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Abstract 

This chapter evaluates the most important theoretical developments in ARCH type 
modeling of time-varying conditional variances. The coverage include the specifica- 
tion of univariate parametric ARCH models, general inference procedures, condi- 
tions for stationarity and ergodicity, continuous time methods, aggregation and 
forecasting of ARCH models, multivariate conditional covariance formulations, 
and the use of model selection criteria in an ARCH context. Additionally, the 
chapter contains a discussion of the empirical regularities pertaining to the temporal 
variation in financial market volatility. Motivated in part by recent results on 
optimal filtering, a new conditional variance model for better characterizing stock 
return volatility is also presented. 

1. Introduction 

Until a decade ago the focus of most macroeconometric and financial time series 
modeling centered on the conditional first moments, with any temporal depen- 
dencies in the higher order moments treated as a nuisance. The increased importance 
played by risk and uncertainty considerations in modern economic theory, however, 
has necessitated the development of new econometric time series techniques that 
allow for the modeling of time varying variances and covariances. Given the 

apparent lack of any structural dynamic economic theory explaining the variation 
in higher order moments, particularly instrumental in this development has been 
the autoregressive conditional heteroskedastic (ARCH) class of models introduced 
by Engle (1982). Parallel to the success of standard linear time series models, arising 
from the use of the conditional versus the unconditional mean, the key insight 
offered by the ARCH model lies in the distinction between the conditional and the 
unconditional second order moments. While the unconditional covariance matrix 
for the variables of interest may be time invariant, the conditional variances and 
covariances often depend non-trivially on the past states of the world. Understanding 
the exact nature of this temporal dependence is crucially important for many issues 
in macroeconomics and finance, such as irreversible investments, option pricing, the 
term structure of interest rates, and general dynamic asset pricing relationships. 
Also, from the perspective of econometric inference, the loss in asymptotic efficiency 
from neglected heteroskedasticity may be arbitrarily large and, when evaluating 
economic forecasts, a much more accurate estimate of the forecast error uncertainty 
is generally available by conditioning on the current information set. 

1 .I. Dejinitions 

Let {E,(O)} denote a discrete time stochastic process with conditional mean and 
variance functions parametrized by the finite dimensional vector OE 0 s R”, where 
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8, denotes the true value. For notational simplicity we shall initially assume that 
s,(O) is a scalar, with the obvious extensions to a multivariate framework treated in 
Section 6. Also, let E,_ r(.) denote the mathematical expectation, conditional on the 
past, of the process, along with any other information available at time t - 1. 

The {E,(@,)} process is then defined to follow an ARCH model if the conditional 
mean equals zero, 

~1-1MRJ)) = 0 t= 1,2,..., (1.1) 

but the conditional variance. 

44J = Var,- lWo)) = L l(~:(&)) t= 1,2,..., (1.2) 

depends non-trivially on the sigma-field generated by the past observations; i.e. 

{~t-l(~O)r~,-2(e0),...}.Wh en obvious from the context, the explicit dependence on 
the parameters, 8, will be suppressed for notational convenience. Also, in the 
multivariate case the corresponding time varying conditional covariance matrix will 
be denoted by f2,. 

In much of the subsequent discussion we shall focus directly on the {st} process, 
but the same ideas extend directly to the situation in which {st} corresponds to the 
innovations from some more elaborate econometric model. In particular, let {yl(O,)} 
denote the stochastic process of interest with cohditional mean 

PtwM = 4 - l(YJ t=l2 ) ).... (1.3) 

Note, by the timing convention both ~~(0,) and a:(O,) are measurable with respect 
to the time t - 1 information set. Define the {s,(e,)} process by 

de,) = Y, - au t= 1,2,.... (1.4) 

The conditional variance for (ct} then equals the conditional variance for the {y,} 
process. Since very few economic and financial time series have a constant conditional 
mean of zero, most of the empirical applications of the ARCH methodology actually 
fall within this framework. 

Returning to the definitions in equations (1.1) and (1.2), it follows that the 
standardized process, 

2,(e,) s E,(e,)a:(e,)- 1’2 t= 1,2,..., (1.5) 

will have conditional mean zero, and a time invariant conditional variance of unity. 
This observation forms the basis for most of the inference procedures that underlie 
the applications of ARCH type models. 

If the conditional distribution for z, is furthermore assumed to be time invariant 
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with a finite fourth moment, it follows by Jensen’s inequality that 

E(&;) = E(zf’)E(a;) 2 E(z;)E(af)2 = E(zp)E(q2, 

where the equality holds true for a constant conditional variance only. Given a 
normal distribution for the standardized innovations in equation (1.5), the uncondi- 
tional distribution for E, is therefore leptokurtic. 

The setup in equations (1.1) through (1.4) is extremely general and does not lend 
itself directly to empirical implementation without first imposing further restrictions 
on the temporal dependencies in the conditional mean and variance functions. 
Below we shall discuss some of the most practical and popular such ARCH formula- 
tions for the conditional variance. While the first empirical applications of the 
ARCH class of models were concerned with modeling inflationary uncertainty, the 
methodology has subsequently found especially wide use in capturing the temporal 
dependencies in asset returns. For a recent survey of this extensive empirical 
literature we refer to Bollerslev et al. (1992). 

1.2. Empirical regularities of asset returns 

Even in the univariate case, the array of functional forms permitted by equation (1.2) 
is vast, and infinitely larger than can be accommodated by any parametric family 
of ARCH models. Clearly, to have any hope of selecting an appropriate ARCH 
model, we must have a good idea of what empirical regularities the model should 
capture. Thus, a brief discussion of some of the important regularities for asset 
returns volatility follows. 

1.2.1. Thick tails 

Asset returns tend to be leptokurtic. The documentation of this empirical regularity 
by Mandelbrot (1963), Fama (1965) and others led to a large literature on modeling 
stock returns as i.i.d. draws from thick-tailed distributions; see, e.g. Mandelbrot 
(1963), Fama (1963,1965), Clark (1973) and Blattberg and Gonedes (1974). 

1.2.2. Volatility clustering 

As Mandelbrot (1963) wrote, 

. . . large changes tend to be followed by large changes, of either sign, and small 
changes tend to be followed by small changes.. 

This volatility clustering phenomenon is immediately apparent when asset returns 
are plotted through time. To illustrate, Figure 1 plots the daily capital gains on the 
Standard 90 composite stock index from 1928-1952 combined with Standard and 
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Figure 1 

Poor’s 500 index from 1953-1990. The returns are expressed in percent, and are 
continuously compounded. It is clear from visual inspection of the figure, and any 
reasonable statistical test, that the returns are not i.i.d. through time. For example, 
volatility was clearly higher during the 1930’s than during the 1960’s, as confirmed 
by the estimation results reported in French et al. (1987). 

A similar message is contained in Figure 2, which plots the daily percentage 

Deutschmark/U.S. Dollar exchange rate appreciation. Distinct periods of exchange 
market turbulence and tranquility are immediately evident. We shall return to a 

formal analysis of both of these two time series in Section 9 below. 
Volatility clustering and thick tailed returns are intimately related. As noted in 

Section 1.1 above, if the unconditional kurtosis of a, is finite, E(E~)/[E($)]~ 3 E(z:), 
where the last inequality is strict unless ot is constant. Excess kurtosis in E, can 
therefore arise from randomness in ol, from excess kurtosis in the conditional 
distribution of sI, i.e., in zl, or from both. 

1.2.3. Leverage eflects 

The so-called “leverage effect,” first noted by Black (1976), refers to the tendency 
for changes in stock prices to be negatively correlated with changes in stock 
volatility. Fixed costs such as financial and operating leverage provide a partial 
explanation for this phenomenon. A firm with debt and equity outstanding typically 
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Dally U.S. Dollar-Deutschmark Appreciation 
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Figure 2 

becomes more highly leveraged when the value of the firm falls. This raises equity 
returns volatility if the returns on the firm as a whole are constant. Black (1976), 
however, argued that the response of stock volatility to the direction of returns is 
too large to be explained by leverage alone. This conclusion is also supported by 
the empirical work of Christie (1982) and Schwert (1989b). 

1.2.4. Non-trading periods 

Information that accumulates when financial markets are closed is reflected in prices 
after the markets reopen. If, for example, information accumulates at a constant 
rate over calendar time, then the variance of returns over the period from the Friday 
close to the Monday close should be three times the variance from the Monday 
close to the Tuesday close. Fama (1965) and French and Roll (1986) have found, 
however, that information accumulates more slowly when the markets are closed 
than when they are open. Variances are higher following weekends and holidays 
than on other days, but not nearly by as much as would be expected if the news 
arrival rate were constant. For instance, using data on daily returns across all NYSE 
and AMEX stocks from 1963-1982, French and Roll (1986) find that volatility is 
70 times higher per hour on average when the market is open than when it is closed. 
Baillie and Bollerslev (1989) report qualitatively similar results for foreign exchange 
rates. 

1.2.5. Forecastable events 

Not surprisingly, forecastable releases of important information are associated with 
high ex ante volatility. For example, Cornell (1978) and Pate11 and Wolfson (1979, 
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1981) show that individual firms’ stock returns volatility is high around earnings 
announcements. Similarly, Harvey and Huang (1991,1992) find that fixed income 
and foreign exchange volatility is higher during periods of heavy trading by central 
banks or when macroeconomic news is being released. 

There are also important predictable changes in volatility across the trading day. 

For example, volatility is typically much higher at the open and close of stock and 
foreign exchange trading than during the middle of the day. This pattern has been 
documented by Harris (1986), Gerity and Mulherin (1992) and Baillie and Bollerslev 
(1991) among others. The increase in volatility at the open at least partly reflects 
information accumulated while the market was closed. The volatility surge at the 
close is less easily interpreted. 

1.2.6. Volatility and serial correlation 

LeBaron (1992) finds a strong inverse relation between volatility and serial corre- 
lation for U.S. stock indices. This finding appears remarkably robust to the choice 
of sample period, market index, measurement interval and volatility measure. Kim 
(1989) documents a similar relationship in foreign exchange rate data. 

1.2.7. Co-movements in volatilities 

Black (1976) observed that 

. . . there is a lot of commonality in volatility changes across stocks: a 1% market 
volatility change typically implies a 1% volatility change for each stock. Well, 
perhaps the high volatility stocks are somewhat more sensitive to market volatility 
changes than the low volatility stocks. In general it seems fair to say that when 
stock volatilities change, they all tend to change in the same direction. 

Diebold and Nerlove (1989) and Harvey et al. (1992) also argue for the existence 
of a few common factors explaining exchange rate volatility movements. Engle et al. 
(1990b) show that U.S. bond volatility changes are closely linked across maturities. 
This commonality of volatility changes holds not only across assets within a market, 
but also across different markets. For example, Schwert (1989a) finds that U.S. stock 
and bond volatilities move together, while Engle and Susmel (1993) and Hamao 

et al. (1990) discover close links between volatility changes across international 
stock markets. The importance of international linkages has been further explored 
by King et al. (1994), Engle et al. (1990a), and Lin et al. (1994). 

That volatilities move together should be encouraging to model builders, since 
it indicates that a few common factors may explain much of the temporal variation 
in the conditional variances and covariances of asset returns. This forms the basis 
for the factor ARCH models discussed in Section 6.2 below. 
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I .2.8. Macroeconomic variables and volatility 

Since stock values are closely tied to the health of the economy, it is natural to 
expect that measures of macroeconomic uncertainty such as the conditional variances 
of industrial production, interest rates, money growth, etc. should help explain 
changes in stock market volatility. Schwert (1989a, b) finds that although stock 
volatility rises sharply during recessions and financial crises and drops during 
expansions, the relation between macroeconomic uncertainty and stock volatility 
is surprisingly weak. Glosten et al. (1993), on the other hand, uncover a strong 
positive relationship between stock return volatility and interest rates. 

1.3. Univariate parametric models 

1.3.1. GARCH 

Numerous parametric specifications for the time varying conditional variance have 
been proposed in the literature. In the linear ARCH(q) model originally introduced 
by Engle (1982), the conditional variance is postulated to be a linear function of the 
past q squared innovations, 

o;=w+ 1 CLiE~_i-W+C((L)E:_l, 
i=l,q 

(1.6) 

where L denotes the lag or backshift operator, L’y, = Y,_~. Of course, for this model 
to be well defined and the conditional variance to be positive, almost surely the 
parameters must satisfy w > 0 and c(~ 3 0,. . . , a, > 0. 

Defining v, = E: - a:, the ARCH(q) model in (1.6) may be re-written as 

Ef = w + C((L)&f_ 1 + v,. (1.7) 

Since E, _ I (v,) = 0, the model corresponds directly to an AR(q) model for the squared 
innovations, E:. The process is covariance stationary if and only if the sum of the 
positive autoregressive parameters is less than one, in which case the unconditional 
variance equals Var(s,) = a2 = o/( 1 - U1 - ... - Uq). 

Even though the E,)S are serially uncorrelated, they are clearly not independent 
through time. In accordance with the stylized facts for asset returns discussed above, 
there is a tendency for large (small) absolute values of the process to be followed by 
other large (small) values of unpredictable sign. Also, as noted above, if the distri- 
bution for the standardized innovations in equation (1.5) is assumed to be time 
invariant, the unconditional distribution for E, will have fatter tails than the distribu- 
tion for z,. For instance, for the ARCH(l) model with conditionally normally 
distributed errors, E(sp)/E($)’ = 3( 1 - a:)/( 1 - 34) if 3c(T < 1, and E(.$)/E(E:)~ = co 
otherwise: both of which exceed the normal value of three. 
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Alternatively the ARCH(q) model may also be represented as a time varying 
parameter MA(q) model for a,, 

E, = 0 + cc(J!& lE,_ 1, (1.8) 

where {i,} denotes a scalar i.i.d. stochastic process with mean zero and variance 
one. Time varying parameter models have a long history in econometrics and 
statistics. The appeal of the observational equivalent formulation in equation (1.6) 
stems from the explicit focus on the time varying conditional variance of the process. 
For discussion of this interpretation of ARCH models, see, e.g., Tsay (1987), Bera 
et al. (1993) and Bera and Lee (1993). 

In empirical applications of ARCH(q) models a long lag length and a large 
number of parameters are often called for. To circumvent this problem Bollerslev 
(1986) proposed the generalized ARCH, or GARCH(p, q), model, 

~: = 0 + C C(iEf_i + C ~jjb:_j ~ W + a(L)&:_ 1 + B(L)a:_ 1. 

i=l,q j= 1.~ 

(1.9) 

For the conditional variance in the GARCH(p, q) model to be well defined all the 
coefficients in the corresponding infinite order linear ARCH model must be positive. 
Provided that a(L) and /J(L) have no common roots and that the roots of the 
polynomial /I(x) = 1 lie outside the unit circle, this positivity constraint is satisfied 
if and only if all the coefficients in the infinite power series expansion for a(~)/( 1 - /i(x)) 
are non-negative. Necessary and sufficient conditions for this are given in Nelson 
and Cao (1992). For the simple GARCH(l, 1) model almost sure positivity of 0: 
requires that w 3 0, c(i B 0 and /I1 > 0. 

Rearranging the GARCH(p, q) model as in equation (1.7), it follows that 

a; = 0 + [a(L) + B(L)l&:_ 1 - P(L)v,- 1 + v,, (1.10) 

which defines an ARMA[max(p,q),p] model for E:. By standard arguments, the 
model is covariance stationary if and only if all the roots of a(x) + b(x) = 1 lie outside 
the unit circle; see Bollerslev (1986) for a formal proof. In many applications with 
high frequency financial data the estimate for CI( 1) + /I( 1) turns out to be very close 
to unity. This provides an empirical motivation for the so-called integrated GARCH 
(p, q), or IGARCH(p,q), model introduced by Engle and Bollerslev (1986). In the 

IGARCH class of models the autoregressive polynomial in equation (1.10) has a 
unit root, and consequently a shock to the conditional variance is persistent in the 
sense that it remains important for future forecasts of all horizons. Further discussion 
of stationarity conditions and issues of persistence are contained in Section 3 below. 

Just as an ARMA model often leads to a more parsimonious representation of 
the temporal dependencies in the conditional mean than an AR model, the GARCH 
(p, q) formulation in equation (1.9) provides a similar added flexibility over the linear 
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non-linear ARCH (NARCH) models: 

O:=O + C ClilE,-ilY + 1 BjOf-j. 

i=l,q j=l,P 
(1.13) 

If (1.13) is modified further by setting 

(1.14) 
i=l,q j=l,p 

for some non-zero K, the innovations in c$ will depend on the size as well as the 
sign of lagged residuals, thereby allowing for the leverage effect in stock return 
volatility. The formulation in equation (1.14) with y = 2 is also a special case of 
Sentana’s (1991) quadratic ARCH (QARCH) model, in which 0: is modeled as a 
quadratic form in the lagged residuals. A simple version of this model termed 
asymmetric ARCH, or AARCH, was also proposed by Engle (1990). In the first 
order case the AARCH model becomes 

a:=o+tlE:_l+sE,-l+P~:_l, (1.15) 

where a negative value of 6 means that positive returns increase volatility less than 
negative returns. 

Another route for introducing asymmetric effects is to set 

0: = W + C [a+T(E,_i > 0)1&,_il’ + Ui-I(&t-i d o)lE~~ilyl + C Bjaf-jT (l.16) 
i=l,q j= 1.p 

where I(.) denotes the indicator function. For example the threshold ARCH 

(TARCH) model of Zakoian (1990) corresponds to equation (1.16) with y = 1. 
Glosten, Jagannathan and Runkle (1993) estimate a version of equation (1.16) with 
y = 2. This so-called GJR model allows a quadratic response of volatility to news 
with different coefficients for good and bad news, but maintains the assertion that 
the minimum volatility will result when there is no news.’ 

Two additional classes of models have recently been proposed. These models 
have a somewhat different intellectual heritage but imply particular forms of con- 
ditional heteroskedasticity. The first is the unobserved components structural ARCH 
(STARCH) model of Harvey et al. (1992). These are state space models or factor 
models in which the innovation is composed of several sources of error where each 
of the error sources has heteroskedastic specifications of the ARCH form. Since 
the error components cannot be separately observed given the past observations, 
the independent variables in the variance equations are not measurable with respect 

’ In a comparison study for daily Japanese TOPIX data, Engle and Ng (1993) found that the EGARCH 
and the GJR formulation were superior to the AARCH model (1.15) which simply shifted the intercept. 
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to the available information set, which complicates inference procedures2 Following 
earlier work by Diebold and Nerlove (1989), Harvey et al. (1992) propose an 
estimation strategy based on the Kalman filter. 

To illustrate the issues, consider the factor structure 

Yr = Bft + &*, (1.17) 

where JJ, is an n x 1 vector of asset returns, f, is a scalar factor with time invariant 
factor loadings, B, and E, is an n x 1 vector of idiosyncratic returns. If the factor 
follows an ARCH( 1) process, 

(1.18) 

then new estimation problems arise since f,_ I is not observed, and c;,~ is not a 
conditional variance. The Kalman filter gives both E, _ l(f, _ 1) and V, _ l(f, _ 1), so 
the proposal by Harvey et al. (1992) is to let the conditional variance of the factor, 
which is the state variable in the Kalman filter, be given by 

Another important class of models is the switching ARCH, or SWARCH, model 
proposed independently by Cai (1994) and Hamilton and Susmel(l992). This class 
of models postulates that there are several different ARCH models and that the 
economy switches from one to another following a Markov chain. In this model 
there can be an extremely high volatility process which is responsible for events 
such as the stock market crash in October 1987. Since this could happen at any 
time but with very low probability, the behavior of risk averse agents will take this 
into account. The SWARCH model must again be estimated using Kalman filter 
techniques. 

The richness of the family of parametric ARCH models is both a blessing and a 
curse. It certainly complicates the search for the “true” model, and leaves quite a 
bit of arbitrariness in the model selection stage. On the other hand, the flexibility 
of the ARCH class of models means that in the analysis of structural economic 
models with time varying volatility, there is a good chance that an appropriate 
parametric ARCH model can be formulated that will make the analysis tractable. 
For example, Campbell and Hentschell (1992) seek to explain the drop in stock 

prices associated with an increase in volatility within the context of an economic 
model. In their model, exogenous rises in stock volatility increase discount rates, 
lowering stock prices. Using an EGARCH model would have made their formal 
analysis intractable, but based on a QARCH formulation the derivations are 
straightforward. 

‘These models sometimes are also called stochastic volatility models; see Andersen (1992a) for a more 
formal definition. 
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1.4. ARCH in mean models 

Many theories in finance call for an explicit tradeoff between the expected returns 
and the variance, or the covariance among the returns. For instance, in Merton’s 
(1973) intertemporal CAPM model, the expected excess return on the market 
portfolio is linear in its conditional variance under the assumption of a representative 
agent with log utility. In more general settings, the conditional covariance with an 
appropriately defined benchmark portfolio often serves to price the assets. For 
example, according to the traditional capital asset pricing model (CAPM) the excess 
returns on all risky assets are proportional to the non-diversifiable risk as measured 
by the covariances with the market portfolio. Of course, this implies that the expected 
excess return on the market portfolio is simply proportional to its own conditional 
variance as in the univariate Merton (1973) model. 

The ARCH in mean, or ARCH-M, model introduced by Engle et al. (1987) was 
designed to capture such relationships. In the ARCH-M model the conditional 
mean is an explicit function of the conditional variance, 

(1.19) 

where the derivative of the g(., .) function with respect to the first element is non-zero. 
The multivariate extension of the ARCH-M model, allowing for the explicit influence 
of conditional covariance terms in the conditional mean equations, was first consi- 
dered by Bollerslev et al. (1988) in the context of a multivariate CAPM model. The 
exact formulation of such multivariate ARCH models is discussed further in Section 6 

below. 
The most commonly employed univariate specifications of the ARCH-M model 

postulate a linear relationship in 0, or af; e.g. g[o:(@, 19]= p + ha:. For 6 # 0 the 
risk premium will be time-varying, and could change sign if p < 0 < 6. Note that 
any time variation in CJ( will result in serial correlation in the {yt} process.3 

Because of the explicit dependence of the conditional mean on the conditional 
variance and/or covariance, several unique problems arise in the estimation and 
testing of ARCH-M models. We shall return to a discussion of these issues in 
Section 2.2 below. 

1.5. Nonparametric and semiparametric methods 

A natural response to the overwhelming variety of parametric univariate ARCH 
models, is to consider and estimate nonparametric models. One of the first attempts 
at this problem was by Pagan and Schwert (1990) who used a collection of standard 

3The exact form of this serial dependence has been formally analyzed for some simple models in Hong 
(1991). 
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nonparametric estimation methods, including kernels, Fourier series and least squares 
regressions, to fit models for the relation between yf and past yt’s, and then compare 
the fits with several parametric formulations. Effectively, these models estimate the 
function f(.) in 

y:=f(y,~1,y,-2,...,Yr-p,e)+rl,. (1.20) 

Several problems immediately arise in estimating f(.), however. Because of the 
problems of high dimensionality, the parameter p must generally be chosen rather 
small, so that only a little temporal smoothing can actually be achieved directly 
from (1.20). Secondly, if only squares of the past y,‘s are used the asymmetric terms 
may not be discovered. Thirdly, minimizing the distance between y: and f, = f(y, _ 1, 
y,_ 2,. . , Y,-~, 6) is most effective if qt is homoskedastic, however, in this case it is 
highly heteroskedastic. In fact, if f, were the precise conditional heteroskedasticity, 
then y:f, ’ and v,f, ‘, would be homoskedastic. Thus, qt has conditional variance 
f:, so that the heteroskedasticity is actually more severe than in y,. Not only 
does parameter estimation become inefficient, but the use of a simple R2 measure 
as a model selection criterion is inappropriate. An R2 criterion penalizes generalized 
least squares or maximum likelihood estimators, and corresponds to a loss function 
which does not even penalize zero or negative predicted variances. This issue will 
be discussed in more detail in Section 7. Indeed, the conclusion from the empirical 
analysis for U.S. stock returns conducted in Pagan and Schwert (1990) was that 
there was in-sample evidence that the nonparametric models could outperform the 
GARCH and EGARCH models, but that out-of-sample the performance deterio- 
rated. When a proportional loss function was used the superiority of the nonpara- 
metric models also disappeared in-sample. 

