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Numerical Integration

Idea: Do an integral in small parts, like the way we presented

integration; 1.e., a summation.

Numerical methods just try to make it faster and more accurate.

12

10 4 z

Basic Numerical Integration

¢ Idea: Weighted sum of function values to approximate integral
b n
[ f(x)ax =~ e, f(x;)
i=0
=cof(x,)+c, f(x; )+ +c,f(x,)

f)

Xy Xg X1 X

 Task: Find appropriate ¢s (weights) and the x;s (nodes).
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Basic Numerical Integration

* We want to find integration of functions of various forms of the
equation known as the Newton-Cotes integration formulas (“rules”).

* Newton-Cotes formula

Assume the value of f(x) defined on [a, b] is known at equally
spaced points x; (i = 0, 1, ..., n), where xo = a, and x, = b. Then,
b — n
J, ) dx =3¢ f(x),
where x;= h i + X, with h (“step size”) = (xp— x9)/n = (b — a)/n.

The ¢;'s are called weights. The x;'s are called 7odes. The precision of
the approximation depends on n.

Note: The N-C rules use nodes equally spaced. But, they do not
have to be —unequally spaced nodes are OK too.

Basic Numerical Integration

* Weights

In the N-C formulae, they are derived from an approximation
required to be equal for a polynomial of order lower or equal to the
degree of the polynomials used to approximate the function. In
other methods, weights and nodes can be derived jointly.

* Error analysis

The error of the approximation is the difference between the value
of the integral and the numerical result:

error = £ = [} f () dx — Ty € f (x)
The errors are frequently approximated using Taylor series for
f (x). The error analysis gives a strict upper bound on the etror, if
the derivatives of fare available. 6
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Newton-Cotes Formula

* The weights are derived from the Lagrange polynomials L(x).
The weight, I;(x), depend only on the x/s (no two x;'s are the
same); not on the function f.

L(x)= H (X—xj): (x=xp).(x=x,_)(x=x,,)...(x—x,)

Recall that L(x) is used for polynomial interpolation of a function
fx), given a set of points (x;, f{x).

The interpolating Lagrange is:
L) = 16522, B 4 54052
=18x%2 —52x + 48

(x 2) (x 4) (x 2) (x=3)

+1285 25 2

0<j<n,iz) (x; _xj) (x; = xg). (3, =X, (X — ;) (X; — ) A

Example: Interpolate f{x) = 2 x° over [2, 4], with 3 points: (2, 3, 4).

Newton-Cotes Formula

* Different methods use different polynomials to get the ¢;'s.

¢ Newton-Cotes Closed Formulae — Use both end points
— Trapezoidal Rule : Linear
— Simpson’s 1/3-Rule : Quadratic
— Simpson’s 3/8-Rule : Cubic

— Boole’s Rule : Fourth-order

¢ Newton-Cotes Open Formulae — Use only interior points

— midpoint rule
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Trapezoid Rule

* Straight-line approximation

The trapezoid rule approximates the region under the graph
of the function f () as a trapezoid and calculating its area.

b 1
[, f(xsde s 3 cif(x)=c,f(x,)%e f(x,)

Approximate
integral by the
trapezoid’s area.

Trapezoid Rule — Derivation

* We use a Lagrange approximation (a polynomial) for f(x) over
the interval (x, — x) (Lagrange interpolation), given by

S ()= f(x0)Lo(x) + fx) Ly (X) + o+ [ ()L, (X)

* For the case, n = 2, with the interval (x; — x):

X=X X=X
L(x)= . S(xo)+ g S(x)
Xo = X X — X
let a=x,b=x, é= "9 qe=%. 4_p_4
b—a h

{x:a =&=0

fob =& :1}: LE) = (=8 f(@)+ () f(b)

* Then, we integrate the Lagrange polynomial to obtain the 0

trapezoid rule
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8/11/2023

Trapezoid Rule — Derivation
« Integrating: | f(x)dx = | L(x)dx = b L(£)dé
= f(@h[ (1=E)dE + f(b)h Edé

1 932
2

1

— fla)h (&~ %) v £ (b

0 0

= The weights depend only on h/

* This approximation may be poor. The approximation error is:

b
e=J, fOx) dx— X7 ¢ f(x)
=-b-a’/(12) f"(n), n€<la b].
* Thus, if the integrand is convex —i.e., positive second

derivative—, the error is negative. That is, the trapezoidal rule
overestimates the true value of the integral.

