
RS - Econometrics I - Lecture 1 (OLS)

1Not to be posted/distributed online without written consent from author.

1

Lecture 1
Least Squares 

(for private use, not to be posted/shared online)

• Ragnar Frisch, Econometrica Vol.1 No. 1 (1933) revisited

“Experience has shown that each of these three view-points, that of 
statistics, economic theory, and mathematics, is a necessary, but not by itself a 
sufficient, condition for a real understanding of the quantitative 
relations in modern economic life. 

It is the unification of all three aspects that is powerful. And it is this 
unification that constitutes econometrics.”

EconometricsMathematical Statistics

Data
Economic Theory

What is Econometrics?
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What is Econometrics?

• Economic Theory: 

- The CAPM: E[𝑟 - 𝑟 ] = i E[(𝑟 - 𝑟 )]

• Mathematical Statistics: 

- Method to estimate CAPM. For example, 

Linear regression: 𝑟 - 𝑟 = αi +  i (𝑟 - 𝑟 ) + ε

- Properties of  bi (the LS estimator of  i) 

- Properties of  different tests of  CAPM. For example, a t-test for 

H0: αi = 0.

• Data: 𝑟 , 𝑟 , and 𝑟

- Typical problems: Missing data, Measurement errors, Survivorship 
bias, Auto- and Cross-correlated returns, Time-varying moments.

Definition: Sample

The sample is a (manageable) subset of  elements of  the population. 

Example: The total returns of  the stocks on the S&P 500 index.

4

Data: Population and Sample 

Get a sample 
Population 

(DGP) Sample (size N or  T)

Samples are collected to learn about the population. The process of  
collecting information from a sample is referred to as sampling. 

Definition: Random Sample 
A random sample is a sample where the probability that any individual 
member from the population being selected as part of  the sample is 
exactly the same as any other individual member of  the population. 
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Example: The total returns of  the stocks on the S&P 500 index is not 
a random sample of  stock returns.

In mathematical terms, given a random variable X with distribution F, 
a random sample of  length N is a set of  N independent, identically 
distributed (i.i.d.) random variables with distribution F. 

• We will estimate population parameters using sample analogues:
mean, sample mean; variance, sample variance; , b; etc.

• In general, in finance and economics, we do not deal with random 
samples. The collected observations will have issues that make the 
sample not a truly a random sample.

5

Data: Population and Sample 

• The samples we collect are classified in three groups:

• Time Series Data: Collected over time on one or more variables, 
with a particular frequency of observation. 

Example: We record for 10 years the monthly S&P 500 returns, or 10’ 
IBM returns. 

Usual notation: 𝑥 , 𝑡 = 1, 2, …, T.

• Cross-sectional Data: Collected on one or more variables collected 
at a single point in time. 

Example: Today we record all closing returns for the members of the 
S&P 500 index. 

Usual notation: 𝑥 , 𝑖 = 1, 2, …, N.

Data: Samples and Types of  Data

6
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• Panel Data: Cross-sectional data collected over time. 

Example: The CRSP database collects daily prices of all U.S. traded 
stocks since 1962.

Usual notation: 𝑥 , , 𝑖 = 1, 2, …, N  & 𝑡 = 1, 2, …, T.

• The different types of data will present different problems; for 
example, autocorrelation is a common problem in time series, while 
cross-correlation is a common problem in cross-sections.

Data: Samples and Types of  Data

7

• Two philosophies regarding models (assumptions) in statistics: 

(1) Parametric statistics.

It assumes data come from a type of probability distribution and makes 
inferences about the parameters of the distribution. Models are 
parameterized before collecting the data.

Example: Maximum likelihood estimation.

(2) Non-parametric statistics.

It assumes no probability distribution –i.e., they are “distribution free.” 
Models are not imposed a priori, but determined by the data.  

Examples: histograms, kernel density estimation.

• In general, in parametric statistics we make more assumptions.

Estimation
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• Old method: Gauss (1795, 1801) used it in 

astronomy.

Idea: 

• We model the behavior of a dependent variable 𝑦 as a function of 𝑘
explanatory variables 𝒙. This function depends on q unknown 
parameters, θ. The relation between 𝑦 and 𝒙 is not exact; there is an 
error, . We have T observations of Y and X. 

• We assume that the functional form is known. The model is:

𝑦 =  f(𝑥 , , 𝑥 , , …, 𝑥 , ; θ) + ε , 𝑖 = 1, 2, ...., T.

• We estimate θ by minimizing a sum of squared errors:

minθ {S(𝒙; θ) = ∑ ε  = ∑ 𝑦   𝑓 𝑥 , , 𝑥 , , …, 𝑥 , ; θ }

Carl F. Gauss (1777 – 1855, Germany)

Least Squares Estimation

• The estimator obtained is called the Least Squares (LS) estimator. 

• LS is a general estimation method. It can be applied to almost any 
function f(𝒙 , θ). 

• The functional form, f(𝒙 , θ), is dictated by theory or experience. In 
this lecture, we work with the linear case:

f(𝒙 , θ) = 1  𝑥 , + 2  𝑥 , + 3 x3,i + … + k  𝑥 , .

• Now, we estimate the vector θ = {1, 2, …, k} by minimizing 

S(𝒙; θ) = ∑ ε = ∑ 𝑦   1 𝑥 , 2 𝑥 , ⋯ 𝑘 𝑥 ,

In this case, we call this estimator the Ordinary Least Squares (OLS) 
estimator. (Ordinary = Linear functional form.)

Least Squares Estimation: OLS
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Example: We want to study the effect of a CEO’s education (𝑥) on a 
firm’s CEO’s compensation (y). We build a CEO’s compensation 
model including a CEO’s education (𝑥) and other “control variables” 
(W: experience, gender, etc.), controlling for other features that make 
one CEO’s compensation different from another. That is, 

𝑦 =  f( 𝑥 , Wi, θ) + i, i = 1, 2, ...., T.

The term i represents the effects of individual variation that have not 
been controlled for with Wi or  𝑥 and θ is a vector of parameters.

