —i(' i)1i’ = the M de-meaning matrix.

* Decomposition of total vatiation (assume X;= { —a constant.)
y =Xb + e, o)
M% = M’Xb + M’ = M’Xb + e (deviations from means)
y'Mly = b'X' MOYM™X)b + e’e
=b'’X' M’Xb + e'e (M? is idempotent & e’ M’X = 0)
TSS =SSR + RSS

TSS: Total sum of squares
SSR: Regression Sum of Squares (also called ESS: explained SS)
RSS: Residual Sum of Squares (also called SSE: SS of errors)
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A Goodness of Fit Measure

e TSS =SSR + RSS

* We want to have a measure that describes the fit of a regression.
Simplest measure: the standard error of the regression (SER)

SER = sqrt{RSS/(T - k)} = SER depends on units. Not good!

* R-squared (R?)
1 =SSR/TSS + RSS/TSS
R? = SSR/TSS = Regtression variation/Total variation
R?=b'X’'MXb/ yMy =1 —e'e/y'M'y
=0-) F-/y-p) y-iy)
=¥ y-Ty*/ Iy y-T¥

A Goodness of Fit Measure
* R?=SSR/TSS = b'’X'M’Xb/y'M% =1 —e'e/y'M’y

Note: R?is bounded by zero and one only if:
(a) There is a constant term in X —we need ¢ M°X=0!

(b) The line is computed by linear least squares.

* Adding regressors

R? never falls when regtressors (say z) are added to the regression.
2 2 2N,.%2
RXZ :RX +(1_RX)ryz

¢+ partial correlation coefficient between y and z.

Problem: Judging a model based on R? tends to over-fitting.
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A Goodness of Fit Measure

* Comparing Regressions

- Make sure the denominator in R? is the same - i.e., same left hand
side variable.

Example: Linear vs. Loglinear. Loglinear will almost always appear
to fit better because taking logs reduces variation.

* Linear Transformation of data
-Based on X, b = X'X)'X"y.
Suppose we work with X* = XH, instead (H is not singular).
P*y=X*b*= XHH'X 'XH)'H'X'y (recall (ABC)'=C-'B-1A™)
= XHH'X'X)'H"'H'X'y
=XX'X)' X'y =Py

= same fit, same residuals, same R?!

Adjusted R-squared
* R? is modified with a penalty for number of parameters: Adjusted-R?
- T-1) (I'-1) RSS
21 ( =1 LT )R
R=1=- Gy 0 -R) =1 =779 T55

= maximizing R? < minimizing [RSS/ (T — k)] = s2

* Degrees of freedom —i.e., (T — k)-- adjustment assumes something about
“unbiasedness.”

¢ R2includes a penalty for variables that do not add much fit. Can fall
when a variable is added to the equation.

e It will rise when a variable, say z, is added to the regression if and
only if the t-ratio on z is larger than one in absolute value.
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Adjusted R-squared

* Theil (1957) shows that, under certain assumptions (an important
one: the true model is being considered), if we consider two linear
models

M;: ¥y =XB; e

My ¥y =X, +e,

and choose the model with smaller ® (o, larger Adusted R?), we will
select the true model, M,, on average.

* In this sense, we say that “maximizing Adjusted R’ is an wnbiased
model-selection criterion.

* In the context of model selection, the Adjusted R? is also referred as

Theil’s information criteria.

Other Goodness of Fit Measures

* There are other goodness-of-fit measures that also incorporate
penalties for number of parameters (degrees of freedom).

¢ Information Criteria

- Amemiya: [e'e/(T - k)] x (1 + k/T)

- Akaike Information Criterion (A1C)
AIC=-2*InL+2*k L: Likelihood
= if normality AIC = T *In(e’e/T) + 2 *k (+constants)

- Bayes-Schwarz, Information Criterion (BIC)
BIC=-2InL +1In(T) *k
= if normality BIC = T *In(e’e/T) + In(T) * k (+constants)
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Other Goodness of Fit Measures

¢ It is common to ignore constants and divide by T. For example:

AIC = 1In(e’e/T) + (2/T) *k

* AIC and BIC are very popular for model selection (the lower, the
better). AIC has a small penalty for larger models (large k), BIC has a
larger penalty.

* For some specific model selection strategies, Mallows Cp statistic is
used (where p= k):

C, = RSS(k)/s* - T +2 *k
where RSS(k) is the RSS for the model with k regressors. C, is closely
related to R? (Kennard (1971)).