2@+ )] §

11

Trapezoid Rule — Example

4
Evaluate the integral L xe’“dx

¢ Exact solution
4
4 X 1
J. erxdx=|:_e2x__e2x:|
0 4

1 ,
=—e" " (2x-1
y ( )

= 5216 .926477

0

* Graph
10000 |

2000 |
GO0 T
4000 |
2000 F

12
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Trapezoid Rule — Example

Evaluate the integral I4 xe’*dx
0

* Trapezoidal Rule: Approximation Error
e=-b-a)’/(12) f"(n), (n is a number between a and b).

Let’s take 1 =2. Then
€ = -43/12 * [2%exp(2*2) + 2¥exp(2*2) + 4*(2)*exp(2*2)]
= -3494.282

» Trapezoidal Rule

1= I04xe2xdx ~ 4;0[f(0)+f(4)]= 200+ 4e* ) = 23847.66

_ 5216.926 - 23847.66 _ .o, 15,
5216.926 °

Simpson’s 1/3-Rule (Kepler’s Rule)
* Approximate the function by a parabola

2
[[fx)ae =Y e f(x)=cof(x, )+ e f(x)+e, f(x,) 01

i=0

=%[f(x0)+4f(x1)+f(x2)]
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Simpson’s 1/3-Rule — Derivation
* Use a quadratic Lagrange interpolation:

(x—x,)(x—-x,) flx, )+ (x—x,)(x-x,)

(xg—x, )(x,—x,) (x;,—xy )(x;,—x,)
(x—x,)(x—x,)

+(x2—x0)(x2—x1)f(x2)

a+b

L(x)=

f(x,)

let x,=a,x,=b,x,=

x=x,=>¢=
1&)=C 0 g 1-8rx p+EE gyl

Simpson’s 1/3-Rule — Derivation
* Integrate the Lagrange interpolation
[} feoax = n]' 10§ )ag = foe )3 [ e - Dae
b [ (1&g + fiv )5 [ 66+ D

1 1

_ h &7 &7 _ ¢

= fex,) (5= )_I+f(x,)h(§ F )_,
h ¢’ &7

tfea) S (54 )_1

[ oax = ZLfcy )+ 4 )+ fix )]

* Again, the weights depend only on h/

Thomas Simpson (1710 — 1761, England)
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Simpson’s 3/8-Rule

¢ Approximate by a cubic polynomial

_[lb S(x)dx ~ Zcif(xi) =c, f(x, )+, fix; )+ ¢, fix;)+c; fix; )|
i=0

=3T:[f(xo)+3f(x,)+3f(xz)+f(xs)]

Simpson’s 3/8-Rule

¢ Lagrange interpolation

(:Z:—_;I))((:a_—);i))((: f;)s ) fx0)
(ijc:;;))((;,_—izz))((iz_f;)g ) S
Oy UL
e

* Integrate to obtain the rule

L(x)=

b-a
3

L” fodx =~ j: Ldx ; h=

=%[f(x0)+3f(x1)+3f(x2)+f(x3)] 18
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Simpson’s Rule: Example

Evaluate the integral -[: xe *Fdx
* Simpson’s 1/3-Rule: Approximation Error
e=(b-ay/e850) fO() (< [a b
Since f#(n) >0, the error is negative (overshooting).
Let’s take n=2.5. Then,
£ = -45/(2880) [{exp(2¥2.5)*[16*(2.5)+32]} =-3799.3769

* Simpson’s 1/3-Rule
1= xe*dx~ g[f(O) AL+ f ()]

