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The Conditional CAPM and the Cross-Sectionof 
Expected Returns 

RAVI JAGANNATHAN and ZHENYU WANG* 

ABSTRACT 

Most empirical studies of the static CAPM assume that betas remain constant over 
time and that the return on the value-weighted portfolio of all stocks is a proxy for the 
return on aggregate wealth. The general consensus is that the static CAPM is unable 
to explain satisfactorily the cross-section of average returns on stocks. We assume 
that the CAPM holds in a conditional sense, i.e., betas and the market risk premium 
vary over time. We include the return on human capital when measuring the return 
on aggregate wealth. Our specification performs well in explaining the cross-section 
of average returns. 

A SUBSTANTIAL PART OF the research effort in finance is directed toward improv-
ing our understanding of how investors value risky cash flows. I t  is generally 
agreed that investors demand a higher expected return for investment in 
riskier projects, or securities. However, we still do not fully understand how 
investors assess the risk of the cash flow on a project and how they determine 
what risk premium to demand. Several capital asset-pricingmodels have been 
suggested in the literature that describe how investors assess risk and value 
risky cash flows. Among them, the Sharpe-Lintner-Black Capital Asset Pricing 
Model (CAPM)lis the one that financial managers use most often for assessing 
the risk of the cash flow from a project and for arriving at  the appropriate 
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discount rate to use in valuing the project. According to the CAPM, (a) the risk 
of a project is measured by the beta of the cash flow with respect to the return 
on the market portfolio of all assets in the economy, and (b) the relation 
between required expected return and beta is linear. 

Over the past two decades a number of studies have empirically examined 
the performance of the static version of the CAPM in explaining the cross- 
section of realized average returns. The results reported in these studies 
support the view that it is possible to construct a set of portfolios such that the 
static CAPM is unable to explain the cross-sectional variation in average 
returns among them.2 In particular, portfolios containing stocks with rela- 
tively small capitalization appear to earn higher returns on average than those 
predicted by the CAPM.3 

In spite of the lack of empirical support, the CAPM is still the preferred 
model for classroom use in MBA and other managerial finance courses. In a 
way it reminds us of cartoon characters like Wile E. Coyote who have the 
ability to come back to original shape after being blown to pieces or hammered 
out of shape. Maybe the CAPM survives because (a) the empirical support for 
other asset-pricing models is no better,4 (b) the theory behind the CAPM has 
an intuitive appeal that other models lack, and (c) the economic importance of 
the empirical evidence against the CAPM reported in empirical studies is 
ambiguous. 

In their widely cited study, Fama and French (1992) present evidence 
suggesting that the inability of the static CAPM to explain the cross-section of 
average returns that has been reported in the literature may be economically 
important. Using return data on a large collection of assets, they examine the 
static version of the CAPM and find that the "relation between market beta 
and average return is flat."5 The CAPM is widely viewed as one of the two or 
three major contributions of academic research to financial managers during 
the postwar era. As Fama and French point out, the robustness of the size 
effect and the absence of a relation between beta and average return are so 
contrary to the CAPM that they shake the foundations on which MBA and 
other managerial course materials in finance are built. 

The CAPM was derived by examining the behavior of investors in a hypo- 
thetical model-economy in which they live for only one period. In the real world 
investors live for many periods. Therefore, in the empirical examination of the 
CAPM, using data from the real world, it is necessary to make certain assump- 
tions. One of the commonly made assumptions is that the betas of the assets 
remain constant over time. In our view, this is not a particularly reasonable 
assumption since the relative risk of a firm's cash flow is likely to vary over the 

See Banz (1981), Reinganum (1981), Gibbons (1982), Basu (1983), Chan, Chen, and Hsieh 
(19851, Shanken (19851, and Bhandari (1988). 

Hansen and Jagannathan (1994) find that this is true even after controlling for systematic 
risk using a variety of other measures. 

See Hansen and Singleton (1982), Connor and Korajczyk (1988a and 1988131, Lehmann and 
Modest (1988), and Hansen and Jagannathan (1991 and 1994). 

Also see Jegadeesh (1992), who obtains results similar to Fama and French. 
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business cycle. During a recession, for example, financial leverage of firms in 
relatively poor shape may increase sharply relative to other firms, causing 
their stock betas to rise. Also, to the extent that the business cycle is induced 
by technology or taste shocks, the relative share of different sectors in the 
economy fluctuates, inducing fluctuations in the betas of firms in these sectors. 
Hence, betas and expected returns will in general depend on the nature of the 
information available at  any given point in time and vary over time. In this 
study, therefore, we assume that the conditional version of the CAPM holds, 
i.e., the expected return on an asset based on the information available at any 
given point in time is linear in its conditional beta. 

Though several researchers have empirically examined the conditional ver- 
sion of the CAPM, no one to our knowledge has directly studied the ability of 
the conditional CAPM to explain the cross-sectional variation in average 
returns on a large collection of stock portfolios. The focus of our paper is to fill 
this gap in the literature. For this purpose, we first derive the unconditional 
model implied by the conditional CAPM. We show that when the conditional 
version of the CAPM holds (i.e., when betas and expected returns are allowed 
to vary over the business cycle), a two-factor model obtains unconditionally. 
Average returns are jointly linear in the average beta and in a measure of "beta 
instability," which we show how to calculate. The fact that the implied uncon- 
ditional model nests the static CAPM facilitates direct comparison of their 
relative performance. 

Using the value-weighted index from CRSP as the market portfolio, we find 
that the unconditional model implied by the conditional CAPM explains nearly 
30 percent of the cross-sectional variation in average returns of 100 stock 
portfolios similar to those used in Fama and French (1992). This is a substan- 
tial improvement when compared to the 1 percent explained by the static 
CAPM. The rejection by the data and the size effect are much weaker than 
those for the static CAPM. 

In order to implement the CAPM, for practical purposes, it is commonly 
assumed that the return on the value-weighted portfolio of all stocks listed on 
the New York Stock Exchange (NYSE) and the American Stock Exchange 
(AMEX) (as well as those traded on Nasdaq) is a reasonable proxy for the 
return on the market portfolio of all assets. In view of this, another possible 
interpretation of the evidence is that the particular proxy Fama and French 
(1992) use for the return on the market portfolio of all assets is a major cause 
for the unsatisfactory performance of the CAPM. Hence, in measuring the 
return on aggregate wealth, we follow Mayers (1972) and include a measure of 
return on human capital. We find that when human capital is also included in 
measuring wealth, the unconditional model implied by the conditional CAPM 
is able to explain over 50 percent of the cross-sectional variation in average 
returns, and the data fail to reject the model. More importantly, size and 
book-to-market variables have little ability to explain what is left unexplained. 

The rest of the paper is organized as follows: In Section I, we show that when 
the CAPM holds in a conditional sense (i.e., expected returns and betas vary 
over time in a systematic stochastic manner), unconditional expected returns 
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on assets will be linear in (a) the average beta and (b) a measure of beta 
instability over time. When betas remain constant over time, this model 
collapses to the familiar static CAPM. In Section 11, we show how to examine 
this model empirically. Section I11 describes the data and presents the empir- 
ical results. We draw our conclusions in Section IV. 

I. Models for the Expected Stock Returns 

A. The Sharpe-Lintner-Black (Static) CAPM 

Let Ridenote the return on any asset i and R, be the return on the market 
portfolio of all assets in the economy. The Black (1972) version of the CAPM is 

where pi is defined as 

and Era1 denotes the expectation, Cov(.) denotes the covariance, and Varr.1 
denotes the variance. 

In their widely cited study, Fama and French (1992) empirically examine the 
CAPM given above and find that the estimated value of y, is close to zero. They 
interpret the "flat" relation between average return and beta as strong evi- 
dence against the CAPM. 

While a "flat" relation between average return (the sample analog of the 
unconditional expected return) and beta may be evidence against the static 
CAPM, it is not necessarily evidence against the conditional CAPM. The 
CAPM was developed within the framework of a hypothetical single-period 
model economy. The real world, however, is dynamic and hence, as pointed out 
earlier, expected returns and betas are likely to vary over time. Even when 
expected returns are linear in betas for every time period, based on the 
information available at the time, the relation between the unconditional 
expected return and the unconditional beta could be "flat."6 The following 
example illustrates this point. 

Consider a hypothetical economy in which the CAPM holds period by period. 
Suppose that the econometrician considers only two stocks and that there are 
only two possible types of dates in the world. The betas of the first stock in the 
two date-types are, respectively, 0.5 and 1.25 (corresponding to an average 
beta of 0.875). The corresponding betas of the second stock are 1.5 and 0.75 
(corresponding to an average beta of 1.125). Suppose that the expected risk 
premium on the market is 10 percent on the first date and 20 percent on the 
second date. Then, if the CAPM holds in each period, the expected risk 
premium on the first stock will be 5 percent on the first date and 25 percent on 
the second date. The expected risk premium on the second stock will be 15 

This is because an asset that is on the conditional mean-variance frontier need not be on the 
unconditional frontier, as Dybvig and Ross (1985) and Hansen and Richard (1987) point out. 
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percent on both dates. Hence, an econometrician who ignores the fact that 
betas and risk premiums vary over time will mistakenly conclude that the 
CAPM does not hold, since the two stocks earn an average risk premium of 15 
percent, but their average betas differ. While the numbers we use in this 
example are rather extreme and unrealistic, they do illustrate the pitfalls 
involved in any empirical study of the CAPM that ignores time variation in 
betas. 

The need to take time variation in betas into account is also demonstrated by 
the commercial success of firms like BARRA, which provide beta estimates for 
risk management and valuation purposes, using elaborate time-series models. 
Several empirical studies of beta-pricing models reported in the literature find 
that betas exhibit statistically significant variability over time.7 Moreover, in 
empirical studies that examine the reaction of stock prices to certain events 
(referred to as "event studies" in the financial economics literature), it has 
become common practice to allow for time variations in betas, following Man- 
delker (1974). Hence, the inconclusive nature of the empirical evidence for the 
static CAPM may well be due to systematic stochastic changes affecting the 
environment that generates returns, as pointed out by Black (1993) and Chan 
and Lakonishok (1993). 

In the next section, we will therefore assume that the CAPM holds in a 
conditional sense, i.e., it holds a t  every point in time, based on whatever 
information is available at that instant. We will then derive an unconditional 
asset-pricing model starting from the conditional version of the CAPM. 

B. The Conditional CAPM 

We use the subscript t to indicate the relevant time period. For example, Rit 
denotes the gross (one plus the rate of) return on asset i in period t ,  and R,, the 
gross return on the aggregate wealth portfolio of all assets in the economy in 
period t. We refer to R,, as the market return. Let I,-, denote the common 
information set of the investors at the end of period t - 1.We assume that all 
the time series in this paper are covariance stationary and that all the condi- 
tional and unconditional moments that we use in the paper exist. 

Risk-averse rational investors living in a dynamic economy will typically 
anticipate and hedge against the possibility that investment opportunities in 
the future may change adversely. Because of this hedging need that arises in 
a dynamic economy, the conditionally expected return on an asset will typi- 
cally be jointly linear in the conditional market beta and "hedge portfolio 
beta^."^ However, following Merton (1980), we will assume that the hedging 
motives are not sufficiently important, and hence the CAPM will hold in a 
conditional sense as given below. 

See Bollerslev, Engle, and Wooldridge (1988), Harvey (1989), Ferson and Harvey (1991,1993), 
and Ferson and Korajczyk (1993). 

See Merton (1973) and Long (1974). 
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THE CONDITIONAL CAPM. For each asset i and i n  each period t ,  

where Pit- ,  is the conditional beta of asset i defined as 

yo,-, is the conditional expected return on a "zero-beta" portfolio, and ylt-, 
is the conditional market risk premium. 

Since our aim is to explain the cross-sectional variations in the uncondi- 
tional expected return on different assets, we take the unconditional expecta- 
tion of both sides of equation (2) to get 

where 

Here, y, is the expected market risk premium, and pi is the expected beta.9 
If the covariance between the conditional beta of asset i and the conditional 
market risk premium is zero (or a linear function of the expected beta) for 
every arbitrarily chosen asset i, then equation (4) resembles the static CAPM, 
i.e., the expected return is a linear function of the expected beta. However, in 
general, the conditional risk premium on the market and conditional betas are 
correlated. During bad economic times when the expected market risk pre- 
mium is relatively high, firms on the "fringe" and more leveraged firms are 
more likely to face financial difficulties and thus have higher conditional betas. 
If the uncertainty associated with future growth opportunities is the cause for 
the higher beta of firms on the "fringe," then their conditional betas will be 
relatively low during bad economic times, resulting in natural perverse market 
timing. This is because during bad times the uncertainty as well as the value 
of future growth opportunities is reduced, and this effect may more than offset 
the effect of increased leverage. 