Usually, f(𝑥, θ) is linear. Then, the compensation model becomes:

𝑦 = α +   𝑥 + γ1 W1,i + γ2 W2,i + ... + i

We are interested in estimating , our parameter of interest, which 
measures the effect of a CEO’s education on a CEO’s compensation.

Least Squares Estimation: Example

• We will use linear algebra notation. That is,

𝒚 =  f(X, θ) + 
Vectors will be column vectors: 𝒚, 𝒙 , and  are Tx1 vectors: 

𝒚
𝑦
⋮
𝑦

 ⇒ 𝒚’ = [𝑦 𝑦 .... 𝑦 ] 

𝒙
𝑥
⋮
𝑥

 ⇒ 𝒙 ’= [𝑥 𝑥 .... 𝑥 ] 



⋮


 ⇒ ’ = [1 2 ....  ]

X is a Tx𝑘 matrix. ⇒ X = [𝒙𝟏 𝒙 .... 𝒙 ]

Least Squares Estimation: Linear Algebra
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X is a Tx𝑘 matrix. Its columns are the 𝑘 Tx1 vectors 𝒙 . It is 
common to treat 𝒙1 as vector of ones:

𝒙1 
𝑥
⋮
𝑥

 
1
⋮
1

⇒ 𝒙1’= [1 1 .... 1] = ί’

Note: Pre-multiplying  a vector (1xT) by ί (or ί’ xk ) produces a scalar:

𝒙 ’ ί = ί’ 𝒙 = 𝑥 + 𝑥 + .... + 𝑥 = ∑j 𝑥

Least Squares Estimation: Linear Algebra

• Typical Assumptions

(A1) DGP: 𝒚 = f(X, θ) +  is correctly specified. 

For example, f(x, θ) = X 
(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X) = 𝑘–, where T ≥ 𝑘.

• Assumption (A1) is called correct specification. We know how the data is 
generated. We call 𝒚 = f(X, θ) +  the Data Generating Process (DGP).

Note: The errors, , are called disturbances. They are not something we 
add to f(X, θ) because we don’t know precisely f(X, θ). No. The errors 
are part of the DGP.

Least Squares Estimation: Assumptions
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• Assumption (A2) is called regression.  

From Assumption (A2) we get:

(i) E[|X] = 0  E[𝒚|X] =  f(X, θ) + E[|X] = f(X, θ) 

That is, the observed 𝒚 will equal E[𝒚|X] + random variation. 

(ii) Using the Law of Iterated Expectations (LIE):

E[] = EX[E[|X]] = EX[0] = 0

(iii) There is no information about  in X  Cov(, X)=0. 

Cov(, X) = E[( - 0)(X - μX)] = E[X] 

 E[X] = EX[E[X|X]] = EX[X E[|X]] = 0     (using LIE)

 That is, E[X] = 0 ⇒   X.

Least Squares Estimation: Assumptions

• From Assumption (A3) 

Var[|X] = Σ = 

σ 0 ⋯ 0
0 σ ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ σ

= 2 IT

From (A3) we get  

Var[|X] = 2IT  Var[] = 2 IT

Proof: Var[] = Ex[Var[|X]] + Varx[E[|X]] = 2 IT. ▪

This assumption implies

(i) homoscedasticity  E[ε |X] = 2 for all 𝑖.

(ii) no serial/cross correlation  E[ε  ε |X] = 0 for 𝑖≠𝑗.

Least Squares Estimation: Assumptions
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• From Assumption (A4)  the 𝑘 independent variables in X are 
linearly independent. Then, the 𝑘x𝑘 matrix X’X will also have full 
rank –i.e., rank(X’X) = 𝑘.

Thus, X’X is invertible. We will need this result to solve a system of 
equations given by the 1st-order conditions of Least Squares 
Estimation.

Note: To get asymptotic results we will need more assumptions about 
X.

Least Squares Estimation: Assumptions

• General functional form:

𝑓 𝑥 , θ -θ is a vector of 𝑘 parameters. 

• Model: 

𝑦 = 𝑓 𝑥 , θ + ε

• Objective function: 

S(𝒙; θ) = ∑ ε  = ∑ 𝑦 𝑓 𝑥 , θ
= 𝑦  𝑓 𝑥 , θ  + 𝑦   𝑓 𝑥 , θ + … + 𝑦   𝑓 𝑥 , θ

• We minimize S(𝒙, θ) with respect to θ:
𝜕S(𝒙, θ)

𝜕θ
2 𝑦 𝑓 𝑥 , θ 𝑓′ 𝑥 , θ ⋯  2 𝑦 𝑓 𝑥 , θ 𝑓′ 𝑥 , θ

2∑ 𝑦   𝑓 𝑥 , θ  𝑓′ 𝑥 , θ

Least Squares Estimation: F.o.c.
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• We minimize S(𝒙, θ) with respect to θ:

S(𝒙, θ)
θ 2∑ 𝑦   𝑓 𝑥 , θ  𝑓′ 𝑥 , θ

• We set the f.o.c.’s: 

2∑ 𝑦   𝑓 𝑥 , θ  𝑓′ 𝑥 , θ 0

  ∑ 𝑦   𝑓 𝑥 , θ  𝑓′ 𝑥 , θ 0 (normal equations)

• The normal equations (a 𝑘x𝑘 system) do not always have an analytic 
solution. When 𝑓 𝑥 , θ is linear, we get an explicit solution, θ = b.

• When 𝑓 𝑥 , θ is non-linear, we do not have an explicit solution for  
θ . The system can be solved numerically. In this case, the estimator 
is usually referred as Non-linear Least Squares estimator, θ .

Least Squares Estimation: F.o.c.

CLM – OLS: Assumptions and Setup

• Suppose we assume a linear functional form for f(x, θ):
(A1’) DGP:  𝒚 = f(X, θ) +  = X  + 

Now, we have all the assumptions behind classical linear regression model 
(CLM):

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0 

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X) = 𝑘, where T ≥ 𝑘.