2
= 5[0 +4(2e*) + 4e8] =8240.411

= 5216.926 -8240.411 _
5216.926

-57.96%

Simpson’s Rule: Example

4
Evaluate the integral L xe’*dx
* Simpson’s 3/8-Rule

1=["xe¥dx %[ £(0)+3 f(%) +3 f(%) + f(4)}

= %/3)[0 +3(19.18922) +3(552.33933) +11923.832] = 6819.209

or 5216.926-6819.209 - 30.71%
5216.926

¢ Simpson’s 3/8-Rule: Approximation Error

£ = (b - a) /(6480) /() (€ [a, b].
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Three-point Newton-Cotes Open Formula

* Approximate by a parabola
b—

Better Numerical Integration

¢ Composite integration
— Composite Trapezoidal Rule
— Composite Simpson’s Rule

* Richardson Extrapolation

* Romberg integration
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trapezoidal rule on each of them.

Two segments

Composite Trapezoid Rule

To improve the Trapezoid Rule, first splits the interval of integration
[a, b] into N smaller, uniform subintervals, and then applies the

Three segments

Four segments

‘Many segments

| feoix = [ peoax + [ frodx +

Xy

Composite Trapezoid Rule

* Use the Trapezoid Rule in # intervals. Then, add them together.

= %[f(x,,)+ f(x,)]+§[f(x,)+ foe; )]+ +§[f(x,,_,)+ fee, )] i

=%[f(x0)+2f(x,)+--- + 2, )+ +2f(x,, )+ f(x,)] .
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Composite Trapezoid Rule
¢ Evaluate the integral I = .r xe’*dx
0

n=1,h=4:>I=g[f(0)+f(4)]=23847.66 &£=-357.12%
n=2,h=2:>I=g[f(0)+2f(2)+f(4)]=12142.23 e=-132.75%

n=4,h=1:>I=g[f(0)+2f(1)+2f(2)
+2f(3)+ f(4)]=7288.79 £=-39.71%
n=8,h=0.5:>I=g[f(0)+2f(0.5)+2f(1)

F2f(L5)+2f(2)+2f(2.5)+2f(3)
+2f(3.5)+ f(4)]=5764.76 £=-10.50%

n=16,h=0.25:>I=%[f(0)+2f(0.25)+2f(0.5)+---

+2£(3.5)+2f(3.75)+ f(4)]
= 5355.95 £=-2.66%

Composite Trapezoid Rule: Unequal Segment$®

4
* Evaluate the integral I= J' xe’“dx

0
Use the following h;'s: {h,=2, h,=1, h;=0.5, h,=0.5}

I J.Ozf(x)dx +J.23f(x)dx+J.33f§(x)dx +Jj5 f(x)dx
- h_zl[ £(0)+ f(2)]+h72[f )+ f(3)]
+h_23[f(3)+ f(3.5)]+h74[f (3.5)+f(4)]
“2praetfe Lot e300 O3Bt 43507

+% [3.5e7 +4e8]: 597158 =e=-14.45%

28
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Composite Simpon’s Rule

* Piecewise Quadratic approximations

Composite Simpon’s Rule

* Evaluate the integral I= .[4 xe*dx
0
* Usingn=2,h=2

1="[r0)+4702)+ f(4)]

3
- %[0 rd(2¢' )46 |= 8240411 = £ =-57.96%

 Usingn=4h=1

1= %[fw) TAf(D)+2£(2)+4f(3)+ f(4)]

- §[0+4(e2)+2(2e4)+4(3e6)+4e8]
=5670.975 = &=-8.70%
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Composite Simpson’s Rule: Unequal Segments

4
* Evaluate the integral I= .[0 xe’ dx

Using h, = 1.5, h,= 0.5

= j’: F(x0)dx + L ()
=L +ar0.9+ 10)]

(1) +47G.5)+ 1 @)

- % [0 +4(1.5¢%) + 3e6]+% [Se6 +4(3.5¢7)+ 468]

=5413.23 =¢e=-3.76%

31

Gaussian Quadratures

* Newton-Cotes Formulae

- Nodes (x;'s): Use evenly-spaced functional values

- Weights (¢;'s): Detived from an approximation required to be
equal for a polynomial of order lower or equal to the degree of the
polynomials used to approximate the function. Given nodes, best!