In fact, we know from earlier studies that the expected risk premium on the 
market as well as conditional betas are not constant (Keim and Stambaugh 
(1986), Breen, Glosten, and Jagannathan (1989)), and vary over the business 
cycle (Fama and French (1989), Chen (1991), and Ferson and Harvey (1991)). 
Therefore, in general the last term in equation (4) is not zero, and the uncon- 
ditional expected return is not a linear function of the expected beta alone. 

Notice that the last term in equation (4) depends only on the part of the 
conditional beta that is in the linear span of the market risk premium. This 
motivates us to decompose the conditional beta of any asset i into two orthog- 
onal components by projecting the conditional beta on the market risk pre- 

Note that expected betas are not the same as unconditional betas, but we will relate the two 
in the next subsection. 
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mium. For each asset i, we define the beta-prem sensitivity (denoted by and 
residual beta (denoted by vit-l) as follows: 

In the above expression, beta-prem sensitivity, ai, measures the sensitivity of 
conditional beta to the market risk premium. It can be verified that, for each 
asset i, we have 

Equation (7) decomposes each conditional beta (which is a random variable) 
into three orthogonal parts. The first part is the expected beta, which is a 
constant. The second part is a random variable that is perfectly correlated with 
the market risk premium. The last part is on average zero and uncorrelated 
with the market risk premium. 

C. Implications for Unconditional Expected Returns 

Substituting (7) into (4)gives 

Hence, cross-sectionally, the unconditional expected return on any asset i is a 
linear function of its expected beta and its beta-prem sensitivity. The larger 
this sensitivity, the larger is the variability of the above second part of the 
conditional beta. In this sense, the beta-prem sensitivity of an asset measures 
the instability of the asset's beta over the business cycle. Stocks with higher 
expected betas have higher unconditional expected returns. Likewise, stocks 
with betas that are prone to vary with the market risk premium and hence are 
less stable over the business cycle also have higher unconditional expected 
returns. Hence, the one-factor conditional CAPM leads to a two-factor model 
for unconditional expected returns. 

A complete test of the conditional CAPM specification given in (2) requires 
estimation of expected beta, pi,and beta-prem sensitivity, ai, given in (10) as 
well as other parameters. This requires additional restrictive assumptions 
regarding the nature of the stochastic process governing the joint temporal 
evolution of conditional market betas and the conditional market risk premi- 
um.lo However, our objective is to examine whether the unconditional expected 

loSee Bodurtha and Mark (1991) for an empirical examination of the conditional CAPM 
specification under more restrictive assumptions. 
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returns are consistent with the conditional CAPM. Because of the limited 
scope of our study, we can get by with somewhat less restrictive assumptions. 

It can be seen from equation (10) that the residual betas do not affect the 
unconditional expected return. So, when considering unconditional returns, we 
can ignore vit-, and concentrate on the first two parts of each conditional beta. 
Since we cannot estimate aiand pi, we look directly at  how the stock returns 
react to the market return on average and how they respond to the changes of 
the market risk premium. This leads us to define the following two types of 
unconditional betas: 

We refer to the first unconditional beta as the market beta and the second as 
the premium beta. They measure the average market risk and beta-instability 
risk, respectively. 

In Appendix A, we show that under rather mild assumptions, the uncondi- 
tional expected return is a linear function of the above two unconditional betas. 
This is summarized as the following theorem: 

THEOREM1. If P I is not a linear function of pi, then there are some constants 
a,, a,, and a ,  such that the equation 

holds for every asset i .  

The two-beta model presented here is not a special case of the multi-beta 
capital asset-pricing models commonly seen in finance literature. For example, 
according to the general equilibrium multi-beta model of Merton (1973), the 
conditionally expected return is linear in several conditional betas, one of 
which is the market beta. In contrast, we assume that the conditionally 
expected return is linear in the conditional market beta alone. From this, we 
show that the unconditional expected return is linear in the market beta and 
the premium beta. Also, there are several important differences between the 
two-beta model given above and the two-beta version of the linear factor 
models that owe their origins to the model first proposed by Ross (1976). First, 
we do not assume that returns have a linear factor structure as is commonly 
assumed in linear factor models. Second, y,,-, is a predetermined variable and 
is not a factor in the sense commonly understood. 

11. Econometric Specifications and Tests 

A. Empirical Specifications 

The model given in equation (13) forms the basis for our empirical work. In 
order to empirically examine whether equation (13) can explain the cross- 
section of expected returns on stocks, we need some further assumptions to 
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estimate the model using time-series data. First, we need observations on the 
conditional market risk premium y,,-, for computing PI .  Since the conditional 
market risk premium depends on the nature of the information available to the 
investors and how they make use of it, we have to take a stand on the 
information set for investors. Second, the return on the aggregate wealth 
portfolio of all assets in the economy is not observable. Hence, we need to use 
a proxy for R,, as well. We discuss these issues in the rest of this subsection. 

A.1. The Proxy for the Conditional Market Risk Premium, y,,-, 

There is a general agreement in the literature that stock prices vary over the 
business cycle. Hence, one may suspect that the market risk premium will also 
vary over the business cycle.ll This observation suggests making use of the 
same variables that help predict the business cycle for forecasting the market 
risk premium as well. 

While a number of variables may help predict future economic conditions, we 
need to restrict attention to a small number of such variables in order to ensure 
that we are able to estimate the parameters of interest with some degree of 
precision. For convenience, we have decided to restrict our attention in this 
study to only one forecasting variable. To determine which variable we should 
pick, we examined the literature on business-cycle forecasting. Our reading of 
this literature suggests that, in general, interest-rate variables are likely to be 
most helpful in predicting future business conditions. Stock and Watson (1989) 
examine several variables and find that the spread between six-month com- 
mercial paper and six-month Treasury bill rates and the spread between ten- 
and one-year Treasury bond rates both outperform nearly every other variable 
as a forecaster of the business cycle. Bernanke (1990), who runs "a horse race" 
between a number of interest-rate variables, finds that the best single variable 
is the spread between the commercial paper rate and Treasury bill rate first 
used by Stock and Watson. 

Based on these findings, we choose the yield spread between BAA- and 
AAA-rated bonds, denoted by RFr;m, as a proxy for the market risk premium. 
The variable RFFim is similar to the spread between commercial paper and the 
Treasury bill rates, but it has been used extensively in finance. In addition, we 
also assume that the market risk premium is a linear function of RFT;m, i.e., 

ASSUMPTION1. There are some constants KO,  K, such that 

For each asset i, we define prem-beta as 

l1 Keim and Stambaugh (19861, Fama and French (1989), and Chen (1991) provide empirical 
evidence that supports this view. 
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Under Assumption 1, the expected return is linear in its prem-beta and its 
market beta. To see this, we can substitute (14) into (12) and make use of (15) 
and Theorem 1to obtain the following corollary: 

COROLLARY1. Suppose that P7 is not a linear function of Piand that Assump- 
tion 1holds, then there are some constants c,, c,, and c,,,, such that the 
equation 

holds for every asset i .  

A.2. The Proxy for the Return on the Wealth Portfolio, R,, 

In empirical studies of the CAPM it is commonly assumed that the return on 
the value-weighted portfolio of all stocks traded in the United States is a good 
proxy for the return on the portfolio of the aggregate wealth. Let R;" denote 
the return on the value-weighted stock index portfolio. The implicit assump- 
tion is that the market return is a linear function of the stock index, i.e., there 
are some constants 4, and 4- such that 

Let us define the vw-beta as 

Suppose that the static CAPM in equation (1)holds unconditionally as well. In 
this case, we can substitute (17) into equation (11)and use equation (18) and 
the static CAPM to obtain the following linear relation between the uncondi- 
tional expected return and the vw-beta: 

where c, and c,, are some constants. 
This is the specification that is commonly used in empirical studies of the 

static CAPM. Hence, tests of the CAPM based on this specification can be 
interpreted as a joint test of two hypotheses: (i) the static CAPM holds, and (ii) 
the market return is a linear function of the stock index return. Consequently, 
the results of these investigations are open to various interpretations. In 
particular, the reason for the empirical rejections of equation (19) may be that 
the static CAPM does not hold. Alternatively, it may also be the case that the 
static CAPM holds, but the return on the stock index portfolio is a poor proxy 
for the return on the aggregate wealth. Roll (1977) makes a related observation 
that the market portfolio is not observable. It is possible that the value- 
weighted index of stocks is a poor proxy for the portfolio of the aggregate 
wealth; hence, this might be the reason for the poor performance of the CAPM 
under empirical examination. In fact, Mayers (1972) points out that human 
capital forms a substantial part of the total capital in the economy. Following 
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Mayers' suggestion, we therefore consider extending the proxy for the market 
return to include a measure of return on human capital. 

To appreciate the need for examining other proxies for systematic risk, note 
that stocks form only a small part of the aggregate wealth. The monthly per 
capita income in the United States from dividends during the period 1959:l- 
1992:12 was less than 3 percent of the monthly personal income from all 
sources, whereas income from salaries and wages was about 63 percent during 
the same period. While these income flows ignore capital gains, these propor- 
tions remained relatively steady during this period.12 This suggests that com- 
mon stocks of all corporations constitute about a thirtieth of national income 
and probably national wealth as well. Another way to see this is as follows: As 
Diaz-Gimenez et al. (1992) point out, almost two-thirds of nongovernment 
tangible assets are owned by the household sector, and only one-third is owned 
by the corporate sector (p. 536, op. cit.). Approximately a third of the corporate 
assets are financed by equity (see Table 2, op. cit.). Hence, it appears that the 
return on stocks alone is unlikely to measure the return on aggregate wealth 
sufficiently accurately. 

Apparently, the observation that stocks form only a small part of the total 
wealth is what motivated Stambaugh (1981 and 1982) to examine the sensi- 
tivity of the CAPM to different proxies for the market portfolio. In his seminal 
comparative study of the various market proxies, he finds that "even when 
stocks represent only 10 percent of the portfolio value, inferences about the 
CAF'M are virtually identical to those obtained with a stock-only portfolio." 
However, he does not consider the return on human capital in his otherwise 
extensive study. 

The commonly held view appears to be that human capital is not tradable 
and hence should be treated differently from other capital (see Mayers (1972)). 
This view is not entirely justified. First, note that mortgage loans, which are in 
most cases borrowing against future income, constitute about a third of all 
outstanding loans. At the end of 1986 the total market value of equities held by 
the households category was 0.80 GNP, whereas the outstanding stock of 
mortgages (0.60 GNP), consumer credit (0.16 GNP), and bank loans to the 
household sector (0.04 GNP) also amounted to 0.80 GNP (Table 4, Diaz- 
Gimenez et al. (1992)). Second, active insurance markets exist for hedging the 
risk in human capital. Examples include life insurance, unemployment insur- 
ance, and medical insurance. Hence, it does not appear inappropriate, as a first 
approximation, to take the view that human capital is just like any other form 
of physical capital, cash flows from which are traded through issuance of 
financial assets. 

There is, however, an important difference between human capital and other 
physical assets owned by corporations. Typically, the entire cash flow that 
arises from the use of the physical assets employed by firms is promised away 
by issuing financial securities. This is not the case with human capital, where 

12 See Table 2.2 in National Income and Product Account of the U.S. published by the Bureau 
of Economic Analysis, the U.S. Department of Commerce. 
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only a portion of the labor income is secured by issuing mortgages. Also, in 
contrast to stocks, which are the residual claimants in the firm, the cash flow 
from labor income promised to mortgages comes from the top. Hence, factors 
that affect the return on human capital cannot be identified precisely enough 
by examining returns on financial assets like mortgages. We therefore follow 
a different strategy in measuring the return on human capital. 

