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ABSTRACT 

 

This paper investigates the convergence between the prices of ADRs and the prices of the 

Mexican traded shares using a sample of 21 dually listed shares. Since both markets have 

similar trading hours, standard arbitrage considerations should make persistent deviation 

from price parity rare. We use a STAR model, where the dynamics of convergence to 

price parity are influenced by the size of the deviation from price parity. Based on 

different tests, we select the ESTAR model. Deviations from price parity tend to die out 

quickly; for 14 out of 21 pairs it takes less than two days for the deviations from price 

parity to be reduced by half. The average half-life of a shock to price parity is 3.1 

business days, while the median half-life is 1.1 business days. By allowing a non-linear 

adjustment process, the average half-life is reduced by more than 50% when compared to 

the standard linear arbitrage model. We find that several liquidity indicators are 

positively correlated to the speed of convergence to price parity.  
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 I. Introduction 
 

 In this paper, we study the possible arbitrage opportunities that the American 

Depository Receipts (ADRs) market provides. Although trading ADRs in the U.S. is U.S. 

dollar denominated, it should be equivalent to trading the foreign firms’ shares without 

actually trading them in their respective local markets. In the absence of direct or indirect 

trading barriers, there should not be significant differences between the return distribution 

of locally traded shares and that of the U.S. traded ADRs.
1
 That is, ADRs and their 

underlying shares are expected to be perfect substitutes and no arbitrage opportunities 

should prevail. If prices between the ADRs and their underlying shares differ 

substantially, arbitrage opportunities will arise. 

 There is a substantial body of literature that studies the potential arbitrage 

opportunities that the ADRs create. The early studies by Maldonado and Saunders 

(1983), Kato, Linn and Schallheim (1991), Park and Tavakkol (1994), Miller and Morey 

(1996) and Karolyi and Stulz (1996) concluded that ADRs do not present any arbitrage 

opportunities. The only early study that did find some arbitrage opportunities is by 

Wahab, Lashgari and Cohn (1992). Substantial deviations from arbitrage pricing are 

consistent with other studies in the literature of dually-listed shares, such as Rosenthal 

and Young (1990), and Froot and Dabora (2003). As discussed by Gagnon and Karolyi 

(2003), there are impediments due to market frictions and imperfect information that can 

seriously limit arbitrage. Gagnon and Karolyi (2003), however, quantify sizable price 

deviations from price parity and find these deviations to exceed reasonable measures of 

                                                           
1
 Many papers deal with the issue of international barriers to trading, investments, and cash flows 

movements. See Stulz (1981), Eun and Janakiramanan (1986), Stulz and Wasserfallen (1995) and 

Domowitz, Glen and Madhavan (1997). 
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the costs of exploiting them. De Jong, Rosenthal and van Dijk (2004) and Hong and 

Susmel (2003) show that simple arbitrage strategies based on the deviation from 

theoretical prices parity can deliver significant profits. These significant deviations from 

arbitrage pricing have been attributed to market inefficiencies, see Mullainathan and 

Thaler (2000) and Barberis and Thaler (2003).  

 The convergence to price parity has also been recently studied. Gagnon and 

Karolyi (2003) discuss the mechanics of arbitrage in the ADR market. Arbitrage, which 

involves the issuance and cancellation of ADRs, can take place on the same day, but it 

usually occurs on an overnight basis. Gagnon and Karolyi (2003) report the average 

deviation from price parity can persist for up to five days.  Some studies, however, find 

convergence to price parity to be surprisingly slow. For example, De Jong, Rosenthal and 

van Dijk (2004) find substantial variation in the number of days for which an arbitrageur 

has to maintain a position before convergence. In some cases, arbitrageurs have to wait 

for almost 9 years.  

In this paper, we focus on the price convergence between the ADRs and their 

underlying shares. We study Mexican ADRs because the trading hours in Mexico and 

New York are almost identical, thus, convergence to price parity should not be affected 

by possible lead-lag informational impact, as analyzed by Kim, Szakmary and Mathur 

(2000). The majority of the studies in this area have, implicitly, focused on linear 

convergence to arbitrage parity.
2
 Given the complexity of rules, direct and indirect 

transaction costs, however, non-linear adjustments to price parity deviation are more 

likely to occur. We use two popular non-linear models for our adjustment specification: 

                                                           
2
 See for instance Kim et al. (2000) for VAR and SUR approaches to analyze the speed of adjustment of 

ADR prices; and Gagnon and Karolyi (2003) for a standard AR model.  
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the exponential smooth transition autoregressive (ESTAR) and the logarithmic smooth 

transition autoregressive (LSTAR). From our estimation results, first, we reject the linear 

adjustment model; and, second, based on different tests, we select the ESTAR model. 

Using the ESTAR model, we are able to estimate the half-life of different shocks. We 

find that price spreads tend to die out quickly, for 14 out of 21 firms it takes less than 2 

day for the ADR-underlying price spread to be reduced by half. These results are 

consistent with the dynamics of arbitrage in the ADR market. Gagnon and Karolyi (2003) 

mention that although the process of issuance and cancellation of ADRs can take place on 

the same day; the process usually occurs on an overnight basis. We find that for four 

firms, however, the half-life estimates seem very high (seven days or more). Three of 

these four firms correspond to companies that display very low volume, and thus, 

arbitrage might be difficult to execute. The average half-life is 3.1 business days and the 

median half-life is 1.08 days. By allowing non-linear adjustments, the average half-life 

and the median half-life are reduced by more than 50%, when compared to the standard 

linear model.  

 This paper is organized as follows. Section II presents a brief literature review. 

Section III motivates the STAR model and briefly discusses estimation and testing issues.    

Section IV presents the data. Section V estimates the non-linear model and analyzes the 

conversion path to arbitrage parity. Section VI concludes the paper. 

 

II. Literature Review 

 There is a growing body of literature that studies the potential arbitrage 

opportunities that cross-listed shares create. If prices between the local shares and their 
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cross-listed shares differ substantially, arbitrage opportunities will arise. As pointed out 

in the introduction, the early studies conclude that arbitrage opportunities are non-existent 

for cross-listed shares and thus cross-listed shares are priced according to arbitrage parity. 

The only early study that did find some arbitrage opportunities is by Wahab, Lashgari 

and Cohn (1992). Some recent works, however, have found a significant deviation from 

arbitrage price parity.  Froot and Dabora (1999), studying the pricing of two dual-listed 

companies, Royal Dutch and Shell, and Unilever N.V. and Unilever PLC, find a large 

and significant price deviation from arbitrage parity.  Gagnon and Karolyi (2003) 

quantify sizable price deviations from arbitrage-free pricing between ADRs and their 

underlying assets. Gagnon and Karolyi (2003) document the existence of large price 

deviations for many of the 581 ADR-underlying pairs they study. They estimate 

discounts of up to 87% and premia of up to 66%. Gagnon and Karolyi (2003), after 

taking into account direct and indirect transaction costs still find the price deviations to be 

exceeding reasonable measures of transaction costs. Still, they mention that the 

complexity of rules in the ADR-underlying arbitrage precludes definite conclusions about 

potential market inefficiencies. 

 Large price deviations from arbitrage-price parity do not necessarily imply 

arbitrage profits are possible. Transaction costs, capital control restrictions, conversion 

rules, and lack of liquidity might make arbitrage very difficult. De Jong et al.(2003) and 

Hong and Susmel (2003) attempt to construct realistic arbitrage strategies to see whether 

arbitrage is possible. De Jong et al. (2003) extend the sample to 13 dual-listed companies 

and show that for every individual dual-listed company, deviations from arbitrage price 

parity are large. They design investment strategies for exploiting these deviations from 



 5 

price parity. They find that some arbitrage strategies in all dual-listed companies produce 

excess returns of up to 10% per annum on a risk-adjusted basis, after transaction costs 

and margin requirements. Hong and Susmel (2003) study simple arbitrage profits for 

ADR-underlying pairs. They find that pairs-trading strategies deliver significant profits. 

The results are robust to different profit measures and different holding periods. For 

example, for a conservative investor willing to wait for a one-year period, before closing 

the portfolio pairs-trading positions, pairs-trading delivers annualized profits over 33%.  