OLS Estimation — Example in R

Example: 3 Factor F-F Model (continuation) for IBM returns:

b <- solve(t(x)%*% x)%*% t(x)%*%oy #b=XX)'X"y (OLS regression)
e <-y - x%*%b # regression residuals, e

RSS <- as.numeric(t(e)%0*%e) # RSS

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared

Adj_R2_2 <- 1 - (T-1)/(T-K)*(1-R2) # Adjusted R-squared

AIC <-log(RSS/T)+2*k/T # AIC under N(.,.) —i.e., under (A5)
> R2

[1] 0.5679013 => The 3 factors explain 57% of the variation of IBM returns

> Adji_R2_2

[1] 0.5639968

> AIC

[1] -3.233779

Not to be posted/distributed online without written consent from author.



RS - Econometrics I - Lecture 1 (OLS)

Maximum Likelihood Estimation (MLE)

* Idea: Assume a particular distribution with unknown parameters.
Maximum likelihood (ML) estimation chooses the set of parameters
that maximize the likelihood of drawing a particular sample.

* Consider a sample (X, ..., X)) which is drawn from a pdf X 0)
where ¢ are parameters. If the X/’s are independent with pdf X, | )
the joint probability of the whole sample is:

LX|0)=fix,-x.10)=]] fx:16)

i=1

The function I(X] 0) --also written as L(X; 0)-- is called the /ikelihood
function. This function can be maximized with respect to  to produce
maximum likelihood estimates: ;1.

Maximum Likelihood Estimation (MLE)

e It is often convenient to work with the Log of the likelihood
function. That is,

In L(X| ) = Z; In ] 0)

* The ML estimation approach is very general. Now, if the model is
not correctly specified, the estimates are sensitive to the
misspecification.

Ronald A. Fisher, England (1890 — 1962)
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Maximum Likelihood Estimation: Example I

Let the sample be X= {5,6,7, 8,9, 10} drawn from a Normal(y, 1).
The probability of each of these points based on the unknown mean,
i, can be written as:

5_ 2
f(sl0) = p[—( 2“)]

_(6-w?
exp 2

flw =

-1~
B q

1
f(10]u) = ——exp

[_ (10 - u)z]
V21

Assume that the sample is independent.

Maximum Likelihood Estimation: Example I

Then, the joint pdf function can be written as:

1 G-w? (6-w?  (10-p?
LX) = —(271)6 ., EXP > > —]

The value of  that maximize the likelihood function of the sample
can then be defined by  max L(X|w).
U

It easier, however, to maximize the /log /ikelihood, In 1.(X| ). That is,

=—6 _G=w? (6-w? (10—-u)?
max|n(L(X|w)==/2In(2m) + B= : ]
—11)2 N2 N2
1si-derivative = i[[( B S Clo ) g € /D) ]
ou 2 2 2

Joe = (56— fimee) + (6 —Ayre) + -+ (10 — Q) =0
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Maximum Likelihood Estimation: Example I
Then, the first order conditions:

(5 —fAyre) + (6 — fyre) + -+ (10 — fiyp) = 0
SOlViﬁg fOt ﬁMLE:

5+6+7+8+9+10
. =

UpmLE = X

Maximum Likelihood Estimation (MLE)

* Under the assumed econometric model, the sample is the most
likely. We will assume the errors, €, follow a normal distribution:

(A5) g| X ~N(0, 0°I)

* Then, we can write the joint pdf of y as

2y _ 1 _ Ge=xB)?
fOelB,0®) = ——pw exp| ]

1
2mo2) 202

_ 2
I = Z:l 1 * exp [_ e - x¢B) ]

(271;0'2)1/2 o2

-T g'e
= (2m0?)” /2 x exp [_F

Taking logs, we have the log likelihood function

T T g'e
InL=—=In2m—=Inog? -—
2 2 20
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MLE: Cheat-Sheet for Vector Derivatives

* Consider the linear function: y=fx)=xB+o

where x and B are k-dimensional vectors and ® is a constant.
Then, VIx)=p

* Consider a quadratic form: q=f(x)=xAx

where X is kx1 vector and A is a kxk matrix, with a@;; elements.