We assume that the return on human capital is an exact linear function of 
the growth rate in per capita l'abor income. While the use of the growth rate in 
per capita labor income is rather ad hoc, we can provide some rationale for 
using it. For example, suppose that, to a first order of approximation, the 
expected rate of return on human capital is a constant r, and that date-t per 
capita labor income L, follows an autoregressive process of the form 

In such a case, the realized capital-gain part of the rate of return on human 
capital (not corrected for additional investment in human capital made during 
the period) will be the realized growth rate in per capita labor income. To see 
this, note that under these assumptions, wealth due to human capital is 

The rate of change in wealth is then given by 

Fama and Schwert (1977) arrive at  a similar measure based on different lines 
of reasoning. Following the inter-temporal asset-pricing model, Campbell de- 
rives a measure for the return on human capital, which is the above current 
growth rate of labor income, plus a term that depends on expected future 
growth rates of labor income and expected future asset returns (see equation 
(3.3) in Campbell (199313)). If both the forecastable part of the growth rates of 
labor income and the forecastable part of the returns on assets are not impor- 
tant, the term added to the above current growth rate of labor income will be 
very small. In this case, Campbell's measure and Fama-Schwert's measure for 
the return on human capital are approximately the same (see Campbell 
(1993b) for details). Motivated by these observations, we make the simple ad 
hoc assumption that the return on human capital is a linear function of the 
growth rate in per capita labor income. 

It is possible that even when stocks constitute only a small fraction of total 
wealth, the stock-index portfolio return could well be an excellent proxy for the 



The Conditional CAPM and the Cross-Section of Expected Returns 15 

return on the portfolio of the aggregate wealth.13 However, to allow for the 
possibility that this may not be the case, in our empirical work we consider the 
following proxy that incorporates a measure of the return on human capital. 
Let R',"~"' denote the growth rate in per capita labor income, which proxies for 
the return on human capital. We assume that the market return is a linear 
function of Rgw and R',"~"', i.e., 

ASSUMPTION2. There are some constants +,, +,,,
 and +labor such that 

Let us define the labor-beta as 

Then, by substituting (20) into (ll),it follows from (18) and (21) that 

Under Assumptions 1and 2, the unconditional expected return on any asset 
is a linear function of its vw-beta, prem-beta, and labor-beta. This can be seen 
by substituting equation (22) into the equation in Corollary 1to get 

COROLLARY2. Suppose that /37 is not a linear function of Piand that Assump- 
tions 1and 2 hold, then there are some constants c,, c,,, c,,,,, and clabOr 
such that the equation 

holds for every asset i 

We consider this to be the Premium-Labor model, and it forms the basis for the 
empirical study that follows. In the rest of this paper, it will be referred to as 
the "PL-model." 

B. Econometric Tests 

There are several ways to examine whether data are consistent with the 
PL-model. According to this model, the unconditional expected return on any 
asset is a linear function of its three betas only. A natural specification test is 
to examine whether any other variable has the ability to explain the cross- 
section of average returns not explained by the three-beta model. In particular, 
we investigate whether there are residual size effects in the PL-model. The 
rationale for testing a model against size effects has been discussed by Berk 
(1995). The size of a stock is defined as the logarithm of the market value of the 
stock. Let log(MEi) denote the time-series average of size for asset i .  We 

l3 See Shanken (1987) and Kandel and Stambaugh (1987 and 19901, who show how the 
correlation between the market index proxy return and the unobserved wealth return is related to 
the mean-variance efficiency of the market-index proxy portfolio. 
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examine whether any residual size effects exist by including log(MEi) into the 
PL-model to get 

If the PL-model holds, then the coefficient c,,, should be zero, i.e., there should 
be no residual size effects. 

The unconditional models in equations (23) and (24) can be consistently 
estimated by the cross-sectional regression (CSR) method proposed by Black, 
Jensen, and Scholes (1972) and Fama and MacBeth (1973). Notice that the 
PL-model nests the static CAPM as a special case. It facilitates direct compar- 
ison of the two models. For comparing the relative performance of the different 
empirical specifications, we use the R2 in the cross-sectional regression as an 
informal and intuitive measure, which shows the fraction of the cross-sectional 
variation of average returns that can be explained by the model. We are also 
interested in examining whether c-, c,,,,, clabor, and c,,, are different from 
zero after allowing for estimation errors. For this purpose, we need to estimate 
the sampling errors associated with the estimators for these parameters. In 
Appendix B, we show that the standard errors computed in the Fama-MacBeth 
procedure are biased, since it does not take into account the sampling errors in 
the estimated betas. Following the approach suggested by Shanken (1992), we 
derive a formula for correcting the bias (see Appendix B for details). In deriving 
the formula for the bias-correction, we made rather strong assumptions (see 
Assumptions 4 and 5 in Appendix B). Since these assumptions may not be 
satisfied in practice, we also evaluate the various CAPM specifications using 
the Generalized Method of Moments, which requires much weaker statistical 
assumptions. 

For this purpose, consider the testable implications that arise from the 
following moment restriction imposed by the PL-model. Following Dybvig and 
Ingersoll (1982) we substitute the definition of P?, &abOr, and PYrninto the 
PL-model and rearrange the terms to get 

where a,, S,,, a,,,,, and $abor are the constants defined as follows: 

It is well known to financial economists (see Ross (1976)) that, so long as the 
financial market satisfies the law of one price, there will be at  least some 
random variable d, such that 
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where d, is generally referred to as a stochastic discount factor. Hansen and 
Richard (1987) point out that an asset-pricing model (like the CAPM) specifies 
the nature of this stochastic discount factor in terms of potentially observable 
variables. In our case the stochastic discount factor is given by 

which depends on the parameters 6 - (So, a,,, ,,,,,6 
 ~,b,,)'.14 


Suppose that there are N assets used in our econometric tests. Let 1, be the 
N-dimensional vector of Is, and 

Then dt(6) = Yi6. If we let w,(S) = Rtd,(S) - I,, then E[wt(S)I is the vector of 
pricing errors of the model. Equation (25) implies that, when the PL-model is 
correctly specified, the N-dimensional pricing errors, E[wt(6)], should be zero. 
We can evaluate the relative performance of several competing model specifi- 
cations by comparing the size of pricing errors. For this purpose, we therefore 
study the quadratic form E[wt(6)1'AE[wt(6)], where A is a positive definite 
matrix (called weighting matrix). We should choose 6 to minimize the pricing 
error by minimizing the value of the quadratic form, which leads to estimation 
of the parameters 6 by the Generalized Method of Moments. 

l4 Notice that we can rewrite the conditional CAPM given in equation (2) to get the following 
conditional stochastic discount factor representation: E[Rjtd,~Zt~,1 = 1, where 

Ylt -1
d t  = Kot -1  f K ~ ~ - ~ R ~ ~ ,= ] EIRmtIZt-ll,K o t - l  

and 
Ylt-1-

K l t - 1  = ~ o ~ - ~ V a r ( R , ~ l I ~ - l ) '  

Cochrane (1992) suggests examining E[R,~,lZ,,] = 1empirically by assuming that K,,-, and K,,-, 

are linear functions of variables in the date t - 1information set I , , .  If one assumes, as in Carhart 
et al. (1995), that (i) K,,-, = K, (a constant) and (ii) K,,-, = K,, + ~,&ff";", the stochastic discount 
factor then becomes d, = K,, + ~ , & f f Y ~+ K,R?, which resembles the one given in equation (25) 
with E,,,,, = 0. However, these assumptions are rather unreasonable. First, since K,,-, is a 
function of the conditional market risk premium, conditional zero-beta rate, and conditional 
variance of the market portfolio, i t  should be time-varying in nature. I t  is not reasonable to assume 
that K , , ,  is a constant when the purpose is to evaluate the conditional CAPM with time-varying 
expected returns, variances, and covariances. Second, with assumption (i), it follows that K,,-, = 

(l/y,,_,) - K,E[R,~,~,]. Thus, assumption (ii) implies that the conditionally expected market 
return is a linear function ofRFfYrn and the inverse of the zero-beta rate. This is very hard to justify 
because the conditionally expected market return should, according to the conditional CAPM, be 
the sum of the market risk premium and the zero-beta rate (see equation (Al) in Appendix A). In 
contrast, to derive model (25), we only assume that the conditionally expected market risk 
premium is a linear function of the variables in the information set. This assumption can be 
justified under joint normality. 
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Now the issue is how to choose the weighting matrix A. The most famous 
choice is the "optimal" weighting matrix suggested by Hansen and Singleton 
(1982). For expositional simplicity, let us now assume that w, is i.i.d. over time. 
In this case, the weighting matrix suggested by Hansen and Singleton (1982) 
is A = [~ar(w,(G))]-l.With this choice for the weighting matrix, they show that 
the minimized value of the sample analog of the quadratic form asymptotically 
has a 2distribution with N -K degrees of freedom, where K is the number of 
unknown parameters in the model. This asymptotic distribution can be used to 
test whether the pricing errors are zero. However, this weighting matrix will 
be different for different model specifications, and thus, we cannot use the 
value of the quadratic form to compare the relative size of the pricing errors 
associated with different models. Especially, if a model contains "more noise," 
i.e., the variance of w,(S) is larger, then the value of the quadratic form will be 
smaller. In this case, it would be misleading to conclude that the "more noisy" 
the model, the better it performs. 

We therefore choose the weighting matrix suggested by Hansen and Jagan- 
nathan (1994), which is A = (E[R,RJ])-l. Since this weighting matrix remains 
the same across various competing model specifications, it allows us to com- 
pare the performance of those models by the value of the quadratic form. 
Hansen and Jagannathan (1994) show that the value of the quadratic form is 
the squared distance from the candidate stochastic discount factor of a given 
model to the set of all the discount factors that price the N assets correctly. 
Thus, we refer to the square root of the quadratic form with this weighting 
matrix as the Hansen-Jagannathan distance, or simply, HJ-distance. Hansen 
and Jagannathan (1994) also show that the HJ-distance is the pricing error for 
the portfolio that is most mispriced by the model (see Appendix C for details). 
Since the weighting matrix suggested by Hansen and Jagannathan (1994) is 
generally not "optimal" in the sense of Hansen (1982), the minimized value of 
the sample analog of the quadratic form does not have a X2 distribution, and we 
thus cannot directly use Hansen's (1982) J-test for the overidentifying restric- 
tions. In Appendix C, we therefore extend Hansen's (1982) results and show 
how to calculate the asymptotic distributions of the minimized quadratic form 
in the Generalized Method of Moments when the weighting matrix is chosen 
arbitrarily. 

111. Empirical Results 

A. Description of the Data 

Though Fama and French (1992) use returns to common stocks of non- 
financial corporations listed in NYSE, AMEX (1962-go), and Nasdaq (1973- 
90) that are covered by CRSP as well as COMPUSTAT in their study, we study 
the returns to stocks of nonfinancial firms listed in NYSE and AMEX (1962- 
90) covered by CRSP alone. Nasdaq stocks are not included because we do not 
have monthly data for Nasdaq stocks available to us. This should not be an 
issue since Fama and French (1992) report that their results do not depend on 
the inclusion of Nasdaq stocks. 
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It is well known that firms in the COMPUSTAT database may have some 
survivorship bias,l5 since stocks move in and out of the COMPUSTAT list 
depending on their performance. Kothari, Shanken, and Sloan (1995) provide 
indirect evidence for the existence of such bias-they point out that the annual 
returns are about 10 percentage points more for small firms in COMPUSTAT 
when compared to small firms that are only in CRSP. Breen and Korajczyk 
(1994) provide some direct evidence that supports the view that selection bias 
may be an important issue for tests that use standard sources of accounting 
data like COMPUSTAT. Fama and French (1993) attempt to address this 
problem by omitting the first two years of data, in response to COMPUSTAT's 
claim that no more than two years of data are included at the time a firm is 
added to the COMPUSTAT list. However, it is not clear whether this com- 
pletely eliminates the bias in the COMPUSTAT tapes. With this in mind, we 
do not examine the relation between book-to-market equity and the cross- 
section of returns.16 Hence, we are not constrained to limit our attention to 
stocks that are in CRSP as well as COMPUSTAT.17 

We create 100 portfolios of NYSE and AMEX stocks as in Fama and French 
(1992). For every calendar year, starting in 1963, we first sort firms into size 
deciles based on their market value at  the end of June. For each size decile, we 
estimate the beta of each firm, using 24 to 60 months of past-return data and 
the CRSP value-weighted index as the market index proxy. Following Fama 
and French (1992), we denote this beta as the "pre-ranking" beta estimate, 
or "pre-beta" for short. We then sort firms within each size decile into beta 
deciles based on their pre-betas. This gives us 100 portfolios, and we 
compute the return on each of these portfolios for the next 12 calendar 
months by equally weighting the returns on stocks in the portfolio. We 
repeat this procedure for each calendar year. This gives a time series of 
monthly returns (July 1963-December 1990, i.e., 330 observations) for each 
of the 100 portfolios. 