Objective function: S(𝒙; θ) = ∑ ε = ′ = (𝒚 – X)′ (𝒚 – X)
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• Recall the rules for vector differentiation of linear functions and 
quadratic forms:

(1) Linear function: 𝒚 = 𝑓 𝒙  = 𝒙′  +  
where 𝒙 and  are 𝑘-dimensional vectors and  is a constant. Then,

𝑓 𝒙  = 

(2) Quadratic form: q = 𝑓 𝒙  = 𝒙′ A 𝒙

where 𝒙 is 𝑘x1 vector and A is a 𝑘x𝑘 matrix, with 𝑎 elements. Then,

𝑓 𝒙  = A′ 𝒙 + A 𝒙 = (A′ + A) 𝒙

If A is symmetric, then 𝑓 𝒙  = 2 A 𝒙

Now, we apply them to   S(𝒙; θ) = ∑ ε = ′ = (𝒚 – X)′ (𝒚 – X)

= (𝒚′𝒚 – ′X′𝒚 – 𝒚′X + ′X′X) 

CLM – OLS: Rules for Vector Derivatives

• Objective function: S(𝒙; θ) = (𝒚′𝒚 – ′X′𝒚 – 𝒚′X + ′X′X) 

= (c – ′d – d′ + ′A) 

= (c – 2 d′ + ′A) 

• First derivative w.r.t. :    S(𝒙; θ) = (–2 d + 2 A )     (𝑘x1 vector)

• F.o.c. (normal equations): -2 (X′𝒚 – X′X b) = 0

 (X′X) b = X′𝒚

• Assuming (X′X) is non-singular –i.e., invertible-, we solve for b:
 b = (X′X)-1 X′𝒚 (a 𝑘x1 vector)

Note: b is  called the Ordinary Least Squares (OLS) estimator. 
(Ordinary = f(X, θ) is linear)

CLM – OLS: Derivation
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CLM – OLS

• Example: One explanatory variable model. 

(A1’) DGP: 𝒚 = 1+ 2 𝒙 + 

Objective function: S(𝑥 , θ) = ∑ ε  = ∑ 𝑦  – 1 – 2 𝑥

F.o.c. (2 equations, 2 unknowns):

(1): -2 Σi (𝑦 – b1 – b2 𝑥 ) (-1) = 0  Σi (𝑦 – b1 – b2 𝑥 ) = 0 (1)

(2): -2 Σi (𝑦 – b1 – b2 𝑥 ) (-𝑥 ) = 0  Σi (𝑦 𝑥 – b1𝑥 – b2 xi
2) = 0 (2)

From (1): ∑ 𝑦 – Σi b1 – b2 ∑ 𝑥 = 0 ⇒ b1 = 𝑦 – b2 �̅�

From (2): Σi 𝑦 xi – (𝑦 – b2 �̅�) Σi xi – b2 Σi xi
2 = 0 ⇒ b2 =

∑

∑ ̅

or, more elegantly, b2 =
∑ ̅

∑ ̅

,

 

2

     2

    =    

 colum n vector
                                    =    

 row  vector

                                    =   2


 


     

   



(y - Xb)'(y - Xb)
X'(y - Xb)

b
(y - Xb)'(y - Xb)

(y - Xb)'(y - Xb) b
b b b

X'X

OLS Estimation: Second Order Condition

• OLS estimator: b = (X′X)-1 X′𝒚
Note: (i) b = OLS. (Ordinary LS. Ordinary = linear)

(ii) b is a (linear) function of  the data (𝑦 , 𝑥 ).

(iii) X′(𝒚 - Xb) = X′𝒚 - X′X(X′X)-1X′𝒚 = X′e = 0 ⇒ e  X.

• Q: Is b is a minimum? We need  to check the s.o.c. 
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𝜕 e′e
𝜕b𝜕b′

2𝑿′𝑿 2

Σ 𝑥 Σ 𝑥 𝑥 . . . Σ 𝑥 𝑥
Σ 𝑥 𝑥 Σ 𝑥 . . . Σ 𝑥 𝑥

. . . . . . . . . . . .
Σ 𝑥 𝑥 Σ 𝑥 𝑥 . . . Σ 𝑥

If there were a single b, we would require this to be positive, which 
it would be: 2 𝒙 𝒙 = 2∑ 𝑥 0.

The matrix counterpart of a positive number is a positive definite 
(pd) matrix.

A square matrix (mxm) A “takes the sign” of  the quadratic form, z′A z, 
where z is an mx1 vector. Then, z′A z is a scalar. 

OLS Estimation: Second Order Condition

𝑿 𝑿

Σ 𝑥 Σ 𝑥 𝑥 . . . Σ 𝑥 𝑥
Σ 𝑥 𝑥 Σ 𝑥 . . . Σ 𝑥 𝑥

. . . . . . . . . . . .
Σ 𝑥 𝑥 Σ 𝑥 𝑥 . . . Σ 𝑥

Σ

𝑥 𝑥 𝑥 . . . 𝑥 𝑥
𝑥 𝑥 𝑥 . . . 𝑥 𝑥

. . . . . . . . . . . .
𝑥 𝑥 𝑥 𝑥 . . . 𝑥

Definition: A matrix A is positive definite (pd) if  z′A z >0 for any z. 

For some matrices, it is easy to check. Let A = X′X (a 𝑘x𝑘 matrix).

Then, z′A z = z′X′X z = 𝒗′𝒗 = ∑ 𝑣 > 0. (𝒗=Xz is Tx1)

⇒ X′X is pd ⇒ b is a min!

OLS Estimation: Second Order Condition
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• A typical pd matrix has positive diagonal positive elements and the 
off-diagonal elements are not too large in absolute value relative to 
the diagonal elements. Keep in mind for later, that the diagonal 
elements are positive. 

• If  A is pd, then A-1 is also pd. Thus, (X′X)-1 is also pd.

• In multivariate calculus, the 2nd order condition requires the 
evaluation of  the matrix of  second derivatives, the Hessian. If  all the 
leading principal minors are positive, then the critical point obtained 
is a minimum. In our case, this means that the Hessian is pd.