- Problem: Can explode for large #» (Runge’s phenomenon)
* QQ: Can we use more efficient weights and nodes? Yes!

e Gaussian Quadratures

- Gaussian quadrature rules set the nodes and the weights in such a
way that the approximation is exact when f{.) is a low order _
polynomial. Best choice for both, nodes and weights! 32
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Gaussian Quadratures
* Gaussian quadrature computes an approximation to the integral:

2 FOdx =Ty cif (x0),

ci's are weights, X;'s are the quadrature nodes, also called cusps. These
values are not predetermined, but unknowns to be determined in
some “optimal” fashion.

f

Optimal Goal: Get an exact answer if fis a (2n - 1)”-order polynomiali#]
With n =2, we get an exact answet fis a 3”-order polynomial. (With
n =5, we get an exact answer fis a 9%-order polynomial).

Note: A Gauss quadrature rule with 3 points yields exact value of an
integral for a polynomial of degree 2 X 3 —1 = 5. Simpson’s 1/3 1ru1§3 ;

also uses 3 points, but the order of accuracy is 3.

WY
Gaussian Quadratures — Features

_\,

’

e Gaussian Quadratures Features

- Select functional values at non-uniformly distributed points. The
values are not predetermined, but unknowns determined by
Legendre polynomials and integrating over a Lagrange interpolation.

- Several Gauss quadrature rules; we cover the Gauss-Legendre rules, §

which integrate from [-1, 1].

[ S

- A change of variables is needed:
b— b . . . .
t= Tax + % = the interval of integration is [-1,1]. U

- Gauss-Legendre formulae for nodes and weights can be easily founds
online up to order n=100.
- With n nodes, delivers exact answer if fis (2n -7)”-order polynomial.

- Gauss-Legendre quadrature rule is not typically used for integrable

functions with endpoint singularities. 4
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Gaussian Quadratures — Nodes and Weights

Example: For n = 2, we choose (c,, ¢, X, X,) such that the
method yields “exact integral” for f(x) = x%, x/, x?, x°.

1
f=1= I_lld.\' =2=c¢,+c,
1
f=x = I_l.\‘dx =0=c,x,+c,x,

2 1 3 2 2 2
f=x :>II.\‘ (1’.\‘=§=c,.\'1 +6,X;

3 I 3 3 3
f=x"=| xdx=0=c,x; +¢,x;
| r 2%

We solve this 4x4 system of equations to get (C,, C,, X, X ).

* By construction we get right answer for

= enough to get the right answer for any polynomial of order 2n-1.

fx)=1G=0),f(x)=x (j:1),....,f(x)=xi(j=2n-1),%_

Gaussian Quadratures — Nodes and Weights

Example (continuation): n =2 = Solve the 4x4 system:
( 1

f=1=| lix=2=c,+c, ¢ =
f=x = J‘_ledx =0=c,x,+c,x,

] , 2 =X, =
f=x2:>.[1x2dx=§=c1xf+c2x22

1
f=x3:>J.lx3dx=0=c,x,3+czx23

Note: This is not how it is done in practice:

- X;'s are chosen to be zeros of the degree-n Legendre polynomials
P, (x) (not trivial to compute, but, they are tabulated).

- Then, find the Lagrange polynomial that interpolates the integral
f(x) at the selected x;'s and integrate to get ¢;'s. %
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Gaussian Quadratures — Change of interval

* Coordinate transformation from [a, b] to [-1, 1].

This can be done by an affine transformation on t and a change of
variables.

\

Gaussian Quadrature on [-1,1]: n =2
*  Gauss Quadrature General formulation:

[ fexsax =Y e f(x)=c flx )+ e, f(x, )4+, f(x,)
i=1

-1 Xy X 1

* For n = 2, we have four unknowns: (¢, €, X,, X))
* We have already solved this problem:
c,=1; ¢,=1;x,=-1/\3; & x,=1/73.
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Gaussian Quadrature on [-1,1]: n =3

Casen=3: .[_11 )=, f(r)+eyf(x)+esf(x3)

As for the n = 2 case, we choose (€4, C,, €5, X1, X, , X5) such that
the method yields “exact integral” for f(x) = x% x/, x?, x7, x*, x°.