The Fama and French (1992) sorting procedure produces an impressive 
dispersion in the characteristics of interest. Time-series averages of portfolio 
returns are given in Panel A of Table I. The rates of return range from a low 
of 0.51 percent to a high of 1.71 percent per month. The PPws of the portfolios 
are presented in Panel B of Table I. They range from a low of 0.57 to a high of 
1.70.We calculate the size of a portfolio as the equally-weighted average of the 

l5 See Chari, Jagannathan, and Ofer (1986). 
l6 Chan, Jegadeesh, and Lakonishok (1995) report that the sample selection bias, if any, does 

not explain the superior performance of value stocks for the top quintile of the NYSE-AMEX 
stocks. 

l7 Davis (1994), using a database that is free of survivorship bias, finds that book-to-market 
equity has significant explanatory power with respect to the cross-section of realized stock returns 
during the period of July 1940 through June 1963. It is worthwhile pointing out that we do not 
claim that the "book-to-market" variable does not help predict future returns on a stock. We are 
only pointing out that the COMPUSTAT data set has some selection bias and hence is unsuitable 
for econometric evaluation of asset-pricing models until we have a clearer understanding of the 
bias. 
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Table I 


Basic Characteristics of the 100 Portfolios 

Using stocks of nonfinancial firms listed in the NYSE and AMEX covered by CRSP, the 100 portfolios 
are formed in the same way as in Fama and French (1992). For every calendar year, starting from 
1963, we first sort firms into size deciles based on their market value at the end of June. For each size 
category, we estimate the pre-beta of each firm by the slope coefficient in the regression of the 24 to 60 
months of past-return data on a constant and the CRSP value-weighted index of the corresponding 
months. We then sort firms within each size decile into beta deciles based on their pre-betas. This gives 
100 portfolios, and we compute the return on each of these portfolios for the next 12 calendar months 
by equally weighting the returns on stocks in the portfolio. We repeat this procedure for each calendar 
year. This gives a time series of monthly returns (July 1963-December 1990, i.e., 330 observations) for 
each of the 100 size-beta portfolios. Py is the slope in the regression of portfolio i's return on the CRSP 
value-weighted stock index return and a constant for the entire 330-month period. A portfolio size is 
calculated as the equally-weighted average of the logarithm of the market value (in million dollars) of 
the stocks in the portfolio. P y mand pFb0' are calculated in a similar way. The numbers given in Panel 
D are the part of b y r n  orthogonal to a constant and b y ,  and the numbers in Panel E are the part of 
ppbO' orthogonal to a constant, and PYm. 

Panel A: Time-Series Averages of Returns 

Panel B: The Estimated P y s  

Panel C: The Time-Series Averages of Size (log $million) 
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Table I-Continued 
-

0-L P-2 p-3 p-4 P-5 P-6 P-7 0-8 P-9 P-H 

Panel D: The Estimated pp'em that is Orthogonal to p;N.' 

-0.03 0.30 0.20 0.08 0.43 0.25 0.16 0.25 0.46 
-0.47 0.41 0.47 -0.23 0.02 0.32 0.40 0.66 0.34 
-0.04 0.10 0.41 0.27 -0.01 0.06 -0.50 -0.04 0.18 
-0.04 0.37 -0.07 -0.28 0.24 0.13 0.71 -0.28 -0.26 
-0.06 -0.13 0.18 0.08 0.06 0.17 0.11 0.14 -0.19 

0.21 0.38 0.38 -0.01 0.12 0.62 -0.30 0.02 -0.45 
-0.06 0.44 0.44 0.26 0.19 0.15 -0.07 0.06 0.31 
-0.44 -0.33 -0.02 0.16 0.41 0.11 0.05 -0.34 -0.69 
-0.26 -0.34 0.14 0.09 -0.14 -0.13 0.15 -0.53 -0.03 
-0.45 -0.07 -0.02 -0.26 -0.09 -0.64 -0.53 -0.34 -0.89 

Panel E: The Estimated ppborthat is Orthogonal to p F m  and p y  

1.23 1.15 0.71 0.48 0.65 0.19 1.38 0.73 1.06 
0.60 0.55 0.20 -0.10 0.51 0.53 -0.30 -0.84 0.35 
0.32 0.19 -0.44 0.79 -0.29 0.07 0.94 0.13 0.13 

-0.04 0.48 0.46 -0.17 -0.05 -0.18 -1.40 0.15 0.30 
0.19 0.27 -0.15 0.30 0.16 -0.58 0.02 0.12 1.10 

-0.09 -0.05 -0.05 -0.08 0.02 -0.66 0.01 -0.52 -0.01 
-0.66 -0.22 -0.38 -0.26 0.07 -0.07 -0.58 -0.21 -0.16 
-0.25 0.16 -0.40 0.20 -0.53 -0.35 -0.76 -0.50 0.73 
-0.38 -0.16 -0.27 -0.64 -0.07 -0.21 -0.25 -0.29 -0.39 

0.32 -0.04 -0.04 -0.37 -0.24 0.01 -0.23 -0.43 0.02 

logarithm of market value of stocks (in million dollars). The time-series aver- 
ages of portfolio size are presented in Panel C of Table I. They range from a low 
of 2.34 to a high of 8.26. Properties of these three characteristics of the 
portfolios are very similar to those of the portfolios formed by Fama and 
French (1992). The numbers given in Panel D are the part of pHrernorthogonal 
to a constant and p y ,  and the numbers in Panel E are the part of piab0' 
orthogonal to a constant, /3rW and p,P'"". 

The BAA- and AAA-bond yields are taken from Table 1.35 in the Federal 
Reserve Bulletin published by the Board of Governors of the Federal Reserve 
System. The data on personal income and population are taken from Table 2.2 
in the National Income and Product Account of the U.S.A. published by the 
Bureau of Economic Analysis, U.S. Department of Commerce. The labor in- 
come used in this study is the difference between the total personal income and 
the dividend income. We construct the growth rate in per capita monthly labor 
income series using the formula, 

where R:~"' denotes the growth rate in labor income that becomes known at 
the end of month t and L,-, denotes the per capita labor income for month t -
1, which becomes known at the end of month t .  This dating convention is 
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Table I1 


Evaluation of Various CAPM Specifications 

This table gives the estimates for the cross-sectional regression model 

E[R,t] = co  + csize log(MEz) + cVwPYW + labor^?^"+ cpremPP'em 

and the model for the moments 

E[R,,(6, + 6,$Jw + 6,,,,RP'"" + 61,b,&~b")] = 1, 

with either a subset or all of the variables. Here, R,, is the return on portfolio i (i = 1,2,  . . . ,100) 
in month t (July 1963-December 1990), RIw is the return on the value-weighted index of stocks, 
RFf';" is the yield spread between low- and high-grade corporate bonds, and RFbO' is the growth 
rate in per capita labor income. The PI" is the slope coefficient in the OLS regression of R, on a 
constant and R y .  The other betas are estimated in a similar way. The portfolio size, log(MEi), is 
calculated as  the equally-weighted average of the logarithm of the market value (in million dollars) 
of the stocks in portfolio i. The regression models are estimated by using the Fama-MacBeth 
procedure. The "corrected t- and p-values" take sampling errors in the estimated betas into 
account. The models for the moments are estimated by using the Generalized Method of Moments 
with the Hansen-Jagannathan weighting matrix. The minimized value of the GMM criterion 
function is the first item under the "HJ-dist," with the associatedp-value immediately below it. All 
the R-squares and p-values are reported as percentages. 

Panel A: The Static CAPM without Human Capital 

Coefficient: co c, Corern Clabor C ~ i z e  R-square 

Estimate: 
t-value: 
p-value: 
Corrected-t: 
Corrected-p: 

Estimate: 
t-value: 
p-value: 
Corrected-t: 
Corrected-p: 

Estimate: 0.97 1.55 0.6548 
t-value: 89.01 1.09 
p-value: 0.00 27.59 0.22 

Panel B: The Conditional CAPM without Human Capital 

Coefficient: co CW Cprern Clabor Csize R-square 

Estimate: 
t-value: 
p-value: 
Corrected-t: 
Corrected-p: 

Estimate: 
t-value: 
p-value: 
Corrected-t: 
Corrected-p: 
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Table 11-Continued 

Panel B:-Continued 

Coefficient: 60 6vw fiprern k i b o r  HJ-dist 

Estimate: 
t-value: 
p-value: 

1.48 
6.71 
0.00 

2.05 
1.47 

14.14 

-45.94 
2 . 3 6  

1.83 

0.6425 

0.98 

Panel C: The Conditional CAPM with Human Capital 

Coefficient: co CVW Cprern Clabor C S L Z ~  R-square 

Estimate: 
t-value: 
p-value: 
Corrected-t: 
Corrected-p: 

Estimate: 
t-value: 
p-value: 
Corrected-t: 
Corrected-p: 

Coefficient: 

Estimate: 
t-value: 
p-value: 

2.26 
6.39 
0.00 

1.81 
1.26 

20.65 

-65.72 
-3.10 

0.20 

-97.72 
-2.94 

0.33 

Panel D: The Static CAPM with Human Capital 

Coefficient: 

Estimate: 
t-value: 
p-value: 
Corrected-t: 
Corrected-p: 

Estimate: 
t-value: 
p-value: 
Corrected-t: 
Corrected-p: 

Coefficient: 60 6- 8prem h b a r  

Estimate: 
t-value: 
p-value: 

1.37 
7.73 
0.00 

1.22 
0.85 

39.65 

consistent with the fact that the monthly labor income data are typically 
published with a one-month delay. We use a two-month moving average in per 
capita labor income to minimize the influence of measurement errors. 
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B. The Main Results 

Using return data on the 100 portfolios described earlier, we first examine 
the traditional empirical C U M  specification, 

The results are presented in Panel A of Table 11.The t-value for c,, is -0.28, 
and the corresponding p-value is 78 percent. The R2 of the regression is only 
1.35 percent, i.e., only 1.35 percent of the cross-sectional variation in average 
returns can be explained by this specification. The correction to the standard 
errors for estimation errors in the betas does not appear to be important. After 
the correction, the t-value remains as -0.28. Hence, we can conclude that c,, 
is not significantly different from zero after allowing for sampling errors. When 
size is added to the model, the t-value for size is -2.30 and the corresponding 
p-value is only 2.14 percent. The R2 goes up to 57.56 percent. The corrected 
t-value is not very different. The strong size effect suggests that the conven- 
tional specification of the CAPM is inconsistent with the data. In the GMM test 
that uses the Hansen-Jagannathan weighting matrix, the estimated HJ-dis- 
tance is 0.6548 and the correspondingp-value is 0.22 percent, indicating that 
the pricing error is significantly different from zero. The p-value for the 
coefficient 6- in the moment restriction of the model is 27.59 percent, sug- 
gesting that R y  does not play a significant role in constructing a stochastic 
discount factor that helps to explain the cross-sectional dispersion in expected 
returns on the 100 portfolios in our study. These results are consistent with 
what has been reported in the literature. 