Note: In general, we need eigenvalues of  A to check this. If  all the 
eigenvalues are positive, then A is pd.

OLS Estimation: Second Order Condition

OLS Estimation – Properties

• The LS estimator of LS when f(x, θ) = X  is linear is

b = (X′X)-1X′ 𝒚 ⇒ b is a (linear) function of the data (yi ,xi). 

b = (X′X)-1X′ 𝒚 = (X′X)-1 X′(X + ) =  + (X′X)-1X′

Under the typical assumptions, we can establish properties for b.

1) Expected  value

E[b|X] = E[|X] + E[(X′X)-1X′ |X] = 

That is, b is unbiased (on average, we get the population parameter). 
Recall, bias of an estimator, θ, is defined as:  Bias(θ, θ) = E[θ] – θ

2) Variance

Var[b|X] = E[(b – ) (b – )′|X] =(X′X)-1 X’E[ ′|X] X(X′X)-1

= σ2 (X′X)-1
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OLS Estimation – Properties

3) BLUE (Best Linear Unbiased Estimator, or MVLUE).

Theorem: b is BLUE (Best Linear Unbiased Estimator, or MVLUE).

Proof:

Let b* = C 𝒚 (linear in 𝒚)

E[b*|X] = E[Cy|X] = E[C(X + )|X] =  (unbiased if CX=I)

Var[b*|X] = E[(b* – )(b* – )′|X] = E[C ′C ′|X] = σ2 CC′

Now, let D = C – (X′X)-1 X′ (note DX=0 & D′D a pd matrix)

Then, Var[b*|X] = σ2 (D + (X′X)-1X′) (D′ + X(X′X)-1) 

= σ2 DD′ + σ2 (X′X)-1 = Var[b|X] + σ2 DD′. ▪

This result is known as the Gauss-Markov theorem.

4) Normal Distribution (under additional assumptions for )
If we make an additional assumption: 

(A5) |X ~iid N(0, σ2IT)

we can derive the distribution of b.

Since b =  + (X′X)-1X′, we have that b is a linear combination of 
normal variables 

 b|X ~iid N(, σ2 (X’ X)-1)

Note: From (1) & (2), we compute the MSE (Mean square error)

MSE[b|X] = E[║(b – )║2] = E[(b – )′ (b – )]

After some algebra, we get:

 MSE[b|X] = tr(Variance) + squared bias = tr[σ2 (X′X)-1]

OLS Estimation – Properties
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• For a scalar estimator, θ, the MSE (Mean square error) is:

MSE[θ|X] = E[(θ – θ)2] = E[{(θ – E[θ]) + (E[θ] – θ)}2] 

= E[(θ – E[θ])2 + (E[θ] – θ)2 + 2 * 0 

= Var[θ] + (Bias(θ, θ))2

Note: The derivation can be done using  Var[𝑍] = E[𝑍2 ] – (E[𝑍])2, 
which generalizes to vectors Var[𝒁] = E[𝒁 𝒁′] – E[𝒁] E[𝒁]′

• For a vector of estimators, θ, we compute the MSE as:

MSE[θ] = E[║(θ – θ)║2] = E[(θ – θ)′ (θ – θ)]

• Now, we compute the MSE of OLS b as:

MSE[b|X] = E[║(b – )║2|X] = E[(b – )′ (b – )|X]

OLS Estimation – MSE

• The MSE of OLS b is:

MSE[b|X] = E[║(b – )║2|X] = E[(b – )′ (b – )|X]

From Properties (1) & (2), we can derive:

 MSE[b|X] = tr(Var[b|X]) + squared bias  = tr[σ2 (X′X)-1]

Note: In the derivation, we used the following result:

E[𝒁′ A 𝒁] = tr(A Var[𝒁]) + E[𝒁]′ A E[𝒁]

where 𝒁, is a random vector and A a comformable non-random 
matrix

OLS Estimation – MSE
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OLS Estimation – Variance

Example: One explanatory variable model. 

(A1’) DGP: 𝒚 = 1+ 2 x + 

Var[b|X] = σ2 (X′X)-1 σ2
∑ 1 ∑ 1𝑥
∑ 1𝑥 ∑ 𝑥

= σ2
𝑇 𝑇�̅�
𝑇�̅� ∑ 𝑥

Var[b1|X] = σ2 ∑

∑ ̅
σ2 ∑ /

∑ ̅

Var[b2|X] = σ2
∑ ̅

σ2
∑ ̅

Algebraic Results

• Important Matrices

(1) “Residual maker” M =  IT – X(X′X)-1X′
My = 𝒚 – X(X′X)-1X′𝒚 = 𝒚 – Xb = e (residuals)
MX = 0 

- M is symmetric – M = M′

- M is idempotent – M*M = M

- M is singular – M-1 does not exist. ⇒ rank(M) = T – 𝑘
(M does not have full rank. We have already proven this result.)

- Special case: X = ί 

M0 = I – ί(ί ί)-1 ί = I – ί ί/T 

M0 𝒚 = 𝒚 – ί(ί ί)-1 ί 𝒚 = 𝒚 – ί 𝒚
M0 = de-meaning matrix.
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• Important Matrices

(2) “Projection matrix” P = X(X′X)-1X′
P𝒚 = X(X′X)-1X′ 𝒚 = Xb = 𝒚 (fitted values)
P𝒚 is the projection of y into the column space of  X.  
PM = MP = 0  (Projection matrix)
PX = X

- P is symmetric – P = P′

- P is idempotent – P*P = P

- P is singular – P-1 does not exist.  rank(P) = 𝑘

Algebraic Results

s2

• Disturbances and Residuals 
In the population: E[X′ ]= 0.
In the sample: X′ 𝒆 = X′(y – Xb) = X′y – X′X(X′X)-1X′y

= 1/T(X′ 𝒆) = 0.

• We have two ways to look at y:
y = E[y|X] +  = Conditional mean + disturbance
y = Xb + 𝒆 = Projection + residual

Algebraic Results
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Results when X Contains a Constant Term

• Let the first column of X be a column of ones. That is

X = [ί 𝒙 .... 𝒙 ]

]

• Then, 

(1) Since X′ 𝒆 = 0  x1′𝒆 = 0 –the residuals sum to zero.