Any nonparametric estimation method must be sensitive to the above mentioned 
issues. Gourieroux and Monfort (1992) introduce a qualitative threshold ARCH, 
or QTARCH, model, which has conditional variance that is constant over various 
multivariate observation intervals. For example, divide the space of y, into J 

intervals and let Ij(Y,) be 1 if y, is in thejth interval. The QTARCH model is then 
written as 

(1.21) 

where u, is taken to be i.i.d. The mij parameters govern the mean and the bij 
parameters govern the variance of the {y,} process. As the sample size grows, J can 
be increased and the bins made smaller to approximate any process. 

In their most successful application, Gourieroux and Monfort (1992) add a 

GARCH term resulting in the G-QTARCH(l) model, with a conditional variance 
given by 

of = o + Boa:- 1 + 1 PjIj(Yl- *I (1.22) 
j=l,J 
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Interestingly, the estimates using four years of daily returns on the French stock 
index (CAC) showed strong evidence of the leverage effect. 

In the same spirit, Engle and Ng (1993) propose and estimate a partially nonpara- 
metric, or PNP, model, which uses linear splines to estimate the shape of the 
response to the most recent news. The name of the model reflects the fact that the 
long memory component is treated as parametric while the relationship between 
the news and the volatility is treated nonparametrically. 

The semi-nonparametric series expansion developed in a sequence of papers by 
Gallant and Tauchen (1989) and Gallant et al. (1991,1992,1993) has also been 
employed in characterizing the temporal dependencies in the second order moments 
of asset returns. A formal description of this innovative nonparametric procedure 
is beyond the scope of the present chapter, however. 

2. Inference procedures 

2.1. Testing for ARCH 

2.1 .I. Serial correlation and Lagrange multiplier tests 

The original Lagrange multiplier (LM) test for ARCH proposed by Engle (1982) is 
very simple to compute, and relatively easy to derive. Under the null hypothesis it 
is assumed that the model is a standard dynamic regression model which can be 
written as 

Y, = XtP + 57 (2.1) 

where x, is a set of weakly exogenous and lagged dependent variables and E, is a 
Gaussian white noise process, 

where I, denotes the available information set. Because the null is so easily estimated, 
the Lagrange multiplier test is a natural choice. The alternative hype thesis is that 
the errors are ARCH(q), as in equation (1.6). A straightforward derivation of the 
Lagrange multiplier test as in Engle (1984) leads to the TR’ test statistic, where the 
RZ is computed from the regression of ET on a constant and sf_ r, . . , E:_~. Under 
the null hypothesis that there is no ARCH, the test statistic is asymptotically 
distributed as a chi-square distribution with q degrees of freedom. 

The intuition behind this test is very clear. If the data are homoskedastic, then 
the variance cannot be predicted and variations in E: will be purely random. 
However, if ARCH effects are present, large values of E: will be predicted by large 
values of the past squared residuals. 
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While this is a simple and widely used statistic, there are several points which 

should be made. First and most obvious, if the model in (2.1) is misspecified by 
omission of a relevant regressor or failure to account for some non-linearity or serial 
correlation, it is quite likely that the ARCH test will reject as these errors may induce 
serial correlation in the squared errors. Thus, one cannot simply assume that ARCH 
effects are necessarily present when the ARCH test rejects. Second, there are several 
other asymptotically equivalent forms of the test, including the standard F-test from 
the above regression. Another version of the test simply omits the constant but 
subtracts the estimate of the unconditional variance, g2, from the dependent variable, 
and then uses one half the explained sum of squares as a test statistic. It is also quite 
common to use asymptotically equivalent portmanteau tests, such as the Ljung and 
Box (1978) statistic, for E:. 

As described above, the parameters of the ARCH(q) model must be positive. 

Hence, the ARCH test could be formulated as a one tailed test. When q = 1 this is 
simple to do, but for higher values of q, the procedures are not as clear. Demos and 
Sentana (1991) has suggested a one sided ARCH test which is presumably more 
powerful than the simple TR* test described above. Similarly, since we find that the 
GARCH(l, 1) is often a superior model and is surely more parsimoniously para- 
metrized, one would like a test which is more powerful for this alternative. The 
Lagrange multiplier principle unfortunately does not deliver such a test because, 
for models close to the null, tlr and PI cannot be separately identified. In fact, the 
LM test for GARCH( 1,1) is just the same as the LM test for ARCH( 1); see Lee and 
King (1993) which proposes a locally most powerful test for ARCH and GARCH. 

Of course, Wald type tests for GARCH may also be computed. These too are 
non-standard, however. The t-statistic on cur in the GARCH(l, 1) model will not 
have a t-distribution under the null hypothesis since there is no time-varying input 
and /?r will be unidentified. Finally, likelihood ratio test statistics may be examined, 
although again they have an uncertain distribution under the null. Practical experience, 
however, suggests that the latter is a very powerful approach to testing for GARCH 
effects. We shall return to a more detailed discussion of these tests in Section 2.2.2 
below. 

2.1.2. BDS test.for ARCH 

The tests for ARCH discussed above are tests for volatility clustering rather than 
general conditional heteroskedasticity, or general non-linear dependence. One widely 
used test for general departures from i.i.d. observations is the BDS test introduced 
by Brock, Dechert and Scheinkman (1987). We will consider only the univariate 
version of the test; the multivariate extension is made in Baek and Brock (1992). 
The BDS test has inspired quite a large literature and several applications have 
appeared in the finance area; see, e.g. Scheinkman and LeBaron (1989), Hsieh (1991) 
and Brock et al. (1991). 

To set up the test, let {x,},=r,r denote a scalar sequence which under the null 
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hypothesis is assumed to be i.i.d. through time. Define the m-histories of the x, 
process as the vectors (xi,.. .,x,,,), (x2 ,. ..,x,+J,(xj,.. .,x,+~),. . .,(x,_,,. . .,XTel), 

(Xvm+lr..., xT). Clearly, there are T-m + 1 such m-histories, and therefore 

(T - m + l)(T - m)/2 distinct pairs of m-histories. Next, define the correlation 
integral as the fraction of the distinct pairs of m-histories lying within a distance 
c in the sup norm; i.e. 

C,,,,,(c) = [(T-m + l)(T - m)/2]-’ c 1 I(maxj=,,,_, Ix,-j- x,_jJ cc). 
f=rn,s s=m,T 

(2.3) 

Under weak dependence conditions, C,,, (c) converges almost surely to a limit 

C,(c). By the basic properties of order-statistics, C,(c) = C,(C)~ when {xt} is 
i.i.d. The BDS test is based on the difference, [C,,,(c) - C1,T(c)m]. Intuitively, 
C,,,(c) > C,,,(c)” means that when x,-~ and x,_~ are “close” forj = 1 to m - 1, i.e. 

IllZlXj,~,,_~ 1 x,_ j - x,_ jI < c, then x, and x, are more likely than average to be 
close, also. In other words, nearest-neighbor methods work in predicting the {x,) 
series, which is inconsistent with the i.i.d. assumption.4 

Brock et al. (1987) show that for fixed m and c, T”‘[C,,,(c)- C,,T(~)m] is 
asymptotically normal with mean zero and variance V(m, c) given by 

V(m,c)=4[K(c)“‘+2 c K(c)“~jC,(c)2~+(m-1)2C,(c)2m-m2K(c)C,(c)2m~2], 
j=l,m-1 

(2.4) 

where K(c) = E{ [F(x, + c) - F(x, - c)]“}, and F(.) is the cumulative distribution 
function of x,. The BDS test is then computed as 

T1’2CC,,r(c) - CI,TWY~(T, m,c), (2.5) 

where e(T, m, c) denotes a consistent estimator of V(m, c), details of which are given 
by Brock et al. (1987,199l). For fixed m > 2 and c > 0, the BDS statistic in equation 
(2.5) is asymptotically standard normal. 

The BDS test has power against many, though not all, departures from i.i.d. In 
particular, as documented by Brock et al. (1991) and Hsieh (1991), the power against 
ARCH alternatives is close to Engle’s (1982) test. For other conditionally hetero- 
skedastic alternatives, the power of the BDS test may be superior. To illustrate, 
consider the following example from Brock et al. (1991), where 0: is deterministically 

“C,,,(c) < C,,r(c)m indicates the reverse of nearest-neighbors predictability. It is important not to 
push the nearest-neighbors analogy too far, however. For example, suppose {x,} is an ARCH process 
with a constant conditional mean of 0. In this case, the conditional mean of x, is always 0, and the 
nearest-neighbors analogy breaks down for minimum mean-squared-error forecasting of x,. It still 
holds for forecasting, say, the probability that X, lies in some interval. 
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determined by the tent map, 

O;+l = 1 - 210: - 0.5). (2.6) 

with (ri~(O,l). The model is clearly heteroskedastic, but does not exhibit volatility 
clustering, since the empirical serial correlations of {cJ:} approach zero in large 
samples for almost all values of 0:. 

In order to actually implement the kDS test a choice has to be made regarding 
the values of m and c. The Monte Carlo experiments of Brock et al. (199 1) suggest 
that c should be between t and 2 standard deviations of the data, and that T/m 
should be greater than 200 with m no greater than 5. For the asymptotic distribution 
to be a good approximation to the finite-sample behavior of the BDS test a sample 
size of at least 500 observations is required. 

Since the BDS test is a test for i.i.d., it requires some adaptation in testing for 
ARCH errors in the presence of time-varying conditional means. One of the most 
convenient properties of the BDS test is that unlike many other diagnostic tests, 
including the portmanteau statistic, its distribution is unchanged when applied to 
residuals from a linear model. If, for example, the null hypothesis is a stationary, 
invertible, ARMA model with i.i.d. errors and the alternative hypothesis is the same 
ARMA model but with ARCH errors, the standard BDS test remains valid when 
applied to the fitted residuals from the homoskedastic ARMA model. A similar 
invariance property holds for residuals from a wide variety of non-linear regression 
models, but as discussed in Section 2.4.2 below, this does not carry over to the 
standardized residuals from a fitted ARCH model. Of course, the BDS test may 
reject due to misspecification of the conditional mean rather than ARCH effects in 
the errors. The same is true, however, of the simple TR’ Lagrange multiplier test 
for ARCH, which has power against a wide variety of non-linear alternatives. 

2.2. Maximum likelihood methods 

2.2.1. Estimation 

The procedure most often used in estimating 8, in ARCH models involves the 
maximization of a likelihood function constructed under the auxiliary assumption 
of an i.i.d. distribution for the standardized innovations in equation (1.5). In parti- 
cular, let f(z,; q) denote the density function for z,(0) = E,(~)/o,(@ with mean zero, 
variance one, and nuisance parameters ~EH c Rk. Also, let {yr, yr- 1,. . , y,} refer 
to the sample realizations from an ARCH model as defined by equations (1.1) 
through (1.4), and II/’ = (0’, tj) the combined (m + k) x 1 parameter vector to be 
estimated for the conditional mean, variance and density functions. 

The log likelihood function for the tth observation is then given by 

UY,; $) = ln {fCz,(& ~11 - 0.5 lnCflf(@l t= 1,2,.... (2.7) 
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The second term on the right hand side is a Jacobian that arises in the transformation 
from the standardized innovations, z,(0), to the observables, Y,(Q).~ By a standard 
prediction error decomposition argument, the log likelihood function for the full 
sample equals the sum of the conditional log likelihoods in equation (2.7X6 

~,(Y,,Y,-l,..., Yli $) = c UY*i II/). (2.8) 

The maximum likelihood estimator (MLE) for the true parameters I& = (f&, &), say 
tjT, is found by the maximization of equation (2.8). 

Assuming the conditional density and the mean and variance functions to be 

differentiable for all $E 0 x H = Y, $, therefore solves 

ST(YYT,YT-l,...,Yl;~)- 1 S,(y,;ti)=O, (2.9) 
1=1,T 

where s,(y,; II/) = V&y,; II/) is the score vector for the tth observation. In particular, 
for the conditional mean and variance parameters, 

v,u~,; b4 = mm ~3 - lfw4; w,~m - 0.54~ lb~:m (2.10) 

where f’(z,(e); r) denotes the derivative of the density function with respect to the 
first element, and 

v,z,(e) = - v,p,(eg(e)- 1’2 - o.5&,(e)a:(e)-3’2v,afo. (2.11) 

In practice, the actual solution to the set of m + k non-linear equations in (2.9) will 
have to proceed by numerical techniques. Engle (1982) and Bollerslev (1986) provide 
a discussion of some of the alternative iterative procedures that have been successfully 
employed in the estimation of ARCH models. 

Of course, the actual implementation of the maximum likelihood procedure 
requires an explicit assumption regarding the conditional density in equation (2.7). 
By far the most commonly employed distribution in the literature is the normal, 

f[z,(e)] = (24 - ij2 exp [ - o.sz,(e)q. (2.12) 

Since the normal distribution is uniquely determined by its first two moments, only 
the conditional mean and variance parameters enter the likelihood function in 

51n the multivariate context, l,(y,: I(/) = ln{f[er(H)~t(8)~“2;~]} - 0.5 ln(].R,(B)I), where 1.1 denotes the 
determinant. 

‘In most empirical applications the likelihood function is conditioned on a number of initial 
observations and nuisance parameters in order to start up the recursions for the conditional mean 
and variance functions. Subject to proper stationarity conditions this practice does not alter the 
asymptotic distribution of the resulting MLE. 
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equation (2.8); i.e. $ = 0. If the conditional mean and variance functions are both 
differentiable for all 8~0, it follows that the score vector in equation (2.10) takes 
the simple form, 

s&; 0) = V,/~~(fI)c,(0)c~f(Q)- 1’2 + OSV,~;(t7)a:(fI- “2[~t(tI)2a;(8))1 - 11. (2.13) 

From the discussion in Section 2.1 the ARCH model with conditionally normal 
errors results in a leptokurtic unconditional distribution. However, the degree of 
leptokurtosis induced by the time-varying conditional variance often does not 
capture all of the leptokurtosis present in high frequency speculative prices. To 
circumvent this problem Bollerslev (1987) suggested using a standardized t-distri- 
bution with v > 2 degrees of freedom, 

f[z,@);q] =[7r(r/ - 2)]-“2I-[o.5(n + l)]r(o.s~)-‘[l +z,(e)(~-2)-‘]-‘“+“‘2, 

(2.14) 

where I-(.) denotes the gamma function. The r-distribution is symmetric around 
zero, and converges to the normal distribution for 9 + co. However, for 4 < q < co 
the conditional kurtosis equals 3(~ - 2)/(9 - 4), which exceeds the normal value of 
three. 

Several other conditional distributions have been employed in the literature to 
fully capture the degree of tail fatness in speculative prices. The density function for 
the generalized error distribution (GED) used in Nelson (1991) is given by 

f[z,(@;?j] = P/-‘2-t 1+1i~)T(~-‘)-‘exp[-0.51z,(8)~-‘)”], (2.15) 

where 

2 = [2(-2/“)~(~-‘)~(3~-l)-l]l/2 (2.16) 

For the tail-thickness parameter r] = 2 the density equals the standard normal 
density in equation (2.10). For r] < 2 the distribution has thicker tails than the 
normal, while q > 2 results in a distribution with thinner tails than the normal. 

Both of these candidates for the conditional density impose the restriction of 
symmetry. From an economic point of view the hypothesis of symmetry is of interest 
since risk averse agents will induce correlation between shocks to the mean and 
shocks to the variance as developed more fully by Campbell and Hentschel(l992). 

Engle and Gonzalez-Rivera (1991) propose to estimate the conditional density 
nonparametrically. The procedure they develop first estimates the parameters of 
the model using the Gaussian likelihood. The density of the residuals standardized 
by their estimated conditional standard deviations is then estimated using a linear 
spline with smoothness priors. The estimated density is then taken to be the true 
density and the new likelihood function is maximized. The use of the linear spline 
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simplifies the estimation in that the derivatives with respect to the conditional 
density are easy to compute and store, which would not be the case for kernels or 
many other methods. In a Monte Carlo study, this approach improved the efficiency 
beyond the quasi MLE, particularly when the density was highly non-normal and 
skewed. 

2.2.2. Testing 

The primary appeal of the maximum likelihood technique stems from the well- 
known optimality conditions of the resulting estimators under ideal conditions. 
Crowder (1976) gives one set of sufficient regularity conditions for the MLE in 
models with dependent observations to be consistent and asymptotically normally 
distributed. Verification of these regularity conditions has proven extremely difficult 
for the general ARCH class of models, and a formal proof is only available for a 
few special cases, including the GARCH (1,1) model in Lumsdaine (1992a) and Lee 
and Hansen (1993).’ The common practice in empirical studies has been to proceed 
under the assumption that the necessary regularity conditions are satisfied. 

In particular, if the conditional density is correctly specified and the true parameter 
vector IC/,Eint( Y), then a central limit theorem argument yields that 

T1’%b - $0) + NO, A, ‘), (2.17) 

where + denotes convergence in distribution. Again, the technical difficulties in 
verifying (2.17) are formidable. The asymptotic covariance matrix for the MLE is 
equal to the inverse of the information matrix evaluated at the true parameter vector 

* 03 

Ao = - T-l c ECV,s,(y,; 11/o)l. (2.18) 

The inverse of this matrix is less than the asymptotic covariance matrix for all other 
estimators by a positive definite matrix. In practice, a consistent estimate for A, is 
available by evaluating the corresponding sa_mple analogue at GT; i.e. replace 
E[V,s,(y,; I++~)] in equation (2.18) with V&y,; I&=). Furthermore, as shown below, 
the terms with second derivatives typically have expected value equal to zero and 
therefore do not need to be calculated. 

Under the assumption of a correctly specified conditional density, the information 
matrix equality implies that A, = B,, where B, denotes the expected value of the 

‘As discussed in Section 3 below, the condition that E(ln(a,zf +/II)] < 0 in Lunsdaine (1992a) 
ensures that the GARCH(l,l) model is strictly stationary and ergodic. Note also, that by Jensen’s 
inequality E(ln(cc,zf + PI)] <In E(a,z: + 8,) = In@, + j?,), so the parameter region covers the interest- 
ing IGARCH(I,l) case in which a, + b, = 1. 
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outer product of the gradients evaluated at the true parameters, 

Bo = T- l 1 ECs,(Yt; tio)s,(Y,; $o)'l. (2.19) 
1=1,T 

The outer product of the sample gradients evaluated at 6, therefore provides 
an alternative covariance matrix estimator; that is, replace the summand in 
equation (2.19) by the sample analogues s,(y,; Gr-)st(y,; $,)‘. Since analytical deriva- 
tives in ARCH models often involve very complicated recursive expressions, it is 
common in empirical applications to make use of numerical derivatives to approxi- 
mate their analytical counterparts. The estimator defined from equation (2.19) has 
the computational advantage that only first order derivatives are needed, as numerical 
second order derivatives are likely to be unstable.8 

In many applications of ARCH models the parameter vector may be partitioned 
as 8’ = (Pi, PZ) where d1 and o2 operate a sequential cut on 0, x 0, = 0, such that 
8i parametrizes the conditional mean and 8, parametrizes the conditional variance 

function for y,. Thus, VQ~(~) = 0, and although V,,c~f(@ # 0 for all &@, it is 
possible to show that, under fairly general symmetrical distributional assumptions 
regarding z, and for particular functional forms of the ARCH conditional variance, 
the information matrix for 0’ = (Pi, &) becomes block diagonal. Engle (1982) gives 
conditions and provides a formal proof for the linear ARCH(q) model in equation (1.6) 
under the assumption of conditional normality. As a result, asymptotically efficient 
estimates for 8,, may be calculated on the basis of a consistent estimate for Bol, 
and vice versa. In particular, for the linear regression model with covariance 
stationary ARCH disturbances, the regression coefficients may be consistently 
estimated by OLS, and asymptotically efficient estimates for the ARCH parameters 
in the conditional variance calculated on the basis of the OLS regression residuals. 
The loss in asymptotic efficiency for the OLS coefficient estimates may be arbitrarily 
large, however. Also, the conventional OLS standard errors are generally inappro- 
priate, and should be modified to take account of the heteroskedasticity as in White 
(1980). In particular, as noted by Milhoj (1985), Diebold (1987), Bollerslev (1988) 
and Stambaugh (1993) when testing for serial correlation in the mean in the presence 
of ARCH effects, the conventional Bartlett standard error for the estimated autocor- 
relations, given by the inverse of the square root of the sample size, may severely 
underestimate the true standard error. 

There are several important cases in which block-diagonality does not hold. For 
example, block-diagonality typically fails for functional forms, such as EGARCH, 
in which 0: is an asymmetric function of lagged residuals. Another important 
exception is the ARCH-M class of models discussed in Section 1.4. Consistent 

‘In the Berndt, Hall, Hall and Hausman (1974) (BHHH) algorithm, often used in the maximization of 
the likelihood function, the covariance matrix from the auxiliary OLS regression in the last iteration 
provides an estimate of B,. In a small scale Monte Carlo experiment Bollerslev and Wooldridge (1992) 
found that this estimator performed reasonably well under ideal conditions. 
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estimation of the parameters in ARCH-M models generally requires that both the 
conditional mean and variance functions be correctly specified and estimated simul- 
taneously. A formal analysis of these issues is contained in Engle et al. (1987), 

Pagan and Hong (1991) Pagan and Sabau (1987a, 1987b) and Pagan and Ullah 
(1988). 

Standard hypothesis testing procedures concerning the true parameter vector are 
directly available from equation (2.17). To illustrate, let the null hypothesis of 
interest be stated as T($,,) = 0, where I: 0 x H + R’ is differentiable on int( Y) and 

1-c m + k. If +,,Eint( Y) and rank [V&$,)] = I, the Wald statistic takes the familiar 
form 

where C, denotes a consistent estimator of the covariance matrix for the parameter 
estimates under the alternative. If the null hypothesis is true and the regularity 
conditions are satisfied, the Wald statistic is asymptotically chi-square distributed 
with (m + k) - 1 degrees of freedom. 

Similarly, let $,, denote the MLE under the null hypothesis. The conventional 
likelihood ratio (LR) statistic, 

should then be the realization of a chi-square distribution with (m + k) - I degrees of 
freedom if the null hypothesis is true and $,Eint( Y). 

As discussed already in Section 2.1 above, when testing hypotheses about the 
parameters in the conditional variance of estimated ARCH models, non-negativity 
constraints must often be imposed, so that GO is on the boundary of the admissible 
parameter space. As a result the two-sided critical value from the standard asymptotic 
chi-square distribution will lead to a conservative test; recent discussions of general 

issues related to testing inequality constraints are given in Gourieroux et al. (1982), 
Kodde and Palm (1986) and Wolak (1991). 

Another complication that often arises when testing in ARCH models, also 
alluded to in Section 2.1 above, concerns the lack of identification of certain param- 
eters under the null hypothesis. This in turn leads to a singularity of the information 
matrix under the null and a breakdown of standard testipg procedures. For instance, 
as previously noted in the GARCH(l, 1) model, /I1 and o are not jointly identified 
under the null hypothesis that c(~ = 0. Similarly, in the ARCH-M model, ~~(0) = 
p + &$ with p # 0, the parameter S is only identified if the conditional variance is 
time-varying. Thus, a standard joint test for ARCH effects and 6 = 0 is not feasible. 
Of course, such identification problems are not unique to the ARCH class of models, 
and a general discussion is beyond the scope of the present chapter; for a more 
detailed analysis along these lines we refer the reader to Davies (1977) Watson and 
Engle (1985) and Andrews and Ploberger (1992, 1993). 
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The finite sample evidence on the performance of ARCH MLE estimators and 
test statistics is still fairly limited: examples include Engle et al. (1985) Bollerslev 
and Wooldridge (1992), Lumsdaine (1992b) and Baillie et al. (1993). For the 
GARCH(l, 1) model with conditional normal errors, the available Monte Carlo 
evidence suggests that the estimate for cur + 6, is downward biased and skewed to 
the right in small samples. This bias in oi, + fii comes from a downward bias in pi, 
while oi, is upward biased. Consistent with the theoretical results in Lumsdaine 
(1992a) there appears to be no discontinuity in the finite sample distribution of the 
estimators at the IGARCH(l, 1) boundary; i.e. c1i + fii = 1. Reliable inference from 
the LM, Wald and LR test statistics generally does require moderately large sample 
sizes of at least two hundred or more observations, however. 

2.3. Quasi-maximum likelihood methods 

The assumption of conditional normality for the standardized innovations are 
difficult to justify in many empirical applications. This has motivated the use of 
alternative parametric distributional assumptions such as the densities in equation 
(2.14) or (2.15). Alternatively, the MLE based on the normal density in equation (2.12) 
may be given a quasi-maximum likelihood interpretation. 