We next allow betas to vary over time, i.e., assume that the conditional 
C U M  holds, but still use the stock index as a proxy for the market return. 
This gives the following specification: 

The results are presented in Panel B of Table 11.The estimated value of c,,,,, 
using the Fama-MacBeth regression, is significantly different from zero. The 
t-value for c,,,, is 3.28 with ap-value of 0.10 percent. The R' is 29.32 percent, 
which is a substantial improvement compared with 1.35 percent for the model 
in (28). The t-value for c,,,, is 2.67 when the standard errors are corrected and 
the associatedp-value is 0.75 percent. When size is added to equation (29), the 
t-value for c,,, is -1.93 (p-value = 5.35 percent). When the standard errors are 
corrected, the t-value drops to -1.84 (p-value = 6.59 percent). Although there 
are still some size effects in model (29), they are much weaker than those in 
mode1 (28). The GMM test with the HJ weighting matrix gives an estimated 
value of 0.6425 for HJ-distance with p-value of 0.98 percent. Hence, this 
specification reduces the pricing errors, but they are still significantly different 
from zero. The p-value for 6,,,, in the moment restriction is 1.83 percent, 
which indicates that R r m  is a significant and important component of the 
stochastic discount factor. 
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We now consider the main model developed in this paper: 

where the return on the market portfolio of all assets is assumed to be a linear 
function of the stock index and the growth rate of per capita labor income. 
Equation (30) is the same PL-model in equation (23). The estimation results 
are presented in Panel C of Table 11. The estimated value of clabor, using the 
Fama-MacBeth regression, is significantly different from zero (t-value = 2.31, 
p-value = 2.07 percent). The R2 increases to 55.21 percent. However, when the 
standard errors are corrected, the t-value for clabor drops to 1.73 (p-value = 8.44 
percent). The coefficient c,,,, remains significant. When size is added to the 
model, the t-value for the size coefficient is -1.45 and the associatedp-value is 
14.74percent, which shows that size does not explain what is left unexplained 
in this model after controlling for sampling errors. When the standard errors 
are corrected, the p-value for size becomes even larger, reinforcing our conclu- 
sions. In the GMM test with the HJ weighting matrix, the estimated HJ- 
distance drops sharply to 0.6184 and the p-value jumps to 19.38 percent. 
Hence, the pricing errors of the PL-model are much smaller and not signifi- 
cantly different from zero. Notice that both R,P'"" and ~ f " ~ " '  are significant in 
the GMM test, which is consistent with the results obtained from the Fama- 
MacBeth regression. While the point estimate of the slope coefficient c,, is 
negative, it is not significantly different from zero, after allowing for sampling 
errors. Also, the estimated value of the average zero-beta rate is rather high 
when compared to the average T-bill rate and the average risk premium of 
stocks. Hence there is cause for concern even though our CAPM specification 
does substantially better than the static CAPM in explaining the cross-section 
of average returns on stocks. It appears that we are still missing some impor- 
tant aspect of reality in our modeling exercise. 

In order to visually compare the performance of the different specifications, 
we plot the fitted expected return, computed by using the estimated parameter 
values in a model specification, against the realized average return. If the 
fitted expected returns and the realized average returns are the same, then all 
the points should lie on the 45-degree line through the origin. When ppwalone 
is used, the fitted expected returns are all about the same, whereas the 
realized average returns vary substantially across the 100 portfolios (Figure 
1).The performance substantially improves when p F r nand piaborare also used 
(Figure 3). The fit is about as good as the model with size and ppw(Figure 2). 
The distribution of the points around the 45-degree line in Figure 3 suggests 
that the improved performance of the CAPM using the specifications we 
suggest in this paper is not due to a few outliers. The distribution of the points 
around the 45-degree line does not significantly change when we add log(ME) 
as an additional explanatory variable (Figure 4). 
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Figure 1. Fitted expected returns versus realized average returns. Each scatter point in 
the graph represents a portfolio, with the realized average return as the horizontal axis and the 
fitted expected return as the vertical axis. For each portfolio i ,  the realized average return is the 
time-series average of the portfolio return, and the fitted expected return is the fitted value for the 
expected return, E[R,l, in the following regression model: 

where Prwis the slope coefficient in the OLS regression of the portfolio return on a constant and 
the return on the value-weighted index portfolio of stocks. The straight line in the graph is the 45" 
line from the origin. 

We may suspect that R?~"' is the driving force behind the results for our 
main model. To determine if this is the case, we examine the following 
model: 

which can be obtained from the static CAPM by including the growth rate of 
labor income into the proxy for the market return. The estimated results for 
this specification are presented in Panel D of Table TI. The coefficient corre- 
sponding to the growth rate of labor income is significant, both in the Fama- 
MacBeth regression and the GMM test using the HJ weighting matrix18 
However, there is a strong residual size effect in the Fama-MacBeth regres- 
sion. The HJ-distance is just slightly lower than that of model (28), and the 

Our empirical specification with labor income is similar to that used by Fama and Schwert 
(1977) when betas do not vary over time. The difference is that we use lagged labor income since 
labor income is published with a one-month lag. For a more detailed discussion of this issue, see 
Jagannathan and Wang (1993). 
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Figure 2. Fitted expected returns versus realized average returns. Each scatter point in 
the graph represents a portfolio, with the realized average return as the horizontal axis and the 
fitted expected return as the vertical axis. For each portfolio i ,  the realized average return is the 
time-series average of the portfolio return, and the fitted expected return is the fitted value for the 
expected return, E[R,l, in the following regression model: 

E[R,I = co + csizelog(ME,) + cVwPrW, 

where prw is the slope coefficient in the OLS regression of the portfolio return on a con-
stant and the return on the value-weighted index portfolio of stocks, and the portfolio size, 
log(ME,), is calculated as  the equally-weighted average of the logarithm of the market value 
(in million dollars) of the stocks in portfolio i .  The straight line in the graph is the 45" line 
from the origin. 

p-value is only 1.94 percent. Thus, the pricing error of this model is still 
substantial. This suggests that it is necessary to allow for time variations 
in betas as well in order to explain the cross-section of expected returns on 
stocks. 

C. Additional Investigations 

The unconditional model we develop in this paper to some extent resembles 
the multi-factor model specified by Chen, Roll, and Ross (1986). A natural 
question that arises is whether the "lagged-prem factor" and the "labor- 
income-growth-rate factor" that we use in our specifications are just proxies for 
the macroeconomic factors that are identified by Chen, Roll, and Ross in their 
earlier work. Following them, we consider, besides the value-weighted stock 
index, four additional factors: (a) UTS, is the monthly return spread between 
the long-term government bond and Treasury bill, (b) UPR, is the return 
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Figure 3. Fitted expected returns versus realized average returns. Each scatter point in 
the graph represents a portfolio, with the realized average return as the horizontal axis and the 
fitted expected return as the vertical axis. For each portfolio i, the realized average return is the 
time-series average of the portfolio return, and the fitted expected return is the fitted value for the 
expected return, ECR,], in the following regression model: 

= c~ + cvwPrW+ ~prernp?~+ labor^?^'^, 
where is the slope coefficient in the OLS regression of the portfolio return on a constant and 
the return on the value-weighted index portfolio of stocks, p y m  is the slope coefficient in the OLS 
regression of the portfolio return on a constant and the yield spread between low- and high-grade 
corporate bonds, and p,'"'"' is the slope coefficient in the OLS regression of the portfolio return on 
a constant and the growth rate in per capita labor income. The straight line in the graph is the 45" 
line from the origin. 

differential between a long-term corporate bond and long-term government 
bond, (c) MP, is the growth rate in monthly industrial production in the United 
States, and (d) UI, is the change of inflation rate. The betas are estimated 
using contemporaneous values of these variables. The UTS, and MP, are the 
same variable used by Chen, Roll, and Ross. While the UPR, and UI, used in 
our test should be similar to those corresponding factors used by Chen, Roll, 
and Ross, they may not be exactly the same since we do not have access to their 
data. The data series on inflation, corporate-bond return, and long-term gov- 
ernment bond return are from Ibbotson Associates.19 Monthly industrial pro- 
duction data are obtained from Table 2.10 in the Federal Reserve Bulletin 
published by the Board of Governors of the Federal Reserve System. We 

''See Stocks, Bonds, Bills and Inflation, 1991 Year Book by Ibbotson Associates Inc. 

I I I 
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Figure 4. Fitted expected returns versus realized average returns. Each scatter point in 
the graph represents a portfolio, with the realized average return as the horizontal axis and the 
fitted expected return as the vertical axis. For each portfolio i, the realized average return is the 
time-series average of the portfolio return, and the fitted expected return is the fitted value for the 
expected return, E[R,],in the following regression model: 

E[RL]= C o  + c8,,, log(ME,) + cVwPPW+ cpremPPrem + c l a b o r ~ ~ ~ ~ ~ ~ ,  

where p y  is the slope coefficient in the OLS regression of the portfolio return on a constant and 
the return on the value-weighted index portfolio of stocks, PYrnis the slope coefficient in the OLS 
regression of the portfolio return on a constant and the yield spread between low- and high-grade 
corporate bonds, p!aboris the slope coefficient in the OLS regression of the portfolio return on a 
constant and the growth rate in per capita labor income, and the portfolio size, log(ME,), is 
calculated as the equally-weighted average of the logarithm of the market value (in million dollars) 
of the stocks in portfolio i. The straight line in the graph is the 45" line from the origin. 

consider the following models: 

where all the betas are calculated in the same way as PPw. 
The results are given in Table 111. The top half of the table gives the 

estimates for model (32). The R 2  for the model is 38.96 percent, which is 
substantially less than the R2 for the PL-model (55.21 percent). The HJ- 
distance for equation (32) is 0.6529, which is larger than the HJ-distance for 
the PL-model (0.6184). So, the R' and the HJ-distance consistently indicate 
that the PL-model performs better than model (32). Thep-value shows that the 

l 
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Table I11 


Comparison with the Factors Used by Chen, Roll, and Ross (1986) 

This table gives the estimates for the cross-sectional regression model 

and the model for the moments 

with either a subset or all of the variables. Here, R,, is the return on portfolio i (i = 1,2,  . . . ,100) 
in month t (July 1963-December 19901,R y  is the return on the value-weighted index of stocks, 
RPIYm is the yield spread between low- and high-grade corporate bonds, RPboris the growth rate in 
per capita labor income, UTS, is the return spread between long-term government bonds and 
Treasury bills, UPR, is the return differential between long-term corporate and long-term gov- 
ernment bonds, MP, is the growth rate in monthly industrial production in the United States, and 
UI, is the change of inflation rate. The Py is the slope coefficient in the OLS regression of Ri, on 
a constant and R y .  The other betas are estimated in a similar way. The regression models are 
estimated by using the Fama-MacBeth procedure. The "corrected t- and p-values" take sampling 
errors in the estimated betas into account. The models for the moments are estimated by using the 
Generalized Method of Moments with the Hansen-Jagannathan weighting matrix. The minimized 
value of the GMM criterion function is the first item under the "HJ-dist," with the associated 
p-value immediately below it. All the R-squares and p-values are reported as percentages. 

Coefficient: c,  c,, c,,,, c,,,,, CUTS cUpR C M P  cUI R-square 

Estimate: 1.80 -0.44 -1.07 0.39 -0.02 -0.07 38.96 
t-value: 7.18 -1.28 -2.44 1.63 -0.17 -1.95 
p-value: 0.00 20.14 1.46 10.33 86.27 5.13 
Corrected-t: 6.17 -1.10 -2.12 1.41 -0.15 -1.68 
Corrected-p: , 0.00 26.99 3.38 15.93 88.19 9.34 

Coefficient: 6, 6- 6,,,, 6,,,,, hTS hPRhP HJ-dist 

Estimate: 0.97 1.15 
t-value: 28.47 0.76 
p-value: 0.00 44.77 

Coefficient: c,  c,, c,,,, clab,, cuTs cup, C M ~  cul R-square 

Estimate: 1.37 -0.51 0.29 0.18 -0.17 0.19 0.07 -0.03 57.87 
t-value: 6.33 -1.46 3.54 2.44 -0.46 0.92 0.61 -0.99 
p-value: 0.00 14.50 0.04 1.47 64.75 35.72 54.26 32.11 
Corrected-t: 4.97 -1.15 2.81 1.93 -0.36 0.72 0.48 -0.78 
Corrected-p: 0.00 25.17 0.50 5.39 71.91 46.89 63.24 43.53 

Coefficient: 6, 6- S,,,, 61ab,, bS hpR hP HJ-dist 

Estimate: 2.38 1.73 -72.05 -104.33 -0.27 7.31 -5.91 -9.81 0.6152 
t-value: 6.14 1.13 -3.19 -2.84 -0.08 0.86 -0.43 -0.27 
p-value: 0.00 25.86 0.14 0.46 94.01 38.95 66.68 78.80 22.06 

HJ-distance for mode1 (32) is significantly different from zero. The lower half 
of the table gives the results for model (33). Both the R2 and the HJ-distance 
indicate that inclusion of the four additional factors in Chen, Roll, and Ross 
(1986) does not substantially improve the performance of the PL-model. More 
importantly, none of the coefficients corresponding to the factors in Chen, Roll, 
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and Ross (1986) is significantly different from zero after taking sampling 
errors into account. 