(2) Since 𝒚 = Xb + 𝒆  ί′𝒚 = ί′Xb + ί′ 𝒆 = ί′Xb

 𝒚 = 𝒙 b

That is, the regression line passes through the means.

Note: These results are only true if X contains a constant term!

OLS Estimation – Example in R

Example: 3 Factor Fama-French Model: 
Returns <- read.csv("http://www.bauer.uh.edu/rsusmel/phd/K-DIS-IBM.csv", 
head=TRUE, sep=",")

y1 <- Returns$IBM; rf <- Returns$Rf; y <- y1 - rf

x1 <- Returns$Rm_Rf; x2 <- Returns$SMB; x3 <- Returns$HML

T <- length(x1)

x0 <- matrix(1,T,1)

x <- cbind(x0,x1,x2,x3)

k <- ncol(x)

b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X′X)-1X′ y (OLS regression)

e <- y - x%*%b # regression residuals, e

RSS <- as.numeric(t(e)%*%e) # RSS

Sigma2 <- as.numeric(RSS/(T-k)) # Estimated σ2 = s2 (See Chapter 2)

Var_b <- Sigma2*solve(t(x)%*% x) # Estimated Var[b|X] = s2 (X′X)-1

SE_b <- sqrt(diag(Var_b)) # SE[b|X] 
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OLS Estimation – Example in R
> RSS 

[1] 12.92964

> Sigma2

[1] 0.03894471

> t(b)

x1        x2         x3

[1,] -0.2258839 1.061934 0.1343667 -0.3574959

> SE_b

x1         x2         x3 

0.01095196 0.26363344 0.35518792 0.37631714 

Note: You should get the same numbers using R’s linear model command, lm (use 
summary(.) to print results): 

fit <- lm(y ~ x -1)

summary(fit)

Frisch-Waugh (1933) Theorem

• Context:  Model contains two sets of variables:  

X =  [ [1,time] | [ other variables] ]  
=  [X1 X2] 

• Regression model:

𝒚 =  X11 + X22 +  (population)

= X1b1 + X2b2 + 𝒆 (sample)

• OLS solution:  b = (X′X)-1X′ 𝒚

Problem in 1933: Can we estimate 2 without inverting the (𝑘1+ 𝑘2) x 
(𝑘1+ 𝑘2) X’X matrix?  The F-W theorem helps reduce computation, 
by getting simplified algebraic expression for OLS coefficient, b2. 

Ragnar Frisch (1895 – 1973)
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F-W: Partitioned Solution

• We manipulate the normal equation, (𝒚 – Xb)′ X = 0: 

𝑿 𝑿 𝑿 𝑿
𝑿 𝑿 𝑿 𝑿

𝐛
𝐛

𝑿 𝒚
𝑿 𝒚

Then, focusing on the last row, we get
𝑿 𝑿 𝐛 𝑿 𝑿 𝐛  𝑿 𝒚

⇒ 𝐛 𝑿 𝑿  𝑿 𝒚  𝑿 𝐛

Then, 𝐛 is estimated with a regression of (𝒚  𝑿 𝐛 ) on 𝑿

If 𝑿 𝑿 = 0 (𝑿 & 𝑿 are orthogonal)

 𝐛 = 𝑿 𝑿  𝑿 𝒚 (a regression of 𝒚 on 𝑿 ).

F-W: Partitioned Solution

• Back to the estimation of 𝐛 , without inverting (X′X). We start with

𝐛
𝐛  

𝑿 𝑿 𝑿 𝑿
𝑿 𝑿 𝑿 𝑿

𝑿 𝒚
𝑿 𝒚

• To get 𝐛 , we use the partitioned inverse

𝑿 𝑿 𝑿 𝑿
𝑿 𝑿 𝑿 𝑿

• With the partitioned inverse, we get:  
𝐛 = [ ]-1(2,1) 𝑿 𝒚 + [ ]-1(2,2) 𝑿 𝒚

We need the partitioned inverse of (𝑿′𝑿). 

[ ]-1(2,2)
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• Recall from the Linear Algebra Review:
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The algebraic result is: [ ]-1
(2,1) = -D X2’X1(X1’X1)-1

[ ]-1(2,2) =  D = [X2’M1X2]-1

• Then, continuing the algebraic manipulation:  
b2 = [ ]-1(2,1) X1′𝒚 + [ ]-1(2,2) X2′𝒚 =

= -D X2’X1(X1’X1)-1 X1′𝒚 + D X2′𝒚 =  [X2′M1X2]-1X2′M1𝒚

F-W: Partitioned Solution
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• Then, continuing the algebraic manipulation:  

b2 = [X2′M1X2]-1X2′M1𝒚
= [X2′ M1′M1X2]-1X2′M1′M1𝒚
= [X*2 ′X*2]-1X*2′𝒚*

where  Z* = ′M1Z = residuals from a regression of Z on X1.

This is Frisch and Waugh’s result - the double residual regression. We 
have a regression of residuals on residuals!

• Back to original context. Two ways to estimate b2: 
(1) Detrend the other variables. Use detrended data in the regression. 
(2)  Use all the original variables, including constant and time trend. 

Detrend: Compute the residuals from the regressions of the variables 
on a constant and a time trend.

F-W: Partitioned Solution - Results

• FW result:
b2 = [X*2′ X*2]-1X*2′ 𝒚*

= [X2′ M1X2]-1X2′M1𝒚 = [X2′M1′ M1X2]-1X2′ M1′M1𝒚

• Implications
- We can isolate a single coefficient in a regression.