(Again, (c,, C,, C5, X{, X, , X5) are calculated by assuming the formul
gives exact expressions for integrating a 5™ order polynomial).

Gaussian Quadrature on [-1,1]: n =3

1
f=1:>J‘lrdx:2:cl+cz+c3
-1

1
f=x= Ixa’x=0=c1x1 +c,X, + 03X,

) ¢, =5/9
1 _
5 c,=8/9
f=x :>:[x2dx=§=clx12+czx22+c3x32 c,=5/9
—
1 =—4/3/5
f:x3:>J-x3dx=0201x13+czx§+03x33 K
-1 x2:O
x, =~/3/5

1
2
f=x'= Ix“dx == =cx +c,x] +eyxd
5 5
1
f=x"= jxsdx =0=cx] +C,X; +Cyx)

e} 40
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Gaussian Quadrature on [-1,1]: n=2 & n=3

¢ Approximation formula for n = 2:
1 1
I=| fx)dx=f(——F)+f(—F)
I NERERRE)

¢ Approximation formula forn =3

! 5 3. 8 5 3
1= fx)ds = §f<—\g) RO gf(\g)

Gaussian Quadratures: Example

Evaluate [ = j; te?dt = 5216.926477

First, a coordinate transformation
b—a b+a
X+

2

4 1 1
1= .[ te*'dt = J. (4x + 4)e* dx = J. f(x)dx
0 -1 -1

=

=2x+2; dt =2dx

* Two-point formula (n = 2)
4

1=[ fdc=f( [> S [) (4- [>e P @+ [)e‘”
=9.167657324 +3468.376279 =3477.543936 (&£ =33.34%) o
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Gaussian Quadratures: Example
« Three-point formula (n = 3)
1= s =2 106+ 0+ 10)
- 3(4 —4:J0.6)e V00 4 %(4)e4 +§(4 +440.6)e*00

= 3(2.221 191545) +§(218.3926001) +§(8589.142689)

=4967.106689 (e=4.79%)

* Four-point formula (n = 4)
1
I= I f(x)dx = 0.34785[ £ (~0.861136) + £(0.861136)]
-1

+0.652145[ £(~0.339981) + £(0.339981)]
=5197.54375 (€ =0.37%)

Gaussian Quadratures: Normal Curve

\/_Jq 64 -

Evaluate

e 2 dx=.44949742

0.3
(AR

ol

0.5 1.0 1.5

Fitst, a coordinate transformation:

boa DT a ot 82— 8014+ x): di = 82dx

t= X
2
; 1 I1.64 _’;dt J-l - 82(1+x)] J 82 J-l
= —— e = X = —F7—
N2z o N2m -1
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Gaussian Quadratures: Normal Curve

* Two-point formula (n = 2)

82 !
_ﬁ.[_]f(x)dx x/_(f(T) f(\/— j N

=0.32713267*(0.94171147 +0.43323413) = 44978962 (& =0.065%)

1 1
[.82(1— —[.82(1+—=
82 [e ( [n L)

. Three—point formula (n = 3)

ff( ) —J_[ FA06) 3O+ f(«/_)j

.82 [5 Voo g —lpsa-oP 5 [‘82(1+\/R)]2J
e 2 2 +2¢ 2

— +—e

N2 AW

=.32713267 *(0.5461465 9 + 0.63509351 + 0.19271450 )
=0.44946544 (£ =0.007%)

1 —ﬁ 1
f@=gee7r=(1-5+5-5)

* Integrating Taylor approximation

1.64 1 X 1.64 1 x?  x* xS
1= J " e T dxm [ (1 -S4 - ) dx
oty XX XN o164
I'= N (x 32 T 5e 7*48) Clo
3 5 7
I~ \/%(1.64 - 176:8) = 4414171 (£=0.0179%)

Not as accurate as Gaussian quadrature with n = 2 (& more

computations.
46
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Monte Carlo Integration

* In our motivation of integrals, we evaluated a one-dimensional
integral by a sum of rectangles, using the end points of each interval
to measure the height. Some of these rectangles overestimated the
area, some underestimated the area.