Earlier, we examined the possibility of model misspecification by checking 
whether firm size can explain the cross-sectional variation of expected returns 
that cannot be explained by our conditional CAPM specification. An alterna-
tive is to examine whether the betas with respect to the size and book-to- 
market factors, SMB, and HML,, introduced in Fama and French (1993), can 
explain the cross-sectional variation of expected returns not explained by our 
model. Although Berk (1995) shows that the log of size and the log of book-to- 
market equity should be correlated with expected returns in the cross-section, 
his observation does not imply that this correlation can be captured by the two 
factors. Hence, we are interested in examining whether the two factors that 
Fama and French (1993) identify from the data are proxying for the risk 
associated with the return on human capital and beta instability that we 
model.20 For this purpose, we consider the following models: 

where all the betas are calculated in the same way as py. 
The empirical results are given in Table IV. The top half of the table gives 

the estimates for model (34). The R2 is 55.12 percent, which is not much 
different from 55.21 percent, the R2 for the PL-model. This means that the 
PL-model fits the data at  least as well as mode1 (34) does. Also, the estimated 
value of the zero-beta rate is not very different from the one obtained using the 
PL-model. However, the HJ-distance for mode1 (34) is 0.6432, which is clearly 
larger than that for the PL-model (0.6184). In other words, although the two 
models do equally well on average, the pricing error for the portfolio that is 
most mispriced by model (34) is larger than the pricing error for the portfolio 
that is most mispriced by the PL-model. The p-value also shows that the 
HJ-distance for model (34) is significantly different from zero. The lower half 
of the table gives the estimates for model (35). The R2 goes up from 55.21 to 
64.04 percent when the two factors in Fama and French (1993) are included. 
This is about the same increase that is obtained when size is included. None of 

20 Daniel and Titman (1995) find that only part of the return premia on small capitalization and 
high book-to-market stocks can be explained by the betas with respect to the two factors intro- 
duced by Fama and French (1993). Hansen and Jagannathan (1994) point out that any given 
misspecified model can be "fured by adding a particular "modifying portfolio payoff" to the 
stochastic discount factor associated with the model. Equivalently, any given misspecified linear 
beta-pricing model can be "fixed by adding one more beta, where the additional beta is computed 
with respect to the return on the "modifying portfolio." The results in Fama and French (1993) 
suggest that the modifying portfolio associated with the static CAPM is a portfolio of only two 
factors-the size and book-to-market factors. However, there is no theoretical explanation for this 
empirical regularity. 
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Table 1V 


Comparison with the Factors Used by Fama and French (1993) 

This table gives the estimates for the cross-sectional regression model 

and the model for the moments 

with either a subset or all of the variables. Here, R,, is the return on portfolio i ( i  = 1 ,2 ,  . . . , 100) 
in month t (July 1963-December 19901,R y  is the return on the value-weighted index of stocks, 
RFZ?;" is the yield spread between low- and high-grade corporate bonds, RPb0' is the growth rate in 
per capita labor income, and SMB, and HML, denote the respective Fama and French (1993) 
factors that are designed to capture the risks related to firm size and book-to-market equity. The 
/3yis the slope coefficient in the OLS regression of R,, on a constant and R y .  The other betas are 
estimated in a similar way. The regression models are estimated by using the Fama-MacBeth 
procedure. The "corrected t- and p-values" take sampling errors in the estimated betas into 
account. The models for the moments are estimated by using the Generalized Method of Moments 
with the Hansen-Jagannathan weighting matrix. The minimized value of the GMM criterion 
function is the first item under the "HJ-dist," with the associatedp-value immediately below it. All 
the R-squares and p-values are reported as percentages. 

Coefficient: C o  Cw C ~ r e r n  Clabor C S M B  cHML R-square 

Estimate: 1.39 -0.45 
t-value: 6.07 -0.95 
p-value: 0.00 34.34 
Corrected-t: 5.99 -0.94 
Corrected-p: 0.00 34.97 

Coefficient: so 8- aprem slabor asMB hML HJ-dist 

Estimate: 0.98 2.62 -4.56 -0.94 0.6432 
t-value: 35.00 1.35 -2.10 -0.28 
p-value: 0.00 17.78 3.60 77.91 0.65 

Coefficient: Co CW C ~ r e r n  Clabor CSMB cHML R-square 

Estimate: 1.20 -0.38 0.22 0.11 0.16 0.22 64.04 
t-value: 5.24 -0.80 3.32 2.25 0.78 0.84 
p-value: 0.00 42.41 0.09 2.44 43.79 40.24 
Corrected-t: 4.60 -0.70 2.95 1.99 0.68 0.74 
Corrected-p: 0.00 48.22 0.32 4.69 49.49 46.11 

Coefficient: 80 a,rern Slabor as,, hML HJ-dist 

Estimate: 2.17 2.62 -62.00 -89.33 -3.30 -0.59 0.6123 
t-value: 6.09 1.26 -2.94 -2.67 -1.42 -0.18 
p-value: 0.00 20.90 0.32 0.77 15.52 85.98 18.58 

the coefficients corresponding to the two factors in Fama and French (1993)is 
statistically significantly different from zero after taking sampling errors into 
account. These results suggest that the two Fama and French (1993) factors 
may proxy for the risk associated with the return on human capital and beta 
instability. 
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In our study, we focus on the Black version of the conditional CAPM, which 
assumes that the borrowing and the lending rates are different. The zero-beta 
rate in such an environment should lie between the riskless borrowing and 
riskless lending rates. To examine whether this is true, we proceed as follows. 
We first assume that the riskless lending and borrowing rates are the same as 
the interest rate on one-month Treasury bills (T-bills). In that case the model 
should assign the right average return to T-bills as well. Let RTBillt denote the 
monthly return on the T-bills. Applying the PL-model to the T-bill, we have 

Subtracting the above equation from the PL-model gives the relation between 
expected excess returns and betas for the 100 portfolios: 

where sit = Rit - RTBillt and ny = cov(Ri,, RPw)IVar(RPw) for i = 1, . . . , 100, 
and other Bs are defined in a similar way. If the borrowing and lending rates 
are different, the relation given in (37) should be modified to include a positive 
intercept term, which should equal the difference between the average zero- 
beta rate and the average T-bill rate. One way to examine model rnisspecifi- 
cation is to estimate the above relation with an intercept term and test if it is 
positive and reasonable given our priors regarding what the difference be- 
tween the zero-beta rate and T-bill rate should be. The moment restrictions 
implied by this model are 

where a,,, ,,,,,6 
 and 4,,,, are the constants defined as follows: 

These moment restrictions can be tested using the Generalized Method of 
Moments as described in Section 11-B. Notice that one should not subtract the 
T-bill return from any of the factors when calculating betas or constructing the 
stochastic discount factor since the zero-beta return may be different from the 
T-bill return. In contrast, the three-factor model for the excess returns speci- 
fied in Fama and French (1993) is 
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where fly = cov(Rit, R y  - RTsillt)Nar(Ry- RTBillt), which is the slope of 
regressing the excess asset return on the excess return of the CRSP value- 
weighted portfolio. 

The results for excess returns are presented in Table V. The intercepts in the 
regressions for both the models are significantly different from zero, which 
suggests that the zero-beta rate is different from the T-bill rate. Neither our 
conditional CAPM specificati0,n nor the Fama-French three-factor specifica- 
tion assigns the right value to T-bills. The fact that the intercept term exceeds 
one percent per month suggests that both specifications are missing some 
important aspect of reality. 

Ferson and Foerster (1994) point out that the GMM has rather poor finite 
sample properties. It is for this reason that we chose not to test the conditional 
CAPM directly, but rather to test its unconditional implications. This reduces 
the dimensionality of the problem and hence is likely to result in better finite 
sample statistical properties. This is also the reason we chose to use the 
weighting matrix suggested by Hansen and Jagannathan (1994) instead of 
the optimal GMM weighting matrix. Since the HJ weighting matrix does not 
depend on the unknown parameters that are being estimated, it is likely to 
improve the statistical properties of the GMM tests in finite samples.21 
Zhou (1994) provides some evidence that supports this view. In addition, we 
also formed portfolios of stocks by first sorting them into size quintiles and 
then pre-beta quintiles. We then repeated all the tests, using the time 
series of monthly returns on these 25 portfolios. The results for the 25 
portfolios are qualitatively similar to those for the 100 portfolios reported in 
this paper. 

lV. Conclusion 

There are two major difficulties in examining the empirical support for the 
static CAPM. First, the real world is inherently dynamic and not static. 
Second, the return on the portfolio of aggregate wealth is not observable. These 
issues are typically ignored in empirical studies of the CAPM. It is commonly 
assumed that betas of assets remain constant over time, and the return on 
stocks measures the return on the aggregate wealth portfolio. Under these 
assumptions, Fama and French (1992) find that the relation between average 
return and beta is flat and that there is a strong size effect. 

We argue that those two assumptions are not reasonable. Relaxing the first 
assumption naturally leads us to examine the conditional CAPM. We demon- 
strate that the empirical support for our canditional CAPM specification is 
rather strong. When betas and expected returns are allowed to vary over time 
by assuming that the CAPM holds period by period, the size effects and the 
statistical rejections of the model specifications become much weaker. When a 
proxy for the return on human capital is also included in measuring the return 

However, this issue is not explored in this paper. In a separate paper, we will compare the 
sampling properties of the optimal and HJ weighting matrices. 
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Table V 


Tests Using the Time Series of Monthly Excess Returns on the 100 

Size-Beta Sorted Portfolios 


This table gives the estimates for the following two regression models: 

E[R,,] = c , , ~ : ~+ csMBPBMB+ cKMLPfiML+ ~ ~ ~E[R,,] = c.,,ppW + cprernPPrern l b ~ ~ ~ ~ 

and the two models for the moments 

E [ R , , ( ~+ 6 , ~ : ~+ S,,,rn~::;rn + 61,b,~',"bor)l= o 
E [ R , , ( ~+ 6,J:" + 2isM&sMB+ SHM$FML)] = 0. 

Here, R,, = R,, - R T ~ ~ ~ ~ ,  1, 2, . . . , 100) in month t (July where R,, is the return on portfolio i (i = 

1963-December 1990) and RTBil' is the return on the T-bill. R;" is the return on the value- 
weighted index of stocks and R;" = R y  - , . RPYIm is the yield spread between low- and RTBi" 
high-grade corporate bonds, ~ 2 ~ " '  is the growth rate in per capita labor income, and SMB, and 
HML, denote the respective Fama and French (1993) factors that are designed to capture the risks 
related to firm size and book-to-market equity. The ppw is the slope coefficient in the OLS 
regression of R,, on a constant and R;". The other ps are estimated in a similar way. The bywis 
the slope coefficient in the OLS regression of R,, on a constant and R;". The regression models are 
estimated by using the Fama-MacBeth procedure. The "corrected t- and p-values" take sampling 
errors in the estimated betas into account. The models for the moments are estimated by using the 
Generalized Method of Moments with the Hansen-Jagannathan weighting matrix. The minimized 
value of the GMM criterion function is the first item under the "HJ-dist," with the associated 
p-value immediately below it. All the R-squares and p-values are reported as percentages. 

Coefficient: co c,, Cprem Clabor CSMB c,,, R-square 

Estimate: 0.79 -0.40 0.34 0.22 55.21 
t-value: 3.58 -1.18 3.31 2.31 
p-value: 0.03 23.76 0.09 2.07 
Corrected-t: 2.66 -0.88 2.48 1.73 
Corrected-D: 0.78 37.99 1.31 8.44 

Coefficient: 

Estimate: -0.10 -48.21 -59.92 0.1443 
t-value: -0.25 -13.13 -9.25 
p-value: 80.10 0.00 0.00 96.49 

Coefficient: Co CVW Cprern Clabor CSMB c,,, R-square 

Estimate: 0.86 -0.47 0.33 0.24 55.20 
t-value: 3.76 -0.99 1.56 0.92 
p-value: 0.02 32.20 11.91 35.97 
Corrected-t: 3.71 -0.98 1.54 0.90 
Corrected-p: 0.02 32.84 12.42 36.57 

Coefficient: 8- Sprem Gabor SsMB a,,, HJ-dist 

Estimate: -4.58 -0.45 -9.94 0.5348 
t-value: -3.34 -0.23 -3.80 
p-value: 0.08 81.79 0.01 26.48 
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on aggregate wealth, the pricing errors of the model are not significant at 
conventional levels. More importantly, firm size does not have any additional 
explanatory power. 