- It is not necessary to ‘partial’ the other Xs out of 𝒚 (M1 is 
idempotent)

- Suppose X1  X2 ( X2′M1 = X2′). Then, we have the orthogonal 
regression:

b2 = (X2′X2)-1X2′ 𝒚
b1 = (X1′X1)-1X1′ 𝒚

Frisch-Waugh Result: Implications
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Example: De-mean
Let X1 = ί  P1 = ί (ί′ ί)-1ί′ = ί (T)-1ί′ = ί ί′/T

 M1 z = z – ί ί′ z /T = z – ί 𝑧̅ (M1 demeans 
z)

b2 = [X2′M1′M1X2]-1 X2′ M1′ M1 𝒚

Note: We can do linear regression on data in mean deviation form.

Frisch-Waugh Result: Implications

Application: Detrending G and PG 

• Example taken from Greene
G: Consumption of  Gasoline 

PG: Price of  Gasoline
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Y: Income
Y* = Y – (******* + 167.95277* Year)

Application: Detrending Y 

Application: Detrended Regression

Regression of  detrended Gasoline (M1G) on detrended Price of  
Gasoline (M1PG) detrended Income (M1Y) 



RS - Econometrics I - Lecture 1 (OLS)

26Not to be posted/distributed online without written consent from author.

Goodness of Fit of the Regression

• After estimating the model, we would like to judge the adequacy of 
the model. There are two ways to do this:

- Visual: plots of fitted values and residuals, histograms of 
residuals.

- Numerical measures: R2, adjusted R2, AIC, BIC, etc. 

• Numerical measures. In general, they are simple and easy to 
compute. We call them goodness-of-fit measures. Most popular: R2.

• Definition: Variation

In the context of a model, we consider the variation of a 
variable as the movement of the variable, usually associated with 
movement of another variable.

• Total variation = ∑ 𝑦 𝑦 = 𝒚M0𝒚. 

where M0 = I – ί(ί ί)-1 ί = the M de-meaning matrix.

• Decomposition of total variation (assume X1= ί –a constant.)

𝒚 = Xb + 𝒆, so 

M0𝒚 = M0Xb + M0𝒆 = M0Xb + 𝒆 (deviations from means) 
𝒚M0𝒚 = b(X M0)(M0X)b + 𝒆𝒆

= bX M0Xb + 𝒆𝒆 (M0 is idempotent & 𝒆 M0X = 0)

TSS = SSR + RSS

TSS: Total sum of squares 

SSR: Regression Sum of Squares (also called ESS: explained SS)

RSS: Residual Sum of Squares (also called SSE: SS of errors)

Goodness of Fit of the Regression
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• TSS = SSR + RSS

• We want to have a measure that describes the fit of a regression. 
Simplest measure: the standard error of the regression (SER)

SER = sqrt{RSS/(T - 𝑘)}  SER depends on units. Not good!

• R-squared (R2)
1 = SSR/TSS + RSS/TSS
R2 = SSR/TSS = Regression variation/Total variation 
R2 = bXM0Xb/ 𝒚M0𝒚 = 1 – 𝒆𝒆/𝒚M0𝒚

= (𝒚 – ί𝑦) (𝒚 – ί𝑦)/(𝒚 – ί𝑦) (𝒚 – ί𝑦) 
=[ 𝒚 𝒚 – T 𝑦 ]/[𝒚 𝒚 –T 𝑦2]

A Goodness of  Fit Measure

• R2 = SSR/TSS = bXM0Xb/𝒚M0𝒚 = 1 – ee/𝒚M0𝒚

Note:  R2 is bounded by zero and one only if:
(a) There is a constant term in X –we need e’ M0X=0! 
(b) The line is computed by linear least squares.

• Adding regressors
R2 never falls when regressors (say z) are added to the regression.

ryz: partial correlation coefficient between y and z.

Problem: Judging a model based on R2 tends to over-fitting.

2*222 )1( yzXXXz rRRR 

A Goodness of  Fit Measure
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• Comparing Regressions

- Make sure the denominator in R2 is the same - i.e., same left hand 
side variable.  

Example: Linear vs. Loglinear. Loglinear will almost always appear 
to fit better because taking logs reduces variation. 

• Linear Transformation of data

- Based on X, b = (XX)-1X𝒚.

Suppose we work with X* = XH, instead (H is not singular). 

P*𝒚= X*b*= XH(HX XH)-1HX𝒚 (recall (ABC)-1=C-1B-1A-1)

= XHH-1(XX)-1 H-1 HX𝒚
= X(XX)-1 X𝒚 = P𝒚

 same fit, same residuals, same R2! 

A Goodness of  Fit Measure

• R2 is modified with a penalty for number of parameters: Adjusted-R2

𝑅2 = 1  
(T – 1)
(T – ) (1 – R2) = 1 

(T – 1)
(T – )  RSS

TSS

 maximizing 𝑅2  ⟺ minimizing [RSS/(T – 𝑘)] = 𝑠

• Degrees of freedom –i.e., (T – 𝑘)-- adjustment assumes something about 
“unbiasedness.”

• 𝑅2 includes a penalty for variables that do not add much fit.  Can fall 
when a variable is added to the equation. 

• It will rise when a variable, say z, is added to the regression if and
only if the t-ratio on z is larger than one in absolute value.

Adjusted R-squared
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• Theil (1957) shows that, under certain assumptions (an important 
one: the true model is being considered), if we consider two linear 
models 

M1: 𝒚 = X1β1 + ε1
M2: 𝒚 = X2β2 + ε2

and choose the model with smaller s2 (or, larger Adusted R2), we will 
select the true model, M1, on average. 

• In this sense, we say that “maximizing Adjusted R2” is an unbiased
model-selection criterion.

• In the context of model selection, the Adjusted R2 is also referred as 
Theil’s information criteria.

Adjusted R-squared

Other Goodness of Fit Measures

• There are other goodness-of-fit measures that also incorporate 
penalties for number of parameters (degrees of freedom).

• Information Criteria

- Amemiya: [ee/(T – 𝑘)]  (1 + 𝑘/T)

- Akaike Information Criterion (AIC)

AIC = – 2 * ln L + 2 * 𝑘 L: Likelihood

 if normality AIC = T * ln(e’e/T) + 2 * 𝑘 (+constants)

- Bayes-Schwarz Information Criterion (BIC)

BIC = –2 ln L + ln(T) * 𝑘
 if normality BIC = T * ln(e’e/T) + ln(T) * 𝑘 (+constants)
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Other Goodness of Fit Measures

• It is common to ignore constants and divide by T. For example:

AIC = ln(e’e/T) + (2/T ) * 𝑘

• AIC and BIC are very popular for model selection (the lower, the 
better). AIC has a small penalty for larger models (large 𝑘), BIC has a 
larger penalty.