Suarez (2005a), using intradaily data for French ADR-underlying pairs, shows that large 

deviations from the law of one price are present in the data and that an arbitrage rule can 

be designed to exploit the large deviation from price parity. 

 A related line of research deals with the price discovery process. Eun and 

Sabberwal (2003) apply a standard linear error correction model to study price discovery 

shares for 62 Canadian shares cross-listed in the NYSE. They find a significant price 

deviation from arbitrage parity. They find that the price adjustments of U.S. prices to 

deviation from Canadian prices are significantly larger in absolute value. They also find 

that trading volume in the U.S. is the most important variable in the determination of 

relative information contribution of the two markets. Using intradaily data and a similar 

methodology, but for only three German firms, Gramming, Melvin, and Schlag (2001) 

find that the majority of the price discovery is done at home (Germany), but following a 

shock to the exchange rate, almost all of the adjustment comes through the New York 

price. A similar model, but using non-linear adjustment dynamics, is estimated by 

Rabinovitch et al. (2003). Using a non-linear threshold model for 20 Chilean and 

Argentine cross-listed stocks, Rabinovitch et al. (2003) estimate transactions costs and 
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show that transaction costs play an important role in the convergence of prices of ADRs 

and their underlying securities. They find that capital control measures and liquidity 

significantly affect the price adjustment process, through increasing transactions costs. 

Melvin (2003) and Auguste et al. (2004) also find that capital movement restrictions can 

seriously affect the arbitrage price parity, especially during economic and currency crisis. 

 

III. Non-linear convergence and Arbitrage Models 

 Let Pt(A) represent the price of ADRs and Pt(L) the price of underlying (locally) 

traded shares a time t. The relationship between both prices, under the arbitrage-free 

condition, with absence of transaction costs is specified as: 

Pt(A) = B St Pt(L),         (1) 

where St denotes the nominal exchange rate at time t, and B the bundling price ratio. 

Equation (1), price parity, is usually expressed in log form. The deviations from log price 

parity, qt is given by  

 b sppq t

A

t

L

tt ++−≡ ,       (2) 

where small letters represents the log form of the above defined variables. Let κ measure 

the transaction costs, as a percentage, faced by arbitrageurs. Provided that κ is small, 

arbitrage will occur when:  

| qt | > κ        (3) 

The dynamic behavior of qt, the deviation from price parity between the ADRs and their 

underlying shares, has been mostly analyzed in a linear framework.
3
 For example, Eun 

                                                           
3
 Exceptions are in Rabinovitch et al. (2003), Chung, Ho and Wei (2005) and Suarez (2005b), where 

threshold autoregressive models are used. 
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and Sabherwal (2003) use a standard error correction model. This linear framework is 

counterintuitive since, once arbitrage is triggered, arbitrage opportunities may disappear 

very slowly and always at the same speed. One way to address this issue is to consider 

that, under certain conditions, price differences should converge faster to price parity. 

This can happen when the convergence dynamics are governed by a nonlinear process. 

We start by assuming that small deviations from arbitrage-free prices between ADRs and 

their underlying shares may be considered negligible to generate arbitrage activities, 

notably when transactions and other related trading costs are not covered by the deviation 

from price parity. In this case, the deviation from price parity would behave as a near unit 

root process and would not converge to parity in a linear framework. On the other hand, 

when deviations from price parity are large, arbitrage activities, then, will create a 

reversion to the long-run equilibrium price parity. As the ADR-underlying pair moves 

further away from arbitrage parity, or long run equilibrium, arbitrage activities will likely 

increase.
4
 Therefore, the dynamics of convergence to price parity should be influenced by 

the size of the deviation from price parity.  

 

III.1 Modeling Nonlinear Adjustments 

A model that captures this nonlinear adjustment process is the smooth transition 

autoregressive (STAR) model studied by Granger and Teräsvirta (1993) and Teräsvirta 

(1994).
5
 The STAR model also displays regimes, but the transitions between regimes 

                                                           
4
 See Dumas (1992), Uppal (1993), Sercu et al. (1995), Coleman (1995), Obstfeld and Taylor (1997). These 

articles find that market frictions create an inactive transaction band, where small deviations from 

purchasing power parity prevent the real exchange rate to mean revert. Arbitrage opportunities exist only 

for large deviations outside the inactive band. Traders have a tendency to postpone entering the market 

until enormous arbitrage opportunities open up. 

 
5
 Another popular nonlinear specification is the threshold autoregressive (TAR) model in which regime 
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occur gradually. In the STAR literature, the Exponential STAR (ESTAR) and the 

Logistic STAR (LSTAR) are the most popular models used for symmetric and 

asymmetric adjustments, respectively. The adjustment structure of both models depends 

on the magnitude of the departure of the underlying process from its equilibrium. A 

STAR model of order p for the univariate time series qt can be formulated as: 

 ) , ;('

2

'

1 µλtttt zxxq ΦΨ+Ψ=  + εt,   λ> 0    (4)      

or 

 )-(qL q t
j

p

1j
j1t µ∑Ψ+µ=

=
+












µ∑Ψ

=
) -(qL t

j
p

1j
j2 [  ) , ;z( t µλΦ ]+ εt,    λ > 0  (4') 

where the error term, εt, follows an identical and independent distribution, with zero 

mean and constant variance σ
2
. The independent variable tx is defined as tx   = (1, tx~ )’ 

with tx~  = (qt-1, qt-2,…,qt-p)’  and   Ψi = (Ψi0, Ψi1,…, Ψip), i =1,2,  denotes the 

autoregressive parameters vector of dimension p of an AR(p); L  is the lag operator; 

 ) , ;z( t µλΦ is the smooth transition function, which determines the degree of 

convergence. The ESTAR model uses the exponential function as the transition function
6
: 

 ) , ;z( t µλΦ  = { }2

z

2

t t
σ̂/µ)(zexp1 −−− λ ,     λ> 0  (5) 

where, zt, the transition variable is assumed to be a lagged endogenous variable zt = qt-d 

for which d is the delay lag, a nonzero integer (d > 0), that determines the lagged time 

                                                                                                                                                                             

changes occur abruptly, see Tong (1990). A problem with this approach is that the model has two very 

distinct regimes: outside the threshold (where arbitrage happens) and inside the threshold (where there is no 

arbitrage). The change from one regime to the other is abrupt and it presumes the same speed of adjustment 

outside the threshold. The LSTAR model contains as a special case the single-threshold TAR model, 

discussed in this section. 
6
 The sample variance of the transition variable is used to scale the argument of the exponential as 

suggested by Granger and Teräsvirta (1993, p.124).  The scaling enables a stability improvement of the 

nonlinear least squares estimation algorithm, a fast convergence, and an interpretation and comparison of λ 

estimates across equations in a scale-free environment. 
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between a shock and the response by the process, the parameter λ determines the speed of 

transition between regimes, and µ can be interpreted as the arbitrage parity, equilibrium 

level. Note that, for a given price parity deviation, lower (higher) values of λ determine 

slower (faster) values for Φ(.) and, thus, slower regime transitions.  

 The transition function is symmetrical around the equilibrium level (mean). 

Substituting (5) into (6), the ESTAR model can be written as: 

 )-(qL q t
j

p

1j
j1t µ∑Ψ+µ=

=
+












µ∑Ψ

=
) -(qL t

j
p

1j
j2 [ { }2

z

2

t t
σ̂/µ)(zexp1 −−− λ ]+ εt  (6) 

or   xxq t
'
2t

'
1t Ψ+Ψ= [ { }2

z

2

t t
σ̂/µ)(zexp1 −−− λ ] + εt   (6’) 

 

The transition function is bounded between zero and one. The inner regime is 

characterized by qt-d = µ, when Φ(.) = 0. The ESTAR model (6) then degenerates to a 

standard linear AR (p):  

 )-(qL q t

j
p

1j

jt µΨ+µ= ∑
=

+ εt.      (7) 

The outer regime is characterized by an extreme deviation from the price parity, when 

Φ(.) = 1, in which case model (6) converts to a different AR(p) representation: 

 )-(qL ) ( q t

j
p

1j

j2j1t µΨ+Ψ+µ= ∑
=

+  εt.      (8) 

The model displays global stability provided   ) (  
p

1j

j2j1∑
=

Ψ+Ψ < 1, although it is possible 

that   1   
p

1j

j∑
=

≥Ψ  implying then qt may follow a unit root process or even explodes around 

the arbitrage free parity level.  