Then, VIixX)==Ax+Ax=A+A)x
If A is symmetric, then Vf(x) =2 A x

67

MLE: Vector Foc & Solution

e Let 8 = (B, 0). Then, we want

_ Tiny
Max, {InL = —gln(Zn) — gln(az) _o XB;J(; XB)
= Zln(az) _O0'y-8X'y- y;XB +B'X'XB)
2 20
=_T 2y _ 0'y-2p'X'y+ B'X'XB)
= ZIH(U ) 7 }

* Then, 1st derivatives of In Lwith respect to f & o*

dlnL 1 ot ' 1 o1
=§(2Xy —ZXXB):;XS

B
dlnlL T €IE 1 €IE
= - (= — = (—)|— — T
da? 202 ( 20% 202 [02 ]

Not to be posted/distributed online without written consent from author.

34



RS - Econometrics I - Lecture 1 (OLS)

MLE: Vector Foc & Solution

* Then, the f.o.c.:

dlnL 1 1 _, = ™ y-1y/
35 :?Xe=;X(y—XBMLE)=0 = Burr = X'X)" X'y

do?

dlnL ( 1 >[ e'e —T] 0 52— e'e Y,y — XiBuwr)®
- MLE —

~2 ~2 =
26m15) |OMLE T

Note: The f.o.c. deliver the normal equations for B! The solution to
the normal equation, 8, j, is also the LS estimator, b.

* Nice result for b: ML estimators have very good properties!

ML: Score and Information Matrix
Definition: Score (or efficient score)

sp:g)=2108X 10) 3 Jlog(ftx; 10))
o0 i=1 o0
S(X; 0) is called the score of the sample. It is the vector of partial
derivatives (the gradient), with respect to the parameter 6. If we have
k parameters, the score will have a £x1 dimension.

Definition: Fisher information for a single sample:

2
E[(alog(f(X |e))j }: 1®)
09

I(0) is sometimes just called znformation. It measures the shape of the

log X 0).
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ML.: Score and Information Matrix

* The concept of information can be generalized for the £-parameter
case. In this case:

E{(along(alog LJT} _16)
20 20

This is Ax& matrix.

If L is twice differentiable with respect to 6, and under certain
regularity conditions, then the information may also be written as

T 2
E{(along(along ] _ EHS log(L(X | 9))]} o)
00 00 0000’
1(0) is called the znformation matrix (negative Hessian). It measures the
shape of the likelihood function.

ML.: Score and Information Matrix

* Properties of S(X; 0):

., OlogL(X|0)) _ ologf(x |10))
S(X@)_T_Z’le

(1) E[S(X; )] =0.

Jresop=1 = [T a0

c 1 o (x0) ., _

Y f(x;0) 00 fsd=0
'Wﬂx; O)dx =0 = E[S(x;0)]=0
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ML.: Score and Information Matrix

(2) Var[S(X; )= n (0)

| Olog /(x:6) afg(x; 9 f(x:0)dx=0

Let's differentiate the aboveintegral once more:

) . 2 .
J‘alog [0 I (x0) , I 0" 10g f(x30) 1 prae=0

00 06 0600
ologf(x;0)( 1 of(x:0)),, 0% log f(x;0) .. o,
J 4 (f(x;@) - J (o 0)dx+ J' o [ (s0dx=0
dlog f(x;0)Y . 0% log f(x;60) .o o,

I (Tj 1 9)dx+J'W F(x:0)dx =0
Ehalogf(x; Hﬂ - E{fﬂ 1ogf(x;6’)} 10
00 0600

Var[S(X;0)]=nVar|

dlog f(x:0), _
S =n10)

(3) Asymptotic Normality

apply the CLT to get:

estimatots.

ML.: Score and Information Matrix

If S(x; 0) are z.i.d. (with finite first and second moments), then we can
a
S4(% 0) = X S(; ) — N(0, [nI(6)])

Note: This an important result. It will drive the distribution of ML
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ML: Score and Information Matrix — Example

* Again, we assume:
yi=XP+eg; giNN(OaGZ)
or y=Xp+g &~ N(0,6%1;)

* Taking logs, we have the log likelihood function:
—_— ! —_—
InL = —gln(ZH) _ gln(az) _ O -XB)' (y —XB)

202

* The score function is —first derivatives of log L w.r.t. § = (B, %)

6lnL_i ’

B o2

dlnlL €/E €/E

doz _ﬁ_ _20'4') - (202)[ T]

ML: Score and Information Matrix — Example

* Then, we take second derivatives to calculate 1(0): :

2 T
Oln L =—Z X;X;'/c? =—L2X'X
opop’ i=1 ©

dlnL 1~
2,___428'xi
opoc P
OolnL 1 ¢g's 1 g's
o e e
ooc“0oc”' 26" © 20 ]
* Then,
1 1
10— pr 2L (XX 0
5000' 0 T
264
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ML: Regularity Conditions

* In deriving properties (1) and (2), we have made some implicit
assumptions, which are called regularity conditions:

(i) 0 lies in an open interval of the parameter space, €.