• For some specific model selection strategies, Mallows Cp statistic is 
used (where p= 𝑘):

Cp = RSS(𝑘)/𝑠 – T + 2 * 𝑘
where RSS(𝑘) is the RSS for the model with 𝑘 regressors. Cp is closely 
related to 𝑅2 (Kennard (1971)). 

OLS Estimation – Example in R

Example: 3 Factor F-F Model (continuation) for IBM returns: 

b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X′X)-1X′ y (OLS regression)

e <- y - x%*%b # regression residuals, e

RSS <- as.numeric(t(e)%*%e) # RSS

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared 

Adj_R2_2 <- 1 - (T-1)/(T-k)*(1-R2) # Adjusted R-squared  

AIC <- log(RSS/T)+2*k/T # AIC under N(.,.) –i.e.,  under (A5)

> R2

[1] 0.5679013  The 3 factors explain 57% of the variation of IBM returns

> Adj_R2_2

[1] 0.5639968

> AIC

[1] -3.233779
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Maximum Likelihood Estimation (MLE)

• Idea: Assume a particular distribution with unknown parameters. 
Maximum likelihood (ML) estimation chooses the set of parameters 
that maximize the likelihood of drawing a particular sample.

• Consider a sample (X1, ... , Xn) which is drawn from a pdf f(X|θ) 
where θ are parameters. If the Xi’s are independent with pdf f(Xi|θ) 
the joint probability of the whole sample is:

)|Xf(=)|X...Xf(XL i

n

=1i

n1  )|(

The function L(X| θ) --also written as L(X; θ)-- is called the likelihood 
function. This function can be maximized with respect to θ to produce 
maximum likelihood estimates: 𝜃 .

• It is often convenient to work with the Log of the likelihood 
function. That is,

ln L(X|θ) = Σi ln f(Xi| θ).

• The ML estimation approach is very general. Now, if the model is 
not correctly specified, the estimates are sensitive to the 
misspecification.

Ronald A. Fisher, England (1890 – 1962)

Maximum Likelihood Estimation (MLE)
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Let the sample be X = {5, 6, 7, 8, 9, 10} drawn from a Normal(μ, 1).  
The probability of each of these points based on the unknown mean, 
μ, can be written as:

𝑓 5|𝜇
1

2𝜋
exp

5 𝜇
2

𝑓 6|𝜇
1

2𝜋
exp

6 𝜇
2

⋮

𝑓 10|𝜇
1

2𝜋
exp

10 𝜇
2

Assume that the sample is independent.

Maximum Likelihood Estimation: Example I

Then,  the joint pdf function can be written as: 

𝐿 𝑋|𝜇
1

2𝜋
exp

5 𝜇
2

6 𝜇
2

⋯
10 𝜇

2

The value of  that maximize the likelihood function of the sample 
can then be defined by max 𝐿 𝑋|𝜇 .

It easier, however, to maximize the log likelihood, ln L(X|μ). That is,

max ln 𝐿 𝑋|𝜇 = ⁄ ln 2𝜋 + ⋯

1st-derivative ⇒ 𝐾 ⋯

f.o.c.  5 �̂� 6 �̂� ⋯ 10 �̂� 0

Maximum Likelihood Estimation: Example I
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Then,  the first order  conditions: 

5 �̂� 6 �̂� ⋯ 10 �̂� 0

Solving for μ :

    �̂�
5 6 7 8 9 10

6
  𝑥

_

Maximum Likelihood Estimation: Example I

Maximum Likelihood Estimation (MLE)

• Under the assumed econometric model, the sample is the most 
likely. We will assume the errors, , follow a normal distribution:

(A5) |X ~N(0, σ2IT)

• Then, we can write the joint pdf of 𝒚 as

𝑓 𝑦 |β,𝜎 ∗ exp   

 𝐿 ∏ ∗ exp   

= 2𝜋𝜎 ⁄ ∗ exp  

Taking logs, we have the log likelihood function

ln 𝐿 ln 2𝜋 ln𝜎  
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67

• Consider the linear function: 𝒚 = 𝑓 𝒙  = 𝒙’  +  
where 𝒙 and  are 𝑘-dimensional vectors and  is a constant.

Then,   𝑓 𝒙  = 

• Consider a quadratic form: q = 𝑓 𝒙  = 𝒙’ A 𝒙

where 𝒙 is 𝑘x1 vector and A is a 𝑘x𝑘 matrix, with 𝑎 elements.

Then,   𝑓 𝒙  = = A’ 𝒙 + A 𝒙 = (A’ + A) 𝒙

If A is symmetric, then 𝑓 𝒙  = 2 A 𝒙

MLE: Cheat-Sheet for Vector Derivatives

• Let θ = (β, σ). Then, we want 

Maxθ ln 𝐿 = ln 2𝜋 ln 𝜎 𝒚  𝐗𝛃 𝒚  𝐗𝛃  

= ln 𝜎 𝒚 𝒚  𝛃 𝐗 𝒚  𝒚 𝐗𝛃  𝛃 𝐗 𝐗𝛃  

= ln 𝜎 𝒚 𝒚  𝛃 𝐗 𝒚  𝛃 𝐗 𝐗𝛃  
}

• Then, 1st derivatives of ln 𝐿with respect to β & σ2:

2𝐗 𝐲 2𝐗 𝐗𝛃 𝐗′𝛆

𝛆 𝛆  𝛆 𝛆 𝑇

MLE: Vector Foc & Solution
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• Then, the f.o.c.:

𝜕 ln 𝐿
𝜕𝛽

1
𝜎

𝐗 𝒆
1
𝜎

𝐗 𝒚 𝐗𝛃 0    ⇒ 𝛃 𝐗 𝐗 𝐗 𝒚

𝜕 ln 𝐿
𝜕𝜎

1
2𝜎

𝐞 𝐞
𝜎

𝑇 0 ⇒ 𝜎
𝐞 𝐞
𝑇

∑ 𝑦 𝐗 𝛃
𝑇

Note: The f.o.c. deliver the normal equations for β! The solution to 
the normal equation, βMLE, is also the LS estimator, b. 