 10 

The LSTAR model uses the logistic function, instead of an exponential function, 

to model the transition function Φ(.). Thus, after substituting in (4’), the LSTAR model 

can be written as: 

 xxq t
'
2t

'
1t Ψ+Ψ= { })]σ̂µ)/(zexp[1/(1

tzt −−+ λ  + εt,    λ> 0.   

 

 

III.2 Estimation, Testing and Model Selection
7
  

 Following Teräsvirta (1994), the starting point in modeling a STAR specification 

consists of an adequate choice of the autoregressive parameter, p, and of the delay 

parameter, d. Second, a sequence of tests of the null hypothesis of linearity (AR model) is 

performed, along with other diagnostic tests. Third, if the null hypothesis of linearity is 

rejected, the model is specified as ESTAR or LSTAR. The choice of ESTAR or LSTAR 

model is based on a comparison of p-values for a sequence of LM tests.
8
 

The choice of the autoregressive parameter, p, is based on the Akaike information 

criterion (AIC). However, the AIC tends to under-parameterize an AR model. Thus, we 

also look at the partial autocorrelation function (PACF) using a 95% confidence interval 

band. In order to specify the delay parameter, d, a sequence of linearity tests is carried out 

for different ranges of d with 1 ≤ d ≤ D considered appropriate. If the null hypothesis of 

linearity is rejected at a pre-specified level for more than one value of d, then d is 

determined at d = d* such that:  d* = Arg{Min p(d)}  for 1 ≤ d ≤ D,  where p(d) denotes 

the (p-value) of the selected test. The correct choice of d is important for the test to have 

a maximum power. For this paper, we set the maximum value of d equal to 5 business 

days as it seems unreasonable to argue that it would take more than 5 days for the price 

                                                           
7
 See the Appendix for details. 

8
 See Van Dijk et al. (2002) for a survey of the different modeling procedures for STAR models. 
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spread to start adjusting if there is an arbitrage activity. Once p and d are selected, 

estimation of a STAR model can be straightforward using non-linear least squares. 

We test for the presence of nonlinearity in the price spread between the local 

assets and their corresponding ADRs using the Lagrange Multiplier (LM) tests proposed 

by Luukkonen et al.(1988); Granger and Teräsvirta (1993) and  Teräsvirta (1994) 

(hereafter, the TP procedure); and Escribano and Jordá (1999) (hereafter, the EJP 

procedure). For each test, we conduct a heteroskedasticity-consistent specification since 

neglecting heteroskedasticity can seriously affect the power of LM tests, see Wooldridge 

(1990, 1991).
9
 

 Once a nonlinear specification is found adequate, the next task is to choose 

between the ESTAR and the LSTAR models. Teräsvirta (1994) suggests the following 

model selection procedure. Let LM
EST

 denote the F-test of the ESTAR null hypothesis, 

and let LM
LST

 denote the F-test of the LSTAR null hypothesis. The relative strength of 

the rejection of each hypothesis is then compared. If the minimum p-value corresponds to 

LM
LST

, the LSTAR model is selected, but if it corresponds to LM
EST

, the selected model 

is the ESTAR. 

 

IV. The Data 

The data analyzed in this paper are the daily prices on twenty one locally traded 

firms from Mexico, obtained from Datastream. To be part of our sample, the ADR has to 

                                                           

9
 Van Dijk et al. (1999) develop outliers-robuts tests, since they show that in the presence of additive 

outliers, LM tests for STAR nonlinearity tend to incorrectly reject the null hypothesis of linearity. We used 

such tests along with the heteroskedasticity tests, but there were no major changes for our sample. 
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be Level III or Level II. The sample periods are different for the different firms, 

depending on the dates for which ADRs started trading on these firms on the U.S. market.  

 Table 1 presents the twenty one firms and the sample period for each of them. 

Table 2 exhibits several statistics for each firm: Market Capitalization (MC), average 

daily volume since inception (Volume), the number of freely traded shares in the hands 

of the public (Float), and the short-ratio, which is calculated as the short interest for the 

current month divided by the average daily volume. In the last four columns of Table 2, 

we also present summary statistics for the deviations from price parity (in %): 

 Qt = (B St Pt(L)/ Pt(A) - 1)*100. 

Analyzing the statistics for Qt, we observe evidence for autocorrelation. We also tend to 

observe a negative relation between liquidity and departure from theoretical price parity: 

the less liquid a stock is, the bigger the departures from price parity, as shown by the 

mean and maximum and minimum statistics.   

 

V. Results 

The lag selection is based on both the AIC and the partial autocorrelation 

functions (PACF). Figure 1 displays the PACF for selected firms with a 95% confidence 

interval band. It indicates that for most series, only the first or second autocorrelation 

coefficients are significant at the 5% level. Therefore, the maximum AR used is 2, which 

seems to purge the residuals series from serial correlation. As a check, we also estimate 

models with p>3, with d ={1,2,…,10}, to test for a higher AR order in qt; but the results 

are very similar to the ones presented below.  
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 Table 3 reports p-values for the standard and heteroskedasticity-consistent test 

statistics NLM3 and NLM4 for testing the linearity hypothesis. Table 3 also reports test 

statistics NLM2 (an LM
EST

 test), LM
LST

 and LM
EST

 for choosing between ESTAR and 

LSTAR (see Appendix for details). Panel A shows all the test results for one firm, 

TMX.
10

 Panel B shows a summary of the test results for all the other firms. The second 

column of Table 3 displays the different values for the delay parameter, d = {1,2,…,5}.
11

 

Using the results on the first panel of Table 3 for TMX, we select d=2, as the results 

indicate the smallest p-values (corresponding to NLM3 and NLM4) for both tests; that is, 

for d=2 we obtain the strongest rejection of the AR linear hypothesis. Also, for d=2, the 

ESTAR model is selected over the LSTAR model since the p-value of the LM
EST

 test is 

smaller than the p-value of the LM
LST

 test, for both versions of the test. Note that the p-

value of the NLM2 test confirms this selection. We follow this process for the other 

firms. Based on the standard LM test statistics NLM3 and NLM4, reported in Panel B, of 

Table 3 for all the firms, the null hypothesis of linearity can be rejected for any values of 

d and corresponding transition variables, at the 1% level. For the majority of the firms, 

we select d=1, that is, yesterday’s deviation from price parity. When we use the 

heteroskedasticity-consistent robust tests, the null hypothesis of linearity is still rejected 

for the majority of the firms. Using the NLM3 test, and the lag selected by the standard 

                                                           
10
 The results for the other firms can be reported similarly, but are not included to save space. They are 

available under request. 
11

 The tests are performed with values of the delay parameter, d ={1,2,…,10}, yet we report the tests 

statistics for d={1,2,…,5} since d={6,…,10} do not alter the choice of d and are less relevant for the 

convergence of a daily price spread series. We also used as the transition variable, zt, the first lag of the 

average absolute volatility, vt,k as suggested by LeBaron (1992) as: |q| 
k

1
  v i-t

1-k

0i

kt, ∑
=

= , where  k is the 

number of days, with a maximum of 5 business days.  The tests selected vt,k as adequate transition variables 

for six stocks. Overall, our results are unchanged. 
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homoscedastic test, we find eighteen firms with a p-value lower than 10%. For example, 

for FMX the results of the heteroskedasticity-robust test indicate that the transition 

variables zt =qt-1, qt-2, and vt-1,4 are adequate transition variables, since the corresponding 

p-values are smaller than .10. The NLM3 test, for qt-1, rejects linearity, showing a p-value 

of .072.  The results from the NLM4 test statistic, computed using the Escribano and 

Jordá test, confirm the NLM3 selection. Finally, the p-values of the LM statistics 

(standard or heteroskedasticity-consistent) NLM2 suggest an ESTAR model is the more 

appropriate model. Comparing relative strength of the tests LM
EST

 and LM
LST

, the 

minimum p-values correspond to LM
EST

, indicating a choice in favor of the ESTAR 

model. In most cases, the LM
EST

 is significant at the 5% level for d=1. Thus, based on the 

decision rules of Teräsvirta (1994), the ESTAR model with a delay, d=1 should be an 

adequate model specification for FMX return spread. We carry on an identical evaluation 

for the other firms. With few exceptions we find the ESTAR to be the most adequate 

model. 

