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Numerical Integration

Idea: Do an integral in small parts, like the way we presented 
integration; i.e., a summation.

Numerical methods just try to make it faster and more accurate.
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• Idea: Weighted sum of  function values to approximate integral
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Basic Numerical Integration

• Task: Find appropriate ci’s (weights) and the xi’s (nodes). 
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• We want to find integration of  functions of  various forms of  the 
equation known as the Newton-Cotes integration formulas (“rules”).

• Newton-Cotes formula

Assume the value of  𝑓 𝑥 defined on [𝑎, 𝑏] is known at equally 
spaced points 𝑥௜ (𝑖 = 0, 1, ..., 𝑛), where 𝑥଴ = 𝑎, and 𝑥௡ = 𝑏. Then, 

׬ 𝑓 𝑥  𝑑𝑥
௕
௔ = ∑ 𝑐௜ 𝑓ሺ𝑥௜ሻ

௡
௜ୀଵ ,

where 𝑥௜= ℎ 𝑖 + 𝑥଴, with ℎ (“step size”) = (𝑥௡− 𝑥଴)/𝑛 = (𝑏 − 𝑎)/𝑛. 

The 𝑐௜ 's are called weights. The 𝑥௜ 's are called nodes. The precision of  
the approximation depends on 𝑛. 

Note: The N-C rules use nodes equally spaced. But, they do not 
have to be –unequally spaced nodes are OK too.

Basic Numerical Integration
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• Weights 

In the N-C formulae, they are derived from an approximation 
required to be equal for a polynomial of order lower or equal to the 
degree of the polynomials used to approximate the function. In 
other methods, weights and nodes can be derived jointly.

• Error analysis 

The error of the approximation is the difference between the value 
of the integral and the numerical result:

error = 𝜀 ׬ = 𝑓 𝑥  𝑑𝑥
௕
௔ – ∑ 𝑐௜ 𝑓ሺ𝑥௜ሻ

௡
௜ୀଵ

The errors are frequently approximated using Taylor series for 
𝑓ሺ𝑥ሻ. The error analysis gives a strict upper bound on the error, if 
the derivatives of f are available. 

Basic Numerical Integration
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Newton-Cotes Formula
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• Different methods use different polynomials to get the 𝑐௜ 's. 

• Newton-Cotes Closed Formulae – Use both end points

– Trapezoidal Rule : Linear

– Simpson’s 1/3-Rule : Quadratic

– Simpson’s 3/8-Rule : Cubic

– Boole’s Rule : Fourth-order 

• Newton-Cotes Open Formulae – Use only interior points

– midpoint rule

Newton-Cotes Formula
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• Straight-line approximation

The trapezoid rule approximates the region under the graph 
of the function 𝑓ሺ𝑥ሻ as a trapezoid and calculating its area. 
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Approximate 
integral by the 
trapezoid’s area.

Trapezoid Rule
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Trapezoid Rule – Derivation

• We use a Lagrange approximation (a polynomial) for 𝑓ሺ𝑥ሻ over 
the interval (𝑥n – 𝑥0) (Lagrange interpolation), given by
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• Then, we integrate the Lagrange polynomial to obtain the 
trapezoid rule
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• For the case, 𝑛 = 2, with the interval (𝑥1 – 𝑥0):
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Trapezoid Rule – Derivation

• Integrating: 
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 The weights depend only on ℎ! 

• This approximation may be poor. The approximation error is:

𝜀 ׬ = 𝑓 𝑥  𝑑𝑥
௕
௔ – ∑ 𝑐௜ 𝑓ሺ𝑥௜ሻ

௡
௜ୀଵ

= -(𝑏 – 𝑎)3/(12) 𝑓′′ η ,      η ∈ [𝑎, 𝑏].

• Thus, if  the integrand is convex –i.e., positive second 
derivative–, the error is negative. That is, the trapezoidal rule 
overestimates the true value of  the integral. 
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Evaluate the integral

• Exact solution

• Graph
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Trapezoid Rule – Example
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Evaluate the integral

• Trapezoidal Rule: Approximation Error

𝜀 = -(𝑏 – 𝑎)3/(12) 𝑓′′ η , (η is a number between 𝑎 and 𝑏).