Although the conditional model performs substantially better than the static 
model, we still advocate caution in interpreting these results as strong support 
for the conditional CAPM for the following reasons: 

First, our modeling of the time variations in betas is rather simple. If one 
were to take seriously the criticism that the real world is inherently dynamic, 
then it may be necessary to model explicitly what is missing in a static model. 
In particular, in a dynamic world, investors may care about hedging against a 
variety of risks that do not arise in a static economy. One possibility is to 
extend Merton's inter-temporal C U M  for empirical analysis, along the lines 
suggested by Campbell (1993a and 199313). However, the dynamic conditional 
C U M  has an undesirable feature. The econometrician has to take a stand on 
the nature of the information available to the investors. For example, while 
deriving the unconditional multi-factor model implied by the conditional 
CAPM, we assumed that the conditional market risk premium is a linear 
function of the yield spread between low- and high-grade bonds. An alternative 
is to follow Bansal, Hsieh, and Viswanathan (1993) and Bansal and 
Viswanathan (1993) and consider unconditional nonlinear factor models which 
may be relatively more robust to information-set misspecification. 

Second, a number of events occur at  deterministic monthly and yearly 
frequencies. It may be reasonable to expect that such events may influence the 
behavior of asset prices at  these frequencies. Since such events are outside the 
scope of asset-pricing models like the CAPM, one strategy would be to study 
the performance of models by using annual data over a sufficiently long period 
of time, as in Amihud, Christensen, and Mendelson (1992), Jagannathan and 
Wang (1992), and Kothari, Shanken, and Sloan (1995). Such an approach has 
its own shortcomings, the most important of which is that the economy may 
not really be stationary. There is some need for developing statistical sampling 
theories for making inferences that are robust to the presence of such features, 
possibly along the lines of Bossaerts (1994). 

Finally, we have to keep in mind that the CAPM, like any other model, is 
only an approximation of reality. Hence, it would be rather surprising if it 
turns out to be "100 percent accurate." The interesting question is not whether 
a particular asset-pricing model can be rejected by the data. The question is: 
"How inaccurate is the model?" Fama and French (1992) show that the static 
version of the CAPM is very inaccurate. We find that the conditional version of 
the CAPM explains the cross-section of stock returns rather well. In doing so, 
we implicitly assume that the portfolio of stocks used in our study is econom- 
ically important. As we point out in Appendix B, it is possible to mask or 
highlight the model specification error through appropriate choice of the port- 
folios. We will not be surprised if subsequent studies form a set of portfolios for 
which the model we examine in this study performs rather differently. In order 
to reconcile these differing views, we need to devise methods for evaluating the 
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economic importance of the data sets used in empirical studies of asset-pricing 
models. We intend to focus on this issue in our future research. 

The conditional CAPM we study in this article is very different from what is 
commonly understood as the CAPM, and resembles the multi-factor model of 
Ross (1976). The model we evaluate has three betas, whereas the standard 
CAPM has only one beta. We chose this model because (i) the use of a better 
proxy for the return on the market portfolio results in a two-beta model in 
place of the classical one-beta model, and (ii) when the CAPM holds in a 
conditional sense, unconditional expected returns will be linear in the uncon- 
ditional beta as well as a measure of beta-instability over time. When the 
CAPM holds conditionally, we need more than the unconditional beta calcu- 
lated by using the value-weighted stock index to explain the cross-section of 
unconditional expected returns. 

Appendix A: Modeling the Unconditional Expected Returns 

We first show that when betas vary over time, (Pi, PT) is a linear function of 
(pi, 19~).We then show that if aiis a linear function of pi, the static CAPM will 
obtain even in the unconditional sense-i.e., unconditional expected returns 
will be linear in the market beta pi. In this case, /3T is also a linear function of 
pi. Finally, we show that when P[ is not a linear function of pi, which should 
be the usual case, (Pi, PT) will contain all the necessary information contained 
in (pi, 19~).Hence, expected returns will be linear in (pi, ai)as well as (Pi, PI). 

To show that (Pi, PT) is a linear function of (pi, ai), note that the market 
return R,, also satisfies the conditional CAPM. This gives the following 
equations: 

We then define as 

It follows from equations (2), (3), and (A3) that 

These two equations together imply the following orthogonality conditions: 
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We can substitute equation (7) into (A3) to obtain 

From the definition of covariance, the expression given above for Rit in (A9), 
and the orthogonality conditions in (A6), (A7), and (A8), we obtain 

Let us denote the conditional variance of the market return by v,-, = 

EIRmtJIt-,]. Using equations (8), (9), (Al), and (A2),one can show that the last 
term in equation (A10) is 

and the last term in equation (All) is 

Then, equations (A10) and (All)  imply that there will be a linear relation 
between (Pi, PT) and (pi,ei),if the expressions in (A12) and (A131 are zero. 
Hence, we make the following additional assumption throughout the paper 
unless mentioned otherwise: 

ASSUMPTION3. For each asset i, the residual beta qit-l satisfies 

According to the first equation in Assumption 3, the residual betas are uncor- 
related with the conditional volatility of the market return. If the market 
return is conditionally homoskedastic, which is an assumption sometimes 
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made by researchers, then the first equation in Assumption 3 is a consequence 
of equation (8). Since the residual betas do not affect the unconditional ex- 
pected return, as was shown in Section I.C, we can ignore vitP1by assuming 
that they are random noises that are uncorrelated with the market conditions, 
then all the equations in Assumption 3 will hold. Under Assumption 3, the 
following linear function for the betas follows from equations (A101 and (All): 

LEMMA1. There are constants {bkl : k = 1,2; 1 = 0 ,  1,2) such that 

If the beta-prem sensitivity is a linear function of the expected beta, then the 
unconditional expected return will be linear in the market beta, i.e., the CAPM 
will hold unconditionally as well. This observation leads to the next lemma: 

LEMMA2. If aiis a linear function of pi, then there are some constants a ,  and 
a ,  such that the equation 

holds for every asset i ,  i.e., the static CAPM will hold for unconditional 
expected returns. 

Proof. Let & = do + dl& and substitute it into equation (10) to get 

Substitute .4i = do + dl& into the first equation in (A17) to obtain 

which implies that Pi is a linear function of pi. Since Pi is not a constant across 
assets, b,, + d,b,, must be nonzero. So, we can substitute (A20) into equation 
(A19) to obtain equation (AM), which completes the proof. 

One important special case arises when the conditional betas are uncorre- 
lated with the market risk premium. In this case, we have ai= 0, and thus, the 
single beta model (A18) in Theorem 2 holds. Chan and Chen (1988) derived 
equation (A18) by assuming 

where P* is the cross-sectional average of pi, At-, has zero mean, and is 
the random noise. With this specification for the conditional betas, we have 

8,= Cov(Xt-1, Ylt-1) -

Var(y1t-1) 
(Pi - 6"). 
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Therefore, the assumption made by Chan and Chen (1988) implies that the 
beta-prem sensitivity .4, is a linear function of pi, and hence, equation (A18) 
holds under their assumption. 

The restriction that the beta-prem sensitivity is a linear function of the 
expected beta implies the following restriction on the premium betas: 

LEMMA3. If IYi is a linear function of pi, then P7 is a linear function of pi. 

Proof. We substitute .4, = do + dl& into equation (A17) to obtain 

Since pi is not constant across assets, we must have bl, + dlb12 Z 0. We can 
then substitute equation (A23) into equation (A24) to express PT as a linear 
function of Pi, whichcompletes the proof. 

If the premium beta is not a linear function of the market beta, then, by 
Lemma 3, beta-prem sensitivity cannot be a linear function of the expected 
beta. In this case, the single-beta model in Lemma 2 will not hold, i.e., the 
CAPM will not hold unconditionally, even though it holds in a conditional 
sense. Instead, the unconditional expected return will be a linear function of 
two variables-the market beta and the premium beta. This fact is stated as 
Theorem 1in Section I.C. 

Now, let us prove Theorem 1. We first prove that the 2 by 2 matrix in 
equation (A17) is invertible. Suppose it is singular; then there is a nonzero 
vector (x, y) such that 

which implies that xpi + yp? is a constant across assets. Since Pi is not a 
constant across assets, we must have y f 0. But this means that p? is a linear 
function of Pi, which contradicts the assumption in Theorem 1.Now we can 
invert equation (A17) such that (pi, IYi) are linear functions of (Pi, PI)and then 
substitute them into equation (10) to obtain equation (13). 

Appendix B: The Cross-Sectional Regressions 

For the purpose of developing the sampling theory, it is more convenient to 
write all the unconditional models that we have discussed into the following 
form: 
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where {zik),=,, , , , are K1 observable characteristics of asset i, pik = Cov(Rit, 
ykt)Nar(yk,), with bktIkzl,, , . ,K, being K2 economic variables, and {cjk) are some 
coefficients. As an example, for equation (24), we can let K1 = 2, zil = 1,zi2 = 

log(MEi), K2 = 3, y,, = R y ,  y,, = RFFirn, y,, = Pil = prW,P.  z~ j " ~ " ' ,  ~2 = pPrern,and 
p. = p!abor
z3 z ' 

Equation (Bl) can be written in a more concise form as 

E[R,] = Zc, + Bc2= Xc, (B2) 

where R, = (R,,, . . . ,RNt)', C 1  = (ell, . . . , c~KI) ' ,C2 
-- ( ~ 2 1 ,. . ,~ 2 ~ 2 ) ' ~C = 

(c; : c;)', and X = (Z : B), where 

In the cross-sectional regression method, we first estimate p, by the slope 
coefficient in the univariate regression of Ri, on yk, and a constant over time. 
Let pik be the estimated slope coefficient in this regression. Replacing all 
the betas in B by their estimates, we obtain an estimate of B which we 
denote by B. Let x = (Z : B) and R be the time-series average of R,, i.e., R = 

(117') z,T=,R,. The estimator of the parameters, denoted by 2, in the cross- 
sectional regression method is obtained by regressing R on X, that is, 2 = 

(x'x)-I X'R. Here, we assume that both X and x have the rank K1 + K2. If 
plim,, B = B and plim,, R = E[R,], then p l i m ,  2 = c, i.e., 2 is a consistent 
estimator of c. 

Although the cross-sectional regression method does not provide a test for 
the linearity imposed by the model, it  is still a very natural and intuitive tool 
for checking the ability of an unconditional model to explain the cross-sectional 
variation of average returns. The R2 of the cross-sectional regression associ- 
ated with a particular empirical specification provides a natural measure of 
how well that particular model does in explaining the cross-section of average 
returns. However, it is necessary to use caution in interpreting a low R2 as 
indicating that a particular specification is bad in any absolute sense. 

To see why, consider a hypothetical economy where the econometrician has 
observations on four assets. The betas with respect to a proxy market portfolio 
for the four assets are 0.5, 0.5, 2, and 2. The corresponding expected rates of 
returns are 12, 8, 24, and 20 percent. There are no measurement errors 
involved here. I t  can be verified that, in this case, the estimated regression 
equation will be 

and that the R~ of the regression is 95 percent. Now consider forming four 
other portfolios (by an invertible linear transformation) from the four given 
assets as follows. Let z = R, - R, denote the payoff on the zero investment 
portfolio constructed by going long one dollar on the third asset and going short 
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one dollar on the fourth asset. The beta of the payoff, z, is 0 by construction. 
Define the return on the four new portfolios by RT = R, + 32; R*,= R, + 32; 
Rg = R,; and R$ = R,. Notice that the original four assets can be constructed 
as portfolios of these four new portfolios. The betas of the four portfolios 
defined this way are 0.5, 0.5, 2, and 2, respectively. The expected returns on 
these portfolios are 24, 20, 24, and 20 percent, respectively. Clearly, when 
these four portfolios are used, the relation between expected return and beta is 
flat (i.e., the R~ is 0 percent): This shortcoming is not an issue for the way we 
use R, to compare the performance of different competing specifications of the 
CAPM, since we use the same set of portfolios across all model specifications.22 

To assess the sampling errors associated with the estimated parameters, 
Fama and MacBeth (1973) suggest regressing R,, instead of R ,  on 8 for each 
period t to obtain 

and then estimate the covariance matrix of <~(i: - c) by 

where c = (11T) T', 6,. It is easy to see that 5: = C. Substituting C, = 

(x'x)-'x'R, into equation (B4), we have 

In order to understand the properties of the estimated covariance matrix 
v provided by the Fama-MacBeth procedure, it is convenient to define p = 

E[R,l and use equation (B2) to write the average return as 

Substituting it into the definition for C, we can obtain 

22 Kandel and Stambaugh (1995) suggest using an alternative measure of goodness of fit that 
is invariant to portfolio formation for examining the performance of a given model. However, for 
comparing the relative performance of different models using the same set of assets, the OLS R2 
measure is quite appropriate. 
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Suppose that <T(R - p) converges to a random variable ti in distribution and 
CT(BB) converges to a random variable H in distribution. If plim,,, =- B 
B, then 

d

JT(e- C) -+ (xlx)-lxl(ti - H C ~ ) .  (B8) 

Here, (X'X)-lX'fi is the sampling error of e from replacing expected returns by 
average returns, and ( x ' x ) - l ~ ' ~ c ,  is the sampling error from replacing true 
beta by their estimates. The conventional consistent estimate for the variance 
of il is 

Hence, a consistent estimate for the variance of ( ~ ' x ) - ~ X ' t i  is given by 

which is exactly v in view of equation (B5).If we can ignore the sampling error 
H that is due to the errors associated with the estimated betas, then the 
consistent estimate for the variance of e is given by 9 obtained from the 
standard Fama-MacBeth procedure. If H is not negligible, the standard error 
of e provided by the Fama-MacBeth procedure will generally be biased. 