 

V.I Nonlinear Estimation Results 

Following Gallant and White (1988), the resulting ESTAR(p) models, with 

p={1,2}, are estimated by nonlinear least squares. We test the following restrictions 

consistent with the application of ESTAR specifications to arbitrage models, Ψ11 + Ψ12 = 

1, Ψj = -Ψj (j=1,2),  and µ = 0. Under the first restriction, the model behaves like a 

random walk, and thus there is no convergence to equilibrium, when the transition 

function is equal to 0 (no arbitrage regime). Under the second set of restrictions, Ψj = -Ψj 

(j=1,2), there is full convergence to price parity when the transition function is equal to 1 
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(full arbitrage regime). The last restriction, µ = 0, implies that the equilibrium price parity 

deviation is zero. The restrictions are tested using likelihood ratio tests. If all the 

restrictions cannot be rejected, and if imposed, the final model is governed by λ, the 

speed of transition between regimes. When the last restriction cannot be rejected, we 

impose it and we re-estimate the model. The model estimates, the likelihood ratio, and 

residuals diagnostic statistics are presented in Table 4. In column ten, we report the p-

value associated with the likelihood ratio statistic, LR(k). The LR(k) statistics show that 

at least one of the restrictions cannot be rejected at the standard 5% level for all series. 

The number of restrictions that cannot be rejected varies from one firm to another. For 

example for the firm AMX, the p-value of LR(4) is 0.561, thus, we failed to reject four 

restrictions.
12

 The failure to reject the first two restrictions for AMX indicate that when 

the transition function is equal to zero (no arbitrage regime) there is no tendency to 

converge to price parity; on the other hand, when the transition function is equal to one 

(full arbitrage regime) there is full convergence to price parity. Overall, this type of 

dynamic adjustment for deviations from price parity is the usual for all the firms. That is, 

we find that for small deviation from price parity there is no tendency for reversion 

towards price parity; while for large deviations from price parity there is a full reversion 

to price parity. The restriction µ = 0 cannot be rejected for the majority of the firms, that 

is, the long-run deviation from price parity is zero. In the fourth column of Table 4, we 

report the estimated λs, the transition parameters. With only one exception, TMM, the 

estimates of λ are all significantly different than zero.
13

 The size of λ changes from 2.971 

                                                           
12

 Ψ11+Ψ12, = 1, Ψ21 = -Ψ11, and Ψ22 = -Ψ12, and µ =0. 

13
 Taylor et al. (2001) point out that the significance of λ estimate based on individual t-ratios should be 

checked for robustness. Technical problems emerge under the null hypothesis that λ 
 
= 0. 
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to 0.315. It is worth noticing that firms with a higher estimate of λ tend to have higher 

average daily volume and market capitalization. Whereas firms for which the price 

spread series exhibits a lower speed of adjustment coefficients, such as ICM (λ=0.317), 

GMK (λ=0.361), and TMM (λ=0.315), tend to have lower average daily volume and 

market capitalization. Overall, the estimated values reported in Table 4 support a 

nonlinear dynamic convergence of the price spread series towards price parity.  

We also conduct specification tests for our ESTAR model. The residuals 

diagnostic statistics for the estimated equations are reported in the last two columns of 

Table 4. Following Eitrheim and Teräsvirta (1996), we calculate LMNA and NLMax.  

LMNA AR(1-6) is a  LM-test statistics for testing the null hypothesis of no serial 

correlation in the residuals of order 1, up to 6. NLMax represents the maximum LM-test 

statistic of no additive nonlinearity with the delay length in the range from 3 to 6. The 

associated p-values indicate that we cannot reject those null hypotheses for all firms at 

the 5% level or better. Therefore, an ESTAR specification seems adequate for the price 

spread series. 

 

 V.II Estimated Transition Functions 

The transition function measures the magnitude of deviations of the price spread 

from its arbitrage-free level. The estimates of the transition functions are shown on 

Figure 2 for selected stocks; they are plotted against the transition variable, qt-d, (Panel A) 

and against time (Panel B). These figures visually support the nonlinear nature of the 

price spread series and the appropriateness of the ESTAR model, since, in general, 

observations seem to symmetrically lie above and below the parity. Again, we notice a 
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relation between slow convergence and liquidity.
14

 For example, in Panel A, for a firm 

with a good daily volume like KOF, a previous day’s deviation from parity of the order 

plus or minus 2%, the transition function attains smaller values (0.5), implying a 

relatively slow mean reversion, whereas for a larger previous day’s deviation around 4%, 

the transition function reaches the value of 1, the regime of full arbitrage, signaling a 

faster reversion. On the other hand, for a firm with a low daily volume TMM, a 30% 

spread makes the transition function equal to .5. In general, most of the transition 

functions in Panel A indicate that deviations lower than 5% trigger a full arbitrage 

regime. Panel B shows that for some firms, there are few days of full arbitrage --i.e., 

when the transition function is equal to 1--, while for others, there are many days of full 

arbitrage. Again, there seems to be a positive relation between low volume and number of 

days under the full arbitrage regime. 

 

V.III Half-lives and Convergence to Parity 

While both estimated ESTAR models and transition functions shed lights on the 

nonlinear nature of the reversion of the price spread to parity, more insights into the 

adjustment mechanism of the models can be gained by estimating the average time it 

takes for a given shock to die out, also called the speed of convergence to parity. As a 

measure of the speed of convergence, we calculate the half-life of a shock, defined as the 

number of periods it takes for shocks to the price spread to dissipate by half. Following 

                                                           
14

 We included lagged changes in volume in the transition function, but the model did not perform better 

than our model. 
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Taylor and Peel (2000) and Taylor et al. (2001), we estimated the half-lives for shocks 

using the generalized impulse response function (GIRF).
15

   

 The half-life is defined in a non-linear framework as the number of periods taken 

by the impulse response function to fall below 0.5 δ, or GIRF < 0.5 δ,  with δ = 

)1ln(
100

k+ , where k represents the percentage of shocks. Alternatively, to mitigate 

differences in GIRF due to the different variability of the underlying series, shocks can be 

set as δ =c εσ̂  where εσ̂  denotes the residual standard deviations and c is a scalar. We use 

this formulation to calculate half-lives. We estimate the half-lives for all price spread 

series for three sizes of shocks: 1 εσ̂  3 εσ̂  and 5 εσ̂ . For comparison purposes, we also 

compute half-lives for a linear adjustment.  

 In the second to fourth columns of Table 5, we report the estimated half-lives for 

all firms, using the ESTAR model, for three different sizes of shocks. In the last column, 

we also report the half-life estimates for the standard AR linear adjustment model. All 

half-life estimates are expressed in business days. From the non-linear estimation, we 

observe faster adjustments for the majority of firms. The half-life estimates are similar 

across shock sizes. A larger shock to the price spread triggers a faster reversion to parity. 

For the non-linear model, using one residual standard deviation as the shock, the average 

half-life is 3.1 business days, a reduction of more than half when compared to an average 

half-life for the linear model of 7.26 business days. That is, we observe for all firms a 

significant reduction in the half-life estimates when nonlinearities are incorporated into 

                                                           
15

 Following Koop et al. (1996), the generalized impulse response function is defined as the difference 

between two conditional first moments: 

GIRFx(j, st, ωt-1)  =  E[Xt+j |st, ωt-1] -  E[Xt+j | ωt-1],  j=1,2,…,N,    

 where E[.] denotes the expectation operator, j is the forecasting horizon, st is the perturbation of the system 

at time t,  ht ≡ ωt-1  represents the conditioning information set at time t-1 consisting of the history or initial 

conditions of the variable. GIRFx(j, st, ωt-1) is computed using a dynamic stochastic simulation. See also 
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the arbitrage model. These averages, however, are influenced by a few large 

observations. The non-linear half-life median is 1.08 business days, also a reduction of 

more than half when compared to the median half-life for the linear model of 2.29 

business days. These nonlinear results are in line with the findings of Gagnon and 

Karolyi (2003), where the average deviation from price parity can persist for up to five 

days. Note that for 14 out of 21 firms, using the nonlinear model, it takes less than two 

day for the ADR-underlying price spread to be reduced by half. The size of the shock to 

price parity also matters, for 17 firms the half-life is reduced to less than 2.3 days if the 

shock size is five times the residual standard deviation. Again, these results seem 

consistent with the discussion in Gagnon and Karolyi (2003), where it is mentioned that 

although the process of issuance and cancellation of ADRs can take place on the same 

day, it usually occurs on an overnight basis.  