(i) The 1st derivative and 2nd derivatives of AX; ) w.r.t. 0 exist.

(iif) LCX; 0) can be differentiated w.r.t. § under the integral sign.

(iv) E[SCX; 6) 3 > 0, for all fin Q.

(v) T(X) L(X; 0) can be differentiated w.r.t. f under the integral sign.

Recall: If SCX; 0) are i.i.d. and regularity conditions apply, then we can
apply the CLT to get:

SEXG; ) %y N(O, z1(0)

ML: Cramer-Rao inequality

Theorem: Cramer-Rao inequality

Let the random sample (X, ..., X) be drawn from a pdf fX|6) and
let T=T(X,, ..., X,) be a statistic such that E[T]=u(6), differentiable in
0. Let b(6)= u(0) - 0, the bias in T. Assume regularity conditions. Then,

[w' (@) _[1+b'(O)]
nl(0)  nl(6)

Var(T) >

Regularity conditions:

(1) Olies in an open interval L of the real line.

() For all §in Q, 8/(X] 6)/50is well defined.

(3) JL(X| f)dx can be differentiated wrt. f under the integral sign

(4) E[S(X;6)2]>0, for all fin Q

(5) IT(X) L(X] 6)dx can be differentiated wrt. § under the integral sign
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ML: Cramer-Rao inequality

Var(r) » 1 OF _[L+0'(O)
~ nl(0) nl(0)

The lower bound for Var(T) is called the Cramer-Rao (CR) lower bound.

Corollary: If T(X) is an unbiased estimator of 6, then

Var(T) = (nl(6))™"

Note: This theorem establishes the superiority of the ML estimate over
all others. The CR lower bound is the smallest theoretical variance. It
can be shown that ML estimates achieve this bound, therefore, any
other estimation technique can at best only equal it.

Properties of ML Estimators

A

(1) Efficiency. Under general conditions, we have thét/e

Var( Osee ) > [nl (0)]
The right-hand side is the Cramer-Rao lower bound (CR-LB). If an
estimator can achieve this bound, ML will produce it.

(2) Consistency. We know that E[S(X; 6)]=0 and Var[S(X;; 0)]= 1(0).
The consistency of ML can be shown by applying Khinchine’s LLN
to S(X; ) and then to S (X; ) = X, S(X; 0).

Then, do a 15-order Taylor expansion of S (X ) around 6 vk
84 (X:0) =S, XsOy1p) +5,' X000~ Ornp)  10-6,1<10-0y 1< 5
$,(X:0) =S, (X;6,)(0—b,.)

S.(X; 0) and @i - 0) converge together to zero (i.e., expectation).
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Properties of ML Estimators

(3) Asymptotic Normality - Theorem:

Let the likelihood function be L(X}, X,,..., X, | 6). Under general
conditions, the MLE of 8 is asymptotically distributed as

Bure — N6, [nI(O)] )
Sketch of a proof. Using the CLT, we’ve already established
5,06 6) > N(O, #I(6)).
Then, using a first order Taylor expansion as before, we get
S (% ) =5 (X6 0)) - (0 =y
Notice that E[S'(x;; )]= -1(6). Then, apply the LLN to get

p p
S 0,9/n — -1(0). (using 0 *— 0.)
Now, algebra and Slutzky’s theorem for RV get the final result.

Properties of ML Estimators

(4) Sufficiency. If a single sufficient statistic exists for 0, the MLE of
6 must be a function of it. That is, O,z depends on the sample
observations only through the value of a sufficient statistic.

(5) Invariance. The ML estimate is invariant under functional
transformations. That is, if Oy g is the MLE of 0 and if g(6) is a
function of @ , then g(@y.g) is the MLE of g(6).
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