If the conditional mean and variance functions are correctly specified, the normal 
quasi-score in equation (2.13) evaluated at the true parameters B0 will have the 
martingale difference property, 

E,(V,~L,(Bo)&,(e,)o,2(eg) + 0.5V,a:(B,)(r:(8,)~‘CE,(B0)2a:(e,)-’ - l]} = 0. 
(2.20) 

Since equation (2.20) holds for any value of the true parameters, the QMLE 
obtained by maximizing the conditional normal likelihood function defined 

by equations (2.7), (2.8) and (2.12), say gr,oMLE, is Fisher-consistent; that is, 

ECS,(Yr,Y,-I,..., Y,; e)] = 0 for any 0~ 0. Under appropriate regularity conditions 
this is sufficient to establish consistency and asymptotic normality of $r,oMLE. 
Wooldridge (1994) provides a formal discussion. Furthermore, following Weiss 
(1984, 1986) the asymptotic distribution for the QMLE takes the form 

T1’2&oMLE - 0,) + N(0, A, r&4, ‘). (2.21) 

Under appropriate, and difficult to verify, regularity conditions, the A, and B, 
matrices are consistently estimated by the sample counterparts from equations (2.18) 

and (2.19), respectively. 
Provided that the first two conditional moments are correctly specified, it follows 

from equation (2.13) that 

E,[V,s,(y,; e,)] = - v,~,(e)v,~,(e)‘a:(e)- l - ~v,a:(e)v,a:(e),a:(e)-‘. (2.22) 
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As pointed out by Bollerslev and Wooldridge (1992) a convenient estimate of the 
information matrix, A,, involving only first derivatives is therefore available by 
replacing the right hand side of equation (2.18) with the sample realizations from 
equation (2.22). 

The finite sample distribution of the QMLE and the Wald statistics based on the 
robust covariance matrix estimator constructed from equations (2.18), (2.19) and 
(2.22) has been investigated by Bollerslev and Wooldridge (1992). For symmetric 
departures from conditional normality, the QMLE is generally close to the exact 

MLE. However, as noted by Engle and Gonzales-Rivera (1991), for non-symmetric 
conditional distributions both the asymptotic and the finite sample loss in effi- 
ciency may be quite large, and semiparametric density estimation, as discussed in 
Section 1.5, may be preferred. 

2.4. Specijcation checks 

2.4.1. Lagrange multiplier diagnostic tests 

After a model is selected and estimated, it is generally desirable to test whether it 
adequately represents the data. A useful array of tests can readily be constructed 
from calculating Lagrange multiplier tests against particular parametric alternatives. 
Since almost any moment condition can be formulated as the score against some 
alternative, these tests may also be interpreted as conditional moment tests; see 
Newey (1985) and Tauchen (1985). Whenever one computes a collection of test 
statistics, the question of the appropriate size of the full procedure arises. It is 
generally impossible to control precisely the size of a procedure when there are 
many correlated test statistics and conventional econometric practice does not 
require this. When these tests are viewed as diagnostic tests, they are simply aids in 
the model building process and may well be part of a sequential testing procedure 
anyway. In this section, we will show how to develop tests against a variety of 
interesting alternatives to any particular model. We focus on the simplest and most 
useful case. 

Suppose we have estimated a parametric model with the assumption that each 
observation is conditionally normal with mean zero and variance gf = of(O). Then 
the score can be written as a special case of (2.13), 

s&8) = V,ln0:(8)[&:(B)o:(8)-’ - 11. (2.23) 

In order to conserve space, equation (2.23) may be written more compactly as 

se, = %,U,, (2.24) 

where x0, denotes the k x 1 vector of derivatives of the logarithm of the conditional 
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variance equation with respect to the parameters 8, and u, = &:(&r:(G)- ’ - 1 defines 
the generalized residuals. From the first order conditions in equation (2.9), the MLE 
for 8, gT, solves 

1 A$* = 1 &ii, = 0. 
1=1,T *= l,T 

(2.25) 

Suppose that the additional set of r parameters, represented by the r x 1 vector 
y, have been implicitly set to zero during estimation. We wish to test whether this 
restriction is supported by the data. That is, the null hypothesis may be expressed 
as y0 = 0, where 0: = a:(e, y). Also, suppose that the score with respect to y has the 
same form as in equation (2.24), 

s 
Yf 

= x,,u,. (2.26) 

Under fairly general regularity conditions, the scores themselves when evaluated 
at the true parameter under the null hypothesis, 8,, will satisfy a martingale central 
limit theorem. Therefore, 

T1’*S&) + N(0, V), (2.27) 

where V = A, denotes the covariance matrix of the scores. The conventional form of 
the Lagrange multiplier test, as in Breusch and Pagan (1979) or Engle (1984) is then 
given by 

f=l,T t=l,T 

(2.28) 

where tj = (Q, y), represent estimates evaluated under the null hypothesis, and ? 
denotes a consistent estimate of I/. As discussed in Section 2.2, a convenient estimate 
of the information matrix is given by the outer product of the scores, 

iiT = T- ’ c $,& (2.29) 
t=l,T 

so that the test statistic can be computed in terms of a regression. Specifically, let 
the T x 1 vector of ones be denoted z, and the T x (k + r) matrix of scores evaluated 
under the null hypothesis be denoted by 9 = {iV1, s*w2,. . . , iwT}. Then a simple form 
of the LM test is obtained from 

tlT = L?($‘$)-$5 = TR*, (2.30) 

where the R* is the uncentered fraction of variance explained by the regression of 
a vector of ones on all the scores. The test statistic in equation (2.30) is often referred 



2986 T. Bollersleu et al. 

to as the outer product of the gradient, or OPG, version of the test. It is very easy 
to compute. In particular, using the BHHH estimation algorithm, the test statistic 
is simply obtained by one step of the BHHH algorithm from the maximum achieved 

under the null hypothesis. 
Studies of this version of the LM test, such as MacKinnon and White (1985) and 

Bollerslev and Wooldridge (1992), often find that it has size distortions and is not 
very powerful as it does not utilize the structure of the problem under the null 
hypothesis to obtain the best estimate of the information matrix. Of course the R2 
in (2.30) will be overstated if the likelihood function has not been fully maximized 
under the null so that (2.25) is not satisfied. One might recommend a first step 
correction by BHHH to be certain that this is achieved. 

An alternative estimate of I/ corresponding to equation (2.19) is available from 
taking expectations of S’S. In the simplified notation of this section, 

E(S’S) = c E(uf x,x;, = E(uf) 1 E(x,xJ, (2.3 1) 
1=1,T f= l,T 

where it is assumed that the conditional expectation E, _ ,(u:) is time invariant. Of 
course, this will be true if the standardized innovations s,(B)o:(8)- ‘I2 has a distri- 

bution which does not depend upon time or past information, as typically assumed 
in estimation. Consequently, an alternative consistent estimator of V is given by 

?r = (T-‘iYa)(T-‘X’X), (2.32) 

where u’ = {ui,. .,u,}, X’ = {x1,. , xT}, and xi = {xkt, Xl*}. Since Z’S = u’X, the 
Lagrange multiplier test based on the estimator in equation (2.32) may also be 
computed from an auxiliary regression, 

^ _ _ ^I * &r = ti’X(X’X)-‘X u = TR’. (2.33) 

Here the regression is of the percentage difference between the squared residuals 
and the estimated conditional variance regressed on the gradient of the logarithm 
of the conditional variance with respect to all the parameters including those set to 
zero under the null hypothesis. This test statistic is similar to one step of a Gauss- 
Newton iteration from an estimate under the null. It is called the Hessian estimate 
by Bollerslev and Wooldridge (1992) because it can also be derived by setting com- 

ponents of the Hessian equal to their expected value, assuming only that the first 
two moments are correctly specified, as discussed in Section 2.3. This version of the 
test has considerable intuitive appeal as it checks for remaining conditional hetero- 
skedasticity in u, as a function of x,. It also performed better than the OPG test in 
the simulations reported by Bollerslev and Wooldridge (1992). This is also the 
version of the test used by Engle and Ng (1993) to compare various model specifi- 
cations. As noted by Engle and Ng (1993), the likelihood must be fully maximized 
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under the null if the test is to have the correct size. An approach to dealing with 
this issue would be to first regress li, on & and then form the test on the basis 

of the residuals from this regression. The RZ of this regression should be zero if the 
likelihood is maximized, so this is merely a numerical procedure to purge the test 
statistic of contributions from loose convergence criteria. 

Both of these procedures develop the asymptotic distribution under the null 
hypothesis that the model is correctly specified including the normality assumption. 
Recently, Wooldridge (1990) and Bollerslev and Wooldridge (1992) have developed 
robust LM tests which have the same limiting distribution under any null specifying 
that the first two conditional moments are correct. This follows in the line of 
conditional moment tests for GMM or QMLE as in Newey (1985) Tauchen (1985) 
and White (1987,1994). 

To derive these tests, consider the Taylor series expansions of the scores around 
the true parameter values, s,(0) and s,(0,), 

as 
7%,(&J = Tl’%),(&) + Tl’2 2 (& - fy,), 

ae 

T”*s,(e,) = T%,(&) + T”* f$&e, - e,), 

(2.34) 

where the derivatives of the scores are evaluated at 8,. The derivatives in equations 
(2.34) and (2.35) are simply the H,, and H,, elements of the Fessian, respectively. 
The distribution of the score with respect to y evaluated at 8, is readily obtained 
from the left hand side of equation (2.34). In particular substituting in (2.35), and 
using (2.26) to give the limiting distribution of the scores, 

T%,(B,) + N(0, W), (2.36) 

where 

W = Vyy - H,,H,‘V,, - Vy/yeHo;lHey + H,,H,’ VooH,‘Hor. (2.37) 

Notice first, that if the scores are the derivatives of the true likelihood, then the 
information matrix equality will hold, and therefore H = V asymptotically. In this 
case we get the conventional LM test described in (2.28) and computed generally 
either as (2.30) or (2.33). If the normality assumption underlying the likelihood is 
false so that the estimates are viewed as quasi-maximum likelihood estimators, then 
the expressions in equations (2.36) and (2.37) are needed. 

AS pointed out by Wooldridge (1990), any score which has the additional property 
that H,, converges in probability to zero can be tested simply as a limiting normal 
with covariance matrix Vyu, or as a TR* type test from a regression of a vector of ones 
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on &. By proper redefinition of the score, such a test can always be constructed. To 
illustrate, suppose that syf = xylu,, s,, = x0+, and au,/atI = - xBr. Also define 

s;t = (Xyr - x;$G, (2.38) 

where 

(2.39) 

The statistic based on s,: in equation (2.38) then tests only the part of x,, which is 
orthogonal to the scores used to estimate the model under the null hypothesis. This 
strategy generalizes to more complicated settings as discussed by Bollerslev and 
Wooldridge (1992). 

2.4.2. BDS specijication tests 

As discussed in Section 2.1.2, the asymptotic distribution of the BDS test is unaffected 
by passing the data through a linear, e.g. ARMA, filter. Since an ARCH model 
typically assumes that the standardized residuals z, = a,~,~ are i.i.d., it seems 
reasonable to use the BDS test as a specification test by applying it to the fitted 
standardized residuals from an ARCH model. Fortunately, the BDS test applied to 
the standardized residuals has considerable power to detect misspecification in 

ARCH models. Unfortunately, the asymptotic distribution of the test is strongly 
affected by the fitting of the ARCH model. As documented by Brock et al. (1991) 
and Hsieh (1991), BDS tests on the standardized residuals from fitted ARCH models 
reject much too infrequently. In light of the filtering properties of misspecified 
ARCH models, discussed in Section 4 below, this may not be too surprising. 

The asymptotic distribution of the BDS test for ARCH residuals has not yet been 
derived. One commonly employed procedure to get around this problem is to 
simply simulate the critical values of the test statistic; i.e. in each replication generate 
data by Monte Carlo methods from the specific ARCH model, then estimate the 
ARCH model and compute the BDS test for the standardized residuals. This 
approach is obviously very demanding computationally. 

Brock and Potter (1992) suggest another possibility for the case in which the condi- 
tional mean of the observed data is known. Applying the BDS test to the logarithm 

of the squared known residuals, i.e. In($) = ln(zF) + ln(o:), separates ln($) into an 
i.i.d. component, ln(z:), and a component which can be estimated by non-linear 
regression methods. Under the null of a correctly specified ARCH model, ln(zf) = 
In($) - ln(a:) is i.i.d. and, subject to the regularity conditions of Brock and Potter 
(1992) or Brock et al. (1991), the asymptotic distribution of the BDS test is the same 
whether applied to ln(z:) or to the fitted values In@,!) = In($) - ln(s:). While the- 
assumption of a known conditional mean is obviously unrealistic in some applications, 
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it may be a reasonable approximation for high frequency financial time series, where 
the noise component tends to swamp the conditional mean component. 

3. Stationary and ergodic properties 

3.1. Strict stationarity 

In evaluating the stationarity of ARCH models, it is convenient to recursively 
substitute for the lagged E,‘S and 0:‘s. For completeness, consider the multivariate 
case where 

E f = R r12Zr, c 2, - i.i.d., E(Z,) = 0, X r, -q-&q = 1, x n (3.1) 

and 

n,=n(t,z,_,,z,_, ,... ). (3.2) 

Using the ergodicity criterion from Corollary 1.4.2 in Krengel(1985), it follows that 
strict stationarity of {st}t, _ 4),do is equivalent to the condition 

fl,=wk,,z,-,,...), (3.3) 

withR(.;,...) measurable, and 

Trace(f2,Ri) < co a.s. (3.4) 

Equation (3.3) eliminates direct dependence of {a,} on t, while (3.4) ensures that 
random shocks to {a,} die out rapidly enough to keep (a,} from exploding 
asymptotically. 

In the univariate EGARCH(p, q) model, for example, equation (3.2) is obtained 
by exponentiating both sides of the definition in equation (1.11). Since In($) 
is written in ARMA(p,q) form, it is easy to see that if (1 + Cj=l,qcljxj) and 

(1 -xi= i,J&x’) have no common roots, equations (3.3) and (3.4) are equivalent to 
all the roots of (1 - Ci=i,,jixi) lying outside the unit circle. Similarly, in the 
bivariate EGARCH model defined in Section 6.4 below, ln(ai,,), In(&) and p,,, 
all follow ARMA processes giving rise to ARMA stationarity conditions. 

One sufficient condition for (3.4) is moment boundedness; i.e. clearly 
E[Trace(f2,0~)P] finite for some p > 0 implies Trace(R$:) < CE a.s. For example, 
Bollerslev (1986) shows that in the univariate GARCH(p, q) model defined by 
equation (1.9) E(af) is finite and (et} is covariance stationary, when xi= i,,fii + 

Cj= l,qaj < 1. This is a sufficient, but not a necessary condition for strict stationarity, 
however. Because ARCH processes are thick tailed, the conditions for “weak” or 
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covariance stationarity arc often more stringent than the conditions for “strict” 

stationarity. 
For instance, in the univariate GARCH(1, 1) model, (3.2) takes the form 

c: = w 1 + c [ n (/I1 + cZ1z:-i) 1 . (3.5) 
k=l,m i=l.k 

Nelson (1990b) shows that when w > O,o: < cc a.s., and {E,, of} is strictly stationary 
if and only if E[ln(fii + crizf)] < 0. An easy application of Jensen’s inequality shows 
that this is a much weaker requirement than c1r + /I, < 1, the necessary and sufficient 
condition for (.st} to be covariance stationary. For example, the simple ARCH(l) 

model with z, N N(0, 1) and a1 = 3 and /?i = 0, is strictly but not weakly stationary. 
To grasp the intuition behind this seemingly paradoxical result, consider the 

terms in the summation in (3.5); i.e. ni= l,k(j31 + a,~:_~). Taking logarithms, it 
follows directly that Ci= I,k ln(/Ii + u,z:_~) is a random walk with drift. If 
E[ln(Pi + u,z:_~)] > 0, the drift is positive and the random walk diverges to co a.s. 

as k + co. If, on the other hand, E[ln(/Ii + u,z:_~)] < 0, the drift is negative and the 

random walk diverges to - cc a.s. as k + 00, in which case ni= l,k(/?l + u,z:_~) tends 
to zero at an exponential rate in k a.s. as k -+ co. This, in turn, implies that the sum 
in equation (3.5) converges a.s., establishing (3.4). Measurability in (3.3) follows 
easily using Theorems 3.19 and 3.20 in Royden (1968). 

This result for the univariate GARCH(l, 1) model generalizes fairly easily to other 
closely related ARCH models. For example, in the multivariate diagonal GARCH( 1,l) 
model, discussed in Section 6.1 below, the diagonal elements of 0, follow univariate 

GARCH( 1,l) processes. If each of these processes is stationary, the CauchyySchwartz 
inequality ensures that all of the elements in R, are bounded a.s. The case of the 
constant conditional correlation multivariate GARCH(l, 1) model in Section 6.3 is 
similar. The same method can also be used in a number of other univariate cases 
as well. For instance, when p = q = 1, the stationarity condition for the model in 
equation (1.16) is E[ln(cr:I(z, > O)Iz,Iy + cr;I(z, <O)lz,l’)] < 0. 

Establishing stationarity becomes much more difficult when we complicate the 
models even slightly. The extension to the higher order univariate GARCH(p,q) 
model has recently been carried out by Bougerol and Picard (1992) with methods 
which may be more generally applicable. There exists a large mathematics literature 
on conditions for stationarity and ergodicity for Markov chains; see, e.g. Numme- 
lin and Tuominen (1982) and Tweedie (1983a). These conditions can sometimes be 
verified for ARCH models, although much work remains establishing useful station- 
arity criteria even for many commonly-used models. 

3.2. Persistence 

The notion of “persistence” of a shock to volatility within the ARCH class of models 
is considerably more complicated than the corresponding concept of persistence in 
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the mean for linear models. This is because even strictly stationary ARCH models 
frequently do not possess finite moments. 

Suppose that {CT:} is strictly stationary and ergodic. Let F(o:) denote the uncondi- 
tional cumulative distribution function (cdf) for c:, and let F,(a:) denote the cdf of 
c: given information at time s < t. Then for any s, F,(a:) - F(a:) converges to 0 at 
all continuity points as t + co; i.e. time s information drops out of the forecast 
distribution as t + co. Therefore, one perfectly reasonable definition of “persistence” 
would be to say that shocks fail to persist when {o,‘} is stationary and ergodic. 

It is equally natural, however, to define persistence of shocks in terms of forecast 
moments; i.e. to choose some q > 0 and to say that shocks to CJ: fail to persist if and 
only if for every s, E,(afq) converges, as t + 00, to a finite limit independent of time 
s information. Such a definition of persistence may be particularly appropriate when 
an economic theory makes a forecast moment, as opposed to a forecast distribution, 
the object of interest. 

Unfortunately, whether or not shocks to {of} “persist” depends very much on 
which definition is adopted. The conditional moment &(a:“) may diverge to infinity 
for some q, but converge to a well-behaved limit independent of initial conditions 
for other q, even when the {o:} process is stationary and ergodic. 

Consider, for example, the GARCH( 1,1) model, in which 

The expectation of @: as of time s, is given by 

(3.7) 

It is easy to see that E,(o:) converges to the unconditional variance of w/(1 - c(r - pi) 
ast+coifandonlyifa, +fli < l.IntheIGARCHmodelwitho>Oandcr, +pl = 1, 
it follows that &(a:) -+ co a.s. as t -+ co. Nevertheless, as discussed in the previous 
section, IGARCH models are strictly stationary and ergodic. In fact, as shown by 
Nelson (1990b) in the IGARCH(l, 1) model E,(o:“) converges to a finite limit 
independent of time s information as t + cc whenever q < 1. This ambiguity of 
“persistence” holds more generally. When the support of z, is unbounded it follows 
from Nelson (1990b) that in any stationary and ergodic GARCH(l, 1) model, E,(azV) 
diverges for all sufficiently large q, and converges for all sufficiently small q. For 
many other ARCH models, moment convergence may be most easily established 
with the methods used in Tweedie (1983b). 

While the relevant criterion for persistence may be dictated by economic theory, 
in practice tractability may also play an important role. For example, E,(a:), and 
its multivariate extension discussed in Section 6.5 below, can often be evaluated 
even when strict stationarity is difficult to establish, or when &(a:“) for q # 1 is 
intractable. 
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Even so, in many applications, simple moment convergence criterion have not 
been successfully developed. This includes quite simple cases, such as the univariate 
GARCH(p, q) model when p > 1 or q > 1. The same is true for multivariate models, 
in which co-persistence is an issue. In such cases, the choice of 4 = 1 may be 
impossible to avoid. Nevertheless, it is important to recognize that apparent persis- 
tence of shocks may be driven by thick-tailed distributions rather than by inherent 
non-stationarity. 

4. Continuous time methods 

ARCH models are systems of non-linear stochastic difference equations. This makes 
their probabilistic and statistical properties, such as stationarity, moment finiteness, 
consistency and asymptotic normality of MLE, more difficult than is the case with 
linear models. One way to simplify the analysis of ARCH models is to approximate 
the stochastic difference equations with more tractable stochastic differential 

equations. On the other hand, for certain purposes, notably in the computation of 
point forecasts and maximum likelihood estimates, ARCH models are more conve- 
nient than the stochastic differential equation models of time-varying volatility 
common in the finance literature; see, e.g. Wiggins (1987), Hull and White (1987) 
Gennotte and Marsh (1991), Heston (1991) and Andersen (1992a). 

Suppose that the process {X,} is governed by the stochastic integral equation 

where {Wl> is an N x 1 standard Brownian motion, and ,u(.) and 0’12(.) are 
continuous functions from RN into RN and the space of N x N real matrices 
respectively. The starting value, X,, may be fixed or random. Following Karatzas 
and Shreve (1988) and Ethier and Kurtz (1986), if equation (4.1) has a unique 
weak-sense solution, the distribution of the (X,} process is then completely deter- 
mined by the following four characteristics:9 

(i) the cumulative distribution function, F(x,), of the starting point X,; 
(ii) the drift p(x); 

(iii) the conditional covariance matrix 0(x) = Q(x)“~[Q(x)“~]‘;‘~ 
(iv) the continuity, with probability one, of {X,} as a function of time. 
Our interest here is either in approximating (4.1) by an ARCH model or visa 

versa. To that end, consider a sequence of first-order Markov processes {,,X,}, whose 

‘Formally, we consider {X,} and the approximating discrete time processes {,,X,} as random variables 
in DR”[O, co), the space of right continuous functions with finite left limits, equipped with the Skorohod 
topology. D&O, cc) is a complete, separable metric space [see, e.g. Chapter 3 in Ethier and Kurtz 
(1986)J 

roQ(x)l/z IS a matrix square root of L?(x), though it need not be the symmetric square root since 
we require only that ~(~)‘~‘[L?(x)‘~‘]’ = a(x), not f2(~)‘~*f2(x)‘~’ = Q(x). 
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sample paths are random step functions with jumps at times h, 2h, 3h,. . . . For each 
h > 0, and each non-negative integer k, define the drift and covariance functions by 

/&)---lECbX,‘+i - ,X,)/,X, = x], and Q,(x) 3 h-’ Cov[(J,Xk+, - ,,Xk)l,,XL =x], 
respectively. Also, let F&,x,) denote the cumulative distribution function for ,,XO. 
Since (i)-(iv) completely characterize the distribution of the {X,} process, it seems 
intuitive that weak convergence of {,,Xt} to {X,} can be achieved by “matching” 
these properties in the limit as hJ0. Stroock and Varadhan (1979) showed that this 
is indeed the case. 

Theorem 4.1. [Stroock and Varadhan (1979)] 

Let the stochastic integral equation (4.1) have a unique weak-sense solution. Then 

{,,Xr} converges weakly to {X,} for hJ0 if 
(i’) F,,(.) -+ F(.) as hJ0 at all continuity points of F(.), 

(ii’) p,,(x) -p(x) uniformly on every bounded x set as hJ0, 
(iii’) Q,(x) + n(x) uniformly on every bounded x set as h10, 
(iv’) for some 6 > 0, h-‘E[ Il,,Xk+l - hXk I/ ’ +’ lhXk = x] + 0 uniformly on every 

bounded x set as h10.” 