 Some of the high half-life estimates correspond to companies that display very 

low volume (CDG, ICM, TMM).
16

 This finding is similar to the results reported in 

Rabinovitch et al. (2003), where low volume is associated with higher transaction costs, 

and in Roll, Schwartz, and Subrahmanyam (2004), where liquidity and lack of arbitrage 

opportunities are positively related. 

 

V.IV Nonparametric Tests of Association between Liquidity and Convergence  

 To formally explore whether popular indicators of a firm’s liquidity such as daily 

volume, market capitalization, and float are correlated with a firm’s convergence to price 

                                                                                                                                                                             

Peel and Venetis (2003a, 2003b) for a similar application to measure the half-lives of real exchange rates.  
16

 ICA, the other firm with a high half-life estimate, is seriously affected by a significant change in the 

premium after December 3, 2003. The average premium changed from 27% to 3%. Besides a significant 

investment by Mexican investor Carlos Slim, we could not find any information as to why ICA shows such 
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parity, a nonparametric Spearman rank correlation test is conducted. The null hypothesis 

is that a firm’ liquidity characteristics are not related to the speed of transition between 

regimes or the speed of convergence to parity against the alternative of them being 

associated.  

Table 6.A shows the raking of firms’ liquidity indicators, while Table 6.B shows 

the Spearman rank correlations. For the non-linear adjustment model, the results indicate 

that the null hypothesis of no association can be rejected at the 5% level for all liquidity 

characteristics. The average daily volume, market capitalization, and float are all 

positively and significantly correlated to the half-life and the speed of transition between 

regimes calculated using our non-linear estimators. Our non-linear estimates provide a 

better measure of liquidity than the standard linear estimates. The estimated correlations 

using the non-linear half-life estimates are substantially higher than the estimated 

correlations using the linear half-life estimates. For example, the correlations between 

market capitalization, average daily volume and float and the non-linear half-life 

estimates are .83, .58, and .66, respectively, while the correlation between the same 

liquidity indicators and the linear half-life estimates are .70, .40, and .51, respectively. 

 

VI. Conclusions 

 
 In this paper we study the convergence between the prices of ADRs and the prices 

of the Mexican traded shares. We have a sample of 21 dually listed shares (listed in 

Mexico and in the U.S.), that are listed as level II or level III ADRs. Since both markets 

have similar trading hours, standard arbitrage considerations should make persistent 

deviation from price parity rare. We estimate two different non-linear adjustment models, 

                                                                                                                                                                             

a significant change in premium.  ICA’s half-life estimates before and after December 3, 2003 are inline 
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the LSTAR and ESTAR models, along with a standard linear model to estimate the 

convergence of the ADRs and the locally traded shares. From our estimation results, first, 

we reject the linear adjustment model; and, second, based on different tests, we select the 

ESTAR model. Overall, we find that for small deviation from price parity there is no 

tendency for convergence towards price parity; while for large deviations from price 

parity there is a full reversion to price parity. Using the ESTAR model, we are able to 

estimate the half-life of different shocks to price spreads. We find that price spreads tend 

to die out quickly in a nonlinear framework.  The sample average half-life is 3.1 business 

days, while the median half-life is 1.08 business days. By allowing non-linear 

adjustments, the average half-life is reduced by more than 57%, when compared to the 

standard linear model. For 14 out of 21 firms it takes less than 2 days for the ADR-

underlying price spread to be reduced by half. Four firms, however, have high half-life 

estimates (seven days or more), and, in general, correspond to companies that display 

very low volume, and thus, arbitrage might be difficult to execute. The results of a 

Spearman correlation tests confirm this finding, as most firm’s liquidity market indicators 

are positively correlated to the speed of convergence to parity. The size of the shock to 

price parity also matters, for 17 out of 21 firms the half-life is reduced to less than 2.3 

days when the shock size is five times the residual standard deviation. 

                                                                                                                                                                             

with the rest of the firms. 
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APPENDIX 

A.I Testing and Estimation of STAR Models 

We start by rewriting equation (4’): 

 )-(qL q t
j

p

1j
j1t µ∑Ψ+µ=
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µ∑Ψ

=
) -(qL t

j
p

1j
j2 [  ) , ;z( t µλΦ ]+ εt,    λ > 0  (4’) 

Using equation (4’), we can test the null hypothesis of linearity, by testing H0: Ψ2 = 0 

against the alternative hypothesis H1: Ψ2,j ≠ 0 for at least one j ∈{0,…,p}. However, 

under the null, the transition function’s parameters λ and µ are unidentified. Following 

Saikkonen and Luukkonen (1988a) and Teräsvirta (1994), a third order Taylor series 

expansion of the transition function Φ(qt; λ, µ) around zero is used to overcome non-

identification issues. The re-parameterization of equation (4’) yields the following 

artificial regression: 

tq = β00 + jt

p

1j
j0 q −

=
∑β  + dtjt

p

1j
j1 qq −−

=
∑β  + 2

dtjt

p

1j
j2 qq −−

=
∑β  +  3

dtjt

p

1j
j3 qq −−

=
∑β  + νt (A.1) 

where βj = (β0j, β1j, β2j,…, βpj) with j=1,2,3 are function of the AR coefficients vector  

(Ψi0, Ψi1,…, Ψip), i =1,2 and the transition function parameters λ and µ. Thus, assuming d 

is known, the null hypothesis of the linearity test can be written as H0: [β1j= β2j = β3j = 0], 

with j={1,2,…,p}. For large samples, the derived test statistic, NLM3, follows a 

2χ distribution with (p+1) degrees of freedom. We also use the non-linearity tests 

developed by Escribano and Jordá (1999) that account for the fourth power of the 

transition variable. This test tries to overcome the finding that when the variance of the 

error terms is large, the LSTAR (a nonlinear model) will be wrongly detected by the test 

more frequently. The underlying auxiliary regression is:  
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qt = β00+ jt
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The null hypothesis of linearity is then:  H0: β1j= β2j = β3j = β4j = 0, with j=1,…,p. The 

resulting test statistic, denoted NLM4, follows a chi-squared distribution with 4(p+1) 

degrees of freedom for large samples. The rejection of the null hypothesis will indicate 

the presence of nonlinearity. 

 

A.II Model Selection: Testing ESTAR vs. LSTAR  

 Once a nonlinear specification is found adequate, the next task is to choose 

between the ESTAR and the LSTAR models. Teräsvirta (1994) suggests the use of the 

artificial regression (A.1) to perform a LM test of the ESTAR specification against the 

alternative of the LSTAR specification. In fact, the significance of cubic terms in 

equation (A.1) will not indicate the ESTAR adjustment in that the third order Taylor 

expansion of the transition function of an ESTAR model has a quadratic form (U-shape). 

The cubic terms will rather signal a LSTAR type of adjustment (asymmetry). In  other 

words, the rejection of the null hypothesis H0L: β3j = 0  with j=1,…,p leads to the 

selection of the LSTAR model, whereas the rejection of the null hypothesis H0E:  β2j = 0 | 

β3j  = 0  with j=1,…,p leads to the selection of the ESTAR model. The test NLM2 tests 

H0E. Escribano and Jordá (1999) also develop a LM-type test to discriminate between 

LSTAR and ESTAR using the artificial Equation (A.2) and conditional on prior rejection 

of linearity. The selection procedure is as follow: Let LM
EST

 denote the F-test of the null 

hypothesis H0E: [β2j  = β4j = 0] with j=1,…,p for ESTAR, and LM
LST

 the null hypothesis 
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H0L: [β1j  = β3j = 0] with j=1,…,p for LSTAR. The relative strength of the rejection of 

each hypothesis is then compared. If the minimum p-value corresponds to LM
LST

, 

LSTAR is selected, if it rather corresponds to LM
EST

, the select model is ESTAR. 