Let’s take η =2. Then

𝜀 = -43/12 * [2*exp(2*2) + 2*exp(2*2) + 4*(2)*exp(2*2)] 

= -3494.282

• Trapezoidal Rule
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Trapezoid Rule – Example
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Simpson’s 1/3-Rule (Kepler’s Rule)

• Approximate the function by a parabola
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Simpson’s 1/3-Rule – Derivation

• Use a quadratic Lagrange interpolation:
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• Integrate the Lagrange interpolation

• Again, the weights depend only on ℎ! 

Simpson’s 1/3-Rule – Derivation

Thomas Simpson (1710 – 1761, England) 
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• Approximate by a cubic polynomial
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Simpson’s 3/8-Rule
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• Lagrange interpolation

• Integrate to  obtain the rule

Simpson’s 3/8-Rule
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Evaluate the integral

• Simpson’s 1/3-Rule: Approximation Error

𝜀 = -(𝑏 – 𝑎)5/(2880) 𝑓ሺସሻ η (η∈ ሾ𝑎, 𝑏]).

Since f (4)(η) >0, the error is negative (overshooting).

Let’s take η=2.5. Then,

𝜀 = -45/(2880) [{exp(2*2.5)*[16*(2.5)+32]} =-3799.3769 

• Simpson’s 1/3-Rule
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Simpson’s Rule: Example
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Evaluate the integral

• Simpson’s 3/8-Rule

• Simpson’s 3/8-Rule: Approximation Error

𝜀 = -(𝑏 – 𝑎)5 /(6480) f (4)(η) (η∈ ሾ𝑎, 𝑏]).
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Simpson’s Rule: Example
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Midpoint Rule

• Newton-Cotes Open Formula

where η ∊ ሾ𝑎, 𝑏].
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The midpoint 
rule amounts to 
compute the 
area of  the 
rectangle

• Note: This rule does not make any use of  the end points.
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Two-point Newton-Cotes Open Formula

• Approximate by a straight line
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Three-point Newton-Cotes Open Formula

• Approximate by a parabola
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Better Numerical Integration

• Composite integration 

– Composite Trapezoidal Rule

– Composite Simpson’s Rule

• Richardson Extrapolation

• Romberg integration
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To improve the Trapezoid Rule, first splits the interval of  integration 
ሾ𝑎, 𝑏] into N smaller, uniform subintervals, and then applies the 
trapezoidal rule on each of  them. 

Composite Trapezoid Rule
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Composite Trapezoid Rule
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• Use the Trapezoid Rule in n intervals. Then, add them together.
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• Evaluate the integral dxxeI
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Composite Trapezoid Rule
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• Evaluate the integral

Use the following ℎi‘s: {ℎ1=2, ℎ2=1, ℎ3=0.5, ℎ4=0.5}
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Composite Trapezoid Rule: Unequal Segments
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• Piecewise Quadratic approximations
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Composite Simpon’s Rule
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• Evaluate the integral

• Using 𝑛 = 2, ℎ = 2

• Using 𝑛 = 4, ℎ = 1
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• Evaluate the integral

Using ℎ1 = 1.5, ℎ2 = 0.5 
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Composite Simpson’s Rule: Unequal Segments

32

• Newton-Cotes Formulae

- Nodes (𝑥௜ 's): Use evenly-spaced functional values 

- Weights (𝑐௜ 's): Derived from an approximation required to be 
equal for a polynomial of order lower or equal to the degree of the 
polynomials used to approximate the function. Given nodes, best!

- Problem: Can explode for large n (Runge’s phenomenon)

• Q: Can we use more efficient weights and nodes? Yes!

• Gaussian Quadratures

- Gaussian quadrature rules set the nodes and the weights in such a 
way that the approximation is exact when f(.) is a low order 
polynomial. Best choice for both, nodes and weights!

Gaussian Quadratures
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Gaussian Quadratures

• Gaussian quadrature computes an approximation to the integral:

׬ 𝑓 𝑥 𝑑𝑥
௕
௔ = ∑ 𝑐௜𝑓ሺ𝑥௜ሻ

௡
௜ୀଵ ,

𝑐௜ 's are weights, 𝑥௜ 's are the quadrature nodes, also called cusps. These 
values are not predetermined, but unknowns to be determined in 
some “optimal” fashion.

Optimal Goal: Get an  exact answer if f is a (2𝑛 - 1)th-order polynomial. 
With 𝑛 =2, we get an exact answer f is a 3th-order polynomial. (With 
𝑛 = 5, we get an exact answer f is a 9th-order polynomial). 