This result, along with various extensions, is fundamental in all of the continuous 
record asymptotics discussed below. 

Deriving the theory of continuous time approximation for ARCH models in its 
full generality is well beyond the scope of this chapter. Instead, we shall simply 
illustrate the use of these methods by explicit reference to a diffusion model frequently 
applied in the options pricing literature; see e.g. Wiggins (1987). The model considers 
an asset price, Y,, and its instantaneous returns volatility, ot. The continuous time 
process for the joint evolution of (Y,, a,} with fixed starting values, (Y,, a,), is given 

by 

dY,=pY,dt+ Y,a,dW,,, (4.2) 

and 

d [ln($)] = - B[ln(a,2) - al dt + ICI cl Wz,t, (4.3) 

where ,u, $,fi and c( denote the parameters of the process, and WI,, and W,., are 
driftless Brownian motions independent of (Y,, ci) that satisfy 

L 1 d”:-’ CdW,,, 
2.1 

d W,,,] = ; ; dt. 
[ 1 (4.4) 

I1 We define the matrix norm, 11’ I), by 11 A (( = [Trace(AA’)]“‘. It is easy to see why (i’)-(iii’) match 
(i)-(iii) in the limit as h JO. That (iv’) leads to (iv) follows from HGlder’s inequality; see Theorem 2.2 in 
Nelson (1990a) for a formal proof. 



2994 77 Bollersleu et al. 

Of course in practice, the price process is only observable at discrete time intervals. 
However, the continuous time model in equations (4.2)-(4.4) provides a very conve- 
nient framework for analyzing issues related to theoretical asset pricing, in general, 
and option pricing, in particular. Also, by Ito’s lemma equation (4.2) may be 
equivalently written as 

dyt= p-2 dt+a,dW,,,, 
( > 

where y, = ln( Y,). For many purposes this is a more tractable differential equation. 

4.1. ARCH models as approximations to diffusions 

Suppose that an economic model specifies a diffusion model such as equation (4. l), 
where some of the state variables, including Q(x,), are unobservable. Is it possible 
to formulate an ARCH data generation process that is similar to the true process, 
in the sense that the distribution of the sample paths generated by the ARCH model 
and the diffusion model in equation (4.1) becomes “close” for increasingly finer 
discretizations? 

Specifically, consider tlie diffusion model given by equations (4.2)-(4.4). Strategies 
for approximating diffusions such as this are well known. For example, Melino and 
Turnbull (1990) use a standard Euler approximation in defining (y,, gt),12 

p.9 

ln(af+h) = ln(af) - hP[ln(cf)- a] + h1’2$z2,t+h, (4.6) 

for t = h, 2h, 3h,. . . . Here (yO, a,) is taken to be fixed, and (Zl,t, Z,,,) is assumed to be 
i.i.d. bivariate normal with mean vector (0,O) and 

(4.7) 

Convergence of this set of stochastic difference equations to the diffusion in 
equations (4.2)-(4.4) as h 10 may be verified using Theorem 4.1. In particular, (i’) 
holds trivially, since (y,,, CJ,,) are constants. To check conditions (ii’) and (iii’), note 
that 

h-‘E, 
(P - m) 

- /3[ln(a:) - LY] 1 (4.8) 

“See Pardoux and Talay (1985) for a general discussion of the Euler approximation technique. 
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and 

h-‘Var, (4.9) 

which matches the drift and diffusion matrix of (4.2))(4.4). Condition (iv’) is nearly 
trivially satisfied, since Zr,, and Z2,, are normally distributed with arbitrary finite 
moments. The final step of verifying that the limit diffusion has a unique weak-sense 
solution is often the most difficult and least intuitive part of the proof for 
convergence. Nelson (1990a) summarizes several sets of sufficient conditions, 
however, and formally shows that the process defined by (4.5)-(4.7) satisfies these 

conditions. 
While conditionally heteroskedastic, the model defined by the stochastic difference 

equations (4.5)-(4.7) is not an ARCH model. In particular, for p # 1 G: is not simply 
a function of the discretely observed sample path of {yt} combined with a startup 
value cri. More technically, while the conditional variance (y,,,, - y,) given the 
a-algebra generated by { y,, of},,< r $ f e q uals ho:, it is not, in general, the conditional 

variance of ( yt + h - y,) given the smaller a-algebra generated by { yr}O,h,Zh...htt,hl and 
ci. Unfortunately, this latter conditional variance is not available in closed form.13 

To create an ARCH approximation to the diffusion in (4.2)-(4.4) simply replace 

(4.6) by 

ln(a:+,,) = lnbf) - MWf) - aI+ h”2g(Z,,t+J, 

where g(.) is measurable with E[Ig(Zl,t+,,)12+6] < 00 for some 6 > 0, and 

(4.10) 

(4.11) 

As an ARCH model, the discretization defined by (4.5), (4.10) and (4.11) inherits 
the convenient properties usually associated with ARCH models, such as the easily 
computed likelihoods and inference procedures discussed in Section 2 above. As 
such, it is a far more tractable approximation to (4.2))(4.4) than the discretization 
defined by equations (4.5)-(4.7). 

To complete the formulation of the ARCH approximation, an explicit g(.) 
function is needed. Since E((Z,,,I)=(2/~)“2,E(Z1,t~Zl,t~)=0 and Var(lZl,ll)= 
1 - (2/7t), one possible formulation would be 

(4.12) 

13Jacquier et al. (1994) have recently proposed a computationally tractable algorithm for computing 
this conditional variance. 
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This corresponds directly to the EGARCH model in equation (1.11). Alternatively, 

1-P 
2 l/2 

dZl*J = PtiZ,,, + $ 7 ( > v:,, - 1) (4.13) 

also satisfies equation (4.11). This latter specification turns out to be the asymptotically 
optimal filter for h JO, as discussed in Nelson and Foster (199 1,1994) and Section 4.3 
below. 

4.2. Difusions as approximations to ARCH models 

Now consider the question of how to best approximate a discrete time ARCH 
model with a continuous time diffusion. This can yield important insights into the 
workings of a particular ARCH model. For example, the stationary distribution 
of 0,” in the AR(l) version of the EGARCH model given by equaton (1.11) is 
intractable. However, the sequence of EGARCH models defined by equations (4.5) 
and (4.10)-(4.12) converges weakly to the diffusion process in (4.2)-(4.4). When 
/I > 0, the stationary distribution of ln(a:) is N(cr, 11/‘/2/I). Nelson (1990a) shows 
that this is also the limit of the stationary distribution of In(a:) in the sequence 
of EGARCH models (4.5) and (4.10)-(4.12) as h JO. Similarly, the continuous limit 
may result in convenient approximations for forecast moments of the (~,,a:) 
process. 

Different ARCH models will generally result in different limit diffusions. To 
illustrate, suppose that the data are generated by a simple martingale model with 
a GARCH(l, 1) error structure as in equation (1.9). In the present notation, the 
process takes the form, 

Ltt+h = Y, + %k+t, = Yt + &,+h (4.14) 

and 

a:+, = wh + (1 - tlh - ah”‘)a’ + h1j2ae2 
f t+h, (4.15) 

where given time t information, E,+~ is N(0, a;), and (x,, a,,) is assumed to be fixed. 
Note that using the notation for the GARCH(p,q) model in equation (1.9) 
a, + fil = 1 - Bh, so for increasing sampling frequencies, i.e., as hJ0, the parameters 
of the process approach the IGARCH(l, 1) boundary as discussed in Section 3. 
Following Nelson (1990a) 

(4.16) 
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and 

(4.17) 

Thus, from Theorem 4.1 the limit diffusion is given by 

dx,=a*dW,,, (4.18) 

and 

(4.19) 

where WI,, and W,,, are independent standard Brownian motions. 
The diffusion defined by equations (4.18) and (4.19) is quite different from the 

EGARCH limit in equations (4.2)-(4.4). For example, if d/2a2 > - 1, the stationary 
distribution of c: in (4.19) is an inverted gamma, so as h 10 and t + co, the normalized 
increments h-‘12(y,+h - y,) are conditionally normally distributed but uncondi- 
tionally Student’s t. In particular, in the IGARCH case corresponding to 0 = 0, 
as hJ0 and t + co, h-‘iZ(y,+h - y,) approaches a Student’s t distribution with two 

degrees of freedom. In the EGARCH case, however, h - I/‘( y, +,, - y,) is conditionally 
normal but is unconditionally a normal-lognormal mixture. When 0: is stationary, 
the GARCH formulation in (1.9) therefore gives rise to unconditionally thicker- 
tailed residuals than the EGARCH model in equation (1.11). 

4.3. ARCH models as jilters and forecasters 

Suppose that discretely sampled observations are only available for a subset of 
the state variables in (4.1), and that interest centers on estimating the unobservable 
state variable(s), Q(x,). Doing this optimally via a non-linear Kalman filter is 
computationally burdensome; see, e.g. Kitagawa (1987).14 Alternatively, the data 
might be passed through a discrete time ARCH model, and the resulting conditional 
variances from the ARCH model viewed as estimates for 0(x,). Nelson (1992) 
shows that under fairly mild regularity conditions, a wide variety of misspecified 
ARCH models consistently extract conditional variances from high frequency time 
series. The regularity conditions require that the conditional distribution of the 
observable series is not too thick tailed, and that the conditional covariance matrix 
moves smoothly over time. Intuitively, the GARCH filter defined by equation (1.9) 

“‘An approximate linear Kalman filter for a discretized version of(4.1) has been employed by Harvey 
et al. (1994). The exact non-linear filter for a discretized version of (4.1) has been developed by Jacquier 
et al. (1994). Danielson and Richard (1993) and Shephard (1993) also calculate the exact likelihood by 
computer intensive methods. 
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estimates the conditional variance by averaging squared residuals over some time 
window, resulting in a nonparametric estimate for the conditional variance at each 

point in time. Many other ARCH models can be similarly interpreted. 
While many different ARCH models may serve as consistent filters for the same 

diffusion process, efficiency issues may also be relevant in the design of an ARCH 
model. To illustrate, suppose that the Y, process is observable at time intervals of 
length h, but that g: is not observed. Let 8: denote some initial estimate of the 
conditional variance at time 0, with subsequent estimates generated by the recursion 

ln(@+,) = ln(8f) + hK(8:) + h”‘g[8f, h-“2(Y,+h - Y,)l. (4.20) 

The set of admissible g(.;) functions is restricted by the requirement that E,{g[af, 

h-“2(Yt+h - y,)]} be close to zero for small values of h.i5 Define the normalized 
estimation error from this filter extraction as qt = h-‘14[ln(8:) - ln(of)]. 

Nelson and Foster (1994) derive a diffusion approximation for qt when the data 
have been generated by the diffusion in equations (4.2)-(4.4) and the time interval 
shrinks to zero. In particular, they show that qt is approximately normally distributed, 
and that by choosing the g(., .) function to minimize the asymptotic variance of 
q,, the drift term for ln(a:) in the ARCH model, K(.), does not appear in the 
resulting minimized asymptotic variance for the measurement error. The effect is 
second order in comparison to that of the g(., .) term, and creates only an asympto- 
tically negligible bias in qt. However, for rc(r~f) s - fi[ln(a:) - a], the leading term 
of this asymptotic bias also disappears. It is easy to verify that the conditions of 
Theorem 4.1 are satisfied for the ARCH model defined by equation (4.20) with 
~(a’) = - j3[ln(a2) - a] and the variance minimizing g(., .). Thus, as a data generation 
process this ARCH model converges weakly to the diffusion in (4.2)-(4.4). In the 

diffusion limit the first _ two conditional moments completely characterize the 
process, and the optimal ARCH filter matches these moments. 

The above result on the optimal choice of an ARCH filter may easily be extended 
to other diffusions and more general data generating processes. For example, 
suppose that the true data generation process is given by the stochastic difference 
equation analogue of (4.2)-(4.4), 

4 
Yt+Jl=Yt+h P-y +51,t, ( 1 
ln(af+,) = In($) - hp[ln(af) - a] + h1/252,f, 

(4.21) 

(4.22) 

where (rl,tgt- ‘, t,,,) is i.i.d. and d m ependent oft, h and y,, with conditional density 
f(lr f, t2 rJor) . . with mean (O,O), bounded 2 + 6 absolute moments, Var,({,,,) = a:, 

“Formally, the function must satisfy that h-‘/4E,{g[uf, h-1’2(y,+, 
(y,, uC) sets as hJ0. 

- y,)] } + 0 uniformly on bounded 
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and Var,(t,,,) = II/‘. This model can be shown to converge weakly to (4.2)-(4.4) as 
h10. The asymptotically optimal filter for the model given by equations (4.21) and 
(4.22) has been derived in Nelson and Foster (1994). This optimal ARCH filter 
when (4.21) and (4.22) are the data generation process is not necessarily the same 
as the optimal filter for (4.2)-(4.4). The increments in a diffusion such as (4.2))(4.4) 
are approximately conditionally normal over very short time intervals, whereas 
the innovations (rl,l, c2,J in (4.21) and (4.22) may be non-normal. This affects the 
properties of the ARCH filter. Consider estimating a variance based on i.i.d. draws 
from some distribution with mean zero. If the distribution is normal, averaging 
squared residuals is an asymptotically efficient method of estimating the variance. 
Least squares, however, can be very inefficient if the distribution is thicker tailed 
than the normal. This theory of robust scale estimation, discussed in Davidian 
and Carroll (1987) and Huber (1977) carries over to the ARCH case. For example, 
estimating 0: by squaring a distributed lag of absolute residuals, as proposed by 
Taylor (1986) and Schwert (1989a, b), will be more efficient than estimating 0: with a 
distributed lag of squared residuals if the conditional distribution of the innovations 
is sufficiently thicker tailed than the normal. 

One property of optimally designed ARCH filters concerns their resemblance to 
the true data generating process. In particular, if the data were generated by the 
asymptotically optimal ARCH filter, the functional form for the second conditional 

moment of the state variables would be the same as in the true data generating 
process. If the conditional first moments also match, the second order bias is 
similarly eliminated. Nelson and Foster (1991) show that ARCH models which 
match these first two conditional moments also have the desirable property that 
the forecasts generated by the possibly misspecified ARCH model approach the 
forecasts from the true model as hJ0. Thus, even when ARCH models are mis- 
specified, they may consistently estimate the conditional variances. Unfortunately, 
the behavior of ARCH filters with estimated as opposed to known parameters, 
and the properties of the parameter estimates themselves, are not yet well understood. 

5. Aggregation and forecasting 

5. I. Temporal aggregation 

The continuous record asymptotics discussed in the preceding section summarizes 

the approximate relationships between continuous time stochastic differential 
equations and discrete time ARCH models defined at increasingly higher sampling 
frequencies. While the approximating stochastic differential equations may result 
in more manageable theoretical considerations, the relationship between high 
frequency ARCH stochastic difference equations and the implied stochastic process 
for less frequently sampled, or temporally aggregated, data is often of direct 
importance for empirical work. For instance, when deciding on the most appropriate 
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sampling interval for inference purposes more efficient parameter estimates for the 
low frequency process may be available from the model estimates obtained with 
high frequency data. Conversely, in some instances the high frequency process 
may be of primary interest, while only low frequency data is available. The 
non-linearities in ARCH models severely complicate a formal analysis of temporal 
aggregation. In contrast to the linear ARIMA class of models for conditional 
means, most parametric ARCH models are only closed under temporal aggregation 
subject to specific qualifications. 

Following Drost and Nijman (1993) we say that (E,} is a weak GARCH(p, q) 
process if E, is serially uncorrelated with unconditional mean zero, and c:, as 
defined in equation (1.9), corresponds to the best linear projection of E: on the 
space spanned by { 1, E, _ 1, E, _ 2,. . . , tzf_ 1, E:_ *, . . . }. More specifically, 

E(Ef - c$, = E[ (Ef - fJf)E, _ i] = E[ (Ef - a;)&;_ i] = 0 i= 1,2,... . (5.1) 

This definition of a weak GARCH(p, q) model obviously encompasses the conven- 
tional GARCH(p,q) model in which U: is equal to the conditional expectation of 
E: based on the full information set at time t - 1 as a special case. Whereas the 
conventional GARCH(p, q) class of models is not closed under temporal aggregation, 
Drost and Nijman (1993) show that temporal aggregation of ARIMA models with 
weak GARCH(p, q) errors lead to another ARIMA model with weak GARCH(p’, q’) 
errors. The orders of this temporally aggregated model and the model parameters 
depend on the original model characteristics. 

To illustrate, suppose that {Ed) follows a weak GARCH(l, 1) model with parameters 
0,~~ and B1. Let {Ed”‘} denote the discrete time temporally aggregated process 
defined at t, t + m, t + 2m,. . . . For a stock variable E?) is obtained by sampling E, 
every mth period. For a flow variable elm) E E, + E, _ 1 + . . . + E, _ m + 1. In both cases, it 
is possible to show that the temporally aggregated process, {E:“‘}, is also weak 
GARCH(l, 1) with parameters W(~) = w[l - (~1~ + /?J”]/(l - a1 - pl) and u\“” = 
(~1~ + BJ” - Pi”), where D \“’ is a complicated function of the parameters for the 
original process. Thus, a?’ + Birn) = (al + /?l)m, and conditional heteroskedasticity 
disappears as the sampling frequency decreases, provided that CQ + B1 < 1. Moreover, 
for flow variables the conditional kurtosis of the standardized residuals, $“)[ajm)]-‘, 
converges to the normal value of three for less frequently sampled observations. 
This convergence to asymptotic normality for decreasing sampling frequencies of 
temporally aggregated covariance stationary GARCH(p, q) flow variables has 
been shown previously by Diebold (1988), using a standard central limit theorem 
type argument. 

These results highlight the fact that the assumption of i.i.d. innovations invoked 
in maximum likelihood estimation of GARCH models is necessarily specific to 
the particular sampling frequency employed in the estimation. If E,O; l is assumed 
i.i.d., the distribution of .$“‘[ajm’] - 1 will generally not be time invariant. Following 
the discussion in Section 2.3, the estimation by maximum likelihood methods could 
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be given a quasi-maximum likelihood type interpretation, however. Issues pertaining 
to the efficiency of the resulting estimators remain unresolved. 

The extension of the aggregation results for the GARCH(p,q) model to other 
parametric specifications is in principle straightforward. The cross sectional 
aggregation of multivariate GARCH processes, which may be particularly relevant 
in the formation of portfolios, have been addressed in Nijman and Sentana (1993). 

5.2. Forecast error distributions 

One of the primary objectives of econometric time series model building is often 
the construction of out-of-sample predictions. In conventional econometric models 
with time invariant innovation variances, the prediction error uncertainty is an 
increasing function of the prediction horizon, and does not depend on the origin 
of the forecast. In the presence of ARCH errors, however, the forecast accuracy 
will depend non-trivially on the current information set. The proper construction 
of forecast error intervals and post-sample structural stability tests, therefore, both 
require the evaluation of future conditional error variances.16 

A detailed analysis of the forecast moments for various GARCH models is 
available in Engle and Bollerslev (1986) and Baillie and Bollerslev (1992). Although 
both of these studies develop expressions for the second and higher moments of 
the forecast error distributions, this is generally not enough for the proper 
construction of confidence intervals, since the forecast error distributions will be 
leptokurtic and time-varying. 

A possible solution to this problem is suggested by Baillie and Bollerslev (1992), 
who argue for the use of the Cornish-Fisher asymptotic expansion to take account 
of the higher order dependencies in the construction of the prediction error intervals. 
The implementation of this expansion requires the evaluation of higher order 
conditional moments of E,+,,’ which can be quite complicated. Interestingly, in a 
small scale Monte Carlo experiment, Baillie and Bollerslev (1992) find that under 
the assumption of conditional normality for ~~a;‘, the ninety-five percent confidence 
interval for multi-step predictions from the GARCH(l, 1) model, constructed under 
the erroneous assumption of conditional normality of E~+~[E(~:+,)] -I” for s > 1, 
has a coverage probability quite close to ninety-five percent. The one percent 
fractile is typically underestimated by falsely assuming conditional normality of 
the multi-step leptokurtic prediction errors, however. 

Most of the above mentioned results are specialized to the GARCH class of 
models, although extensions to allow for asymmetric or leverage terms and multi- 
variate formulations in principle would be straightforward. Analogous results on 
forecasting ln(a:) for EGARCH models are easily obtained. Closed form expressions 

’ bAlso, as discussed earlier, the forecasts of the future conditional variances are often of direct interest 
in applications with financial data. 
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for the moments of the forecast error distribution for the EGARCH model are 

not available, however. 
As discussed in Section 4.3, an alternative approximation to the forecast error 

distribution may be based upon the diffusion limit of the ARCH model. If the 
sampling frequency is “high” so that the discrete time ARCH model is a “close” 
approximation to the continuous time diffusion limit, the distribution of the 
forecasts should be “good” approximations too; see Nelson and Foster (1991). In 
particular, if the unconditional distribution of the diffusion limit can be derived, 
this would provide an approximation to the distribution of the long horizon 
forecasts from a strictly stationary model. 

Of course, the characteristics of the prediction error distribution may also be 
analyzed through the use of numerical methods. In particular, let fJ.s,+J denote 
the density function for E~+~ conditional on information up through time t. Under 
the assumption of a time invariant conditional density function for the standardized 
innovations, f(~,g, ‘), the prediction error density for E~+~ is then given by the 
convolution 

_f&t+J= ... f(&t+,~~~t’,)f(&,+,-l~~+ls-l)...f(&,+,~t+1l)dE,+,-ld&,+,-2...d&,+1. ss 
Evaluation of this multi-step prediction error density may proceed directly by 
numerical integration. This is illustrated within a Bayesian context by Geweke 
(1989a, b), who shows how the use of importance sampling and antithetic variables 
can be employed in accelerating the convergence of the Monte Carlo integration. 
In accordance with the results in Baillie and Bollerslev (1992) Geweke (1989a) 
finds that for conditional normally distributed one-step-ahead prediction errors, 
the shorter the forecast horizon s, and the more tranquil the periods before the 
origin of the forecast, the closer to normality is the prediction error distribution 
for E,+,. 

6. Multivariate specifications 

Financial market volatility moves together over time across assets and markets. 
Recognizing this commonality through a multivariate modeling framework leads 
to obvious gains in efficiency. Several interesting issues in the structural analysis 
of asset pricing theories and the linkage of different financial markets also call for 
an explicit multivariate ARCH approach in order to capture the temporal 
dependencies in the conditional variances and covariances. 

In keeping with the notation of the previous sections, the N x 1 vector stochastic 
process {E,} is defined to follow a multivariate ARCH process if E,_ i(s,) = 0, but 
the N x N conditional covariance matrix, 

E, - 1 (q~:) = n,, (6.1) 
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depends non-trivially on the past of the process. From a theoretical perspective, 
inference in multivariate ARCH models poses no added conceptual difficulties in 
comparison to the procedures for the univariate case outlined in Section 2 above. 

To illustrate, consider the log likelihood function for {Q, Q_ 1,. . . , cl} obtained 
under the assumption of conditional multivariate normality, 

LT(~T,~T-l,...,~I;ICI)= -0S[TNln(27r)+ C (lnI~tI+~~~,~‘~,)l. (6.2) 
1=1,T 

This function corresponds directly to the conditional likelihood function for the 
univariate ARCH model defined by equations (2.7), (2.8) and (2.12), and maximum 
likelihood, or quasi-maximum likelihood, procedures may proceed as discussed in 
Section 2. Of course, the actual implementation of a multivariate ARCH model 
necessarily requires some assumptions regarding the format of the temporal 
dependencies in the conditional covariance matrix sequence, {Q}. 

Several key issues must be faced in choosing a parametrization for Q. Firstly, 
the sheer number of potential parameters in a geneal formulation is overwhelming. 
All useful specifications must necessarily restrict the dimensionality of the parameter 
space, and it is critical to determine whether they impose important untested 
characteristics on the conditional variance process. A second consideration is 
whether such restrictions impose the required positive semi-definiteness of the 
conditional covariance matrix estimators. Thirdly, it is important to recognize 
whether Granger causality in variance as in Granger et al. (1986) is allowed by 
the chosen parametrization; that is, does the past information on one variable 
predict the conditional variance of another. A fourth issue is whether the correlations 
or regression coefficients are time-varying and, if so, do they have the same 
persistence properties as the variances? A fifth issue worth considering is whether 
there are linear combinations of the variables, or portfolios, with less persistence 
than individual series, or assets. Closely related is the question of whether there exist 
simple statistics which are sufficient to forecast the entire covariance matrix. Finally, 
it is natural to ask whether there are multivariate asymmetric effects, and if so 
how these may influence both the variances and covariances. Below we shall briefly 
review some of the parametrizations that have been applied in the literature, and 
comment on their appropriateness for answering each of the questions posed above. 