TABLE 1:  DATA DESCRIPTION 

 

 

ADR ISSUE 

 

 

SYMBOL 

 

 

EXCHANGE 

 

 

RATIO 

 

 

INDUSTRY 

 

 

TYPE 

 

 

EFF.DATE 

 

AMERICA MOVIL SA 

DE CV- SERIES 'L' 
AMX NYSE 1:20 Wireless Comm. Level II 8-Feb-01 

CEMEX S.A. DE CV CX NYSE 1:5 Building Materials Level II 1-Sep-99 

COCA-COLA FEMSA 'L' 

SHARES 
KOF NYSE 1:10 Beverage Level III 1-Sep-93 

CORPORACION 

DURANGO 
CDG NYSE 1:2 

Forest Products & 

Paper 
Level III 1-Jul-94 

DESC, S.A. DE C.V. DES NYSE 1:20 Auto Parts & Tires Level III 20-Jul-94 

EMPRESAS ICA, S.A. DE 

C.V. 
ICA NYSE 1:6 

Heavy 

Construction 
Level III 1-Apr-92 

FOMENTO 

ECONOMICO 

MEXICANO, S.A. DE 

C.V. 

FMX NYSE 1:10 Beverage Level II 11-Feb-04 

GRUMA, S.A. DE C.V. - 

'B' SHARES 
GMK NYSE 1:4 Food Level II 6-Nov-98 

GRUPO 

AEROPORTUARIO DEL 

SURESTE 

ASR NYSE 1:10 
Gen. Industrial 

Svcs 
Level III 28-Sep-00 

GRUPO IMSA IMY NYSE 1:9 
Industrial 

Diversified 
Level III 10-Dec-96 

GRUPO INDUSTRIAL 

MASECA S.A. DE C.V. 
MSK NYSE 1:15 Food Level II 17-May-94 

GRUPO IUSACELL CEL NYSE 1:5 Wireless Comm. Level II 5-Aug-99 

GRUPO RADIO 

CENTRO, S.A. DE C.V. 
RC NYSE 1:9 Broadcasting Level III 9-Jul-93 

GRUPO SIMEC 'B' 

SHARES 
SIM AMEX 1:1 Mining & Metals Level III 1-Jun-93 

GRUPO TELEVISA, S.A. TV NYSE 1:20 Broadcasting Level III 16-Sep-02 

GRUPO TMM TMM NYSE 1:1 
Industrial 

Transport 
Level III 17-Jun-92 

INDUSTRIAS 

BACHOCO 
IBA NYSE 1:6 Food Level III 26-Sep-97 

INTERNACIONAL DE 

CERAMICA 
ICM NYSE 1:5 Building Materials Level III 15-Dec-94 

TELEFONOS DE 

MEXICO S.A. DE C.V.-

SERIES 'L' 

TMX NYSE 1:20 Fixed Line Comm. Level III 13-May-91 

TV AZTECA, S.A. DE 

C.V. 
TZA NYSE 1:16 Broadcasting Level III 1-Aug-97 

VITRO, S.A. DE C.V. VTO NYSE 1:3 
Industrial 

Diversified 
Level III 19-Nov-91 
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TABLE 2:  MARKET STATISTICS 
 

 

SYMBOL Volume1 MC Float2 
Short 

Rate2 

 

Mean 

(Qt) 

 

SD 

(Qt) 

 

Max/Min 

 

AR(1) 

 

LB(5) 

AMX 1,531,594 22.13B 386.70M 3.155 0.1154 1.0538 8.27/-9.46 0.391 207.31 

CX 617,121 9.87B 139.84M 2.586 -0.4298 0.9613 5.44/-6.26 0.490 844.66 

KOF 179,258 3.83B 27.08M 1.909 0.3720 1.8516 12.79/-9.82 0.414 615.21 

CDG 23,641 55.10M 2.30M 5 16.575 58.1485 483.44/-52.00 0.988 
116118.2

0 

DES 50,501 665.14M 34.66M 2.667 -10.55 6.6358 14.01/-37.29 0.917 8659.15 

ICA 266,505 615.47M 71.20M 16.645 -2.6896 2.4973 13.66/-17.53 0.456 1427.63 

FMX 237,435 4.78B 66.26M 2.851 -0.1025 0.9973 7.56/-17.41 0.194 81.35 

GMK 8,323 743.26M 21.68M 7.25 0.6519 3.9613 14.19/-81.40 0.479 758.81 

ASR 130,500 587.40M 10.80M 0.407 0.8898 6.8541 86.48/-12.32 0.810 1172.07 

IMY 19,590 1.13B 10.02M 9.5 0.5551 2.5380 28.56/-17.34 0.633 1842.60 

MSK 33,240 397.98M 4.42M N/A 0.5484 2.4037 14.38/-29.99 0.501 1539.18 

CEL 150,975 116.56M 4.72M 18.2 -0.3614 4.4567 22.51/-29.53 0.667 1291.53 

RC 37,263 98.50M 8.68M 2.042 2.7286 9.3029 64.47/-24.51 0.898 8233.55 

SIM 11,000 298.47M 16.10M 1.978 1.0113 11.17 77.66/-59.88 0.874 8139.64 

TV 692,304 5.98B 105.89M 2.884 0.0915 1.1807 16.28/-11.14 0.267 291.30 

TMM 62,341 150.38M 6.30M 16.968 -0.6590 15.3707 101.31/-68.87 0.963 12768.54 

IBA 18,586 471.38M 8.17M 1.294 0.1688 2.7932 17.90/-12.13 0.702 2054.45 

ICM 6,945 107.68M 5.54M N/A 3.5991 13.2577 64.95/-49.16 0.955 9441.14 

TMX 2,520,634 19.09B 392.98M 8.095 0.6146 0.971 16.53/-10.86 0.305 730.84 

TZA 440,805 1.49B 72.68M 7.42 -0.2084 1.4993 10.64/-10.26 0.309 259.07 

VTO 164,141 304.66M 24.70M 4.636 0.3206 2.2561 14.81/-17.16 0.473 1819.54 

 

Notes: 

1. MC: Market Capitalization; Volume: average daily volume since inception, Float: number of freely traded 

shares in the hands of the public. Float is calculated as Shares Outstanding minus Shares Owned by Insiders, 5% 

Owners, and Rule 144 Shares. Mean(Part) is the mean of Qt= 100*(B St Pt(L) / Pt(A)  -1); SD(Qt) is the SD of Qt; 

Max/Min represents the maximum and the minimum of Qt; AR(1) is the AR(1) coefficient of Qt; and LB(5) is the 

Ljung-Box statistics with 5 lags for Qt. 