Note: A Gauss quadrature rule with 3 points yields exact value of an 
integral for a polynomial of degree 2 × 3 – 1 = 5. Simpson’s 1/3 rule 
also uses 3 points, but the order of accuracy is 3.

34

Gaussian Quadratures – Features

• Gaussian Quadratures Features

- Select functional values at non-uniformly distributed points. The 
values are not predetermined, but unknowns determined by  
Legendre polynomials and integrating over a Lagrange interpolation.

- Several Gauss quadrature rules; we cover the Gauss-Legendre rules, 
which integrate from [-1, 1].

- A change of variables is needed: 

𝑡 ൌ ௕ି௔

ଶ
𝑥 ൅ ௔ା௕

௛
 the interval of integration is [-1,1]. 

- Gauss-Legendre formulae for nodes and weights can be easily found 
online up to order 𝑛=100.

- With 𝑛 nodes, delivers exact answer if f is (2𝑛 -1)th-order polynomial.

- Gauss-Legendre quadrature rule is not typically used for integrable
functions with endpoint singularities.
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Example: For 𝑛 = 2, we choose (𝑐1, 𝑐2, 𝑥1, 𝑥2) such that the 
method yields “exact integral” for 𝑓ሺ𝑥ሻ = 𝑥0, 𝑥1, 𝑥2, 𝑥3.

We solve this 4x4 system of  equations to get (𝑐1, 𝑐2, 𝑥1, 𝑥2). 

• By construction we get right answer for

𝑓ሺ𝑥ሻ = 1 (𝑗 = 0), 𝑓ሺ𝑥ሻ = 𝑥 (𝑗 = 1), ...., 𝑓ሺ𝑥ሻ = 𝑥j (𝑗 = 2 𝑛 - 1), 

 enough to get the right answer for any polynomial of  order 2𝑛-1.

Gaussian Quadratures – Nodes and Weights

36

Example (continuation): 𝑛 =2  Solve the 4x4 system:

Gaussian Quadratures – Nodes and Weights
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2
22

2
1

1

1 1
22

221

1

1 1

2

1

1 1

Note: This is not how it is done in practice:
- 𝑥௜ 's are chosen to be zeros of  the degree-𝑛 Legendre polynomials 
𝑃௡ሺ𝑥ሻ (not trivial to compute, but, they are tabulated). 
- Then, find the Lagrange polynomial that interpolates the integral 
𝑓ሺ𝑥ሻ at the selected 𝑥௜ 's and integrate to get 𝑐௜ 's. 
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• Coordinate transformation from ሾ𝑎, 𝑏] to [-1, 1].

This can be done by an affine transformation on 𝑡 and a change of 
variables.
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
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Gaussian Quadratures – Change of  interval

38

Gaussian Quadrature on [-1, 1]: n = 2

• For 𝑛 = 2, we have four unknowns: (𝑐1, 𝑐2, 𝑥1, 𝑥2) 

• We have already solved this problem: 

𝑐1 = 1;  𝑐2 = 1; 𝑥1 =-1/√3; & 𝑥2 = 1/√3.

)x(fc)x(fc)x(fc)x(fcdx)x(f nn2211i

1

1

n

1i
i  





)f(xc)f(xc

f(x)dx   :2n

2211

1

1



 

x2x1-1 1

• Gauss Quadrature General formulation: 
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Gaussian Quadrature on [-1, 1]: n = 3

As for the 𝑛 = 2 case, we choose (𝑐1, 𝑐2, 𝑐3, 𝑥1, 𝑥2 , 𝑥3) such that 
the method yields “exact integral” for 𝑓ሺ𝑥ሻ = 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5.

(Again, (𝑐1, 𝑐2, 𝑐3, 𝑥1, 𝑥2 , 𝑥3) are calculated by assuming the formula 
gives exact expressions for integrating a 5th order polynomial).

)()()()(   :3Case 332211

1

1
xfcxfcxfcdxxfn  

x3x1-1 1x2
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Gaussian Quadrature on [-1, 1]: 𝒏 = 3
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Gaussian Quadrature on [-1, 1]: 𝒏 = 2 & 𝒏 = 3

• Approximation formula for 𝑛 = 3
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• Approximation formula for 𝑛 = 2:
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Evaluate

First, a coordinate transformation

• Two-point formula (𝑛 = 2)
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Gaussian Quadratures: Example
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• Three-point formula (𝑛 = 3)

• Four-point formula (𝑛 = 4)
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Gaussian Quadratures: Example
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Evaluate 44949742.
2

1 64.1

0

2

2

 

dxeI

x



 












1

1

1

1

)]1(82[.
2

1
64.1

0

2 )(
2

82.