6.1. Vector ARCH and diagonal ARCH 

Let vech(.) denote the vector-half operator, which stacks the lower triangular 
elements of an N x N matrix as an [N(N + I)/21 x 1 vector. Since the conditional 
covariance matrix is symmetric, vech(Q) contains all the unique elements in Q. 
Following Kraft and Engle (1982) and Bollerslev et al. (1988), a natural multivariate 
extension of the univariate GARCH(p,q) model defined in equation (1.9) is then 
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given by 

vech(L?J = W+ C Aivech(&,_i&:_i) + 1 Bjvech(Q_j) 
i= 1.9 j=l,p 

= W+ A(L)vech(s,_ i&r) + B(L)vech@~_,), (6.3) 

where W is an [N(N + 1)/2] x 1 vector, and the Ai and Bj matrices are of dimension 
[N(N + 1)/2] x [N(N + 1)/2]. This general formulation is termed the vet represen- 
tation by Engle and Kroner (1993). It allows each of the elements in {Q} to depend 
on all of the most recent q past cross products of the E,‘S and all of the most recent p 
lagged conditional variances and covariances, resulting in a total of [N(N + 1)/2]. 
[l + (p + q)N(N + 1)/2] parameters. Even for low dimensions of N and small values 
of p and q the number of parameters is very large; e.g. for N = 5 and p = q = 1 
the unrestricted version of (6.3) contains 465 parameters. This allows plenty of 
flexibility to answer most, but not all, of the questions above.” However, this 
large number of parameters is clearly unmanageable, and conditions to ensure 
that the conditional covariance matrices are positive definite a.s. for all t are 
difficult to impose and verify; Engle and Kroner (1993) provides one set of sufficient 
conditions discussed below. 

In practice, some simplifying assumptions will therefore have to be imposed. In 
the diagonal GARCH(p, q) model, originally suggested by Bollerslev et al. (1988), 
the Ai and Bj matrices are all taken to be diagonal. Thus, the (i,j)th element in 
{Q} only depends on the corresponding past (i, j)th elements in {E&> and {Q}. This 
restriction reduces the number of parameters to [N(N + 1)/2](1 + p + q). These 
restrictions are intuitively reasonable, and can be interpreted in terms of a filtering 
estimate of each variance and covariance. However, this model clearly does not 
allow for causality in variance, co-persistence in variance, as discussed in Section 6.5 
below, or asymmetries. 

Necessary and sufficient conditions on the parameters to ensure that the 
conditional covariance matrices in the diagonal GARCH(p, q) model are positive 
definite a.s. are most easily derived by expressing the model in terms of Hadamard 
products. In particular, define the symmetric N x N matrices A* and BT implicitly 
by Ai = diag[vech($)] i = 1,. . . , q, Bj = diag[vech(BT)] j = 1,. . . , p, and WE vech( W*). 
The diagonal model may then be written as 

R,=w*+ c A;~(E,_~E;_~)+ c ByQ12-j, 
i=l,q j=l,P 

(6.4) 

where 0 denotes the Hadamard product. la It follows now by the algebra of 

“Note, that even with this number of parameters, asymmetric terms are excluded by the focus on 
squared residuals. 

“The Hadamard product of two N x N matrices A and B is defined by {AOBJij = {A}ij{B}ij; see, 
e.g. Amemiya (1985). 
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Hadamard products, that Lit is positive definite as. for all t provided that W* is 
positive definite, and the AT and Bf matrices are positive semi-definite for all 
i= 1 ,..., q and j= l,..., p; see Attanasio (1991) and Marcus and Mint (1964) for 
a formal proof. These conditions are easy to impose and verify through a Cholesky 
decomposition for the parameter matrices in equation (6.4). Even simpler versions 
of this model which let either A* or Bf be rank one matrices, or even simply a 
scalar times a matrix of ones, may be useful in some applications. 

In the alternative representation’of the multivariate GARCH(p, q) model termed 
by Engle and Kroner (1993) the Baba, Engle, Kraft and Kroner, or BEKK, represen- 
tation, the conditional covariance matrix is parametrized as 

k=l,Xi=l,q k=l,Kj=l,p 
(6.5) 

wherek’,A,,i=l,..., q,k=l,..,, K,andBjkj=l ,..., p,k=l,..., KareallNxN 
matrices. This formulation has the advantage over the general specification in 
equation (6.3) that Q is guaranteed to be positive definite a.s. for all t. The model 
in equation (6.5) still involves a total of [l + (p + q)K]N’ parameters. By taking 
vech((l,) we can express any model of the form (6.5) in terms of (6.3). Thus any 
vet model in (6.3) whose parameters can be expressed as (6.5) must be positive 
definite. However, in empirical applications, the structure of the Aik and Bjk matrices 
must be further simplified as this model is also overparametrized. A choice made 
by McCurdy and Stengos (1992) is to set K =p= q = 1 and make A, and B, 
diagonal. This leads to the simple positive definite version of the diagonal vet model 

a,= w*+c(lcr;o(E,_lE:_l)+DIB;O,Rt_l, (6.6) 

where A, = diag[a,] and B, = diag[j?,]. 

6.2. Factor ARCH 

The Factor ARCH model can be thought of as an alternative simple parametriza- 
tion of (6.5). Part of the appeal of this parametrization in applications with asset 
returns stems from its derivation in terms of a factor type model. Specifically, 
suppose that the N x 1 vector of returns y, has a factor structure with K factors 
given by the K x 1 vector &, and time invariant factor loadings given by the N x K 
matrix B: 

Y, = B5, + E,. (6.7) 

Assume that the idiosyncratic shocks, E,, have constant conditional covariances 
Y’, and that the factors, 5,, have conditional covariance matrix A,. Also, suppose 
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that E, and 5, are uncorrelated, or that they have constant correlations. The 
conditional covariance matrix of y, then equals 

v, _ 1( y,) = n, = Y + BA,B’. (6.8) 

If A, is diagonal with elements IZkf, or if the off-diagonal elements are constant and 
combined into Y, the model may therefore be written as 

0, = Y+ c BkP;nk*Y (6.9) 
k=l,K 

where flk denotes the kth column in B. Thus, there are K statistics which determine 
the full covariance matrix. Forecasts of the variances and covariances or of any 
portfolio of assets, will be based only on the forecasts of these K statistics. This 
model was first proposed in Engle (1987), and implemented empirically by Engle 
et al. (1990b) and Ng et al. (1992) for treasury bills and stocks, respectively. 

Diebold and Nerlove (1989) suggested a closely related latent factor model, 

(6.9’) 
k=l,K 

in which the factor variances, S& were not functions of the past information set. 
An estimation approach based upon an approximate Kalman filter was used 
by Diebold and Nerlove (1989). More recently King et al. (1994) have estimated 
a similar latent factor model using theoretical developments in Harvey et al. (1994). 

An immediate implication of (6.8) and (6.9) is that, if K < N, there are some 
portfolios with constant variance. Indeed a useful way to determine K is to find 
how many assets are required to form such portfolios. Engle and Kozicki (1993) 
present this as an application of a test for common features. This test is applied 
by Engle and Susmel(1993) to determine whether there is evidence that international 
equity markets have common volatility components. Only for a limited number 
of pairs of the countries analyzed can a one factor model not be rejected. 

A second implication of the formulation in (6.8) is that there exist factor- 
representing portfolios with portfolio weights that are orthogonal to all but one 
set of factor loadings. In particular, consider the portfolio rkt = 4;y,, where +;Bj 
equals 1 ifj = k and zero otherwise. The conditional variance of rkt is then given by 

(6.10) 

where $k = 4; Y$,. Thus, the portfolios rkl have exactly the same time variation 
as the factors, which is why they are called factor-representing portfolios. 

In order to estimate this model, the dependence of the Akr’s upon the past 
information set must also be parametrized. The simplest assumption is that there 
is a set of factor-representing portfolios with univariate GARCH( 1,l) representa- 
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tions. Thus, 

(6.11) 

and, therefore, 

k=l,K k=l,K 

so that the factor ARCH model is a special case of the BEKK parametrization. 
Clearly, more general factor ARCH models would allow the factor representing 
portfolios to depend upon a broader information set than the simple univariate 

assumption underlying (6.11). 
Estimation of the factor ARCH model by full maximum likelihood together 

with several variations has been considered by Lin (1992). However, it is often 
convenient to assume that the factor-representing portfolios are known a priori. 
For example, Engle et al. (1990b) assumed the existence of two such portfolios: 
one an equally weighted treasury bill portfolio and one the Standard and Poor’s 
500 composite stock portfolio. A simple two step estimation procedure is then 
available, by first estimating the univariate models for each of the factor-representing 
portfolios. Taking the variance estimates from this first stage as given, the factor 
loadings may then be consistently estimated up to a sign, by noticing that each of 
the individual assets has a variance process which is linear in the factor variances, 
where the coefficients equal the squares of the factor loadings. While this is surely 
an inefficient estimator, it has the advantage that it allows estimation for arbitrarily 
large matrices using simple univariate procedures. 

6.3. Constant conditional correlations 

In the constant conditional correlations model of Bollerslev (1990), the time-varying 
conditional covariances are parametrized to be proportional to the product of 
the corresponding conditional standard deviations. This assumption greatly simpli- 
fies the computational burden in estimation, and conditions for 0, to be positive 
definite a.s. for all t are also easy to impose. 

More explicitly, let D, denote the N x N diagonal matrix with the conditional 
variances along the diagonal; i.e. {Dt}ii = {Q},, and {Dt}ij = 0 for i #j, i, j = 1,. . , N. 
Also, let c denote the matrix of conditional correlations; i.e. { &jij = {Q}ij[ {Q}ii. 
{QJ,]-“‘, i, j = 1,. . . , N. The constant conditional correlation model then assumes 
that r, = I- is time-invariant, so that the temporal variation in {a,} is determined 
solely by the time-varying conditional variances, 

0 = DwrDl/z 
I f f . (6.13) 
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If the conditional variances along the diagonal in the D, matrices are all positive, 
and the conditional correlation matrix r is positive definite, the sequence of 
conditional covariance matrices {Qj is guaranteed to be positive definite a.s. for 
all t. Furthermore, the inverse of Q is simply given by L2, ’ = DfF”2r - 1Dle”2. 
Thus, when calculating the likelihood function in equation (6.2) or some other 
multivariate objective function involving 0,’ t = 1,. . ., T, only one matrix 
inversion is required for each evaluation. This is especially relevant from a 
computational point of view when numerical derivatives are being used. Also, by 
a standard multivariate SURE analogy, r may be concentrated out of the normal 
likelihood function by (D,- li2e,)(D,- 1/2Q’r simplifying estimation even further. 

Of course, the validity of the assumption of constant conditional correlations 
remains an empirical question.” However, this particular formulation has already 

been successfully applied by a number of authors, including Baillie and Bollerslev 
(1990), Bekaert and Hodrick (1993), Bollerslev (1990), Kroner and Sultan (1991), 
Kroner and Claessens (1991) and Schwert and Seguin (1990). 

6.4. Bivariate EGARCH 

A bivariate version of the EGARCH model in equation (1.11) has been introduced 
by Braun et al. (1992) in order to model any “leverage effects,” as discussed in 
Section 1.2.3, in conditional betas. Specifically, let E,,( and sP,[ denote the residuals 
for a market index and a second portfolio or asset. The model is then given by 

6%t = ~m.tGl,t (6.14) 

and 

& P.1 = B p,tEm,t + flp.tZp,v (6.15) 

where {z,,~, z~,~} is assumed to be i.i.d with mean (0,O) and identity covariance 
matrix. The conditional variance of the market index, a:,,, is modeled by a 
univariate EGARCH model, 

Wi,,) = CL + 4,Jn(~8fJ - %J + R,,z,,~ - 1 + Y,( Iz,,~ - 1 I - E Iz,,, - 1 I). (6.16) 

The conditional beta of sp,t with respect to E,,~, /?p,f, is modeled as 

BP,, = 4 + UP,,, - 1 - Al) + 11 Z,,t - 1 ZP,l - 1 + G&t - 1 + J.3Zp.t - 1. (6.17) 

The coefficients j.2 and 1,, allow for “leverage effects” in BP,,. The non-market, or 

19A formal moment based test for the assumption of constant conditional correlations has been 
developed by Bera and Roh (1991). 
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idiosyncratic, variance of the second portfolio, gi,*, is parametrized as a modified 
univariate EGARCH model, to allow for both market and idiosyncratic news 
effects. 

Braun et al. (1992) find that this model provides a good description of the returns 
for a number of industry and size-sorted portfolios. 

6.5. Stationarity and co-persistence 

Stationarity and moment convergence criteria for various univariate specifications 
were discussed in Section 3 above. Corresponding convergence criteria for multi- 
variate ARCH models are generally complex, and explicit results are only available 
for a few special cases. 

Specifically, consider the multivariate vet GARCH(l, 1) model defined in equation 

(6.3). Analogous to the expression for the univariate GARCH(1, 1) model in equation 
(3.10) the minimum mean square error forecast for vech(Q) as of time s < t takes 
the form 

E,(vech(Q,)) = W 1 + (A, + ~,)‘~“vech(QJ, (6.19) 

where (A 1 + II,)’ is equal to the identity matrix by definition. Let VA V- ’ denote 
the Jordan decomposition of the matrix A, + B,, so that (A, + Br)‘-’ = VAt-sV-1.20 
Thus, E,(vech(Q)) converges to the unconditional covariance matrix of the process, 
W(Z - A, - B,)-‘, for t + cc a.s. if and only if the norm of the largest eigenvalue 
of A, + B, is strictly less than one. Similarly, by expressing the vector GARCH(p, q) 
model in companion first order form, it follows that the forecast moments converge, 
and that the process is covariance stationary if and only if the norm of the largest 
root of the characteristic equation II - A(x- ‘) - B(x- ‘)I = 0 is strictly less than 
one. A formal proof is given in Bollerslev and Engle (1993). This corresponds 
directly to the condition for the univariate GARCH(p, q) model in equation (1.9) 
where the persistence of a shock to the optimal forecast of the future conditional 
variances is determined by the largest root of the characteristic polynomial 
c((x-I) + /I(x- ‘) = I. The conditions for strict stationarity and ergodicity for the 
multivariate GARCH(p,q) model have not yet been established. 

“‘If the eigenvalues for A, + B, are all distinct, A equals the diagonal matrix of eigenvalues, and V 
the corresponding matrix of right eigenvectors. If some of the eigenvalues coincide, A takes the more 
general Jordan canonical form; see Anderson (1971) for further discussion. 
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Results for other multivariate formulations are scarce, although in some instances 
the appropriate conditions may be established by reference to the univariate results 
in Section 3. For instance, for the constant conditional correlations model in 
equation (6.13), the persistence of a shock to E,(Q), and conditions for the model 
to be covariance stationary are simply determined by the properties of each of the 
N univariate conditional variance processes; i.e., E,( {Q}ii) i = 1,. . , N. Similarly, 
for the factor ARCH model in equation (6.9), stationarity of the model depends 
directly on the properties of the univariate conditional variance processes for the 
factor-representing porifolios; i.e. {Akf} k = 1,. . . , K. 

The empirical estimates for univariate and multivariate ARCH models often 
indicate a high degree of persistence in the forecast moments for the conditional 
variances; i.e. &(a:) or JY,({Q},),~) i = 1,. . . , N, for t + co. At the same time, the 
commonality in volatility movements suggest that this persistence may be common 
across different series. More formally, Bollerslev and Engle (1993) define the 
multivariate ARCH process to be co-persistent in variance if at least one element 
in E,(Q) is non-convergent a.s. for increasing forecast horizons t-s, yet there 
exists a non-trivial linear combination of the process, y’s,, such that for every forecast 
origin s, the forecasts of the corresponding future conditional variances, E,(y’Qy), 
converge to a finite limit independent of time s information. Exact conditions for 
this to occur within the context of the multivariate GARCH(p, q) model in equation 
(6.3) are presented in Bollerslev and Engle (1993). These results parallel the 
conditions for co-integration in the mean as developed by Engle and Granger 
(1987). Of course, as discussed in Section 3 above, for non-linear models different 
notions of convergence may give rise to different classifications in terms of the 
persistence of shocks. The focus on forecast second moments corresponds directly 
to the mean-variance trade-off relationship often stipulated by economic theory. 

To further illustrate this notion of co-persistence, consider the K-factor 
GARCH(p,q) model defined in equation (6.12). If some of the factor-representing 
portfolios have persistent variance processes, then individual assets with non-zero 
factor loadings on such factors will have persistence in variance, also. However, 
there may be portfolios which have zero factor loadings on these factors. Such 
portfolios will not have persistence in variance, and hence the assets are co- 
persistent. This will generally be true if there are more assets than there are 
persistent factors. From a portfolio selection point of view such portfolios might 
be desirable as having only transitory fluctuations in variance. Engle and Lee 
(1993) explicitly test for such an effect between large individual stocks and a market 
index, but fail to find any evidence of co-persistence. 

7. Model selection 

Even in linear statistical models, the problem of selecting an appropriate model is 
non-trivial, to say the least. The usual model selection difficulties are further compli- 
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cated in ARCH models by the uncountable infinity of functional forms allowed by 
equation (1.2) and the choice of an appropriate loss function. 

Standard model selection criteria such as the Akaike (1973) and the Schwartz 
(1978) criterion have been widely used in the ARCH literature, though their statistical 
properties in the ARCH context are unknown. This is particularly true when the 
validity of the distributional assumptions underlying the likelihood is in doubt. 

Most model selection problems focus on estimation of means and evaluate loss 
functions for alternative models using either in-sample criteria, possibly corrected 
for fitting by some form of cross-validation, or out-of-sample evaluation. The loss 
function of choice is typically mean squared error. 

When the same strategy is applied to variance estimation, the choice of mean 

squared error is much less clear. A loss function such as 

L, = 1 (Ef - CJf)’ 
1=1.T 

(7.1) 

will penalize conditional variance estimates which are different from the realized 
squared residuals in a fully symmetrical fashion. However, this loss function does 
not penalize the method for negative or zero variance estimates which are clearly 
counterfactual. By this criterion, least squares regressions of squared residuals on 
past information will have the smallest in-sample loss. 

More natural alternatives may be the percentage squared errors, 

L, = 1 (Ef - cTf,‘cr-“, 
2=1.T 

(7.2) 

the percentage absolute errors, or the loss function implicit in the Gaussian likelihood 

L, = C [ln(a:) + $a,‘]. 
1=1,T 

(7.3) 

A simple alternative which exaggerates the interest in predicting when residuals are 
close to zero is2’ 

L, = C [ln(sfa;2)]2. 
f= l.T 

(7.4) 

The most natural loss function, however, may be one based upon the goals of the 
particular application. West et al. (1993) developed such a criterion from the portfolio 
decisions of a risk averse investor. In an expected utility comparison based on the 

“Pagan and Schwert (1990) used the loss functions L, and L, to compare alternative parametric 
and nonparametric estimators with in-sample and out-of-sample data sets. As discussed in Section 
1.5, the L, in-sample comparisons favored the nonparametric models, whereas the out-of-sample tests 
and the loss function L, in both cases favored the parametric models. 
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forecast of the return volatility, ARCH models turn out to fare very well. In a related 
context, Engle et al. (1993) assumed that the objective was to price options, and 
developed a loss function from the profitability of a particular trading strategy. They 
again found that the ARCH variance forecasts were the most profitable. 

8. Alternative measures for voiatility 

Several alternative procedures for measuring the temporal variation in second order 
moments of time series data have been employed in the literature prior to the 
development of the ARCH methodology. This is especially true in the analysis of 
high frequency financial data, where volatility clustering has a long history as a 

salient empirical regularity. 
One commonly employed technique for characterizing the variation in conditional 

second order moments of asset returns entails the formation of low frequency 
sample variance estimates based on a time series of high frequency observations. 
For instance, monthly sample variances are often calculated as the sum of the 
squared daily returns within the month”; examples include Merton (1980) and 
Poterba and Summers (1986). Of course, if the conditional variances of the daily 
returns differ within the month, the resulting monthly variance estimates will 
generally be inefficient; see French et al. (1987) and Chou (1988). However, even if 
the daily returns are uncorrelated and the variance does not change over the course 
of the month, this procedure tends to produce both inefficient and biased monthly 
estimates; see Foster and Nelson (1992). 

A related estimator for the variability may be calculated from the inter-period 
highs and lows. Data on high and low prices within a day is readily available for 
many financial assets. Intuitively, the higher the variance, the higher the inter-period 
range. Of course, the exact relationship between the high-low distribution and the 
variance is necessarily dependent on the underlying distribution of the price process. 
Using the theory of range statistics, Parkinson (1980) showed that a high-low 
estimator for the variance of a continuous time random walk is more efficient than 
the conventional sample variance based on the same number of end-of-interval 
observations. Of course, the random walk model assumes that the variance remain 
constant within the sample period. Formal extensions of this idea to models with 
stochastic volatility are difficult; see also Wiggins (1991), who discusses many of the 
practical problems, such as sensitivity to data recording errors, involved in applying 
high-low estimators. 

Actively traded options currently exist for a wide variety of financial instruments. 
A call option gives the holder the right to buy an underlying security at a pre- 

“Since many high frequency asset prices exhibit low but significant first order serial correlation, 
two times the first order autocovariance is often added to the daily variance in order to adjust for this 
serial dependence. 
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specified price within a given time period. A put option gives the right to sell a 
security at a pre-specified price. Assuming that the price of the underlying security 
follows a continuous time random walk, Black and Scholes (1973) derived an 
arbitrage based pricing formula for the price of a call option. Since the only 
unknown quantity in this formula is the constant instantaneous variance of the 
underlying asset price over the life of the option, the option pricing formula may be 
inverted to infer the conditional variance, or volatility, implicit in the actual market 
price of the option. This technique is widely used in practice. However, if the 
conditional variance of the asset is changing through time, the exact arbitrage 
argument underlying the Black-Scholes formula breaks down. This is consistent 
with the evidence in Day and Lewis (1992) for stock index options which indicate 
that a simple GARCH(l, 1) model estimated for the conditional variance of the 
underlying index return provides statistically significant information in addition to 
the implied volatility estimates from the Black-Scholes formula. Along these lines 
Engle and Mustafa (1992) find that during normal market conditions the coefficients 
in the implied GARCH(l, 1) model which minimize the pricing error for a risk 
neutral stock option closely resemble the coefficients obtained using more conven- 
tional maximum likelihood estimation methods. 23 As mentioned in Section 4 above, 

much recent research has been directed towards the development of theoretical 
option pricing formulas in the presence of stochastic volatility; see, for instance, 
Amin and Ng (1993), Heston (1991), Hull and White (1987), Melino and Turnbull 
(1990), Scott (1987) and Wiggins (1987). While closed form solutions are only 
available for a few special cases, it is generally true that the higher the variance of 
the underlying security, the more valuable the option. Much further research is 
needed to better understand the practical relevance and quality of the implied 
volatility estimates from these new theoretical models, however. 

Finance theory suggests a close relationship between the volume of trading and 

the volatility; see Karpoff (1987) for a survey of some of the earlier contributions to 
this literature. In particular, according to the mixtures of distributions hypothesis, 
associated with Clark (1973) and Tauchen and Pitts (1983) the evolution of returns 
and trading volume are both determined by the same latent mixing variable that 
reflects the amount of new information that arrives at the market. If the news arrival 
process is serially dependent, volatility and trading volume will be jointly serially 
correlated. Time series data on trading volume should therefore be useful in inferring 
the behavior of the second order moments of returns. This idea has been pursued 
by a number of empirical studies, including Andersen (1992b), Gallant et al. (1992) 
and Lamoureux and Lastrapes (1990). While the hypothesis that contemporaneous 
trading volume is positively correlated with financial market volatility is supported 

‘aMore specifically, Engle and Mustafa (1992) estimate the parameters for the implied GARCH(1, 1) 

model by minimizing the risk neutral option pricing error defined by the discounted value of the 
maximum of zero and the simulated future price of the underlying asset from the GARCH(1,l) model 
minus the exercise price of the option. 
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in the data, the result that a single latent variable jointly determines both has been 
formally rejected by Lamoureux and Lastrapes (1994). 