 

2. As of May 18, 2004. N/A: Not available 



TABLE 3:  LM-Tests for Nonlinearity and LM-Tests for Model Selection 
  

 Standard Tests Heroskedasticity-Robust Tests 

Tests AR vs  STAR ESTAR  vs  LSTAR AR vs  STAR ESTAR  vs  LSTAR 

TP EJP TP EJP TP EJP TP EJP 
FIRM 

d 
NLM3 NLM4 NLM2 LM

LST
 LM

EST
 NLM3 NLM4 NLM2 LM

LST
 LM

EST
 

1 0.000 0.000 0.000 0.000 0.000 0.387 0.390 0.042 0.016 0.002 

2 0.000 0.000 0.000 0.000 0.000 0.049 0.037 0.078 0.345 0.083 

3 0.000 0.000 0.000 0.000 0.000 0.008 0.601 0.138 0.098 0.092 

4 0.000 0.000 0.000 0.127 0.000 0.316 0.271 0.192 0.821 0.162 

Panel A 

 

TMX 

5 0.000 0.000 0.002 0.009 0.043 0.263 0.426 0.220 0.404 0.430 

Panel B            

AMX 4 0.000 0.000 0.001 0.001 0.000 0.021 0.037 0.002 0.035 0.017 

CX 2 0.000 0.029 0.000 0.002 0.000 0.200 0.569 0.169 0.101 0.113 

KOF 1 0.000 0.000 0.013 0.000 0.020 0.069 0.059 0.049 0.073 0.037 

CDG 1 0.000 0.019 0.000 0.002 0.000 0.020 0.599 0.069 0.091 0.063 

DES 1 0.000 0.000 0.010 0.000 0.020 0.054 0.070 0.041 0.093 0.057 

ICA 1 0.000 0.000 0.015 0.000 0.000 0.000 0.000 0.576 0.519 0.530 

FMX 1 0.000 0.000 0.004 0.032 0.000 0.072 0.042 0.051 0.051 0.014 

GMK 1 0.000 0.000 0.027 0.000 0.644 0.030 0.051 0.094 0.045 0.002 

ASR 1 0.000 0.000 0.000 0.000 0.000 0.112 0.066 0.032 0.071 0.033 

IMY 1 0.000 0.000 0.000 0.000 0.000 0.202 0.034 0.053 0.054 0.032 

MSK 2 0.000 0.007 0.000 0.026 0.003 0.046 0.270 0.037 0.074 0.055 

CEL 4 0.000 0.019 0.001 0.053 0.000 0.057 0.031 0.095 0.099 0.023 

RC 1 0.000 0.012 0.001 0.080 0.020 0.072 0.065 0.068 0.097 0.053 

SIM 1 0.000 0.000 0.120 0.007 0.067 0.002 0.048 0.029 0.034 0.051 

TV 1 0.000 0.000 0.000 0.001 0.000 0.045 0.055 0.032 0.107 0.092 

TMM 1 0.000 0.000 0.000 0.000 0.000 0.004 0.027 0.076 0.088 0.078 

IBA 2 0.000 0.001 0.010 0.001 0.016 0.032 0.019 0.164 0.026 0.014 

ICM 1 0.000 0.000 0.000 0.000 0.000 0.151 0.046 0.105 0.062 0.043 

TMX 2 0.000 0.000 0.000 0.000 0.000 0.049 0.037 0.078 0.345 0.083 

TZA 5 0.000 0.000 0.004 0.000 0.070 0.013 0.018 0.057 0.081 0.043 

VTO 2 0.000 0.000 0.268 0.025 0.082 0.080 0.067 0.063 0.081 0.052 

 

Notes: This Table presents the p-values of the Lagrange Multiplier (LM) tests for AR linearity against STAR nonlinearity, 

denoted AR vs. STAR and LM-tests for choosing between the ESTAR and the LSTAR model, denoted ESTAR vs. STAR of 

the daily price differential between ADRs and their underlying shares. The tests are performed following two tests: the 

Teräsvirta (1994) test (TP) with the corresponding statistics NLM3, and NLM2; and the Escribano and Jordá (1999) test 

(EJP) with corresponding statistics NLM4, LM
LST

, and LM
EST

. The NLM3 and NLM2 statistics are based on the auxiliary 

regression model, equation (A.1) and the NLM4, LM
LST

, and LM
EST

 statistics are based on equation (A.2). For each test, two 

versions of tests are estimated, the standard test and the heteroskedasticity-consistent test.  

The first panel shows p-values for all possible choices of d, d={1,…,5} only  for the firm TMX. The second panel also 

reports the selected p-values and the delay parameter, d, for all the other firms. For each test, the rejection of the null 

hypothesis, the selection of the delay parameter d, and the resultant model are based on the smallest p-value. 



TABLE 4:  Nonlinear Estimation Results for ESTAR model of Price Spread 

     ESTAR(P):   qt = µ +  µ)-(qL t

j
p

1j

1j∑
=

ψ + 







∑

=

)µ -(qL t

j
p

1j

2jψ [ { }2

z

2

d-t t
σ̂/µ)(qexp1 −−− λ ] + εt 

 

FIRM p, d µ λλλλ 
 

ΨΨΨΨ11 

 

ΨΨΨΨ12 

 

ΨΨΨΨ21 

 

ΨΨΨΨ22 

  

S 

 

LR(k) 
NLMax 

d={3..6} 

LMNA 

AR(1-6) 

            

AMX 2, 4 - 2.745 0.842 0.155 -0.837 -0.137 0.453 
 

LR(4) 
[0.498] [0.336] 

   (0.019) (0.106) (0.082) (0.547) (0.544)  [0.561]   

            

CX 2, 2 - 2.864 0.494 0.259 -0.470 -0.258 0.061 LR(3) [0.502] [0.452] 

   (0.008) (0.066) (0.046) (0.108) (0.114)  [0.754]   

            

KOF 1, 1 0.045 1.575 0.643 - - 0.612 - 0.036 LR(1) [0.471]   [0.357] 

  (0.001) (0.025) (0.049)  (0.077)   [0.224]   

            

CDG 1, 1 - 1.981 0.993 - -0.996 - 0.041 LR(3) [0.211] [0.405] 

   (0.528) (0.009)  (0.048)   [0.582]   

            

DES 2,  1 0.163 2.971 0.921 0.164 -0.928 0.141 0.028 LR(3) [0.404] [0.471] 

  (0.003) (0.068) (0.050) (0.048) (0.062) (0.066)  [0.672]   

            

ICA  2, 1 -0.221 0.992 -0.765 -0.213 0.548 0.098 0.039 LR(3) [0.397] [0.545] 

  (0.012) (0.082) (0.113) (0.108) (0.082) (0.074)  [0.423]   

            

FMX 2, 1 - 1.793 0.865 0.147 -0.859 -0.161 0.027 LR(4) [0.438] [0.443] 

   (0.014) (0.011) (0.075) (0.070) (0.094)  [0.522]   

            

GMK 1,1 - 0.361 0.839 - -0.841 - 0.042 LR(2) [0.399] [0.562] 

   (0.039) (0.234)  (0.043)   [0.252]   

            

ASR 1, 1 - 1.277 0.806 - -0.809 - 0.021 LR(2) [0.305] [0.668] 

   (0.027) (0.122)  (0.439)   [0.252]   

            

IMY 2, 2 - 0.642 0.526 0.164 -0.535 0.160 0.048 LR(3) [0.574] [0.218] 

   (0.030) (0.121) (0.113) (0.109) (0.114)  [0.352]   

            

MSK 2, 2 0.025 0.582 0.897 0.175 -0.876 -0.133 0.030 LR(3) [0.327] [0.525] 

  (0.003) (0.053) (0.111) (0.077) (0.094) (0.083)  [0.571]    

            

CEL 2, 4 - 0.496 0.611 0.305 -0.609 -0.095 0.041 LR(3) [  0.318] [0.280] 

   (0.038) (0.071) (0.066) (0.123) (0.132)  [0.471]    

            

 

RC 1, 2 0.211 0.835 0.876 - -0.950 - 
  

0.038 
LR(1) [ 0.390 ] [0.572] 

  (0.012) (0.104) (0.031)  (0.043)   [0.197]    

            

SIM 2, 1 0.348 0.514 0.911 0.234 -1.09 -0.239 0.052 LR(3) [0.795] [0.489] 

  (0.010) (0.099) (0.084) (0.065) (0.183) (0.173)  [0.458]    
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TABLE 4 :  (Continued)  Nonlinear Estimation Results for ESTAR model of  Price Spread  
 

FIRM p, d µ λλλλ 
 

ΨΨΨΨ11 

 

ΨΨΨΨ12 

 

ΨΨΨΨ21 

 

ΨΨΨΨ22 

  

S 

 

LR(k) 
NLMax 

d={3..6} 

LMNA 

AR(1-6) 

TV 2, 1 - 2.289 0.823 0.081 -0.824 -0.078 0.032 LR(4) [0.321] [0.254] 

   (0.030) (0.158) (0.139) (0.101) (0.073)  [0.285]    

            

TMM 1, 1 - 0.315 0.973 - -0.973 - 0.042 LR(2) [0.244] [0.145] 

   (0.737) (0.019)  (0.019)   [0.628]    