2

82.

2

1

82   );1(82.82.82.
22

2
2

dxxfdxedteI

dx.dtxx
ab

x
ab

t

x
t



First, a coordinate transformation:

Gaussian Quadratures: Normal Curve
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• Three-point formula (𝑛 = 3)
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• Two-point formula (𝑛 = 2)

Gaussian Quadratures: Normal Curve
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• Compare with Integration of  Taylor series approximation (𝑛 = 6)

𝑓 𝑥 ൌ  ଵ
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• Integrating Taylor approximation:
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= .4414171 (𝜀=0.0179%)

Not as accurate as Gaussian quadrature with 𝑛 = 2 (& more 
computations.

Gaussian Quadratures: Normal Curve
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Monte Carlo Integration

• In our motivation of  integrals, we evaluated a one-dimensional 
integral by a sum of  rectangles, using the end points of  each interval 
to measure the height. Some of  these rectangles overestimated the 
area, some underestimated the area.

• Let’s focus on one of  those rectangles, say with base [a, b]. We can 
also use as the height a randomly selected interior point, x1 ∊ [a, b] and 
estimate the integral, say I(x1). Of  course, it may over- or under-
estimate the area. 

• But, we can randomly select N interiors points and get N estimations 
of  the area. Some points will under-estimate, some points will over-
estimate, but, statistical intuition suggests that the average may work. 

• In fact, as N increases, the average of  the integral converges to the 
integral.

48

Monte Carlo Integration – Example 1 

• Example 1: We want to do MC integration for (exact integral = 
5,216.92): 

> M <- 200
> x <- runif(M,0,4)
> All_I <- matrix(0,M,1)
> a <- 0
> b <- 4
> m <- 1
> while (m <= M) {
+ Int <- (b-a)*(x[m] * exp(2*x[m]))
+ m <- m+ 1
+ All_I[m] <- Int
+ }
> IN <- sum(All_I)/M
> IN
[1] 5489.388

dxxe
4

0

x2
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Monte Carlo Integration – Example 2

• MC Integration can be applied to any area, like the area of  a circle.

• Example 2: We want to estimate the area of  a circle with radius, 
r=2 (exact area = π * r2 = π * 4 =12.56637):

> M <- 100
> x <- runif(M,-2,2)
> y <- runif(M,-2,2)
> #box is area 16.
> distance.from.0 <- sqrt(x*x + y*y)
> inside.circle <- (distance.from.0 < 2)
> area <- 16*sum(inside.circle)/M
> area
[1] 12.48

50

Monte Carlo Integration – Properties
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Monte Carlo Integration – Example 3

• Example 3: Back to the trapezoid example, where we wanted to 
integrate the following function: 

> M <- 1000
> All_I <- matrix(0,M,1)
> x <- runif(M,0,4)
> y <- runif(M,0,4)
>  a <- 0
>  b <- 4
>  m <- 1
>  while (m <= M) {
+  Int <- ((b-a)/2)* (x[m] * exp(2*x[m]) + y[m] * exp(2*y[m]))
+  m <- m+ 1
+  All_I[m] <- Int
+  }
>  IN <- sum(All_I)/M
>  IN
[1] 5134.759
Note: The exact integral is 5,216.93.

dxxe
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0

x2
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Monte Carlo Integration & Multiple Integrals

• Q: Why use the MC estimator instead of  the also very simple 
determinist quadrature rules? 

• Quadrature rules do not extend very well to higher dimension. An 
approach is to rewrite the problem in terms of  one-dimensional 
integrals. For two or three dimension it may work well, but for more 
than four dimensions it becomes imprecise. 

• These rules suffer from the curse of  dimensionalitily. 

• Monte Carlo integration extends well to many dimensions. IT is 
based on repeated function evaluations, not repeated integrations 
using one-dimensional methods.

Popular MC algorithm: Markov chain Monte Carlo (MCMC), which 
include the Metropolis-Hastings algorithm and Gibbs sampling.
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Q: What's the integral of (1/cabin)d(cabin)?
A: A natural log cabin!