In a related context, modern market micro structure theories also suggest a close 
relationship between the behavior of price volatility and the distribution of the 
bid-ask spread though time. Only limited evidence is currently available on the 
usefulness of such a relationship for the construction of variance estimates for the 
returr?; see, e.g. Bollerslev and Domowitz (1993), Bollerslev and Melvin (1994) and 
Brock and Kleidon (1992). 

The use of the cross sectional variance from survey data to estimate the variance 
of the underlying time series has been advocated by a number of researchers. Zamowitz 
and Lambros (1987) discuss a number of these studies with macroeconomic variables. 
Of course, the validity of the dispersion across forecasts as a proxy for the variance 
will depend on the theoretical connection between the degree of heterogeneity and 
uncertainty; see Pagan et al. (1983). Along these lines it is worth noting that Rich 
et al. (1992) only find a weak correlation between the dispersion across the forecasts 
for inflation and an ARCH based estimate for the conditional variance of inflation. 
The availability of survey data is also likely to limit the practical relevance of this 
approach in many applications. 

In a related context, a number of authors have argued for the use of relative prices 
or returns across different goods or assets as a way of quantifying inflationary 
uncertainty or overall market volatility. Obviously, the validity of such cross 
sectional based measures again hinges on very stringent conditions about the 
structure of the market; see Pagan et al. (1983). 

While all of the variance estimates discussed above may give some idea about 
the temporal dependencies in second order moments, any subsequent model estimates 
should be carefully interpreted. Analogously to the problems that arise in the use 
of generated regressors in the mean, as discussed by Pagan (1984,1986) and Murphy 
and Topel(1985), the conventional standard errors for the coefficient estimates in 
a second stage model that involves a proxy for the variance will have to be adjusted 
to reflect the approximation error uncertainty. Also, if the conditional mean depends 
non-trivially on the conditional variance, as in the ARCH-M model discussed 
in Section 1.4, any two step procedure will generally result in inconsistent parameter 
estimates; for further analysis along these lines we refer to Pagan and Ullah (1988). 

9. Empirical examples 

9.1. U.S. DollarlDeutschmark exchange rates 

As noted in Section 1.2, ARCH models have found particularly wide use in the 
modeling of high frequency speculative prices. In this section we illustrate the 
empirical quasi-maximum likelihood estimation of a simple GARCH(l, 1) model 
for a time series of daily exchange rates. Our discussion will be brief. A more detailed 
and thorough discussion of the empirical specification, estimation and diagnostic 
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testing of ARCH models is given in the next section, which analyzes the time series 
characteristics of more than one hundred years of daily U.S. stock returns. 

The present data set consists of daily observations on the U.S. Dollar/Deutsch- 
mark exchange rate over the January 2,198l through July 9,1992 period, for a total 
of 3006 observations.24 A broad consensus has emerged that nominal exchange 
rates over the free float period are best described as non-stationary, or I(l), type 
processes; see, e.g. Baillie and Bollerslev (1989). We shall therefore concentrate on 
modeling the nominal percentage returns; i.e. yr = lOO[ln(s,) - In@_ r)], where s, 
denotes the spot Deutschmark/U.S. Dollar exchange rate at day t. This is the time 
series plotted in Figure 2 in Section 1.2 above. As noted in that section, the daily 
returns are clearly not homoskedastic, but are characterized by periods of tranquility 
followed by periods of more turbulent exchange rate movements. At the same time, 
there appears to be little or no own serial dependence in the levels of the returns. 
These visual observations are also borne out by more formal tests for serial correla- 
tion. For instance, the Ljung and Box (1978) portmanteau test for up to twentieth 
order serial correlation in y, equals 19.1, whereas the same test statistic for twentieth 
order serial correlation in the squared returns, y:, equals 151.9. Under the null of 
i.i.d. returns, both test statistics should asymptotically be the realization of a chi- 
square distribution with twenty degrees of freedom. Note that in the presence of 
ARCH, the portmanteau test for serial correlation in y, will tend to over-reject. 

As discussed above, numerous parametric and nonparametric formulations have 
been proposed for modeling the volatility clustering phenomenon. For the sake of 
brevity, we shall here concentrate on the results for the particularly simple 
MA( I)-GARCH( 1,1) model, 

Yt = PO + 01&t-1 + Et, 

(9.1) 

a:=oo+o,W,--o,(a, +Br)W,-, +a&_, +&a:_,, 

where W, denotes a weekend dummy equal to one following a closure of the market. 
The MA(l) term is included to take account of the weak serial dependence in the 
mean. Following Baillie and Bollerslev (1989), the weekend dummy is entered in 
the conditional variance to allow for an impulse effect. 

The quasi-maximum likelihood estimates (QMLE) for this model, obtained 
by the numerical maximization of the normal likelihood function defined by 
equations (2.7), (2.8) and (2.12), are contained in Table 1. The first column in the 
table shows that the c1r and /?r coefficients are both highly significant at the 
conventional five percent level. The sum of the estimated GARCH parameters also 
indicates a fairly strong degree of persistence in the conditional variance process.25 

Z4The rates were calculated from the ECU cross rates obtained through Datastream. 
25Reparametrizing the conditional variance in terms of (a1 +/I,) and x1, the r-test statistic for the 

null hypothesis that LX, + PI = 1 equals 3.784, thus formally rejecting the IGARCH(1, 1) model at 
standard significance levels. 
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Table 1 
Quasi-maximum likelihood estimatesa 

Jan. 2, 1982 Jan. 2, 1982 Oct. 7, 1986 
Coefficient July 9, 1992 Oct. 6, 1986 July 9, 1992 

Q, - 0.056 
(0.014) 

\“,::::j 

% 0.028 
(0.005) 

i::Ej 

ml 0.243 
(0.045) 
co.03 l] 
{ 0.022) 

x1 0.068 
(0.009) 

i::::i 

PI 0.880 
(0.015) 
co.01 21 
(0.010) 

0.014 
(0.018) 

::::::j 

- 0.058 
(0.030) 
CO.0271 
{ 0.027) 

0.024 
(0.009) 

\u,:::j 

0.197 
(0.087) 
CO.0621 
(0.046) 

0.076 
(0.022) 

;:::::; 

0.885 
(0.028) 

- 0.017 
(0.016) 

;::::I;{ 

0.055 
(0.027) 
CO.0271 
{0.027} 

0.035 
(0.011) 
[O.Ol 11 
(0.010) 

0.281 
(0.087) 

~::Z:j 

0.063 
(0.017) 

;:::::jl 

0.861 
(0.033) 
10.03 11 
{ 0.030) 

“Robust standard errors based on equation (2.21) are reported in parentheses, (.). Standard errors 
calculated from the Hessian in equation (2.18) are reported in [.I. Standard errors from on the outer 
product of the sample gradients in (2.19) are given in { ‘}. 

Consistent with the stylized facts discussed in Section 1.2.4, the conditional variance 
is also significantly higher following non-trading periods. 

The second and third columns of Table 1 report the results with the same model 
estimated for the first and second half of the sample respectively; i.e. January 2, 1981 
through October 6, 1986 and October 7,1986 through July 9,1992. The parameter 
estimates are remarkably similar across the two sub-periods2’j 

In summary, the simple model in equation (9.1) does a remarkably good job of 
capturing the own temporal dependencies in the volatility of the exchange rate 
series. For instance, the highly significant portmanteau test for serial correlation in 

26Even though the assumption of conditional normality is violated empirically, it is interesting to 
note that the sum of the maximized normal quasi log likelihoods for the two sub-samples equals 
_ 1727.750 - 1597.166 = - 3324.916, compared to - 3328.984 for the model estimated over the full 
sample. 
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the squares of the raw series, y:, drops to only 21.687 for the squared standardized 
residuals, E^,B; 2. We defer our discussion of other residual based diagnostics to the 

empirical example in the next section. 
_ While the GARCH(l, 1) model is able to track the own temporal dependencies, 

the assumption of conditionally normally distributed innovations is clearly violated 
by the data. The sample skewness and kurtosis for .$8,- ’ equal - 0.071 and 4.892, 
respectively. Under the null of i.i.d. normally distributed standardized residuals, the 
sample skewness should be the realization of a normal distribution with a mean of 

0 and a variance of 6/m = 0.109, while the sample kurtosis is asymptotically 

normally distributed with a mean of 3 and a variance of 24/,,/%% = 0.438. 
The standard errors for the quasi-maximum likelihood estimates reported in (.) 

in Table 1 are based on the asymptotic covariance matrix estimator discussed in 
Section 2.3. These estimates are robust to the presence of conditional excess kurtosis. 
The standard errors reported in [.I and {.} are calculated from the Hessian and 

the outer product of the gradients as in equations (2.18) and (2.19), respectively. For 
some of the conditional variance parameters, the non-robust standard errors are 
less than one half of their robust counterparts. This compares to the findings reported 
in Bollerslev and Wooldridge (1992), and highlights the importance of appropriately 
accounting for any conditional non-normality when conducting inference in ARCH 
type models based on a normal quasi-likelihood function. 

9.2. U.S. stock prices 

We next turn to modeling heteroskedasticity in U.S. stock index returns data. 
Drawing on the optimal filtering results of Nelson and Foster (1991,1994) sum- 
marized in Section 4, as a guidance in model selection, new very rich parametriza- 
tions are introduced. 

From 1885 on, the Dow Jones corporation has published various stock indices 
daily. In 1928, the Standard Statistics company began publishing daily a wider index 
of 90 utility, industrial and railroad stocks. In 1953, the Standard 90 index was 
replaced by an even broader index, the Standard and Poor’s 500 composite. The 
properties of these indices are considered in some detail in Schwert (1990).27 The 
Dow data has one substantial chronological break, from July 30, 1914, through 
December 11, 1914, when the financial markets were closed following the outbreak 
of the First World War. The first data set we analyze is the Dow data from its 
inception on February 16, 1885 until the market closure in 1914. The second data 
set is the Dow data from the December 1914 market reopening until January 3, 
1928. The third data set is the Standard 90 capital gains series beginning in January 
4, 1928 and extending to the end of May 1952. The Standard 90 index data is 

“G William Schwert kindly provided the data. Schwert’s indices differ from ours aft& 1962, when 
he use, the CRSP value weighted market index. We continue to use the S&P 500 through 1990. 
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available through the end of 1956, but we end at the earlier date because that is 
when the New York Stock Exchange ended its Saturday trading session, which 
presumably shifted volatility to other days of the week. The final data set is the S&P 
500 index beginning in January 1953 and continuing through the end of 1990. 

9.2.1. Model specification 

Our basic capital gains series, rl, is derived from the price index data, P,, as 

I, z lOOln[P,/P,_,]. (9.2) 

Thus, I, corresponds to the continuously compounded capital gain on the index 
measured in percent. Any ARCH formulation for rt may be compactly written as 

and 

E, = Z,‘C,, z, - i.i.d., E[z,] = 0, E[zf] = 1, (9.4) 

where &- 1, g:) and crt denote the conditional mean and the conditional standard 
deviation, respectively. 

In the estimation reported below we parametrized the functional form for the 

conditional mean by 

This is very close to the specification in LeBaron (1992). The pI coefficient allows 
for first order autocorrelation. The u2 term denotes the sample mean of rf, which 
is essentially equal to the unconditional sample variance of rt. As noted by LeBaron 
(1992), serial correlation seems to be a decreasing function of the conditional 

variance, which may be captured by equation (9.5) through p2 > 0. The parameter 
pL3 is an ARCH-M term. 

We assume that the conditional distribution of E, given crt is generalized t; see, 
e.g. McDonald and Newey (1988). The density for the generalized t-distribution 
takes the form 

.fCw- l; v, $1 = ~~ 
2a,h.$1i”B(l,q, I+!+[:+ le,l”/($b”a:)]ti+ liq (9.6) 

where B(l/q, II/) 3 T(l/q)T($)T(l/q + $) denotes the beta function, b = [r($)r(l/q)/ 

03k)UlCI - 2h)l 1’23 and $q > 2, r] > 0 and $ > 0. The scale factor b makes 
Var(E,a, ‘) = I. 
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One advantage of this specification is that it nests both the Student’s t and the 
GED distributions discussed in Section 2.2 above. In particular, the Student’s t- 
distribution sets YI = 2 and $ = + times the degrees of freedom. The GED is obtained 
for Ic/ = co. Nelson (1989,199l) fit EGARCH models to U.S. Stock index returns 
assuming a GED conditional distribution, and found that there were many more 
large standardized residuals z, = s,gZ- l than would be expected if the returns were 

actually conditionally GED with the estimated q. The GED has only one “shape” 
parameter q, which is apparently insufficient to fit both the central part and the tails 
of the conditional distribution. The generalized t-distribution has two shape param- 
eters, and may therefore be more successful in parametrically fitting the conditional 
distribution. 

The conditional variance function, o:, is parametrized using a variant of the 
EGARCH formulation in equation (1.1 I), 

ln((g) = w 

t 
+ (l+ cQL +_+cI,L4)g(z _ 1 a’ ) 

f (I-~..._pJP) ’ ’ f 1’ (9.7) 

where the deterministic component is given by 

0, = w0 + ln[l + w1 IV, + 02St + o&J. (9.8) 

As noted in Section 1.2, trading and non-trading periods contribute differently to 
volatility. To also allow for differences between weekend and holiday non-trading 
periods W, gives the number of weekend non-trading days between trading days t 
and t - 1, while H, denotes the number of holidays. Prior to May 1952, the NYSE 
was open for a short trading session on Saturday. Since Saturday may have been a 
“slow” news day and the Saturday trading session was short, we would expect low 
average volatility on Saturdays. The S, dummy variable equals one if trading 
day t is a Saturday and zero otherwise. 

Our specification of the news impact function, g(., .), is a generalization of 
EGARCH inspired by the optimal filtering results of Nelson and Foster (1994). In 
the EGARCH model in equation (1.11) ln(cr:+ 1) is homoskedastic conditional on 
a:, and the partial correlation between z, and ln(af+ i) is constant conditional on 
0:. These assumptions may well be too restrictive, and the optimal filtering results 
indicate the importance of correctly specifying these moments. Our specification of 
g(z,, 0:) therefore allows both moments to vary with the level of 0:. 

Several recent papers, including Engle and Ng (1993), have suggested that GARCH, 
EGARCH and similar formulations may make 0: or ln(a:) too sensitive to outliers. 
The optimal filtering results discussed in Section 4 lead to the same conclusion 
when E, is drawn from a conditionally heavy tailed distribution. The final form that 
we assume for g(., .) was also motivated by this observation: 

g(zt, of) = CT- 2eo- OlZ, 
1 

___ + g,- 2YO 

+ 4lztI [ 

““1”+!&]. (9.9) 
1 + Y*lZ,lP 
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The y0 and t?,, parameters allow both the conditional variance of ln(aF+ i) and its 
conditional correlation with z, to vary with the level of 0:. If 0, < O,ln(a:+ i) and Z, 
are negatively correlated: the “leverage effect”. The EGARCH model constrains 
8, = y0 = 0, so that the conditional correlation is constant, as is the conditional 
variance of ln(af). The p, y2, and 8, parameters give the model flexibility in how 
much weight to assign to the tail observations. For example, if yZ and e2 are both 
positive, the model downweights large 1 z, 1’s. The second term on the right hand side 
of equation (9.9) was motivated by the optimal filtering results in Nelson and Foster 
(1994), designed to make the ARCH model serve as a robust filter. 

The orders of the ARMA model for ln(a:), p and q, remain to be determined. 
Table 2 gives the maximized values of the log likelihoods from (2.7), (2.8) and (9.6) 
for ARMA models of order up to ARMA(3,5). For three of the four data sets, the 
information criterion of Schwartz (1978) selects an ARMA(2,l) model, the exception 
being the Dow data for 1914-1928, for which an AR(l) is selected. For linear time 
series models, the Schwartz criterion has been shown to consistently estimate the 
order of an ARMA model. As noted in Section 7, it is not known whether this result 
carries over to the ARCH class of models. However, guided by the results in Table 2, 

Table 2 
Log likelihood values for fitted models.” 

Fitted model 
Dow Dow Standard 90 S&P 500 

188551914 1914-1928 1928-1952 1953-1990 

White Noise 

MA(l) 
MA(2) 
MA(3) 
MA(4) 
MA(5) 
AR(l) 
ARMA(l, 1) 
ARMA(l,2) 
ARMA(l,3) 
ARMA(l,4) 
ARMA(l,S) 

AR(2) 
ARMA(2,l) 
ARMA(2,2) 
ARMA(2,3) 
ARMA(2,4) 
ARMA(2,5) 
AR(3) 
ARtiA(3,l) 
ARMA(3.2) 
ARMA(3; 3) 
ARMA(3,4) 
ARMA(3,5) 

- 10036.188 -4397.693 
-9926.781 -4272.639 
-9848.319 -4241.686 
-9779.491 -4233.371 
-9750.417 -4214.821 
-9718.642 -4198.672 
-9554.352 -4164.093sc 
-9553.891 -4164.081 
-9553.590 -4160.671 
-9552.148 -4159.413 
-9543.855 -4158.836 
- 9540.485 -4158.179 
-9553.939 -4164.086 
- 9529.904sc -4159.OllA’C 
- 9529.642 -4158.428 
-9526.865 -4157.731 
-9525.683 -4157.569 
-9525.560 -4155.071 
-9553.787 
-9529.410 
- 9526.089 
- 9524.644A’c 
- 9524.497 
-9523.375 

-4159.227 
-4158.608 
-4158.230 
-4157.730 
-4156.823 
-4154.906 

-11110.120 
- 10973.417 
- 10834.937 
- 10765.259 
- 10740.999 
- 10634.429 
- 10275.294 
- 10269.771 
- 10265.464 
- 10253.027 
- 10250.446 
- 10242.833 
- 10271.732 
- 10237.527sc 
- 10235.724 
- 10234.556 
- 10234.429 
- 10230.418 
- 10270.685 
- 10237.462 
-10228.701A’= 
- 10228.263 
- 10227.982 
- 10227.958 

- 10717.199 
- 10658.775 
- 10596.849 
- 10529.688 
- 10463.534 
- 10433.631 
- 10091.450 
- 10076.775 
- 10071.040 
- 10070.587 
- 10064.695 
- 10060.336 
- 10083.442 
- 10052.322sc 
- 10049.237 
- 10049.129 
- 10047.962 
- 10046.343 
- 10075.441 
- 10049.833 
- 10049.044 
- 10042.710 
- 10042.284 
- 10040.547A’C 

“The AIC and SC indicators denote the models selected by the information criteria of Akaike (1973) 
and Schwartz (1978), respectively. 



Table 3 
Maximum likelihood estimates? 

Coefficient 

Dow Dow 
1885-1914 1914-1928 

ARMA(2,l) AR(l) 

Standard 90 
1928-1952 

ARMA(2,l) 

S&P 500 
1953-1990 

ARMA(2,l) 

- 0.6682 
(0.1251) 

0.2013 
(0.0520) 

-0.4416 
(0.0270) 

0.5099 
(0.1554) 

3.6032 
(0.8019) 

2.2198 
(0.1338) 

0.0280 
(0.0112) 

- 0.0885 
(0.0270) 

0.2206 
(0.0571) 

0.0006 
(0.0209) 

-0.1058 
(0.0905) 

0.1122 
(0.0256) 

0.0245 
(0.0178) 

2.1663 
(0.3 119) 

- 0.6097 
(0.0758) 

-0.1509 
(0.0258) 

0.0361 
(0.0828) 

0.9942 
(0.0033) 

0.8759 
(0.0225) 

-0.9658 
(0.0148) 

- 0.6228 
(0.0703) 

0.3059 
(0.0904) 

-0.5557 
(0.0328) 

0.3106 
(0.1776) 

2.5316 
(0.5840) 

2.4314 
(0.2041) 

0.0642 
(0.0222) 

- 0.0920 
(0.0418) 

0.3710 
(0.0828) 

0.0316 
(0.0442) 

0.0232 
(0.1824) 

0.0448 
(0.0478) 

0.0356 
(0.0316) 

3.2408 
(1.5642) 

-0.5675 
(0.1232) 

-0.3925 
(0.1403) 

0.3735 
(0.3787) 

0.9093 
(0.0172) 

- 1.2704 
(2.5894) 

0.1011 
(0.0518) 

-0.6534 
(0.0211) 

0.6609 
(0.1702) 

4.0436 
(0.9362) 

1.7809 
(0.1143) 

0.0725 
(0.1139) 

-0.0914 
(0.0243) 

0.2990 
(0.0387) 

0.0285. 
(0.0102) 

- 0.0508 
(0.0687) 

0.1356 
(0.0327) 

0.0168 
(0.0236) 

1.6881 
(0.3755) 

-0.1959 
(0.0948) 

-0.1177 
(0.027 1) 

-0.0055 
(0.0844) 

0.9994 
(0.0009) 

0.8303 
(0.0282) 

-0.9511 
(0.0124) 

- 0.7899 
(0.2628) 

0.1286 
(0.0295) 

* 

0.1988 
(0.1160) 

3.5437 
(0.7557) 

2.1844 
(0.1215) 

0.0259 
(0.0113) 

0.0717 
(0.0260) 

0.2163 
(0.0532) 

0.0050 
(0.0213) 

0.1117 
(0.0908) 

0.0658 
(0.0157) 

0.0312 
(0.0080) 

2.2477 
(0.3312) 

-0.1970 
(0.1820) 

-0.1857 
(0.0287) 

0.2286 
(0.1241) 

0.9979 
(0.0011) 

0.8945 
(0.0258) 

- 0.9695 
(0.0010) 

“Standard errors are reported in parentheses. The parameters indicated by a I were not estimated. The 
ARcoefficientsaredecomposedas(1-A,L)(1-A,L)~(1-~,L-~,L2),where~A,~>,(A,~. 
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Table 4 
Wald hypothesis tests. 

Dow Dow Standard 90 S&P 500 
1885-1914 1914-1928 1928-1952 1953-1990 

Test ARMA(2,l) AR(l) ARMA(2,l) ARMAI’Z, 1) 

y* = f& = y0 = e0 = p - 1 = 0: x; 97.3825 63.4545 10.1816 51.8152 

(O.cQOO) (O.O@-w (0.0703) (O.OOw 

WI = wg: xi 3.3867 0.0006 9.8593 0.3235 
(0.0657) (0.9812) (0.0017) (0.5695) 

0, = y0 = 0: x; 67.4221 21.3146 4.4853 2.2024 

(O.OOOQ (0.0000) (0.1062) (0.3325) 

0, = Yo: x: 17.2288 7.4328 1.7718 1.7844 

(O.oooo) (0.0064) (0.1832) (0.1816) 

rl = P: x: 0.0247 0.2684 0.0554 0.0312 
(0.8751) (0.6044) (0.8139) (0.8598) 

yz = b-3+-‘: x; 14.0804 10.0329 14.1293 14.6436 
(0.0002) (0.0015) (0.0002) (0.0001) 

q=p,yz=b-“$-‘:x; 18.4200 10.4813 22.5829 16.9047 
(0.0001) (0.0053) (0.0000) (0.0002) 

Table 5 
Conditional moment specification tests. 