            

IBA 2, 2 - 1.550 0.638 0.296 -0.641 -0.278 0.019 LR(4) [0.275] [0.323] 

   (0.021) (0.038) (0.031) (0.274) (0.276)  [0.356]    

             

ICM 1, 1 -0.053 0.317 0.975 - -0.846 - 0.035 LR(1) [0.399] [0.379] 

  (0.014) (0.094) (0.010)  (0.039)   [0.334]    

            

TMX 2, 2 0.026 2.853 0.718 0.261 -0.709 -0.131 0.010 LR(3) [0.589] [0.258] 

  (0.001) (0.018) (0.065) (0.057) (0.456) (0.173)  [0.573]    

            

TZA 2, 5 - 1.387 0.965 0.023 -0.978 0.127 0.031 LR(3) [0.535] [0.332] 

   (0.013) (0.042) (0.042) (0.149) (0.135)  [0.628]    

            

VTO 2, 2 -0.037 0.984 0.771 0.156 -0.725 -0.134 0.019 LR(4) [0.419] [0.425] 

  (0.005) (0.093) (0.092) (0.058) (0.065) (0.048)  [0.425]    

            

 

 

 

 
Notes:  

P and d denote the autoregressive order and the number of period for the delay parameter respectively. ΨΨΨΨ11, ΨΨΨΨ12, 

ΨΨΨΨ21 and ΨΨΨΨ22 represent the estimated autocorrelation parameters, λλλλ the estimated speed of transition, µ the estimated 

mean, and S the residual standard errors of models. 

Figures reported in the squared brackets are the (p-values). ARCH tests conducted on the residuals of the estimated 

models indicated the presence of heteroscedasticity. Therefore numbers in parentheses denote heteroscedastic-consistent 

standard errors of estimates computed using Woodridge (1991).  LMNA AR(1-6) is a  LM -test statistics for testing the 

null hypothesis of no serial correlation in the residuals of order 1, up to 6 developed as in Eitrheim and Teräsvirta (1996). 

NLMax denotes the maximum LM- test statistic of no additive nonlinearity with the delay length in the range from 3 to 6; 

they are constructed as in Eitrheim and Teräsvirta (1996). LMNA and NLMax allow the assessment of models adequacy. 

LR(k) denotes a likelihood ratio test  statistic for k parameters restrictions implicit to the estimated equation against the 

unrestricted ESTAR model. For example, LR(4) tests the significance of the following four restrictions µ =0, Ψ11+Ψ12, = 

1, Ψ21 = -Ψ11, and Ψ22  = -Ψ12.  
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TABLE 5: Speed of Convergence: Half-lives 
 

Nonlinear Adjustment (ESTAR)
a
 

Linear 

Adjustment 

(AR)
b FIRM 

εσ̂1  εσ̂3  εσ̂5  tq (5) 

AMX 0.643 0.588 0.507 0.850 

CX 0.516 0.544 0.514 2.318 

KOF 0.701 0.634 0.612 0.839 

CDG 10.895 10.759 9.661 50.027 

DES 2.356 2.267 1.084 12.313 

ICA 12.908 12.772 11.674 15.685 

FMX 0.542 0.497 0.494 0.505 

GMK 1.079 0.968 0.555 0.732 

ASR 0.945 0.892 0.712 2.287 

IMY 0.986 0.866 0.793 2.057 

MSK 1.042 1.045 0.947 1.691 

CEL 2.094 2.195 2.183 2.601 

RC 3.616 3.527 2.344 7.014 

SIM 1.893 1.846 1.008 7.363 

TV 0.694 0.664 0.666 0.704 

TMM 12.575 12.439 11.341 32.550 

IBA 1.995 1.764 1.103 2.344 

ICM 7.116 7.027 5.844 7.014 

TMX 0.551 0.458 0.475 1.040 

TZA 0.606 0.603 0.603 0.792 

VTO 1.164 0.976 0.832 1.799 

Average 3.10 3.02 2.57 7.26 

 

Notes: All figures are in (business) days. A half-life is defined as the number of periods it takes for shocks to 

pricing error to dissipate by a half. In a non-linear framework, it is such that the impulse response function is 

less than unity or Gh(δ, ωt-1)<0.5 

a. Half-lives for shocks εσ=δ ˆi ( i=1,3,5)  where εσ̂ denotes the residual standard deviation 

b. Half-lives computed in a linear framework, using the Augmented Dickey-Fuller (ADF) representation, which 

regresses the first difference of the price spread qt on a deterministic component, its lagged level, and k lagged 

first differences: 

(1-L)qt  = dt + αααα qt-1 +  ∑
=

k

j 1

 φφφφj(1-L)qt-j + εεεεt,      

where L denotes the lag operator, εt  the error term, αααα,  the persistence parameter, and dt the deterministic 

component which can be a constant, µµµµ0, or a constant and a time trend, µµµµ0+βt, and k  denotes the autoregressive 

lag length. The maximum lag length in the ADF specification is set equal to 5 business days. The lag truncation 

is selected using a general-to-specific methods.  
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Table 6.A: Ranks of Firms Market Characteristics 
 

      FIRM 

Speed of 

transition 

Price 

spread  

Nonlinear 

Half-life 

Price 

spread  

Linear 

Half-life 

Average 

Daily 

Volume 

Market 

Capitalization Float 

       

AMX 4 5 6 2 1 2 

CX 2 1 12 4 3 3 

KOF 8 7 5 8 6 9 

CDG 6 19 21 16 21 21 

DES 1 16 18 13 10 8 

ICA  12 21 19 6 11 6 

FMX 7 2 1 7 5 7 

GMK 19 11 3 20 9 11 

ASR 11 8 11 11 12 13 

IMY 15 9 10 17 8 14 

MSK 16 10 8 15 14 20 

CEL 18 15 14 10 18 19 

RC 14 17 15 14 20 15 

SIM 17 13 17 19 16 12 

TV 5 6 2 3 4 4 

TMM 21 20 20 12 17 17 

IBA 9 14 13 18 13 16 

ICM 20 18 16 21 19 18 

TMX 3 3 7 1 2 1 

TZA 10 4 4 5 7 5 

VTO 13 12 9 9 15 10 

 

 



 36 

Table 6.B:    Nonparametric Tests of Association Between Firm Market  

Characteristics and Convergence to Parity: 
     Spearman Rank Correlation Coefficient ( rs ) 

 

 

  

Average 

Daily 

Volume 

Price 

spread 

Nonlinear  

Half-life 

Price 

spread 

Linear  

Half-life 

Market 

Capitalization Float 

Speed of Transition  0.627 0.513 0.223 0.633 0.651 

Average Daily Volume  0.579 0.404 0.513 0.777 

Price spread Nonlinear Half-life   0.810 0.826 0.655 

Price spread Linear Half-life    0.702 0.505 

Market Capitalization        0.852 

  
 

Notes:  

The Spearman rank correlation coefficient is computed using the ranks as the paired 

measurements on the variables (xi, xj). The test statistic is therefore, assuming no ties in either the x or y 

observations, given by: 

 rs =  1- 6  ∑
=

N

j 1

[R(x1,j) - R(x2,j)]
2
/[N(N

2
 - 1)],               | rs | ≤ 1 

* denotes significance at the 5% level. The Spearman rank statistics indicate that volume, market 

capitalization, and float are positively and strongly correlated with the price spread half live and the speed 

of transition. This implies the higher the average daily volume, the faster an arbitrage can be executed. This 

observation remains true for market capitalization and float. Critical values of Spearman’s Rank correlation 

coefficient for n=21 are: 0.368 (5%); 0.438(2.5%); and 0.521(1%).  
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Figure 1: Partial Autocorrelation Function for qt for Selected Firms 
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Notes: The band on the PACF represents the 95% 

confidence interval. 
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Figure 2: Estimated Transition Function for 

Selected Firms 
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Figure 2: Estimated Transition Function for 

Selected Firms    (continued) 
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Panel B:  Transition Function vs. Time 

                    Φ(Zt-d;λλλλ,,,,µ) v.s. t 

 

 ICM 

 
 

 RC 

 
 

  DES 

 
 

        TMM 

 