In general, it is difficult to assess the magnitude of the bias of the Fama- 
MacBeth procedure. However, under some additional assumptions, Shanken 
(1992) derives an expression for the bias when the betas are estimated using 
multiple regression. Since we use betas estimated from univariate OLS re-
gressions, Shanken's formula is not directly applicable in our case. 

In what follows, using methods similar to those used by Shanken (1992), we 
derive an expression for the sampling errors associated with parameters 
estimated using the cross-sectional regression method. We need to introduce 
two additional assumptions. For i = 1, . . . ,N, k = 1, . . . , K,, and t = 1, . . . , 
T, define 

eikt = Rit - aik - PihYkt. (B10) 

We then have 

R .~t = aik + P i h Y k t  + eikt 

E[eiktl = 0 
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The two additional assumptions are as  follows: 

ASSUMPTION4. We assume that, for i,  j = 1, . . . , N a n d  k,l = 1, . . . , K2, 
ECeLk,lbns)n=l,. . . , K,; s = l , . . . , 2'1 = 0 a n d  E[eiktejltlbns)n=l, . . . , K2;s = l , . . . , T I  
- auk,. We then define -

ASSUMPTION5. Let Yk = (11T) xT=,ykt. We assume that  the probability limit 

exists for k, 1 = 1, . . . ,K2, a n d  wkk > 0 for k = 1, . . . ,K2. 

Under Assumptions 4 and 5, the limiting distribution of the estimated 
parameter vector is given by the following: 

THEOREM2. Suppose that  when T +m, <T(R' - p' ,  C&(B- B)')' converges to 
a joint normal distribution (ii',C~H' ) ' ,  with zero mean. Suppose that  

p i 
1 2 ( R  - R)(R, - R) '  = Var(li) (B15) 

T-m t = l  

plim B = B. (B16) 
T-m 

Then, under Assumptions 4 a n d  5, <T(C - c) converges to a normal 
distribution with zero mean a n d  variance V + W, where 

V = plim v 
T-.: 

Hence, under Assumptions 4 and 5, the bias of the Fama-MacBeth procedure 
is W. To obtain a consistent estimate of the sampling errors, we first use the 
Fama-MacBeth procedure to obtain 9,and then apply Theorem 2 to obtain a 
consistent estimate of W as 

where Gkl and ekZare the sample analogs of wkl and xkl. 
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Theorem 2 can be proved as follows. First, we introduce some additional 
notations. By IN (IT) we denote the N(T)-dimensional identity matrix. By 1, we 
denote a T-dimensional vector, with each of its elements equal to 1.Let Yk be 
the time-series sample average of ykt and define 

It  follows from (B11) that 

where 8 denotes the Kroneker product. By the definition of Pih,  we have 

6, - bk = [IN@ ( (~k~k) - ' ~k ) l ek .  (B.21) 

In view of Assumption 4, equations (B20) and (B21) together imply 

~ [ ( b- bk)(R - P)~IYI (B22) 

This follows from the fact that ykl, = 0. Hence, hk - bk is uncorrelated with R 
- p. Assumption 4 and equation (B20) also imply that Y is uncorrelated with R 
- p. Therefore, ii and HC, should be uncorrelated with each other, and the 
asymptotic variance of <T(C - c) is given by 
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By Assumptions 4 and 5, we have 

(as T -, +a).+ ~ k ; z l ~ ~ ~ ~ i ~ Z ~ ~  
Thus, 

Kz 

~ a r ( ~ c ~ )= 2 ~ 2 k ~ Z l ~ ~ ~ ~ k l ~ 1 1 ~ x k 1 ,  

k , l = l  

and 

W = (x'x)-~x'v~~(H~~)x(x'x)-~ 

From equations (B5) and (B15) and expression (B27), it follows that 

V = (x'X)-~X'V~~(~~)X(X'X)-~plim 9.= 

This completes the proof. 

Appendix C: The Hansen-Jagannathan Distance 

If there is only one asset, then it is relatively straightforward to compare the 
performance of the different versions of the unconditional model implied by 
the conditional CAPM. All we have to do is to compare the pricing error- 
i.e., the difference between the market price of an asset and the hypothetical 
price assigned to it by the stochastic discount factor implied by a particular 
empirical specification. When there are many assets (100 in our study), it is 
rather difficult to compare the pricing errors across the different candidate 
stochastic discount factors for the model. 

In view of this, we follow Hansen and Jagannathan (1994), who suggest 
examining the pricing error on the portfolio that is most mispriced by a given 
model. There is a practical problem in implementing this simple idea. Suppose 
there are a t  least two assets which do not have the same pricing error for a 
given candidate stochastic discount factor. Let R,, and Rzt denote the corre- 
sponding gross returns. The date t - 1prices of these payoffs are both 1,i.e., 
by investing one dollar at  date t - 1in asset i, the investor gets the payoff Rit 
at date t .  A given asset-pricing model may not assign a price of 1at date t - 1 
to the payoff Ri,.Suppose the pricing error is $i,i.e., the model assigns a price 
of 1+ GiConsider forming a zero-investment portfolio by going long one dollar 
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in security 1 and short one dollar in security 2. The pricing error on this 
zero-investment portfolio is $, - G2. So long as this is not zero, the pricing 
error on any portfolio of the two assets with a price of one dollar can be made 
arbitrarily large by adding a scale multiple of this zero-investment portfolio. 
The same problem arises if instead of examining the pricing error we examine 
the difference between the expected return on a portfolio and the expected 
return assigned by a particular asset-pricing model to that portfolio. To over- 
come this problem, it is necessary to examine the pricing error on portfolios 
that have the same "size." Hansen and Jagannathan (1994) suggest using the 
second moment of the payoff as a measure of "size," i.e., examine the portfolio 
which has the maximum pricing error among all portfolio payoffs that have the 
unit second moment. 

Consider a portfolio of the N primitive assets defined by the vector of 
portfolio weights x. The date t payoff on this portfolio is given by xlRt. It has a 
price of x'l, a t  the beginning of each date. The pricing error on this portfolio 
is x1E[w,(6)1. The second moment of this portfolio payoff is E[x'R,I~, i.e., the 
norm of this portfolio is w.For a given vector of parameters 6, Hansen 
and Jagannathan (1994) show that the maximum pricing error per unit norm 
on any portfolio of these N assets is given by 

where G = E[RtRi] and is assumed to be nonsingular. We refer to Dist as the 
HJ-distance. It is also the least-square distance between the given candidate 
stochastic discount factor and the nearest point to it in the set of all discount 
factors that price assets correctly. (See Hansen and Jagannathan (1994) for 
details.) 

Since the vector, 6, of parameters describing a particular asset-pricing model 
is unknown, a natural way to estimate them is to choose those values for 6 that 
minimize Dist given in (Cl). We can then assess the specification error of a 
given stochastic discount factor by examining the maximum pricing error Dist 
associated with it, as suggested by Hansen and Jagannathan (1994). 

Let 
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The sample analog of the HJ-distance defined in (Cl)  is thus 

We will therefore estimate 6, by minimizing the sample analog of (Cl), i.e., 
choose 6, as the solution to 

min ~ ~ ( 6 )  ((26)I Gi1wT(6). 
6 

The first order condition of the minimization problem is 

which gives 

aT= (D;.G$lDT)-lD&G;llN. 

The estimator 6, is equivalent to a GMM estimator defined by Hansen (1982) 
with the moment restriction E[w(6)1 = 0 and the weighting matrix G-l. I t  is 
also an  extremum estimator described in Arnemiya (1985). Therefore, under 
some regularity conditions, aT is consistent and has an  asymptotic normal 
distribution. For details, we refer readers to Hansen (1982) or Chapter 4 of 
Amemiya (1985). We refer to G-I as the H J  weighting matrix. 

If the weighting matrix is optimal in the sense of Hansen (1982), then 
T[Dist&6,)12 is asymptotically a random variable of 2 distribution with N -
K degrees of freedom, where K is the dimension of the vector 6 of unknown 
parameters. However, G-I is generally not optimal, and thus the distribution 
of ~ [ ~ i s t ~ 6 , ) 1 ~  is not ?(N - K). The following theorem shows that  the 
asymptotic distribution of ~ [ ~ i s t d a , ) ] ~  distributedis a weighted sum of 2 
random variables, each of which has 1degree of freedom. 

THEOREM3. Suppose that for some 6, we have VTwT(tid 5N(ON, S), where S 
is a positive definite matrix. Assume DTP, D, where D is a n  N x K matrix of 
rank K, and assume GTP, G, where G is nonsingular. Let 

where s1I2and G1I2 are the upper-triangle matrices from the Cholesky 
decomposition of S and G, and INis the N-dimensional identity matrix. Then 
A has exactly N - K nonzero eigenvalues, which are positive and denoted by 
A,, . . . , A,_, and the asymptotic sampling distribution of the HJ-distance 
is 

N-K 

T[DistT(aT)l2+ 2 hjVj a s  T + cl-., ( c 1 0 )  
j= 1 

where q,. . . , U N - ~  are independent X2(1)random variables. 
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Notice that, when all the eigenvalues are unity, T[Dist,(6,)I2 has an asymp- 
totic chi-square distribution with N - K degrees of freedom. In this case, G-' 
is optimal. 

As long as we have a consistent estimate ST of the matrix S,we can estimate 
the matrix A defined in Theorem 3 by 

Then we can estimate the hjs by the positive eigenvalues of A,. 
Let u be the asymptotic distribution of ~[Dist,(6,)1~, i.e., 

N-K 

u = 2 h,vj, 
j=1 

and let ~ u )  be the probability distribution function of u. Although g u )  is not 
a known distribution function, we can still conveniently compute thep-value to 
test the null hypothesis that the discount factors are specified correctly. Let 

denote T*(N - K )  independent random draws from a g(1)distribution. These 
random draws can be easily obtained on computer. Then, we can obtain a set 
of independent samples, (ui}T~,, by letting 

N-K 

u.  = 2 
J 41' 

j=1 

By the Law of Large Numbers, for each nonnegative number a ,  we have, as 
T*-+ m, 

1 T* 
p 2 I (u i  5 a )  d$(u) = Prob{u r a ) ,  

i = l  

where I(u 5 a )  is an index function defined as 

Here is the proof of Theorem 3. It follows from equation (C3) that 

Multiplying both sides of equation (C13) by D ~ G Y 'and applying the first order 
condition (C7), we obtain 
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Substituting ((214) into ((213) gives 

After substituting ((215) into (C5) and some algebraic simplifications, we 
obtain 

which gives 

where Z is the N-dimensional random vector of normal distribution with zero 
mean and covariance matrix S. 

Let z be the N-dimensional random vector of normal distribution with zero 
mean and covariance matrix I,. Then Z = (s1I2)'z. Substituting this into 
equation (C171, we have 

where A is defined in (C9) and is obviously symmetric and positive semi- 
definite. 

It is easy to check that 

is symmetric and idempotent, and that its trace is N - K. Thus, we know that 
its rank is N -K, which implies that the rank of A is also N -K. It follows that 
A has exactly N -K positive eigenvalues, denoted by A,, . . . ,AN-,. Then there 
is an orthogonal matrix H and a diagonal matrix A such that 

and A = H'AH. Let x = Hz, then x -N(ON, I,). Then we have 

N-K
d 

T [ D ~ s ~ ~ ( G ~ ) ] ~+XAX= h ~ ; .  ((320) 
j=  1 

Letting vj = xj completes the proof. 
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