Orthogonality 
Condition 

Dow Dow Standard 90 S&P 500 
1885-1914 1914-1928 1928-1952 1953-1990 

ARMA(2,l) AR(l) ARMA(2,l) ARMA(2,l) 

(1) &Cz,l = 0 

(2) mz:1 = 1 

(3) J%CZr~I~Al = 0 

(4) &CS(Z,, ~,)I = 0 

(5) E,C(zf - l)(zf_, - 1)l = 0 

(6) &C(z: - ‘)(z:_~ - 1)1= 0 

(7) Mz: - ‘)(2:_3 - 111 = 0 

(8) E,C(z: - ‘)(z:_~ - III= 0 

(9) mz: - m:_ 5 - 111 = 0 

(10) wz: - ‘)(z:-6 - 111 = 0 

-0.0147 
(0.0208) 

0.0007 
(0.0382) 

-0.0823 
(0.0365) 

0.0007 
(0.0046) 

- 0.0050 
(0.0714) 

-0.0047 
(0.0471) 

0.0037 
(0.0385) 

0.0950 
(0.0562) 

0.0165 
(0.0548) 

- 0.0039 
(0.0309) 

- 0.0243 
(0.03 19) 

o.wO7 
(0.0613) 

-0.1122 
(0.0564) 

0.0013 
(0.0080) 

-0.0507 
(0.0695) 

0.0399 
(0.0606) 

-0.0365 
(0.0521) 

- 0.0658 
(0.0403) 

0.0195 
(0.0486) 

0.0343 
(0.0602) 

-0.0275 
(0.0223) 

0.0083 
(0.0503) 

-0.1072 
(0.0414) 

0.0036 
(0.0051) 

-0.0105 
(0.0698) 

-0.0358 
(0.0815) 

0.0373 
(0.0583) 

-0.0018 
(0.0543) 

0.0710 
(0.0565) 

0.0046 
(0.0439) 

-0.0110 
(0.0202) 

0.0183 
(0.0469) 

-0.0658 
(0.0410) 

0.0003 
(0.0035) 

0.1152 
(0.0930) 

- 0.0627 
(0.0458) 

-0.0171 
(0.0611) 

-0.0312 
(0.0426) 

0.0261 
(0.073 1) 

-0.0557 
(0.0392) 
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Table 5 (continued) 

Orthogonality 
Condition 

(11) E,[(zf-l)z,_,l=O 

(12) E,[(zf - l)z,_J = 0 

(13) E,[(zf - l)z,_J = 0 

(14) E,[(zf - l)z,_,] =o 

(15) E,[(z; - 1)z,_51 = 0 

(16) E,[(zf - l)z,_,] =0 

(17) E,[z;z,_ ,] = 0 

(18) E,[z;z,_J = 0 

(19) E,[Z,.Z,_J =o 

(20) E,[z;zr-‘J = 0 

(21) E,[z;z,_J = 0 

(22) E,[z,.z,_6] = 0 

(1)-(16):x:, 

(1)-(22): x:, 

Dow Dow Standard 90 S&P 500 
1885-1914 1914-1928 1928-1952 1953-1990 

ARMA(2,l) AR(l) ARMA(2.1) ARMA(2,l) 

-0.0338 
(0.0290) 

0.0069 
(0.025 1) 

0.0110 
(0.0262) 

- 0.0296 
(0.0275) 

- 0.0094 
(0.0240) 

0.028 1 
(0.0216) 

0.0265 
(0.0236) 

0.0133 
(0.0157) 

0.0406 
(0.0158) 

0.0580 
(0.0161) 

0.0516 
(0.0163) 

- 0.0027 
(0.0158) 

39.1111 
(0.0010) 

94.0156 

(O.OOw 

-0.0364 
(0.0414) 

-0.0275 
(0.0395) 

0.0290 
(0.0352) 

0.0530 
(0.0340) 

0.0567 
(0.0342) 

0.0038 
(0.0350) 

0.0127 
(0.0346) 

-0.0176 
(0.0283) 

0.0012 
(0.0262) 

0.0056 
(0.0253) 

0.0164 
(0.025 1) 

0.008 1 
(0.0261) 

45.1608 
(O.Ocm) 

52.1272 
(0.0003) 

-0.0253 
(0.0367) 

- 0.0434 
(0.03 15) 

0.0075 
(0.0306) 

-0.0103 
(0.0292) 

0.0153 
(0.0287) 

-0.0170 
(0.0253) 

0.0383 
(0.0243) 

- 0.0445 
(0.0174) 

0.0019 
(0.0175) 

0.02 11 
(0.0172) 

0.0250 
(0.0174) 

- 0.0040 
(0.0172) 

31.7033 
(0.011) 

67.1231 

(0.0000) 

- 0.0203 
(0.0413) 

-0.0378 
(0.0278) 

0.0292 
(0.0357) 

-0.0137 
(0.0238) 

0.0064 
(0.0238) 

0.0417 
(0.0326) 

0.0188 
(0.0226) 

- 0.0434 
(0.0158) 

0.0140 
(0.0152) 

0.0169 
(0.0153) 

0.0121 
(0.0158) 

-0.0211 
(0.0150) 

25.1116 
(0.0679) 

63.6383 

(O.OOw 
- 

Table 3 reports the maximum likelihood estimates (MLE) for the models selected by 
the Schwartz criterion. Various Wald and conditional moment specification tests 
are given in Tables 4 and 5. 

9.2.2. Persistence of shocks to tiolatility 

As in Nelson (1989,1991), the ARMA(2,l) models selected for three of the four data 
sets can be decomposed into the product of two AR(l) components, one of which 
has very long-lived shocks, with an AR root very close to one, the other of which 
exhibits short-lived shocks, with an AR root very far from one; i.e. (1 - /I1 L - /3J*) = 
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Estimated Densities Dow 1914~ 1928 

solid. nonparametric 
dashed. parametric z 
short dashes. standard normal 

Estimated Densltles S&P 500. 1953- 1990 

4 -3 -2 -1 0 1 2 3 4 
solid. nonparametric 
dashed: parometrlc z 
short dashes: standard normal 

Figure 3. Conditional Distribution of Returns 
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(1 - A,,!,)(1 -A,,!,), where IAll 2 lA,j. When the estimated AR roots are real, a 
useful gauge of the persistence of shocks in an AR(l) model is the estimated “half 
life”; that is the value of n for which A” = +. For the Dow 1885-1914, the Standard 
90 and the S&P 500 the estimated half lives of the long-lived components are about 
119 days, 4; years and 329 days respectively. The corresponding estimated half lives 
of the short-lived components are only 5.2, 3.7 and 6.2 days, respectively.28*29 

9.2.3. Conditional mean of returns 

The estimated pi terms strongly support the results of LeBaron (1992) of a negative 
relationship between the conditional variance and the conditional serial correlation 
in returns. In particular, p2 is significantly positive in each data set, both statistically 
and economically. For example, for the Standard 90 data, the fitted conditional first 
order correlation in returns is 0.17 when 0; is at the 10th percentile of its fitted 
sample values, but equals - 0.07 when CJ: is at the 90th percentile. The implied 
variation in returns serial correlation is similar in the other data sets. The relatively 
simple specification of ~(r, _ 1, CT:) remains inadequate, however, as can be seen from 

the conditional moment tests reported in Table 5. The 17th through 22nd conditions 
test for serial correlation in the fitted z,‘s at lags one through six. In each data set, 
significant serial correlation is found at the higher lags. 

9.2.4. Conditional distribution of returns 

Figure 3 plots the fitted generalized t density of the z,‘s against both a standard 
normal and a nonparametric density estimate constructed from the fitted z,‘s using 
a Gaussian kernel with the bandwidth selection method of Silverman (1986, pp. 45- 
48). The parametric and nonparametric densities appear quite close, with the 
exception of the Dow 1914-1928 data, which exhibits strong negative skewness in 
2,. Further aspects of the fitted conditional distribution are checked in the first three 
conditional moment specification tests reported in Table 5. These three orthogonality 
conditions test that the standardized residuals 1, E E*,8,-l have mean zero, unit 
variance, and no skewness.30 In the first three data sets the 1, series exhibit statistically 
significant, though not overwhelmingly so, negative skewness. 

“This is consistent with recent work by Ding et al. (1993), in which the empirical autocorrelations 
of absolute returns from several financial data sets are found to exhibit rapid decay at short lags but 
much slower decay at longer lags. This is also the motivation behind the permanent/transitory com- 
ponents ARCH model introduced by Engle and Lee (1992,1993), and the fractionally integrated ARCH 
models recently proposed by Baillie et al. (1993). 

29Volatility in the Dow 1914-1928 data shows much less persistence. The half life asociated with 
the AR(l) model selected by the Schwartz (1978) criterion is only about 7.3 days. For the ARMA(2,l) 
model selected by the AIC for this data set, the half lives associated with the two AR roots are only 
24 and 3.3 days, respectively. 

30More precisely, the third orthogonality condition tests that E,[z;lz,l] = 0 rather than E,[z:] = 0. 
We use this test because it requires only the existence of a fourth conditional moment for Z, rather 
than a sixth conditional moment. 
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Table 6 
Frequency of tail eventsa 

Dow Dow Standard 90 S&P 500 

1885-1914 1914-1928 1928-1952 1953-1990 

ARMA(2,l) AR(l) ARMA(2,l) ARMA(2,l) 

N Expected Actual Expected Actual Expected Actual Expected Actual 

2 421.16 405 180.92 177 369.89 363 458.85 432 
3 63.71 74 31.11 33 76.51 81 72.60 57 
4 11.54 12 6.99 10 18.76 23 13.83 14 
5 2.61 4 2.01 3 5.47 4 3.27 6 

6 0.72 2 0.70 1 1.86 1 0.94 5 

7 0.23 1 0.28 0 0.71 1 0.31 3 

8 9.56 x 10m6 0 0.13 0 0.30 1 0.12 2 

9 3.89 x lo-’ 0 0.06 0 0.14 0 0.05 2 

10 1.73 x lo-’ 0 0.03 0 0.07 0 0.02 2 

11 8.25 x lo-* 0 0.01 0 0.04 0 0.01 1 

“The table reports the expected and the actual number of observations exceeding N conditional 
standard deviations. 

The original motivation for adopting the generalized t-distribution was that the 

two shape parameters q and $ would allow the model to fit both the tails and the 
central part of the conditional distribution. Table 6 gives the expected and the actual 
number of z,‘s in each data set exceeding N standard deviations. In the S&P 500 
data, the number of outliers is still too large. In the other data sets, the tail fit seems 

adequate. 
As noted above, the generalized t-distribution nests both the Student’s t (r] = 2) 

and the GED ($ = co). Interestingly, in only two of the data sets does a t-test for the 
null hypothesis that r~ = 2 reject at standard levels, and then only marginally. Thus, 
the improved fit appears to come from the t component rather than the GED 
component of the generalized t-distribution. In total, the generalized r-distribution 
is a marked improvement over the GED, though perhaps not over the usual 
Student’s r-distribution. Nevertheless, the generalized t is not entirely adequate, 

as it does not account for the fairly small skewness in the fitted z,‘s, and also appears 
to have insufficiently thick tails for the S&P 500 data. 

9.2.5. News impact function 

In line with the results for the EGARCH model reported in Nelson (1989,1991), the 
“leverage effect” term 8, in the g(., .) function is significantly negative in each of the 
data sets, while the “magnitude effect” term y1 is always positive, and significantly so 
except in the Dow 1914-1928 data. There are important differences, however. The 
EGARCH parameter restrictions that p = 1, y0 = y2 = 8, = 8, = 0 are decisively 
rejected in three of the four data sets. The estimated g(zt, C-J:) functions are plotted 
in Figure 4, from which the differences with the piecewise linear EGARCH g(z,) 
formulation are apparent. 
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To better understand why the standard EGARCH model is rejected, consider 

more closely the differences between the specification of the g(z,,a:) function in 
equation (9.9) and the EGARCH formulation in equation (1.11). Firstly, the param- 
eters y0 and 8, allow the conditional variance of ln(cf) and the conditional correlation 
between ln(a:) and I, to change as functions of CJ:. Secondly, the parameters p, y2, 
and 0, give the model an added flexibility in how much weight to assign to large 
versus small values of z,. 

As reported in Table 4, the EGARCH assumption that y0 = 8, = 0 is decisively 
rejected in the Dow 1885-1914 and 1914-1928 data sets, but not for either the 
Standard 90 or the S&P 500 data sets. For none of the four data sets is the estimated 
value of y0 significantly different from 0 at conventional levels. The estimated value 
of 8, is always negative, however, and very significantly so in the first two data sets, 
indicating that the “leverage effect” is more important in periods of high volatility 
than in periods of low volatility. 

The intuition that the influence of large outliers should be limited by setting 0, > 0 
and y2 > 0 receives mixed support from the data. The estimated values of y2 and 
three of the estimated 0,‘s are positive, but only the estimate of yZ for the S&P 500 
data is significantly positive at standard levels. We also note that if the data is 
generated by a stochastic volatility model, as opposed to an ARCH model, with 
conditionally generalized t-distributed errors, the asymptotically optimal ARCH 
filter would set q = p and y2 = I,- lb-“. The results in Table 4 indicate that the q = p 
restriction is not rejected, but that y2 = II/-’ b-” is not supported by the data. The 
estimated values of y2 are “too low” relative to the asymptotically optimal filter for 
the stochastic volatility model. 

10. Conclusion 

This chapter has focused on a wide range of theoretical properties of ARCH models. 

It has also presented some new important empirical results, but has not attempted 
to survey the literature on applications, a recent survey of which can be found in 
Bollerslev et al. (1992).3’ Three of the most active lines of inquiry are prominently 
surveyed here, however. The first concerns the general parametrizations of univariate 
discrete time models of time-varying heteroskedasticity. From the original ARCH 
model, the literature has focused upon GARCH, EGARCH, IGARCH, ARCH-M, 
AGARCH, NGARCH, QARCH, QTARCH, STARCH, SWARCH and many other 
formulations with particular distinctive properties. Not only has this literature been 
surveyed here, but it has been expanded by the analysis of variations in the EGARCH 
model. Second, we have explored the relations between the discrete time models 
and the very popular continuous time diffusion processes that are widely used in 

a’ Other recent surveys of the ARCH methodology are given in Bera and Higgins (1993) and Nijman 
and Palm (1993). 
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finance. Very useful approximation theorems have been developed, which hold with 
increasing accuracy when the length of the sampling interval diminishes. The third 
area of important investigation concerns the analysis of multivariate ARCH processes. 
This problem is more complex than the specification of univariate models because 
of the interest in simultaneously modeling a large number of variables, or assets, 
without having to estimate an intractable large number of parameters. Several 
multivariate formulations have been proposed, but no clear winners have yet 
emerged, either from a theoretical or an empirical point of view. 

References 

Akaike, H. (1973) “Information Theory and an Extension of the Maximum Likelihood Principle”, in: 
B.N. Petrov and F. Csriki, eds., Second International Symposium on Information Theory. Akadtmiai 
Kiad6: Budapest. 

Amemiya, T. (1985) Advanced Econometrics. Harvard University Press: Cambridge, MA. 
Amin, K.I. and V.K. Ng (1993) “Equilibrium Option Valuation with Systematic Stochastic Volatility”, 

Journal ofFinance, 48, 881C910. 
Andersen, T.G. (1992a) Volatility, unpublished manuscript, J.L. Kellogg Graduate School of Man- 

agement, Northwestern University. 
Andersen, T.G. (1992b) Return Volatility and Trading Volume in Financial Markets: An Information 

Flow Interpretation of Stochastic Volatility, unpublished manuscript, J.L. Kellogg Graduate School 
of Management, Northwestern University. 

Anderson, T.W. (1971) The Statistical Analysis of Time Series. John Wiley and Sons: New York, NY. 
Andrews, D.W.K. and W. Ploberger (1992) Optimal Tests when a Nuisance Parameter Is Present only 

under the Alternative, unpublished manuscript, Department of Economics, Yale University. 
Andrews, D.W.K. and W. Ploberger (1993) Admissibility of the Likelihood Ratio Test when a Nuisance 

Parameter Is Present only under the Alternative, unpublished manuscript, Department of Economics, 
Yale University. 

Attanasio, 0. (1991) “Risk, Time-Varying Second Moments and Market Efficiency”, Review ofEconomic 
Studies, 58,479-494. 

Baek, E.G. and W.A. Brock (1992) “A Nonparametric Test for Independence of a Multivariate Time 
Series”, Statistica Sinica, 2, 137-156. 

Baillie, R.T. and T. Bollerslev (1989) “The Message in Daily Exchange Rates: A Conditional Variance 
Tale”, Journal of Business and Economic Statistics, 7, 297-305. 

Baillie, R.T. and T. Bollerslev (1990) “A Multivariate Generalized ARCH Approach to Modeling Risk 
Premia in Forward Foreign Exchange Rate Markets”, Journal of International Money and Finance, 
9,309%324. 

Baillie, R.T. and T. Bollerslev (1991) “Intra Day and Inter Day Volatility in Foreign Exchange Rates”, 
Review of Economic Studies, 58, 565-585. 

Baillie, R.T. and T. Bollerslev (1992) “Prediction in Dynamic Models with Time Demndent Conditional 
Variances”, Journal ofEconometrics, 52, 91-113. _ 

Baillie, R.T., T. Bollerslev and H.O. Mikkelsen (1993), Fractionally Integrated Autoregressive Condi- 
tional Heteroskedasticity, unpublished manuscript, J.L. Kellogg Graduate School of Management, 
Northwestern University. 

Bekaert, G. and R.J. Hodrick (1993) “On Biases in the Measurement of Foreign Exchange Risk 
Premiums”, Journal oflnternational Money and Finance. 12. 115-138. 

Bera, A.K. and M.L. Higgins (1993) “ARCH Models: Properties, Estimation and Testing”, Journal of 
Economic Surveys, 7,305-366. 

Bera, A.K. and S. Lee (1992) “Information Matrix Test, Parameter Heterogeneity and ARCH: A 
Synthesis”, Review of Economic Studies, 60, 229-240. 

Bera, A.K. and J-S. Roh (1991) A Moment Test of the Constancy of the Correlation Coefficient in the 
Bivariate GARCH Model, unpublished manuscript, Department of Economics, University of Illinois, 
Urbana-Champaign. 



3032 T. Bollerslev et al. 

Bera, A.K., M.L. Higgins and S. Lee (1993) “Interaction Between Autocorrelation and Conditional 
Heteroskedaslicity: A Random Coefficients Approach”, Journal of Business and Economic Statistics, 
10, 133-142. 

Berndt E.R., B.H. Hall, R.E. Hall, and J.A. Haussman (197’4) “Estimation and Inference in Nonlinear 
Structural Models”, Annals ofEconomic and Social Measurement, 4, 653-665. 

Black. F. (1976) “Studies of Stock Price Volatility Changes”, Proceedingsfrom the American Statistical 
Associaiion, business and Economic Statistics Section, 177-181. 

Black. F. and M. Scholes (1973) “The Pricing of Ontions and Corporate Liabilities”, Journal ofpolitical 
Ecdnomy, 81,637-659.‘ ’ 

I . 

Blattberg, R.C. and N.J. Gonedes (1974) “A Comparison of the Stable and Student Distribution of 
Statistical Models for Stock Prices”, Journal ofBusiness, 47,24+280. 

Bollerslev, T. (1986) “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Eco- 
nometrics, 31, 307-327. 

Bollerslev, T. (1987) “A Conditional Heteroskedastic Time Series Model for Speculative Prices and 
*Rates of Return”, Review of Economics and Statistics, 69, 542-547. 

Bollerslev, T. (1988) “On the Correlation Structure for the Generalized Autoregressive Conditional 
Heteroskedastic Process”, Journal of Time Series Analysis, 9, 121-131. 

Bollerslev, T. (1990) “Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate 
Generalized ARCH Approach”, Review of Economics and Statistics, 72,498-505. 

Bollerslev, T. and I. Domowitz (1993) “Trading Patterns and the Behavior of Prices in the Interbank 
Foreign Exchange Market,” Journal of Finance, 48, 1421-1443. 

Bollerslev, T. and R.F. Engle (1993) “Common Persistence in Conditional Variances”, Econometrica, 
61,166-187. 

Bollerslev, T. and M. Melvin (1994) “Bid-Ask Spreads in the Foreign Exchange Market: An Empirical 
Analysis”, Journal of International Economics, forthcoming. 

Bollerslev, T. and J.M. Wooldridge (1992) “Quasi Maximum Likelihood Estimation and Inference in 
Dynamic Models with Time Varying Covariances”, Econometric Reviews, 11, 143-172. 

Bollerslev, T., R.F. Engle and J.M. Wooldridge (1988) “A Capital Asset Pricing Mode1 with Time Varying 
Covariances”, Journal of Political Economy, 96, 116-131. 

Bollerslev, T., R.Y. Chou and K.F. Kroner (1992) “ARCH Modeling in Finance: A Review of the Theory 
and Empirical Evidence”, Journal of Econometrics, 52, S-59. 

Bougerol, P. and N. Picard (1992) “Stationarity of GARCH Processes and of Some Non-Negative 
Time Series”, Journal of Econometrics, 52, 115-128. 

Box, G.E.P., and G.M. Jenkins (1976) Time Series Analysis: Forecasting and Control. Holden Day: San 
Francisco, CA. Second Edition. 

Braun, P.A., D.B. Nelson and A.M. Sunier (1992) Good News, Bad News, Volatility, and Betas, 
unpublished manuscript, Graduate School of Business, University of Chicago. 

Breusch, T. and A.R. Pagan (1979) “A Simple Test for Heteroskedasticity and Random Coefficient 
Variation”, Econometrica, 47, 1287-1294. 

Brock, W.A. and A. Kleidon (1992) “Periodic Market Closure and Trading Volume: A Model of Intra 
Day Bids and Asks”, Journal of Economic Dynamics and Control, 16, 451-489. 

Brock, W.A., and S.M. Potter (1992), Nonlinear Time Series and Macroeconometrics, unpublished 
manuscript, Department of Economics, University of Wisconsin, Madison. 

Brock, W.A., W.D. Dechert and J.A. Scheinkman (1987) A Test for independence Based on the 
Correlation Dimension, unpublished manuscript, Department of Economics, University of Wisconsin, 
Madison. 

Brock, W.A., D.A. Hsieh and B. LeBaron (1991). Nonlinear Dynamics, Chaos and Instability: Statistical 
Theory and Economic Eoidence. MIT Press: Cambridge, MA. 

Cai, J. (1994) “A Markov Model of Unconditional Variance in ARCH”, Journal of Business and 
Economic Statistics, forthcoming. 

Campbell, J.Y. and L. Hentschel(l992) “No News is Good News: An Asymmetric Model of Changing 
Volatility in Stock Returns”, Journal of Financial Economics, 3 1, 28 l-3 18. 

Chou, R.Y. (1988) “Volatility Persistence and Stock Valuations: Some Empirical Evidence Using 
GARCH”, Journal of Applied Econometrics, 3, 279-294. 

Christie, A.A. (1982) ‘Thd-Stochastic Behavior of Common Stock Variances: Value, Leverage and 
Interest Rate Effects”, Journaf of Financial Economics, 10,407-432. 

Clark, P.K. (1973) “A Subordinated Stochastic Process Model with Finite Variance for Speculative 
Prices”, Econometrica, 41, 135-l 56. 



Ch. 49: ARCH Models 3033 

Cornell, B. (1978) “Using the Options Pricing Model to Measure the Uncertainty Producing Effect of 
Major Announcements”, Financial Management, 7, 54-59. 

Crowder, M.J. (1976) “Maximum Likelihood Estimation with Dependent Observations”, Journal of 
the Royal Statistical Society, 38, 45-53. 

Danielson, J. and J.-F. Richard (1993) “Accelerated Gaussian Importance Sampler with Application to 
Dynamic Latent Variable Models”, Journal of Applied Econometrics, 8, S153-S173. 

Davidian, M. and R.J. Carroll (1987) “Variance Function Estimation”, Journal ofthe American Statistical 
Association, 82, 1079-1091. 

Davies. R.B. (1977) “Hypothesis Testing when a Nuisance Parameter is Present only under the Null 
Hypothesis”, Biometkz, 64, 247-254: 

Dav. T.E. and CM. Lewis (1992) “Stock Market Volatility and the Information Content of Stock Index 
Options”, Journal of Ecdnomkrics, 52, 267-288. . 

Demos, A. and E. Sentana (1991) Testing for GARCH Effects: A One-Sided Approach, unpublished 
manuscript, London School of Economics. 

Diebold, F.X. (1987) “Testing for Serial Correlation in the Presence of ARCH”, Proceedings from the 
American Statistical Association, Business and Economic Statistics Section, 323-328. 

Diebold, F.X. (1988) Empirical Modeling ofExchange Rate Dynamics. Springer Verlag: New York, NY. 
Diebold, F.X. and M. Nerlove (1989) “The Dynamics of Exchange Rate Volatility: A Multivariate 

Latent Factor ARCH Model”, Journal of Applied Econometrics, 4, l-21. 
Ding, Z., R.F. Engle, and C.W.J. Granger (1993) “Long Memory Properties of Stock Market Returns 

and a New Model”, Journal of Empirical Finance, 1, 83-106. 
Drost, F.C. and T.E. Nijman (1993) “Temporal Aggregation of GARCH Processes”, Econometrica, 61, 

909-927. 
Engle, R.F. (1982) “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of 

U.K. Inflation”, Econometrica, 50,987TlOO8. 
Engle, R.F. (1984) “Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics”, in: 

Z. Griliches and M.D. Intriligator, eds., Handbook of Econometrics, Vol. II. North-Holland: 
Amsterdam. 

Engle, R.F. (1987) Multivariate GARCH with Factor Structures - Cointegration in Variance, 
unpublished manuscript, Department of Economics, UCSD. 