* Let’s focus on one of those rectangles, say with base [, 4. We can &
also use as the height a randomly selected interior point, x; € [4, b] and
estimate the integral, say I(x;). Of course, it may over- or under-
estimate the area.

* But, we can randomly select N interiors points and get IN estimationgs
of the area. Some points will under-estimate, some points will over-
estimate, but, statistical intuition suggests that the average may work.

* In fact, as N increases, the average of the integral converges to the
integral.

Monte Carlo Integration — Example 1

* Example 1: We want to do MC integration for (exact integral =

5.216.92): .
I xe’*dx
0

> M <-200

> x <- runif(M,0,4)

> All_T <- matrix(0,M,1)
>2<-0

>b<-4

>m<-1

> while (m <= M) {

+ Int < (b-a)*(xlm] * exp(2*x[m])
+m<-m+1

+ All_I[m] <- Int

+}

>IN <- sum(All_I)/M
>IN

[1] 5489.388
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Monte Carlo Integration — Example 2

e Example 2: We want to estimate the area of a circle with radius,
r=2 (exact area = 1 * 7 = n * 4 =12.56637):

> M <-100

> x <- runif(M,-2,2)

>y <- runif(M,-2,2)

> #box is area 16.

> distance.from.0 <- sqrt(x*x + y*y)
> inside.circle <- (distance.from.0 < 2)
> area <- 16*sum(inside.citrcle) /M

> area

[1] 12.48

49

* MC Integration can be applied to any area, like the area of a circle.

Monte Carlo Integration — Properties
* We formalize this idea with: Fy = %Zflzl 1(x;)

* This is our basic Monte Carlo (MC) estimator. Very simple.

applies), asymptotic normal (CLT applies).

* This results is very general and applies to many situations, for
example, the trapezoid rule. Above, we selected two points to
evaluate the integral (a and b). It produced a big over estimation.

We can also randomly select two points between [a, 4], say x;and
calculate the integral, say I(x,). We repeat this evaluation of the
integral at N randomly selected two points € [a, /]: as [N increases,

the average of the integral converges to the integral. 50

* It can be shown it has good properties: unbiased, consistent (LLN
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Monte Carlo Integration — Example 3

* Example 3: Back to the trapezoid example, where we wanted to
integrate the following function:

4 2x

I xe “dx
> M <- 1000 0
> AlLT <- matrix(0,M,1)
> x <- runif(M,0,4)
>y <- runif(M,0,4)
> a<-0
> b<-4
> m<-1
> while (m <= M) {
+ Tnt <- (b-2)/2)* (x]m] * exp(@*x[m]) + yfm] * exp(2*y[m}))
+ m<-m+1
+ All_I|m] <- Int
+ )
> IN <- sum(All_T)/M
> IN
[1] 5134.759
Note: The exact integral is 5,216.93.

Monte Carlo Integration & Multiple Integrals

* Q: Why use the MC estimator instead of the also very simple
determinist quadrature rules?

* Quadrature rules do not extend very well to higher dimension. An
approach is to rewrite the problem in terms of one-dimensional
integrals. For two or three dimension it may work well, but for more
than four dimensions it becomes imprecise.

* These rules suffer from the curse of dimensionalitily.

* Monte Carlo integration extends well to many dimensions. I'T is
based on repeated function evaluations, not repeated integrations
using one-dimensional methods.

Popular MC algorithm: Markov chain Monte Carlo (MCMC), which |
include the Metropolis-Hastings algorithm and Gibbs sampling. 52

© 2023. Not to be shared/posted without written authotization 26



RS - Lec 12-b - Integration (Numerical Integration) 8/11/2023

Q: What's the integral of (1/cabin)d(cabin)?
A: A natural log cabin!
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