• Nice result for b: ML estimators have very good properties!

MLE: Vector Foc & Solution

Definition: Score (or efficient score)

S(X; θ) is called the score of the sample. It is the vector of partial 
derivatives (the gradient), with respect to the parameter θ. If we have 
k parameters, the score will have a kx1 dimension.

Definition: Fisher information for a single sample:

I(θ) is sometimes just called information. It measures the shape of the 
log f(X|θ). 

ML: Score and Information Matrix
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• The concept of information can be generalized for the k-parameter 
case. In this case:

This is kxk matrix.

If L is twice differentiable with respect to θ, and under certain 
regularity conditions, then the information may also be written as9

I(θ) is called the information matrix (negative Hessian). It measures the 
shape of the likelihood function. 
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ML: Score and Information Matrix

• Properties of S(X; θ):

(1) E[S(X; θ)] = 0.
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(2) Var[S(X; θ)]= n I(θ) 
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ML: Score and Information Matrix

(3) Asymptotic Normality

If S(xi; θ) are i.i.d. (with finite first and second moments), then we can 
apply the CLT to get:

Sn(X; θ) = Σi S(xi; θ)  
  

 𝑁 0, 𝑛𝐼 𝜃

Note: This an important result. It will drive the distribution of ML 
estimators.

ML: Score and Information Matrix
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• Again, we assume:

• Taking logs, we have the log likelihood function:

ln 𝐿 = ln 2𝜋 ln 𝜎 𝒚  𝐗𝛃 𝒚  𝐗𝛃  

• The score function is –first derivatives of log L w.r.t. θ = (β, 𝜎 ):

𝐗′𝛆

𝛆 𝛆  𝛆 𝛆 𝑇

ML: Score and Information Matrix – Example
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• Then, we take second derivatives to calculate I(θ): :
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ML: Score and Information Matrix – Example

• Then,  
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• In deriving properties (1) and (2), we have made some implicit 
assumptions, which are called regularity conditions:

(i) θ lies in an open interval of the parameter space, Ω.

(ii) The 1st derivative and 2nd derivatives of f(X; θ) w.r.t. θ exist.

(iii) L(X; θ) can be differentiated w.r.t. θ under the integral sign.

(iv) E[S(X; θ) 2] > 0, for all θ in Ω.

(v) T(X) L(X; θ) can be differentiated w.r.t. θ under the integral sign.

Recall: If S(X; θ) are i.i.d. and regularity conditions apply, then we can 
apply the CLT to get:

S(X; θ) N(0, n I(θ))a

ML: Regularity Conditions

Theorem: Cramer-Rao inequality

Let the random sample (X1, ... , Xn) be drawn from a pdf  f(X|θ) and 
let T=T(X1, ... , Xn) be a statistic such that E[T]=u(θ), differentiable in 
θ. Let b(θ)= u(θ) - θ, the bias in T. Assume regularity conditions. Then,

Regularity conditions:

(1) θ lies in an open interval Ω of  the real line.

(2) For all θ in Ω, δf(X|θ)/δθ is well defined.

(3) ∫L(X|θ)dx can be differentiated wrt. θ under the integral sign

(4) E[S(X;θ)2]>0, for all θ in Ω

(5) ∫T(X) L(X|θ)dx can be differentiated wrt. θ under the integral sign
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The lower bound for Var(T) is called the Cramer-Rao (CR) lower bound.

Corollary: If  T(X) is an unbiased estimator of  θ, then

Note: This theorem establishes the superiority of  the ML estimate over 
all others. The CR lower bound is the smallest theoretical variance. It 
can be shown that ML estimates achieve this bound, therefore, any 
other estimation technique can at best only equal it.
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ML: Cramer-Rao inequality

Properties of ML Estimators

(1) Efficiency. Under general conditions, we have that 

The right-hand side is the Cramer-Rao lower bound (CR-LB). If an 
estimator can achieve this bound, ML will produce it.

(2) Consistency. We know that E[S(Xi; θ)]=0 and Var[S(Xi; θ)]= I(θ). 

The consistency of ML can be shown by applying Khinchine’s LLN 
to S(Xi,; θ) and then to Sn(X; θ) = Σi S(Xi,; θ).

Then, do a 1st-order Taylor expansion of Sn(X; θ) around

Sn(X; θ)  and (         - θ) converge together to zero (i.e., expectation).

MLE
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(3) Asymptotic Normality - Theorem:

Let the likelihood function be L(X1, X2,…, Xn| θ). Under general 
conditions, the MLE of θ is asymptotically distributed as

𝜃  
  

 𝑁 𝜃, 𝑛𝐼 𝜃

Sketch of a proof. Using the  CLT, we’ve already established

Sn(X; θ) → N(0, nI(θ)).

Then, using a first order Taylor expansion as before, we get

Notice that E[Sn′(xi ; θ)]= -I(θ). Then, apply the LLN to get

Sn′ (X; θn*)/n → -I(θ). (using θn* → θ.)

Now, algebra and Slutzky’s theorem for RV get the final result.

)ˆ (
n

1
) (X;'S

n

1
) (X;S

1/2
*

n1/2n MLEn  

Properties of ML Estimators

(4) Sufficiency. If a single sufficient statistic exists for θ, the MLE of 
θ must be a function of it. That is, 𝜃 depends on the sample 
observations only through the value of a sufficient statistic.

(5) Invariance. The ML estimate is invariant under functional 
transformations. That is, if  𝜃 is the MLE of θ and if g(θ) is a 
function of θ , then g(𝜃 ) is the MLE of g(θ). 

Properties of ML Estimators