Engle, R.F. (1990) “Discussion: Stock Market Volatility and the Crash of 87”, Review of Financial 
Studies, 3, 103-106. 

Engle, R.F. and T. Bollerslev (1986) “Modelling the Persistence of Conditional Variances”, Econometric 
Reviews, 5, l-50, 81-87. 

Engle, R.F. and G. Gonzalez-Rivera (1991) “Semiparametric ARCH Models”, Journal of Business and 
Economic Statistics, 9, 345-359. 

Engle, R.F. and C.W.J. Granger (1987) “Cointegration and Error Correction: Representation, Estimation 
and Testing”, Econometrica, 55, 251-276. 

Engle, R.F. and S. Kozicki (1993) “Testing for Common Features”, Journal of Business and Economic 
Statistics, 11, 369-379. 

Engle, R.F. and K.F. Kroner (1993) Multivariate Simultaneous Generalized ARCH, unpublished 
manuscript, Department of Economics, UCSD. 

Engle, R.F. and G.G.J. Lee (1992) A Permanent and Transitory Component Model of Stock Return 
VolBtility, unpublished manuscript, Department of Economics, UCSD. 

Engle, R.F. and G.G.J. Lee (1993) Long Run Volatility Forecasting for Individual Stocks in a One 
Factor Model, unpublished manuscript, Department of Economics, UCSD. 

Engle, R.F. and C. Mustafa (1992) “Implied ARCH Models from Options Prices”, Journal of 
Econometrics, 52, 289-311. 

Engle, R.F. and V.K. Ng (1993) “Measuring and Testing the Impact of News on Volatility”, Journal 
of Finance, 48, 1749-1778. 

Engle R.F. and R. Susmel (1993) “Common Volatility in International Equity Markets”, Journal of 
Business and Economic Statistics, 11, 167-176. 

Engle, R.F., D.F. Hendry and D. Trumble (1985) “Small Sample Properties of ARCH Estimators and 
Tests”, Canadian Journal of Economics, 18, 66-93. 

Engle, R.F., D.M. Lilien and R.P. Robins (1987) “Estimating Time Varying Risk Premia in the Term 
Structure: The ARCH-M Model”, Econometrica, 55, 391-407. 

Engle, RF., T. Ito and W-L. Lin (1990a) “Meteor Showers or Heat Waves? Heteroskedastic Intra 
Daily Volatility in the Foreign Exchange Market”, Econometrica, 58, 525-542. 



3034 T. Bollersleu et al. 

Engle, R.F., V. Ng and M. Rothschild (1990b) “Asset Pricing with a Factor ARCH Covariance Structure: 
Empirical Estimates for Treasury Bills”, Journal of Econometrics, 45, 213-238. 

En&, R.F., C-H. Hong, A. Kane, and J. Noh (1993) “Arbitrage Valuation of Variance Forecasts with 
Simulated Options”, in: D.M. Chance and R.R. Trippi, eds., Advances in Futures and Options Research. 
JAI Press: Greenwich, Connecticut. 

Ethier, S.N. and T.G. Kurtz (1986) Markov processes: Characterization and Convergence. John Wiley: 
New York, NY. 

Fama, E.F. (1963) “Mandelbrot and the Stable Paretian Distribution”, Journal ofBusiness, 36,420&429. 
Fama. E.F. (1965) “The Behavior of Stock Market Prices”, Journal of Business, 38, 34b105. 
Foste;, D.P.‘and ‘D.B. Nelson (1992) Rolling Regressions, unpublished manuscript, Graduate School 

of Business, University of Chicago. 
French, K.R. and R. Roll (1986) “Stock Return Variances: The Arrival of Information and the Reaction 

of Traders”, Journal of Financial Economics, 17, 5-26. 
French, K.R., G.W. Schwert and R.F. Stambaugh (1987) “Expected Stock Returns and Volatility”, 

Journal of Financial Economics, 19, 3-30. 
Gallant, A.R. and G. Tauchen (1989) “Semi Non-Parametric Estimation of Conditionally Constrained 

Heterogeneous Processes: Asset Pricing Applications”, Econometrica, 57, 1091L1120. 
Gallant, A.R., D.A. Hsieh and G. Tauchen (1991) “On Fitting a Recalcitrant Series: The Pound/Dollar 

Exchange Rate 1974&83”, in: W.A. Barnett, J. Powell and G. Tauchen, eds., Nonparametric and 
Semiparametric Methods in Econometrics and Statistics. Cambridge University Press: Cambridge. 

Gallant, A.R., P.E. Rossi and G. Tauchen (1992) “Stock Prices and Volume”, Review of Financial 
Studies, 5, 199-242. 

Gallant, A.R., P.E. Rossi and G. Tauchen (1993) “Nonlinear Dynamic Structures”, Econometrica, 61, 
871-907. 

Gennotte, G. and T.A. Marsh (1991) Variations in Economic Uncertainty and Risk Premiums on 
Capital Assets, unpublished manuscript, Department of Finance, University ofcalifornia, Berkeley. 

Gerity, M.S. and J.H. Mulherin (1992) “Trading Halts and Market Activity: An Analysis of Volume 
at the Open and the Close”, Journal of Finance, 47, 1765-1784. 

Geweke, J. (1989a) “Exact Predictive Densities in Linear Models with ARCH Disturbances”, Journal 
of Econometrics, 44, 307-325. 

Geweke, J. (1989b) “Bayesian Inference in Econometric Models Using Monte Carlo Integration”, 
Econometrica, 57, 1317-1339. 

Glosten, L.R., R. Jagannathan and D. Runkle (1993) “On the Relation between the Expected Value and 
the Volatility of the Nominal Excess Return on Stocks”, Journal of Finance, 48, 1779-1801. 

Gourieroux, C. and A. Monfort (1992) “Qualitative Threshold ARCH Models”, Journal of Econometrics, 
52,159-199. 

Gourieroux, C., A. Holly and A. Monfort (1982) “Likelihood Ratio Test, Wald Test and Kuhn-Tucker 
Test in Linear Models with Inequality Constraints on Regression Parameters”, Econometrica, 50, 
63-80. 

Granger, C.W.J., R.F. Engle, and R.P. Robins (1986) “Wholesale and Retail Prices: Bivariate Time-Series 
Modelling with Forecastable Error Variances”, in: D. Belsley and E. Kuh, eds., Model Reliability. 
MIT Press: Massachusetts. pp 1-17. 

Hamao, Y., R.W. Masulis and V.K. Ng (1990) “Correlations in Price Changes and Volatility Across 
International Stock Markets”, Review of Financial Studies, 3, 281-307. 

Hamilton, J.D. and R. Susmel (1992), Autoregressive Conditional Heteroskedasticity and Changes in 
Regime, unpublished manuscript, Department of Economics, UCSD. 

Harris, L. (1986) “A Transaction Data Study of Weekly and Intradaily Patterns in Stock Returns”, 
Journal of Financial Economics, 16, 99-117. 

Harvey, CR. and R.D. Huang (1991) “Volatility in the Foreign Currency Futures Market”, Review of 
Financial Studies, 4, 543-569. 

Harvey, CR. and R.D. Huang (1992) Information Trading and Fixed Income Volatility, unpublished 
manuscript, Department of Finance, Duke University. 

Harvey, A.C., E. Ruiz and E. Sentana (1992) “Unobserved Component Time Series Models with 
ARCH Disturbances”, Journal of Econometrics, 52, 129-158. 

Harvey, A.C., E. Ruiz and N. Shephard (1994) “Multivariate Stochastic Volatility Models”, Review of 
Economic Studies, forthcoming. 

Heston, S.L. (1991) A Closed Form Solution for Options with Stochastic Volatility, unpublished 
manuscript, Department of Finance, Yale University. 



Ch. 49: ARCH Models 3035 

Higgins, M.L. and A.K. Bera (1992) “A Class of Nonlinear ARCH Models”, International Economic 
Review, 33, 137-158. 

Hong, P.Y. (1991) “The Autocorrelation Structure for the GARCH-M Process”, Economics Letters, 
37, 129-132. 

Hsieh, D.A. (1991) “Chaos and Nonlinear Dynamics: Applications to Financial Markets”, Journal of 
Finance, 46, 1839-1878. 

Huber, P.J. (1977). Robust Statistical Procedures. SIAM: Bristol, United Kingdom. 
Hull, J. and A. White (1987) “The Pricing of Options on Assets with Stochastic Volatilities”. Journal 

qf Finance, 42,281-300. 
Jacquier, E., N.G. Polson and P.E. Rossi (1994) “Bayesian Analysis of Stochastic Volatility Models”, 

Journal of Business and Economic Statistics, forthcoming. 
Karatzas, I. and S.E. Shreve (1988) Brownian Motion and Stochastic Calculus. Springer-Verlag: New 

York, NY. 
Karpoff, J.M. (1987) “The Relation Between Price Changes and Trading Volume: A Survey”, Journal 

of Financial and Quantitatioe Analysis, 22, 109-126. 
Kim, C.M. (1989) Nonlinear Dependence of Exchange Rate Changes, unpublished Ph.D. dissertation, 

Graduate School of Business, University of Chicago. 
Kine. M.. E. Sentana and S. Wadhwani (1994) “Volatility and Links Between National Stock Markets”, 

E&oketrica, forthcoming. ’ 
Kitagawa, G. (1987) “Non-Gaussian State Space Modelling of Nonstationary Time Series”, Journal 

of the American Statistical Association, 82, 1032-1063. 
Kodde, D.A. and F.C. Palm (1986) “Wald Criterion for Jointly Testing Equality and Inequality Restric- 

tions”, Econometrica, 54, 1243-1248. 
Kraft, D.F. and R.F. Engle (1982) Autoregressive Conditional Heteroskedasticity in Multiple Time 

Series, unpublished manuscript, Department of Economics, UCSD. 
Krengel, U.11985). Ergodic Theme&Walter de Gruyter: Berlin, Germany. 
Kroner. K.F. and S. Claessens (1991) “ODtimal Dvnamic Hedging Portfolios and the Currency Com- 

position of External Debt”, Jburnal ofjnternatidnal Money &d-Finance, 10, 131-148. _ 
Kroner, K.F. and J. Sultan (1991) “Exchange Rate Volatility and Time Varying Hedge Ratios”, in: 

S.G. Rhee and R.P. Chang, eds., Pacific-Basin Capital Markets Research, Vol. II. North-Holland: 
Amsterdam. 

Lamoureux, C.G. and W.D. Lastrapes (1990) “Heteroskedasticity in Stock Return Data: Volume versus 
GARCH Effects”, Journal ofFinance, 45,221-229. 

Lamoureux, C.G. and W.D. Lastrapes (1994) “Endogenous Trading Volume and Momentum in Stock 
Return Volatility”, Journal ofBusiness and Economic Statistics, forthcoming. 

LeBaron, B. (1992) “Some Relations Between Volatility and Serial Correlation in Stock Market Returns”, 
Journal of Business, 65, 199-220. 

Lee, J.H.H. and M.L. King (1993) “A Locally Most Mean Powerful Based Score Test for ARCH and 
GARCH Regression Disturbances”, Journal of Business and Economic Statistics, 7, 259-279. 

Lee, S.W. and B.E. Hansen (1993) Asymptotic Theory for the GARCH(l, 1) Quasi-Maximum Likelihood 
Estimator, unpublished manuscript, Department of Economics, University of Rochester. 

Lin, W.L. (1992) “Alternative Estimators for Factor GARCH Models ~ A Monte Carlo Comparison”, 
Journal if Applied Econometrics, 7,259-279. 

Lin. W.L.. R.F. Enele and T. Ito (1994) “Do Bulls and Bears Move Across Borders? International 
Transmission of ?&ock Returns &d Volatility as the World Turns”, Review of Financial Studies, 
forthcoming. 

Ljung, G.M. and G.E.P. Box (1978) “On a Measure of Lag of Fit in Time Series Models”, Biometrika, 
61,297-303. 

Lumsdaine, R.L. (1992a) Asymptotic Properties of the Quasi:Maximum Likelihood Estimator in 
GARCH(1, 1) and IGARCH(l.1) Models, unpublished manuscript, Department of Economics, 
Princeton University. 

Lumsdaine, R.L. (1992b) Finite Sample Properties of the Maximum Likelihood Estimator in 
GARCH(1, 1) and IGARCH(l, 1) Models: A Monte Carlo Investigation, unpublished manuscript, 
Department of Economics, Princeton University. 

MacKinnon, J.G. and H. White (1985) “Some Heteroskedasticity Consistent Covariance Matrix 
Estimators with Improved Finite Sample Properties”, Journal of Econometrics, 29, 305-325. 

Mandelbrot, B. (1963) “The Variation of Certain Speculative Prices”, Journal of Business, 36, 
394-419. 



3036 T. Bollerslev et al. 

Marcus, M. and H. Mint (1964) A Survey of Matrix Theory and Matrix Inequalities. Prindle, Weber 
and Schmidt: Boston, MA. 

McCurdy, T.H. and T. Stengos (1992) “A Comparison of Risk Premium Forecasts Implied by 
Parametric and Nonparametric Conditional Mean Estimators”, Journal of Econometrics, 52, 
225-244. 

McDonald, J.B. and W.K. Newey (1988) “Partially Adaptive Estimation of Regression Models via the 
Generalized I Distribution”, Econometric Theory, 4, 4288457. 

M&no, A. and S. Turnbull (1990) “Pricing Foreign Currency Options with Stochastic Volatility”, 
Journal of Econometrics, 45, 2399266. 

Merton, R.C. (1973) “An Intertemporal Capital Asset Pricing Model”, Econometrica, 42, 8677887. 
Merton, R.C. (1980) “On Estimating the Expected Return on the Market”, Journal of Financial 

Economics, 41, 867-887. 
Milhoj, A. (1985) “The Moment Structure of ARCH Processes”, Scandinavian Journal of Statistics, 

12,281-292. 
Murphy, K. and R. Topel(1985) “Estimation and Inference in Two-Step Econometric Models”, Journal 

of Business and Economic Statistics, 3, 370-379. 
Nelson, D.B. (1989) “Modeling Stock Market Volatility Changes”, Proceedings from the American 

Statistical Association, Business and Economic Statistics Section, 93398. 
Nelson, D.B. (1990a) “ARCH Models as Diffusion Approximations”, Journal of Econometrics, 45,7-38. 
Nelson, D.B. (1990b) “Stationarity and Persistence in the GARCH(1, 1) Model”, Econometric Theory, 

6, 3188334. 
Nelson, D.B. (1991) “Conditional Heteroskedasticity in Asset Returns: A New Approach”, Econometrica, 

59, 3477370. 
Nelson, D.B. (1992) “Filtering and Forecasting with Misspecified ARCH Models I: Getting the Right 

Variance with the Wrong Model”, Journal of Econometrics, 52, 61-90. 
Nelson, D.B. and C.Q. Cao (1992) “Inequality Constraints in the Univariate GARCH Model”, Journal 

of Business and Economic Statistics, 10, 2299235. 
Nelson, D.B. and D.P. Foster (1991) Filtering and Forecasting with Misspecified ARCH Models II: 

Making the Right Forecast with the Wrong Model, unpublished manuscript, Graduate School of 
Business, University of Chicago. 

Nelson, D.B. and D.P. Foster (1994) “Asymptotic Filtering Theory for Univariate ARCH Models”, 
Econometrica, 62, 1-41. 

Newey, W.K. (1985) “Maximum Likelihood Specification Testing and Conditional Moment Tests”, 
Econometrica, 53, 104771070. 

Ng, V., R.F. Engle and M. Rothschild (1992) “A Multi-Dynamic Factor Model for Stock Returns”, 
Journal of Econometrics, 52,245-265. 

Nijman, T.E. and F.C. Palm (1993) “GARCH Modelling of Volatility: An Introduction to Theory and 
Applications”, in: A.J. de Zeeuw, ed., Advanced Lectures in Quantitative Economics. Academic Press: 
London. 

Nijman, T.E. and E. Sentana (1993) Marginalization and Contemporaneous Aggregation in Multivariate 
GARCH Processes, unpublished manuscript, Center for Economic Research, Tilburg University. 

Nummelin, E. and P. Tuominen (1982) “Geometric Ergodicity of Harris Recurrent Markov Chains 
with Applications to Renewal Theory,” Stochastic Processes and Their Applications, 12, 187-202. 

Pagan, A.R. (1984) “Econometric Issues in the Analysis of Regressions with Generated Regressors”, 
international Economic Review, 25, 221-247. 

Pagan, A.R. (1986) “Two Stage and Related Estimators and their Applications”, Review of Economic 
Studies, 53, 517-538. 

Pagan, A.R. and Y.S. Hong (1991) “Nonparametric Estimation and the Risk Premium”, in: W.A. 
Barnett, J. Powell and G. Tauchen, eds., Nonparametric and Semiparametric Methods in Econometrics 
and Statistics. Cambridge University Press: Cambridge. 

Pagan, A.R. and H.C.L. Sabau (1987a), On the Inconsistency of the MLE in Certain Heteroskedastic 
Regression Models, unpublished manuscript, University of Rochester. 

Pagan, A.R. and H.C.L. Sabau (1987b) Consistency Tests for Heteroskedasticity and Risk Models, 
unpublished manuscript, Department of Economics, University of Rochester. 

Pagan, A.R. and G.W. Schwert (1990) “Alternative Models for Conditional Stock Volatility”, Journal 
of Econometrics, 45, 2677290. 

Pagan, AR. and A. Ullah (1988) “The Econometric Analysis of Models with Risk Terms”, Journal of 
Applied Econometrics, 3, 877 105. 



Ch. 49: ARCH Models 3037 

Pagan, A.R., A.D. Hall and P.K. Trivedi (1983) “Assessing the Variability of Inflation”, Review (d 
Economic Studies, 50, 585-596. 

Pardoux, E. and D. Talay (1985) “Discretization and Simulation of Stochastic Differential Equations”, 
Acta Applicandae Mathematics, 3, 23-47. 

Parkinson, M. (1980) “The Extreme Value Method for Estimating the Variance of the Rate of Return”, 
Journal of Business, 53, 61-65. 

Patell, J.M. and M.A. Wolfson (1979) “Anticipated Information Releases Retlected in Call Option 
Prices”, Journal of Accounting and Economics, 1, 117-140. 

Patell, J.M. and M.A. Wolfson (1981) “The Ex-Ante and Ex-Post Price Effects of Quarterly Earnings 
Announcement Reflected in Option and Stock Price”, Journal ofAccounting Research, 19, 434-458. 

Poterba, J. and L. Summers (1986) “The Persistence of Volatility and Stock Market Fluctuations”, 
American Economic Review, 76,1142Z 115 1. 

Rich, R.W., J.E. Raymond, and J.S. Butler (1992) “The Relationship between Forecast Dispersion 
and Forecast Uncertainty: Evidence from a Survey Data-ARCH Model”, Journal of Applied 
Econometrics, 7, 131-148. 

Royden, H.L. (1968) Real Analysis. Macmillan Publishing Co.: New York, NY. 
Scheinkman, J., and B. LeBaron (1989) “Nonlinear Dynamics and Stock Returns”, Journal of Business, 

62, 31 I-337. 
Schwarz, G. (1978) “Estimating the Dimension of a Model”, Annals of Statistics, 6, 461-464. 
Schwert, G.W. (1989a) “Why Does Stock Market Volatility Change Over Time”, Journal of Finance, 

44,1115-1153. 
Schwert, G.W. (1989b) “Business Cycles, Financial Crises, and Stock Volatility”, Carnegie-Rochester 

Conference Series on Public Policy, 39, 83-126. 
Schwert, G.W. (1990) “Indexes of U.S. Stock Prices from 1802 to 1987”, Journal ofBusiness, 63,399-426. 
Schwert, G.W. and P.J. Seguin (1990) “Heteroskedasticity in Stock Returns”, Journal of Finance, 45, 

1129-l 155. 
Scott, L.O. (1987) “Option Pricing when the Variance Changes Randomly: Theory, Estimation and 

an Application”, Journal of Financial and Quantitatice Analysis, 22, 419-438. 
Sentana, E. (1991) Quadratic ARCH Models: A Potential Re-Interpretation of ARCH Models, 

unpublished manuscript, London School of Economics. 
Shephard, N. (1993) “Fitting Nonlinear Time Series Models with Applications to Stochastic Variance 

Models”, Journal of Applied Economics, 8, S135-S152. 
Silverman, B.W. (1986) Density Estimationfor Statistics and Data Analysis. Chapman and Hall: London, 

United Kingdom. 
Stambaugh, R.F. (1993) Estimating Conditional Expectations When Volatility Fluctuates, unpublished 

manuscript, The Wharton School, University of Pennsylvania. 
Stroock, D.W. and S.R.S. Varadhan (1979) Multidimensional D$jksion Processes. Springer-Verlag: 

Berlin, Germany. 
Tauchen, G. (1985) “Diagnostic Testing and Evaluation of Maximum Likelihood Models”, Journal of 

Econometrics, 30, 415-443. 
Tauchen, G. and M. Pitts (1983) “The Price VariabilityyVolume Relationship on Speculative Markets”, 

Econometrica, 51, 485-505. 
Taylor, S. (1986) Modeling Financial Time Series. Wiley and Sons: New York, NY. 
Tsay, R.S. (1987) “Conditional Heteroskedastic Time Series Models”, Journal of the American Statistical 

Association, 82, 590-604. 
Tweedie, R.L. (1983a) “Criteria for Rates of Convergence of Markov Chains, with Application to 

Queuing and Storage Theory”, in: J.F.C. Kingman and G.E.H. Reuter, eds., Probability, Statistics, and 
Analysis, London Mathematical Society Lecture Note Series No. 79. Cambridge University Press: 
Cambridge. 

Tweedie, R.L. (1983b) “The Existence of Moments for Stationary Markov Chains”, Journal of 
Applied Probability, 20, 191-196. 

Watson, M.W. and R.F. Englc (1985) “Testing for Regression Coeflicient Stability with a Stationary 
AR(l) Alternative”, Review of Economics and Statistics, 67, 341-346. 

Weiss, A.A. (1984) “AR MA Models with ARCH Errors”, Journal of Time SeriesJinalysis, 5, 129- 143. 
Weiss, A.A. (1986) “Asymptotic Theory for ARCH Models: Estimation and Testing”, Econometric 

Theory, 2, 107-131. 

West, K.D., H.J. Edison and D. Cho (1993) “A Utility Based Comparison of Some Models for Exchange 
Rate Volatility”, Journal of International Economics, 35, 23-45. 



3038 T. Bollersleu et al. 

White, H. (1980) “A Heteroskedastic-Consistent Covariance Matrix and a Direct Test for Hetero- 
skedasticity”, Econometrica, 48,421~448. 

White, H, (1987) “Specification Testing in Dynamic Models”, in: T.F. Bewley, ed., Advances in hono- 
metrics: Fifth World Congress, Vol. 1. Cambridge University Press: Cambridge. 

White, H. (1994) Estimation. inference and Specification Analysis, forthcoming. 
Wiggins, J.B. (1987) “Option Values under Stochastic Volatility: Theory and Empirical Estimates”, 

Journal of Financial Economics, 19, 351-372. 
Wiggins, J.B. (1991) “Empirical Tests of the Bias and Efficiency of the Extreme-Value Variance Estimator 

for Common Stocks”, Journal of Business, 64, 417-432. 
Wolak, F.A. (1991) “The Local Nature of Hypothesis Tests Involving Inequality Constraints in 

Nonlinear Models”, Econometrica, 59, 981-995. 
Wooldridge, J.M. (1990) “A Unified Approach to Robust Regression Based Specification Tests”, 

Econometric Theory, 6, 17743. 
Wooldridge, J.M. (1994) “Estimation and Inference for Dependent Processes”, in: R.F. Engle and D. 

McFadden, eds., Handbook ofEconometrics, Vol. IV. North-Holland: Amsterdam, Chapter 45. 
Zakoian, J.-M. (1990) Threshold Heteroskedastic Models, unpublished manuscript, CREST, INSEE. 
Zarnowitz, V. and L.A. Lambros (1987) “Consensus and Uncertainty in Economic Prediction”, Journal 

of Political Economy, 95, 591-621. 


